WO2016086511A1 - 一种自钝化量子点的制备方法 - Google Patents

一种自钝化量子点的制备方法 Download PDF

Info

Publication number
WO2016086511A1
WO2016086511A1 PCT/CN2015/070161 CN2015070161W WO2016086511A1 WO 2016086511 A1 WO2016086511 A1 WO 2016086511A1 CN 2015070161 W CN2015070161 W CN 2015070161W WO 2016086511 A1 WO2016086511 A1 WO 2016086511A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
self
passivating
cadmium
preparing
Prior art date
Application number
PCT/CN2015/070161
Other languages
English (en)
French (fr)
Inventor
李良
李志春
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US15/314,820 priority Critical patent/US10377946B2/en
Publication of WO2016086511A1 publication Critical patent/WO2016086511A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/642Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/815Group III-V based compounds, e.g. AlaGabIncNxPyAsz
    • Y10S977/818III-P based compounds, e.g. AlxGayIn2P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/824Group II-VI nonoxide compounds, e.g. CdxMnyTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Definitions

  • the invention belongs to the technical field of semiconductor nanomaterials (quantum dots) preparation, and in particular relates to a method for preparing self-passivating quantum dots.
  • quantum dots Since the discovery of quantum dots, excellent optical properties have been given due to their special structure.
  • One of the most prominent properties of quantum dots is "fluorescence performance", which has a narrower half-width, a smaller particle-free scattering loss, and a spectrally adjustable size.
  • the quantum dot size is mostly 3-10 nm, the surface area is very large, and it is easy to interact with oxygen and water in the air during use, and various defects are formed on the surface, so that the fluorescence is quenched and the stability is extremely poor. Limits the use of quantum dots.
  • Chinese patent CN103058274A discloses a preparation method of metal-doped titanium oxide quantum dots, in particular, a method for preparing metal-doped titanium oxide quantum dots by using a high-temperature oil phase, which belongs to the field of quantum dots technology.
  • Doped titanium oxide quantum dot solution The invention relates to broadening the absorption of visible light in titanium dioxide quantum dots, and does not involve the stability of quantum dots, and the stability of quantum dots is critical for practical applications.
  • the object of the present invention is to provide a method for preparing an ultra-stable self-passivating quantum dot in order to overcome the drawbacks of the prior art described above.
  • a method for preparing self-passivating quantum dots by the following steps:
  • the injection amount of the coating material precursor solution per hour is 1 or 2 times the molar concentration of the quantum dot core element, and the coating material precursor solution is injected into the reaction container pair.
  • the quantum dot core is coated to obtain self-passivating quantum dots;
  • the coating material precursor solution contains M precursor or does not contain M precursor.
  • the quantum dot core is a quantum dot core which is not doped with M, and the precursor solution of the coating material contains an M precursor.
  • the content of M in the self-passivating quantum dots is 0.1-40% by weight.
  • the quantum dot core is a core-shell structure, which is a binary structure quantum dot, a ternary structure quantum dot or a quaternary quantum dot, wherein the binary structure quantum dot is AX, and A is cadmium, zinc, mercury, lead, Tin, gallium, indium, calcium, strontium or copper, X is sulfur, selenium, phosphorus, arsenic, antimony or antimony.
  • the ternary structure quantum dots are A 1 A 2 X, where A 1 and A 2 are cadmium, zinc and mercury.
  • a 1 A 2 A 3 X of which A 1 , A 2 , A 3 is cadmium, zinc, mercury, lead, tin, gallium, indium, calcium, barium or copper, and X is sulfur, selenium, phosphorus, arsenic, antimony or antimony.
  • the binary structure quantum dot is cadmium selenide (CdSe), and the ternary structure quantum dot is copper indium sulfide (CuInS 2 ).
  • the equivalent sub-nucleus is a quantum dot cadmium selenide (CdSe), which can be prepared by a high temperature injection method.
  • the preparation steps are as follows:
  • the self-passivating quantum dot core is an aluminum-doped binary structure quantum dot cadmium selenide (CdSe), it can be prepared by a high temperature injection method, and the preparation steps are as follows:
  • the coating material is mainly composed of II-VI, II-V, III-VI, III-V, IV-VI, II-IV-V, II-IV-VI semiconductor materials, including cadmium selenide and selenium.
  • the coating material is preferably cadmium sulfide or zinc sulfide.
  • the aluminum precursor is aluminum isopropoxide.
  • the coating material is coated on the outside of the quantum dot core by 1-20 layers.
  • the present invention has the following advantages:
  • the preparation process of the invention is simple, and the prepared quantum dots have good morphology and are relatively regular nanostructures;
  • the self-passivating quantum dots prepared by the invention can form a passivation layer by self-passivating elements, and can effectively block the erosion of water vapor and oxygen on quantum dots, and its light stability. Significantly increased.
  • Figure 1 is a TEM photograph of a quantum dot of an M-doped CdS/CdS core-shell structure.
  • FIG. 2 is a TEM photograph of a quantum dot of an M-doped CIS/ZnS core-shell structure.
  • Figure 3 shows the fluorescence stability of M-doped CdSe/CdS core-shell quantum dots.
  • Figure 4 shows the fluorescence stability of M-doped CdSe/CdS core-shell quantum dots.
  • a method for preparing self-passivating quantum dots by the following steps:
  • the injection amount of the coating material precursor solution per hour is 1 or 2 times that of the quantum dot core, and the coating material precursor solution is injected into the reaction container to the quantum dot core. Coating to obtain self-passivating quantum dots;
  • the quantum dot nucleus can be a binary structure quantum dot, a ternary structure quantum dot or a quaternary quantum dot, wherein the binary structure quantum dot is AX, and A is cadmium, zinc, mercury, lead, tin, gallium, indium, Calcium, barium or copper, X is sulfur, selenium, nitrogen, phosphorus, arsenic, antimony or antimony.
  • the ternary structure quantum dots are A 1 A 2 X, where A 1 and A 2 are cadmium, zinc, mercury, lead, tin.
  • X is sulfur, selenium, nitrogen, phosphorus, arsenic, antimony or antimony
  • the quaternary quantum dots are A 1 A 2 A 3 X, of which A 1 , A 2 , A 3
  • X is sulfur, selenium, phosphorus, arsenic, antimony or antimony.
  • the coating material is mainly composed of II-VI, II-V, III-VI, III-V, IV-VI, II-IV-V, II-IV-VI semiconductor materials, including cadmium selenide and zinc selenide.
  • the quantum dot core is a quantum dot cadmium selenide (CdSe), it can be prepared by high temperature injection.
  • the preparation steps are as follows:
  • the self-passivating quantum dot core is an M-doped binary structure quantum dot cadmium selenide (CdSe), it can be prepared by a high temperature injection method, and the preparation steps are as follows:
  • CdSe nuclear quantum dots 16 mmol of cadmium oxide, 16 ml of oleic acid and 40 ml of octadecene were placed in a three-necked flask, vacuumed at 120 ° C for 30 minutes, and then heated to 290 ° C under a nitrogen atmosphere, when the solution became clear At the time, cool down to 270 °C. Then, 8 mmol of the tri-n-octylphosphine-selenium solution was quickly poured into a three-necked flask, and the temperature was lowered to 240 ° C for 3 minutes. After the reaction is completed, the CdSe quantum dots are washed and used as a nuclear quantum dot stock solution.
  • Figure 1 shows the TEM image of the M-doped CdSe/CdS core-shell quantum dots. It can be seen from the figure that the prepared M-doped CdSe/CdS core-shell quantum dots have a regular structure and a uniform quantum dot size distribution.
  • CIS nuclear quantum dots 0.5032 mmol of cuprous iodide, 0.5497 mmol of indium acetate, 60 ml of n-dodecyl mercaptan, 40 ml of octadecene, and 0.5 ml of oleylamine were placed in a 250 mL three-necked flask. After charging with nitrogen for 20 min, the temperature was heated to 100 ° C and maintained for 1 hour until the solution in the flask became clear and transparent. Then, the temperature was raised to 230 ° C at a rate of 13 ° C / min, and the reaction was started. After 1 h, the reaction was stopped, cooled, and used as a nuclear quantum dot stock solution.
  • CIS stock solution 0.1 mmol
  • 20 ml of octadecene 20 ml
  • vacuum was applied for 30 minutes.
  • the temperature was raised to 230 ° C under a nitrogen atmosphere, a micro syringe pump was started, and an aluminum and sulfur precursor solution, a zinc oleate solution was injected into the flask, and the parameters of the injection pump were adjusted so that the ZnS generated per hour was twice the molar amount of CIS.
  • the molar amount of aluminum injected is 0.5-2 of Zn. Times.
  • Figure 2 shows the TEM image of the aluminum-doped CIS/ZnS core-shell quantum dots. It can be seen from the figure that the prepared aluminum-doped CIS/ZnS core-shell quantum dots have a regular structure and a uniform quantum dot size distribution.
  • indium phosphide core quantum dots 0.2 mmol of indium acetate, 8 ml of octadecene, and 0.6 mmol of tetradecanoic acid were placed in a 100 mL three-necked flask. After charging with nitrogen for 20 min, the temperature was heated to 100 ° C and maintained for 1 hour until the solution in the flask became clear and transparent.
  • the temperature was raised to 270 ° C at a rate of 13 ° C / min, and then 0.1 mmol of the tris(trimethylsilyl) phosphine solution was quickly poured into a three-necked flask, and the temperature was lowered to 250 ° C for 20 minutes. After the reaction is completed, the indium phosphide quantum dots are washed and used as a nuclear quantum dot stock solution.
  • a CdSe/CdS quantum dot and an aluminum-doped CdSe/CdS quantum dot toluene solution having an absorbance of 0.1 at 450 nm and the same number of coating layers were disposed, and the same volume of solution was separately added to the sealed test bottle, and placed at 0.2 A, 50 V. (10W, energy density is 0.35W/cm2) under a blue light source (450nm, Philips), after a period of time, take a quantitative sample, test its fluorescence spectrum and integrate to obtain the corresponding fluorescence peak integral area, so that the integral area and The ratio of the initial fluorescence peak integrated area is used to make an intensity-time decay curve.
  • Figure 3 shows the light attenuation diagram of CdSe/CdS core-shell quantum dots with different aluminum and cadmium molar ratios. It can be seen from the figure that the stability of aluminum-doped CdSe/CdS quantum dots is improved under different aluminum to cadmium molar ratios compared with undoped CdSe/CdS quantum dots; and aluminum and cadmium molars When the ratio is 0.5:1, the stability of aluminum-doped CdSe/CdS quantum dots is the best.
  • a CIS/ZnS quantum dot with an absorbance of 0.1 at 450 nm and the same number of coating layers, and an aluminum-doped CIS/ZnS quantum dot toluene solution were placed, and the same volume of the solution was separately added to the sealed test bottle, and placed at 0.2 A, 50 V. (10W, energy density is 0.35W/cm2) under a blue light source (450nm, Philips), after a period of time, take a quantitative sample, test its fluorescence spectrum and integrate to obtain the corresponding fluorescence peak integral area, so that the integral area and The ratio of the initial fluorescence peak integrated area is used to make an intensity-time decay curve.
  • Figure 4 shows the light attenuation of CIS/ZnS core-shell quantum dots at different aluminum and zinc molar ratios. It can be seen from the figure that the stability of aluminum-doped CIS/ZnS quantum dots is improved under different conditions of aluminum to zinc molar ratio compared with undoped CIS/ZnS quantum dots; and the molar ratio of aluminum to zinc is The aluminum-doped CIS/ZnS quantum dots have the best stability at 0.5:1.
  • a method for preparing self-passivating quantum dots by the following steps:
  • the injection amount of the coating material precursor solution per hour is 1 times that of the quantum dot core, and the coating material precursor solution is injected into the reaction container to coat the quantum dot core.
  • a self-passivating quantum dot was obtained in which the aluminum content was 0.1% by weight.
  • the quantum dot cadmium selenide (CdSe) is prepared by high temperature injection method, and the preparation steps are as follows:
  • the coating material used is aluminum-doped cadmium sulfide, and two layers are coated on the binary structure quantum dot cadmium selenide to prepare self-passivating quantum dots.
  • a method for preparing self-passivating quantum dots by the following steps:
  • the injection amount of the coating material precursor solution per hour is twice that of the quantum dot core, and the coating material precursor solution is injected into the reaction container to coat the quantum dot core.
  • a self-passivating quantum dot is obtained in which the titanium content is 4% by weight.
  • the titanium doped binary structure quantum dot cadmium selenide (CdSe) is prepared by high temperature injection method, and the preparation steps are as follows:
  • the cladding material is zinc sulfide, and 20 layers are coated on the titanium doped binary structure quantum dot cadmium selenide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种自钝化量子点的制备方法,将量子点核、溶剂加入反应容器,控制温度抽真空;向反应容器中充入惰性气体;采用连续离子层吸附反应法,将包覆材料前驱体溶液注入反应容器对量子点核进行包覆,得到自钝化元素M(M=Al、Zr、Fe、Ti、Cr、Ta、Si、Ni)掺杂的量子点;量子点核为已掺杂M的量子点核或未掺杂M的量子点核,在对量子点进行包覆时,包覆材料前驱体中含有M前驱体或不含有M前驱体;量子点核为未进行M掺杂的量子点核时,包覆材料前驱体中含有M前驱体,制备得到的量子点形貌较好,光稳定性显著提高。

Description

一种自钝化量子点的制备方法 技术领域
本发明属于半导体纳米材料(量子点)制备技术领域,尤其是涉及一种自钝化量子点的制备方法。
背景技术
自从量子点发现以来,由于其特殊的结构而赋予优异的光电性质引起广泛关注。量子点最突出的性能之一“荧光性能”,其具有半峰宽更窄、颗粒小无散射损失和光谱随尺寸可调等性能。然而,由于量子点尺寸大多数为3-10纳米,表面积非常大,在使用过程中易与空气中的氧和水作用,在表面形成多种缺陷,从而使荧光发生猝灭,稳定性差极大地限制了量子点的使用。
现阶段,提高量子点稳定性主要有以下2种方法:(1)制备核壳结构的量子点以提高其稳定性,但仅仅通过增加壳层的厚度的方法,提高量子点稳定性的效果有限。(2)利用二氧化硅或者高分子包覆等方法来增强量子点的稳定性,但这些方法普遍存在不足,在包覆过程中,损害量子点的表面,往往造成量子点荧光效率降低。因此,提高量子点的稳定性是一个亟待解决的问题。
中国专利CN103058274A公开了金属掺杂氧化钛量子点的制备方法,尤其采用高温油相制备金属掺杂氧化钛量子点的方法,属于量子点技术领域。1)将金属钛化合物A和掺杂金属化合物B溶解于溶剂C中形成溶液D;2)将配体E加入于溶液D中形成溶液F;3)将溶液F抽真空并充氮气,然后升温至所需温度并搅拌所需时间后,待溶液冷却至室温;根据需要可以重复抽真空并充氮气过程;4)对步骤3)得到的溶液F进行离心清洗,并分散于溶剂G中得到金属掺杂氧化钛量子点溶液。该发明涉及拓宽二氧化钛量子点对可见光部分的吸收,并未涉及量子点的稳定性,而量子点的稳定性对实际应用至关重要。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种超稳定的自钝化量子点的制备方法。
本发明的目的可以通过以下技术方案来实现:
一种自钝化量子点的制备方法,采用以下步骤:
(1)将量子点核、溶剂加入反应容器,控制温度为100-120℃,抽真空30-50分钟;
(2)向反应容器中充入惰性气体,升温到230-280℃;
(3)采用连续离子层吸附反应法(SILAR),每小时包覆材料前驱体溶液的注入量为量子点核元素摩尔浓度的1倍或2倍,将包覆材料前驱体溶液注入反应容器对量子点核进行包覆,得到自钝化量子点;
所述的量子点核为进行M(M=Al、Zr、Fe、Ti、Cr、Ta、Si、Ni)掺杂的量子点核或未进行M掺杂的量子点核,在对量子点进行包覆时,包覆材料前驱体溶液中含有M前驱体或不含有M前驱体,
所述的量子点核为未进行M掺杂的量子点核,包覆材料前驱体溶液中含有M前驱体。
所述的自钝化量子点中M含量为0.1-40wt%。
所述的量子点核为核壳结构,为二元结构量子点、三元结构量子点或四元结构量子点,其中,二元结构量子点为AX,A为镉、锌、汞、铅、锡、镓、铟、钙、钡或铜,X为硫、硒、磷、砷、碲或锑,三元结构量子点为A1A2X,其中A1与A2为镉、锌、汞、铅、锡、镓、铟、钙、钡或铜,X为硫、硒、磷、砷、碲或锑,四元结构量子点为A1A2A3X,其中A1、A2、A3为镉、锌、汞、铅、锡、镓、铟、钙、钡或铜,X为硫、硒、磷、砷、碲或锑。
作为优选的实施方式,二元结构量子点为硒化镉(CdSe),所述的三元结 构量子点为铜铟硫(CuInS2)。
例如,当量子点核为量子点硒化镉(CdSe),可以采用高温注射法制备得到,制备步骤如下:
(1)将氧化镉、油酸和十八烯在反应器中混合,其中氧化镉的摩尔浓度为0.01-1mmol/ml,油酸与十八烯的体积比为1:1-1:100,在100-120℃下抽真空30-50分钟;
(2)向反应器中充入氮气并升温至280-300℃,当溶液变为澄清时,降温至270℃;
(3)将三正辛基膦-硒溶液快速注入反应器中,三正辛基膦-硒与氧化镉的摩尔比为1:1-1∶2,降温至240℃,反应3-5分钟,清洗得到CdSe量子点。
当自钝化量子点核为铝掺杂二元结构量子点硒化镉(CdSe)时,可以采用高温注射法制备得到,制备步骤如下:
(1)将氧化镉、异丙醇M、油酸和十八烯在反应器中混合,其中氧化镉的摩尔浓度为0.01-1mmol/ml,异丙醇铝的摩尔浓度为0.01-0.5mmol/ml,油酸与十八烯的体积比为1:1-1:100,100-120℃下,抽真空30-50分钟;
(2)在反应器中充入氮气并升温至280-300℃,当溶液变为澄清时,降温至270℃;
(3)将三正辛基膦-硒溶液快速注入反应器中,三正辛基膦-硒与氧化镉的摩尔比为1:1-1∶2,降温至240℃,反应3-5分钟,清洗得到M掺杂二元结构量子点硒化镉(CdSe)。
所述的包覆材料以Ⅱ-Ⅵ、Ⅱ-Ⅴ、Ⅲ-Ⅵ、Ⅲ-Ⅴ、Ⅳ-Ⅵ、Ⅱ-Ⅳ-Ⅴ、Ⅱ-Ⅳ-Ⅵ族半导体材料为主体,包括硒化镉、硒化锌、硒化汞、硫化镉、硫化锌、硫化汞、碲化镉、碲化锌、碲化镉、氮化铟、氮化镓、磷化镓、锑化镓、铟镓磷、锌镉硒或镉锌硫。
所述的包覆材料优选硫化镉或硫化锌。
所述的铝前驱体为异丙醇铝。
所述的包覆材料在量子点核外包覆1-20层。
与现有技术相比,本发明具有以下优点:
1、本发明制备过程简单,制备的量子点形貌较好,为较规则纳米结构;
2、与未掺杂的量子点相比,本发明制备的自钝化量子点,由于自钝化元素可形成钝化层,能够有效阻挡水气、氧气对量子点的侵蚀,其光稳定性显著提高。
附图说明
图1为M掺杂CdS/CdS核壳结构量子点TEM照片。
图2为M掺杂CIS/ZnS核壳结构量子点TEM照片。
图3为M掺杂CdSe/CdS核壳结构量子点荧光稳定性。
图4为M掺杂CdSe/CdS核壳结构量子点荧光稳定性。
具体实施方式
一种自钝化量子点的制备方法,采用以下步骤:
(1)将量子点核、溶剂加入反应容器,控制温度为100-120℃,抽真空30-50分钟;
(2)向反应容器中充入惰性气体,升温到230-280℃;
(3)采用连续离子层吸附反应法(SILAR),每小时包覆材料前驱体溶液的注入量为量子点核的1倍或2倍,将包覆材料前驱体溶液注入反应容器对量子点核进行包覆,得到自钝化量子点;
其中,如果量子点核为进行M(M=Al、Zr、Fe、Ti、Cr、Ta、Si、Ni)掺杂的量子点核或未进行M掺杂的量子点核,在对量子点进行包覆时,包覆材料前驱体溶液中含有M前驱体或不含有M前驱体,如果量子点核为未进行M掺杂的量子点核,包覆材料前驱体溶液中含有M前驱体,这样就能够保证量子点中有M进行掺杂,自钝化量子点中M含量为0.1-40wt%。
量子点核,可以为二元结构量子点、三元结构量子点或四元结构量子点,其中,二元结构量子点为AX,A为镉、锌、汞、铅、锡、镓、铟、钙、钡或铜,X为硫、硒、氮、磷、砷、碲或锑,三元结构量子点为A1A2X,其中A1与A2为镉、锌、汞、铅、锡、镓、铟、钙、钡或铜,X为硫、硒、氮、磷、砷、碲或锑,四元结构量子点为A1A2A3X,其中A1、A2、A3为镉、锌、汞、铅、锡、镓、铟、钙、钡或铜,X为硫、硒、磷、砷、碲或锑。包覆材料以Ⅱ-Ⅵ、Ⅱ-Ⅴ、Ⅲ-Ⅵ、Ⅲ-Ⅴ、Ⅳ-Ⅵ、Ⅱ-Ⅳ-Ⅴ、Ⅱ-Ⅳ-Ⅵ族半导体材料为主体,包括硒化镉、硒化锌、硒化汞、硫化镉、硫化锌、硫化汞、碲化镉、碲化锌、碲化镉、氮化铟、氮化镓、磷化镓、锑化镓、铟镓磷、锌镉硒或镉锌硫。在量子点核外包覆2-20层。
当量子点核为量子点硒化镉(CdSe),可以采用高温注射法制备得到,制备步骤如下:
(1)将16mmol氧化镉、16ml油酸和40ml十八烯在反应器中混合,在100-120℃下抽真空30-50分钟;
(2)向反应器中充入氮气并升温至280-300℃,当溶液变为澄清时,降温至270℃;
(3)将8mmol三正辛基膦-硒溶液快速注入反应器中,降温至240℃,反应3-5分钟,清洗得到CdSe量子点。
当自钝化量子点核为M掺杂二元结构量子点硒化镉(CdSe)时,可以采用高温注射法制备得到,制备步骤如下:
(1)将16mmol氧化镉、16ml油酸、1.6mmol异丙醇M和40ml十八烯加入反应器中,100-120℃下,抽真空30-50分钟;
(2)反应器中充入氮气并升温至280-300℃,溶液变为澄清时,降温至270℃;
(3)将8mmol三正辛基膦-硒溶液快速注入反应器中,降温至240℃,反应3-5分钟,清洗得到M掺杂二元结构量子点硒化镉(CdSe)。
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
铝掺杂硒化镉(CdSe)/硫化镉(CdS)核壳结构量子点的制备
CdSe核量子点的制备:将16mmol氧化镉、16ml油酸和40ml十八烯加入三颈烧瓶中,120℃下,抽真空30分钟,随后在氮气气氛下升温至290℃,当溶液变为澄清时,降温至270℃。然后将8mmol三正辛基膦—硒溶液快速注入三颈烧瓶中,并降温至240℃,反应3分钟。反应结束后,清洗CdSe量子点,并作为核量子点储备液。
将0.1mmolCdSe储备液、20ml十八烯加入100ml三颈烧瓶中。120℃下,抽真空30分钟。随后在氮气气氛下升温至280℃。在230℃时,启动微量注射泵,将铝与硫前驱体溶液、油酸镉溶液注入烧瓶中,调节注射泵参数,使得每小时生成的CdS为CdSe摩尔量的2倍。整个反应中,注入M的摩尔量为CdS中Cd的0.5-2倍。图1所示为M掺杂CdSe/CdS核壳量子点的TEM图,从图中可以看出,制备的M掺杂CdSe/CdS核壳量子点其结构规整,且量子点尺寸分布较均匀。
实施例2
铝掺杂铜铟硫(CIS)/硫化锌(ZnS)核壳结构量子点的制备
CIS核量子点的制备:将0.5032mmol碘化亚铜、0.5497mmol醋酸铟、60ml正十二硫醇、40ml十八烯、0.5ml油胺,置于250mL三口烧瓶。充入氮气20min后,温度加热至100℃后维持1小时,直至烧瓶中溶液变得澄清透明。随后以13℃/min的速率升温至230℃,开始计时,1h后停止反应,冷却,并作为核量子点储备液。
将0.1mmol CIS储备液、20ml十八烯加入100ml三颈烧瓶中。120℃下,抽真空30分钟。随后在氮气气氛下升温至230℃,启动微量注射泵,将铝与硫前驱体溶液、油酸锌溶液注入烧瓶中,调节注射泵参数,使得每小时生成的ZnS为CIS摩尔量的2倍。整个反应中,注入铝的摩尔量为Zn的0.5-2 倍。图2所示为铝掺杂CIS/ZnS核壳量子点的TEM图,从图中可以看出,制备的铝掺杂CIS/ZnS核壳量子点其结构规整,且量子点尺寸分布较均匀。
实施例3
Cr掺杂磷化铟(InP)/硫化锌(ZnS)核壳结构量子点的制备
磷化铟核量子点的制备:将0.2mmol醋酸铟、8ml十八烯、0.6mmol十四酸,置于100mL三口烧瓶。充入氮气20min后,温度加热至100℃后维持1小时,直至烧瓶中溶液变得澄清透明。随后以13℃/min的速率升温至270℃,然后将0.1mmol三(三甲基硅烷基)膦溶液快速注入三颈烧瓶中,并降温至250℃,反应20分钟。反应结束后,清洗磷化铟量子点,并作为核量子点储备液。
将0.1mmol InP核量子点储备液、20ml十八烯加入100ml三颈烧瓶中。120℃下,抽真空30分钟。随后在氮气气氛下升温至230℃,启动微量注射泵,将Cr与硫前驱体溶液、油酸锌溶液注入烧瓶中,调节注射泵参数,使得每小时生成的ZnS为InP摩尔量的2倍。整个反应中,注入Cr的摩尔量为Zn的0.5-2倍。制备的Cr掺杂InP/ZnS核壳量子点其结构规整,且量子点尺寸分布较均匀。
实施例4
铝掺杂CdSe/CdS核壳结构量子点光稳定性测试
配置450nm处吸光度为0.1且包覆层数相同的CdSe/CdS量子点、铝掺杂CdSe/CdS量子点甲苯溶液,在密闭测试瓶中分别加入相同体积的溶液,将其置于0.2A、50V(10W,能量密度为0.35W/cm2)的蓝光平面光源(450nm,Philips)下,每隔一段时间后取出定量样品,测试其荧光光谱并积分得到相应的荧光峰积分面积,以此积分面积与初始荧光峰积分面积之比做出强度-时间衰减曲线。图3所示为CdSe/CdS核壳量子点不同铝、镉摩尔比时的光衰减图。由图可知,与未掺杂的CdSe/CdS量子点相比,在不同铝与镉摩尔比的条件下,铝掺杂CdSe/CdS量子点的稳定性均得到提高;并且铝与镉摩尔 比为0.5:1时,铝掺杂CdSe/CdS量子点的稳定性最好。
实施例5
铝掺杂CIS/ZnS核壳结构量子点光稳定性测试
配置450nm处吸光度为0.1且包覆层数相同的CIS/ZnS量子点、铝掺杂CIS/ZnS量子点甲苯溶液,在密闭测试瓶中分别加入相同体积的溶液,将其置于0.2A、50V(10W,能量密度为0.35W/cm2)的蓝光平面光源(450nm,Philips)下,每隔一段时间后取出定量样品,测试其荧光光谱并积分得到相应的荧光峰积分面积,以此积分面积与初始荧光峰积分面积之比做出强度-时间衰减曲线。图4所示为CIS/ZnS核壳量子点不同铝、锌摩尔比时的光衰减图。由图可知,与未掺杂的CIS/ZnS量子点相比,在不同铝与锌摩尔比的条件下,铝掺杂CIS/ZnS量子点的稳定性均得到提高;并且铝与锌摩尔比为0.5:1时,铝掺杂CIS/ZnS量子点的稳定性最好。
实施例6
一种自钝化量子点的制备方法,采用以下步骤:
(1)将二元结构量子点硒化镉(CdSe)、溶剂十八烯加入反应容器,控制温度为100℃,抽真空50分钟;
(2)向反应容器中充入惰性气体,升温到230℃;
(3)采用连续离子层吸附反应法(SILAR),每小时包覆材料前驱体溶液的注入量为量子点核的1倍,将包覆材料前驱体溶液注入反应容器对量子点核进行包覆,得到自钝化量子点,其中,铝含量为0.1wt%。
量子点硒化镉(CdSe),采用高温注射法制备得到,制备步骤如下:
(1)将16mmol氧化镉、16ml油酸和40ml十八烯在反应器中混合,在反应器中混合,在100℃下抽真空50分钟;
(2)向反应器中充入氮气并升温至280℃,当溶液变为澄清时,降温至270℃;
(3)将三正辛基膦-硒溶液快速注入反应器中,三正辛基膦-硒与氧化镉 的摩尔比为1∶2,降温至240℃,反应3分钟,清洗得到CdSe量子点。
使用的包覆材料为掺杂铝的硫化镉,在二元结构量子点硒化镉外包覆2层,制备得到自钝化量子点。
实施例7
一种自钝化量子点的制备方法,采用以下步骤:
(1)将钛掺杂二元结构量子点硒化镉(CdSe)、溶剂十八烯加入反应容器,控制温度为120℃,抽真空30分钟;
(2)向反应容器中充入惰性气体,升温到280℃;
(3)采用连续离子层吸附反应法(SILAR),每小时包覆材料前驱体溶液的注入量为量子点核的2倍,将包覆材料前驱体溶液注入反应容器对量子点核进行包覆,得到自钝化量子点,其中,钛含量为4wt%。
钛掺杂二元结构量子点硒化镉(CdSe)采用高温注射法制备得到,制备步骤如下:
(1)将16mmol氧化镉、16ml油酸、1.6mmol乙酰丙酮钛和40ml十八烯加入反应器中,120℃下,抽真空30分钟;
(2)在反应器中充入氮气并升温至300℃,当溶液变为澄清时,降温至270℃;
(3)将三正辛基膦-硒溶液快速注入反应器中,三正辛基膦-硒与氧化镉的摩尔比为1∶2,降温至240℃,反应5分钟,清洗得到钛掺杂二元结构量子点硒化镉(CdSe)。
制备得到钛掺杂量子点中,包覆材料为硫化锌,在钛掺杂二元结构量子点硒化镉外包覆20层。
应该强调的是,本公开内容的上述实施方式仅仅是实施的部分实施方式,并且仅为了清楚地理解公开内容的原理而被阐述,在基本上不偏离公开内容的精神和原理的情况下,可以对本公开内容的上述实施方式进行很多变化和修改,在这里所有这些修改和变化意图包括在本公开内容的范围内。

Claims (13)

  1. 一种自钝化量子点的制备方法,其特征在于,该方法采用以下步骤:
    (1)将量子点核、溶剂加入反应容器,控制温度为100-120℃,抽真空30-50分钟;
    (2)向反应容器中充入惰性气体,升温到230-280℃;
    (3)采用连续离子层吸附反应法(SILAR),每小时包覆材料前驱体溶液的注入量为量子点核元素摩尔浓度1倍或2倍,将包覆材料前驱体溶液注入反应容器对量子点核进行包覆,得到自钝化元素M掺杂量子点;
    所述的量子点核为进行M掺杂的量子点核或未进行M掺杂的量子点核,在对量子点进行包覆时,包覆材料前驱体溶液中含有M前驱体或不含有M前驱体,
    所述的量子点核为未进行M掺杂的量子点核,包覆材料前驱体溶液中含有M前驱体。
  2. 根据权利要求1所述的一种自钝化量子点的制备方法,其特征在于,所述的自钝化量子点中自钝化元素M含量为0.1-40wt%。
  3. 根据权利要求1所述的一种自钝化量子点的制备方法,其特征在于,所述的自钝化量子点中自钝化元素M为Al、Zr、Fe、Ti、Cr、Ta、Si或Ni。
  4. 根据权利要求1所述的一种自钝化量子点的制备方法,其特征在于,所述的量子点核为二元结构量子点、三元结构量子点或四元结构量子点,
    所述的二元结构量子点为AX,A为镉、锌、汞、铅、锡、镓、铟、钙、钡或铜,X为硫、硒、氮、磷、砷、碲或锑,
    所述的三元结构量子点为A1A2X,其中A1与A2为镉、锌、汞、铅、锡、镓、铟、钙、钡或铜,X为硫、硒、氮、磷、砷、碲或锑,
    所述的四元结构量子点为A1A2A3X,其中A1、A2、A3为镉、锌、汞、铅、锡、镓、铟、钙、钡或铜,X为硫、硒、磷、砷、氮、碲或锑。
  5. 根据权利要求4所述的一种自钝化量子点的制备方法,其特征在于,
    所述的二元结构量子点优选硒化镉(CdSe)与磷化铟(InP),所述的三元结构量子点优选铜铟硫(CuInS2)。
  6. 根据权利要求3或4所述的一种自钝化量子点的制备方法,其特征在于,所述的量子点核为采用高温注射法制备得到的二元结构量子点硒化镉(CdSe),制备步骤如下:
    (1)将氧化镉、油酸和十八烯在反应器中混合,其中氧化镉的摩尔浓度为0.01-1mmol/ml,油酸与十八烯的体积比为1:1-1:100,在100-120℃下抽真空30-50分钟;
    (2)向反应器中充入氮气并升温至280-300℃,当溶液变为澄清时,降温至270℃;
    (3)将三正辛基膦-硒溶液快速注入反应器中,三正辛基膦-硒与氧化镉的摩尔比为1:1-1∶2,降温至240℃,反应3-5分钟,清洗得到CdSe量子点。
  7. 根据权利要求4或5所述的一种自钝化量子点的制备方法,其特征在于,所述的量子点核为采用高温注射法制备得到的二元结构量子点磷化铟(InP),制备步骤如下:
    (1)将醋酸铟、十四酸和十八烯在反应器中混合,其中醋酸铟的摩尔浓度为0.01-0.5mmol/ml,十四酸的摩尔浓度为0.02-1 mmol/ml,充入氮气20min-30min后,温度加热至100℃-120℃后维持1-2小时,直至烧瓶中溶液变得澄清透明;
    (2)随后以10-13℃/min的速率升温至260-300℃;
    (3)将三(三甲基硅烷基)膦溶液快速注入三颈烧瓶中,并降温至250℃,反应10-30分钟。反应结束后,清洗磷化铟量子点,并作为核量子点储备液。
  8. 根据权利要求4所述的一种自钝化量子点的制备方法,其特征在于,所述的自钝化量子点核为采用高温注射法制备得到的自钝化元素M掺杂二 元结构量子点硒化镉(CdSe),制备步骤如下:
    (1)将氧化镉、油酸、十八烯和一种含自钝化元素M(M=Al、Zr、Fe、Ti、Cr、Ta、Si、Ni)的前驱体如异丙醇铝在反应器中混合,其中氧化镉的摩尔浓度为0.01-1mmol/ml,异丙醇铝的摩尔浓度为0.01-0.5mmol/ml,油酸与十八烯的体积比为1:1-1:100,100-120℃下,抽真空30-50分钟;
    (2)在反应器中充入氮气并升温至280-300℃,当溶液变为澄清时,降温至270℃;
    (3)将三正辛基膦-硒溶液快速注入反应器中,三正辛基膦-硒与氧化镉的摩尔比为1:1-1∶2,降温至240℃,反应3-5分钟,清洗得到M掺杂二元结构量子点硒化镉(CdSe)。
  9. 根据权利要求1所述的一种自钝化量子点的制备方法,其特征在于,所述的包覆材料以Ⅱ-Ⅵ、Ⅱ-Ⅴ、Ⅲ-Ⅵ、Ⅲ-Ⅴ、Ⅳ-Ⅵ、Ⅱ-Ⅳ-Ⅴ、Ⅱ-Ⅳ-Ⅵ族半导体材料为主体,包括硒化镉、硒化锌、硒化汞、硫化镉、硫化锌、硫化汞、碲化镉、碲化锌、碲化镉、氮化镓、氮化铟、磷化镓、锑化镓、铟镓磷、锌镉硒或镉锌硫。
  10. 根据权利要求9所述的一种自钝化量子点的制备方法,其特征在于,所述的包覆材料优选硫化镉或硫化锌。
  11. 根据权利要求1所述的一种自钝化量子点的制备方法,其特征在于,所述的M前驱体为含M(M=Al、Zr、Fe、Ti、Cr、Ta、Ni、Si)的化合物,包括氯化M、溴化M、氟化M、硝酸M、硫酸M、高氯酸M、磷酸M、乙酸M、甲酸M、草酸M、丙酸M,三甲基M、三乙基M、三丙基M、三异丙基M,三丁基M、三仲丁基M、三叔丁基M,四异丙基M、异丙醇M、仲丁醇M或乙酰丙酮M。
  12. 根据权利要求11所述的一种自钝化量子点的制备方法,其特征在于,所述的自钝化元素的前驱体优选异丙醇M或乙酰丙酮M。
  13. 根据权利要求1所述的一种自钝化量子点的制备方法,其特征在于, 所述的包覆材料在量子点核外包覆1-20层。
PCT/CN2015/070161 2014-12-05 2015-01-06 一种自钝化量子点的制备方法 WO2016086511A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/314,820 US10377946B2 (en) 2014-12-05 2015-01-06 Self-passivating quantum dot and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410741933.6 2014-12-05
CN201410741933 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016086511A1 true WO2016086511A1 (zh) 2016-06-09

Family

ID=56090890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070161 WO2016086511A1 (zh) 2014-12-05 2015-01-06 一种自钝化量子点的制备方法

Country Status (3)

Country Link
US (1) US10377946B2 (zh)
CN (1) CN105670631B (zh)
WO (1) WO2016086511A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841511A (zh) * 2017-11-24 2019-06-04 东友精细化工有限公司 绝缘层蚀刻剂组合物和使用其形成图案的方法
US10519369B2 (en) * 2016-11-15 2019-12-31 Fujifilm Corporation Core shell particles, method for producing core shell particles, and film
CN111117595A (zh) * 2019-10-18 2020-05-08 纳晶科技股份有限公司 蓝光核壳量子点、其制备方法以及应用
CN113156128A (zh) * 2020-01-23 2021-07-23 四川大学华西医院 一种利用量子点检测草酸的方法及应用
CN114474940A (zh) * 2022-01-30 2022-05-13 东南大学 一种高稳定自阻隔量子点光学膜及其制备方法和应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355583B2 (en) 2016-07-28 2022-06-07 Samsung Electronics Co., Ltd. Quantum dots and devices including the same
CN106634947A (zh) * 2016-09-29 2017-05-10 Tcl集团股份有限公司 自钝化金属掺杂红光核壳量子点、led及制备方法
KR102601056B1 (ko) * 2017-02-14 2023-11-10 삼성디스플레이 주식회사 양자점, 색변환 패널 및 이를 포함하는 표시 장치
TWI636120B (zh) * 2017-08-04 2018-09-21 奇美實業股份有限公司 量子點的製造方法、發光材料、發光元件以及顯示裝置
KR101992793B1 (ko) * 2017-11-07 2019-06-26 전자부품연구원 코어-쉘 구조를 갖는 양자점
US10711193B2 (en) * 2017-12-01 2020-07-14 Samsung Electronics Co., Ltd. Quantum dots and production methods thereof, and quantum dot polymer composites and electronic devices including the same
CN109321252B (zh) * 2018-06-19 2021-08-31 李良 一种稳定的量子点及其制备方法
CN108893119B (zh) * 2018-07-18 2021-06-25 纳晶科技股份有限公司 InP基合金量子点的制备方法及量子点、器件及组合物
CN108893120B (zh) * 2018-08-13 2022-07-29 纳晶科技股份有限公司 核壳量子点、其制备方法及应用
CN109337689B (zh) * 2018-09-27 2022-03-22 纳晶科技股份有限公司 掺杂量子点及其制备方法
CN110964504A (zh) * 2018-09-30 2020-04-07 Tcl集团股份有限公司 量子点及其制备方法
GB201903085D0 (en) * 2019-03-07 2019-04-24 Univ Oxford Innovation Ltd Passivation method
CN112678863B (zh) * 2019-10-18 2022-06-24 天津大学 一种氧化铟钙纳米片材料及制备方法
TWI725625B (zh) * 2019-11-15 2021-04-21 國立虎尾科技大學 量子點及其製造方法
CN115181561A (zh) * 2021-04-02 2022-10-14 纳晶科技股份有限公司 纳米晶组合物及其制备方法和应用
CN113643902B (zh) * 2021-08-11 2023-01-20 电子科技大学长三角研究院(湖州) 一种铜铟硒碲/硫化镉核壳结构量子点及其制备方法与光阳极的制备方法
CN114217012B (zh) * 2021-11-10 2023-09-12 中国科学院上海技术物理研究所 一种汞系量子点传统热注入流程中原位修饰的方法
CN114561211B (zh) * 2022-03-14 2023-10-24 合肥福纳科技有限公司 一种单核ⅲ-ⅴ族量子点及其制备方法
CN114891496B (zh) * 2022-05-13 2023-08-08 电子科技大学长三角研究院(湖州) 一种环保型铜镓铝硫硫化锌核壳量子点及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569619A (zh) * 2004-04-29 2005-01-26 上海交通大学 高质量硒化镉量子点的控温微波水相合成方法
CN101585515A (zh) * 2009-06-15 2009-11-25 中国医药城泰州纳米生命医学研究院 一种CdxZn1-xSe三元体系量子点的制备方法
CN101948686A (zh) * 2010-09-21 2011-01-19 东华大学 一种水相合成锰掺杂硒化锌颜色可调荧光量子点的方法
CN103113881A (zh) * 2012-11-06 2013-05-22 宁波工程学院 一种提高Mn掺杂量子点光学性能的方法
CN103952136A (zh) * 2014-04-29 2014-07-30 吉林大学 Cu掺杂Type-II型核壳结构白光量子点材料及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2441666B (en) * 2005-04-25 2010-12-29 Univ Arkansas Doped semiconductor nanocrystals and methods of making same
US10066164B2 (en) * 2009-06-30 2018-09-04 Tiecheng Qiao Semiconductor nanocrystals used with LED sources
CN103058274A (zh) 2013-01-07 2013-04-24 北京理工大学 一种金属掺杂氧化钛量子点的制备方法
CN104017573B (zh) * 2014-06-26 2015-12-09 南京琦光光电科技有限公司 一种近紫外光激发的白光led用量子点混晶及制备方法
CN104733180B (zh) 2015-03-30 2017-06-16 景德镇陶瓷大学 一种水溶性过渡金属元素掺杂硫化铅量子点敏化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569619A (zh) * 2004-04-29 2005-01-26 上海交通大学 高质量硒化镉量子点的控温微波水相合成方法
CN101585515A (zh) * 2009-06-15 2009-11-25 中国医药城泰州纳米生命医学研究院 一种CdxZn1-xSe三元体系量子点的制备方法
CN101948686A (zh) * 2010-09-21 2011-01-19 东华大学 一种水相合成锰掺杂硒化锌颜色可调荧光量子点的方法
CN103113881A (zh) * 2012-11-06 2013-05-22 宁波工程学院 一种提高Mn掺杂量子点光学性能的方法
CN103952136A (zh) * 2014-04-29 2014-07-30 吉林大学 Cu掺杂Type-II型核壳结构白光量子点材料及制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10519369B2 (en) * 2016-11-15 2019-12-31 Fujifilm Corporation Core shell particles, method for producing core shell particles, and film
CN109841511A (zh) * 2017-11-24 2019-06-04 东友精细化工有限公司 绝缘层蚀刻剂组合物和使用其形成图案的方法
CN111117595A (zh) * 2019-10-18 2020-05-08 纳晶科技股份有限公司 蓝光核壳量子点、其制备方法以及应用
CN111117595B (zh) * 2019-10-18 2023-06-09 纳晶科技股份有限公司 蓝光核壳量子点、其制备方法以及应用
CN113156128A (zh) * 2020-01-23 2021-07-23 四川大学华西医院 一种利用量子点检测草酸的方法及应用
CN114474940A (zh) * 2022-01-30 2022-05-13 东南大学 一种高稳定自阻隔量子点光学膜及其制备方法和应用
CN114474940B (zh) * 2022-01-30 2023-08-25 东南大学 一种高稳定自阻隔量子点光学膜及其制备方法和应用

Also Published As

Publication number Publication date
CN105670631B (zh) 2019-07-12
US20170247614A1 (en) 2017-08-31
CN105670631A (zh) 2016-06-15
US10377946B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
WO2016086511A1 (zh) 一种自钝化量子点的制备方法
Liang et al. Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications
Van Le et al. Recent advances toward high‐efficiency halide perovskite light‐emitting diodes: review and perspective
Ramasamy et al. Upconversion nanophosphors for solar cell applications
WO2018000704A1 (zh) 一种金属氧化物/二氧化硅包覆的量子点及其制备方法
CN111081816B (zh) 碱金属离子钝化表面缺陷的钙钛矿纳米晶及其制备与应用
Shen et al. Improving the quality and luminescence performance of all‐inorganic perovskite nanomaterials for light‐emitting devices by surface engineering
Liu et al. A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications
US11851343B2 (en) Preparation method for metal oxide nanoparticle film and electrical component
CN111849476B (zh) 一种稀土掺杂钙钛矿纳米晶、其制备方法及光电探测器
Tian et al. Constructing a “native” oxyfluoride layer on fluoride particles for enhanced upconversion luminescence
CN110975894B (zh) 一种可见光响应型高效稳定的纳米CsPbBr3/TiO2复合光催化剂及其制备方法
CN109980097A (zh) 一种薄膜的制备方法与qled器件
CN111106192B (zh) 复合吸光层太阳能电池及其制备方法
Zhao et al. Inorganic halide perovskites for lighting and visible light communication
Xie et al. Metal cation substitution of halide perovskite nanocrystals
WO2015047084A1 (en) Tm2+ LUMINESCENT MATERIALS FOR SOLAR RADIATION CONVERSION DEVICES
CN109233802A (zh) 核壳结构量子点及其制备方法及偏振薄膜
Xie et al. Suppressing Ion Migration of Mixed‐Halide Perovskite Quantum Dots for High Efficiency Pure‐Red Light‐Emitting Diodes
Hao et al. Simultaneous enhancement of luminescence and stability of lead halide perovskites by a diatomite microcavity for light-emitting diodes
Shwetharani et al. Green to blue light emitting CsPbBr 3 perovskite by ligand exchange and its encapsulation by TiO 2 for tandem effect in photovoltaic applications
Sugumaran et al. Synthesis of stable core-shell perovskite based nano-heterostructures
CN112151679B (zh) 一种纳米晶体复合钙钛矿太阳能电池及其制备方法
CN110534656A (zh) 一种纳米材料及制备方法与量子点发光二极管
Xue et al. Aluminum distearate–modified CsPbX3 (X= I, Br, or Cl/Br) nanocrystals with enhanced optical and structural stabilities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15314820

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(19 EPC ( EPO FORM 1205A DATED 04-10-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15864916

Country of ref document: EP

Kind code of ref document: A1