WO2023103292A1 - 复合集流体、制造方法、极片和锂电池 - Google Patents

复合集流体、制造方法、极片和锂电池 Download PDF

Info

Publication number
WO2023103292A1
WO2023103292A1 PCT/CN2022/094478 CN2022094478W WO2023103292A1 WO 2023103292 A1 WO2023103292 A1 WO 2023103292A1 CN 2022094478 W CN2022094478 W CN 2022094478W WO 2023103292 A1 WO2023103292 A1 WO 2023103292A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous conductive
conductive sheet
current collector
composite current
sheet
Prior art date
Application number
PCT/CN2022/094478
Other languages
English (en)
French (fr)
Inventor
贾斌
王天兵
李学法
张国平
Original Assignee
江阴纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴纳力新材料科技有限公司 filed Critical 江阴纳力新材料科技有限公司
Priority to PCT/CN2022/137270 priority Critical patent/WO2023104101A1/en
Publication of WO2023103292A1 publication Critical patent/WO2023103292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of battery technology, in particular to a composite current collector, a manufacturing method, a pole piece and a lithium battery.
  • Lithium-ion batteries are widely used in various commercial electronic products due to their high energy density and superior cycle stability compared to other rechargeable batteries.
  • smooth metal copper foil is used for the negative electrode. Since the surface of the metal copper foil is smooth, it is not conducive to the adhesion of negative electrode active materials on the surface. In addition, the smooth metal copper foil is difficult to make the negative electrode active material evenly distributed on its surface, so it is easy to form lithium dendrites at the negative electrode during the charging process. After the formation of lithium crystal dendrites, it is easy to penetrate the separator in the lithium battery to contact the positive electrode or fall off from the negative electrode to form dead lithium, which affects the safety and service life of the lithium battery.
  • a composite current collector to improve the adhesion of positive or negative active materials on its surface, and at the same time, it can better suppress the formation of lithium dendrites. Furthermore, a method for manufacturing the composite current collector, a pole piece including the composite current collector, and a secondary battery are also proposed.
  • a kind of composite current collector, described composite current collector comprises:
  • the first porous conductive sheet, the base material sheet and the second porous conductive sheet are stacked in sequence, the holes on the first porous conductive sheet and the second porous conductive sheet are microporous and evenly distributed, the
  • the substrate sheet is a polymer insulating material, and the first porous conductive sheet and the second porous conductive sheet are electrically connected at the tab area.
  • micropores are formed on the surface of the first porous conductive sheet and the second porous conductive sheet, and when they are in contact with the active material, such as the active material of the negative electrode in the lithium battery, it can provide a better performance for the active material. Adsorption force, so that the active material can be better attached to the first porous conductive sheet or the second porous conductive sheet. Secondly, since the micropores of the first porous conductive sheet and the second porous conductive sheet are evenly distributed, on the one hand, the active material can be evenly distributed when attached to it, and the formation of lithium crystal dendrites can be better avoided; on the other hand, , which can make the composite current collector have a better buffering effect.
  • the substrate plate is made of polymer insulating material, which can provide better support for the first porous conductive sheet and the second porous conductive sheet to prevent deformation of the two, and can also insulate the active material.
  • the material of the first porous conductive sheet is aluminum, copper, nickel, titanium, silver, nickel-copper alloy or aluminum-zirconium alloy or copper-zinc alloy.
  • the material of the second porous conductive sheet is aluminum, copper, nickel, titanium, silver, nickel-copper alloy or aluminum-zirconium alloy or copper-zinc alloy.
  • the first porous conductive sheet and the second porous conductive sheet are made of the same material, and both are copper-zinc alloy.
  • the thickness of the first porous conductive sheet is the same as that of the second porous conductive sheet, and is 0.8 ⁇ m ⁇ 2 ⁇ m.
  • the material of the substrate sheet is polyethylene terephthalate, polypropylene, polyethylene, polyimide or polyether ether ketone.
  • the substrate sheet has a thickness of 2 ⁇ m ⁇ 10 ⁇ m.
  • a manufacturing method for manufacturing the composite current collector comprising the steps of:
  • the copper-zinc alloy with a thickness of X ⁇ m and the copper-zinc alloy with a thickness of Y ⁇ m are respectively deposited on the two opposite sides of the substrate sheet by vapor deposition;
  • the composite current collector is subjected to oxidation resistance treatment.
  • a pole piece including the composite current collector.
  • a lithium battery including the pole piece.
  • FIG. 1 is a schematic structural view of a composite current collector in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the explosive structure of the composite current collector in Fig. 1;
  • FIG. 3 is a flowchart of a manufacturing method in an embodiment of the present invention.
  • the first porous conductive sheet 100.
  • the substrate sheet 300.
  • the second porous conductive sheet 100.
  • the first porous conductive sheet 200.
  • the substrate sheet 300.
  • the second porous conductive sheet 100.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • Lithium-ion batteries are widely used in various commercial electronic products due to their high energy density and superior cycle stability compared to other rechargeable batteries.
  • smooth metal copper foil is used for the negative electrode. Since the surface of the metal copper foil is smooth, it is not conducive to the adhesion of negative electrode active materials on the surface. In addition, the smooth metal copper foil is difficult to make the negative electrode active material evenly distributed on its surface, so it is easy to form lithium dendrites at the negative electrode during the charging process. After the formation of lithium crystal dendrites, it is easy to penetrate the separator in the lithium battery to contact the positive electrode or fall off from the negative electrode to form dead lithium, which affects the safety and service life of the lithium battery. For this reason, the researchers thought of setting the current collector as a uniform microporous structure, so that the positive active or negative active materials can be evenly attached to its surface.
  • Fig. 1 shows a schematic structural view of a composite current collector in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of an exploded structure of a composite current collector in Fig. 1, provided by an embodiment of the present invention
  • a composite current collector comprising: a first porous conductive sheet 100, a substrate sheet 200 and a second porous conductive sheet 300, wherein the first porous conductive sheet 100 and the second porous conductive sheet 300 are used to set the positive electrode active material or Negative electrode active material, the substrate sheet 200 is used to support the first porous conductive sheet 100 and the second porous conductive sheet 300 and can insulate and isolate the positive electrode active on the first porous conductive sheet 100 and the second porous conductive sheet 300 material or negative electrode active material.
  • the idea of the present invention is to provide better adsorption force for the positive active material or the negative active material by providing uniform micropores on the first porous conductive sheet 100 and the second porous conductive sheet 300 . Due to the uniform distribution of micropores, the problem of lithium dendrite formation can also be better suppressed.
  • the composition of a lithium battery mainly includes a positive electrode, a positive active material, a negative electrode, a negative active material, a separator, an electrolyte, and a battery case.
  • aluminum foil is generally used for the positive electrode
  • lithium-intercalated metal oxide is generally used for the positive electrode active material
  • copper foil is generally used for the negative electrode
  • lithium-intercalated carbon-based and non-carbon-based materials are generally used for the negative electrode active material.
  • the positive and negative electrodes described above can be understood as the composite current collector mentioned in the present invention.
  • the composite current collector mainly functions to conduct current, and can be approximately understood as a wire.
  • lithium ions When a lithium battery is being charged, lithium ions come out of the positive electrode active material into the electrolyte, pass through the diaphragm, reach and intercalate into the negative electrode active material, and at the same time, electrons enter the negative electrode through the external circuit to achieve charge balance; when discharging, lithium ions are active from the negative electrode
  • the material is deintercalated into the electrolyte, passes through the separator, and intercalates the positive active material, and likewise, electrons enter the positive electrode from the external circuit.
  • the negative electrode since the negative electrode generally uses smooth copper foil, on the one hand, there is a problem that the negative active material is difficult to adhere to the surface of the smooth copper foil. It can be understood that the smooth copper foil has low adhesion, so the negative active material is difficult to adhere to Adhesion, which also makes it difficult to distribute the negative active material on the surface of the copper foil evenly, for example, some areas are not attached during the attachment process, or the attached negative active material falls off from the smooth copper foil, resulting in uneven distribution.
  • the negative electrode active material is unevenly distributed on the copper foil, lithium ions will nucleate and grow unevenly on the negative electrode active material during the charging process of the lithium battery, so the problem is that the negative electrode active material is cracked, and The deposition rate of lithium ions in cracks is higher than that in other parts, which intensifies the growth of lithium dendrites.
  • the main problems brought about by the growth of lithium crystal dendrites are: first, the growth of lithium crystal dendrites has the problem of piercing the diaphragm of the lithium battery and extending to the negative electrode, thereby causing the internal short circuit of the battery; second, in the process of charging and discharging, if the generated Lithium dendrites fall off from the negative plate to form dead lithium, which will affect the service life of lithium batteries. Therefore, it is necessary to solve the problem of uneven distribution of positive electrode active materials or negative electrode active materials on the current collector.
  • the composite current collector includes the first porous conductive sheet 100, the substrate sheet 200, and the second porous conductive sheet 300, which are sequentially stacked, the first porous conductive sheet 100 and the second porous conductive sheet 300.
  • the holes on the second porous conductive sheet 300 are micropores and evenly distributed, the diameter of the micropores is 2nm ⁇ 50nm, the substrate sheet 200 is a polymer insulating material, the first porous conductive sheet 100 and the second porous conductive sheet
  • the sheet 300 conducts in the tab region.
  • the tab region can be understood as the place where the first porous conductive sheet 100 and the second porous conductive sheet 300 meet.
  • micropores are formed on the surface of the first porous conductive sheet 100 and the second porous conductive sheet 300, and when they are in contact with the active material, such as the active material of the negative electrode in the lithium battery, the active material can be provided Better adsorption force, so that the active material can be better attached to the first porous conductive sheet 100 or the second porous conductive sheet 300 .
  • the active material can be evenly distributed, on the one hand, the active material can be evenly distributed when attached thereon, and the formation of lithium crystal dendrites can be better avoided; on the other hand, On the one hand, it can make the composite current collector have a better buffering effect.
  • the set base plate adopts polymer insulating material, which can provide better support for the first porous conductive sheet 100 and the second porous conductive sheet 300, prevent deformation of the two, and insulate the first porous conductive sheet 100 and the second porous conductive sheet 300.
  • the positive electrode active material and the negative electrode active material on the second porous conductive sheet 300 are the same materials as the negative electrode active material.
  • the selected material should have the following characteristics: it has good electrical conductivity so as to facilitate the conduction of current;
  • the material is soft so that the positive electrode active material or the negative electrode active material can be attached; in addition, it is also necessary to consider that the material can be obtained as easily as possible with low cost and high stability. Therefore, the material of the first porous conductive sheet 100 is aluminum, copper, nickel, titanium, silver, nickel-copper alloy or aluminum-zirconium alloy or copper-zinc alloy.
  • the material of the second porous conductive sheet 300 is aluminum, copper, nickel, titanium, silver, nickel-copper alloy, aluminum-zirconium alloy or copper-zinc alloy.
  • the composite current collector is used as the positive electrode, aluminum and nickel materials can be selected.
  • the aluminum material is used as the positive electrode, it can better avoid the reduction reaction with the electrolyte; nickel is relatively stable in acid or alkaline electrolyte, and can be used as the positive electrode.
  • the current collector can also be used as the current collector on the negative electrode.
  • the composite current collector is used as the negative electrode
  • copper material can be selected.
  • copper is used as the positive electrode
  • copper is easily oxidized at a higher potential of the positive electrode, and is generally not used as the positive electrode.
  • the active material of the negative electrode is generally graphite, silicon, tin or cobalt-tin alloy.
  • the materials of the first porous conductive sheet 100 and the second porous conductive sheet 300 are the same, and both are copper-zinc alloy.
  • the existing copper foil is generally used as the negative electrode collector of the secondary battery, and the production process of the copper foil mainly includes two types, which are mainly divided into rolled copper foil and electrolytic copper foil.
  • rolled copper foil has higher electrical conductivity and better extension effect, but its production process is difficult to control, high raw material costs and foreign monopoly on key technologies also limit the application of rolled copper foil; and production
  • the raw materials of electrolytic copper foil can be re-refined from waste materials such as waste copper and waste cables, and the cost is relatively low, which is conducive to sustainable development strategies and reduces environmental pressure.
  • the thickness of the first porous conductive sheet 100 is 0.8 ⁇ m to 2 ⁇ m
  • the thickness of the second porous conductive sheet 300 is 0.8 ⁇ m to 2 ⁇ m
  • the thickness of the first porous conductive sheet 100 and the thickness of the second porous conductive sheet 300 may be the same.
  • the substrate sheet 200 needs to possess good ductility so that After the substrate sheet 200 is stretched or cast, the first porous conductive sheet 100 and the second porous conductive sheet 300 can be arranged on the substrate sheet 200; secondly, the substrate sheet 200 needs to have higher strength, and the During the charging and discharging process of the lithium battery, the first porous conductive sheet 100 and the second porous conductive sheet 300 can be better supported; in the third aspect, the substrate sheet 200 needs to be able to better prevent the first porous conductive sheet from 100 is connected to the active material on the second porous conductive sheet 300 . Therefore, when selecting the substrate sheet 200, the substrate sheet 200 may be polyethylene terephthalate, polypropylene, polyethylene, polyimide or polyether ether ketone.
  • the thickness of the substrate sheet 200 can be determined according to the size of the lithium battery. In this embodiment, the thickness of the substrate sheet 200 is 2 ⁇ m ⁇ 10 ⁇ m.
  • the present invention also proposes a composite current collector, wherein the composite current collector is mainly used as a cathode in a lithium battery.
  • the first porous conductive sheet 100 and the second porous conductive sheet 300 of the composite current collector are copper sheets formed by copper-zinc alloy after zinc is corroded by an acidic solution
  • the substrate sheet 200 is made of a polymer insulating material, which can be selected Polyethylene terephthalate, polypropylene, polyethylene, polyimide or polyether ether ketone.
  • the thickness of the substrate sheet 200 is 2 ⁇ m ⁇ 10 ⁇ m, and the thickness of the first porous conductive sheet 100 and the second porous conductive sheet 300 are the same, and both are 0.8 ⁇ m ⁇ 2 ⁇ m.
  • the composite current collector proposed in the present invention is used for the cathode of a lithium battery, and the first porous conductive sheet 100 and the second porous conductive sheet 300 are both copper sheets with micropores obtained after a copper-zinc alloy is corroded by an acidic solution to zinc , when the copper sheet material is used as the cathode, it can better avoid being oxidized by the electrolyte; secondly, the copper sheet with micropores formed by the copper-zinc alloy being corroded by zinc has relatively uniform distribution of micropores. After the negative electrode active material is arranged on the copper sheet with micropores, the micropores on the copper sheet with micropores can better absorb the negative electrode active material.
  • the negative electrode active material can be evenly distributed when attached to it, and the formation of lithium crystal dendrites can be better avoided; on the other hand, it can make the copper
  • the sheet has a better buffering effect, and can better absorb the stress generated by the volume expansion of the copper sheet after lithium ions enter the negative electrode active material during the charging process.
  • the polymer insulating material provided on the base plate can provide better support for the copper sheet, and can also prevent the negative electrode active material provided on the copper sheet from conducting directly, so as to achieve the effect of insulation.
  • the composite current collector proposed by the present invention is used in the cathode of lithium battery, and when graphite is used as the negative electrode active material, its coulombic efficiency is 98%; while smooth copper foil is used and graphite is also used as the negative electrode active material When the material is used, its coulombic efficiency is 93%, so the coulombic efficiency can be improved when the composite current collector in the present invention is used as the cathode of the lithium battery.
  • the capacity retention rate of the lithium battery using smooth copper foil as the cathode is 68%, while the composite current collector of the present invention is used as the cathode of the lithium battery after 300 cycles of charging And after discharge, the capacity retention rate still exceeds 90%. Therefore, the composite current collector proposed in the present invention is higher than the lithium battery using smooth copper foil in terms of improving the Coulombic efficiency and service life of the lithium battery.
  • a manufacturing method for manufacturing a composite current collector referring to the flow chart shown in Figure 3, wherein the material of the first porous conductive sheet 100 and the second porous conductive sheet 300 is copper-zinc alloy, and
  • the sheet 200 is selected from polyethylene terephthalate, polypropylene, polyethylene, polyimide or polyether ether ketone. Specifically include the following steps:
  • the stretched thickness of the substrate sheet 200 can be determined according to the size of the actual lithium battery and the corresponding sizes of the first porous conductive sheet 100 and the second porous conductive sheet 300, for example, the substrate sheet 200 can be stretched as 2 ⁇ m ⁇ 10 ⁇ m.
  • a copper-zinc alloy with a thickness of X ⁇ m and a copper-zinc alloy with a thickness of Y ⁇ m are respectively deposited on the opposite sides of the substrate sheet 200 by vapor deposition, wherein the thicknesses of X and Y can be the same, for example, both are 0.8 ⁇ m to 2 ⁇ m.
  • the acid used can be 5% to 10% dilute hydrochloric acid, and the composite current collector is immersed in dilute hydrochloric acid for 1 to 5 minutes, or a winding system can be used for continuous precipitation, so that the zinc element in the copper-zinc alloy is Dilute hydrochloric acid corrodes as completely as possible.
  • the present invention also proposes a pole piece, wherein the pole piece includes the composite current collector proposed in the above invention.
  • the pole sheet may also include, for example, a positive electrode active material or a negative electrode active material to form a positive electrode or a negative electrode of a lithium battery.
  • the present invention also proposes a lithium battery, wherein the lithium battery includes the above-mentioned composite current collector or pole piece.
  • the lithium battery proposed in the present invention has greater advantages in terms of coulombic efficiency and capacity after cyclic charging and discharging of the lithium battery.

Abstract

本发明涉及一种复合集流体、制造方法、极片和锂电池。复合集流体包括:依次层叠布置的第一多孔导电片、基材片和第二多孔导电片,第一多孔导电片和第二多孔导电片上的孔为微孔且分布均匀,基材片为高分子绝缘材料,第一多孔导电片和第二多孔导电片在极耳区导通。第一多孔导电片和第二多孔导电片表面形成有微孔,能够为活性材料提供较好地吸附作用力。其次,由于第一多孔导电片和第二多孔导电片的微孔分布均匀,因此一方面能够使得活性材料在其上面附着时分布均匀,较好地避免了锂晶枝的形成;另一方面,能够使得复合集流体具有较好地缓冲效果。最后,基材板采用高分子绝缘材料能够提供较好的支撑作用防止二者变形还能够绝缘活性材料。

Description

复合集流体、制造方法、极片和锂电池 技术领域
本发明涉及电池技术领域,特别是涉及复合集流体、制造方法、极片和锂电池。
背景技术
由于锂电池的高能量密度以及相比于其他可充电电池来说极为优越的循环稳定性,因此锂离子电池被广泛应用于各种商业电子产品之中。
现有的锂电池在使用过程中,负极采用的是光滑的金属铜箔,由于该金属铜箔表面光滑,因此不利于负极活性材料在其表面附着。另外,光滑的金属铜箔较难使得负极活性材料在其表面分布均匀,因此容易使得在充电的过程中在负极处形成锂晶枝。锂晶枝形成后容易穿透锂电池中的隔膜与正极接触或者从负极脱落形成死锂,从而影响锂电池的安全性和使用寿命。
发明内容
基于上述提到的问题,有必要提出一种复合集流体,以提高正极活性材料或负极活性材料在其表面的附着力,同时也能够较好地抑制生成锂枝晶的问题。进而还提出一种包括制造该复合集流体的方法、包括该复合集流体的极片以及二次电池。
一种复合集流体,所述复合集流体包括:
依次层叠布置的第一多孔导电片、基材片和第二多孔导电片,所述第一多孔导电片和所述第二多孔导电片上的孔为微孔且分布均匀,所述基材片为高分 子绝缘材料,所述第一多孔导电片和所述第二多孔导电片在极耳区导通。
上述复合集流体,第一多孔导电片和第二多孔导电片表面形成有微孔,在其与活性材料接触时,例如锂电池中的负极的活性材料,能够为活性材料提供较好地吸附作用力,从而使得活性材料能够较好地附着在第一多孔导电片或第二多孔导电片。其次,由于第一多孔导电片和第二多孔导电片的微孔分布均匀,因此一方面能够使得活性材料在其上面附着时分布均匀,较好地避免了锂晶枝的形成;另一方面,能够使得复合集流体具有较好地缓冲效果,例如复合集流体作为负极时,锂离子进入负极活性材料时会导致复合集流体体积膨胀,而设置的微孔能够较好地吸收因负极活性材料膨胀而产生的应力。最后,设置的基材板采用高分子绝缘材料能够为第一多孔导电片和第二多孔导电片提供较好的支撑作用防止二者变形,此外还能绝缘活性材料。
在其中一个实施例中,所述第一多孔导电片的材质为铝、铜、镍、钛、银、镍铜合金或铝锆合金或铜锌合金。
在其中一个实施例中,所述第二多孔导电片的材质为铝、铜、镍、钛、银、镍铜合金或铝锆合金或铜锌合金。
在其中一个实施例中,所述第一多孔导电片和所述第二多孔导电片的材质相同,且均为铜锌合金。
在其中一个实施例中,所述第一多孔导电片的厚度与第二多孔导电片的厚度相同,且为0.8μm~2μm。
在其中一个实施例中,所述基材片的材质为聚对苯二甲酸乙二醇酯、聚丙烯、聚乙烯、聚酰亚胺或聚醚醚酮。
在其中一个实施例中,所述基材片的厚度为2μm~10μm。
一种制造方法,用于制造所述的复合集流体,包括步骤:
将基材片拉伸Lμm厚度;
采用气相沉淀的方式在所述基材片相背的两面分别沉淀Xμm厚度的所述铜锌合金和Yμm厚度的所述铜锌合金;
采用酸性溶液腐蚀所述铜锌合金中的锌材质,使得所述基材片相背的两面分别形成所述第一多孔导电片和所述第二多孔导电片;
采用清水洗去所述酸性溶液;
在120℃~150℃温度下,对所述复合集流体耐氧化处理。
一种极片,包括所述的复合集流体。
一种锂电池,包括所述的极片。
附图说明
图1为本发明一实施例中的复合集流体的结构示意图;
图2为图1中复合集流体的爆炸结构示意图;
图3为本发明一实施例中制造方法的流程图。
附图标号说明:
100、第一多孔导电片;200、基材片;300、第二多孔导电片。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
由于锂电池的高能量密度以及相比于其他可充电电池来说极为优越的循环稳定性,因此锂离子电池被广泛应用于各种商业电子产品之中。
现有的锂电池在使用过程中,负极采用的是光滑的金属铜箔,由于该金属铜箔表面光滑,因此不利于负极活性材料在其表面附着。另外,光滑的金属铜箔较难使得负极活性材料在其表面分布均匀,因此容易使得在充电的过程中在负极处形成锂晶枝。锂晶枝形成后容易穿透锂电池中的隔膜与正极接触或者从负极脱落形成死锂,从而影响锂电池的安全性和使用寿命。为此研究人员想到将集流体设置为均匀微孔结构,以使得正极活性或负极活性材料在其表面均匀附着。
参阅图1和图2所示,图1示出了本发明一实施例中的复合集流体的结构示意图,图2为图1中复合集流体的爆炸结构示意图,本发明一实施例提供了的复合集流体,包括:第一多孔导电片100、基材片200和第二多孔导电片300,其中第一多孔导电片100和第二多孔导电片300用于设置正极活性材料或负极活性材料,基材片200用于支撑第一多孔导电片100和第二多孔导电片300并能够绝缘隔离在第一多孔导电片100和第二多孔导电片300上的正极活性材料或负极活性材料。本发明的思路是通过在第一多孔导电片100和第二多孔导电片300上设置均匀微孔,从而为正极活性材料或负极活性材料提供较好地吸附作用力。由于微孔分布均匀,因此还能够较好地抑制锂枝晶生成的问题。
这里对锂电池的工作原理进行简单解释,锂电池的组成主要包括正极、正极活性材料、负极、负极活性材料、隔膜、电解液和电池壳体。其中,正极一般采用的是铝箔,正极活性材料一般采用的是插锂金属氧化物;负极一般采用的是铜箔,负极活性材料一般采用的是嵌锂碳基及非碳基材料。在上述描述的正极和负极可以理解为是本发明中提到的复合集流体,复合集流体主要起导通电流的作用,可以近似理解为导线。
在锂电池充电时,锂离子从正极活性材料中脱出进入电解液,穿过隔膜,到达并嵌入负极活性材料,同时电子通过外电路进入负极,以实现电荷平衡;放电时,锂离子从负极活性材料脱嵌进入电解质,穿过隔膜,插入正极活性材料,同样,电子从外电路进入正极。
以负极举例,由于负极一般采用光滑铜箔,因此一方面存在负极活性材料较难附着在光滑铜箔表面的问题,可以理解为光滑的铜箔附着力较小,因此负极活性材料较难在上面附着,这也导致铜箔表面上分布的负极活性材料较难均匀,例如在附着过程中部分区域未被附着,或者附着的负极活性材料从光滑铜箔脱落导致分布不均。由于负极活性材料在铜箔上分布不均匀,因此在锂电池充电的过程中,锂离子会在负极活性材料上不均匀成核和生长,因此带来的问题是使得负极活性材料出现裂纹,而裂纹处的锂离子沉积速率高于其他部位,进而加剧锂枝晶的生长。锂晶枝生长带来的主要问题是:第一,锂晶枝的生长存在刺破锂电池的隔膜并延伸至负极,从而造成电池内部短路的问题;第二,在充放电的过程中,若生成的锂枝晶从负极板脱落形成死锂,如此会影响锂电池的使用寿命。为此需要解决正极活性材料或负极活性材料在集流体上分布不均的问题。
在本实施例的复合集流体具体设计过程中,复合集流体包括依次层叠布置 的第一多孔导电片100、基材片200和第二多孔导电片300,第一多孔导电片100和第二多孔导电片300上的孔为微孔且分布均匀,微孔的直径尺寸为2nm~50nm,基材片200为高分子绝缘材料,第一多孔导电片100和第二多孔导电片300在极耳区导通。极耳区可以理解为第一多孔导电片100和第二多孔导电片300在此处汇合。
在本实施例中,第一多孔导电片100和第二多孔导电片300表面形成有微孔,在其与活性材料接触时,例如锂电池中的负极的活性材料,能够为活性材料提供较好地吸附作用力,从而使得活性材料能够较好地附着在第一多孔导电片100或第二多孔导电片300。其次,由于第一多孔导电片100和第二多孔导电片300的微孔分布均匀,因此一方面能够使得活性材料在其上面附着时分布均匀,较好地避免了锂晶枝的形成;另一方面,能够使得复合集流体具有较好地缓冲效果,例如复合集流体作为负极时,锂离子进入负极活性材料时会导致复合集流体体积膨胀,而设置的微孔能够较好地吸收因负极活性材料膨胀而产生的应力。最后,设置的基材板采用高分子绝缘材料能够为第一多孔导电片100和第二多孔导电片300提供较好的支撑作用防止二者变形还能够绝缘第一多孔导电片100和第二多孔导电片300上的正极活性材料和负极活性材料。
在复合集流体中的第一多孔导电片100和第二多孔导电片300的材质选用过程中,被选用的材质应该具备如下几方面特征:具有良好地导电性从而便于电流的导通;材质较软使得正极活性材料或者负极活性材料能够附着;另外,还需要考虑该材质能够尽可能地容易得到且成本较低,以及需要具有较高的稳定性。为此,第一多孔导电片100的材质为铝、铜、镍、钛、银、镍铜合金或铝锆合金或铜锌合金。第二多孔导电片300的材质为铝、铜、镍、钛、银、镍铜合金或铝锆合金或铜锌合金。
当复合集流体作为正极时,可以选择铝和镍材料,铝材料作为正极时能够较好地避免与电解液发生还原反应;镍在酸或碱性电解液中均比较稳定,既可以作为正极上的集流体也可以作为负极上的集流体。
当复合集流体作为负极时,可以选择铜材料。当铜作为正极时,铜在正极的较高的电位下铜极易发生氧化,一般不作为正极。铜在作负极时,负极的活性材料一般选择石墨、硅、锡或者钴锡合金。
为了形成第一多孔导电片100和第二多孔导电片300上的微孔,现有的做法中存在采用胶晶模板法制备、激光加工盲孔的方法或者固相烧结的方法等这些方式需要相应的制造设备或者需要控制较为繁琐的工艺流程,因此在考虑制造工艺流程简单且成本较低的情况下,还可以选择铜锌合金作为负极。在一种优选的情况下,第一多孔导电片100和第二多孔导电片300的材质相同,且均为铜锌合金。其原因是现有的铜箔一般作为二次电池负极集流体,在铜箔的生产工艺主要包括两种,主要分为压延铜箔和电解铜箔。与电解铜箔相比,压延铜箔的电导率更高,延伸效果更好,但其生产工艺控制难度大,原料成本高及国外对关键技术的垄断也限制了压延铜箔的应用;而生产电解铜箔的原料则可从废铜、废电缆等废旧材料中重新提炼,成本较为低廉,有助于可持续发展战略,减轻环境压力。因此采用电解的方式获取铜后,还可以与锌制造为铜锌合金后,然后再采用酸性溶液腐蚀锌,从而只得第一多孔导电片100和第二多孔导电片300为带有微孔的铜片。
在制作锂电池时,根据锂电池的实际尺寸,在选择复合集流体时,一般第一多孔导电片100的厚度为0.8μm~2μm,第二多孔导电片300的厚度为0.8μm~2μm,且第一多孔导电片100的厚度和第二多孔导电片300的厚度可以相同。
在基材片200上设置第一多孔导电片100和第二多孔导电片300时,需要考虑三个方面,第一方面,基材片200需要具备较好地延展性,以便于在对基材片200进行拉升或者流延后,第一多孔导电片100和第二多孔导电片300能够设置在基材片200;第二方面,基材片200需要具有较高地强度,在锂电池的充放电的过程中,能够较好地支撑第一多孔导电片100和第二多孔导电片300;第三方面,基材片200需要能够较好地防止第一多孔导电片100和第二多孔导电片300上的活性材料导通。为此在选择基材片200时,基材片200可以为聚对苯二甲酸乙二醇酯、聚丙烯、聚乙烯、聚酰亚胺或聚醚醚酮。
另外基材片200的厚度可以根据锂电池的尺寸来确定,在本实施例中,基材片200的厚度为2μm~10μm。
本发明还提出一种复合集流体,其中复合集流体主要用作锂电池中的阴极。其中复合集流体的第一多孔导电片100和第二多孔导电片300均采用铜锌合金经过酸性溶液腐蚀锌后形成的铜片,基材片200采用的是高分子绝缘材料,可以选用聚对苯二甲酸乙二醇酯、聚丙烯、聚乙烯、聚酰亚胺或聚醚醚酮。基材片200的厚度在2μm~10μm,第一多孔导电片100和第二多孔导电片300的厚度相同,且均为0.8μm~2μm。
本发明中提出的复合集流体用于锂电池的阴极,第一多孔导电片100和第二多孔导电片300均为铜锌合金经过酸性溶液腐蚀锌后得到的带有微孔的铜片,铜片材质作为阴极时能够较好地避免被电解液氧化;其次铜锌合金被腐蚀后的锌形成的带有微孔的铜片,其微孔分布相对均匀。当在带有微孔的铜片上设置负极活性材料后,带有微孔的铜片上的微孔能够较好地吸附负极活性材料。另外,由于带有微孔的铜片上分布的微孔相对均匀,因此一方面能够使得负极活性材料在其上面附着时分布均匀,较好地避免了锂晶枝的形成;另一方面,能 够使得铜片具有较好地缓冲效果,在充电过程中能够较好地吸收锂离子进入负极活性材料后会导致铜片体积膨胀而产生的应力。另外,设置的基材板采用高分子绝缘材料能够为铜片提供较好的支撑作用,还能够防止铜片上设置的负极活性材料直接导通,起到绝缘的效果。
在实际的研究测试过程中,本发明提出的复合集流体用于锂电池的阴极,同时采用石墨作为负极活性材料时,其库仑效率为98%;而采用光滑铜箔且也采用石墨作为负极活性材料时,其库仑效率为93%,因此采用本发明中的复合集流体作为锂电池的阴极时能够提高库伦效率。另外在锂电池的经过250次循环充电和放电后,采用光滑铜箔作为阴极的锂电池的容量保留率为68%,而采用本发明中的复合集流体作为锂电池的阴极在300次循环充电和放电后,容量保留率仍超过90%。因此本发明中提出的复合集流体在提高锂电池的库伦效率以及使用寿命方面均要高于采用光滑铜箔的锂电池。
为了较好地在复合集流体的第一多孔导电片100和第二多孔导电片300形成微孔,为此研究人员还提出一种形成微孔的方法。具体地,一种制造方法,用于制造复合集流体,参阅图3所示的流程图,其中第一多孔导电片100和第二多孔导电片300的材料选择为铜锌合金,基材片200选用聚对苯二甲酸乙二醇酯、聚丙烯、聚乙烯、聚酰亚胺或聚醚醚酮。具体包括如下步骤:
S110、将基材片200拉伸为Lμm厚度;
S120、采用气相沉淀的方式在基材片200相背的两面分别沉淀Xμm厚度的铜锌合金和Yμm厚度的铜锌合金;
S130、采用酸性溶液腐蚀铜锌合金中的锌材质,使得基材片200相背的两面分别形成第一多孔导电片100和第二多孔导电片300;
S140、采用清水洗去酸性溶液;
S150、在120℃~150℃温度下,对复合集流体耐氧化处理。
其中基材片200的拉伸的厚度可以根据实际锂电池的大小以及相应的第一多孔导电片100和第二多孔导电片300的大小来确定,例如可以将基材片200拉伸为2μm~10μm。在采用气相沉淀的方式在基材片200相背的两面分别沉淀Xμm厚度的铜锌合金和Yμm厚度的铜锌合金,其中X和Y的厚度可以相同,例如均为0.8μm~2μm。另外采用的酸性可以是5%~10%的稀盐酸,并将复合集流体在稀盐酸中沉浸1~5分钟,也可以采用卷绕系统进行连续沉淀,从而使得铜锌合金中的锌元素被稀盐酸尽可能地完全腐蚀。
上述的制造步骤相比现有的例如胶晶模板法制备、激光加工盲孔的方法或者固相烧结的方法等而言,避免了采用较为昂贵的设备,另外操作步骤也相对简单。
另外,本发明还提出一种极片,其中极片包括上述发明提出的复合集流体。极片上还可以包括例如正极活性材料或者负极活性材料,以形成锂电池的正极或者负极。
本发明还提出一种锂电池,其中锂电池包括上述所述的复合集流体或者极片。本发明中提出的锂电池相比现有的光滑铜箔锂电池在库伦效率方面以及锂电池循环充放电后的容量方面均存在较大优势。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进, 这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种复合集流体,其特征在于,所述复合集流体包括:
    依次层叠布置的第一多孔导电片、基材片和第二多孔导电片,所述第一多孔导电片和所述第二多孔导电片上的孔为微孔且分布均匀,所述基材片为高分子绝缘材料,所述第一多孔导电片和所述第二多孔导电片在极耳区导通。
  2. 根据权利要求1所述的复合集流体,其特征在于,所述第一多孔导电片的材质为铝、铜、镍、钛、银、镍铜合金或铝锆合金或铜锌合金。
  3. 根据权利要求2所述的复合集流体,其特征在于,所述第二多孔导电片的材质为铝、铜、镍、钛、银、镍铜合金或铝锆合金或铜锌合金。
  4. 根据权利要求1所述的复合集流体,其特征在于,所述第一多孔导电片和所述第二多孔导电片的材质相同,且均为铜锌合金。
  5. 根据权利要求4所述的复合集流体,其特征在于,所述第一多孔导电片的厚度与第二多孔导电片的厚度相同,且为0.8μm~2μm。
  6. 根据权利要求5所述的复合集流体,其特征在于,所述基材片的材质为聚对苯二甲酸乙二醇酯、聚丙烯、聚乙烯、聚酰亚胺或聚醚醚酮。
  7. 根据权利要求1所述的复合集流体,其特征在于,所述基材片的厚度为2μm~10μm。
  8. 一种制造方法,其特征在于,用于制造如权利要求4~7中任意一项所述的复合集流体,包括步骤:
    将基材片拉伸Lμm厚度;
    采用气相沉淀的方式在所述基材片相背的两面分别沉淀Xμm厚度的所述铜锌合金和Yμm厚度的所述铜锌合金;
    采用酸性溶液腐蚀所述铜锌合金中的锌材质,使得所述基材片相背的两面分别形成所述第一多孔导电片和所述第二多孔导电片;
    采用清水洗去所述酸性溶液;
    在120℃~150℃温度下,对所述复合集流体耐氧化处理。
  9. 一种极片,其特征在于,包括如权利要求1~7中任意一项所述的复合集流体。
  10. 一种锂电池,其特征在于,包括如权利要求9中所述的极片。
PCT/CN2022/094478 2021-12-10 2022-05-23 复合集流体、制造方法、极片和锂电池 WO2023103292A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137270 WO2023104101A1 (en) 2021-12-10 2022-12-07 Composite current collector, manufacturing method thereof, electrode and lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111508933.8 2021-12-10
CN202111508933.8A CN114373939A (zh) 2021-12-10 2021-12-10 复合集流体、制造方法、极片和锂电池

Publications (1)

Publication Number Publication Date
WO2023103292A1 true WO2023103292A1 (zh) 2023-06-15

Family

ID=81139392

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/094478 WO2023103292A1 (zh) 2021-12-10 2022-05-23 复合集流体、制造方法、极片和锂电池
PCT/CN2022/137270 WO2023104101A1 (en) 2021-12-10 2022-12-07 Composite current collector, manufacturing method thereof, electrode and lithium-ion battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137270 WO2023104101A1 (en) 2021-12-10 2022-12-07 Composite current collector, manufacturing method thereof, electrode and lithium-ion battery

Country Status (2)

Country Link
CN (1) CN114373939A (zh)
WO (2) WO2023103292A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373939A (zh) * 2021-12-10 2022-04-19 江阴纳力新材料科技有限公司 复合集流体、制造方法、极片和锂电池
CN114784290A (zh) * 2022-05-13 2022-07-22 扬州纳力新材料科技有限公司 高弹性的复合集流体及其制备方法
CN116417621B (zh) * 2023-06-12 2023-09-05 广州方邦电子股份有限公司 一种复合箔材、电池极片与电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956090A (zh) * 2010-02-04 2011-01-26 西安理工大学 一种采用Cu-Zn合金制备纳米多孔铜的方法
US20120237819A1 (en) * 2011-03-16 2012-09-20 Chang-Bum Ahn Electrode assembly and secondary battery using the same
CN112635772A (zh) * 2020-12-18 2021-04-09 江西理工大学 一种锂电池用多孔铜箔及其制备方法和应用
CN112751037A (zh) * 2021-02-07 2021-05-04 厦门海辰新能源科技有限公司 一种复合集流体、极片、电池和使用电池的装置
CN113113566A (zh) * 2021-04-09 2021-07-13 珠海冠宇电池股份有限公司 一种集流体及其应用
CN114373939A (zh) * 2021-12-10 2022-04-19 江阴纳力新材料科技有限公司 复合集流体、制造方法、极片和锂电池
CN216671689U (zh) * 2021-12-10 2022-06-03 江阴纳力新材料科技有限公司 复合集流体、极片和锂电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206878100U (zh) * 2017-05-09 2018-01-12 宁德时代新能源科技股份有限公司 集流体及电化学储能装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956090A (zh) * 2010-02-04 2011-01-26 西安理工大学 一种采用Cu-Zn合金制备纳米多孔铜的方法
US20120237819A1 (en) * 2011-03-16 2012-09-20 Chang-Bum Ahn Electrode assembly and secondary battery using the same
CN112635772A (zh) * 2020-12-18 2021-04-09 江西理工大学 一种锂电池用多孔铜箔及其制备方法和应用
CN112751037A (zh) * 2021-02-07 2021-05-04 厦门海辰新能源科技有限公司 一种复合集流体、极片、电池和使用电池的装置
CN113113566A (zh) * 2021-04-09 2021-07-13 珠海冠宇电池股份有限公司 一种集流体及其应用
CN114373939A (zh) * 2021-12-10 2022-04-19 江阴纳力新材料科技有限公司 复合集流体、制造方法、极片和锂电池
CN216671689U (zh) * 2021-12-10 2022-06-03 江阴纳力新材料科技有限公司 复合集流体、极片和锂电池

Also Published As

Publication number Publication date
CN114373939A (zh) 2022-04-19
WO2023104101A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2023103292A1 (zh) 复合集流体、制造方法、极片和锂电池
JP5362824B2 (ja) 鉛酸電池用の電極及びその製造方法
US20110189510A1 (en) Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same
KR101621133B1 (ko) 리튬이온전지 3d다공성 실리카계 복합 음극재료 및 그 제조방법
WO2022033065A1 (zh) 负极片及二次电池
CN102569757B (zh) 一种铜硅铝纳米多孔锂离子电池负极材料的制备方法
CN108886150B (zh) 包含具有精细图案的锂金属层及其保护层的二次电池用负极、以及所述负极的制造方法
JP2013501309A (ja) リチウムイオン電池用電極
WO2012114966A1 (ja) 電池用電極および電池
TWI661598B (zh) 鋰離子電池負極及鋰離子電池
WO2001073872A1 (fr) Batterie rechargeable
CN111224069A (zh) 一种柔性自支撑不锈钢网/石墨烯/锂复合负极及其制备方法
JP2007087789A (ja) リチウムイオン二次電池用負極及びその製造方法
CN216671689U (zh) 复合集流体、极片和锂电池
CN112615004A (zh) 一种纤维素@石墨烯复合碳气凝胶及其制备方法和应用
CN211125818U (zh) 一种由三维预涂极片制成的电池
US20120148921A1 (en) Electrode for energy storage device, method of manufacturing the same, and energy storage device using the same
JP2007172963A (ja) リチウムイオン二次電池用負極及びその製造方法
CN113594410B (zh) 一种负极结构、其制备方法以及固态电池
CN215184061U (zh) 一种无集流体电芯和储能装置
CN114127986B (zh) 一种负极极片、电化学装置及电子装置
CN114792809A (zh) 一种定向排列的低膨胀负极活性材料及负极片
CN111799500A (zh) 一种高倍率充放电的锂离子电池
JP5094034B2 (ja) リチウム二次電池用電極の製造方法及びリチウム二次電池
JP2002216771A (ja) 二次電池負極集電体用電解金属箔およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902730

Country of ref document: EP

Kind code of ref document: A1