WO2012114966A1 - 電池用電極および電池 - Google Patents

電池用電極および電池 Download PDF

Info

Publication number
WO2012114966A1
WO2012114966A1 PCT/JP2012/053601 JP2012053601W WO2012114966A1 WO 2012114966 A1 WO2012114966 A1 WO 2012114966A1 JP 2012053601 W JP2012053601 W JP 2012053601W WO 2012114966 A1 WO2012114966 A1 WO 2012114966A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrode
active material
current collector
binder resin
Prior art date
Application number
PCT/JP2012/053601
Other languages
English (en)
French (fr)
Inventor
将一郎 酒井
稲澤 信二
新田 耕司
篤史 福永
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/001,066 priority Critical patent/US20130330618A1/en
Priority to CN2012800101444A priority patent/CN103430354A/zh
Priority to KR1020137021601A priority patent/KR20140005976A/ko
Publication of WO2012114966A1 publication Critical patent/WO2012114966A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery electrode and a battery.
  • Electrodes used for the positive electrode and the negative electrode are also one of the important factors that influence the battery performance.
  • the electrode is a mixture of an active material and a binder resin for supporting the active material on the current collector, and the mixture is used as the current collector. In general, it is manufactured by coating.
  • a metal foil such as aluminum or copper is used as a current collector, and in order to prevent the active material from falling off the current collector, A binder resin made of vinylidene fluoride (PVDF) is used as a binder.
  • PVDF vinylidene fluoride
  • FIG. 1 is a cross-sectional view schematically showing an example of a conventional battery electrode.
  • a metal foil 4 is used as a current collector, and a mixture of an active material 81 and a binder resin 9 is applied to the surface of the metal foil 4.
  • the binder resin 9 binds the active materials 81 to each other and the active material 81 and the metal foil 4 to prevent the active material 81 from dropping from the metal foil 4 (current collector).
  • the role of the binder resin is to bind the current collector and the active material in the electrode.
  • the binder resin typified by PVDF is an insulator
  • the binder resin itself increases the internal resistance of the battery, and in turn decreases the charge / discharge efficiency of the battery.
  • the amount of the binder resin added is reduced (or eliminated) in order to reduce the internal resistance, the active material tends to fall off from the current collector, resulting in a decrease in battery capacity.
  • an aqueous binder system using styrene butadiene as a binder and carboxymethyl cellulose (CMC) as a viscosity adjusting material is also employed in order to reduce the internal resistance of the battery.
  • CMC carboxymethyl cellulose
  • an aqueous binder cannot be used in a molten salt battery that does not use an aqueous solution.
  • This invention is made
  • the objective is to supply the battery electrode with small internal resistance, and the battery excellent in charging / discharging efficiency.
  • the battery electrode according to the present invention is a battery electrode having a current collector, which is a porous metal body having a three-dimensional network structure, and an active material, wherein the active material is within the network structure of the current collector. It is carried without using a binder resin (claim 1). If this battery electrode is used, since the current collector is a porous metal body having a three-dimensional network structure, the active material can be carried on the current collector without using a binder resin. Therefore, since the binder resin which is an insulator is not used, the internal resistance of the battery electrode can be reduced.
  • the current collector is preferably an aluminum porous body (Claim 2). In order to support the active material in the network structure of the current collector, it is effective to compress the current collector. If the material of the current collector is aluminum, it is easier to compress compared to other metals. Moreover, since aluminum is not easily oxidized, it is also suitable as a battery current collector.
  • the active material is NaCrO 2 , TiS 2 , NaMnF 3 , Na 2 FePO 4 F, NaVPO 4 F, Na 0.044 MnO 2 , FeF 3 , Sn, Si, graphite, and non-graphitizable carbon. It is preferable that it is at least one selected from (Claim 3).
  • the above active material can be used as an active material of a molten salt battery because the metal of the molten salt can be taken into or released from the inside. And these active materials can also be carry
  • the positive electrode and / or the negative electrode is any one of the above-described battery electrodes.
  • the internal resistance of the electrode is small, the loss during charging / discharging can be reduced, and the charging / discharging efficiency of the battery can be improved.
  • the internal resistance of the battery electrode can be reduced, and the charge / discharge efficiency of the battery can be improved.
  • FIG. 2 is a diagram schematically showing an example of the electrode of the present invention.
  • the metal porous body 5 is used as a current collector.
  • the metal porous body 5 is schematically shown in two dimensions, but the metal porous body of the present invention has a three-dimensional network structure in which the porous shapes are continuous in the depth direction of the figure.
  • the internal space 51 surrounded by the metal porous body 5 is filled with an active material 82.
  • the porous aluminum body As a material of the metal porous body 5, aluminum which has a corrosion resistance against molten salt and has a characteristic of being hardly oxidized is preferable.
  • the porous aluminum body was produced by disassembling the foamed resin after forming an aluminum layer on the surface of the foamed resin, an aluminum non-woven fabric entangled with fibrous aluminum, an aluminum foamed body with aluminum fired. Celmet (registered trademark) (hereinafter referred to as aluminum cermet) is used.
  • the active material 82 NaCrO 2 , TiS 2 , NaMnF 3 , Na 2 FePO 4 F, NaVPO 4 F, Na 0.044 MnO 2 , and FeF 3 are used for the positive electrode, and Sn is used for the negative electrode. Si, graphite, non-graphitizable carbon, etc. are used.
  • the porosity occupied by the volume of the internal space 51 in the metal porous body 5 is not particularly limited, but is preferably about 80% to 98%.
  • the pore diameter is not particularly limited, but is preferably about 50 ⁇ m to 1000 ⁇ m.
  • the particle size of the active material 82 needs to be smaller than the pore diameter of the metal porous body 5.
  • the electrode of the present embodiment is produced by sufficiently immersing the porous metal body 5 in a mixture of the active material 82 and liquid pyrrolidone and then drying it. Further, in order to suppress the falling off of the active material 82, it is effective to subsequently compress the electrode in the thickness direction. By compressing the electrodes, the metal porous body 5 is deformed and the internal space 51 becomes narrower than before compression. Further, by compressing the electrode, the active materials 82 are aggregated and entangled with the metal porous body 5, so that the active material 82 is less likely to fall off the electrode.
  • the compression rate is preferably 80% or less.
  • Aluminum is also suitable as the current collector material of the present invention because it is easier to compress than other metals.
  • the current collector is a porous metal body having a three-dimensional network structure, and the active material is supported on the current collector without using a binder resin by effectively compressing the electrode. Can do. Therefore, since the binder resin which is an insulator is not used, the internal resistance of the battery electrode can be reduced.
  • both the positive electrode and the negative electrode of the battery may be used as the electrode of the present invention, and either the positive electrode or the negative electrode of the battery may be used as the electrode of the present invention.
  • the positive electrode of the battery may be an electrode of the present invention as shown in FIG. 2, and the negative electrode may be a conventional electrode such as an aluminum SnNa alloy plate plated with tin, which is a negative electrode active material.
  • FIG. 3 is a top view schematically illustrating a configuration example of the molten salt battery
  • FIG. 4 is a schematic front perspective view of the molten salt battery.
  • 6 is a battery container made of an aluminum alloy, and the battery container 6 is hollow and has a substantially rectangular parallelepiped shape with a bottom. The inside of the battery container 6 is subjected to insulation treatment by fluorine coating or alumite treatment.
  • six negative electrodes 21 and five positive electrodes 11 housed in bag-shaped separators 31 are arranged in parallel in the lateral direction (front-rear direction in FIG. 4).
  • the negative electrode 21, the separator 31, and the positive electrode 11 constitute one power generation element.
  • five power generation elements are stacked.
  • the lower end portion of a rectangular tab (conductive wire) 22 for taking out current is joined to the upper end portion of the negative electrode 21 on the side close to one side wall 61 of the battery case 6.
  • the upper end of the tab 22 is joined to the lower surface of the rectangular flat tab lead 23.
  • the lower end of a rectangular tab 12 for taking out current is joined to the upper end of the positive electrode 11 on the side close to the other side wall 62 of the battery container 6.
  • the upper end of the tab 12 is joined to the lower surface of the rectangular flat tab lead 13.
  • the tab leads 13 and 23 serve as external electrodes for connecting the entire power generation element including the stacked positive and negative electrodes and an external electric circuit, and are located above the liquid surface of the molten salt 7. It is.
  • the separator 31 is made of a glass nonwoven fabric having resistance to molten salt at a temperature at which the molten salt battery operates, and is formed so as to be porous and in a bag shape.
  • the separator 31 is immersed together with the negative electrode 21 and the positive electrode 11 from a position of about 10 mm below the liquid level of the molten salt 7 filled in the substantially rectangular parallelepiped battery container. This allows a slight drop in the liquid level.
  • the molten salt 7 is composed of an FSI (bisfluorosulfonylimide) or TFSI (bistrifluoromethylsulfonylimide) anion and a sodium and / or potassium cation, but is not limited thereto.
  • FSI bisfluorosulfonylimide
  • TFSI bistrifluoromethylsulfonylimide
  • the entire battery container is heated to a predetermined temperature (for example, 85 ° C. to 95 ° C.) by an external heating means (not shown), whereby the molten salt 7 is melted and can be charged and discharged. .
  • a predetermined temperature for example, 85 ° C. to 95 ° C.
  • Example 1 As an example, a molten salt battery similar to that shown in FIGS. 3 to 4 was constructed.
  • the positive electrode was an electrode having the configuration shown in FIG.
  • the positive electrode active material was NaCrO 2
  • the current collector was aluminum cermet
  • a binder resin such as PVDF was not used.
  • the average particle size of the active material is about 10 ⁇ m.
  • the average pore diameter of the aluminum cermet was about 600 ⁇ m, and a 1 mm thick one was compressed to 0.7 mm (compression rate 30%).
  • An aluminum SnNa alloy plate plated with tin was used for the negative electrode.
  • the separator was a glass nonwoven fabric.
  • a charge / discharge test was performed on the molten salt battery manufactured with the above-described configuration, and the voltage efficiency was measured.
  • the voltage efficiency is obtained by calculating (discharge voltage at half time of full charge) / (charge voltage at half time of full charge) from the voltage characteristics of charge / discharge, and the internal resistance of the battery is small. The higher the value.
  • the temperature during the test was 90 ° C., and the charge / discharge rate was 0.1 C. Since the current value that is fully charged in 1 hour is 1 C, 0.1 C is the current value that is fully charged in 10 hours. According to the test result of this example, the voltage efficiency was 91%.
  • Comparative Example 1 As a comparative example, a binder resin made of PVDF was used for the positive electrode, and a molten salt battery similar to that in Example 1 was manufactured under other conditions. A charge / discharge test was performed under the same conditions as in Example 1. In the test result of this comparative example, the voltage efficiency was 85%.
  • Example 1 in which no binder resin was used had higher voltage efficiency and smaller internal resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

内部抵抗の小さい電池用電極、および充放電効率の優れた電池を供給する。三次元網目構造を有する金属多孔体である集電体と、活物質とを有する電池用電極であって、前記活物質は前記集電体の網目構造内にバインダー樹脂を用いることなく担持されている。

Description

電池用電極および電池
 本発明は、電池用電極および電池に関する。
近年、携帯電話やモバイルパソコン、デジタルカメラなどの電子機器が急速に普及し、小型の二次電池の需要が急速に増加している。一方、電力・エネルギーの世界では、太陽光や風力などの自然エネルギーを利用した発電が盛んに行われており、気候や天候に左右される不安定な電力供給を平準化させるためには電力貯蔵用の二次電池が不可欠である。
電子機器用や電力貯蔵用の二次電池が様々な機関で活発に研究されており、それら二次電池を構成する各要素の材質、構造についても鋭意研究が進められている。正極および負極に用いる電極も、電池性能を左右する重要な要素の一つである。
特開2007-273362号公報
リチウムイオン電池やニッケル水素電池などの電解液型の電池の場合、電極は、活物質と、活物質を集電体に担持させるためのバインダー樹脂とを混合し、その混合剤を集電体に塗布することによって製造されるのが一般的である。上述した特許文献1に開示されている電池用電極では、集電体としてアルミニウムや銅などの金属箔が用いられており、活物質が、集電体から脱落するのを防止するために、ポリビニリデンフルオライド(PVDF)からなるバインダー樹脂が結着材として用いられている。
図1は従来の電池用電極の一例を模式的に示す断面図である。集電体として金属箔4が用いられ、金属箔4の表面に、活物質81とバインダー樹脂9を混合したものを塗布している。バインダー樹脂9が、活物質81同士を、また活物質81と金属箔4とを、結着させており、活物質81が金属箔4(集電体)から脱落するのを防止している。
 バインダー樹脂の役割は、電極において、集電体と活物質とを結着させることである。しかしPVDFに代表されるバインダー樹脂は絶縁体であるため、バインダー樹脂そのものは電池の内部抵抗を増加させる要因となり、引いては電池の充放電効率を低下させる要因となる。一方、内部抵抗を低減させるために、バインダー樹脂の添加量を少なくすると(または無くすと)、活物質が集電体から脱落しやすくなるため、電池容量が低下してしまう。
 リチウムイオン電池やニッケル水素電池では、電池の内部抵抗を小さくするために、バインダーとしてスチレンブタジエンを使い、また粘度調整材としてカルボキシメチルセルロース(CMC)を併用する水系バインダーシステムも採用されている。しかし内部抵抗低減の点では未だ十分では無く、また酸化反応が起こる正極ではブタジエンの二重結合が酸化劣化しやすいという問題がある。また水溶液を用いない溶融塩電池では水系のバインダーは使えない。
本発明は、以上の問題を鑑みてなされたものであり、その目的は、内部抵抗の小さい電池用電極、および充放電効率の優れた電池を供給することである。
本発明に係る電池用電極は、三次元網目構造を有する金属多孔体である集電体と、活物質とを有する電池用電極であって、前記活物質は前記集電体の網目構造内にバインダー樹脂を用いることなく担持されている(請求項1)。
この電池用電極を用いれば、集電体が三次元の網目構造を有する金属多孔体であるため、バインダー樹脂を用いなくても、活物質を集電体に担持させることができる。したがって、絶縁体であるバインダー樹脂を用いていないため、この電池用電極の内部抵抗を小さくすることができる。
また前記集電体はアルミニウム多孔体であることが好ましい(請求項2)。
集電体の網目構造内に活物質を担持させるには、集電体を圧縮させるのが効果的である。集電体の材質がアルミニウムであれば、他の金属に比べて圧縮させやすい。またアルミニウムは酸化されにくいので、電池の集電体としても適している。
また前記活物質は、NaCrO、TiS、NaMnF、NaFePOF、NaVPOF、Na0.044MnO、FeFか、Sn、Si、黒鉛、および難黒鉛化炭素からなる群から選択される少なくとも1種であることが好ましい(請求項3)。
上記の活物質は、溶融塩の金属を内部に取り込んだり放出したりできるので、溶融塩電池の活物質として用いることができる。そして、これら活物質も、集電体を三次元の網目構造を有する金属多孔体とすることで、バインダー樹脂を用いなくても、集電体に担持させることができる。したがって、絶縁体であるバインダー樹脂を用いていないため、この溶融塩電池に用いる電極の内部抵抗を小さくすることができる。
また本発明に係る電池は、正極および/または負極が、上述のいずれかの電池用電極である(請求項4)。
このようにすれば、電極の内部抵抗が小さいため、充放電の際の損失を小さくすることができ、電池の充放電効率を向上させることができる。
本発明によれば、電池用電極の内部抵抗を小さくし、また電池の充放電効率を向上させることができる。
従来の電極の一例を模式的に示す断面図である。 本発明の電極の一例を模式的に示す図である。 溶融塩電池の構成例を模式的に示す上面図である。 溶融塩電池の模式的な正面視の透視図である。
11 正極、12、22 タブ、13、23 タブリード、21 負極、31 セパレータ、4 金属箔、5 金属多孔体、51 内部空間、 6 電池容器、61、62 側壁、7 溶融塩、81、82 活物質、9 バインダー樹脂
以下、本発明を実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。
図2は本発明の電極の一例を模式的に示す図である。集電体として金属多孔体5を用いている。図2では金属多孔体5を模式的に二次元で示しているが、本発明の金属多孔体は図の奥行き方向にも多孔形状が連なった三次元の網目構造を有している。そして金属多孔体5で囲まれた内部空間51に、活物質82が充填されている。
金属多孔体5の材質としては、溶融塩に対して耐腐食性を有し、また酸化されにくい特性を持つ、アルミニウムが好ましい。またアルミニウムの多孔体としては、繊維状のアルミニウムを絡み合わせたアルミ不織布や、アルミニウムを発砲させたアルミ発砲体、発砲樹脂の表面にアルミニウム層を形成させた後、発砲樹脂を分解させて作製したセルメット(登録商標)(以下、アルミセルメットと言う)などが用いられる。
 活物質82としては、正極には、NaCrO、TiS、NaMnF、NaFePOF、NaVPOF、Na0.044MnO、およびFeFなどが用いられ、また負極には、Sn、Si、黒鉛、および難黒鉛化炭素などが用いられる。
金属多孔体5において内部空間51の体積が占める気孔率は特に限定されるものではないが、80%~98%程度とするのが好ましい。また気孔径は特に限定されるものではないが、50μm~1000μm程度とするのが好ましい。なお活物質82を金属多孔体(集電体)に充填させるために、活物質82の粒径は、金属多孔体5の気孔径よりも小さくする必要がある。
本実施形態の電極は、活物質82と液体のピロリドンを混合したものに、金属多孔体5を浸漬させた後、十分乾燥させることによって作成される。さらに活物質82の脱落を抑制するためには、その後、電極を厚さ方向に圧縮することが効果的である。電極を圧縮することによって、金属多孔体5が変形して内部空間51が圧縮前よりも狭くなる。また電極を圧縮することによって、活物質82同士が凝集して、それが金属多孔体5に絡みつくため、活物質82が電極から脱落しにくくなる。
効果的に活物質82の脱落を抑制させるためには、電極の圧縮率(=(圧縮前の厚さ-圧縮後の厚さ)/圧縮前の厚さ)を10%以上とすることが好ましい。ただし圧縮率が大きすぎると、金属多孔体5の気孔率が低くなり、充填できる活物質82の量が少なく、十分な電池容量を確保できなくなるので、圧縮率は80%以下が好ましい。なおアルミニウムは、他の金属に比べて圧縮しやすいという点でも、本発明の集電体材料として適している。
 上述の通り、集電体が三次元の網目構造を有する金属多孔体であり、さらに電極を効果的に圧縮させることで、バインダー樹脂を用いなくても、活物質を集電体に担持させることができる。したがって、絶縁体であるバインダー樹脂を用いていないため、この電池用電極の内部抵抗を小さくすることができる。
なお電池の正極および負極の両方を本発明の電極としても良いし、電池の正極または負極のいずれか一方を本発明の電極としても良い。例えば、電池の正極を図2に示すような本発明の電極とし、負極は負極活物質である錫がメッキされたアルミニウムのSnNa合金板のような従来の電極としてもかまわない。
 次に、本発明の電極を用いた電池の一例として、溶融塩電池の構成について説明する。
図3は溶融塩電池の構成例を模式的に示す上面図であり、図4は溶融塩電池の模式的な正面視の透視図である。図中6は、アルミニウム合金からなる電池容器であり、電池容器6は、中空で有底の略直方体形状をなしている。電池容器6の内側は、フッ素コートやアルマイト処理によって絶縁処理が施されている。電池容器6内には、6つの負極21と、袋状のセパレータ31に各別に収容された5つの正極11とが、横方向(図4では前後方向)に並設されている。負極21、セパレータ31および正極11が、1つの発電要素を構成しており、図3では、5つの発電要素が積層されている。
 負極21の上端部には、電池容器6の一方の側壁61に近い側に、電流を取り出すための矩形のタブ(導線)22の下端部が接合されている。タブ22の上端部は、矩形平板状のタブリード23の下面に接合されている。正極11の上端部には、電池容器6の他方の側壁62に近い側に、電流を取り出すための矩形のタブ12の下端部が各別に接合されている。タブ12の上端部は、矩形平板状のタブリード13の下面に接合されている。これにより、負極21、セパレータ31および正極11からなる発電要素が、5つ並列に接続される。
タブリード13、23は、積層された正極及び負極を含む発電要素全体と外部の電気回路とを接続するための外部電極の役割を果たすものであり、溶融塩7の液面より上側に位置するようにしてある。
 セパレータ31は、溶融塩電池が動作する温度で溶融塩に対する耐性を有するガラス不織布からなり、多孔質に且つ袋状をなすように形成されている。セパレータ31は、負極21及び正極11と共に、略直方体状の電池容器内に満たされた溶融塩7の液面下約10mmの位置から下側に浸漬されている。これにより多少の液面低下が許容される。
溶融塩7は、FSI(ビスフルオロスルフォニルイミド)またはTFSI(ビストリフルオロメチルスルフォニルイミド)系アニオンと、ナトリウムおよび/またはカリウムのカチオンとからなるが、これに限定されるものではない。
 上述した構成において、図示しない外部の加熱手段により、電池容器全体が所定の温度(例えば、85℃~95℃)に加熱されることにより、溶融塩7が融解して充電及び放電が可能となる。
次に、本発明を実施例に基づいてさらに詳細に説明する。
(実施例1)
実施例として、図3ないし図4と同様の溶融塩電池を構成した。本実施例では、正極を図2に示す構成の電極とした。正極の活物質はNaCrO、集電体はアルミセルメットとし、PVDFなどのバインダー樹脂は用いなかった。また活物質の平均粒径は約10μmである。またアルミセルメットの平均気孔径は約600μmで、厚さ1mmのものを0.7mmに圧縮した(圧縮率30%)。また負極には錫がメッキされたアルミニウムのSnNa合金板を用いた。セパレータはガラス不織布とした。
上述の構成で作製した溶融塩電池に対して、充放電試験を行い、電圧効率を測定した。ここで電圧効率とは、充放電の電圧特性から、(満充電の半分の時点の放電電圧)/(満充電の半分の時点の充電電圧)を算出したものであり、電池の内部抵抗が小さいほど、高い値となる。また試験時の温度は90℃、充放電レートは0.1Cとした。なお1時間で満充電する電流値が1Cとしているので、0.1Cとは10時間で満充電となる電流値である。本実施例の試験結果では、電圧効率は91%だった。
(比較例1)
比較例として、正極にPVDFからなるバインダー樹脂を用い、それ以外の条件は実施例1と同様の溶融塩電池を作製し、実施例1と同様の条件で充放電試験を行った。本比較例の試験結果では、電圧効率は85%だった。
上記実施例1および比較例1の結果から、バインダー樹脂を用いなかった実施例1の方が電圧効率は高く、内部抵抗が小さいことが確認された。

Claims (4)

  1.  三次元網目構造を有する金属多孔体である集電体と、活物質とを有する電池用電極であって、
     前記活物質は前記集電体の網目構造内にバインダー樹脂を用いることなく担持されていることを特徴とする電池用電極。
  2. 前記集電体はアルミニウム多孔体であることを特徴とする請求項1に記載の電池用電極。
  3. 前記活物質は、NaCrO、TiS、NaMnF、NaFePOF、NaVPOF、Na0.044MnO、FeF、Sn、Si、黒鉛、および難黒鉛化炭素からなる群から選択される少なくとも1種であることを特徴とする請求項1または請求項2に記載の電池用電極。
  4. 正極および/または負極が、請求項1ないし請求項3のいずれか1項に記載の電池用電極であることを特徴とする電池。
PCT/JP2012/053601 2011-02-22 2012-02-16 電池用電極および電池 WO2012114966A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/001,066 US20130330618A1 (en) 2011-02-22 2012-02-16 Battery electrode and battery
CN2012800101444A CN103430354A (zh) 2011-02-22 2012-02-16 电池用电极和电池
KR1020137021601A KR20140005976A (ko) 2011-02-22 2012-02-16 전지용 전극 및 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-035621 2011-02-22
JP2011035621A JP2012174495A (ja) 2011-02-22 2011-02-22 電池用電極および電池

Publications (1)

Publication Number Publication Date
WO2012114966A1 true WO2012114966A1 (ja) 2012-08-30

Family

ID=46720748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053601 WO2012114966A1 (ja) 2011-02-22 2012-02-16 電池用電極および電池

Country Status (6)

Country Link
US (1) US20130330618A1 (ja)
JP (1) JP2012174495A (ja)
KR (1) KR20140005976A (ja)
CN (1) CN103430354A (ja)
TW (1) TW201248977A (ja)
WO (1) WO2012114966A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128904A1 (ja) * 2013-02-22 2014-08-28 株式会社 日立製作所 電池制御回路、電池システム、並びにこれを備える移動体及び電力貯蔵システム
CN105229766A (zh) * 2013-05-07 2016-01-06 住友电气工业株式会社 用于电力存储装置的电极、电力存储装置和制造用于电力存储装置的电极的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243063A (ja) * 2012-05-22 2013-12-05 Furukawa Sky Kk 多孔質金属集電体を用いた電極の製造方法
JP2014235912A (ja) * 2013-06-03 2014-12-15 住友電気工業株式会社 ナトリウム溶融塩電池およびその製造方法
US9634315B2 (en) 2014-08-01 2017-04-25 SiNode Systems, Inc. Carbon containing binderless electrode formation
WO2016197006A1 (en) * 2015-06-04 2016-12-08 Eoplex Limited Solid state battery and fabrication process therefor
KR101914173B1 (ko) * 2016-04-26 2018-11-01 주식회사 엘지화학 나트륨 전극 및 이를 포함하는 나트륨 이차전지
KR102614018B1 (ko) * 2016-05-19 2023-12-13 삼성에스디아이 주식회사 이차 전지, 바이폴라 전극 및 바이폴라 전극 제조 방법
CN107170955B (zh) * 2017-05-26 2019-07-12 清华大学 一种可方便拆解回收的锂离子电池、制作方法及拆解回收方法
CN107134371B (zh) * 2017-06-19 2022-07-12 中天储能科技有限公司 可方便拆解回收的超级电容、制作方法及拆解回收方法
WO2023095755A1 (ja) 2021-11-26 2023-06-01 株式会社Adeka 多孔金属を含む集電体及び有機硫黄系活物質を含む非水電解質二次電池用電極、当該電極を含む非水電解質二次電池並びに当該電極の製造のための有機硫黄系活物質

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226765A (ja) * 2007-03-15 2008-09-25 Sumitomo Electric Ind Ltd 非水電解質二次電池用正極
JP2009176517A (ja) * 2008-01-23 2009-08-06 Sumitomo Electric Ind Ltd 非水電解質二次電池用不織布状ニッケルクロム集電体及びそれを用いた電極
JP2009176516A (ja) * 2008-01-23 2009-08-06 Sumitomo Electric Ind Ltd 非水電解質二次電池用発泡状ニッケルクロム集電体及びそれを用いた電極
JP2010009905A (ja) * 2008-06-26 2010-01-14 Sumitomo Electric Ind Ltd リチウム系二次電池用正極の集電体並びにそれを備えた正極及び電池
JP2010260761A (ja) * 2009-05-01 2010-11-18 Kyushu Univ 非水電解質二次電池用正極の製造方法及びそれを用いた非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226436A (en) * 1975-08-23 1977-02-28 Kogyo Gijutsuin Method of producing battery plate
US20060175704A1 (en) * 2003-07-15 2006-08-10 Tatsuo Shimizu Current collecting structure and electrode structure
CN101475156B (zh) * 2008-12-31 2011-06-29 郑州市联合能源电子有限公司 磷酸铁锂前驱体及其充电电池电极的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226765A (ja) * 2007-03-15 2008-09-25 Sumitomo Electric Ind Ltd 非水電解質二次電池用正極
JP2009176517A (ja) * 2008-01-23 2009-08-06 Sumitomo Electric Ind Ltd 非水電解質二次電池用不織布状ニッケルクロム集電体及びそれを用いた電極
JP2009176516A (ja) * 2008-01-23 2009-08-06 Sumitomo Electric Ind Ltd 非水電解質二次電池用発泡状ニッケルクロム集電体及びそれを用いた電極
JP2010009905A (ja) * 2008-06-26 2010-01-14 Sumitomo Electric Ind Ltd リチウム系二次電池用正極の集電体並びにそれを備えた正極及び電池
JP2010260761A (ja) * 2009-05-01 2010-11-18 Kyushu Univ 非水電解質二次電池用正極の製造方法及びそれを用いた非水電解質二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128904A1 (ja) * 2013-02-22 2014-08-28 株式会社 日立製作所 電池制御回路、電池システム、並びにこれを備える移動体及び電力貯蔵システム
CN105229766A (zh) * 2013-05-07 2016-01-06 住友电气工业株式会社 用于电力存储装置的电极、电力存储装置和制造用于电力存储装置的电极的方法

Also Published As

Publication number Publication date
TW201248977A (en) 2012-12-01
JP2012174495A (ja) 2012-09-10
CN103430354A (zh) 2013-12-04
KR20140005976A (ko) 2014-01-15
US20130330618A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
WO2012114966A1 (ja) 電池用電極および電池
US7006346B2 (en) Positive electrode of an electric double layer capacitor
JP5664114B2 (ja) 溶融塩電池
WO2014007188A1 (ja) リチウムイオンキャパシタ
JP2012186142A (ja) 電気化学デバイス用電極およびその製造方法
JP5575531B2 (ja) 負極活物質、これを用いた二次電池およびキャパシタ
US20150303000A1 (en) Lithium ion capacitor, power storage device, power storage system
JP2000100429A (ja) 電極構造体及び二次電池
JPWO2015076059A1 (ja) キャパシタおよびその製造方法
JP2018113108A (ja) 二次電池
WO2011129020A1 (ja) 負極活物質、これを用いた二次電池およびキャパシタ、ならびに蓄電デバイス
US11742494B2 (en) High energy density lithium metal based anode for solid-state lithium-ion batteries
EP2951335A1 (en) Coated iron electrode and method of making same
JPWO2013146464A1 (ja) 電極材料、及びこの電極材料を用いたキャパシタ、二次電池
JP2015095634A (ja) 蓄電デバイスおよびその製造方法
JP2012243417A (ja) 溶融塩電池
EP3300146B1 (en) Metal-ion secondary battery
WO2023195233A1 (ja) 亜鉛電池用負極及び亜鉛電池
JP5748178B2 (ja) 溶融塩電池
JP2011228402A (ja) 蓄電デバイス
WO2020230204A1 (ja) ニッケル亜鉛電池
JP2012174606A (ja) 溶融塩電池
JP2023039628A (ja) 亜鉛電池用の負極及び亜鉛電池
JP2016152402A (ja) 充電器
JP2018163836A (ja) 亜鉛電池及び電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137021601

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14001066

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12750050

Country of ref document: EP

Kind code of ref document: A1