WO2023100654A1 - 組成物及び膜 - Google Patents

組成物及び膜 Download PDF

Info

Publication number
WO2023100654A1
WO2023100654A1 PCT/JP2022/042523 JP2022042523W WO2023100654A1 WO 2023100654 A1 WO2023100654 A1 WO 2023100654A1 JP 2022042523 W JP2022042523 W JP 2022042523W WO 2023100654 A1 WO2023100654 A1 WO 2023100654A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
mass
polymer
conditions
resin
Prior art date
Application number
PCT/JP2022/042523
Other languages
English (en)
French (fr)
Inventor
俊輔 千葉
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023100654A1 publication Critical patent/WO2023100654A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to compositions and films.
  • snow cover on living environment materials due to snowfall is a problem. For example, collapse of structural members due to increased load due to snow cover, snow damage caused by a large amount of snow falling at once, failure to check road traffic safety indicator boards and devices such as road signs and traffic lights, solar panels decrease in power generation efficiency.
  • Patent Document 1 a vinylidene fluoride-based fluororesin is used as a matrix resin, and a ceramic-based inorganic aggregate, organic polymer beads, and fluororesin powder are added, and a topcoat is applied on top of an undercoat film formed on a metal plate.
  • a vinylidene fluoride-based fluororesin-coated metal plate having excellent scratch resistance, galling resistance, and snow-slipping properties is described.
  • Patent Document 2 a plurality of grooves extending in one direction are arranged on a solid surface to form unevenness at intervals of 2 ⁇ m or more and 4 mm or less, and the convex portions of the unevenness are made hydrophilic with a water contact angle of 30 degrees or less.
  • a snow-slippery solid characterized by making recesses water-repellent with a water contact angle of 90 degrees or more, and a technique for producing the same.
  • the present invention has been made in view of the above problems. It is an object of the present invention to provide a composition and a film which are excellent in snow sliding properties for both wet snow and dry snow.
  • a composition according to one aspect of the present invention includes a thermoplastic resin A, a polymer B, and a powder C.
  • the polymer B has a structural unit represented by formula (1) or formula (2),
  • the water content in the powder C treated under the following treatment conditions (a) satisfies 1000 mass ppm to 5000000 mass ppm when measured under the following measurement conditions (b), With respect to a total of 100 parts by mass of the resin A and the polymer B, the content of the resin A is 1 to The content of the polymer B is 1 to 99 parts by mass, and the content of the powder C is 0.01 to 25 parts by mass.
  • R 1 to R 3 are each independently selected from a hydrogen atom, a halogen atom, an alkoxy group, or an alkyl group. At least one hydrogen atom in each alkyl group and each alkoxy group may be independently substituted with a halogen atom.
  • the median diameter (D50) of the powder C measured by a laser diffraction method is 0.05 to 3 It can be 0 ⁇ m.
  • the powder C can be silica powder or silicone powder.
  • a film according to one aspect of the present invention includes resin M and powder C. As shown in FIG.
  • the contact angle measured by dropping a water droplet of 2 ⁇ L on the horizontal surface of the film is 50 to 90 degrees.
  • the surface of the film has a sea region of the resin M and an island region of the powder C, The ratio of the area of the island region to the total area of the sea region and the island region is 0.01 to 3 0%,
  • a film in which the water content in the powder C treated under the following treatment conditions (a) satisfies 1000 mass ppm to 5000000 mass ppm when measured under the following measurement conditions (b).
  • Processing conditions (a): After drying the powder C for 17 hours in a vacuum dryer set to conditions of an environmental temperature of 80°C and a degree of vacuum of 0.08 MPa, conditions of an environmental temperature of 50°C and an environmental humidity of 95% RH were set. The powder C is held for 24 hours in the thermo-hygrostat. Measurement conditions (b): Measured using a Karl Fischer moisture meter under the moisture vaporization conditions of a heating temperature of 190° C. and a holding time of 10 minutes.
  • An article according to one aspect of the present invention has the above-described film on at least a portion of its outer surface.
  • the present invention there is no need for special post-processing such as painting processing, surface processing such as surface cutting, and texturing processing, and even if it has a smooth shape, it can be used for both wet snow and dry snow. It is possible to obtain a film which is excellent in both quality and snow-sliding properties.
  • FIG. 1 is an enlarged schematic diagram of the surface of a film according to one embodiment.
  • FIG. 2 is an enlarged schematic diagram of a cross section near the surface of a film according to one embodiment.
  • FIG. 3 is a side view for explaining the tilt angle ⁇ of the film 10.
  • composition of the present embodiment is a composition containing a thermoplastic resin A, a polymer B, and a powder C, and with respect to a total of 100 parts by mass of the resin A and the polymer B,
  • the content of the resin A is 1 to 99 parts by mass
  • the content of the polymer B is 1 to 99 parts by mass
  • the content of the powder C is 0.01 to 25 parts by mass.
  • thermoplastic resin A examples include olefin-based polymers, styrene-based polymers, methacrylic-based resins, acrylic-based resins, ester-based resins, amide-based resins, and vinyl-based polymers.
  • Thermoplastic resin A may be a single resin or a mixture of two or more resins.
  • the olefinic polymer of the present invention is a polymer containing 51% by weight or more of structural units derived from an olefin having 2 to 10 carbon atoms (provided that the total amount of the olefinic polymer is 100 % by weight).
  • olefins having 2 to 10 carbon atoms include ethylene, 1-propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1- Decene and the like can be mentioned, and any plural kinds thereof may be included.
  • the olefinic polymer may also contain structural units derived from monomers other than olefins having 2 to 10 carbon atoms.
  • monomers other than olefins having 2 to 10 carbon atoms include aromatic vinyl monomers such as styrene; unsaturated carboxylic acids such as acrylic acid and methacrylic acid; methyl acrylate, ethyl acrylate, acrylic Unsaturated carboxylic acid esters such as butyl acid, methyl methacrylate and ethyl methacrylate; vinyl ester compounds such as vinyl acetate; conjugated dienes such as 1,3-butadiene and 2-methyl-1,3-butadiene (isoprene); non-conjugated dienes such as cyclopentadiene and 5-ethylidene-2-norbornene; and propylene.
  • aromatic vinyl monomers such as styrene
  • unsaturated carboxylic acids such as acrylic acid and methacrylic acid
  • the olefin polymer may have two or more structural units derived from other monomers.
  • the olefin-based polymer can be at least one selected from the group consisting of an ethylene-based polymer, a propylene-based polymer, and a butene-based polymer, or a combination of any two or more thereof.
  • the ethylene copolymer is a polymer containing 50% by mass or more of structural units derived from ethylene, examples of which include ethylene homopolymer, ethylene-1-butene copolymer, ethylene- 1-hexene copolymer, ethylene-1-octene copolymer, and ethylene-1-butene-1-hexene copolymer.
  • the ethylene-based copolymer may be a combination of two or more ethylene-based copolymers.
  • a propylene-based copolymer is a polymer containing 50% by mass or more of structural units derived from propylene, and examples thereof include propylene homopolymers, propylene-ethylene copolymers, and propylene-1-butene copolymers. , propylene-1-hexene copolymer, propylene-1-octene copolymer, propylene-ethylene-1-butene copolymer, propylene-ethylene- 1-hexene copolymer and propylene-ethylene-1-octene copolymer.
  • the propylene-based copolymer may be a combination of two or more propylene-based copolymers. It is preferred that the olefin-based polymer is a propylene-based copolymer.
  • the butene-based copolymer is a polymer containing 50% by mass or more of structural units derived from 1-butene, examples of which include 1-butene homopolymer, 1-butene-ethylene copolymer, 1- Butene-propylene copolymer, 1-butene-1-hexene copolymer, 1-butene-1-octene copolymer, 1-butene-ethylene-propylene copolymer, 1-butene-ethylene-1- A hexene copolymer, a 1-butene-ethylene-1-octene copolymer, a 1-butene-propylene-1-hexene copolymer, and a 1-butene-propylene-1-octene copolymer.
  • the butene-based copolymer may be a combination of two or more butene-based copolymers.
  • a styrenic polymer is a polymer containing 51% by weight or more of constitutional units derived from styrene or a styrene derivative.
  • styrene derivatives include p-methylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene and p-methoxystyrene.
  • the styrene polymer may contain structural units derived from monomers other than styrene or styrene derivatives, such as olefins having 2 to 10 carbon atoms; Unsaturated carboxylic acids such as acrylic acid and methacrylic acid; Unsaturated carboxylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate and ethyl methacrylate; Vinyl ester compounds such as vinyl acetate; conjugated dienes such as -butadiene and 2-methyl-1,3-butadiene (isoprene); and non-conjugated dienes such as dicyclopentadiene and 5-ethylidene-2-norbornene.
  • monomers other than styrene or styrene derivatives such as olefins having 2 to 10 carbon atoms
  • Unsaturated carboxylic acids such as acrylic acid and methacrylic
  • a methacrylic resin is a polymer containing 51% by weight or more of structural units derived from a methacrylate ester. (2-ethylhexyl methacrylate) and the like.
  • An acrylic resin is a polymer containing 51% by weight or more of structural units derived from an acrylic ester, and examples thereof include poly(methyl acrylate), poly(ethyl acrylate), poly(butyl acrylate), poly (2-ethylhexyl acrylate) and the like.
  • An ester resin is a polymer containing 51% by weight or more of structural units derived from an ester of a polyhydric carboxylic acid and a polyhydric alcohol. Examples thereof include polycarbonate, polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. , polybutylene naphthalate, and the like.
  • An amide resin is a polymer containing 51% by weight or more of structural units repeating amide bonds. methylene dodecaneamide), poly(p-phenylene terephthalamide), poly(m-phenylene terephthalamide) and the like.
  • the vinyl-based polymer of the present invention contains 51% by weight of structural units derived from a monomer having a vinyl group.
  • Polymers containing the above include, for example, polyvinyl chloride, polyvinyl acetate, polyvinyl alcohol, polyvinyl acetal, and polyvinylidene chloride.
  • the glass transition temperature (Tg) of the thermoplastic resin A is preferably 0° C. or higher, more preferably 50° C. or higher, and even more preferably 80° C. or higher, from the viewpoint of snow sliding properties in wet snow. The higher the glass transition temperature (Tg), the more excellent the snow sliding properties of the composition on wet snow.
  • the glass transition temperature (Tg) of thermoplastic resin A is a value determined by differential scanning calorimeter (DSC) measurement in accordance with JIS K7121.
  • MFR of thermoplastic resin A Thermoplastic resin A at a temperature of 190 ° C. or 230 ° C. and a load of 2.16 kgf or 3 .
  • Melt mass flow rate (MFR) measured at 80 kgf (37.3 N) is 0 . It can be 01 g/10 min or more and can be 200 g/10 min or less. M.
  • the upper limit of FR can be 100 g/10 min, 50 g/10 min, 30 g/10 min. The smaller the melt mass flow rate of the thermoplastic resin A, the more excellent the moldability of the composition tends to be.
  • thermoplastic resin A As a method for producing the thermoplastic resin A, a known polymerization method using a known polymerization catalyst is used.
  • Polymer B of the present invention is a polymer having a structural unit represented by formula (1) or formula (2).
  • R 1 to R 3 are each independently selected from hydrogen atoms, halogen atoms, alkoxy groups and alkyl groups.
  • halogen atoms are F, Cl, Br, I.
  • the number of carbon atoms in the alkoxy group or alkyl group of R 1 to R 3 in formulas (1) and (2) is preferably 1 or more and 15 or less, more preferably 1 or more and 10 or less, and even more preferably 1 or more and 5 or less. is.
  • the alkyl groups and alkoxy groups of R 1 to R 3 may be linear, branched or cyclic, but preferably linear.
  • At least one hydrogen atom in each alkyl group and each alkoxy group of R 1 to R 3 may be independently substituted with a halogen atom such as fluorine. It is preferred that all hydrogen atoms in each alkyl group and each alkoxy group are replaced with halogen atoms such as fluorine.
  • Polymer B is preferably a polymer containing 51% by weight or more of structural units of formula (1) and/or (2), for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride , tetrafluoroethylene/hexafluoropropylene copolymer, ethylene/tetrafluoroethylene copolymer, ethylene/chlorotrifluoroethylene copolymer, perfluoroalkoxyalkane (e.g. tetrafluoroethylene/perfluoroalkoxyethylene copolymer polymerization), ethylene-tetrafluoroethylene copolymer, and the like.
  • polytetrafluoroethylene polychlorotrifluoroethylene
  • polyvinylidene fluoride polyvinyl fluoride
  • tetrafluoroethylene/hexafluoropropylene copolymer ethylene/tetrafluoroethylene
  • the polymer B is preferably polychlorotrifluoroethylene, polyvinylidene fluoride, or perfluoroalkoxyalkane.
  • a vinylidene fluoride-based polymer When a vinylidene fluoride-based polymer is used as the polymer B, it may be a resin containing vinylidene fluoride units.
  • a copolymer containing The content of vinylidene fluoride units in the vinylidene fluoride polymer is preferably 50% by mass or more, and 70% by mass. 90% by mass or more is more preferable.
  • vinyl monomers copolymerizable with vinylidene fluoride include, for example, vinyl fluoride, Fluorinated vinyl monomers such as tetrafluoroethylene, trifluoroethylene chloride, and hexafluoropropylene; and vinyl monomers such as styrene, ethylene, butadiene, and propylene.
  • a known polymerization method using a known polymerization catalyst is used as a method for producing the polymer B.
  • the melting point of polymer B determined by DSC is not particularly limited, but from the viewpoint of processability, it is preferably less than 300°C, more preferably less than 280°C, and even more preferably less than 260°C. be.
  • the melting point (Tm) of polymer B determined by DSC is the melting temperature of the crystalline phase contained in polymer B. Specifically, in the DSC curve obtained when polymer B is heated, It is the peak top temperature in the endothermic peak on the high temperature side.
  • this melting point is measured under the following conditions.
  • MFR of polymer B Polymer B at a temperature of 230° C., or a temperature of 190° C. or 297° C., and a load2.
  • Melt mass flow rate (MFR) measured under conditions of 16 kgf or 5.0 kgf is 0 . It can be 01 g/10 min or more and can be 200 g/10 min or less. M.
  • the upper limit of FR can be 100 g/10 min, 50 g/10 min, 30 g/10 min. The smaller the melt mass flow rate of the polymer B, the more excellent the moldability of the composition tends to be.
  • a known polymerization method using a known polymerization catalyst is used as a method for producing the polymer B.
  • the powder C in the present invention is preferably a powder that exhibits solid particulate properties even at a temperature of 100°C.
  • the powder are powders containing one or a plurality of constituent elements selected from the group consisting of metalloid elements, metal elements, halogen elements, and carbon, and preferably powders containing metalloid elements as constituent elements. is the body. These powders may be used alone or in combination of two or more.
  • the powder C containing a metalloid element as a constituent element contains B, Si, Ge, As, and S as the metalloid element.
  • the powder containing a metalloid element as a constituent element may be a powder of a single metalloid, a powder of a mixture of single metalloids, an oxide or nitride of a metalloid (single type or multiple types). Powders of semimetal compounds such as powders may also be used.
  • the powder containing a metalloid element as a constituent element is preferably silicon dioxide powder (silica powder). Further, the powder containing a metalloid element as a constituent element may be a silicone powder.
  • the silicone powder contains structural units represented by formula (3).
  • R 4 and R 5 are each independently a hydrogen atom, a halogen atom, an alkoxy group, or an alkyl group. ]
  • the number of carbon atoms in the alkoxy group or alkyl group of R 4 and R 5 is preferably 1 or more and 15 or less, more preferably 1 or more and 10 or less, and even more preferably 1 or more and 5 or less.
  • Alkyl groups and alkyl groups may be linear, branched, or cyclic, but are preferably linear.
  • the powder containing a metal element as a constituent element is a powder containing at least one element selected from the group consisting of Groups 1 to 12 of the periodic table as a constituent element, or a powder containing, as a constituent element, at least one element selected from the group consisting of Groups 1 to 12 of the periodic table.
  • the powder containing a metal element as a constituent element may be a metal (including alloy) powder or a metal compound powder.
  • a metal compound powder is a metal oxide powder.
  • metal oxide powder is alumina powder.
  • Other examples of metal compound powders are metal halide powders.
  • metal halide powders are metal fluoride powders, metal chloride powders, metal bromide powders, and metal iodide powders
  • metal halide powders are metal halide powders containing multiple types of halogen elements.
  • may Specific examples of metal halide powders are copper iodide powder and copper chloride powder.
  • the powder containing a carbon atom as a constituent element is a powder containing a carbon atom as a constituent element and showing solid properties even at a temperature of 100 ° C., preferably thermosetting resin, diamond, graphite, fullerene, etc. A thermosetting resin is preferred.
  • These powders C may be porous powders. If the powder is porous, the hygroscopicity of the powder can be easily increased.
  • the median diameter D50 of the powder C may be 30 ⁇ m or less from the viewpoint of snow sliding property. It may be 5 ⁇ m or less, or may be 20 ⁇ m or less. If the D50 is too large, the dispersibility is lowered and molding defects tend to occur.
  • the median diameter D50 of the powder C may be 15 ⁇ m or less, 13 ⁇ m or less, 10 ⁇ m or less, 7 ⁇ m or less, or 6 ⁇ m or less from the viewpoint of snow sliding properties.
  • the median diameter D50 of the powder C is 0.05 ⁇ m from the viewpoint of ease of handling during production. 0.5 ⁇ m or more, 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, or 5 ⁇ m or more.
  • the median diameter D50 is determined by measuring the weight-based particle size distribution according to JISR1629 using a laser diffraction particle size distribution analyzer, and the cumulative amount 5 read from the obtained particle size cumulative distribution curve. It can be determined from a particle size value of 0% by weight.
  • the laser diffraction particle size distribution analyzer include MT-3300EX-II manufactured by Nikkiso Co., Ltd.
  • Measurement conditions (b) The moisture contained in the powder C treated under the treatment conditions (a) was heated at 190° C. for a holding time of 10 Measured using a Karl Fischer moisture meter under moisture vaporization conditions of 10 minutes.
  • the water content of the powder C measured by the treatment conditions (a) and the measurement conditions (b) is preferably 5 000 mass ppm to 4500000 mass ppm, more preferably 10000 mass ppm to It is 4000000 mass ppm.
  • the water content may be 20000 ppm by weight or more, and 50 000 ppm by weight or more.
  • the water content of the powder C may be 100000 ppm by mass or more, or may be 200000 ppm by mass or more.
  • the water content of powder C is 400,000 It may be 0 mass ppm or less, may be 3000000 mass ppm or less, 2000 000 mass ppm or less, may be 1000000 mass ppm or less, 70 It may be 0000 mass ppm or less, or 500000 mass ppm or less. If the powder C with too low water content is used, it tends to be difficult to improve the snow sliding property of the compact. If the powder C having an excessively high water content is used, the strength of the molded body tends to decrease.
  • Examples of the method for producing the above powder C include known gas phase methods such as PVD method and CVD method, coprecipitation method, alkoxide method, sol-gel method, hydrothermal synthesis method, polymerization method, spray drying method, freeze drying method, etc.
  • a mechanical method such as a liquid phase method, resin kneading, various pulverizing methods, or a mechanical alloying method may also be used.
  • the content of the resin A is 1 to 99 parts by mass with respect to the total of 100 parts by mass of the resin A and the polymer B, and the content of the polymer B is 1 to 99 parts by mass. 99 parts by mass.
  • the content of the resin A is preferably 10 to 90 parts by mass
  • the content of the polymer B is preferably 10 to 90 parts by mass
  • the content of the resin A is 10 to 80 parts by mass.
  • the content of the polymer B is 20 to 90 parts by mass, the content of the resin A is 10 to 70 parts by mass, and the content of the polymer B is It is even more preferable that it is 30 to 90 parts by mass, the content of the resin A is 20 to 70 parts by mass, and the content of the polymer B is 30 to 80 parts by mass. It is even more preferable.
  • the content of powder C is 0.01 to 25 parts by mass.
  • the content of powder C is 0 . 01 to 20 parts by mass
  • the content of powder C is more preferably 0.01 to 15 parts by mass
  • the content of powder C is 0.01 to 10 parts by mass. It is even more preferable that the content of the powder C is 0.5 to 10 parts by mass.
  • the content of powder C may be 7 parts by mass or less, or may be 5 parts by mass or less.
  • the number of peaks in the glass transition temperature of the composition of the present invention is preferably unimodal.
  • the thermoplastic resin A and the polymer B are preferably completely compatible.
  • the composition may contain additives other than the thermoplastic resin A, the polymer B, and the powder C, if necessary.
  • Additives include stabilizers, antibacterial agents, antifungal agents, dispersants, plasticizers, flame retardants, tackifiers, colorants, metal powders, inorganic fibers, organic fibers, composite fibers, inorganic whiskers, and fillers.
  • stabilizers include lubricants, antioxidants, heat stabilizers, light stabilizers, weather stabilizers, metal deactivators, ultraviolet absorbers, light stabilizers, and copper damage inhibitors.
  • Examples of light stabilizers include hindered amine light stabilizers
  • examples of colorants include titanium oxide, carbon black and organic pigments
  • examples of metal powders include ferrite
  • examples of inorganic fibers include glass fibers
  • examples of organic fibers include carbon fibers and aramid fibers.
  • examples of inorganic whiskers include potassium titanate whiskers.
  • fillers include glass beads, glass balloons, glass flakes, asbestos and mica. , calcium carbonate, talc, silica, calcium silicate, hydrotalcite, kaolin, Diatomaceous Earth, Graphite, Pumice, Evo Powder, Cotton Flock, Cork Powder, Barium Sulfate, Fluororesins, cellulose powders, and wood flours can be mentioned.
  • the additive may be contained in the dispersed phase of the thermoplastic resin A, may be contained in the dispersed phase of the polymer B, and the thermoplastic resin A and the polymer B form separate dispersed phases. good too.
  • Method for producing composition As a method for producing the composition according to the present invention, there is a method of melt-kneading the thermoplastic resin A, the polymer B and the powder C, and a thermoplastic resin in the presence of the thermoplastic resin A, the polymer B and the powder C.
  • a method of polymerizing various monomer components constituting the resin A and the polymer B can be mentioned. From the viewpoint of workability, the method of melt-kneading the thermoplastic resin A, the polymer B and the powder C is preferable.
  • the melt-kneading described above can be performed by a known method using a known apparatus.
  • thermoplastic resin A, polymer B and powder C are mixed in a Henschel mixer, ribbon blender, After mixing using a mixing device such as a tumble mixer, the thermoplastic resin A, the polymer B and the powder C are mixed at a constant ratio using a method of further melt-kneading or using a metering feeder, and if necessary
  • the mixture is melt-kneaded using a single-screw or multi-screw extruder, a Banbury mixer, a roll kneader, or the like.
  • the melt-kneading temperature is preferably 80° C. or higher, more preferably 100° C. to 300° C., more preferably 120° C. to 280° C., still more preferably 14 0°C to 260°C. (Action)
  • a molded article of the composition can be obtained.
  • the powder C having hygroscopicity can be selectively arranged on the surface of the . Therefore, articles such as various films having specific surfaces, which will be described later, can be favorably molded.
  • the surface of the membrane tends to impart snow-sliding properties in both low temperature conditions and high temperature conditions.
  • a film according to an embodiment of the present invention is a film containing resin M and powder C,
  • the contact angle measured by dropping 2 ⁇ L of water droplets on the horizontal surface of the film (standing at an inclination angle ⁇ of 0 degrees with respect to the horizontal plane: see FIG. 3) is 50 degrees or more and 90 degrees or less,
  • the surface of the film has a sea region of the resin M and an island region of the powder C,
  • the ratio of the area of the island region to the total area of the sea region and the island region is 0.01 to 3 0%
  • the water content in the powder C treated under the following treatment conditions (a) satisfies 1,000 mass ppm to 5,000,000 mass ppm when measured under the following measurement conditions (b).
  • Processing conditions (a): After drying the powder C for 17 hours in a vacuum dryer set to conditions of an environmental temperature of 80°C and a degree of vacuum of 0.08 MPa, conditions of an environmental temperature of 50°C and an environmental humidity of 95% RH were set. The powder C is held for 24 hours in the thermo-hygrostat. Measurement conditions (b): Measured using a Karl Fischer moisture meter under the moisture vaporization conditions of a heating temperature of 190° C. and a holding time of 10 minutes.
  • Resin M The surface of the resin M is not particularly limited as long as it has a hydrophobicity that can provide a contact angle with water within the range described above.
  • Resin M may be a mixture of thermoplastic resin A and polymer B in the composition described above.
  • the contact angle of the film surface is measured by the ⁇ /2 method by dropping a water droplet of 2 ⁇ L on the horizontal surface of the film. Contact angle measurements are made at 23°C. Measurement of contact angle, JIS R 3257: 19 99.
  • the contact angle of the film surface is preferably 60 degrees or more and 90 degrees or less, more preferably 70 degrees or more and 90 degrees or less, and even more preferably 70 degrees or more and 85 degrees or less.
  • the surface of the film 10 has a sea region S of resin M and an island region I of powder C.
  • the island region I is a hydrophilic region
  • the sea region of the resin M is a hydrophobic region. That is, many hydrophilic island regions I are dispersed in hydrophobic sea regions S on the surface of the film.
  • the powder C protrudes from the resin M on the surface of the film.
  • the resin M forms a sea region S
  • the powder C forms an island region I.
  • the ratio of the area of the island region I to the sum of the sea region S and the island region I on the surface of the film is From the viewpoint of snow sliding, it is 0.01% or more and 30% or less, preferably 0.05% or more and 15% or less, more preferably 0.05% or more and 10% or less, and still more preferably 0.05% or more and 10% or less. 05% or more and 5% or less.
  • the area of the island region I on the surface of the film is calculated based on the image taken from the direction perpendicular to the surface. For example, by elemental analysis such as SEM-EDS, the island region I and the sea region S are separated, Area can be calculated.
  • the average distance between the island regions I on the surface of the film is preferably 5 ⁇ m or more and 60 ⁇ m or less, more preferably 10 ⁇ m or more and 55 ⁇ m or less, and even more preferably 15 ⁇ m or more and 50 ⁇ m or less, from the viewpoint of snow sliding property.
  • the average distance between island regions I is obtained by finding the shortest distances between adjacent island regions I and arithmetically averaging them.
  • the degree of dispersion of the distance between the island regions I is preferably 0.450 or more, more preferably 0.500 or more, and even more preferably 0.550 or more.
  • the average equivalent circle diameter of the island regions can be 0.001 to 30 ⁇ m.
  • the thickness of the film is not limited, it can be, for example, 1 ⁇ m or more. There is no particular upper limit, but it can be 150 mm.
  • the film of the present embodiment can be obtained by melting and molding the above composition.
  • molding methods are extrusion, compression molding, injection molding.
  • Extrusion methods include, for example, a T-die molding method, a single-layer extrusion molding method by an inflation molding method, a multilayer extrusion molding method by a T-die molding method or a single-layer extrusion molding method by an inflation molding method, and a spinning extrusion method. mentioned.
  • Known methods such as a feed block method and a multi-manifold method can be used as the multilayer extrusion method.
  • injection molding methods include general injection molding, injection foam molding, supercritical injection foam molding, ultra-high speed injection molding, injection compression molding, gas-assisted injection molding, sandwich molding, and sandwich foam.
  • a molding method, an insert/outsert molding method, and the like can be mentioned.
  • extrusion molding and compression molding are preferable from the viewpoint of snow-slipping properties.
  • the film of the present invention may be used alone, or laminated with other resin members, metal members, paper, leather or the like to form a multi-layer article.
  • a surface treatment may be applied to the surface of the film of the present invention.
  • Examples of surface treatment methods include embossing, corona discharge treatment, flame treatment, plasma treatment, and ozone treatment.
  • the film of the present invention include transparent optical members, fiber materials, agricultural materials, exterior members, furniture and interior decoration members, house members, toy members, gardening members, automobile members, and packaging materials.
  • transparent optical members include solar panel members, lens members, and the like.
  • Fiber materials include, for example, clothing fabric members, interior fabric members, and industrial fiber members. film members, house members, and net members; Post members, cycle port members, deck members, sunroom members, roof members, terrace members, handrail members, shade members, awning members, etc.
  • furniture and interior decoration members include sofa members, table members, and chair members.
  • household appliance members include watch members, Examples include mobile phone members, home appliance members, etc.
  • Toy members include, for example, plastic model members, diorama members, and video game main body members.
  • Gardening members include, for example, planter members, vase members, and flowerpot members.
  • Examples of automobile members include bumper materials and instrument panel materials
  • examples of packaging materials include food packaging materials, fiber packaging materials, miscellaneous goods packaging materials, and the like.
  • other uses include, for example, monitor members, office automation (OA) equipment members, medical members, drainage pans, toiletry members, bottles, containers, snow removal product members, and various construction members.
  • OA office automation
  • the surface of the film according to the present embodiment has a predetermined contact angle with respect to water and has water repellency, In addition to excellent snow sliding properties under dry snow conditions (below ⁇ 3° C.), the island regions I of the hydrophilic powder C are dispersed in the resin sea region S in a suitable area ratio on the surface, so the wet It also has excellent snow sliding properties under snow conditions (-3°C or higher). If the area ratio of the island region is too high, the hydrophilicity tends to be too strong and the snow-sliding property of dry snow tends to decrease.
  • thermoplastic resin A thermoplastic resin A, polymer B, and powder C used in Examples and Comparative Examples are shown below.
  • Thermoplastic resin A (A-1) Polymethyl methacrylate (trade name) Sumipex LG (manufactured by Sumitomo Chemical) MFR (230°C 3.80 kgf (37.3 N)): 10.0 g/10 minutes
  • thermoplastic resin each thermoplastic resin
  • polymer each polymer
  • component each component
  • composition were measured according to the methods shown below.
  • Melt mass flow rate (MFR, unit: g/10 minutes) It was measured according to the method specified in JIS K7210-2014. Measured temperature is 230 °C and the load was 2.16 kgf or 3.80 kgf.
  • the contact angle was measured by using DM-501 manufactured by Kyowa Interface Science Co., Ltd. and measuring the contact angle of pure water with respect to the horizontal stationary surface of the film by the ⁇ /2 method.
  • the droplet volume was 2 ⁇ L.
  • SEM-EDS analysis was performed by coating the surface of the film with osmium with a thickness of 4 nm, and using the osmium-coated sample with JSM-7900F manufactured by JEOL Ltd. at an acceleration voltage of 3.5 kV. , and measured by EDS analysis of the sample surface at an observation magnification of ⁇ 1000. Observation area is 1.3mm 2 .
  • the obtained analysis image was binarized using the image analysis software Azo-kun manufactured by Asahi Engineering Co., Ltd., and the area ratio of the island portion was evaluated from the obtained binarized image. Also, from the binarized image, the shortest distance between the outer peripheries (edge portions) of adjacent island regions was determined, and the arithmetic mean value and degree of dispersion were determined.
  • a film was obtained as a molded body shaped into the shape of The snow-sliding properties of the obtained film on wet snow and on dry snow were evaluated.
  • Example ⁇ 2 Instead of 80 parts by mass of polymer (B-1), 80 parts by mass of polymer (B-2), and 3 parts by mass of powder (C-1), 3 parts by mass of powder ( The procedure was the same as in Example ⁇ 1, except that C-3) was used.
  • Example ⁇ 3 Instead of 80 parts by mass of polymer (B-1), 80 parts by mass of polymer (B-2), and 3 parts by mass of powder (C-1), 3 parts by mass of powder ( The procedure was the same as in Example ⁇ 1, except that C-4) was used.
  • Example ⁇ 1 The procedure was the same as in Example ⁇ 1, except that 1 part by mass of powder (C-2) was used instead of 3 parts by mass of powder (C-1).
  • Example ⁇ 2 The procedure was the same as in Example ⁇ 1, except that 3 parts by mass of powder (C-2) was used instead of 3 parts by mass of powder (C-1).
  • Example ⁇ 3 The procedure of Example ⁇ 1 was repeated except that 5 parts by mass of powder (C-2) was used instead of 3 parts by mass of powder (C-1).
  • Example ⁇ 4 The procedure was the same as in Example ⁇ 1, except that powder C was not added.
  • thermoplastic resin (A-1) and 5 parts by mass of powder (C -1) was used in the same manner as in Example ⁇ 1.
  • thermoplastic resin A 100 parts by mass of polymer (B-1) and 5 parts by mass of powder (C -1) was used in the same manner as in Example ⁇ 1. Table 1 shows the conditions and results.
  • composition having a predetermined composition yields a molded article having excellent snow-sliding properties on both wet snow and dry snow.
  • Example ⁇ 1 20 parts by mass of the thermoplastic resin (A-1), 80 parts by mass of the polymer (B-1), and 3 parts by mass of the powder (C-1) are uniformly mixed and kneaded by a twin screw with an inner diameter of 15 mm.
  • setting temperature: 210°C screw rotation speed: 500 rpm
  • heating and melt kneading to obtain a composition.
  • a molded body was obtained which was shaped into a film having a length of 150 mm and a thickness of 2 mm.
  • the contact angle of the surface of the film was 81.0 degrees
  • the area ratio of the hydrophilic island regions of the powder C was 2.3%
  • the water content of the powder C (hydrophilic regions) was 225350 ppm. Snow sliding in wet snow and dry snow on the surface of this compact was evaluated.
  • Example ⁇ 1 was the same as Example ⁇ 1, except that the amount of powder C added was increased to 30 parts by mass.
  • the contact angle on the surface of the resulting molded product was 83.8 degrees, and the area ratio of the hydrophilic region was 35%.
  • Table 2 shows the conditions and results.
  • a film having a predetermined surface structure has excellent snow sliding properties on both wet snow and dry snow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

組成物は、熱可塑性樹脂Aと、重合体Bと、粉体Cと、を含む。重合体Bは 式(1)又は式(2)で表される構成単位を有し、特定の処理条件(a)で処理した粉体 C中の水分量は、特定の測定条件(b)で測定すると1000質量ppm~500000 0質量ppmを満たし、前記樹脂Aと前記重合体Bとの合計100質量部に対して、前記 樹脂Aの含有量は1~99質量部であり、前記重合体Bの含有量は1~99質量部であり 、前記粉体Cの含有量は0.01~25質量部である。式中、R1~R3は、それぞれ独立に、水素原子、ハロゲン原子、アルコキシ基、又は 、アルキル基から選択される。各アルキル基及び各アルコキシ基の内の少なくとも1つの 水素原子は、独立にハロゲン原子で置換されていてもよい。

Description

組成物及び膜
 本発明は、組成物及び膜に関する。
 豪雪地帯では、降雪による住環境部材への冠雪が問題となっている。例えば、冠雪によ
る荷重の増加による構造部材の倒壊や、多量の冠雪が一度に落下することによる人身雪害
、道路標識や交通信号機などの道路交通における安全指示板・装置の確認障害、太陽光パ
ネルの発電効率の低下が挙げられる。
 吉田らの報告(北海道立試験所報告299,13-17(2000))によれば、降雪する雪質には
、水分の含有量が多い湿った湿雪と、水分の含有量が少ない乾雪があり、湿雪か乾雪かは
降雪する際の環境温度によって定まり、環境温度が、氷点以上では湿雪が降雪しやすく、
氷点以下では乾雪が降雪しやすく、降雪する雪質が湿雪であれば、冠雪する材料の表面性
質は親水性の方がより落雪(滑雪)しやすく、降雪する雪質が乾雪であれば、冠雪する材
料の表面性質は撥水性の方がより落雪(滑雪)しやすいことが記載されている。このよう
に、親水性かつ撥水性という相反する性質が必要となるため、様々な雪質を滑雪させる有
効な材料の表面性質の設計の報告が非常に少ない。
 特許文献1には、フッ化ビニリデン系フッ素樹脂をマトリックス樹脂とし、セラミック
系無機骨材と有機ポリマービーズとフッ素樹脂粉末を添加し、金属板上に形成された下塗
り塗膜の上に塗布する上塗り塗料とし、耐傷付き性、耐塗膜かじり性、および滑雪性に優
れたフッ化ビニリデン系フッ素樹脂塗装金属板が記載されている。
 特許文献2には、固体表面に、一方向に延びる溝を複数配設して2μm以上4mm以下
の間隔で凹凸を形成し、該凹凸の凸部を水接触角で30度以下の親水性にし、凹部を水接
触角で90度以上の撥水性にすることを特徴とする易滑雪性固体及びその作製技術が記載
されている。
特開2000-355671号公報 特開2003-226867号公報
 しかしながら、塗装加工や、表面切削などの表面加工や、シボ賦形加工などの特別な後
加工の必要がなく、平滑な形状であっても、湿雪・乾雪の両方の雪質でともに滑雪性に優
れる材料が求められている。
 本発明は、上記課題に鑑みてなされたものであり、塗装加工や、表面切削などの表面加
工や、シボ賦形加工などの特別な後加工の必要がなく、平滑な形状であっても、湿雪・乾
雪の両方の雪質でともに滑雪性に優れる組成物及び膜を提供することを目的とする。
 本発明の一側面に係る組成物は、熱可塑性樹脂Aと、重合体Bと、粉体Cと、を含む。
前記重合体Bは式(1)又は式(2)で表される構成単位を有し、
 下記の処理条件(a)で処理した粉体C中の水分量は、下記の測定条件(b)で測定す
ると1000質量ppm~5000000質量ppmを満たし、
 前記樹脂Aと前記重合体Bとの合計100質量部に対して、前記樹脂Aの含有量は1~
99質量部であり、前記重合体Bの含有量は1~99質量部であり、前記粉体Cの含有量
は0.01~25質量部である。
Figure JPOXMLDOC01-appb-C000002

 式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、アルコキシ基、又は
、アルキル基から選択される。各アルキル基及び各アルコキシ基の内の少なくとも1つの
水素原子は、独立にハロゲン原子で置換されていてもよい。
 処理条件(a):環境温度80℃、真空度0.08MPaの条件に設定した真空乾燥機
で粉体Cを17時間乾燥させたのち、環境温度50℃、環境湿度95%RHの条件に設定
した恒温恒湿機内に粉体Cを24時間保持する。
 測定条件(b):加熱温度190℃、保持時間10分の水分気化条件でカールフィッシ
ャー水分計を用いて測定する。
 レーザー回折法により測定される前記粉体Cのメディアン径(D50)が0.05~3
0μmであることができる。
 前記粉体Cが、シリカ粉、または、シリコーン粉であることができる。
 本発明の一側面に係る膜は、樹脂Mと、粉体Cとを含む。前記膜の水平表面に2μLの
水滴を滴下して測定した接触角が50~90度である。前記膜の表面は、前記樹脂Mの海
領域、及び、前記粉体Cの島領域を有し、
 前記海領域及び前記島領域の合計面積に対し、前記島領域の面積の割合が0.01~3
0%であり、
 下記の処理条件(a)で処理した粉体C中の水分量は、下記の測定条件(b)で測定す
ると1000質量ppm~5000000質量ppmを満たす、膜。
 処理条件(a):環境温度80℃、真空度0.08MPaの条件に設定した真空乾燥機
で粉体Cを17時間乾燥させたのち、環境温度50℃、環境湿度95%RHの条件に設定
した恒温恒湿機内に粉体Cを24時間保持する。
 測定条件(b):加熱温度190℃、保持時間10分の水分気化条件でカールフィッシ
ャー水分計を用いて測定する。
 本発明の一側面に係る物品は、上記の膜を外面の少なくとも一部に有する。
 本発明によれば、塗装加工や、表面切削などの表面加工や、シボ賦形加工などの特別な
後加工の必要がなく、平滑な形状であっても、湿雪・乾雪の両方の雪質でともに滑雪性に
優れる膜を得ることができる。
図1は、一実施形態に係る膜の表面の拡大模式図である。 図2は、一実施形態に係る膜の表面近傍の断面の拡大模式図である。 図3は、膜10の傾斜角度θを説明する側面図である。
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の
実施形態に限定されるものではない。
 (組成物)
 本実施形態の組成物は、熱可塑性樹脂Aと、重合体Bと、粉体Cと、を含む組成物であ
って、前記樹脂Aと前記重合体Bとの合計100質量部に対して、前記樹脂Aの含有量は
1~99質量部であり、前記重合体Bの含有量は1~99質量部であり、前記粉体Cの含
有量は0.01~25質量部である。
(熱可塑性樹脂A)
 熱可塑性樹脂の例は、オレフィン系重合体、スチレン系重合体、メタクリル系樹脂、ア
クリル系樹脂、エステル系樹脂、アミド系樹脂、ビニル系重合体である。熱可塑性樹脂A
は、単独樹脂であってもよく、2種以上の樹脂の混合物であっても良よい。
<オレフィン系重合体>
 本発明のオレフィン系重合体とは、炭素原子数2~10のオレフィンに由来する構造単
位を51重量%以上含有する重合体である(ただし、オレフィン系重合体の全量を100
重量%とする)。炭素原子数2~10のオレフィンとしては、例えば、エチレン、1-プ
ロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-
デセン等が挙げられ、任意の複数種を含んでいてもよい。
 また、オレフィン系重合体は、炭素原子数2~10のオレフィン以外の単量体に由来す
る構造単位を含有していてもよい。この炭素原子数2~10のオレフィン以外の単量体と
しては、例えば、スチレンなどの芳香族ビニル単量体;アクリル酸、メタクリル酸などの
不飽和カルボン酸;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリ
ル酸メチル、メタクリル酸エチルなどの不飽和カルボン酸エステル;酢酸ビニルなどのビ
ニルエステル化合物;1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレ
ン)などの共役ジエン;ジシクロペンタジエン、5-エチリデン-2-ノルボルネンなど
の非共役ジエン;プロピレンが挙げられる。
 オレフィン系重合体は、他のモノマーに由来する構造単位を、2種以上有していてもよ
い。
 オレフィン系重合体は、エチレン系重合体、プロピレン系重合体、及びブテン系重合体
からなる群から選択される少なくとも1つであることができ、これらの内の任意の2種以
上の組み合わせであってもよい。
 エチレン系共重合体とは、エチレンに由来する構造単位を50質量%以上含有する重合
体であり、その例は、エチレン単独重合体、エチレン-1-ブテン共重合体、エチレン-
1-ヘキセン共重合体、エチレン-1-オクテン共重合体、及び、エチレン-1-ブテン
-1-ヘキセン共重合体である。エチレン系共重合体は、2以上のエチレン系共重合体の
組み合わせであってもよい。
 プロピレン系共重合体とは、プロピレンに由来する構造単位を50質量%以上含有する
重合体であり、その例は、プロピレン単独重合体、プロピレン-エチレン共重合体、プロ
ピレン-1-ブテン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-1-オ
クテン共重合体、プロピレン-エチレン-1-ブテン共重合体、プロピレン-エチレン-
1-ヘキセン共重合体、及び、プロピレン-エチレン-1-オクテン共重合体である。プ
ロピレン系共重合体は、2種以上のプロピレン系共重合体の組み合わせであってもよい。
オレフィン系重合体がプロピレン系共重合体であることは好適である。
 ブテン系共重合体とは、1-ブテンに由来する構造単位を50質量%以上含有する重合
体であり、その例は、1-ブテン単独重合体、1-ブテン-エチレン共重合体、1-ブテ
ン-プロピレン共重合体、1-ブテン-1-ヘキセン共重合体、1-ブテン-1-オクテ
ン共重合体、1-ブテン-エチレン-プロピレン共重合体、1-ブテン-エチレン-1-
ヘキセン共重合体、1-ブテン-エチレン-1-オクテン共重合体、1-ブテン-プロピ
レン-1-ヘキセン共重合体、及び、1-ブテン-プロピレン-1-オクテン共重合体で
ある。ブテン系共重合体は、2種以上のブテン系共重合体の組み合わせであってもよい。
<スチレン系重合体>
 スチレン系重合体とは、スチレンもしくはスチレン誘導体に由来する構成単位を51重
量%以上含有する重合体である。スチレン誘導体としては、例えば、p-メチルスチレン
、p-tert-ブチルスチレン、α-メチルスチレン、p-メトキシスチレンを挙げる
ことができる。スチレン重合体は、スチレンもしくはスチレン誘導体以外の単量体に由来
する構成単位を含有していてもよく、例えば、炭素原子数2以上10以下のオレフィン;
アクリル酸、メタクリル酸などの不飽和カルボン酸;アクリル酸メチル、アクリル酸エチ
ル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチルなどの不飽和カルボン
酸エステル;酢酸ビニルなどのビニルエステル化合物;1,3-ブタジエン、2-メチル
-1,3-ブタジエン(イソプレン)などの共役ジエン;ジシクロペンタジエン、5-エ
チリデン-2-ノルボルネンなどの非共役ジエンをあげることができる。
<メタクリル系樹脂>
 メタクリル系樹脂とは、メタクリル酸エステルに由来する構成単位を51重量%以上含
有する重合体であり、例えば、ポリ(メタクリル酸メチル)、ポリ(メタクリル酸エチル
)、ポリ(メタクリル酸ブチル)、ポリ(メタクリル酸2-エチルヘキシル)等が挙げら
れる。
<アクリル系樹脂>
 アクリル系樹脂とは、アクリル酸エステルに由来する構成単位を51重量%以上含有す
る重合体であり、例えば、ポリ(アクリル酸メチル)、ポリ(アクリル酸エチル)、ポリ
(アクリル酸ブチル)、ポリ(アクリル酸2-エチルヘキシル)等が挙げられる。
<エステル系樹脂>
 エステル系樹脂とは、多価カルボン酸と多価アルコールとのエステルに由来する構成単
位を51重量%以上含有する重合体であり、例えば、ポリカルボナート、ポリエチレンテ
レフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレン
ナフタレート等が挙げられる。
<アミド系樹脂>
 アミド系樹脂とは、アミド結合で繰り返される構成単位を51重量%以上含有する重合
体であり、例えば、ポリ(ε-カプロラクタム)、ポリドデカンアミド、ポリ(ヘキサメ
チレンアジパミド)、ポリ(ヘキサメチレンドデカンアミド)、ポリ(p-フェニレンテ
レフタルアミド)、ポリ(m-フェニレンテレフタルアミド)等が挙げられる。
<ビニル系重合体>
 本発明のビニル系重合体とは、ビニル基をもつ単量体に由来する構成単位を51重量%
以上含有する重合体であり、例えば、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルアル
コール、ポリビニルアセタール、ポリ塩化ビニリデンなどが挙げられる。
(熱可塑性樹脂AのTg)
 熱可塑性樹脂Aのガラス転移温度(Tg)は、湿雪における滑雪性の観点から、0℃以
上が好ましく、より好ましくは50℃以上、更により好ましくは80℃以上である。ガラ
ス転移温度(Tg)が大きいほど、組成物の湿雪における滑雪性が優れる傾向にある。
 熱可塑性樹脂Aのガラス転移温度(Tg)は、JIS K7121に準拠した示差走査
熱量計(DSC)測定により求められる値である。
(熱可塑性樹脂AのMFR)
 熱可塑性樹脂Aの、温度190℃もしくは230℃及び荷重2.16kgfもしくは3
.80kgf(37.3N)の条件で測定されるメルトマスフローレイト(MFR)は0
.01g/10分以上であることができ、200g/10分以下であることができる。M
FRの上限は、100g/10分、50g/10分、30g/10分であることができる
。熱可塑性樹脂Aのメルトマスフローレイトが小さいほど、組成物の成形性が優れる傾向
にある。
 上記の熱可塑性樹脂Aの製造方法としては、公知の重合用触媒を用いた公知の重合方法
が用いられる。
(重合体B)
 本発明の重合体Bは、式(1)又は式(2)で表される構成単位を有する重合体である
Figure JPOXMLDOC01-appb-C000003

 式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、アルコキシ基、及び
、アルキル基から選択される。ハロゲン原子の例は、F,Cl,Br,Iである。
 式(1)及び(2)のR~Rの、アルコキシ基、アルキル基の炭素数は、好ましく
は、1以上15以下、より好ましくは1以上10以下、更により好ましくは1以上5以下
である。R~Rのアルキル基及びアルコキシ基は、直鎖でも、分岐状でも、環状でも
よいが、直鎖であることが好ましい。R~Rの各アルキル基及び各アルコキシ基の内
の少なくとも1つの水素原子は、独立にフッ素などのハロゲン原子で置換されていてもよ
い。各アルキル基及び各アルコキシ基の内の全ての水素原子が、フッ素などのハロゲン原
子で置換されていることが好適である。
 重合体Bは、(1)及び/又は(2)式の構成単位を51重量%以上含有する重合体が
好ましく、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポ
リフッ化ビニリデン、ポリフッ化ビニル、四フッ化エチレン・六フッ化プロピレン共重合
体、エチレン・四フッ化エチレン共重合体、エチレン・クロロトリフルオロエチレン共重
合体、パーフルオロアルコキシアルカン(例えば四フッ化エチレン・パーフルオロアルコ
キシエチレン共重合)、エチレン-テトラフルオロエチレン共重合体等が挙げられる。
 加工性の観点から、重合体Bとしてポリクロロトリフルオロエチレン、ポリフッ化ビニ
リデン、パーフルオロアルコキシアルカン、が好ましい。
 重合体Bとしてフッ化ビニリデン系重合体を用いる場合は、フッ化ビニリデン単位を含
む樹脂であればよく、例えば、フッ化ビニリデン単位のみからなる単独重合体(ポリフッ
化ビニリデン)や、フッ化ビニリデン単位を含む共重合体が挙げられる。フッ化ビニリデ
ン系重合体中のフッ化ビニリデン単位の含有量は50質量%以上が好ましく、70質量%
以上が好ましく、90質量%以上がより好ましい。
 フッ化ビニリデンと共重合可能な他のビニル単量体としては、例えば、フッ化ビニル、
四フッ化エチレン、三フッ化塩化エチレン、六フッ化プロピレン等のフッ素化されたビニ
ル単量体;スチレン、エチレン、ブタジエン、プロピレン等のビニル単量体が挙げられる
 上記の重合体Bの製造方法としては、公知の重合用触媒を用いた公知の重合方法が用い
られる。
(重合体BのTm)
 重合体BのDSCにより求められる融点は、特に限定されるものではないが、加工性の
観点から、好ましくは300℃未満であり、より好ましくは280℃未満、更により好ま
しくは、260℃未満である。
 重合体BのDSCにより求められる融点(Tm)は、重合体B中に含まれる結晶相の融
解温度であり、具体的には、重合体Bを昇温したときに得られるDSC曲線において、最
も高温側の吸熱ピークにおけるピークトップ温度である。
 なお、この融点は、以下の条件で測定する。(i)重合体Bの約10mgを、窒素雰囲
気下、220℃で5分間熱処理した後、降温速度10℃/分で50℃まで冷却する。(i
i)次いで、50℃において1分間保温した後、50℃から180℃まで昇温速度10℃
/分で加熱する。
(重合体BのMFR)
 重合体Bの、温度230℃、もしくは温度190℃、もしくは297℃、及び荷重2.
16kgf又は5.0kgfの条件で測定されるメルトマスフローレイト(MFR)は0
.01g/10分以上であることができ、200g/10分以下であることができる。M
FRの上限は、100g/10分、50g/10分、30g/10分であることができる
。重合体Bのメルトマスフローレイトが小さいほど、組成物の成形性が優れる傾向にある
 上記の重合体Bの製造方法としては、公知の重合用触媒を用いた公知の重合方法が用い
られる。
(粉体C)
 本発明における粉体Cは、100℃の温度でも固体粒子状の性質を示す粉体であること
が好ましい。粉体の例は、半金属元素、金属元素、ハロゲン元素、炭素からなる群から選
択されるいずれか又は複数を構成元素中に含む粉体であり、好ましくは半金属元素を構成
元素に含む粉体である。これらの粉体は単独で用いてもよく、2種以上混合して用いても
よい。
<半金属元素を構成元素に含む粉体C>
 半金属元素を構成元素に含む粉体Cは、半金属元素として、B,Si,Ge,As,S
b,Te,Po,Atからなる群から選択される少なくとも1つを構成元素として含む粉
体であり、好ましくは、B及びSiからなる群から選択される少なくとも1つを含む粉体
であり、より好ましくは、Siを含む粉体である。
 半金属元素を構成元素に含む粉体は、半金属の単体の粉体でもよく、半金属の単体の混
合物の粉体でもよく、半金属(単一種でも複数種でもよい)の酸化物、窒化物粉等の半金
属の化合物の粉体でもよい。
 半金属元素を構成元素に含む粉体は、好ましくは、二酸化ケイ素粉(シリカ粉)である

 また、半金属元素を構成元素に含む粉体はシリコーン粉であってもよい。シリコーン粉
は式(3)に示される構成単位を含む。
Figure JPOXMLDOC01-appb-C000004

[式(3)中、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、アルコキシ
基、アルキル基である。]
 R及びRの、アルコキシ基、アルキル基の炭素数は、好ましくは、1以上15以下
、より好ましくは1以上10以下、更により好ましくは1以上5以下である。アルキル基
及びアルキル基は、直鎖でも、分岐状でも、環状でもよいが、直鎖であることが好ましい
<金属元素を構成元素に含む粉体>
 金属元素を構成元素に含む粉体は、金属元素として、周期表第1族~第12族からなる
群から選択される少なくとも1つの元素を構成元素として含む粉体、又は、第13族~第
16族までの卑金属成分(Al等)からなる群から選択される少なくとも1つの元素を構
成元素として含む粉体であり、好ましくは、第2族~第12族からなる群から選択される
少なくとも1つの元素を構成元素として含む粉体であり、より好ましくは、Mg,Ca,
Ti,Fe,Ni,Cu,Zn,Ag,Au,Osからなる群から選択される少なくとも
1つを構成元素として含む粉体である。
 金属元素を構成元素に含む粉体は、金属(合金含む)粉であってもよく、金属化合物粉
であってもよい。
 金属化合物粉の一例は、金属酸化物粉である。金属酸化物粉の例は、アルミナ粉である

 金属化合物粉の他の例は金属ハロゲン化物粉である。金属ハロゲン化物粉の例は、金属
フッ化物粉、金属塩化物粉、金属臭化物粉、及び、金属ヨウ化物粉であり、金属ハロゲン
化物粉は、複数種のハロゲン元素を含む金属ハロゲン化粉であってもよい。金属ハロゲン
化物粉の具体例は、ヨウ化銅粉、塩化銅粉である。
<炭素原子を構成元素に含む粉体>
 炭素原子を構成元素に含む粉体は、炭素原子を構成元素に含む100℃の温度でも固体
の性質を示す粉体であり、好ましくは熱硬化性樹脂、ダイヤモンド、グラファイト、フラ
ーレンなどであり、より好ましくは熱硬化性樹脂である。
 これらの粉体Cは、多孔質粉でもよい。多孔質粉であると、粉体の吸湿性を高めやすい
(粉体Cの粒径:レーザー回折法により測定されるメディアン径D50)
 粉体Cのメディアン径D50は、滑雪性の観点から、30μm以下であってもよく、2
5μm以下であってもよく、20μm以下であってもよい。D50が大きすぎると、分散
性が低下し、成形不良を起こしやすくなる。粉体Cのメディアン径D50は、滑雪性の観
点から、15μm以下であってよく、13μm以下であってよく、10μm以下であって
よく、7μm以下であってよく、6μm以下であってよい。
 粉体Cのメディアン径D50は、製造時の取り扱いの容易さの観点から、0.05μm
以上であってよく、0.5μm以上であってよく、1μm以上であってよく、2μm以上
であってよく、3μm以上であってよく、5μm以上であってよい。
 メディアン径D50は、レーザー回折法粒度分布測定機を用いて、JISR1629に
従って重量基準の粒度分布を測定し、得られた粒度累積分布曲線から読みとった累積量5
0重量%の粒径値から求めることができる。レーザー回折法粒度分布測定機としては、例
えば、日機装株式会社MT-3300EX-IIが挙げられる。
(粉体Cの吸湿性)
 下記の処理条件(a)で粉体Cを処理した後に、下記の測定条件(b)で測定した粉体
Cの水分量は、1000~5000000質量ppmとなる必要がある。粉体Cがこのよ
うな吸湿性(親水性)を示すようにするには、粉体Cの組成、粉体Cの表面の凹凸(多孔
質性)等を適宜調節すればよい。
 処理条件(a)
 まず、環境温度80℃、真空度0.08MPaの条件に設定した真空乾燥機内で粉体C
を17時間乾燥させる。ついで、粉体Cを、環境温度50℃、環境湿度95%RHの条件
に設定した恒温恒湿機内で24時間放置する。
 測定条件(b)
 処理条件(a)で処理した粉体Cに含まれる水分を、加熱温度190℃、保持時間10
分の水分気化条件でカールフィッシャー水分計を用いて測定する。
 処理条件(a)及び測定条件(b)により測定される粉体Cの水分量は、好ましくは5
000質量ppm~4500000質量ppm、より好ましくは10000質量ppm~
4000000質量ppmである。水分量は、20000重量ppm以上でもよく、50
000重量ppm以上でもよい。粉体Cの水分量は、100000質量ppm以上であっ
てよく、200000質量ppm以上であってもよい。粉体Cの水分量は、400000
0質量ppm以下であってよく、3000000質量ppm以下であってよく、2000
000質量ppm以下であってよく、1000000質量ppm以下であってよく、70
0000質量ppm以下であってもよく、500000質量ppm以下であってもよい。
当該水分量が低すぎる粉体Cを使用すると、成形体の滑雪性を高くしにくい傾向がある。
当該水分量が高すぎる粉体Cを使用すると、成形体の強度が低下する傾向がある。
 上記の粉体Cの製造方法としては、公知のPVD法やCVD法などの気相法、共沈法や
アルコキシド法やゾルゲル法や水熱合成法や重合法や噴霧乾燥法や凍結乾燥法などの液相
法、樹脂混練や各種粉砕法やメカニカルアロイング法などの機械的手法を用いてもよい。
<組成物>
 本発明の組成物は、前記樹脂Aと前記重合体Bとの合計100質量部に対して、前記樹
脂Aの含有量は1~99質量部であり、前記重合体Bの含有量は1~99質量部である。
組成物において、前記樹脂Aの含有量は10~90質量部であり、前記重合体Bの含有量
は10~90質量部であることが好適であり、前記樹脂Aの含有量は10~80質量部で
あり、前記重合体Bの含有量は20~90質量部であることがより好適であり、前記樹脂
Aの含有量は10~70質量部であり、前記重合体Bの含有量は30~90質量部である
ことがさらにより好適であり、前記樹脂Aの含有量は20~70質量部であり、前記重合
体Bの含有量は30~80質量部であることがさらにより更に一層好適である。
 本発明の組成物において、前記樹脂Aと前記重合体Bとの合計100質量部に対して、
粉体Cの含有量は、0.01~25質量部である。組成物において、粉体Cの含有量は0
.01~20質量部であることが好適であり、粉体Cの含有量は0.01~15質量部で
あることがより好適であり、粉体Cの含有量は0.01~10質量部であることが更によ
り好適であり、粉体Cの含有量は0.5~10質量部であることが更により一層好適であ
る。粉体Cの含有量は7質量部以下であってよく、5質量部以下であってもよい。
(ガラス転移温度のピーク数)
 本発明の組成物のガラス転移温度のピーク数は、好ましくは単峰である。言い換えると
、熱可塑性樹脂Aと重合体Bとは、完全相溶であることが好ましい。
 組成物は、必要に応じて、熱可塑性樹脂A、重合体B、及び、粉体C以外に、添加剤を
含んでもよい。添加剤としては、安定剤、防菌剤、防黴剤、分散剤、可塑剤、難燃剤、粘
着付与剤、着色剤、金属粉末、無機繊維、有機繊維、複合繊維、無機ウィスカー、充填剤
が挙げられ、前記安定剤としては、例えば、滑剤、老化防止剤、熱安定剤、耐光剤、耐候
剤、金属不活性剤、紫外線吸収剤、光安定剤、銅害防止剤が挙げられる。耐光剤としては
、ヒンダードアミン系耐光剤が挙げられ、着色剤としては、例えば、酸化チタン、カーボ
ンブラック及び有機顔料が挙げられ、金属粉末としては、フェライトが挙げられ、無機繊
維としては、ガラス繊維、金属繊維が挙げられ、有機繊維としては、炭素繊維、アラミド
繊維が挙げられ、無機ウィスカーとしては、チタン酸カリウムウィスカーが挙げられ、充
填剤としては、ガラスビーズ、ガラスバルーン、ガラスフレーク、アスベスト、マイカ、
炭酸カルシウム、タルク、シリカ、ケイ酸カルシウム、ハイドロタルサイト、カオリン、
けい藻土、グラファイト、軽石、エボ粉、コットンフロック、コルク粉、硫酸バリウム、
フッ素樹脂、セルロースパウダー、木粉が挙げられる。添加剤は、1種のみ含んでもよく
、2種以上含んでもよい。添加剤は、熱可塑性樹脂Aの分散相に含まれていてよく、重合
体Bの分散相に含まれていてもよく、熱可塑性樹脂Aと重合体Bが別の分散相を形成して
いてもよい。
(組成物の製造方法)
 本発明に係る組成物の製造方法としては、熱可塑性樹脂Aと重合体Bと粉体Cとを溶融
混練する方法、熱可塑性樹脂Aと重合体Bと粉体Cとの存在下、熱可塑性樹脂Aと重合体
Bを構成する各種モノマー成分を重合する方法が挙げられる。加工性の観点から、好まし
くは熱可塑性樹脂Aと重合体Bと粉体Cとを溶融混練する方法である。
 上記に記載の溶融混練は、公知の装置を用いて公知の方法により行うことができる。例
えば、熱可塑性樹脂Aと重合体Bと粉体Cを、ヘンシェルミキサー、リボンブレンダー、
タンブルミキサー等の混合装置を用いて混合した後、更に溶融混練する方法や、定量供給
機を用いて、一定の割合で、熱可塑性樹脂Aと重合体Bと粉体Cと、必要に応じて各種添
加剤とをそれぞれ連続的に供給して混合物を得た後、該混合物を単軸又は二軸以上の押出
機、バンバリーミキサー、ロール式混練機等を用いて溶融混練する方法が挙げられる。
 上記の溶融混練の温度は、好ましくは80℃以上であり、より好ましくは、100℃~
300℃であり、より好ましくは、120℃~280℃であり、さらに好ましくは、14
0℃~260℃である。
 (作用)
 本実施形態に係る組成物によれば、熱可塑性樹脂Aに加えて、フッ素原子を含む重合体
Bを有しているので、組成物を溶融して成形することで、当該組成物の成形体の表面に吸
湿性を有する粉体Cを選択的に配置することができる。したがって、後述する特定の表面
を有する種々の膜などの物品を好適に成形することができる。当該膜の表面は、低温条件
および高温条件の両方での滑雪性を付与しやすい。
(膜)
 本発明の一実施形態に係る膜は、樹脂Mと、粉体Cとを含む膜であって、
 前記膜の水平表面(水平面に対して0度の傾斜角度θに静置:図3参照)に2μLの水
滴を滴下して測定した接触角が50度以上90度以下であり、
 前記膜の表面は、前記樹脂Mの海領域、及び、前記粉体Cの島領域を有し、
 前記海領域及び前記島領域の合計面積に対し、前記島領域の面積の割合が0.01~3
0%であり、
 下記の処理条件(a)で処理した粉体C中の水分量は、下記の測定条件(b)で測定す
ると1000質量ppm~5000000質量ppmを満たす。
 処理条件(a):環境温度80℃、真空度0.08MPaの条件に設定した真空乾燥機
で粉体Cを17時間乾燥させたのち、環境温度50℃、環境湿度95%RHの条件に設定
した恒温恒湿機内に粉体Cを24時間保持する。
 測定条件(b):加熱温度190℃、保持時間10分の水分気化条件でカールフィッシ
ャー水分計を用いて測定する。
<樹脂M>
 樹脂Mは、表面において、上述の範囲の水との接触角を付与できる疎水性があれば、特
に限定されない。樹脂Mは、上記の組成物における熱可塑性樹脂A及び重合体Bの混合物
であってよい。
<膜の表面の水接触角>
 膜の表面の接触角は、膜の水平な表面に2μLの水滴を滴下して、θ/2法にて測定さ
れる。接触角の測定は23℃でおこなう。接触角の測定は、JIS R 3257:19
99にしたがって行う。
 膜の表面の接触角は、好ましくは60度以上90度以下であり、より好ましくは70度
以上90度以下であり、更により好ましくは70度以上85度以下である。
<膜の表面の海島構造>
 図1に示すように、膜10の表面は、樹脂Mの海領域Sと、粉体Cの島領域Iとを有す
る。粉体Cは上述のような吸水性を示すので島領域Iは親水性領域であり、樹脂Mの海領
域は疎水性領域である。すなわち、膜の表面では、疎水性の海領域S中に親水性の多数の
島領域Iが分散している。
 図2の膜の断面図に示すように、膜の表面において樹脂Mから粉体Cが突出しているこ
とが好適である。表面において、樹脂Mにより海領域Sが、粉体Cにより島領域Iが形成
される。
(表面における島領域Iの面積の割合)
 膜の表面における、海領域S及び島領域Iの合計に対する、島領域Iの面積の割合は、
滑雪性の観点から、0.01%以上30%以下であり、好ましくは0.05%以上15%
以下であり、より好ましくは0.05%以上10%以下であり、より一層好ましくは0.
05%以上5%以下である。
 膜の表面の島領域Iの面積は、表面に垂直な方向から撮影した画像に基づいて計算され
る。例えば、SEM-EDSなどの元素分析により、島領域Iと、海領域Sとを分離し、
面積を求めることができる。
<島領域I間の平均距離>
 膜の表面における、島領域I間の平均距離は、滑雪性の観点から、好ましくは5μm以
上60μm以下であり、より好ましくは10μm以上55μm以下であり、更により好ま
しくは15μm以上50μm以下である。
 島領域I間の平均距離は、隣り合う島領域I間の最短距離をそれぞれ求め、算術平均す
ることにより得られる。
<島領域I間の距離の分散度>
 膜の表面において、島領域I間の距離の分散度は、0.450以上であることが好まし
く、0.500以上であることがより好ましく、0.550以上であることがさらに好ま
しい。島領域I間の距離の分散度は以下の式で定義される。
 島領域間の距離の分散度=島領域間の距離の平均偏差/島領域間の平均距離 …(4)
<島領域Iの大きさ>
 島領域の平均の円相当径は0.001~30μmであることができる。
<粉体Cの吸水量>
 粉体Cの吸水量は、上述の通りである。
<膜の厚み>
 膜の厚みに限定はないが、例えば、1μm以上であることができる。上限も特にないが
150mmであることができる。
 (膜の製造方法)
 本実施形態の膜は、上記の組成物を溶融して成形することで得ることができる。成形方
法の例は、押出成形、圧縮成形、射出成形である。押出成形法としては、例えば、Tダイ
成形法もしくは、インフレーション成形法による単層押出成形法や、Tダイ成形法もしく
は、インフレーション成形法による単層押出成形法による多層押出成形法、紡糸押出法が
挙げられる。多層押出成形法としてはフィードブロック方式やマルチマニホールド方式な
どの公知の方法が挙げられる。射出成形法としては、例えば、一般的な射出成形法、射出
発泡成形法、超臨界射出発泡成形法、超高速射出成形法、射出圧縮成形法、ガスアシスト
射出成形法、サンドイッチ成形法、サンドイッチ発泡成形法、インサート・アウトサート
成形法等が挙げられる。
 成形方法として、滑雪性の観点から、好ましいのは押出成形、圧縮成形である。
 (膜を用いた物品の態様)
 本発明の膜は、単独で使用してもよく、または、他の樹脂部材、金属部材、紙、皮革等
と張り合わせを行い、多層の物品としてもよい。
 本発明の膜の表面には、表面処理を施してもよい。表面処理の方法としては、エンボス
処理、コロナ放電処理、火炎処理、プラズマ処理、オゾン処理等の方法が挙げられる。
 本発明の膜の具体例としては、透明系光学用途部材、繊維材、農業資材、外構部材、家
具及び室内装飾部材、家部材、玩具部材、園芸部材、自動車部材、包装材が挙げられる。
透明系光学部材として、太陽光パネル用部材、レンズ部材などが挙げられ、繊維材として
、例えば、衣料用ファブリック部材、インテリア用ファブリック部材、産業用繊維部材な
どが挙げられ、農業資材として、マルチ用フィルム部材、ハウス部材、ネット部材が挙げ
られ、外構部材として、例えば、カーポート部材、フェンス部材、門扉部材、門柱部材、
ポスト部材、サイクルポート部材、デッキ部材、サンルーム部材、屋根部材、テラス部材
、手すり部材、シェード部材、オーニング部材などが挙げられ、家具及び室内装飾部材と
して、例えば、ソファ部材、テーブル部材、チェア部材、ベッド部材、タンス部材、キャ
ブネット部材、ドレッサー部材などが挙げられ、家電部材として、例えば、時計用部材、
携帯電話部材、白物家電部材、などが挙げられ、玩具部材として、例えば、プラモデル部
材、ジオラマ部材、ビデオゲーム本体部材などが挙げられ、園芸部材として、例えば、プ
ランター部材、花瓶部材、植木鉢用部材などが挙げられ、自動車部材として、例えば、バ
ンパー材、インパネ材などが挙げられ、包装材としては、例えば、食品用包装材、繊維用
包装材、雑貨用包装材などが挙げられる。さらに、その他の用途としては、例えば、モニ
ター用部材、オフィスオートメーション(OA)用機器部材、医療用部材、排水パン、ト
イレタリー部材、ボトル、コンテナー、除雪用品部材、各種建築用部材などが挙げられる
 (作用)
 本実施形態に係る膜の表面は、所定の水に対する接触角を有して撥水性を有するので、
乾雪条件(-3℃未満)での滑雪性に優れる上に、表面において樹脂の海領域S内に親水
性の粉体Cの島領域Iが好適な面積割合で分散しているため、湿雪条件(-3℃以上)で
の滑雪性にも優れる。島領域の面積割合が高くなりすぎると、親水性が強くなりすぎて乾
雪の滑雪性が低下する傾向がある。
以下、本発明について実施例及び比較例を用いて説明する。実施例及び比較例で使用した
熱可塑性樹脂A、重合体B、及び、粉体Cを下記に示す。
(1)熱可塑性樹脂A
(A-1)ポリメタクリル酸メチル
(商品名)スミペックス LG(住友化学製)
 MFR(230℃ 3.80kgf(37.3N)):10.0g/10分
(2)重合体B
(B-1)ポリフッ化ビニリデン
(商品名)クレハKFポリマー#1300(クレハ製)
 MFR(230℃ 2.16kg(21.2N):0.2g/10分
(B-1)ポリフッ化ビニリデン
(商品名)Solef 460S(ソルベイジャパン製)
 MFR(230℃ 2.16kg(21.2N):0.1g/10分
(3)粉体C
(C-1)SiO(シリカ)粉
(商品名)サンスフェア H-51(AGCエスアイテック製)
メディアン径D50:5.4μm
水分量:225350ppm
(C-2)SiO(シリカ)粉
(商品名)AEROSIL RY200S(AEROSIL製)
メディアン径D50:103.1μm
水分量:380ppm
(C-3)SiO(シリカ)粉
(商品名)サンスフェア H-31(AGCエスアイテック製)
メディアン径D50:3.0μm
水分量:493330ppm
(C-4)SiO(シリカ)粉
(商品名)サンスフェア H-121(AGCエスアイテック製)
メディアン径D50:12.0μm
水分量:468980ppm
 各熱可塑樹脂、各重合体、各成分、組成物の物性は下記に示した方法に従って測定した
(1)メルトマスフローレイト(MFR、単位:g/10分)
 JIS K7210-2014に規定された方法に従って測定した。測定温度は230
℃、荷重は2.16kgf又は3.80kgfとした。
(2)メディアン径D50(単位:μm)
 レーザー回折法により測定されるメディアン径D50は、以下の方法で求めた。ホモジ
ナイザを用いてエタノール中に分散させた試料を、マイクロトラック粒度分析計(日機装
株式会社製「MT-3300EXII」)を用いて、JIS R1629に従って測定し
、得られた粒度累積分布曲線から読みとった累積量50重量%の粒径値よりD50を求め
た。
(3)水分量(単位:ppm)
 まず、環境温度80℃、真空度0.08MPaの条件に設定した真空乾燥機で17時間
粉体Cを乾燥させた。つぎに、粉体Cを、環境温度50℃、環境湿度95%RHの条件に
設定した恒温恒湿機で24時間保持した。その後、加熱温度190℃、当該加熱温度での
保持時間10分の水分気化条件でカールフィッシャー水分計を用いて粉体Cの水分量を測
定した。
(4)接触角(単位:度)
 接触角は、協和界面科学社製DM-501を用いて、θ/2法にて、膜の水平静置表面
に対する純水の接触角を測定した。液滴量は2μLとした。
(5)SEM-EDS解析
 SEM-EDS解析は、膜の表面に4nmの厚みのオスミウムをコートし、オスミウム
がコートされた試料を、日本電子社製JSM-7900Fを用いて、加速電圧3.5kV
、観察倍率×1000にて、試料表面をEDS分析して測定した。観察領域は1.3mm
とした。
 得られた分析画像を、旭エンジニアリング社製画像解析ソフトA像君を用いて2値化し
、得られた2値化像から島部の面積割合を評価した。また、2値化像から、近接する島領
域の外周(エッジ部)間の最短距離をもとめ、算術平均値及び分散度を求めた。
(7)湿雪における滑雪性(mm/秒)
 150mm角としたエタノールで事前に脱脂しかつ、水平面となす角θ(図3参照)
が19度となるように傾斜して静置した膜の表面に、環境温度15℃で、中部コーポレー
ション社製キューブ氷用かき氷機HC-77Bを用いて、270gの人工雪を、205m
m位置の高さから15秒間降雪し、30mmの標線間を冠雪した人工雪が落下するのに要
する時間を計測した。
 湿雪における滑雪は、湿雪が冠雪する条件で発生する落雪現象であり、膜などの試験片
上で冠雪が落雪する速度が高いほど、湿雪における滑雪性に優れる。
(8)乾雪における滑雪性(度)
 150mm角としたエタノールで事前に脱脂し、かつ、水平面となす角θ(図3参照
)が0度となるように水平に静置した膜の表面に、環境温度-5℃で、中部コーポレーシ
ョン社製キューブ氷用かき氷機HC-77Bを用いて製造し、メッシュサイズ5.6mm
/1.66mmを通過する人工雪を250g降雪し、徐々に試験片の水平面となす角θを
0から90度まで変更し、落雪が開始された角θを角度計で計測した。
 乾雪における滑雪は、乾雪が冠雪する条件で発生する落雪現象であり、膜などの試験片
上の冠雪が落雪するのに必要な傾斜角度θ(図3参照)が低いほど、乾雪における滑雪に
優れる。
 なお、「滑雪せず」とは、「試験片の水平面となす角θを90度にしても雪が滑り落ち
ない状態」である。
(実施例α1)
 20質量部の熱可塑性樹脂(A-1)と、80質量部の重合体(B-1)と、3質量部
の粉体(C-1)と、を均一に混合し、内径15mmの二軸混練機(テクノベル社製KZ
W15-45MG、内径:15mm、L/D=45)にて設定温度:210℃、スクリュ
ー回転数500rpmで加熱溶融混練し、組成物を得た。前記組成物を、新藤金属工業所
圧縮成形機(P-37)を用い、温度210℃で5分間樹脂を予熱した後、温度210℃
・圧力10MPa・5分間の条件で加圧し、幅150mm、長さ150mm、厚み2mm
の形状に賦形された成形体としての膜を得た。得られた膜の湿雪における滑雪と乾雪にお
ける滑雪性を評価した。
(実施例α2)
 80質量部の重合体(B-1)に代えて、80質量部の重合体(B-2)と、3質量部
の粉体(C-1)に代えて、3質量部の粉体(C-3)を用いた以外は、実施例α1と同
様にした。
(実施例α3)
 80質量部の重合体(B-1)に代えて、80質量部の重合体(B-2)と、3質量部
の粉体(C-1)に代えて、3質量部の粉体(C-4)を用いた以外は、実施例α1と同
様にした。
(比較例α1)
 3質量部の粉体(C-1)に代えて、1質量部の粉体(C-2)を用いる以外は実施例
α1と同様にした。
(比較例α2)
 3質量部の粉体(C-1)に代えて、3質量部の粉体(C-2)を用いる以外は実施例
α1と同様にした。
(比較例α3)
 3質量部の粉体(C-1)に代えて、5質量部の粉体(C-2)を用いる以外は実施例
α1と同様にした。
(比較例α4)
 粉体Cを添加しない以外は実施例α1と同様にした。
(比較例α5)
 重合体Bを添加せず、100質量部の熱可塑性樹脂(A-1)と、5質量部の粉体(C
-1)を用いた以外は実施例α1と同様にした。
(比較例α6)
 熱可塑性樹脂Aを添加せず、100質量部の重合体(B-1)と、5質量部の粉体(C
-1)を用いた以外は実施例α1と同様にした。
 条件及び結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 所定の組成の組成物により、湿雪及び乾雪の両方において滑雪性に優れる成形体が得ら
れることが確認された。
(実施例β1)
 20質量部の熱可塑性樹脂(A-1)と、80質量部の重合体(B-1)と、3質量部
の粉体(C-1)を均一に混合し、内径15mmの二軸混練機(テクノベル社製KZW1
5-45MG、内径:15mm、L/D=45)にて設定温度:210℃、スクリュー回
転数500rpmで加熱溶融混練し、組成物を得た。前記組成物を、新藤金属工業所圧縮
成形機(P-37)を用い、温度210℃で5分間樹脂を予熱した後、温度210℃・圧
力10MPa・5分間の条件で加圧し、幅150mm、長さ150mm、厚み2mmの膜
の形状に賦形された成形体を得た。膜の表面の接触角は81.0度、粉体Cの親水性の島
領域の面積割合は2.3%、粉体C(親水領域)の水分量は225350ppmであった
。この成形体の表面における湿雪における滑雪と乾雪における滑雪を評価した。
(比較例β1)
 粉体Cの添加量を30質量部に増やした以外は実施例β1と同様とした。得られた成形
体の表面における接触角は83.8度、親水領域の面積割合は35%であった。
 条件及び結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006
 所定の表面構造を有する膜では、湿雪及び乾雪の両方において滑雪性に優れることが確
認された。
 10…膜、I…島領域,S…海領域、M…樹脂、C…粉体。

Claims (5)

  1.  熱可塑性樹脂Aと、重合体Bと、粉体Cと、を含む組成物であって、
     前記重合体Bは式(1)又は式(2)で表される構成単位を有し、
     下記の処理条件(a)で処理した粉体C中の水分量は、下記の測定条件(b)で測定す
    ると1000質量ppm~5000000質量ppmを満たし、
     前記樹脂Aと前記重合体Bとの合計100質量部に対して、前記樹脂Aの含有量は1~
    99質量部であり、前記重合体Bの含有量は1~99質量部であり、前記粉体Cの含有量
    は0.01~25質量部である、組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、アルコキシ基、又は
    、アルキル基から選択される。各アルキル基及び各アルコキシ基の内の少なくとも1つの
    水素原子は、独立にハロゲン原子で置換されていてもよい。
     処理条件(a):環境温度80℃、真空度0.08MPaの条件に設定した真空乾燥機
    で粉体Cを17時間乾燥させたのち、環境温度50℃、環境湿度95%RHの条件に設定
    した恒温恒湿機内に粉体Cを24時間保持する。
     測定条件(b):加熱温度190℃、保持時間10分の水分気化条件でカールフィッシ
    ャー水分計を用いて測定する。
  2.  レーザー回折法により測定される前記粉体Cのメディアン径D50が0.05~30μ
    mである、請求項1に記載の組成物。
  3.  前記粉体Cが、シリカ粉、または、シリコーン粉である、請求項1又は2に記載の組成
    物。
  4.  樹脂Mと、粉体Cとを含む膜であって、
     前記膜の水平表面に2μLの水滴を滴下して測定した接触角が50~90度であり、
     前記膜の表面は、前記樹脂Mの海領域、及び、前記粉体Cの島領域を有し、
     前記海領域及び前記島領域の合計面積に対し、前記島領域の面積の割合が0.01~3
    0%であり、
     下記の処理条件(a)で処理した粉体C中の水分量は、下記の測定条件(b)で測定す
    ると1000質量ppm~5000000質量ppmを満たす、膜。
     処理条件(a):環境温度80℃、真空度0.08MPaの条件に設定した真空乾燥機
    で粉体Cを17時間乾燥させたのち、環境温度50℃、環境湿度95%RHの条件に設定
    した恒温恒湿機内に粉体Cを24時間保持する。
     測定条件(b):加熱温度190℃、保持時間10分の水分気化条件でカールフィッシ
    ャー水分計を用いて測定する。
  5.  請求項4に記載の膜を外面の少なくとも一部に有する物品。
PCT/JP2022/042523 2021-11-30 2022-11-16 組成物及び膜 WO2023100654A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-194150 2021-11-30
JP2021194150 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100654A1 true WO2023100654A1 (ja) 2023-06-08

Family

ID=86612037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042523 WO2023100654A1 (ja) 2021-11-30 2022-11-16 組成物及び膜

Country Status (2)

Country Link
JP (1) JP2023081307A (ja)
WO (1) WO2023100654A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180035A (ja) * 2000-12-08 2002-06-26 Sekisui Jushi Co Ltd 滑雪氷性被覆物
JP2003253032A (ja) * 2002-02-28 2003-09-10 Idemitsu Petrochem Co Ltd 発泡用熱可塑性樹脂組成物及びその発泡体
JP2005132919A (ja) * 2003-10-29 2005-05-26 Daikin Ind Ltd 撥水性および滑水性に優れる表面処理用組成物
JP2014002410A (ja) * 2013-08-21 2014-01-09 Okura Ind Co Ltd 半導電性エンドレスベルト
WO2021039181A1 (ja) * 2019-08-27 2021-03-04 東レ株式会社 液晶ポリエステル樹脂組成物、積層体、液晶ポリエステル樹脂フィルムおよびその製造方法
WO2021221038A1 (ja) * 2020-04-30 2021-11-04 Agc株式会社 分散液の製造方法、ペーストおよび練粉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180035A (ja) * 2000-12-08 2002-06-26 Sekisui Jushi Co Ltd 滑雪氷性被覆物
JP2003253032A (ja) * 2002-02-28 2003-09-10 Idemitsu Petrochem Co Ltd 発泡用熱可塑性樹脂組成物及びその発泡体
JP2005132919A (ja) * 2003-10-29 2005-05-26 Daikin Ind Ltd 撥水性および滑水性に優れる表面処理用組成物
JP2014002410A (ja) * 2013-08-21 2014-01-09 Okura Ind Co Ltd 半導電性エンドレスベルト
WO2021039181A1 (ja) * 2019-08-27 2021-03-04 東レ株式会社 液晶ポリエステル樹脂組成物、積層体、液晶ポリエステル樹脂フィルムおよびその製造方法
WO2021221038A1 (ja) * 2020-04-30 2021-11-04 Agc株式会社 分散液の製造方法、ペーストおよび練粉

Also Published As

Publication number Publication date
JP2023081307A (ja) 2023-06-09

Similar Documents

Publication Publication Date Title
JP2023017015A (ja) 二軸配向ポリプロピレンフィルム
AU749491B2 (en) Methods for producing films having a layer containing a mixture of fluoropolymers and polyacrylates
JP6348383B2 (ja) 農業用フッ素含有多層フィルム、その製造方法及び農業用被覆資材
KR20110091853A (ko) 이산화탄소 유래 지방족 폴리카보네이트 복합체 및 그 제조방법
CN110049869B (zh) 具有改进的机械性能和高耐候性的挤出亚光箔
TW201702276A (zh) 用於彈性地板中不含pvc之磨損層之聚丙烯/無機粒子摻合物組合物
KR20090123910A (ko) 지방족 폴리에스테르계 수지 조성물, 지방족 폴리에스테르계 필름, 반사 필름 및 반사판
US20080206536A1 (en) Poly (Aryl Ether Sulfone) Material And Use Thereof
JP5892283B1 (ja) 熱可塑性樹脂組成物からなる成形体
JP2017226161A (ja) 積層フィルム
KR20120089264A (ko) 광전지 사용을 위한 임의의 아크릴 냄새가 없는 플루오르화 중합체 및 산화아연 필름
JP6948337B2 (ja) 樹脂組成物及びそれを用いた膜構造物
WO2023100654A1 (ja) 組成物及び膜
WO2023100653A1 (ja) 組成物及び膜
JP7079543B1 (ja) 積層シート及び食品包装容器
KR102398952B1 (ko) 폴리머 조성물 및 상 변화 물질로서의 이의 용도
JP4014993B2 (ja) ポリエチレン系多孔質フィルム
CN106795301A (zh) 乙烯-四氟乙烯共聚物片材及其制造方法
JP2017119741A (ja) 樹脂およびフィルム
JP5501867B2 (ja) 艶消しフィルム、これを用いた内装材及び艶消しフィルムの製造方法
JP5652831B2 (ja) ポリ乳酸微粒子の製造方法、ポリ乳酸微粒子、並びにこれを用いた結晶核剤、成形体、及び表面改質剤
WO2015060242A1 (ja) 脂環構造含有重合体からなる繊維、およびその製造方法
WO2023100655A1 (ja) 組成物及び膜
JP6804972B2 (ja) アンチブロッキング剤マスターバッチ、ポリプロピレン系樹脂組成物およびその製造方法、ならびにフィルムおよびその製造方法
JP2016176051A (ja) 熱可塑性樹脂組成物からなる成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901087

Country of ref document: EP

Kind code of ref document: A1