WO2023100304A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2023100304A1
WO2023100304A1 PCT/JP2021/044197 JP2021044197W WO2023100304A1 WO 2023100304 A1 WO2023100304 A1 WO 2023100304A1 JP 2021044197 W JP2021044197 W JP 2021044197W WO 2023100304 A1 WO2023100304 A1 WO 2023100304A1
Authority
WO
WIPO (PCT)
Prior art keywords
shrink
fixed
scroll
wall surface
fixed scroll
Prior art date
Application number
PCT/JP2021/044197
Other languages
English (en)
French (fr)
Inventor
雄太郎 岩本
文昭 安田
友寿 松井
浩平 達脇
浩二 増本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023564351A priority Critical patent/JPWO2023100304A1/ja
Priority to PCT/JP2021/044197 priority patent/WO2023100304A1/ja
Publication of WO2023100304A1 publication Critical patent/WO2023100304A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to a fixing structure for fixed scrolls in scroll compressors.
  • an orbiting scroll is supported by a frame fixed inside a shell, and a fixed scroll is provided facing the orbiting scroll.
  • a rotary shaft is attached to the orbiting scroll, and by rotating this rotary shaft, the orbiting scroll is caused to oscillate with respect to the fixed scroll, and the orbiting scroll and the fixed spiral of the orbiting scroll and the fixed scroll are formed.
  • Compress the refrigerant in a compression chamber formed by combining for example, Patent Document 1).
  • Patent Document 1 Although the deformation of the fixed scroll can be suppressed, if a slight deformation remains, the deformation will be convex on one side of the rotating shaft, or the deformation will be convex on the other side. or the deformation direction cannot be controlled. For this reason, in Patent Document 1, the tip clearance, which is the gap between the tip of each of the fixed spiral and the oscillating spiral, and the bottom of the opposing scroll, varies from time to time at the time of design. However, there is a problem that the tip clearance is enlarged or reduced from the ideal tip clearance, and the formation accuracy of the tip clearance cannot be improved.
  • the present disclosure has been made to solve the problems described above, and aims to provide a scroll compressor capable of improving the accuracy of forming the tip clearance.
  • a scroll compressor includes a frame that holds an orbiting scroll, a fixed scroll arranged to face the orbiting scroll, a rotary shaft that rotates the orbiting scroll, an orbiting scroll, a frame, and a fixed scroll. and a shell housing the rotating shaft, the shell having a first inner wall surface and a first projecting portion that projects from the first inner wall surface and positions the fixed scroll, the fixed scroll being connected to the fixed base plate.
  • a first shrink-fit portion and a second shrink-fit portion are separated from each other across a neutral axis that passes through the center of gravity of the fixed scroll and is perpendicular to the rotating shaft in the axial direction of the rotating shaft, and have a constant length in the axial direction. It has a fitting portion, and the fixed scroll is fixed to the first inner wall surface at two locations, a first shrink fitting portion and a second shrink fitting portion.
  • the scroll compressor of the present disclosure is fixed to the shell at two locations, a first shrink-fitting portion and a second shrink-fitting portion, which are separated from each other across the neutral shaft in the axial direction of the rotating shaft and have a constant axial length. It is With this configuration, the scroll compressor can control the deformation direction of the fixed scroll when the fixed scroll is shrink-fitted to the shell, and can improve the accuracy of formation of the tip clearance.
  • FIG. 1 is a schematic vertical cross-sectional view of a scroll compressor according to Embodiment 1.
  • FIG. 1 is an exploded perspective view of part of a scroll compressor according to Embodiment 1.
  • FIG. FIG. 2 is a vertical schematic partial cross-sectional view of the main shell, fixed scroll, and main frame of the scroll compressor according to Embodiment 1;
  • 4 is a diagram showing a state in which a fixed scroll is fixed to the main shell of the scroll compressor according to Embodiment 1;
  • FIG. FIG. 4 is an explanatory diagram of a tightening load acting on a first shrink-fit portion and a second shrink-fit portion during shrink-fitting of the fixed scroll of the scroll compressor according to Embodiment 1;
  • FIG. 4 is an explanatory diagram of a bending moment acting on a fixed scroll during shrink fitting of the fixed scroll of the scroll compressor according to Embodiment 1;
  • FIG. 4 is an explanatory diagram of the size relationship between the inner diameter of the main shell of the scroll compressor according to Embodiment 1 and the outer diameter of the shrink-fit portion of the fixed scroll;
  • FIG. 7 is a schematic longitudinal partial cross-sectional view of a main shell, a fixed scroll and a main frame of a scroll compressor according to Embodiment 2;
  • FIG. 9 is a schematic enlarged cross-sectional view of a portion where a fixed scroll of a modification of the scroll compressor according to Embodiment 2 is shrink-fitted to the main shell;
  • FIG. 8 is an explanatory diagram of the size relationship between the inner diameter of the main shell of the scroll compressor according to Embodiment 2 and the outer diameter of the shrink-fit portion of the fixed scroll.
  • FIG. 11 is a schematic enlarged cross-sectional view of a portion where a fixed scroll of a scroll compressor according to Embodiment 3 is shrink-fitted to a main shell;
  • FIG. 8 is a plan view of a fixed scroll of a scroll compressor according to Embodiment 3;
  • FIG. 10 is a plan view of Modification 1 of the fixed scroll of the scroll compressor according to Embodiment 3;
  • FIG. 11 is a plan view of Modification 2 of the fixed scroll of the scroll compressor according to Embodiment 3;
  • FIG. 1 is a schematic vertical cross-sectional view of a scroll compressor according to Embodiment 1.
  • FIG. 2 is an exploded perspective view of part of the scroll compressor according to Embodiment 1.
  • the scroll compressors shown in FIGS. 1 and 2 are so-called vertical scroll compressors that are used with the central axis of the rotating shaft substantially perpendicular to the ground.
  • the direction in which the rotating shaft extends is called the axial direction
  • the direction perpendicular to the axial direction is called the radial direction
  • the direction around the rotary shaft is called the circumferential direction.
  • the scroll compressor includes a shell 1 , a main frame 3 , a compression mechanism section 6 , a drive mechanism section 14 , a sub-frame 15 , a rotating shaft 10 , a bushing 9 and a power supply section 17 .
  • the scroll compressor is a so-called low-pressure shell type scroll compressor in which the inside of the shell 1 is filled with refrigerant before being compressed by the compression mechanism 6 .
  • the side (upper side) where the compression mechanism section 6 is provided is the one end side U
  • the side (lower side) where the drive mechanism section 14 is provided is the other end side L. explain.
  • the shell 1 is a tubular housing with both ends closed made of a conductive member such as metal, and includes a main shell 2 , an upper shell 16 and a lower shell 12 .
  • the main shell 2 has a cylindrical shape, and a suction pipe 18 is connected to its side wall by welding or the like.
  • the suction pipe 18 is a pipe that introduces refrigerant into the shell 1 and communicates with the internal space of the main shell 2 .
  • the upper shell 16 is a first shell having a substantially hemispherical shape, and a part of the side wall thereof is connected to the upper end portion of the main shell 2 by welding or the like to cover the upper opening of the main shell 2 .
  • a discharge pipe 19 is connected to the upper portion of the upper shell 16 by welding or the like.
  • the discharge pipe 19 is a pipe for discharging the refrigerant to the outside of the shell 1 and communicates with the internal space of the main shell 2 .
  • the lower shell 12 is a second shell having a substantially hemispherical shape, and a part of the side wall thereof is connected to the lower end of the main shell 2 by welding or the like to cover the opening on the lower side of the main shell 2 .
  • the main frame 3 is a hollow metal frame in which a cavity is formed, and is provided inside the shell 1 .
  • the main frame 3 includes a main body portion 3a, a main bearing portion 3b, and an oil return pipe 3c.
  • the body portion 3a is fixed to the inner wall surface of the main shell 2 on the one end side U, and a housing space 3d is formed in the center thereof along the longitudinal direction of the shell 1.
  • the accommodation space 3d is open at one end U and has a stepped shape that narrows toward the other end L.
  • An annular flat surface 3e is formed on one end side U of the body portion 3a so as to surround the accommodation space 3d.
  • a ring-shaped thrust plate 13 made of a steel plate material such as valve steel is arranged on the flat surface 3e.
  • the thrust plate 13 functions as a thrust bearing.
  • a suction port 3f is formed at a position that does not overlap the thrust plate 13 on the outer end side of the flat surface 3e of the main frame 3.
  • the suction port 3f is a space penetrating through the body portion 3a in the vertical direction, ie, the upper shell 16 side and the lower shell 12 side.
  • the number of suction ports 3f is not limited to one, and a plurality of suction ports may be formed.
  • An Oldham housing portion 3g is formed in a stepped portion on the other end side L of the main frame 3 relative to the flat surface 3e.
  • a first Oldham groove 3h is formed in the Oldham housing portion 3g.
  • the first Oldham's groove 3h is formed so that a part of the outer end side is cut away from the inner end side of the flat surface 3e. Therefore, when the main frame 3 is viewed from the one end side U, part of the first Oldham groove 3 h overlaps the thrust plate 13 .
  • a pair of first Oldham grooves 3h are formed in the Oldham housing portion 3g.
  • the pair of first Oldham grooves 3h are formed to face each other.
  • the main bearing portion 3b is formed continuously from the other end side L of the main body portion 3a, and a shaft hole 3i is formed therein.
  • the shaft hole 3i penetrates the main bearing portion 3b in the vertical direction, and one end side U of the shaft hole 3i communicates with the housing space 3d.
  • the oil return pipe 3c is a pipe for returning the lubricating oil accumulated in the housing space 3d to an oil reservoir inside the lower shell 12, and is inserted and fixed in an oil drain hole formed through the main frame 3 from inside to outside. .
  • Lubricating oil is, for example, refrigerating machine oil containing ester-based synthetic oil.
  • the lubricating oil is stored in the lower portion of the shell 1, that is, the lower shell 12, and is sucked up by an oil pump 7, which will be described later.
  • the sucked-up lubricating oil passes through the oil passage 20 in the rotary shaft 10, reduces wear between mechanically contacting parts such as the compression mechanism 6, adjusts the temperature of the sliding parts, and improves sealing performance.
  • As the lubricating oil an oil that has excellent lubricating properties, electrical insulation properties, stability, refrigerant solubility, low-temperature fluidity, etc., and an appropriate viscosity is suitable.
  • the compression mechanism section 6 is a compression mechanism that compresses the refrigerant.
  • the compression mechanism section 6 is a scroll compression mechanism including a fixed scroll 4 and an orbiting scroll 5 .
  • the fixed scroll 4 is made of metal such as cast iron, and includes a fixed base plate 4a and a fixed spiral body 4b, which is an involute-shaped projection formed so as to protrude from the fixed base plate 4a.
  • the fixed base plate 4a has a disc shape, and a discharge port 4g is formed through the center thereof in the vertical direction. The discharge port 4g penetrates the fixed base plate 4a from the fixed spiral body 4b side of the fixed scroll 4 to the opposite rear surface side.
  • the fixed spiral body 4b protrudes from the surface of the other end side L of the fixed base plate 4a to form a spiral wall, and its tip protrudes to the other end side L.
  • the fixed scroll 4 is fixed to the main shell 2 by shrink fitting.
  • the fixed scroll 4 is arranged to face the orbiting scroll 5 .
  • the scroll compressor has a so-called frame outer wall-less structure in which the fixed scroll 4 is fixed to the inner wall surface of the shell 1 .
  • a groove 4aa is formed along the entire circumference of the outer peripheral surface of the fixed base plate 4a.
  • the groove 4aa is formed extending in the circumferential direction on the outer peripheral surface of the fixed base plate 4a.
  • the groove 4aa is configured such that its axial position and axial opening length hc (see FIG. 4, which will be described later) are constant over the circumferential direction.
  • This groove 4aa forms an annular hollow space 4ab (see FIG. 1) between the outer peripheral surface of the fixed base plate 4a and the inner peripheral surface of the main shell 2, and divides the outer peripheral portion of the fixed scroll 4 in the axial direction.
  • the groove 4aa is formed on the outer peripheral surface of the fixed base plate 4a over the entire circumference, but it may be intermittently formed on the outer peripheral surface in the circumferential direction.
  • the shrink-fit portion is the outer peripheral portion of the fixed base plate 4a and extends in the circumferential direction.
  • the shrink-fitting portion positioned on the one end side U in the axial direction is referred to as a first shrink-fitting portion 4c
  • the shrink-fitting portion positioned on the other end side L in the axial direction is referred to as a second shrink-fitting portion 4d.
  • the first shrink-fit portion 4c and the second shrink-fit portion 4d are formed on both axial sides of the hollow space 4ab.
  • the axial length h1 (see FIG. 4 described later) of the first shrink-fit portion 4c is constant in the circumferential direction
  • the axial length h2 (see FIG. 4 described later) of the second shrink-fit portion 4d is constant.
  • the fixed scroll 4 is fixed to the main shell 2 by shrink fitting at two locations in the axial direction, that is, at a first shrink fitting portion 4c and a second shrink fitting portion 4d.
  • the fixed base plate 4a of the fixed scroll 4 has a plate-like first portion 40 that is perpendicular to the axial direction and has a first shrink-fit portion 4c, and a plate-like plate that is perpendicular to the axial direction and has a second shrink-fit portion 4d. and a plate-like intermediate portion 42 between the first portion 40 and the second portion 41 .
  • the fixed base plate 4a has a configuration in which a first portion 40, an intermediate portion 42, and a second portion 41 are arranged in this order in the axial direction and integrated.
  • the orbiting scroll 5 is made of metal such as aluminum, and includes an orbiting bed plate 5a, an orbiting spiral body 5b, which is an involute-shaped projection formed by protruding from the orbiting bed plate 5a, a tubular portion 5c, It has The orbiting scroll 5 is arranged in a coolant intake space 21 between the fixed scroll 4 and the main frame 3 .
  • the rocking plate 5a is a surface connecting one surface on which the fixed spiral body 4b is formed, the other surface opposite to the one surface, and the one surface and the other surface. and a side surface 5f located on the outermost side of the direction. At least part of the outer peripheral region of the other surface is a sliding surface 5 e that slides against the thrust plate 13 .
  • the rocking base plate 5a is supported by the main frame 3 so that the sliding surface 5e can slide on the thrust plate 13.
  • the oscillating spiral body 5b protrudes from one surface of the oscillating base plate 5a to form a spiral wall, and its tip protrudes to the one end side U.
  • a sealing member (not shown) is provided at the tip of the fixed spiral body 4b of the fixed scroll 4 and the tip of the orbiting spiral body 5b of the orbiting scroll 5 to suppress refrigerant leakage. ing.
  • the tubular portion 5c is a cylindrical boss formed to protrude from the approximate center of the other surface of the rocking base plate 5a toward the other end side L.
  • a rocking bearing for rotatably supporting a slider 9a (to be described later), a so-called journal bearing, is provided on the inner peripheral surface of the cylindrical portion 5c such that its central axis is parallel to the central axis of the rotary shaft 10.
  • a second Oldham groove 5d is formed on the other surface of the rocking plate 5a.
  • the second Oldham groove 5d is an oblong groove.
  • a pair of second Oldham grooves 5d are formed on the other surface of the rocking plate 5a.
  • a line connecting the pair of second Oldham grooves 5d is provided so as to be orthogonal to a line connecting the pair of first Oldham grooves 3h.
  • the Oldham ring 8 is provided in the Oldham housing portion 3g of the main frame 3.
  • the Oldham ring 8 includes a ring portion 8a, a first key portion 8b, and a second key portion 8c.
  • a pair of first key portions 8b are formed on the surface of the other end side L of the ring portion 8a.
  • the pair of first key portions 8b are formed so as to face each other and are housed in the pair of first Oldham grooves 3h of the main frame 3 .
  • a pair of the second key portions 8c are formed on the surface of the ring portion 8a on the one end side U.
  • the pair of second key portions 8c are formed to face each other and are housed in the pair of second Oldham grooves 5d of the orbiting scroll 5. As shown in FIG.
  • a compression chamber 4h is formed by meshing the fixed spiral body 4b of the fixed scroll 4 and the oscillating spiral body 5b of the oscillating scroll 5 with each other. Since the volume of the compression chamber 4h decreases from the outside to the inside in the radial direction, the refrigerant is taken in from the outer end of the spiral body and is gradually compressed by moving the refrigerant toward the center.
  • the compression chamber 4h communicates with the discharge port 4g at the central portion of the fixed scroll 4.
  • a discharge valve 11 is provided on the surface of the fixed scroll 4 on the one end side U to open and close the discharge port 4g in a predetermined manner to prevent backflow of the refrigerant.
  • the refrigerant compressed in the compression chamber 4h is discharged through the discharge port 4g and the discharge valve 11 into the discharge space 16a within the upper shell 16. As shown in FIG.
  • the discharge space 16a becomes a high-pressure space due to the refrigerant discharged from the discharge port 4g.
  • the refrigerant consists, for example, of a halogenated hydrocarbon having carbon double bonds, a halogenated hydrocarbon having no carbon double bonds, a hydrocarbon, or a mixture containing them in its composition.
  • Halogenated hydrocarbons having carbon double bonds are HFC refrigerants or Freon-based low GWP refrigerants with zero ozone depletion potential.
  • Halogenated hydrocarbons having a carbon double bond are exemplified by tetrafluoropropenes such as HFO1234yf, HFO1234ze, and HFO1243zf represented by the chemical formula of C 3 H 2 F 4 .
  • Halogenated hydrocarbons having no carbon double bond are exemplified by refrigerants mixed with R32 (difluoromethane) represented by CH 2 F 2 , R41 and the like.
  • Hydrocarbons are exemplified by natural refrigerants such as propane or propylene.
  • the mixture is exemplified by a mixed refrigerant in which R32 or R41 is mixed with HFO1234yf, HFO1234ze and HFO1243zf.
  • the drive mechanism part 14 is provided on the other end side L of the main frame 3 inside the shell 1 .
  • the drive mechanism portion 14 includes a stator 14a and a rotor 14b.
  • the stator 14a is, for example, a stator formed by winding a winding through an insulating layer around an iron core formed by laminating a plurality of electromagnetic steel sheets, and is formed in a ring shape.
  • the stator 14a is fixedly supported inside the main shell 2 by shrink fitting or the like.
  • the rotor 14b is a cylindrical rotor having a permanent magnet built in an iron core formed by laminating a plurality of electromagnetic steel sheets and having a through hole penetrating vertically in the center.
  • the rotor 14b is arranged in the internal space of the stator 14a.
  • the rotor 14b is arranged with its outer peripheral surface maintaining a predetermined gap from the inner peripheral surface of the stator 14a.
  • the sub-frame 15 is a metal frame, and is provided on the other end side L of the drive mechanism section 14 inside the shell 1 .
  • the subframe 15 is fixedly supported on the inner peripheral surface of the other end side L of the main shell 2 by shrink fitting, welding, or the like.
  • the sub-frame 15 is provided with a sub-bearing portion 15 a and an oil pump 7 .
  • the sub-bearing portion 15a is a ball bearing provided on the upper side of the central portion of the sub-frame 15, and has a vertically penetrating hole in the center.
  • the oil pump 7 is provided below the central portion of the sub-frame 15 and is arranged so that at least a portion of the oil pump 7 is immersed in the lubricating oil stored in the oil sump of the shell 1 .
  • the rotating shaft 10 is an elongated metal rod-shaped member and is provided inside the shell 1 .
  • the rotary shaft 10 includes a main shaft portion 10a and an eccentric shaft portion 10b.
  • the main shaft portion 10 a is a shaft that constitutes the main portion of the rotating shaft 10 and is arranged so that its central axis coincides with the central axis of the main shell 2 .
  • a rotor 14b is in contact with and fixed to the outer surface of the main shaft portion 10a.
  • the eccentric shaft portion 10b is provided on one end side U of the main shaft portion 10a so that its central axis is eccentric with respect to the central axis of the main shaft portion 10a.
  • a first balancer 10c is provided on one end side U of the main shaft portion 10a of the rotary shaft 10, and a second balancer 10d is provided on the other end side of the main shaft portion 10a.
  • the first balancer 10c and the second balancer 10d are provided to offset imbalance caused by the swinging of the swinging scroll 5.
  • the rotating shaft 10 is provided with an oil passage 20 that penetrates in the axial direction inside the main shaft portion 10a and the eccentric shaft portion 10b.
  • the bushing 9 is made of metal such as iron, and is a connection member that connects the orbiting scroll 5 and the rotating shaft 10 .
  • the bush 9 is composed of two parts, a slider 9a and a balance weight 9b.
  • the slider 9 a is a tubular member with a flange formed on the other end L, and is fitted in an annular gap between the eccentric shaft portion 10 b and the tubular portion 5 c of the fixed scroll 4 .
  • the balance weight 9b is a donut-shaped member provided with a weight portion 9c having a substantially C-shape when viewed from one end side U, and is offset with respect to the center of rotation in order to offset the centrifugal force of the orbiting scroll 5. It is set with care.
  • the balance weight 9b is fixed to the flange of the slider 9a by shrink fitting or the like.
  • the power supply portion 17 is a power supply member that supplies power to the scroll compressor, and is fixed to the outer peripheral surface of the main shell 2 of the shell 1 .
  • the power supply unit 17 includes a cover 17a, power supply terminals 17b, and wiring 17c.
  • the cover 17 a is a cylindrical cover member having a bottom on the side fixed to the main shell 2 .
  • the power supply terminal 17 b is made of a metal member, one of which is provided inside the cover 17 a and the other of which is provided inside the shell 1 .
  • One end of the wiring 17c is connected to the power supply terminal 17b, and the other end is connected to the stator 14a.
  • FIG. 3 the relationship between the main shell 2 and the compression mechanism section 6 will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a vertical schematic partial cross-sectional view of the main shell, fixed scroll and main frame of the scroll compressor according to Embodiment 1.
  • FIG. 4 is a diagram showing a state in which a fixed scroll is fixed to the main shell of the scroll compressor according to Embodiment 1.
  • the main shell 2 includes a first inner wall surface 2a, a first protrusion 2b that protrudes from the first inner wall surface 2a and positions the fixed scroll 4, and a U and a first positioning surface 2c facing toward.
  • the main shell 2 further includes a second inner wall surface 2d of the first protruding portion 2b, a second protruding portion 2e protruding from the second inner wall surface 2d for positioning the main frame 3, and a U and a second positioning surface 2f facing toward.
  • the fixed scroll 4 is shrink-fitted and fixed to the first inner wall surface 2a while being positioned by the first positioning surface 2c.
  • the main shell 2 is shrink-fitted and fixed to the second inner wall surface 2d while being positioned by the second positioning surface 2f.
  • a recess 2g which is a so-called recess, is formed on the first positioning surface 2c.
  • the role of the recess 2g is as follows. During cutting for forming the first protruding portion 2b in the main shell 2, the connecting portion between the first inner wall surface 2a and the first positioning surface 2c tends to be a curved surface instead of a right angle. If the portion has a curved surface, even if the fixed scroll 4 is arranged on the first projecting portion 2b, it floats without coming into contact with the first positioning surface 2c, resulting in low positioning accuracy. On the other hand, if the recess 2g is formed in the first positioning surface 2c, the fixed scroll 4 can reliably contact the first positioning surface 2c and the positioning accuracy can be improved.
  • the recess 2h formed in the second positioning surface 2f is also a so-called recess that has the same function as the recess 2g.
  • the main shell 2 can reliably contact the second positioning surface 2f and the positioning accuracy can be improved.
  • the fixed scroll 4 is shrink-fitted and fixed to the first inner wall surface 2a at two locations in the axial direction, that is, at a first shrink-fitting portion 4c and a second shrink-fitting portion 4d.
  • the first shrink-fit portion 4 c and the second shrink-fit portion 4 d are provided across the neutral shaft 30 in the axial direction of the rotating shaft 10 .
  • the neutral axis 30 is an axis passing through the center of gravity 4 e of the fixed scroll 4 and orthogonal to the rotating shaft 10 .
  • a center of gravity 4e is the center of gravity of the entire fixed scroll.
  • the first shrink-fit portion 4c and the second shrink-fit portion 4d sandwich the neutral shaft 30 in the axial direction of the rotating shaft 10 by forming the groove 4aa at a position including the neutral shaft 30 in the axial direction of the rotating shaft 10. are spaced apart from each other.
  • the radial length ra of the groove 4aa that forms the hollow space 4ab is not particularly limited as long as the required wall thickness rb that can withstand the high pressure acting on the discharge port 4g can be secured.
  • the required wall thickness rb is the thickness between the discharge port 4g and the groove 4aa in the radial direction.
  • the radial length ra of the groove 4aa for example, the groove 4aa is extended radially inward to the position indicated by the dotted line in FIG. The length ra may be increased up to the position.
  • FIG. 5 is an explanatory diagram of the tightening load acting on the first shrink-fitting portion and the second shrink-fitting portion when the fixed scroll of the scroll compressor according to Embodiment 1 is shrink-fitted.
  • a load acts. This load is a tightening load acting radially inward from the main shell 2 .
  • the axial center line of the tightening load received by the first shrink-fitting portion 4c (hereinafter referred to as the first load line) 31 and the axial center line of the tightening load received by the second shrink-fitting portion 4d (hereinafter referred to as Each of the second load lines 32 does not intersect the neutral axis 30 of the fixed scroll 4 .
  • the direction of the clamping load received by each of the first shrink-fit portion 4c and the second shrink-fit portion 4d is parallel to the neutral axis 30 and perpendicular to the rotating shaft 10.
  • the axial length h1 of the first shrink-fit portion 4c is constant over the circumferential direction
  • the axial length h2 of the second shrink-fit portion 4d is constant over the circumferential direction.
  • FIG. 6 is an explanatory diagram of the bending moment acting on the fixed scroll during shrink fitting of the fixed scroll of the scroll compressor according to Embodiment 1.
  • FIG. As described above, the fixed scroll 4 is fixed at two points in the axial direction on the outer peripheral surface of the fixed base plate 4a. 30 are provided. Axial lengths h1 and h2 of the first shrink-fit portion 4c and the second shrink-fit portion 4d are constant. In other words, the axial lengths h1 and h2 of the first shrink-fit portion 4c and the second shrink-fit portion 4d are constant in the circumferential direction, that is, do not change in the circumferential direction. Note that h1 and h2 may be the same or different.
  • the scroll compressor controls the direction of deformation of the first portion 40 and the second portion 41 of the fixed scroll 4 at the time of shrink fitting to intentionally cause deformation in the opposite direction, as described below. , it is possible to improve the accuracy of the tip clearance.
  • the tooth tip clearance is a clearance between the tooth tip of the fixed spiral body 4b and the tooth bottom of the orbiting scroll 5, which is the opposing scroll.
  • the tooth tip clearance is also a clearance between the tooth tip of the orbiting spiral body 5b and the tooth bottom of the fixed scroll 4, which is the opposite scroll.
  • the first portion 40 including the first shrink-fit portion 4c a tightening load is applied to one end side U of the neutral shaft 30 during shrink-fitting, so that a convex bending moment is generated on the other end side L as indicated by a dotted line 50. works. As a result, the first portion 40 tries to deform convexly toward the other end side L.
  • the second portion 41 including the second shrink-fit portion 4 d is bent convexly on the one end side U as indicated by the dotted line 51 by applying a tightening load to the other end side L of the neutral shaft 30 during shrink-fitting. Moments act. As a result, the second portion 41 tries to deform to be convex toward the one end side U. As shown in FIG.
  • the scroll compressor having the above configuration can suppress deformation of the fixed scroll 4 compared to a configuration in which the fixed scroll 4 is shrink-fitted at one location using the entire outer peripheral surface of the fixed scroll 4 .
  • the above configuration since the first load line 31 and the second load line 32 are parallel to the neutral axis 30, the surface including the neutral axis 30 is not subjected to a tightening load due to shrink fitting. Therefore, the above configuration does not cause a phenomenon in which it is not known whether the one end side U is convex or the other end side L is convex.
  • the grooves 4aa are intermittently formed on the outer peripheral surface of the fixed base plate 4a, the portions between adjacent grooves 4aa are fixed to the first inner wall surface 2a of the main shell 2 by shrink fitting. become.
  • the groove 4aa is arranged circumferentially on the outer peripheral surface of the fixed base plate 4a to the extent that the deformation direction is not known. is formed intermittently.
  • the tip clearance cannot be configured to be the ideal tip clearance at the time of design.
  • the scroll compressor is configured so that it is not possible to know whether the fixed scroll 4 will be deformed to be convex on the one end side U or convex on the other end side L.
  • the direction is controlled so that deformations occur in opposite directions.
  • the scroll compressor can be configured to have an ideal tooth tip clearance at the time of design.
  • deformation caused by shrink fitting of the fixed scroll 4 can be suppressed, so that the ideal spiral shape of the fixed scroll 4 can be suppressed from collapsing, and reduction in compression efficiency can be suppressed.
  • the position of the center of gravity G is affected by the size of the spiral, the configuration of the bed plate, the shape of the back side of the spiral, and so on. Therefore, in the scroll compressor of Embodiment 1, these parameters that affect the center of gravity G are adjusted so that the center of gravity G of the fixed scroll 4 is positioned within the fixed base plate 4a.
  • the position of the center of gravity G can be adjusted as follows. - A thickened portion of the fixed base plate 4a is formed on the discharge side surface of the fixed base plate 4a. This raises the position of the center of gravity G. It is desirable that the thickness of the thickening portion is equal to or greater than the length h1 of the first shrink-fitting portion 4c and the length h2 of the second shrink-fitting portion 4d. - The thickness of the entire fixed base plate 4a is increased. This raises the position of the center of gravity G. - The radial length ra of the groove 4aa and the required wall thickness rb satisfy ra ⁇ rb.
  • ra be a length such that the hollow space 4ab does not overlap the fixed spiral body 4b of the fixed scroll 4 when viewed in the axial direction.
  • the position of the center of gravity G is positioned within the fixed base plate 4a, and the neutral axis 30 passing through the center of gravity G is positioned between the first shrink-fit portion 4c and the second shrink-fit portion 4c. It has a structure in which it is sandwiched by the shrink-fit portion 4d.
  • the scroll compressor of Embodiment 1 can control the deformation direction of the fixed scroll 4 when the fixed scroll 4 is shrink-fitted to the shell 1, and can improve the accuracy of formation of the tip clearance.
  • the center of gravity G may deviate from the center of the thickness of the fixed base plate 4a and be located on the spiral side or the discharge side. If the center of gravity G deviates from the center of the thickness of the fixed base plate 4a, it becomes difficult to balance the magnitudes of vectors in the direction of distortion shown in FIG.
  • the magnitude of the vector is determined by the moment of (the distance between the center of the load due to shrink fitting and the neutral axis) ⁇ (the magnitude of the load due to shrink fitting).
  • the axial length h1 of the first shrink-fitted portion 4c ⁇ the axial length of the second shrink-fitted portion 4d is desirable to perform vector adjustment, such as by setting h2.
  • FIG. 7 is an explanatory diagram of the size relationship between the inner diameter of the main shell of the scroll compressor according to Embodiment 1 and the outer diameter of the shrink-fit portion of the fixed scroll. Note that FIG. 7 is a diagram for explaining the position of each dimension of r1 to r4, and does not accurately show the shape and size.
  • r1 is the inner diameter of the first inner wall surface 2a
  • r2 is the inner diameter of the second inner wall surface 2d
  • r3 is the outer diameter of the first portion 40 of the fixed base plate 4a
  • r4 is the outer diameter of the second portion 41 of the fixed base plate 4a.
  • r1 to r4 are designed in consideration of this size relationship, the strength of the fixed scroll 4, the retaining force of shrink fitting, and interference with other parts.
  • the orbiting scroll 5 oscillates, the refrigerant sucked into the shell 1 from the suction pipe 18 passes through the suction port 3 f of the main frame 3 and reaches the refrigerant intake space 21 . It is taken into a compression chamber 4h formed with the moving scroll 5.
  • the orbiting scroll 5 eccentrically revolves, the refrigerant moves from the outer peripheral portion toward the center and is compressed while its volume is reduced.
  • the orbiting scroll 5 moves in the radial direction together with the bushing 9 due to its own centrifugal force, and the side walls of the fixed spiral body 4b and the orbiting spiral body 5b come into close contact with each other.
  • the compressed refrigerant is discharged from the discharge port 4g of the fixed scroll 4 and discharged to the outside of the shell 1 against the discharge valve 11. As shown in FIG.
  • the steps from the cutting step of forming the first protruding portion 2b on the inner wall surface of the main shell 2 to the step of inserting the fixed scroll 4 are similar to those of a conventional scroll compressor with a frame-outer wall-less structure (for example, International Publication No. 2018/078787). No.). In this specification, the insertion of the fixed scroll 4 into the main shell 2 will be described.
  • the fixed scroll 4 is in surface contact with the first positioning surface 2c of the first projecting portion 2b, and is positioned in the axial direction. Since the recess 2g is formed in the first positioning surface 2c of the main shell 2, the fixed scroll 4 is reliably brought into contact with the first positioning surface 2c, thereby achieving highly accurate positioning.
  • the fixed scroll 4 is shrink-fitted to the main shell 2 while being positioned on the first positioning surface 2c. That is, the main shell 2 is heated and expanded, and the fixed scroll 4 is inserted into the main shell 2 .
  • the fixed scroll 4 having outer diameters r3 and r4 larger than the inner diameter r1 of the main shell 2 can be inserted into the main shell 2 .
  • the scroll compressor can prevent the spiral shape of the fixed scroll 4 from collapsing, can configure the tooth tip clearance to be an ideal tooth tip clearance at the time of design, and can maintain the compression efficiency.
  • the main frame 3 is also shrink-fitted to the main shell 2 at the same time that the fixed scroll 4 is shrink-fitted to the main shell 2 .
  • the main frame 3 is fixed to the second inner wall surface 2d by shrink fitting or the like in a state in which the positioning accuracy is enhanced by the recess 2h in the second positioning surface 2f of the main shell 2. As shown in FIG.
  • the method of fixing the main frame 3 to the main shell 2 is not limited to shrink fitting, and other fixing methods may be used.
  • the main shell 2 and the upper shell 16 are fixed to the main shell 2 by welding or arc spot welding.
  • the scroll compressor has a frame outer wall-less structure, thereby ensuring a large refrigerant intake space 21, while allowing the deformation directions of the first portion 40 and the second portion 41 of the fixed base plate 4a to be controlled.
  • the deformation of the fixed scroll 4 can be suppressed.
  • the fixed scroll 4 can be fixed to the main shell 2 while maintaining the ideal tooth tip clearance by the manufacturing method described above, and a scroll compressor with little performance loss can be constructed.
  • the scroll compressor of Embodiment 1 includes the main frame 3 that holds the orbiting scroll 5, the fixed scroll 4 that faces the orbiting scroll 5, and the orbiting scroll 5 that rotates. and a shell 1 housing them.
  • the shell 1 has a first inner wall surface 2a and a first protrusion 2b that protrudes from the first inner wall surface 2a and positions the fixed scroll 4.
  • the fixed scroll 4 has a fixed base plate 4a and a fixed spiral body 4b formed so as to protrude from the fixed base plate 4a. It is fixed to the first inner wall surface 2a by shrink fitting.
  • the shrink-fitting portions are spaced apart from each other in the axial direction of the rotating shaft 10 across a neutral axis 30 that passes through the center of gravity 4e of the fixed scroll 4 and is perpendicular to the rotating shaft. It has a shrink-fit portion 4c and a second shrink-fit portion 4d.
  • the fixed scroll 4 is fixed to the first inner wall surface 2a at two points, a first shrink-fit portion 4c and a second shrink-fit portion 4d.
  • the scroll compressor can control the deformation direction of the fixed scroll 4 when the fixed scroll 4 is shrink-fitted to the shell 1, and can improve the accuracy of forming the tip clearance.
  • the shrink fitting allowance is small, the shrink fitting holding force is also small, and when the pressure in the compression chamber 4h becomes larger than the pressure in the discharge space 16a, the fixed scroll 4 is lifted, and the compressor malfunctions. cause. Also, if the shrink-fitting allowance is too large, the fixed scroll 4 will be deformed and distorted by the stress of tightening from the shell 1 during shrink-fitting, and the involute shape of the fixed spiral body 4b will collapse, reducing the efficiency of compression.
  • the scroll compressor of the first embodiment even if the shrink-fitting allowance of the fixed scroll 4 is increased, stress is generated that causes the first portion 40 and the second portion 41 to be displaced in opposite directions. and cancel each other, deformation of the fixed scroll 4 can be suppressed. Therefore, the scroll compressor of Embodiment 1 can improve the shrink-fit holding force while suppressing deformation of the fixed scroll 4 and suppressing a decrease in compression efficiency.
  • a groove 4aa extending in the circumferential direction is formed in the outer peripheral surface of the fixed scroll 4, and a hollow space 4ab is formed between the outer peripheral surface of the fixed scroll 4 and the first inner wall surface 2a of the shell 1.
  • a first shrink-fit portion 4c and a second shrink-fit portion 4d are formed on both axial sides of the hollow space 4ab.
  • the groove 4aa extending in the circumferential direction is formed in the outer peripheral surface of the fixed scroll 4 as in the above configuration, the first shrink-fit portion 4c and the second shrink-fit portion 4c and the second shrink-fit portion 4c are spaced apart in the axial direction of the outer peripheral portion of the fixed scroll 4 from each other.
  • a fitting portion 4d is formed.
  • the hollow space 4ab overlaps the fixed spiral body 4b of the fixed scroll 4 when viewed in the axial direction.
  • the scroll compressor can reduce the weight of the fixed scroll 4 and the raw material. can be achieved.
  • the fixed base plate 4a of the fixed scroll 4 has a plate-shaped first portion 40 orthogonal to the axial direction and having a first shrink-fit portion 4c, and a plate-shaped second shrink-fit portion 4d orthogonal to the axial direction.
  • the outer diameter of the first portion 40 is the same as the outer diameter of the second portion 41 .
  • the fixed scroll 4 and the first inner wall surface 2a of the shell 1 can be easily manufactured.
  • the shell 1 further has a second inner wall surface 2d and a second protrusion 2e that protrudes from the second inner wall surface 2d and positions the main frame 3.
  • the main frame 3 is attached to the second protrusion 2e. It is fixed to the second inner wall surface 2d in a positioned state.
  • the fixed scroll 4 and the main frame 3 can be fixed to the shell 1 by the same method in a series of manufacturing processes, and manufacturing can be facilitated.
  • Embodiment 2 differs from the first embodiment in the shape of the fixed base plate 4a of the fixed scroll 4 and the shape of the first inner wall surface 2a of the main shell 2. As shown in FIG. Other configurations are the same as or equivalent to those of the first embodiment.
  • the second embodiment will be described with a focus on the configuration different from the first embodiment, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 8 is a vertical schematic partial cross-sectional view of the main shell, fixed scroll and main frame of the scroll compressor according to Embodiment 2.
  • the fixed scroll 4 has the same outer diameter r3 of the first portion 40 and the outer diameter r4 of the second portion 41 as shown in FIG.
  • the outer diameter r3 of the first portion 40 is larger than the outer diameter r4 of the second portion 41 .
  • the outer diameter r4 of the second portion 41 is smaller than the outer diameter r3 of the first portion 40 .
  • the first protruding portion 2b is formed on the one end side U in the gap between the outer peripheral surface of the second portion 41 formed by the small outer diameter r4 of the second portion 41 and the first inner wall surface 2a. It has an extended structure.
  • the tip surface of the extended portion constitutes the first positioning surface 2c, and the inner wall surface of the extended portion constitutes a part of the first inner wall surface 2a. That is, the first inner wall surface 2a is formed in a stepped shape.
  • the surface of the first inner wall surface 2a on the one end side U of the first positioning surface 2c is referred to as a first partial inner wall surface 2aa
  • the surface on the other end side L of the first inner wall surface 2a is referred to as a second partial inner wall surface 2ab.
  • the dotted lines inside the main shell 2 indicate the positions of the first inner wall surface 2a and the first positioning surface 2c before the first projecting portion 2b is extended, for reference.
  • the fixed scroll 4 is positioned with the surface of the first portion 40 on the other end side L coming into contact with the first positioning surface 2c.
  • the fixed scroll 4 has a first shrink-fit portion 4c and a second shrink-fit portion 4d, and the first shrink-fit portion 4c on the side away from the fixed spiral body 4b in the axial direction is the step of the first inner wall surface 2a. positioned against the part.
  • the fixed scroll 4 is fixed to the stepped first inner wall surface 2a by shrink fitting. Specifically, the first shrink-fit portion 4c is fixed to the first portion inner wall surface 2aa, and the second shrink-fit portion 4d is fixed to the second portion inner wall surface 2ab.
  • the fixed scroll 4 is positioned in contact with the first positioning surface 2c of the main shell 2 and fixed to the first inner wall surface 2a by shrink fitting. Also in the second embodiment, the same effect as in the first embodiment can be obtained.
  • FIG. 9 is a schematic enlarged cross-sectional view of a portion where a fixed scroll of a modified example of the scroll compressor according to Embodiment 2 is shrink-fitted to the main shell.
  • the second inner wall surface 2ab is flush with the second inner wall surface 2d. It is positioned between the inner wall surface 2a and the second inner wall surface 2d.
  • the first positioning surface 2c is divided into a first partial positioning surface 2ca on the first partial inner wall surface 2aa side and a second partial positioning surface 2cb on the second partial inner wall surface 2ab side.
  • a recess 2ga for improving positioning accuracy is formed in the first partial positioning surface 2ca
  • a recess 2gb for improving positioning accuracy is formed in the second partial positioning surface 2cb.
  • the surface of the other end side L of the first shrink-fitting portion 4c of the fixed scroll 4 contacts the first partial positioning surface 2ca, which is the stepped portion of the first inner wall surface 2a, and the other end side of the second shrink-fitting portion 4d contacts the first partial positioning surface 2ca.
  • the L surface is positioned in contact with the second partial positioning surface 2cb.
  • the first shrink-fit portion 4c is shrink-fitted to the first inner wall surface 2aa
  • the second shrink-fit portion 4d is shrink-fitted to the second inner wall surface 2ab.
  • the scroll compressor of the modified example is fixed to the main shell 2 in the same manner as in the first embodiment, although the shape of the inner wall surface of the main shell 2 is different from that in the first embodiment.
  • the fixed scroll 4 is positioned on the first positioning surface 2c, and the first shrink-fit portion 4c and the second shrink-fit portion 4d are shrink-fitted to the first inner wall surface 2a. is fixed to the main shell 2 by
  • FIG. 10 is an explanatory diagram of the size relationship between the inner diameter of the main shell of the scroll compressor according to Embodiment 2 and the outer diameter of the shrink-fit portion of the fixed scroll.
  • FIG. 10 is a diagram for explaining the position of each dimension of r1 to r5, and does not show the shape and size accurately.
  • r1 is the inner diameter of the first partial inner wall surface 2aa of the first inner wall surface 2a
  • r2 is the inner diameter of the second inner wall surface 2d.
  • r3 is the outer diameter of the first portion 40 of the fixed base plate 4a
  • r4 is the outer diameter of the second portion 41 of the fixed base plate 4a.
  • r5 is the inner diameter of the second inner wall surface 2ab of the first inner wall surface 2a.
  • r3>r1 ⁇ r5 and r4>r5 ⁇ r2 are established.
  • r1 to r5 are designed in consideration of this size relationship, the strength of the fixed scroll 4, the retaining force of shrink fitting, and interference with other parts.
  • the fixed base plate 4a of the fixed scroll 4 has the outer diameter of the first portion 40 larger than the outer diameter of the second portion 41 .
  • the surface of the fixed scroll 4 on the one end side U can be used more widely than when the outer diameter of the first portion 40 is smaller than the outer diameter of the second portion 41 .
  • the discharge valve 11 is provided on the surface of the fixed scroll 4 on the one end side U, it is also conceivable to provide a component such as a muffler for reducing the opening/closing sound of the discharge valve 11 . Therefore, the surface on the one end side U of the fixed scroll 4 can be widely used, and the degree of freedom of the components can be increased.
  • Embodiment 3 relates to a technique for improving the shrink-fitting holding force of the fixed scroll 4 with respect to the main shell 2 .
  • the following description will focus on the configuration of the third embodiment that differs from the first and second embodiments, and the configurations not described in the third embodiment are the same as those of the first and second embodiments. be.
  • FIG. 11 is a schematic enlarged cross-sectional view of a portion where the fixed scroll of the scroll compressor according to Embodiment 3 is shrink-fitted to the main shell.
  • 12 is a plan view of a fixed scroll of a scroll compressor according to Embodiment 3.
  • FIG. 13 is a plan view of Modification 1 of the fixed scroll of the scroll compressor according to Embodiment 3.
  • FIG. 14 is a plan view of Modification 2 of the fixed scroll of the scroll compressor according to Embodiment 3.
  • the scroll compressor of Embodiment 3 has a configuration in which a plurality of bypass holes 4f having a circular cross-section that axially penetrate through the first shrink-fit portion 4c of the fixed scroll 4 are provided. . 4 f of bypass holes are provided in the 1st shrink-fit part 4c of the 1st shrink-fit part 4c and the 2nd shrink-fit part 4d on the side away from the fixed spiral body 4b in the axial direction. A plurality of bypass holes 4f are formed at regular intervals in the circumferential direction as shown in FIGS. The bypass hole 4f allows communication between the discharge space 16a and the hollow space 4ab.
  • the cross-sectional shape of the bypass hole 4f is not limited to the circular shape shown in FIG.
  • bypass hole 4f may be formed inside the outer peripheral surface of the first shrink-fitting portion 4c, or as shown in FIG. It may be formed on the outer peripheral surface of 4c. In short, the bypass hole 4f only needs to be configured to allow the hollow space 4ab and the discharge space 16a to communicate with each other.
  • the discharge space 16a communicates with the hollow space 4ab through the bypass hole 4f, the high pressure in the discharge space 16a is introduced into the hollow space 4ab, and the hollow space 4ab becomes a high pressure space. Since the hollow space 4ab becomes a high-pressure space, the second shrink-fit portion 4d is pressed against the first positioning surface 2c as indicated by the arrow in FIG.
  • the same effects as those of the first and second embodiments can be obtained, and the bypass hole 4f provided in the first shrink-fit portion 4c allows the fixed scroll 4 to be attached to the main shell 2. Improves retention.
  • the number of bypass holes 4f is not limited to a plurality, and may be one. However, from the point of view of uniformly applying high pressure to the fixed scroll 4, it is preferable that the scroll compressor has a plurality of bypass holes 4f, which are formed at equal intervals in the circumferential direction.
  • the present disclosure can also be applied to a horizontal scroll compressor.
  • the side on which the compression mechanism is provided can be oriented as one end, and the side where the drive mechanism is provided can be viewed as the other end, with the main frame as a reference.
  • the present disclosure is applicable not only to low-pressure shell-type scroll compressors, but also to high-pressure shell-type scroll compressors in which the inside of the shell is filled with refrigerant after being compressed by the compression mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

スクロール圧縮機は、揺動スクロール(5)、フレーム(3)、固定スクロール(4)および回転軸(10)を収容したシェル(1)を備える。シェル(1)は、第1内壁面(2a)と、第1内壁面(2a)から突出して固定スクロール(4)を位置決めする第1突出部(2b)とを有する。固定スクロール(4)は、固定台板(4a)と、固定台板(4a)から突出して形成された固定渦巻体(4b)とを有し、第1突出部(2b)に位置決めされた状態で、固定台板(4a)の外周部の焼き嵌め部(4c,4d)で第1内壁面(2a)に固定されている。焼き嵌め部(4c,4d)は、固定スクロール(4)の重心を通り且つ回転軸(10)に直交する中立軸(30)を回転軸(10)の軸方向に挟んで互いに離間し、且つ軸方向の長さが一定の第1焼き嵌め部(4c)および第2焼き嵌め部(4d)を有する。固定スクロール(4)は、第1焼き嵌め部(4c)および第2焼き嵌め部(4d)の2箇所で第1内壁面(2a)に固定されている。

Description

スクロール圧縮機
 本開示は、スクロール圧縮機における固定スクロールの固定構造に関するものである。
 従来、スクロール圧縮機は、シェル内部に固定されたフレームに揺動スクロールが支持され、その揺動スクロールに対向して固定スクロールが設けられている。揺動スクロールには回転軸が取り付けられ、この回転軸を回転させることで、揺動スクロールが固定スクロールに対して揺動運動し、揺動スクロールの揺動渦巻体と固定スクロールの固定渦巻体とを組み合わせて形成された圧縮室で冷媒を圧縮する(例えば、特許文献1)。
 特許文献1のスクロール圧縮機では、冷媒吸入空間を広げる観点から、シェル内部に固定されたフレームの周壁を無くし、固定スクロールがシェルの内壁に焼き嵌めして固定されている。この種のいわゆるフレーム外壁レス構造のスクロール圧縮機では、固定スクロールをシェルへ焼き嵌めする際の固定スクロールの変形が課題とされており、特許文献1では、固定スクロールの固定台板において固定渦巻体よりも径方向外側の位置に、径方向の外方からの応力を吸収する応力吸収部を設けている。そして、特許文献1では、焼き嵌め時に固定スクロールの固定台板に作用する締め付けによる応力を応力吸収部で吸収して、焼き嵌め時の固定スクロールの変形を抑制している。
特願2019-508423号公報
 しかしながら、特許文献1では、固定スクロールの変形を抑制することはできるが、僅かな変形が残された場合に、回転軸の一方側に凸の変形となるのか、他方側に凸の変形となるのか、変形方向をコントロールすることができない。このため、特許文献1では、固定渦巻体および揺動渦巻体のそれぞれの歯先と、対向する相手側のスクロールの歯底との間の隙間である歯先隙間が、その時々によって、設計時の理想の歯先隙間よりも拡大したり、縮小したりして、歯先隙間の形成精度を向上できないという問題があった。
 本開示は、上記のような課題を解決するためになされたもので、歯先隙間の形成精度を向上することが可能なスクロール圧縮機を提供することを目的とするものである。
 本開示に係るスクロール圧縮機は、揺動スクロールを保持するフレームと、揺動スクロールに対向して配置された固定スクロールと、揺動スクロールを回転させる回転軸と、揺動スクロール、フレーム、固定スクロールおよび回転軸を収容したシェルと、を備え、シェルは、第1内壁面と、第1内壁面から突出して固定スクロールを位置決めする第1突出部とを有し、固定スクロールは、固定台板と、固定台板から突出して形成された固定渦巻体とを有し、第1突出部に位置決めされた状態で、固定台板の外周部の焼き嵌め部で第1内壁面に固定されており、焼き嵌め部は、固定スクロールの重心を通り且つ回転軸に直交する中立軸を回転軸の軸方向に挟んで互いに離間し、且つ軸方向の長さが一定の第1焼き嵌め部および第2焼き嵌め部を有し、固定スクロールは、第1焼き嵌め部および第2焼き嵌め部の2箇所で第1内壁面に固定されているものである。
 本開示のスクロール圧縮機は、中立軸を回転軸の軸方向に挟んで互いに離間し、且つ軸方向の長さが一定の第1焼き嵌め部および第2焼き嵌め部の2箇所でシェルに固定されている。この構成により、スクロール圧縮機は、固定スクロールのシェルへの焼き嵌め時における固定スクロールの変形方向をコントロールでき、歯先隙間の形成精度を向上できる。
実施の形態1に係るスクロール圧縮機の縦概略断面図である。 実施の形態1に係るスクロール圧縮機の一部の分解斜視図である。 実施の形態1に係るスクロール圧縮機のメインシェル、固定スクロールおよびメインフレームの縦概略部分断面図である。 実施の形態1に係るスクロール圧縮機のメインシェルに固定スクロールが固定された状態を示す図である。 実施の形態1に係るスクロール圧縮機の固定スクロールの焼き嵌め時に第1焼き嵌め部および第2焼き嵌め部に作用する締め付け荷重の説明図である。 実施の形態1に係るスクロール圧縮機の固定スクロールの焼き嵌め時に固定スクロールに作用する曲げモーメントの説明図である。 実施の形態1に係るスクロール圧縮機のメインシェルの内径と、固定スクロールの焼き嵌め部の外径と、の大小関係の説明図である。 実施の形態2に係るスクロール圧縮機のメインシェル、固定スクロールおよびメインフレームの縦概略部分断面図である。 実施の形態2に係るスクロール圧縮機の変形例の固定スクロールをメインシェルに焼き嵌めした部分の概略拡大断面図である。 実施の形態2に係るスクロール圧縮機のメインシェルの内径と、固定スクロールの焼き嵌め部の外径と、の大小関係の説明図である。 実施の形態3に係るスクロール圧縮機の固定スクロールをメインシェルに焼き嵌めした部分の概略拡大断面図である。 実施の形態3に係るスクロール圧縮機の固定スクロールの平面図である。 実施の形態3に係るスクロール圧縮機の固定スクロールの変形例1の平面図である。 実施の形態3に係るスクロール圧縮機の固定スクロールの変形例2の平面図である。
 以下、図面を参照して、本開示の一実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、本開示の範囲内で適宜変更することができる。
実施の形態1.
 以下、実施の形態1について説明する。図1は、実施の形態1に係るスクロール圧縮機の縦概略断面図である。図2は、実施の形態1に係るスクロール圧縮機の一部の分解斜視図である。なお、図1および図2のスクロール圧縮機は、回転軸の中心軸が地面に対して略垂直の状態で使用される、いわゆる縦型のスクロール圧縮機である。なお、以下の説明において、回転軸が延びる方向を軸方向、軸方向に垂直な方向を径方向、回転軸周りの方向を周方向という。
 スクロール圧縮機は、シェル1と、メインフレーム3と、圧縮機構部6と、駆動機構部14と、サブフレーム15と、回転軸10と、ブッシュ9と、給電部17と、を備えている。スクロール圧縮機は、シェル1内が圧縮機構部6で圧縮される前の冷媒で満たされるいわゆる低圧シェル方式のスクロール圧縮機である。以下では、メインフレーム3を基準として、圧縮機構部6が設けられている側(上側)を一端側U、駆動機構部14が設けられている側(下側)を他端側Lと方向づけて説明する。
 シェル1は、金属などの導電性部材からなる両端が閉塞された筒状の筐体であり、メインシェル2と、アッパーシェル16と、ロアシェル12と、を備えている。メインシェル2は、円筒状を呈し、その側壁には吸入管18が溶接等により接続されている。吸入管18は、冷媒をシェル1内に導入する管であり、メインシェル2の内部空間と連通している。アッパーシェル16は、略半球状を呈する第1シェルであり、その側壁の一部がメインシェル2の上端部において溶接等により接続され、メインシェル2の上側の開口を覆っている。アッパーシェル16の上部には、吐出管19が溶接等により接続されている。吐出管19は、冷媒をシェル1外に吐出する管であり、メインシェル2の内部空間と連通している。ロアシェル12は、略半球状を呈する第2シェルであり、その側壁の一部がメインシェル2の下端部において溶接等により接続され、メインシェル2の下側の開口を覆っている。
 メインフレーム3は、空洞が形成された中空な金属製のフレームであり、シェル1の内部に設けられている。メインフレーム3は、本体部3aと、主軸受部3bと、返油管3cと、を備えている。本体部3aは、メインシェル2の一端側Uの内壁面に固定されており、その中央にはシェル1の長手方向に沿って収容空間3dが形成されている。収容空間3dは、一端側Uが開口しているとともに、他端側Lに向かって空間が狭くなる段差状になっている。本体部3aの一端側Uには、収容空間3dを囲むように環状の平坦面3eが形成されている。平坦面3eには、バルブ鋼などの鋼板系材料からなるリング状のスラストプレート13が配置されている。
 よって、本実施の形態1では、スラストプレート13がスラスト軸受として機能する。また、メインフレーム3の平坦面3eの外端側のスラストプレート13と重ならない位置には、吸入ポート3fが形成されている。吸入ポート3fは、本体部3aの上下方向、すなわちアッパーシェル16側とロアシェル12側に貫通する空間である。吸入ポート3fは、一つに限らず、複数形成されていても良い。
 メインフレーム3の平坦面3eよりも他端側Lの段差部分には、オルダム収容部3gが形成されている。オルダム収容部3gには、第1オルダム溝3hが形成されている。第1オルダム溝3hは、外端側の一部が平坦面3eの内端側を削るように形成されている。そのため、メインフレーム3を一端側Uから見たときに、第1オルダム溝3hの一部は、スラストプレート13と重なる。第1オルダム溝3hは、オルダム収容部3gに一対、形成されている。一対の第1オルダム溝3hは、互いに対向するように形成されている。主軸受部3bは、本体部3aの他端側Lに連続して形成され、その内部には軸孔3iが形成されている。軸孔3iは、主軸受部3bの上下方向に貫通し、その一端側Uが収容空間3dと連通している。返油管3cは、収容空間3dに溜まった潤滑油をロアシェル12の内側の油溜めに戻すための管であり、メインフレーム3に内外に貫通して形成された排油孔に挿入固定されている。
 潤滑油は、例えば、エステル系合成油を含む冷凍機油である。潤滑油は、シェル1の下部、すなわちロアシェル12に貯留されており、後述するオイルポンプ7で吸い上げられる。吸い上げられた潤滑油は、回転軸10内の通油路20を通り、圧縮機構部6等の機械的に接触するパーツ同士の摩耗低減、摺動部の温度調節およびシール性の改善を行う。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性および低温流動性などに優れるとともに、適度な粘度の油が好適である。
 圧縮機構部6は、冷媒を圧縮する圧縮機構である。圧縮機構部6は、固定スクロール4と、揺動スクロール5と、を備えたスクロール圧縮機構である。固定スクロール4は、鋳鉄等の金属からなり、固定台板4aと、固定台板4aから突出して形成されたインボリュート形状の突起である固定渦巻体4bと、を備えている。固定台板4aは、円盤状を呈しており、その中央には上下方向に貫通して吐出ポート4gが形成されている。吐出ポート4gは、固定スクロール4の固定渦巻体4b側から反対側の背面側へと固定台板4aを貫通している。固定渦巻体4bは、固定台板4aの他端側Lの面から突出して渦巻状の壁を形成しており、その先端は他端側Lに突出している。固定スクロール4は、焼き嵌めによりメインシェル2に固定されている。固定スクロール4は、揺動スクロール5に対向して配置されている。スクロール圧縮機は、固定スクロール4がシェル1の内壁面に固定されているいわゆるフレーム外壁レス構造である。
 図2に示すように、固定台板4aの外周面には、全周に渡って溝4aaが形成されている。溝4aaは、固定台板4aの外周面に周方向に延びて形成されている。溝4aaは、軸方向の位置および軸方向の開口長さhc(後述の図4参照)が周方向に渡って一定に構成されている。この溝4aaにより、固定台板4aの外周面とメインシェル2の内周面との間に環状の中空間4ab(図1参照)が形成され、固定スクロール4の外周部は軸方向に分割されている。なお、図2には、溝4aaが固定台板4aの外周面に全周に渡って形成されているが、外周面に周方向に断続的に形成されていてもよい。
 固定台板4aの外周部のうち、溝4aaよりも一端側Uに位置する部分と、溝4aaよりも他端側Lに位置する部分とが、メインシェル2に固定された焼き嵌め部を構成している。焼き嵌め部は、固定台板4aの外周部であって、周方向に延びる部分である。以下、軸方向の一端側Uに位置する焼き嵌め部を第1焼き嵌め部4c、軸方向の他端側Lに位置する焼き嵌め部を第2焼き嵌め部4dという。第1焼き嵌め部4cおよび第2焼き嵌め部4dは、中空間4abの軸方向の両側に形成されている。第1焼き嵌め部4cの軸方向の長さh1(後述の図4参照)は、周方向に渡って一定であり、第2焼き嵌め部4dの軸方向の長さh2(後述の図4参照)は、周方向に渡って一定である。固定スクロール4は、軸方向の2箇所、つまり、第1焼き嵌め部4cおよび第2焼き嵌め部4dでメインシェル2に焼き嵌めにより固定されている。
 固定スクロール4の固定台板4aは、軸方向に直交する板状で第1焼き嵌め部4cを有する第1部40と、軸方向に直交する板状で第2焼き嵌め部4dを有する平板状の第2部41と、第1部40と第2部41との間の板状の中間部42とを有する。固定台板4aは、第1部40、中間部42および第2部41が、この順に軸方向に並んで一体化された構成を有する。
 揺動スクロール5は、アルミニウム等の金属からなり、揺動台板5aと、揺動台板5aから突出して形成されたインボリュート形状の突起である揺動渦巻体5bと、筒状部5cと、を備えている。揺動スクロール5は、固定スクロール4とメインフレーム3との間の冷媒取込空間21に配置されている。揺動台板5aは、固定渦巻体4bが形成された一方の面と、一方の面とは反対側の他方の面と、一方の面と他方の面とを接続する面であって、径方向の最外部に位置する側面5fと、を備えた円盤状を呈する。他方の面の外周領域の少なくとも一部は、スラストプレート13に対して摺動する摺動面5eとなっている。
 揺動台板5aは、摺動面5eがスラストプレート13に摺動可能に、メインフレーム3に支持されている。揺動渦巻体5bは、揺動台板5aの一方の面から突出して渦巻状の壁を形成しており、その先端は一端側Uに突出している。なお、固定スクロール4の固定渦巻体4bの先端部と、揺動スクロール5の揺動渦巻体5bの先端部とには、冷媒の漏れを抑制するためのシール部材(図示せず)が設けられている。
 筒状部5cは、揺動台板5aの他方の面の略中央から他端側Lに突出して形成された円筒状のボスである。筒状部5cの内周面には、後述するスライダ9aを回転自在に支持する揺動軸受、いわゆるジャーナル軸受が、その中心軸が回転軸10の中心軸と平行になるように設けられている。揺動台板5aの他方の面には、第2オルダム溝5dが形成されている。第2オルダム溝5dは、長丸形状の溝である。第2オルダム溝5dは、揺動台板5aの他方の面に一対、形成されている。一対の第2オルダム溝5dを結ぶ線は、一対の第1オルダム溝3hを結ぶ線に対して、直交するように設けられている。
 メインフレーム3のオルダム収容部3gには、オルダムリング8が設けられている。オルダムリング8は、リング部8aと、第1キー部8bと、第2キー部8cと、を備えている。第1キー部8bは、リング部8aの他端側Lの面に一対、形成されている。一対の第1キー部8bは、互いに対向するように形成されており、メインフレーム3の一対の第1オルダム溝3hに収容されている。第2キー部8cは、リング部8aの一端側Uの面に一対、形成されている。一対の第2キー部8cは、互いに対向するように形成されており、揺動スクロール5の一対の第2オルダム溝5dに収容されている。回転軸10の回転によって揺動スクロール5が公転旋回する際に、第1キー部8bは第1オルダム溝3h内をスライドし、第2キー部8cは第2オルダム溝5d内をスライドする。これにより、オルダムリング8は、揺動スクロール5が自転することを防止する。
 これら固定スクロール4の固定渦巻体4bと、揺動スクロール5の揺動渦巻体5bと、を互いに噛み合わせることにより圧縮室4hが形成されている。圧縮室4hは、径方向において、外側から内側へ向かうに従って容積が縮小するものであるため、冷媒を渦巻体の外端側から取り入れて、中央側に移動させることで徐々に圧縮する。圧縮室4hは、固定スクロール4の中央部において、吐出ポート4gと連通する。固定スクロール4の一端側Uの面には、吐出ポート4gを所定に開閉し、冷媒の逆流を防止する吐出弁11が設けられている。圧縮室4h内で圧縮された冷媒は、吐出ポート4gおよび吐出弁11を介しアッパーシェル16内の吐出空間16aに吐出される。吐出空間16aは、吐出ポート4gから吐出された冷媒によって高圧空間となっている。
 冷媒は、例えば、組成中に、炭素の2重結合を有するハロゲン化炭化水素、炭素の2重結合を有しないハロゲン化炭化水素、炭化水素、または、それらを含む混合物からなる。炭素の2重結合を有するハロゲン化炭化水素は、オゾン層破壊係数がゼロであるHFC冷媒またはフロン系低GWP冷媒である。炭素の2重結合を有するハロゲン化炭化水素は、化学式がCで表されるHFO1234yf、HFO1234ze、HFO1243zf等のテトラフルオロプロペンが例示される。炭素の2重結合を有しないハロゲン化炭化水素は、CHで表されるR32(ジフルオロメタン)、R41等が混合された冷媒が例示される。炭化水素は、自然冷媒であるプロパンまたはプロピレン等が例示される。混合物は、HFO1234yf、HFO1234zeおよびHFO1243zf等に、R32またはR41等を混合した混合冷媒が例示される。
 駆動機構部14は、シェル1内部においてメインフレーム3の他端側Lに設けられている。駆動機構部14はステータ14aと、ロータ14bと、を備えている。ステータ14aは、例えば電磁鋼板を複数積層してなる鉄心に、絶縁層を介して巻線を巻回してなる固定子であり、リング状に形成されている。ステータ14aは、焼き嵌め等によりメインシェル2内部に固着支持されている。ロータ14bは、電磁鋼板を複数積層してなる鉄心の内部に永久磁石を内蔵するとともに、中央に上下方向に貫通する貫通穴を有する円筒状の回転子である。ロータ14bは、ステータ14aの内部空間に配置されている。ロータ14bは、その外周面がステータ14aの内周面と所定の隙間を保って配置されている。
 サブフレーム15は、金属製のフレームであり、シェル1内部において駆動機構部14の他端側Lに設けられている。サブフレーム15は、焼き嵌めまたは溶接等によってメインシェル2の他端側Lの内周面に固着支持されている。サブフレーム15には、副軸受部15aと、オイルポンプ7と、が設けられている。副軸受部15aは、サブフレーム15の中央部上側に設けられたボールベアリングであり、中央に上下方向に貫通する孔を有している。オイルポンプ7は、サブフレーム15の中央部下側に設けられており、シェル1の油溜めに貯留された潤滑油に少なくとも一部が浸漬するように配置されている。
 回転軸10は、長尺な金属製の棒状部材であり、シェル1の内部に設けられている。回転軸10は、主軸部10aと、偏心軸部10bとを備えている。主軸部10aは、回転軸10の主要部を構成する軸であり、その中心軸がメインシェル2の中心軸と一致するように配置されている。主軸部10aは、その外表面にはロータ14bが接触して固定されている。偏心軸部10bは、その中心軸が主軸部10aの中心軸に対して偏心するように主軸部10aの一端側Uに設けられている。回転軸10は、主軸部10aの一端側Uがメインフレーム3の主軸受部3b内に挿入され、他端側Lがサブフレーム15の副軸受部15aに挿入固定されている。これにより、偏心軸部10bは固定スクロール4の筒状部5c内に配置されている。
 回転軸10の主軸部10aの一端側Uには、第1バランサ10cが設けられ、主軸部10aの他端側には、第2バランサ10dが設けられている。第1バランサ10cおよび第2バランサ10dは、揺動スクロール5の揺動によるアンバランスを相殺するために設けられている。また、回転軸10には、主軸部10aおよび偏心軸部10bの内部に軸方向に貫通して通油路20が設けられている。
 ブッシュ9は、鉄等の金属からなり、揺動スクロール5と回転軸10とを接続する接続部材である。図2に示すように、ブッシュ9は、スライダ9aと、バランスウエイト9bと、の2パーツで構成されている。スライダ9aは、他端側Lに鍔が形成された筒状の部材であり、偏心軸部10bと固定スクロール4の筒状部5cとの間の環状の隙間に嵌め入れられている。バランスウエイト9bは、一端側Uから見た形状が略C状を呈するウエイト部9cを備えたドーナツ状の部材であり、揺動スクロール5の遠心力を相殺するために、回転中心に対して偏心して設けられている。バランスウエイト9bは、例えばスライダ9aの鍔に焼き嵌め等の方法により固定されている。
 給電部17は、スクロール圧縮機に給電する給電部材であり、シェル1のメインシェル2の外周面に固定されている。給電部17は、カバー17aと、給電端子17bと、配線17cと、を備えている。カバー17aは、メインシェル2に固定される側に底を有する円筒状のカバー部材である。給電端子17bは、金属部材からなり、一方がカバー17aの内部に設けられ、他方がシェル1の内部に設けられている。配線17cは、一方が給電端子17bと接続され、他方がステータ14aと接続されている。
 次に、メインシェル2と圧縮機構部6との関係について、図3および図4を参照して説明する。
 図3は、実施の形態1に係るスクロール圧縮機のメインシェル、固定スクロールおよびメインフレームの縦概略部分断面図である。図4は、実施の形態1に係るスクロール圧縮機のメインシェルに固定スクロールが固定された状態を示す図である。図3に示すように、メインシェル2は、第1内壁面2aと、第1内壁面2aから突出し、固定スクロール4を位置決めする第1突出部2bと、第1突出部2bにおいて、一端側Uに向いている第1位置決め面2cと、を有する。メインシェル2はさらに、第1突出部2bの第2内壁面2dと、第2内壁面2dから突出し、メインフレーム3を位置決めする第2突出部2eと、第2突出部2eにおいて、一端側Uに向いている第2位置決め面2fと、を有する。固定スクロール4は、第1位置決め面2cで位置決めされた状態で、第1内壁面2aに焼き嵌めされて固定されている。また、メインシェル2は、第2位置決め面2fで位置決めされた状態で、第2内壁面2dに焼き嵌めされて固定されている。
 第1位置決め面2cには、いわゆるヌスミである凹み2gが形成されている。凹み2gの役割は以下の通りである。メインシェル2に第1突出部2bを形成する際の切削加工時に、第1内壁面2aと第1位置決め面2cとの接続部分は直角ではなく曲面になりやすい。当該部分が曲面になると、固定スクロール4を第1突出部2bに配置しても、第1位置決め面2cに接触せずに浮いてしまい、位置決めの精度が低くなる。これに対し、第1位置決め面2cに凹み2gが形成されていると、固定スクロール4が第1位置決め面2cに確実に接触して位置決め精度を高めることができる。第2位置決め面2fに形成された凹み2hも凹み2gと同様の作用を有する、いわゆるヌスミである。第2位置決め面2fに凹み2hが形成されていると、メインシェル2が第2位置決め面2fに確実に接触して位置決め精度を高めることができる。
 図3および図4に示すように、固定スクロール4は、軸方向の2箇所、つまり第1焼き嵌め部4cおよび第2焼き嵌め部4dで第1内壁面2aに焼き嵌めされて固定されている。第1焼き嵌め部4cおよび第2焼き嵌め部4dは、中立軸30を回転軸10の軸方向に挟んで設けられている。中立軸30は、固定スクロール4の重心4eを通り且つ回転軸10に直交する軸である。重心4eは、固定スクロール全体の重心である。第1焼き嵌め部4cおよび第2焼き嵌め部4dは、溝4aaが回転軸10の軸方向において中立軸30を含む位置に形成されることで、中立軸30を回転軸10の軸方向に挟んで互いに離間した構成となっている。
 中空間4abを形成する溝4aaの径方向の長さraは、吐出ポート4gに作用する高圧圧力に耐えられる必要肉厚rbを確保できれば、特に制限されない。必要肉厚rbは、径方向における吐出ポート4gと溝4aaとの間の厚さである。溝4aaの径方向の長さraに関し、たとえば、図4の点線で示す位置まで溝4aaを径方向内側に延長し、軸方向に見て中空間4abが固定スクロール4の固定渦巻体4bに重なる位置まで長さraを長くとってもよい。長さraを長くとって中空間4abを大きくすることで、スクロール圧縮機は、固定スクロール4の軽量化および原材料の低減を図ることができる。
 図5は、実施の形態1に係るスクロール圧縮機の固定スクロールの焼き嵌め時に第1焼き嵌め部および第2焼き嵌め部に作用する締め付け荷重の説明図である。固定スクロール4がメインシェル2に焼き嵌めされた際、図5の白抜き矢印に示すように、固定スクロール4の第1焼き嵌め部4cおよび第2焼き嵌め部4dのそれぞれには、焼き嵌めによる荷重が作用する。この荷重は、メインシェル2から径方向内向きに作用する締め付け荷重である。
 ここで、第1焼き嵌め部4cが受ける締め付け荷重の軸方向の中心線(以下、第1荷重線)31、および、第2焼き嵌め部4dが受ける締め付け荷重の軸方向の中心線(以下、第2荷重線)32のそれぞれは、固定スクロール4の中立軸30に交わらない。言い換えれば、スクロール圧縮機は、第1焼き嵌め部4cおよび第2焼き嵌め部4dのそれぞれが受ける締め付け荷重の方向が、中立軸30に平行な方向であって、回転軸10に垂直な方向となるように形成されている。具体的には、第1焼き嵌め部4cの軸方向の長さh1が周方向に渡って一定であり、第2焼き嵌め部4dの軸方向の長さh2が周方向に渡って一定である。これにより、第1焼き嵌め部4cおよび第2焼き嵌め部4dのそれぞれが受ける締め付け荷重の方向が、中立軸30に平行な方向であって、回転軸10に垂直な方向となる。
 次に、上記した構成の作用について図6を参照して説明する。
 図6は、実施の形態1に係るスクロール圧縮機の固定スクロールの焼き嵌め時に固定スクロールに作用する曲げモーメントの説明図である。上記したように、固定スクロール4は、固定台板4aの外周面において軸方向の2箇所で固定されており、その固定部分である第1焼き嵌め部4cおよび第2焼き嵌め部4dが中立軸30を挟んで設けられている。第1焼き嵌め部4cおよび第2焼き嵌め部4dのそれぞれの軸方向の長さh1およびh2は、一定である。言い換えれば、第1焼き嵌め部4cおよび第2焼き嵌め部4dのそれぞれの軸方向の長さh1およびh2は、周方向に渡って一定つまり周方向で変化しない。なお、h1とh2とは互いに同じでもよいし、異なっていてもよい。
 上記構成により、スクロール圧縮機は、以下に説明するように、焼き嵌め時の固定スクロール4の第1部40および第2部41の変形の向きをコントロールして故意に逆向きの変形を生じさせ、歯先隙間の精度向上を可能としている。ここで、歯先隙間とは、固定渦巻体4bの歯先と、対向する相手側のスクロールである揺動スクロール5の歯底と、の間の隙間である。また、歯先隙間とは、揺動渦巻体5bの歯先と、対向する相手側のスクロールである固定スクロール4の歯底と、の間の隙間でもある。
 第1焼き嵌め部4cを含む第1部40には、焼き嵌め時に中立軸30よりも一端側Uに締め付け荷重が加わることで、点線50で示すように他端側Lに凸の曲げモーメントが作用する。これにより、第1部40は、他端側Lに凸に変形しようとする。一方、第2焼き嵌め部4dを含む第2部41には、焼き嵌め時に中立軸30よりも他端側Lに締め付け荷重が加わることで、点線51で示すように一端側Uに凸の曲げモーメントが作用する。これにより、第2部41は、一端側Uに凸の変形しようとする。
 つまり、第1焼き嵌め部4cおよび第2焼き嵌め部4dが中立軸30を挟んで設けられていることで、第1部40および第2部41には、互いに逆向きの曲げモーメントが作用する。そして、この曲げモーメントにより、第1部40および第2部41には、図6の白抜き矢印に示すように互いに近づく方向の歪みを発生させる応力が発生して応力同士が相殺され、固定スクロール4の変形を抑制できる。よって、上記構成を有するスクロール圧縮機は、固定スクロール4が固定スクロール4の外周面全体を用いて1箇所で焼き嵌めされる構成に比べて固定スクロール4の変形を抑制できる。
 ここで、第1荷重線31および第2荷重線32が中立軸30に平行ではなく交差する場合について考える。この場合、中立軸30を含む面に焼き嵌めによる締め付け荷重が加わることになり、その位置によって、固定スクロール4の変形が、一端側Uに凸、他端側Lに凸のどちらの変形になるか分からない。
 一方、上記構成では、第1荷重線31および第2荷重線32が中立軸30に平行であるため、中立軸30を含む面には焼き嵌めによる締め付け荷重が加わらない。よって、上記構成は、一端側Uに凸、他端側Lに凸のどちらの変形になるか分からないという現象を引き起こさない。なお、溝4aaが固定台板4aの外周面に断続的に形成されている場合は、隣接する溝4aa同士の間の部分がメインシェル2の第1内壁面2aに焼き嵌めにより固定されることになる。このため、この構成の場合、中立軸30を含む面において焼き嵌めによる締め付け荷重が加わるが、溝4aaは、変形方向がわからないという現象を引き起こさない程度に、固定台板4aの外周面に周方向に断続的に形成されていればよい。
 従来の応力吸収部を設ける構成では、焼き嵌めによって固定スクロールに作用する応力を吸収して変形を抑制することができるものの、その変形の向きをコントロールすることはできない。このため、従来構成では、歯先隙間を設計時の理想的な歯先隙間に構成できない。
 これに対し、上記構成では、スクロール圧縮機は、固定スクロール4が一端側Uに凸、他端側Lに凸のどちらの変形になるか分からないという現象が生じない構成とした上で、変形方向をコントロールして、互いに逆向きの変形が生じるようにしている。これにより、スクロール圧縮機は、歯先隙間を設計時の理想的な歯先隙間に構成できる。また、上記構成では、固定スクロール4を焼き嵌めることで起こる変形を抑制できるため、固定スクロール4の理想的な渦巻き形状が崩れることを抑制でき、圧縮の効率の低下を抑制できる。
 ところで、重心Gの位置は、渦巻の大きさ、台板構成、渦巻き背面側の形状などの影響を受ける。このため、本実施の形態1のスクロール圧縮機は、重心Gに影響を与えるこれらのパラメータを調整して、固定台板4a内に固定スクロール4の重心Gが位置するようにしている。
 重心Gの位置の調整は、以下により行える。
 ・固定台板4aの厚みを厚くした肉増し部を固定台板4aの吐出側の面に形成する。これにより、重心Gの位置が上がる。肉増し部の厚みは、第1焼嵌め部4cの長さh1、第2焼嵌め部4dの長さh2以上が望ましい。
 ・固定台板4a全体の厚みを厚くする。これにより、重心Gの位置が上がる。
 ・溝4aaの径方向の長さraと必要肉厚rbとが、ra<rbを満たすようにする。これにより、固定台板4aに中空間4abを設けることによる重心位置の下がりを抑制する。raは、軸方向に見て中空間4abが固定スクロール4の固定渦巻体4bに重ならない長さとすることが望ましい。
 ここで、重心が固定台板の厚み内に無いスクロール圧縮機(例えば、国際公開第2019/207785号)では、中立軸が固定台板内を通過しないため、固定台板において中立軸を2つの焼き嵌め部で挟む構造を構成し得ない。このため、当該公知の構成では、固定スクロール4のシェル1への焼き嵌め時における固定スクロール4の変形方向をコントロールして、歯先隙間の形成精度を向上することができない。
 これに対し、実施の形態1のスクロール圧縮機は、重心Gの位置を固定台板4a内に位置する構成とした上で、重心Gを通る中立軸30を第1焼き嵌め部4cおよび第2焼き嵌め部4dで挟む構造としている。これにより、実施の形態1のスクロール圧縮機は、固定スクロール4のシェル1への焼き嵌め時における固定スクロール4の変形方向をコントロールでき、歯先隙間の形成精度を向上することができる。
 なお、上記の重心位置の調整を行っても、重心Gが固定台板4aの厚みにおける中心からズレて、渦巻側または吐出側に位置する場合がある。重心Gが固定台板4aの厚みの中心からズレると、図6に示す歪み方向のベクトルの大きさの釣り合いがとりにくくなる。ベクトルの大きさは、(焼き嵌めによる荷重中心と中立軸との距離)×(焼き嵌め代による荷重の大きさ)のモーメントで決まる。このため、例えば重心Gが固定台板4aの厚みにおける中心から下方向にズレた場合は、第1焼嵌め部4cの軸方向の長さh1<第2焼嵌め部4dの軸方向の長さh2とする等により、ベクトル調整をすることが望ましい。
 次に、メインシェル2の内径と、固定スクロール4の焼き嵌め部の外径と、の大小関係について図7を用いて説明する。
 図7は、実施の形態1に係るスクロール圧縮機のメインシェルの内径と、固定スクロールの焼き嵌め部の外径と、の大小関係の説明図である。なお、図7は、r1~r4の各寸法の位置を説明する図であって、形状および大きさを正確に示したものではない。
 図7に示すように、r1は第1内壁面2aの内径、r2は第2内壁面2dの内径である。r3は固定台板4aの第1部40の外径、r4は固定台板4aの第2部41の外径である。実施の形態1では、r3=r4>r1>r2の関係が成り立つ。実施の形態1のスクロール圧縮機は、この大小関係、固定スクロール4の強度、焼き嵌めの保持力および他部品との干渉を考慮して、r1~r4が設計される。
 次に、スクロール圧縮機の動作について説明する。給電部17の給電端子17bに通電すると、ステータ14aとロータ14bとにトルクが発生し、これに伴って回転軸10が回転する。回転軸10の回転は、偏心軸部10bおよびブッシュ9を介して揺動スクロール5に伝えられる。回転駆動力が伝達された揺動スクロール5は、オルダムリング8により自転を規制され、固定スクロール4に対して偏心公転運動する。その際、揺動スクロール5の他方の面が、スラストプレート13と摺動する。
 揺動スクロール5の揺動運動に伴い、吸入管18からシェル1の内部に吸入された冷媒は、メインフレーム3の吸入ポート3fを通って冷媒取込空間21に到達し、固定スクロール4と揺動スクロール5とで形成される圧縮室4hに取り込まれる。そして、冷媒は、揺動スクロール5の偏心公転運動に伴い、外周部から中心方向に移動しながら体積を減じられて圧縮される。揺動スクロール5の偏心公転運転時、揺動スクロール5は自身の遠心力により、ブッシュ9とともに径方向に移動し、固定渦巻体4bと揺動渦巻体5bの側壁面同士が密接する。圧縮された冷媒は、固定スクロール4の吐出ポート4gから吐出され、吐出弁11に逆らってシェル1の外部に吐出される。
 次に、実施の形態1のスクロール圧縮機の、特に固定スクロール4をメインシェル2に組み立てる工程を、図7を用いて説明する。
 メインシェル2の内壁面に第1突出部2bを形成する切削加工工程から固定スクロール4を挿入する前までの工程は、従来のフレーム外壁レス構造のスクロール圧縮機(例えば、国際公開第2018/078787号)と同じである。本明細書では、固定スクロール4のメインシェル2への挿入から説明する。
 まずメインシェル2の一端側Uから、固定スクロール4を挿入する。なお、固定スクロール4よりも先に、回転軸10、ブッシュ9、オルダムリング8および揺動スクロール5等が挿入されている。固定スクロール4は、第1突出部2bの第1位置決め面2cに面で接触し、軸方向の位置決めがされる。ここで、メインシェル2の第1位置決め面2cに凹み2gが形成されていることで、固定スクロール4が第1位置決め面2cに確実に接触するため、精度の高い位置決めがなされている。
 固定スクロール4は、第1位置決め面2cに位置決めされた状態でメインシェル2に焼き嵌められる。すなわち、メインシェル2を加熱して膨張させ、メインシェル2に固定スクロール4を挿入する。メインシェル2を加熱して膨張させることで、メインシェル2の内径r1よりも大きい外径r3およびr4を有する固定スクロール4をメインシェル2に挿入することができる。
 以上のように固定スクロール4が精度良く位置決めされた状態でメインシェル2に焼き嵌められる際、上述したように固定スクロール4の変形が抑制される。このため、スクロール圧縮機は、固定スクロール4の渦巻き形状が崩れることを抑制でき、歯先隙間を、設計時の理想的な歯先隙間に構成でき、また、圧縮効率を維持できる。なお、固定スクロール4がメインシェル2に焼き嵌め固定されるのと同時に、メインフレーム3もメインシェル2に焼き嵌められる。メインフレーム3は、メインシェル2の第2位置決め面2fにある凹み2hによって位置決め精度が高められた状態で、第2内壁面2dに焼き嵌めなどによって固定されている。なお、メインフレーム3のメインシェル2への固定方法は、焼き嵌めに限られたものではなく、他の固定方法を用いて固定してもよい。
 最後に、メインシェル2の一端側Uから、アッパーシェル16を挿入したのち、メインシェル2とアッパーシェル16とを溶接またはアークスポット溶接によりメインシェル2に固定する。
 以上のような製造方法により、スクロール圧縮機は、フレーム外壁レス構造とすることで冷媒取込空間21を大きく確保しながら、固定台板4aの第1部40および第2部41における変形方向をコントロールすることで、固定スクロール4の変形を抑制できる。その結果、以上のような製造方法により、理想の歯先隙間を保ったまま固定スクロール4をメインシェル2に固定することができ、性能損失の少ないスクロール圧縮機を構成できる。
 以上説明したように、実施の形態1のスクロール圧縮機は、揺動スクロール5を保持するメインフレーム3と、揺動スクロール5に対向して配置された固定スクロール4と、揺動スクロール5を回転させる回転軸と、これらを収容したシェル1と、を備える。シェル1は、第1内壁面2aと、第1内壁面2aから突出して固定スクロール4を位置決めする第1突出部2bとを有する。固定スクロール4は、固定台板4aと、固定台板4aから突出して形成された固定渦巻体4bとを有し、第1突出部2bに位置決めされた状態で、固定台板4aの外周部の焼き嵌め部で第1内壁面2aに固定されている。焼き嵌め部は、固定スクロール4の重心4eを通り且つ回転軸に直交する中立軸30を回転軸10の軸方向に挟んで互いに離間し、且つ軸方向の長さが互いに同じで一定の第1焼き嵌め部4cおよび第2焼き嵌め部4dを有する。固定スクロール4は、第1焼き嵌め部4cおよび第2焼き嵌め部4dの2箇所で第1内壁面2aに固定されている。
 上記構成により、スクロール圧縮機は、固定スクロール4のシェル1への焼き嵌め時における固定スクロール4の変形方向をコントロールでき、歯先隙間の形成精度を向上できる。
 ところで、焼き嵌めによる固定では、焼き嵌め代が小さいと焼き嵌め保持力も小さくなり、圧縮室4h内の圧力が吐出空間16aの圧力よりも大きくなったときに固定スクロール4が浮き上がり、圧縮機の故障を引き起こす。また、焼き嵌め代が大きすぎると、焼き嵌め時のシェル1からの締め付けによる応力で固定スクロール4が変形して歪んでしまい、固定渦巻体4bのインボリュート形状が崩れて圧縮の効率が低下する恐れがある。
 これに対し、実施の形態1のスクロール圧縮機は、固定スクロール4の焼き嵌め代を大きくしても、第1部40および第2部41に対して互いに逆向きの変位を発生させる応力が発生し、互いに相殺されるため、固定スクロール4の変形を抑制できる。よって、実施の形態1のスクロール圧縮機は、固定スクロール4の変形を抑制して圧縮の効率の低下を抑制しつつ、焼き嵌め保持力を向上できる。
 また、固定スクロール4の外周面には、周方向に延びる溝4aaが形成されて固定スクロール4の外周面とシェル1の第1内壁面2aとの間に中空間4abが形成されている。そして、スクロール圧縮機は、中空間4abの軸方向の両側に第1焼き嵌め部4cおよび第2焼き嵌め部4dが形成されている。
 上記構成のように、固定スクロール4の外周面に周方向に延びる溝4aaが形成されていることで、固定スクロール4の外周部の軸方向に離間して第1焼き嵌め部4cおよび第2焼き嵌め部4dが形成される。
 また、中空間4abは、軸方向に見て固定スクロール4の固定渦巻体4bに重なっている。
 上記構成により、中空間4abが、軸方向に見て固定スクロール4の固定渦巻体4bよりも径方向外側に位置する構成に比べて、スクロール圧縮機は、固定スクロール4の軽量化および原材料の低減を図ることができる。
 また、固定スクロール4の固定台板4aは、軸方向に直交する板状で第1焼き嵌め部4cを有する第1部40と、軸方向に直交する板状で第2焼き嵌め部4dを有する第2部41とを有し、第1部40の外径は第2部41の外径と同じである。
 上記構成のように、第1部40の外径が第2部41の外径と同じである場合、固定スクロール4およびシェル1の第1内壁面2aの製造が容易である。
 また、シェル1は、第2内壁面2dと、第2内壁面2dから突出し、メインフレーム3を位置決めする第2突出部2eと、をさらに有し、メインフレーム3は、第2突出部2eに位置決めされた状態で第2内壁面2dに固定されている。
 上記構成により、固定スクロール4およびメインフレーム3を一連の製造工程にて同様の方法でシェル1に固定することができ、製造を容易化できる。
実施の形態2.
 実施の形態2は、固定スクロール4の固定台板4aの形状と、メインシェル2の第1内壁面2aの形状と、が実施の形態1と異なる。その他の構成については実施の形態1と同一または同等である。以下、実施の形態2が実施の形態1と異なる構成を中心に説明するものとし、実施の形態2で説明されていない構成は実施の形態1と同様である。
 図8は、実施の形態2に係るスクロール圧縮機のメインシェル、固定スクロールおよびメインフレームの縦概略部分断面図である。上記実施の形態1では、固定スクロール4は、図7に示したように第1部40の外径r3と第2部41の外径r4とが同じであったが、実施の形態2では、第1部40の外径r3が第2部41の外径r4よりも大きい。言い換えれば、第2部41の外径r4が第1部40の外径r3よりも小さい。スクロール圧縮機は、第2部41の外径r4が小さいことにより形成された第2部41の外周面と第1内壁面2aとの間の隙間に、第1突出部2bが一端側Uに延長した構成となっている。
 そして、延長部分の先端面が第1位置決め面2cを構成し、延長部分の内壁面が第1内壁面2aの一部を構成している。つまり、第1内壁面2aが1段の階段状に構成されている。以下では、第1内壁面2aのうち第1位置決め面2cよりも一端側Uの面を第1部分内壁面2aaといい、他端側Lの面を第2部分内壁面2abという。なお、図8において、メインシェル2内に示した点線は、第1突出部2bを延長する前の第1内壁面2aおよび第1位置決め面2cの位置を参考のため図示している。
 固定スクロール4は、第1部40の他端側Lの面が第1位置決め面2cに当接して位置決めされている。言い換えれば、固定スクロール4は、第1焼き嵌め部4cおよび第2焼き嵌め部4dのうち軸方向において固定渦巻体4bから離れた側の第1焼き嵌め部4cが、第1内壁面2aの段差部分に当接して位置決めされている。また、固定スクロール4は、階段状の第1内壁面2aに焼き嵌めにより固定されている。具体的には、第1焼き嵌め部4cが第1部分内壁面2aaに固定され、第2焼き嵌め部4dが第2部分内壁面2abに固定されている。
 実施の形態2においても、固定スクロール4は、メインシェル2の第1位置決め面2cに接触して位置決めされ、第1内壁面2aに焼き嵌めにより固定されている。そして、実施の形態2においても、実施の形態1と同様の作用効果を得ることができる。
 以下、第1内壁面2aを1段の階段状とした他の例について説明する。
 図9は、実施の形態2に係るスクロール圧縮機の変形例の固定スクロールをメインシェルに焼き嵌めした部分の概略拡大断面図である。上記の図8の構成では、第2部分内壁面2abが第2内壁面2dに面一の構成となっていたが、この変形例では、第2部分内壁面2abが径方向の位置で第1内壁面2aと第2内壁面2dとの間の位置となっている。この構成により、第1位置決め面2cは、第1部分内壁面2aa側の第1部分位置決め面2caと、第2部分内壁面2ab側の第2部分位置決め面2cbとに分けられている。そして、第1部分位置決め面2caには、位置決め精度を向上するための凹み2gaが形成され、第2部分位置決め面2cbには、位置決め精度を向上するための凹み2gbが形成されている。
 固定スクロール4は、第1焼き嵌め部4cの他端側Lの面が、第1内壁面2aの段差部分である第1部分位置決め面2caに接触し、第2焼き嵌め部4dの他端側Lの面が第2部分位置決め面2cbに接触して位置決めされている。そして、固定スクロール4は、第1焼き嵌め部4cが第1部分内壁面2aaに焼き嵌めされ、第2焼き嵌め部4dが第2部分内壁面2abに焼き嵌めされている。つまり、変形例のスクロール圧縮機は、メインシェル2の内壁面の形状が実施の形態1とは異なるものの、実施の形態1と同様にしてメインシェル2に固定されている。すなわち、変形例のスクロール圧縮機は、固定スクロール4が、第1位置決め面2cに位置決めされた状態で、第1焼き嵌め部4cおよび第2焼き嵌め部4dが第1内壁面2aに焼き嵌めされてメインシェル2に固定されている。
 ここで、実施の形態2におけるメインシェル2の内径と、固定スクロール4の焼き嵌め部の外径と、の大小関係について次の図10を用いて説明する。
 図10は、実施の形態2に係るスクロール圧縮機のメインシェルの内径と、固定スクロールの焼き嵌め部の外径と、の大小関係の説明図である。なお、図10は、r1~r5の各寸法の位置を説明する図であって、形状および大きさを正確に示したものではない。r1は第1内壁面2aのうちの第1部分内壁面2aaの内径、r2は第2内壁面2dの内径である。r3は固定台板4aの第1部40の外径、r4は固定台板4aの第2部41の外径である。r5は第1内壁面2aのうちの第2部分内壁面2abの内径である。実施の形態2においては、r3>r1≧r5、r4>r5≧r2の関係が成り立つ。実施の形態2のスクロール圧縮機は、この大小関係、固定スクロール4の強度、焼き嵌めの保持力および他部品との干渉を考慮して、r1~r5が設計される。
 実施の形態2によれば、実施の形態1と同様の作用効果を得ることができる。また、実施の形態2において、固定スクロール4の固定台板4aは、第1部40の外径が第2部41の外径よりも大きい。この構成では、第1部40の外径が第2部41の外径よりも小さい場合に比べて固定スクロール4の一端側Uの面を広く使うことができる。固定スクロール4の一端側Uの面には吐出弁11が設けられているが、その他に、吐出弁11の開閉音を低減するマフラなどの部品を設けることも考えられる。そのため、固定スクロール4の一端側Uの面を広く利用できることで、構成部品の自由度を上げることができる。
実施の形態3.
 実施の形態3は、固定スクロール4のメインシェル2に対する焼き嵌め保持力を向上する技術に関する。以下、実施の形態3が実施の形態1および実施の形態2と異なる構成を中心に説明するものとし、実施の形態3で説明されていない構成は実施の形態1および実施の形態2と同様である。
 図11は、実施の形態3に係るスクロール圧縮機の固定スクロールをメインシェルに焼き嵌めした部分の概略拡大断面図である。図12は、実施の形態3に係るスクロール圧縮機の固定スクロールの平面図である。図13は、実施の形態3に係るスクロール圧縮機の固定スクロールの変形例1の平面図である。図14は、実施の形態3に係るスクロール圧縮機の固定スクロールの変形例2の平面図である。
 実施の形態3のスクロール圧縮機は、図11および図12に示すように固定スクロール4の第1焼き嵌め部4cに軸方向に貫通する断面円形状のバイパス穴4fが複数設けられた構成を有する。バイパス穴4fは、第1焼き嵌め部4cおよび第2焼き嵌め部4dのうち軸方向において固定渦巻体4bから離れた側の第1焼き嵌め部4cに設けられている。複数のバイパス穴4fは、図12~図14に示すように周方向に等間隔に形成されている。バイパス穴4fにより、吐出空間16aと中空間4abとが連通する。バイパス穴4fの断面形状は、図12に示した円形状に限られず、たとえば、図13および図14に示すように円弧状でもよい。また、バイパス穴4fの形成位置は、図12および図13に示すように、第1焼き嵌め部4cの外周面よりも内側に形成されてもよいし、図14のように第1焼き嵌め部4cの外周面に形成されてもよい。要するに、バイパス穴4fは、中空間4abと吐出空間16aとを連通させるように構成されていればよい。
 上記構成により、吐出空間16aがバイパス穴4fを介して中空間4abに連通し、吐出空間16a内の高圧圧力が中空間4abに導入され、中空間4abが高圧空間となる。中空間4abが高圧空間となることで、図11の矢印で示すように第2焼き嵌め部4dが第1位置決め面2cに押圧され、固定スクロール4のメインシェル2に対する保持力が向上する。
 実施の形態3によれば、実施の形態1および実施の形態2と同様の作用効果が得られるとともに、第1焼き嵌め部4cに設けられたバイパス穴4fにより、固定スクロール4のメインシェル2に対する保持力が向上する。なお、バイパス穴4fの数は、複数に限られたものではなく、1つでもよい。ただし、固定スクロール4に均等に高圧圧力を作用させる点から考えると、スクロール圧縮機はバイパス穴4fを複数有し、周方向に等間隔に形成されていることが好ましい。
 なお、上記実施の形態1~3では、縦型スクロール圧縮機について説明したが、本開示は横型のスクロール圧縮機にも適用できる。その際、横型のスクロール圧縮機においても、メインフレームを基準として、圧縮機構部が設けられている側を一端側、駆動機構部が設けられている側を他端側と方向づけて見ることができる。また、本開示は、低圧シェル方式のスクロール圧縮機に限らず、シェル内が圧縮機構部で圧縮された後の冷媒で満たされる高圧シェル方式のスクロール圧縮機にも適用できる。
 1 シェル、2 メインシェル、2a 第1内壁面、2aa 第1部分内壁面、2ab 第2部分内壁面、2b 第1突出部、2c 第1位置決め面、2ca 第1部分位置決め面、2cb 第2部分位置決め面、2d 第2内壁面、2e 第2突出部、2f 第2位置決め面、2g 凹み、2ga 凹み、2gb 凹み、2h 凹み、3 メインフレーム、3a 本体部、3b 主軸受部、3c 返油管、3d 収容空間、3e 平坦面、3f 吸入ポート、3g オルダム収容部、3h 第1オルダム溝、3i 軸孔、4 固定スクロール、4a 固定台板、4aa 溝、4ab 中空間、4b 固定渦巻体、4c 第1焼き嵌め部、4d 第2焼き嵌め部、4e 重心、4f バイパス穴、4g 吐出ポート、4h 圧縮室、5 揺動スクロール、5a 揺動台板、5b 揺動渦巻体、5c 筒状部、5d 第2オルダム溝、5e 摺動面、5f 側面、6 圧縮機構部、7 オイルポンプ、8 オルダムリング、8a リング部、8b 第1キー部、8c 第2キー部、9 ブッシュ、9a スライダ、9b バランスウエイト、9c ウエイト部、10 回転軸、10a 主軸部、10b 偏心軸部、10c 第1バランサ、10d 第2バランサ、11 吐出弁、12 ロアシェル、13 スラストプレート、14 駆動機構部、14a ステータ、14b ロータ、15 サブフレーム、15a 副軸受部、16 アッパーシェル、16a 吐出空間、17 給電部、17a カバー、17b 給電端子、17c 配線、18 吸入管、19 吐出管、20 通油路、21 冷媒取込空間、30 中立軸、31 第1荷重線、32 第2荷重線、40 第1部、41 第2部、42 中間部、50 点線、51 点線。

Claims (7)

  1.  揺動スクロールを保持するフレームと、
     前記揺動スクロールに対向して配置された固定スクロールと、
     前記揺動スクロールを回転させる回転軸と、
     前記揺動スクロール、前記フレーム、前記固定スクロールおよび前記回転軸を収容したシェルと、を備え、
     前記シェルは、第1内壁面と、前記第1内壁面から突出して前記固定スクロールを位置決めする第1突出部とを有し、
     前記固定スクロールは、固定台板と、前記固定台板から突出して形成された固定渦巻体とを有し、前記第1突出部に位置決めされた状態で、前記固定台板の外周部の焼き嵌め部で前記第1内壁面に固定されており、
     前記焼き嵌め部は、前記固定スクロールの重心を通り且つ前記回転軸に直交する中立軸を前記回転軸の軸方向に挟んで互いに離間し、且つ前記軸方向の長さが一定の第1焼き嵌め部および第2焼き嵌め部を有し、
     前記固定スクロールは、前記第1焼き嵌め部および前記第2焼き嵌め部の2箇所で前記第1内壁面に固定されているスクロール圧縮機。
  2.  前記固定スクロールの外周面には、周方向に延びる溝が形成されて前記固定スクロールの前記外周面と前記シェルの前記第1内壁面との間に中空間が形成されており、
     前記中空間の前記軸方向の両側に前記第1焼き嵌め部および前記第2焼き嵌め部が形成されている請求項1記載のスクロール圧縮機。
  3.  前記固定スクロールは、前記揺動スクロールとともに圧縮室を形成しており、
     前記シェルの内部において、前記固定スクロールの前記揺動スクロールとは反対側の空間は、前記圧縮室で圧縮された冷媒が吐出される吐出空間となっており、
     前記第1焼き嵌め部および前記第2焼き嵌め部のうち前記軸方向において前記固定渦巻体から離れた側の前記第1焼き嵌め部には、前記軸方向に貫通して前記吐出空間と前記中空間とを連通するバイパス穴が形成されている請求項2に記載のスクロール圧縮機。
  4.  前記中空間が、前記軸方向に見て前記固定スクロールの前記固定渦巻体に重なっている請求項2または請求項3に記載のスクロール圧縮機。
  5.  前記固定スクロールの前記固定台板は、前記軸方向に直交する板状で前記第1焼き嵌め部を有する第1部と、前記軸方向に直交する板状で前記第2焼き嵌め部を有する第2部とを有し、
     前記第1焼き嵌め部および前記第2焼き嵌め部のうち前記軸方向において前記固定渦巻体から離れた側の前記第1焼き嵌め部を有する前記第1部の外径は前記第2部の外径と同じかそれより大きい請求項1~請求項4のいずれか一項に記載のスクロール圧縮機。
  6.  前記第1内壁面は1段の階段状に形成され、段差部分に、前記第1焼き嵌め部および前記第2焼き嵌め部のうち前記軸方向において前記固定渦巻体から離れた側の前記第1焼き嵌め部が当接している請求項1~請求項5のいずれか一項に記載のスクロール圧縮機。
  7.  前記シェルは、第2内壁面と、前記第2内壁面から突出し、前記フレームを位置決めする第2突出部と、をさらに有し、
     前記フレームは、前記第2突出部に位置決めされた状態で前記第2内壁面に固定されている請求項1~請求項6のいずれか一項に記載のスクロール圧縮機。
PCT/JP2021/044197 2021-12-02 2021-12-02 スクロール圧縮機 WO2023100304A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023564351A JPWO2023100304A1 (ja) 2021-12-02 2021-12-02
PCT/JP2021/044197 WO2023100304A1 (ja) 2021-12-02 2021-12-02 スクロール圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044197 WO2023100304A1 (ja) 2021-12-02 2021-12-02 スクロール圧縮機

Publications (1)

Publication Number Publication Date
WO2023100304A1 true WO2023100304A1 (ja) 2023-06-08

Family

ID=86611661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044197 WO2023100304A1 (ja) 2021-12-02 2021-12-02 スクロール圧縮機

Country Status (2)

Country Link
JP (1) JPWO2023100304A1 (ja)
WO (1) WO2023100304A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179135A1 (ja) * 2017-03-29 2018-10-04 三菱電機株式会社 スクロール圧縮機、およびスクロール圧縮機の製造方法
WO2019003335A1 (ja) * 2017-06-28 2019-01-03 三菱電機株式会社 スクロール圧縮機および冷凍サイクル装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179135A1 (ja) * 2017-03-29 2018-10-04 三菱電機株式会社 スクロール圧縮機、およびスクロール圧縮機の製造方法
WO2019003335A1 (ja) * 2017-06-28 2019-01-03 三菱電機株式会社 スクロール圧縮機および冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2023100304A1 (ja) 2023-06-08

Similar Documents

Publication Publication Date Title
JP6678762B2 (ja) スクロール圧縮機、冷凍サイクル装置およびシェル
JP6765508B2 (ja) スクロール圧縮機、およびスクロール圧縮機の製造方法
JP6896092B2 (ja) スクロール圧縮機
WO2018163233A1 (ja) スクロール圧縮機および冷凍サイクル装置
JP7118177B2 (ja) スクロール圧縮機
JP6594523B2 (ja) スクロール圧縮機、および冷凍サイクル装置
WO2023100304A1 (ja) スクロール圧縮機
JP2021076085A (ja) スクロール圧縮機
CN112005012B (zh) 涡旋式压缩机
JP7433697B2 (ja) スクロール圧縮機及び当該スクロール圧縮機を使用した冷凍サイクル装置
WO2021156938A1 (ja) スクロール圧縮機
WO2019207760A1 (ja) スクロール圧縮機
JP7055245B2 (ja) スクロール圧縮機及びそのスクロール圧縮機の製造方法
WO2023276020A1 (ja) スクロール圧縮機
WO2019207785A1 (ja) スクロール圧縮機
JP7313570B2 (ja) スクロール圧縮機
WO2023063243A1 (ja) スクロール圧縮機およびその製造方法
WO2021014641A1 (ja) スクロール圧縮機
JP7459306B2 (ja) スクロール圧縮機の製造方法およびスクロール圧縮機
JP7361585B2 (ja) スクロール圧縮機及びスクロール圧縮機の製造方法
WO2022107212A1 (ja) 密閉型電動圧縮機
WO2018150525A1 (ja) スクロール圧縮機
WO2019207784A1 (ja) スクロール圧縮機及び冷凍サイクル装置
CN113825912A (zh) 涡旋式压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023564351

Country of ref document: JP