WO2023098382A1 - 多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用 - Google Patents
多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用 Download PDFInfo
- Publication number
- WO2023098382A1 WO2023098382A1 PCT/CN2022/129438 CN2022129438W WO2023098382A1 WO 2023098382 A1 WO2023098382 A1 WO 2023098382A1 CN 2022129438 W CN2022129438 W CN 2022129438W WO 2023098382 A1 WO2023098382 A1 WO 2023098382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- porous ceramics
- porous
- porous ceramic
- modifying
- ceramic
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 266
- 239000007788 liquid Substances 0.000 title claims abstract description 90
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 230000004048 modification Effects 0.000 title abstract description 9
- 238000012986 modification Methods 0.000 title abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 167
- 239000011148 porous material Substances 0.000 claims abstract description 86
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 69
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 67
- 238000000889 atomisation Methods 0.000 claims abstract description 19
- 239000003571 electronic cigarette Substances 0.000 claims abstract description 16
- 238000001035 drying Methods 0.000 claims description 35
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 35
- 238000005245 sintering Methods 0.000 claims description 35
- 239000007787 solid Substances 0.000 claims description 25
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 15
- 239000011230 binding agent Substances 0.000 claims description 11
- 239000004115 Sodium Silicate Substances 0.000 claims description 10
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical group [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 239000004094 surface-active agent Substances 0.000 claims description 10
- 239000002562 thickening agent Substances 0.000 claims description 10
- 229940068918 polyethylene glycol 400 Drugs 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910021529 ammonia Inorganic materials 0.000 claims description 8
- 238000009210 therapy by ultrasound Methods 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 5
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 claims 1
- 239000003921 oil Substances 0.000 abstract description 28
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 27
- 239000000306 component Substances 0.000 description 12
- 229910052681 coesite Inorganic materials 0.000 description 11
- 229910052906 cristobalite Inorganic materials 0.000 description 11
- 235000011187 glycerol Nutrition 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 229910052682 stishovite Inorganic materials 0.000 description 11
- 229910052905 tridymite Inorganic materials 0.000 description 11
- 239000000779 smoke Substances 0.000 description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910021426 porous silicon Inorganic materials 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000010183 spectrum analysis Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000005909 Kieselgur Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 235000019504 cigarettes Nutrition 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 description 2
- 239000011224 oxide ceramic Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/70—Manufacture
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
- C04B35/19—Alkali metal aluminosilicates, e.g. spodumene
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
- C04B35/195—Alkaline earth aluminosilicates, e.g. cordierite or anorthite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/04—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5076—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
- C04B41/5089—Silica sols, alkyl, ammonium or alkali metal silicate cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
Definitions
- the present application relates to the technical field of electronic cigarette ceramic materials, in particular to a porous ceramic, a modifying liquid for modifying the inner surface of the porous ceramic, a preparation method and application thereof.
- Electronic cigarettes are also known as virtual cigarettes and electronic atomizers. Electronic cigarettes have similar appearance and taste to cigarettes, but generally do not contain other harmful components such as tar and suspended particles in cigarettes. Electronic cigarettes are mainly composed of atomizers and power components.
- the atomizer is the core device for generating atomized gas for electronic cigarettes, and its atomization effect determines the quality and taste of the smoke, and the atomizer core is the core component of the atomizer.
- atomizing cores use ceramic atomizing cores, and ceramic atomizing cores adopt the method of porous ceramics plus heating film, and the heating film is formed on the surface of porous ceramics by screen printing and other processes.
- e-liquid such as vegetable glycerin, propylene glycol, etc.
- the supply of e-liquid and the atomization consumption of e-liquid reach a dynamic balance during the atomization process. Therefore, the ability of porous ceramics to conduct e-liquid has a direct impact on the atomization performance of electronic cigarettes.
- porous ceramics such as diatomaceous earth porous ceramics themselves have open pores and closed pores.
- the purpose of this application is to overcome the low conduction rate of the existing porous ceramics to smoke oil, resulting in insufficient oil supply capacity of the porous ceramics, and the insufficient oil supply capacity of the porous ceramics will affect the smoke volume of the ceramic atomizing core on the one hand, making it It is impossible to achieve the best thermal efficiency of atomization and the maximum amount of smoke; on the other hand, insufficient oil supply will cause dry burning of the ceramic atomizing core during the atomization process, causing the components in the e-liquid to decompose at too high a temperature.
- the burnt smell is produced and the defects affecting the taste of smoke are provided, and a porous ceramic, a modifying liquid for modifying the inner surface of the porous ceramic, and a preparation method and application thereof are provided.
- a porous ceramic the porous ceramic has several open pores and several closed pores, and the surface of the open pores is at least partially covered with a silicon dioxide layer. It can be understood that the surface of the open pores may be partially covered with a silicon dioxide layer, or completely covered with a silicon dioxide layer. Optionally, the silicon dioxide layer covers more than 90% of the surface area of the open pores. Further, the silicon dioxide layer covers all the surfaces of the open pores.
- the open-pore surface has a silicon dioxide layer.
- the silicon dioxide in the silicon dioxide layer is amorphous silicon dioxide.
- the open porosity is 40%-65%, and the average pore diameter is 5-40 ⁇ m;
- the thickness of the silicon dioxide layer is not greater than 10 ⁇ m; further optionally, the thickness of the silicon dioxide layer is 2-10 ⁇ m, such as 2 ⁇ m, 4 ⁇ m, 6 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m.
- the closed pores are at least partially filled with silicon dioxide, and it can be understood that the closed pores may be partially filled with silicon dioxide, or may be completely filled with silicon dioxide. Further, the closed porosity of the porous ceramics is 0%-10%.
- the open porosity is 45%-60%
- the closed porosity is 5%-10%
- the average pore diameter is 10-30 ⁇ m.
- the porosity of the porous ceramic is 45%-60%.
- the porous ceramic is a porous ceramic for electronic cigarettes.
- the porous ceramics can be porous zirconia ceramics, porous silicon oxide ceramics, porous alumina ceramics, porous silicon carbide ceramics, porous silicon nitride ceramics, porous quartz ceramics , diatomite porous ceramics, it can be understood that, taking diatomite porous ceramics as an example, the main component of diatomite porous ceramics is diatomaceous earth.
- the porous ceramic is prepared by the following porous ceramic preparation method.
- the present application also provides a modifying solution for modifying the inner surface of porous ceramics, which includes the following raw materials in parts by weight: 15-60 parts of silica sol, 1-5 parts of thickener, 1-5 parts of surfactant, pH Regulator 0.1-0.5 parts, binder 0.1-1.0 parts, solvent 20-75 parts.
- the thickener is glycerol
- the surfactant is polyethylene glycol 400
- the pH regulator is ammonia
- the binder is sodium silicate
- the solvent is water.
- silica sol is used as the main raw material.
- Silica sol is sintered to form a silica layer.
- the coating after sintering is mainly amorphous silica.
- the solid content of the initial silica sol will affect the overall solid content of the modified solution.
- the solid content of the final modified solution should be calculated based on its main component SiO2.
- Glycerol is used to adjust the viscosity and film-forming performance of the modified liquid.
- the addition of glycerol can increase the viscosity of the modified liquid, making it easier to form wall-hanging phenomenon with the inner surface of the porous ceramic, and easier to combine with the porous ceramic;
- the film structure formed by the modifying liquid will shrink due to dehydration during the drying process, resulting in uneven coating and fracture.
- PEG400 By adding a certain amount of PEG400, the surface tension of the modifying liquid can be reduced, and the effect of the modifying liquid on porous ceramics can be increased.
- the wetting effect of the matrix enhances the continuity of the film and makes it not easy to break; the addition of ammonia water is used to adjust the pH value of the modified liquid, the target pH value is 8.0-9.0, the pH value of the modified liquid is mainly related to its viscosity and silicon It is related to the solubility of the sol, and the suitable pH range after testing is the weakly alkaline range; as a binder, sodium silicate can enhance the combination of the modifying solution and the ceramic matrix.
- the present application makes the final modified liquid solid content (calculated as SiO2) be 5-30wt.% through the above proportioning, for porous ceramics with different porosity and pore size distribution, there should be an optimal solid content. By adjusting the solid content of the modifying liquid, the thickness of the coating can be adjusted, and then the porosity, average pore size and oil conduction rate of the modified porous ceramic can be adjusted.
- the concentration of the ammonia water is 10-25wt%, and the SiO2 content in the silica sol is 25-35wt%; the pH of the modified solution is 8.0-9.0, and the modified solution is calculated as SiO2
- the solid content is 5-30wt%.
- the present application also provides a method for preparing the above-mentioned modifying liquid for modifying the inner surface of porous ceramics, which includes the following steps: uniformly mixing silica sol, thickener, surfactant, pH regulator, binder, and solvent Instantly.
- the present application also provides a preparation method of porous ceramics, comprising the steps of:
- the modifying solution is the above-mentioned modifying solution for modifying the inner surface of the porous ceramic or the above-mentioned The modified solution for modifying the inner surface of porous ceramics prepared by the preparation method;
- Step 1) After the treatment is completed, the porous ceramics are taken out from the modifying solution, and then the porous ceramics are placed under negative pressure vacuum conditions for secondary treatment to obtain the secondary treated porous ceramics;
- the negative pressure vacuum condition described in step 1) is a vacuum degree of 0.05-0.1bar, and the treatment time is 10-20min;
- the negative pressure vacuum condition described in step 2) is a vacuum degree of 0.1-0.2bar, and the secondary treatment time is 10-60s;
- step 3 the drying temperature is 50-80°C, the drying time is 1-2h, the sintering temperature is 600-900°C, and the sintering time is 0.5-1h.
- the present application does not specifically limit the heating rate.
- the heating rate is 2-10° C./min.
- the modifying solution in step 1) includes the following raw materials in parts by weight: 15-60 parts of silica sol, 1-5 parts of thickener, 1-5 parts of surfactant, and 0.1 parts of pH regulator -0.5 parts, 0.1-1.0 parts of binder, 20-75 parts of solvent.
- the thickener is glycerol
- the surfactant is polyethylene glycol 400
- the pH regulator is ammonia
- the binder is sodium silicate
- the solvent is water.
- the concentration of the ammonia water is 10-25%
- the SiO2 content in the silica sol is 25-35wt.%
- the pH of the modified solution is 8.0-9.0
- the modified The liquid-solid content is 5-30wt%.
- step 1) further includes the steps of cleaning and drying the porous ceramics before immersing the porous ceramics in the modifying solution.
- the function of the cleaning step is to fully remove the impurities that may be attached to the inner and outer surfaces of the ceramics, so as to normalize the surface state, and the function of the drying step is to completely volatilize the ethanol.
- the cleaning step includes placing the porous ceramics in ethanol for ultrasonic treatment, the ultrasonic power is 300-600W, and the ultrasonic time is not less than 15min, optionally, the ultrasonic time is 15-30min;
- the drying temperature is 50-80° C., and the drying time is 1-2 hours.
- the present application also provides a porous ceramic prepared by the preparation method of the above porous ceramic, the porous ceramic has several open pores and several closed pores, the open porosity is 40%-65%, and the average pore diameter is 5-40 ⁇ m;
- the surface of the open pores is at least partially provided with a silicon dioxide layer. It can be understood that the surface of the open pores may be partially covered with a silicon dioxide layer, or completely covered with a silicon dioxide layer. Optionally, the silicon dioxide layer covers more than 90% of the surface area of the open pores. Further, the silicon dioxide layer covers all the surfaces of the open pores.
- the open-pore surface has a silicon dioxide layer.
- the silicon dioxide in the silicon dioxide layer is amorphous silicon dioxide.
- the thickness of the silicon dioxide layer is not greater than 10 ⁇ m; further optionally, the thickness of the silicon dioxide layer is 2-10 ⁇ m, such as 2 ⁇ m, 4 ⁇ m, 6 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m.
- the closed pores are at least partially filled with silicon dioxide, and it can be understood that the closed pores may be partially filled with silicon dioxide, or may be completely filled with silicon dioxide. Further, the closed porosity of the porous ceramics is 0%-10%.
- the open porosity is 40%-65%
- the closed porosity is 0%-10%
- the average pore diameter is 5-40 ⁇ m.
- the porosity of the porous ceramic is 45-60%.
- the porous ceramic is a porous ceramic for electronic cigarettes.
- the porous ceramics can be porous zirconia ceramics, porous silicon oxide ceramics, porous alumina ceramics, porous silicon carbide ceramics, porous silicon nitride ceramics, porous quartz ceramics , diatomite porous ceramics, it can be understood that, taking diatomite porous ceramics as an example, the main component of diatomite porous ceramics is diatomaceous earth.
- the present application also provides a ceramic atomizing core.
- the ceramic atomizing core includes a porous ceramic and a heating film, and the porous ceramic is the porous ceramic mentioned above or the porous ceramic prepared by the above-mentioned preparation method.
- the present application also provides an atomizing device, which has the above-mentioned ceramic atomizing core.
- the present application also provides an application of the above-mentioned porous ceramic or the porous ceramic prepared by the above-mentioned preparation method in an atomization device.
- the atomizing device is an electronic cigarette.
- the porous ceramic provided by the present application has several open pores and several closed pores, and at least part of the surface of the open pores has a silicon dioxide layer.
- the porous ceramics are modified so that at least part of the surface of the open pores has a silicon dioxide layer.
- the silicon dioxide layer can effectively reduce the contact angle between the inner surface of the ceramic and the main components (PG/VG) in the e-liquid, thereby improving
- the wettability of the inner surface of the porous ceramic to the e-liquid is improved, thereby increasing the oil conduction rate of the porous ceramic.
- the increase in the oil conduction rate of the porous ceramic will improve its oil supply capacity, thereby effectively improving the smoke volume and atomization thermal efficiency of the ceramic atomizing core. , to avoid dry burning and affect the taste of smoke.
- the open porosity is 40%-65%, and the average pore diameter is 5-40 ⁇ m; the thickness of the silicon dioxide layer is not greater than 10 ⁇ m.
- controlling the open porosity, average pore diameter and thickness of the silicon dioxide layer is beneficial to ensure that the porous ceramic has excellent oil conduction rate and strength.
- the closed pores are at least partially filled with silicon dioxide, and the closed porosity is 0%-10%, optionally, the closed porosity is 5%-10% .
- the present application performs modification treatment on porous ceramics. After the modification treatment, the modification solution is filled into these nanometer and submicron closed pores, and after sintering treatment, the closed pores are at least partially filled with silicon dioxide, and then This part of the closed air hole is blocked, and the e-liquid cannot enter this part of the small hole during the conduction process of the e-liquid, thereby further increasing the oil-conducting rate.
- the increase in open porosity and pore diameter will inevitably lead to a decrease in the strength of the ceramic matrix, resulting in the structural strength of the porous ceramics, which cannot meet the strength requirements for subsequent thick film printing and assembly, and may also cause the porous ceramics to be sucked.
- by at least partially filling the closed pores with silicon dioxide, and then blocking the nanometer and submicron closed pores it is unexpectedly found that the strength of porous ceramics can be improved while increasing the average pore size of the ceramics.
- the modifying liquid for modifying the inner surface of porous ceramics includes the following raw materials in parts by weight: 15-60 parts of silica sol, 1-5 parts of thickener, 1-5 parts of surfactant, pH Regulator 0.1-0.5 parts, binder 0.1-1.0 parts, solvent 20-75 parts.
- the thickener is glycerol
- the surfactant is polyethylene glycol 400
- the pH regulator is ammonia
- the binder is sodium silicate
- the solvent is water
- the preparation method of the porous ceramics provided by the present application adopts the above-mentioned modifying liquid for modifying the inner surface of the porous ceramics as the modifying liquid, by immersing the porous ceramics in the modifying liquid, and then placing it under negative pressure and vacuum conditions.
- One-time treatment so that the modified liquid can fully enter the inner channel of the porous ceramic and adhere to the inner channel wall of the porous ceramic; then the porous ceramic is taken out of the modified liquid, and it is placed under negative pressure and vacuum conditions for a second time.
- the modification liquid is filled into the nanometer and submicron air-closed pores, and in the subsequent sintering treatment, the inorganic components in the modification liquid are sintered to form a porous ceramic. Shaped silica blocks these small pores.
- the e-liquid cannot enter this part of the pores, thereby improving the oil conduction rate; on the other hand, the surface of the modified porous ceramic with open pores A relatively dense, continuous, and less rough silica coating can be formed, thereby reducing the contact angle between the inner surface of the ceramic and the main components (PG/VG) in the e-liquid, thereby improving the inner surface of the porous ceramic
- the oil conduction rate of porous ceramics is improved.
- porous ceramics prepared by this process will not increase its porosity (on the contrary, it will slightly decrease), and the calculated average pore diameter will increase due to the blocking of nanometer and submicron pores. Strength is also slightly increased.
- the process steps are simple, and a large number of samples can be processed in batches with limited increase in process cost.
- this application can further ensure that the modifying liquid can fully enter the inner pores of porous ceramics and adhere to the porous ceramics by controlling the vacuum degree and processing time of one treatment.
- On the channel wall by controlling the vacuum degree and processing time of the secondary treatment, it can further ensure that the modifying liquid in the inner channel of the porous ceramic is drawn out, so that the open pores form through holes, and at the same time, a film of the modifying solution is formed on the open pores. , so that a silicon dioxide layer is formed on the surface of the open pores after drying and sintering.
- Fig. 1 is the scanning electron micrograph of the porous ceramics that embodiment 1 prepares
- Fig. 2 is the SEM microscopic image of the porous ceramics prepared in Example 1;
- Fig. 3 is the EDS energy spectrum analysis figure (displaying all elements) of the porous ceramics prepared in embodiment 1;
- Fig. 4 is the EDS energy spectrum analysis figure (only shows Si silicon element) of the porous ceramics that embodiment 1 prepares;
- FIG. 5 is an XRD spectrum of the porous ceramic prepared in Example 1.
- the diatomite porous ceramic raw material used in the following examples and comparative examples of the present application is the same kind of ceramic raw material, purchased from Linjiang Yiruishi Diatomite Co., Ltd.
- This embodiment provides a preparation method of diatomite porous ceramics for electronic cigarettes, including the following steps:
- the modified liquid into a beaker, then immerse the dried porous ceramics into the modified liquid, and then put the beaker containing the modified liquid and porous ceramics into a vacuum chamber to place it under negative pressure vacuum conditions
- the negative pressure vacuum condition is a vacuum degree of 0.1bar, and one treatment time is 15min;
- the modified solution is composed of the following raw materials: 15g of silica sol, 1g of glycerol, 1.5g of polyethylene glycol 400, 0.1g of ammonia water, 0.5g of sodium silicate, and 75g of water; the pH of the modified solution is 8.5, The solid content of the modified liquid is 5wt% in terms of SiO2 , the concentration of the ammonia water is 25wt%, and the SiO2 content is 30wt% in the silica sol;
- Step 2) After the treatment is completed, the porous ceramics are taken out from the modifying solution, and then the porous ceramics are placed in a vacuum chamber to be placed under negative pressure vacuum conditions for secondary treatment, and the negative pressure vacuum conditions are vacuum degree 0.2bar, the second treatment time is 20s, and the porous ceramics after the second treatment are obtained;
- the drying temperature is 80°C, and the drying time is 1h
- the sintering temperature is The temperature is 700°C, and the sintering time is 0.5h. After the sintering, it is cooled with the furnace to obtain the porous ceramic, and the surface of the open pores of the porous ceramic has a silicon dioxide layer.
- This embodiment provides a preparation method of diatomite porous ceramics for electronic cigarettes, including the following steps:
- the modified liquid into a beaker, then immerse the dried porous ceramics into the modified liquid, and then put the beaker containing the modified liquid and porous ceramics into a vacuum chamber to place it under negative pressure vacuum conditions
- the negative pressure vacuum condition is a vacuum degree of 0.1bar, and one treatment time is 15min;
- the modified liquid is composed of the following raw materials: 30 g of silica sol, 2 g of glycerol, 3 g of polyethylene glycol 400, 0.1 g of ammonia water, 0.5 g of sodium silicate, and 65 g of water; the pH of the modified liquid is 8.5, The solid content of the modified liquid is 10wt% in terms of SiO2 , the concentration of the ammonia water is 25wt%, and the SiO2 content in the silica sol is 30wt%;
- Step 2) After the treatment is completed, the porous ceramics are taken out from the modifying solution, and then the porous ceramics are placed in a vacuum chamber to be placed under negative pressure vacuum conditions for secondary treatment, and the negative pressure vacuum conditions are vacuum degree 0.2bar, the second treatment time is 20s, and the porous ceramics after the second treatment are obtained;
- the drying temperature is 80°C, and the drying time is 1h
- the sintering temperature is The temperature is 700°C, and the sintering time is 0.5h. After the sintering, it is cooled with the furnace to obtain the porous ceramic, and the surface of the open pores of the porous ceramic has a silicon dioxide layer.
- This embodiment provides a preparation method of diatomite porous ceramics for electronic cigarettes, including the following steps:
- the modified liquid into a beaker, then immerse the dried porous ceramics into the modified liquid, and then put the beaker containing the modified liquid and porous ceramics into a vacuum chamber to place it under negative pressure vacuum conditions
- the negative pressure vacuum condition is a vacuum degree of 0.1bar, and one treatment time is 15min;
- the modified liquid is composed of the following raw materials: 60g of silica sol, 5g of glycerol, 5g of polyethylene glycol 400, 0.5g of ammonia, 1.0g of sodium silicate, and 50g of water; the pH of the modified liquid is 9.0, with SiO
- the solid content of the modified liquid is 15wt%, the concentration of the ammonia is 25wt%, and the SiO content is 30wt% in the silica sol;
- Step 2) After the treatment is completed, the porous ceramics are taken out from the modifying solution, and then the porous ceramics are placed in a vacuum chamber to be placed under negative pressure vacuum conditions for secondary treatment, and the negative pressure vacuum conditions are vacuum degree 0.1 bar, the second treatment time is 10s, and the porous ceramics after the second treatment are obtained;
- the drying temperature is 80°C
- the drying time is 1h
- the sintering temperature is The temperature is 600° C.
- the sintering time is 1 h
- the furnace is cooled after sintering to obtain the porous ceramic
- the surface of the open pores of the porous ceramic has a silicon dioxide layer.
- This embodiment provides a preparation method of diatomite porous ceramics for electronic cigarettes, including the following steps:
- the modified liquid into a beaker, then immerse the dried porous ceramics into the modified liquid, and then put the beaker containing the modified liquid and porous ceramics into a vacuum chamber to place it under negative pressure vacuum conditions
- the negative pressure vacuum condition is a vacuum degree of 0.1bar, and one treatment time is 15min;
- the modified solution is made up of the following raw materials: 60g of silica sol, 5g of glycerol, 5g of polyethylene glycol 400, 0.5g of ammonia, 1.0g of sodium silicate, and 20g of water; the pH of the modified solution is 9.0, with SiO 2
- the modified liquid solid content is 20wt%, the concentration of the ammonia is 25wt%, and the SiO content is 30wt% in the silica sol;
- Step 2) After the treatment is completed, the porous ceramics are taken out from the modifying solution, and then the porous ceramics are placed in a vacuum chamber to be placed under negative pressure vacuum conditions for secondary treatment, and the negative pressure vacuum conditions are vacuum degree 0.1 bar, the second treatment time is 10s, and the porous ceramics after the second treatment are obtained;
- the drying temperature is 80°C
- the drying time is 1h
- the sintering temperature is The temperature is 600° C.
- the sintering time is 1 h
- the furnace is cooled after sintering to obtain the porous ceramic
- the surface of the open pores of the porous ceramic has a silicon dioxide layer.
- This comparative example provides a method for preparing porous diatomite ceramics for electronic cigarettes. Compared with Example 2, the difference is that the porous ceramics are not subjected to secondary vacuum treatment, which specifically includes the following steps:
- the modified liquid into a beaker, then immerse the dried porous ceramics into the modified liquid, and then put the beaker containing the modified liquid and porous ceramics into a vacuum chamber to place it under negative pressure vacuum conditions
- the negative pressure vacuum condition is a vacuum degree of 0.1bar, and one treatment time is 15min;
- the modified liquid is composed of the following raw materials: 30 g of silica sol, 2 g of glycerol, 3 g of polyethylene glycol 400, 0.1 g of ammonia water, 0.5 g of sodium silicate, and 65 g of water; the pH of the modified liquid is 8.5, The solid content of the modified liquid is 10wt% in terms of SiO2 , the concentration of the ammonia water is 25wt%, and the SiO2 content in the silica sol is 30wt%;
- Step 2) After the treatment, the porous ceramics were taken out from the modifying solution, and then the porous ceramics were dried in an oven at a temperature of 80°C for 1 hour, and then the dried The porous ceramics are sintered in an air sintering furnace at a sintering temperature of 700° C. and a sintering time of 0.5 h. After the sintering is completed, the porous ceramics are obtained by cooling with the furnace.
- Figure 4 is the EDS energy spectrum analysis of this area (only Si silicon element is shown), and it can be seen that silicon element has obvious enrichment phenomenon on the left side of this area (that is, the silicon dioxide layer area), indicating that the silicon dioxide layer area has A large amount of silicon exists, and it can be inferred that the composition of this region is silicon dioxide.
- the unit of the ordinate in the XRD pattern of Figure 5 is "counts”, that is, "count”, which is a physical quantity without a unit, and means the intensity of the diffraction peak.
- count which is a physical quantity without a unit
- the coating composition is amorphous silica.
- the open porosity is tested according to the "apparent porosity" in part 6.2 of GB/T 3810.3-2016 standard;
- the average pore diameter is tested according to the GB/T32361-2015 standard, part 5.5.1.1 "average pore diameter";
- the thickness of silicon dioxide layer is obtained by SEM scanning electron microscope
- the oil conduction rate was tested according to the following test method: the diatomite porous ceramic raw material, the porous ceramics prepared in Examples 1-4 and Comparative Example 1 were cut into regular 1cm*1cm*1cm samples, and 10ml precision injection
- the sample injector drops 20 microliters of standard e-liquid (the standard e-liquid is 50mg tobacco standard e-liquid) liquid on the surface of the sample block placed horizontally, observe the time required for the droplet to completely submerge into the sample block under an electron microscope, and calculate the standard e-liquid.
- the ratio of the liquid volume of the e-liquid to the time required for the e-liquid droplet to completely sink into the sample block can be used to obtain the oil conduction rate.
- the content of modified liquid and solid in this application will also affect the physical properties and oil conduction rate of porous ceramics.
- the open porosity of porous ceramics will continue to decrease. This is mainly because The increase of the solid content of the modified liquid blocked the original voids inside the porous ceramics, and the porosity calculated by the drainage method decreased accordingly; with the increase of the solid content of the modified liquid, the average pore diameter of the porous ceramics increased first
- the process of further reduction is mainly because, at first, with the increase of the modified liquid-solid content, at least part of the submicron pores in the porous ceramic matrix are blocked by silica, resulting in this part being blocked when the average pore size is measured.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本申请涉及电子烟陶瓷材料技术领域,具体涉及一种多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用。本申请提供的一种多孔陶瓷具有若干开气孔和若干闭气孔,所述开气孔表面至少部分的具有二氧化硅层。本申请提供的多孔陶瓷可有效提升多孔陶瓷的导油速率,多孔陶瓷导油速率的提升会改善其供油能力,进而有效提升陶瓷雾化芯的烟雾量和雾化热效率,避免产生干烧现象,影响烟气口感。
Description
交叉引用
本申请要求在2021年12月3日提交中国国家知识产权局、申请号为202111464627.9、发明名称为“多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电子烟陶瓷材料技术领域,具体涉及一种多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用。
电子烟又名虚拟香烟、电子雾化器,电子烟具有与香烟相似的外观和味道,但一般不含香烟中的焦油、悬浮微粒等其他有害成分。电子烟主要由雾化器和电源组件构成。雾化器作为电子烟产生雾化气体的核心装置,其雾化效果决定了烟雾的质量与口感,其中雾化芯为雾化器中的核心部件。
现有雾化芯多采用陶瓷雾化芯,而陶瓷雾化芯采用多孔陶瓷加发热膜的方式,发热膜通过丝网印刷等工艺成形于多孔陶瓷表面。在雾化过程中,烟油(如蔬菜甘油,丙二醇等)通过多孔陶瓷供给至雾化面。烟油的供给量与烟油的雾化消耗量在雾化过程中达到动态平衡。因此多孔陶瓷传导烟油的能力,对电子烟的雾化性能有着直接的影响。然而多孔陶瓷(如硅藻土多孔陶瓷)本身具有开气孔和闭气孔,这些纳米以及亚微米级别的闭气孔在传导烟油的过程中,对烟油传输速率为负贡献,烟油在进入这部分闭气孔之后,无法被传导至雾化面,反而由于这部分小孔的毛细作用,降低了烟油的传导速率,造成多孔陶瓷供油能力不足,而多孔陶瓷的供油能力不足,一方面将影响陶瓷雾化芯的烟雾量,使其无法达到最佳雾化热效率和最大烟雾量;另一方面,供油不足会导致陶瓷雾化芯在雾化过程中,产生干烧现象,使得烟油中的成分在过高温度下发生分解,产生焦糊味,影响烟气口感。
发明内容
本申请的目的在于克服现有多孔陶瓷对烟油的传导速率较低,造成多孔陶瓷供油能力不足,而多孔陶瓷的供油能力不足,一方面将影响陶瓷雾化芯的烟雾量,使其无法达 到最佳雾化热效率和最大烟雾量;另一方面,供油不足会导致陶瓷雾化芯在雾化过程中,产生干烧现象,使得烟油中的成分在过高温度下发生分解,产生焦糊味,影响烟气口感的缺陷,进而提供一种多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用。
为达到上述目的,本申请采用如下技术方案:
一种多孔陶瓷,所述多孔陶瓷具有若干开气孔和若干闭气孔,所述开气孔表面至少部分的具有二氧化硅层。可以理解的,所述开气孔表面可以部分的具有二氧化硅层,也可以全部覆盖二氧化硅层。可选的,所述二氧化硅层覆盖所述开气孔表面的面积的90%以上。进一步的,所述二氧化硅层覆盖全部所述开气孔表面。
在一个具体实施方式中,所述开气孔表面具有二氧化硅层。
可选的,所述二氧化硅层中二氧化硅为无定形二氧化硅。
可选的,开口气孔率为40%-65%,平均孔径为5-40μm;
所述二氧化硅层的厚度不大于10μm;进一步可选的,所述二氧化硅层的厚度为2-10μm,例如2μm、4μm、6μm、8μm、9μm、10μm。
在一个具体实施方式中,所述闭气孔内至少部分填充有二氧化硅,可以理解的,所述闭气孔内可以部分填充有二氧化硅,也可以全部填充二氧化硅。进一步的,多孔陶瓷的闭口气孔率为0%-10%。
可选的,所述开口气孔率为45%-60%,闭口气孔率为5%-10%,平均孔径为10-30μm。
可选的,所述多孔陶瓷的孔隙率为45%-60%。
可选的,所述多孔陶瓷为电子烟用多孔陶瓷。
本申请不对多孔陶瓷的材质做具体限定,可选的,所述多孔陶瓷可以为氧化锆多孔陶瓷,氧化硅多孔陶瓷,氧化铝多孔陶瓷,碳化硅多孔陶瓷,氮化硅多孔陶瓷,石英多孔陶瓷,硅藻土多孔陶瓷,可以理解的,以硅藻土多孔陶瓷为例,硅藻土多孔陶瓷的主要成分为硅藻土。
可选的,所述多孔陶瓷采用如下多孔陶瓷的制备方法制备得到。
本申请还提供一种多孔陶瓷内表面修饰用改性液,以重量份数计,包括如下原料:硅溶胶15-60份,增稠剂1-5份,表面活性剂1-5份,pH调节剂0.1-0.5份,粘结剂0.1-1.0份,溶剂20-75份。
可选的,所述增稠剂为丙三醇,所述表面活性剂为聚乙二醇400,所述pH调节剂为氨水,所述粘结剂为硅酸钠,所述溶剂为水。
在本申请中采用硅溶胶作为主要原料,硅溶胶烧结后形成二氧化硅层,烧结后的涂层主要为不定型的二氧化硅,初始硅溶胶的固含量将影响改性液的整体固含量,最终改性液的固含量应以其主要成分SiO2计算。采用丙三醇调节改性液的粘度以及成膜性能,丙三醇的加入,可以使得改性液的粘度增加,更容易与多孔陶瓷内表面产生挂壁现象,与多孔陶瓷的结合更容易;改性液所形成的膜结构在干燥过程中会因为脱水而发生收缩,导致涂层不均匀以及断裂,通过加入一定量的PEG400,可以降低改性液的表面张力,增加改性液对多孔陶瓷基体的润湿作用,增强膜的连续性,使其不容易断裂;氨水的加入用于调节改性液的pH值,目标pH值为8.0-9.0,改性液的pH值主要与其粘度以及硅溶胶的溶解度有关,经过试验适宜的pH范围为弱碱性范围;硅酸钠作为粘结剂,可以增强改性液与陶瓷基体的结合。本申请通过以上配比使得最终的改性液固含量(以SiO2计)为5-30wt.%,针对不同气孔率,孔径分布的多孔陶瓷,应存在最佳固含量。通过调节改性液的固含量可以调节涂层厚度,进而可以调节改性后多孔陶瓷的气孔率以及平均孔径以及导油速率。
可选的,所述氨水的浓度为10-25wt%,所述硅溶胶中SiO
2含量为25-35wt%;所述改性液的pH为8.0-9.0,以SiO
2计所述改性液固含量为5-30wt%。
本申请还提供一种上述所述的多孔陶瓷内表面修饰用改性液的制备方法,包括如下步骤:将硅溶胶、增稠剂、表面活性剂、pH调节剂、粘结剂、溶剂混合均匀即得。
本申请还提供一种多孔陶瓷的制备方法,包括如下步骤:
1)将多孔陶瓷浸渍入改性液中,然后将其置于负压真空条件下进行一次处理;所述改性液为上述所述的多孔陶瓷内表面修饰用改性液或上述所述的制备方法制备得到的多孔陶瓷内表面修饰用改性液;
2)步骤1)处理结束后,将多孔陶瓷从改性液中取出,然后将多孔陶瓷置于负压真空条件下进行二次处理,得到二次处理后的多孔陶瓷;
3)将二次处理后的多孔陶瓷进行烘干、烧结,得到所述多孔陶瓷。
可选的,步骤1)中所述负压真空条件为真空度0.05-0.1bar,一次处理时间为10-20min;
步骤2)中所述负压真空条件为真空度0.1-0.2bar,二次处理时间为10-60s;
步骤3)中所述烘干温度为50-80℃,烘干时间为1-2h,烧结温度为600-900℃,烧结时间为0.5-1h。
在烧结步骤中,本申请不对升温速率做具体限定,可选的,升温速率为2-10℃/min。
可选的,步骤1)中所述改性液以重量份数计,包括如下原料:硅溶胶15-60份,增稠剂1-5份,表面活性剂1-5份,pH调节剂0.1-0.5份,粘结剂0.1-1.0份,溶剂20-75份。
可选的,所述增稠剂为丙三醇,所述表面活性剂为聚乙二醇400,所述pH调节剂为氨水,所述粘结剂为硅酸钠,所述溶剂为水。
可选的,所述氨水的浓度为10-25%,所述硅溶胶中SiO
2含量为25-35wt.%;所述改性液的pH为8.0-9.0,以SiO
2计所述改性液固含量为5-30wt%。
可选的,步骤1)中在将多孔陶瓷浸渍入改性液之前还包括对多孔陶瓷进行清洗、干燥的步骤。清洗步骤的作用是为了充分去除陶瓷内外表面可能沾有的杂质,使其表面状态归一化,干燥步骤的作用是为了使乙醇完全挥发。
可选的,所述清洗步骤包括将多孔陶瓷置于乙醇中超声处理,超声功率为300-600W,超声时间不少于15min,可选的,超声时间为15-30min;
所述干燥温度为50-80℃,干燥时间为1-2h。
本申请还提供一种上述多孔陶瓷的制备方法制备得到的多孔陶瓷,所述多孔陶瓷具有若干开气孔和若干闭气孔,开口气孔率为40%-65%,平均孔径为5-40μm;
所述开气孔表面至少部分的具有二氧化硅层。可以理解的,所述开气孔表面可以部分的具有二氧化硅层,也可以全部覆盖二氧化硅层。可选的,所述二氧化硅层覆盖所述开气孔表面的面积的90%以上。进一步的,所述二氧化硅层覆盖全部所述开气孔表面。
在一个具体实施方式中,所述开气孔表面具有二氧化硅层。
可选的,所述二氧化硅层中二氧化硅为无定形二氧化硅。
可选的,所述二氧化硅层的厚度不大于10μm;进一步可选的,所述二氧化硅层的厚度为2-10μm,例如2μm、4μm、6μm、8μm、9μm、10μm。
在一个具体实施方式中,所述闭气孔内至少部分填充有二氧化硅,可以理解的,所述闭气孔内可以部分填充有二氧化硅,也可以全部填充二氧化硅。进一步的,多孔陶瓷的闭口气孔率为0%-10%。
可选的,所述开口气孔率为40%-65%,闭口气孔率为0%-10%,平均孔径为5-40μm。
可选的,所述多孔陶瓷的孔隙率为45-60%。
可选的,所述多孔陶瓷为电子烟用多孔陶瓷。
本申请不对多孔陶瓷的材质做具体限定,可选的,所述多孔陶瓷可以为氧化锆多孔 陶瓷,氧化硅多孔陶瓷,氧化铝多孔陶瓷,碳化硅多孔陶瓷,氮化硅多孔陶瓷,石英多孔陶瓷,硅藻土多孔陶瓷,可以理解的,以硅藻土多孔陶瓷为例,硅藻土多孔陶瓷的主要成分为硅藻土。
本申请还提供一种陶瓷雾化芯,所述陶瓷雾化芯包括多孔陶瓷和发热膜,所述多孔陶瓷为上述所述的多孔陶瓷或上述所述制备方法制备得到的多孔陶瓷。
本申请还提供一种雾化装置,所述雾化装置具有上述所述的陶瓷雾化芯。
本申请还提供一种上述所述的多孔陶瓷或上述所述制备方法制备得到的多孔陶瓷在雾化装置中的应用。
可选的,所述雾化装置为电子烟。
本申请的有益效果:
1)本申请提供的多孔陶瓷具有若干开气孔和若干闭气孔,所述开气孔表面至少部分的具有二氧化硅层。本申请对多孔陶瓷进行改性处理,使开气孔表面至少部分的具有二氧化硅层,二氧化硅层可有效降低陶瓷内表面与烟油中主要成分(PG/VG)的接触角,从而提升了多孔陶瓷内表面对于烟油的浸润性,进而提升了多孔陶瓷的导油速率,多孔陶瓷导油速率的提升会改善其供油能力,进而有效提升陶瓷雾化芯的烟雾量和雾化热效率,避免产生干烧现象,影响烟气口感。
2)本申请提供的多孔陶瓷,进一步的,开口气孔率为40%-65%,平均孔径为5-40μm;所述二氧化硅层的厚度不大于10μm。本申请通过控制开口气孔率、平均孔径和二氧化硅层的厚度有利于保证多孔陶瓷具有优异的导油速率和强度。
3)本申请提供的多孔陶瓷,进一步的,所述闭气孔内至少部分填充有二氧化硅,所述闭口气孔率为0%-10%,可选的,闭口气孔率为5%-10%。本申请对多孔陶瓷进行改性处理,在经过改性处理后,改性液填充至这些纳米以及亚微米的闭气孔之中,经过烧结处理,使闭气孔内至少部分填充有二氧化硅,进而封堵这部分闭气孔,在烟油传导过程中,烟油无法进入这部分小孔,从而进一步提升导油速率。
此外,经发明人研究发现多孔陶瓷的导油速率一般与其开口气孔率、孔径大小呈现正相关关系。开口气孔率越高,平均孔径越大,其导油速率也越高。然而开口气孔率和孔径的提升,必然会带来陶瓷基体强度的下降,从而导致多孔陶瓷的结构强度,无法满足其进行后续厚膜印刷以及装配的强度要求,同时也可能导致多孔陶瓷在抽吸过程中,产生掉粉的问题。本申请通过在闭气孔内至少部分填充二氧化硅,进而封堵纳米以及亚微米级的闭气孔,意外发现可在提升陶瓷平均孔径的同时提升多孔陶瓷的强度。
4)本申请提供的多孔陶瓷内表面修饰用改性液,以重量份数计,包括如下原料:硅溶胶15-60份,增稠剂1-5份,表面活性剂1-5份,pH调节剂0.1-0.5份,粘结剂0.1-1.0份,溶剂20-75份。其中可选的,所述增稠剂为丙三醇,所述表面活性剂为聚乙二醇400,所述pH调节剂为氨水,所述粘结剂为硅酸钠,所述溶剂为水,通过上述几种成分相互配合有利于在开气孔表面形成一层较为致密的,连续的,粗糙度较小的二氧化硅涂层,进而降低陶瓷内表面与烟油中主要成分(PG/VG)的接触角,从而提升了多孔陶瓷内表面对于烟油的浸润性,提升多孔陶瓷的导油速率。
5)本申请提供的多孔陶瓷的制备方法,采用上述多孔陶瓷内表面修饰用改性液作为改性液,通过将多孔陶瓷浸渍入改性液中,然后将其置于负压真空条件下进行一次处理,使得改性液可以充分进入多孔陶瓷的内孔道之中,附着在多孔陶瓷内孔道壁上;然后将多孔陶瓷从改性液中取出,将其置于负压真空条件下进行二次处理,将多孔陶瓷内孔道中的改性液抽出,使开气孔孔道形成通孔,并同时在开气孔孔壁形成改性液薄膜,最后经过烘干、烧结处理,使开气孔表面至少部分的具有二氧化硅层。
本申请提供的多孔陶瓷的制备方法,在经过改性处理后,改性液填充至纳米以及亚微米的闭气孔之中,在随后的烧结处理中,改性液中的无机成分经烧结形成无定形的二氧化硅,封堵了这部分小孔,在烟油传导过程中,烟油无法进入这部分小孔,从而提升了导油速率;另一方面,经过改性的多孔陶瓷开气孔表面可以形成一层较为致密的,连续的,粗糙度较小的二氧化硅涂层,因此降低了陶瓷内表面与烟油中主要成分(PG/VG)的接触角,从而提升了多孔陶瓷内表面对于烟油的浸润性,提升了多孔陶瓷的导油速率。
此外,通过本工艺制备的多孔陶瓷,并不会导致其孔隙率增高(相反会轻微降低),由于封堵了纳米以及亚微米级的小孔,导致计算出的平均孔径有所提升,同时结构强度还略微提升。同时该工艺步骤简单,可批量处理大量样品对工艺成本的增加有限。
6)本申请提供的多孔陶瓷的制备方法,进一步的,本申请通过控制一次处理的真空度、处理时间,可进一步保证改性液可以充分进入多孔陶瓷的内孔道之中,附着在多孔陶瓷内孔道壁上,通过控制二次处理的真空度、处理时间可进一步保证将多孔陶瓷内孔道中的改性液抽出,使开气孔孔道形成通孔,并同时在开气孔孔壁形成改性液薄膜,从而在经过烘干、烧结处理后在开气孔表面形成二氧化硅层。
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实 施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1制备得到的多孔陶瓷的扫描电镜图;
图2是实施例1制备得到的多孔陶瓷的SEM显微形貌图像;
图3是实施例1制备得到的多孔陶瓷的EDS能谱分析图(显示全部元素);
图4是实施例1制备得到的多孔陶瓷的EDS能谱分析图(只显示Si硅元素);
图5是实施例1制备得到的多孔陶瓷的XRD图谱。
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
本申请以下实施例和对比例中采用的硅藻土多孔陶瓷原料为同种陶瓷原料,购自临江益瑞石硅藻土有限公司。
实施例1
本实施例提供一种电子烟用硅藻土多孔陶瓷的制备方法,包括如下步骤:
1)将0.5g硅藻土多孔陶瓷置于乙醇中超声处理,超声功率为400W,超声时间为15min,得到清洗后的多孔陶瓷;然后将清洗后的多孔陶瓷进行干燥,干燥温度为80℃,干燥时间为1h,得到干燥后的多孔陶瓷;
2)将改性液放入烧杯中,再将干燥后的多孔陶瓷浸渍入改性液中,然后将装有改性液和多孔陶瓷的烧杯放入真空室内使其置于负压真空条件下进行一次处理,所述负压真空条件为真空度0.1bar,一次处理时间为15min;
所述改性液由如下原料组成:硅溶胶15g,丙三醇1g,聚乙二醇400 1.5g,氨水0.1g,硅酸钠0.5g,水75g;所述改性液的pH为8.5,以SiO
2计所述改性液固含量为5wt%,所述氨水的浓度为25wt%,所述硅溶胶中SiO
2含量为30wt%;
3)步骤2)处理结束后,将多孔陶瓷从改性液中取出,然后将多孔陶瓷放入真空室内使其置于负压真空条件下进行二次处理,所述负压真空条件为真空度0.2bar,二次处理时间为20s,得到二次处理后的多孔陶瓷;
4)将二次处理后的多孔陶瓷置于烘箱中进行烘干,烘干温度为80℃,烘干时间为1h,然后将烘干后的多孔陶瓷置于空气烧结炉中进行烧结,烧结温度为700℃,烧结时间为0.5h,烧结结束后随炉冷却,得到所述多孔陶瓷,所述多孔陶瓷的开气孔表面具有二氧化硅层。
实施例2
本实施例提供一种电子烟用硅藻土多孔陶瓷的制备方法,包括如下步骤:
1)将0.5g硅藻土多孔陶瓷置于乙醇中超声处理,超声功率为300W,超声时间为15min,得到清洗后的多孔陶瓷;然后将清洗后的多孔陶瓷进行干燥,干燥温度为80℃,干燥时间为1h,得到干燥后的多孔陶瓷;
2)将改性液放入烧杯中,再将干燥后的多孔陶瓷浸渍入改性液中,然后将装有改性液和多孔陶瓷的烧杯放入真空室内使其置于负压真空条件下进行一次处理,所述负压真空条件为真空度0.1bar,一次处理时间为15min;
所述改性液由如下原料组成:硅溶胶30g,丙三醇2g,聚乙二醇400为3g,氨水0.1g,硅酸钠0.5g,水65g;所述改性液的pH为8.5,以SiO
2计所述改性液固含量为10wt%,所述氨水的浓度为25wt%,所述硅溶胶中SiO
2含量为30wt%;
3)步骤2)处理结束后,将多孔陶瓷从改性液中取出,然后将多孔陶瓷放入真空室内使其置于负压真空条件下进行二次处理,所述负压真空条件为真空度0.2bar,二次处理时间为20s,得到二次处理后的多孔陶瓷;
4)将二次处理后的多孔陶瓷置于烘箱中进行烘干,烘干温度为80℃,烘干时间为1h,然后将烘干后的多孔陶瓷置于空气烧结炉中进行烧结,烧结温度为700℃,烧结时间为0.5h,烧结结束后随炉冷却,得到所述多孔陶瓷,所述多孔陶瓷的开气孔表面具有二氧化硅层。
实施例3
本实施例提供一种电子烟用硅藻土多孔陶瓷的制备方法,包括如下步骤:
1)将5g硅藻土多孔陶瓷置于乙醇中超声处理,超声功率为300W,超声时间为15min,得到清洗后的多孔陶瓷;然后将清洗后的多孔陶瓷进行干燥,干燥温度为80℃,干燥时间为1h,得到干燥后的多孔陶瓷;
2)将改性液放入烧杯中,再将干燥后的多孔陶瓷浸渍入改性液中,然后将装有改性液和多孔陶瓷的烧杯放入真空室内使其置于负压真空条件下进行一次处理,所述负压真空条件为真空度0.1bar,一次处理时间为15min;
所述改性液由如下原料组成:硅溶胶60g,丙三醇5g,聚乙二醇400 5g,氨水0.5g,硅酸钠1.0g,水50g;所述改性液的pH为9.0,以SiO
2计所述改性液固含量为15wt%,所述氨水的浓度为25wt%,所述硅溶胶中SiO
2含量为30wt%;
3)步骤2)处理结束后,将多孔陶瓷从改性液中取出,然后将多孔陶瓷放入真空室内使其置于负压真空条件下进行二次处理,所述负压真空条件为真空度0.1bar,二次处理时间为10s,得到二次处理后的多孔陶瓷;
4)将二次处理后的多孔陶瓷置于烘箱中进行烘干,烘干温度为80℃,烘干时间为1h,然后将烘干后的多孔陶瓷置于空气烧结炉中进行烧结,烧结温度为600℃,烧结时间为1h,烧结结束后随炉冷却,得到所述多孔陶瓷,所述多孔陶瓷的开气孔表面具有二氧化硅层。
实施例4
本实施例提供一种电子烟用硅藻土多孔陶瓷的制备方法,包括如下步骤:
1)将5g硅藻土多孔陶瓷置于乙醇中超声处理,超声功率为300W,超声时间为15min,得到清洗后的多孔陶瓷;然后将清洗后的多孔陶瓷进行干燥,干燥温度为80℃,干燥时间为1h,得到干燥后的多孔陶瓷;
2)将改性液放入烧杯中,再将干燥后的多孔陶瓷浸渍入改性液中,然后将装有改性液和多孔陶瓷的烧杯放入真空室内使其置于负压真空条件下进行一次处理,所述负压真空条件为真空度0.1bar,一次处理时间为15min;
所述改性液由如下原料组成:硅溶胶60g,丙三醇5g,聚乙二醇400 5g,氨水0.5g,硅酸钠1.0g,水20g;所述改性液的pH为9.0,以SiO
2计所述改性液固含量为20wt%,所述氨水的浓度为25wt%,所述硅溶胶中SiO
2含量为30wt%;
3)步骤2)处理结束后,将多孔陶瓷从改性液中取出,然后将多孔陶瓷放入真空室内使其置于负压真空条件下进行二次处理,所述负压真空条件为真空度0.1bar,二次处理时间为10s,得到二次处理后的多孔陶瓷;
4)将二次处理后的多孔陶瓷置于烘箱中进行烘干,烘干温度为80℃,烘干时间为1h,然后将烘干后的多孔陶瓷置于空气烧结炉中进行烧结,烧结温度为600℃,烧结时间为1h,烧结结束后随炉冷却,得到所述多孔陶瓷,所述多孔陶瓷的开气孔表面具有二 氧化硅层。
对比例1
本对比例提供一种电子烟用硅藻土多孔陶瓷的制备方法,同实施例2相比区别在于不对多孔陶瓷进行二次真空处理,具体包括如下步骤:
1)将0.5g硅藻土多孔陶瓷置于乙醇中超声处理,超声功率为300W,超声时间为15min,得到清洗后的多孔陶瓷;然后将清洗后的多孔陶瓷进行干燥,干燥温度为80℃,干燥时间为1h,得到干燥后的多孔陶瓷;
2)将改性液放入烧杯中,再将干燥后的多孔陶瓷浸渍入改性液中,然后将装有改性液和多孔陶瓷的烧杯放入真空室内使其置于负压真空条件下进行一次处理,所述负压真空条件为真空度0.1bar,一次处理时间为15min;
所述改性液由如下原料组成:硅溶胶30g,丙三醇2g,聚乙二醇400为3g,氨水0.1g,硅酸钠0.5g,水65g;所述改性液的pH为8.5,以SiO
2计所述改性液固含量为10wt%,所述氨水的浓度为25wt%,所述硅溶胶中SiO
2含量为30wt%;
3)步骤2)处理结束后,将多孔陶瓷从改性液中取出,然后将多孔陶瓷置于烘箱中进行烘干,烘干温度为80℃,烘干时间为1h,然后将烘干后的多孔陶瓷置于空气烧结炉中进行烧结,烧结温度为700℃,烧结时间为0.5h,烧结结束后随炉冷却,得到所述多孔陶瓷。
测试例1
对上述实施例1制备的多孔陶瓷,测试其电镜扫描图像,结果如图1所示,图1显示多孔陶瓷的开气孔表面具有二氧化硅层,采用SEM背散射相观察及EDS截面元素成分分析,结果如图2-4所示,图2是实施例1制备得到的多孔陶瓷的SEM显微形貌图像,在该区域的左侧为二氧化硅层,右侧为基体陶瓷。图3为该区域的EDS能谱分析(全部元素),表明图2所示区域的全部元素的分布情况。图4为该区域的EDS能谱分析(只显示Si硅元素),可以看到硅元素在该区域的左侧(即二氧化硅层区域)有明显富集现象,表明二氧化硅层区域有大量硅元素存在,可以推断该区域的成分为二氧化硅。
图5的XRD图谱中纵坐标的单位为“counts”,即“记数”,为没有单位的物理量,表示的意义为衍射峰的强度,纵坐标越高表明该物质存在的含量越高。由图5可知涂层成分为无定形二氧化硅。
测试例2
对上述实施例1-4和对比例1制备的多孔陶瓷以及硅藻土多孔陶瓷原料的物理性能 以及导油速率进行测试,结果如表1所示;
其中开口气孔率依据GB/T 3810.3-2016标准6.2部分“显气孔率”进行测试;
平均孔径依据GB/T32361-2015标准,5.5.1.1部分“平均孔径”进行测试;
二氧化硅层厚度采用SEM扫描电镜获得;
抗弯强度依据GB/T 6569-1986标准进行测试;
导油速率按照如下测试方法进行测试:分别将硅藻土多孔陶瓷原料、实施例1-4和对比例1制备得到的多孔陶瓷切割成规整的1cm*1cm*1cm的样块,使用10ml精密注射进样器向水平放置的样块表面滴下20微升的标准烟油(该标准烟油为50㎎烟草标准烟油)液体,在电子显微镜下观察液滴完全没入样块所需时间,计算标准烟油液体体积和烟油液滴完全没入样块所需时间的比值即可得到导油速率。
表1多孔陶瓷物理性能
由表1结果可知,相对于硅藻土多孔陶瓷原料和对比例1制备的多孔陶瓷,本申请实施例制备得到的多孔陶瓷可以实现导油速率的提升。
此外,本申请改性液固含量还会对多孔陶瓷的物理性能及导油速率产生影响,随着改性液固含量的增加,多孔陶瓷的开口气孔率持续减小,这主要是因为随着改性液的固含量增加,封堵了多孔陶瓷内部原本的空隙,使得通过排水法计算出的孔隙率随之减小;随着改性液固含量的增加,多孔陶瓷的平均孔径呈先增加再减小的过程,这主要是因为,起初随着改性液固含量的增加,多孔陶瓷基体内的至少部分亚微米级的孔隙被二氧化硅堵塞,导致在测量平均孔径时,这部分被堵塞的孔径不再被计算在内,从而致使平均孔 径上升,而随着改性液固含量的进一步上升,多孔陶瓷体内的大孔被进一步堵塞,导致大孔壁厚增加,孔径减小,因此对于改性液固含量存在最佳值;随着改性液固含量的增加,多孔陶瓷的对于烟油的导油速率呈现先增加后降低的现象,这主要是由于起初随着改性液固含量的增加,多孔陶瓷内的亚微米级毛细孔被封堵,平均孔径提升,导致了导油速率的增加,而随着改性液固含量的进一步增加,多孔陶瓷内部的大孔壁厚增加,孔径变小,导致导油速率的下降;随着改性液固含量的增加,多孔陶瓷的抗弯强度随之提升,这主要是由于孔隙率减小,缺陷被修补造成的。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。
Claims (16)
- 一种多孔陶瓷,其特征在于,所述多孔陶瓷具有若干开气孔和若干闭气孔,所述开气孔表面至少部分的具有二氧化硅层。
- 根据权利要求1所述的多孔陶瓷,其特征在于,开口气孔率为40%-65%,平均孔径为5-40μm;所述二氧化硅层的厚度不大于10μm。
- 根据权利要求1或2所述的多孔陶瓷,其特征在于,所述闭气孔内至少部分填充有二氧化硅,所述闭口气孔率为0%-10%。
- 根据权利要求1-3任一项所述的多孔陶瓷,其特征在于,所述二氧化硅层覆盖全部所述开气孔表面;所述二氧化硅层中二氧化硅为无定形二氧化硅。
- 根据权利要求1-4任一项所述的多孔陶瓷,其特征在于,所述开口气孔率为45%-60%,闭口气孔率为5%-10%,平均孔径为10-30μm,二氧化硅层的厚度为2-10μm。
- 一种多孔陶瓷内表面修饰用改性液,其特征在于,以重量份数计,包括如下原料:硅溶胶15-60份,增稠剂1-5份,表面活性剂1-5份,pH调节剂0.1-0.5份,粘结剂0.1-1.0份,溶剂20-75份。
- 根据权利要求6所述的多孔陶瓷内表面修饰用改性液,其特征在于,所述增稠剂为丙三醇,所述表面活性剂为聚乙二醇400,所述pH调节剂为氨水,所述粘结剂为硅酸钠,所述溶剂为水,所述改性液的pH为8.0-9.0,以SiO 2计所述改性液固含量为5-30wt%。
- 一种权利要求6或7所述的多孔陶瓷内表面修饰用改性液的制备方法,其特征在于,包括如下步骤:将硅溶胶、增稠剂、表面活性剂、pH调节剂、粘结剂、溶剂混合均匀即得。
- 一种多孔陶瓷的制备方法,其特征在于,包括如下步骤:1)将多孔陶瓷浸渍入改性液中,然后将其置于负压真空条件下进行一次处理;所述改性液为权利要求6或7所述的多孔陶瓷内表面修饰用改性液或权利要求8所述的制备方法制备得到的多孔陶瓷内表面修饰用改性液;2)步骤1)处理结束后,将多孔陶瓷从改性液中取出,然后将多孔陶瓷置于负压真空条件下进行二次处理,得到二次处理后的多孔陶瓷;3)将二次处理后的多孔陶瓷进行烘干、烧结,得到所述多孔陶瓷。
- 根据权利要求9所述多孔陶瓷的制备方法,其特征在于,步骤1)中所述负压真空条件为真空度0.05-0.1bar,一次处理时间为10-20min;步骤2)中所述负压真空条件为真空度0.1-0.2bar,二次处理时间为10-60s;步骤3)中所述烘干温度为50-80℃,烘干时间为1-2h,烧结温度为600-900℃,烧结时间为0.5-1h。
- 根据权利要求9或10所述多孔陶瓷的制备方法,其特征在于,步骤1)中在将多孔陶瓷浸渍入改性液之前还包括对多孔陶瓷进行清洗、干燥的步骤。
- 根据权利要求11所述多孔陶瓷的制备方法,其特征在于,所述清洗步骤包括将多孔陶瓷置于乙醇中超声处理,超声功率为300-600W,超声时间不少于15min;所述干燥温度为50-80℃,干燥时间为1-2h。
- 一种陶瓷雾化芯,其特征在于,所述陶瓷雾化芯包括多孔陶瓷和发热膜,所述多孔陶瓷为权利要求1-5任一项所述的多孔陶瓷或权利要求9-12任一项所述制备方法制备得到的多孔陶瓷。
- 一种雾化装置,其特征在于,所述雾化装置具有权利要求13所述的陶瓷雾化芯。
- 权利要求1-5任一项所述的多孔陶瓷或权利要求9-12任一项所述制备方法制备得到的多孔陶瓷在雾化装置中的应用。
- 根据权利要求15所述的应用,其特征在于,所述雾化装置为电子烟。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111464627.9A CN116217269B (zh) | 2021-12-03 | 2021-12-03 | 多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用 |
CN202111464627.9 | 2021-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023098382A1 true WO2023098382A1 (zh) | 2023-06-08 |
Family
ID=86587768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/129438 WO2023098382A1 (zh) | 2021-12-03 | 2022-11-03 | 多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116217269B (zh) |
WO (1) | WO2023098382A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101417211A (zh) * | 2008-11-24 | 2009-04-29 | 伍协 | 一种有序多孔陶瓷膜功能组装制备方法 |
US20200107584A1 (en) * | 2018-10-08 | 2020-04-09 | Shenzhen Smoore Technology Limited | Electronic cigarette, atomizer and heating assembly thereof |
CN111053291A (zh) * | 2019-12-02 | 2020-04-24 | 深圳麦克韦尔科技有限公司 | 电子雾化装置、雾化芯及其制备方法 |
CN113292354A (zh) * | 2021-06-10 | 2021-08-24 | 深圳陶陶科技有限公司 | 多孔陶瓷雾化芯及其制备方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105837252B (zh) * | 2015-07-06 | 2018-10-02 | 深圳市商德先进陶瓷股份有限公司 | 多孔氧化铝陶瓷及其制备方法 |
CN105233847A (zh) * | 2015-10-30 | 2016-01-13 | 广东美的制冷设备有限公司 | 蜂窝陶瓷催化剂及其制备方法和应用 |
JP7016610B2 (ja) * | 2016-11-25 | 2022-02-07 | 株式会社福山医科 | 多孔質セラミックスの製造方法ならびに多孔質セラミックス |
CN106830962A (zh) * | 2016-12-26 | 2017-06-13 | 东莞市佳乾新材料科技有限公司 | 一种二氧化硅改性的多孔氧化锆陶瓷及其制备方法 |
CN109970439B (zh) * | 2019-03-15 | 2021-08-10 | 蒙娜丽莎集团股份有限公司 | 一种轻质陶瓷复合薄板的制备方法 |
CN110074463A (zh) * | 2019-05-14 | 2019-08-02 | 东莞市东思电子技术有限公司 | 一种电子烟油雾化芯用微孔陶瓷厚膜发热元件及其制作方法 |
CN110526677A (zh) * | 2019-09-16 | 2019-12-03 | 西安航空学院 | 一种电子烟多孔陶瓷的制备方法 |
CN112159612A (zh) * | 2020-10-13 | 2021-01-01 | 廖莲英 | 一种抗老化外墙乳胶涂料的制备方法 |
-
2021
- 2021-12-03 CN CN202111464627.9A patent/CN116217269B/zh active Active
-
2022
- 2022-11-03 WO PCT/CN2022/129438 patent/WO2023098382A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101417211A (zh) * | 2008-11-24 | 2009-04-29 | 伍协 | 一种有序多孔陶瓷膜功能组装制备方法 |
US20200107584A1 (en) * | 2018-10-08 | 2020-04-09 | Shenzhen Smoore Technology Limited | Electronic cigarette, atomizer and heating assembly thereof |
CN111053291A (zh) * | 2019-12-02 | 2020-04-24 | 深圳麦克韦尔科技有限公司 | 电子雾化装置、雾化芯及其制备方法 |
CN113292354A (zh) * | 2021-06-10 | 2021-08-24 | 深圳陶陶科技有限公司 | 多孔陶瓷雾化芯及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116217269B (zh) | 2024-07-12 |
CN116217269A (zh) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108623322B (zh) | 多孔陶瓷及其制备方法、雾化芯和电子烟 | |
Jr Walker et al. | Influence of slurry parameters on the characteristics of spray‐dried granules | |
CN108585810B (zh) | 微孔陶瓷及其制备方法和雾化芯 | |
EP4317113A1 (en) | Microporous ceramic atomization core and preparation method therefor | |
EP3162778A1 (en) | Method for preparing porous ceramics, porous ceramics, and electronic cigarette | |
CN110467441A (zh) | 用于雾化器的多孔陶瓷基板及其制作方法 | |
CN113149697A (zh) | 一种组合物及含连续玻璃相的多孔陶瓷雾化芯 | |
CN112321286A (zh) | 一种多层多孔陶瓷材料及其制备方法 | |
CN109745870A (zh) | 一种多孔金属膜的制备方法 | |
CN113173801B (zh) | 一种多孔材料及其制备方法与应用 | |
CN108409353A (zh) | 用作电子烟雾化器烟油载体的SiC多孔陶瓷材料的制备方法 | |
KR20080044344A (ko) | 고다공도 금속 바이포러스 발포체 | |
WO2023226903A1 (zh) | 一种多孔玻璃雾化芯及其制备方法和电子雾化器 | |
CN107051224A (zh) | 一种超疏水Al2O3陶瓷复合膜及其制备方法 | |
WO2023098382A1 (zh) | 多孔陶瓷、多孔陶瓷内表面修饰用改性液及其制备方法和应用 | |
CN115819110A (zh) | 一种金属化多孔陶瓷复合材料及其制备方法 | |
WO2018102339A1 (en) | Methods for forming optical quality glass from silica soot compact using basic additives | |
CN113548905B (zh) | 一种微纳双尺度氧化钇坩埚及制备方法 | |
WO2023071842A1 (zh) | 一种陶瓷雾化芯及其制备方法和应用 | |
CN116496069A (zh) | 一种纤维多孔陶瓷的制备方法及纤维多孔陶瓷 | |
CN112707737B (zh) | 一种多孔陶瓷及其制备方法和应用 | |
RU2824064C1 (ru) | Микропористый керамический распылительный сердечник и способ его изготовления | |
CN113249629B (zh) | 一种多孔金属衰减陶瓷及其制备方法和应用 | |
Pattnaik et al. | Enhancement of ceramic slurry rheology in investment casting process | |
JP2010228942A (ja) | ガラス製造装置の製造方法及びガラス製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22900187 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |