WO2023071842A1 - 一种陶瓷雾化芯及其制备方法和应用 - Google Patents

一种陶瓷雾化芯及其制备方法和应用 Download PDF

Info

Publication number
WO2023071842A1
WO2023071842A1 PCT/CN2022/125667 CN2022125667W WO2023071842A1 WO 2023071842 A1 WO2023071842 A1 WO 2023071842A1 CN 2022125667 W CN2022125667 W CN 2022125667W WO 2023071842 A1 WO2023071842 A1 WO 2023071842A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
content
atomizing core
porous ceramic
ball mill
Prior art date
Application number
PCT/CN2022/125667
Other languages
English (en)
French (fr)
Inventor
吴正坤
Original Assignee
国光(宣城)新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国光(宣城)新材料科技有限公司 filed Critical 国光(宣城)新材料科技有限公司
Publication of WO2023071842A1 publication Critical patent/WO2023071842A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/0685Minerals containing carbon, e.g. oil shale
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5172Cadmium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Definitions

  • the invention relates to the technical field of atomization, in particular to a ceramic atomization core and its preparation method and application.
  • the atomizing core heats and vaporizes the smoke oil to produce mist particles, imitating the smoke effect of traditional tobacco after burning.
  • the metal content in the atomizing core of the prior art is above 90wt%, and the main component of the smoke oil is glycerol And propylene glycol, more harmful substances are produced in the process of atomizing the e-liquid. For example, adding metal as a catalyst is easy to produce harmful substances such as formaldehyde and acetaldehyde. If the content of metal is reduced, the atomizing core will have the problem of non-conduction , affecting the service life of the atomizing core.
  • the purpose of the present invention is to provide a ceramic atomizing core and its preparation method and application.
  • the content of metal in the ceramic atomizing core provided by the invention is low, which can reduce the output of harmful substances without affecting the service life.
  • the invention provides a method for preparing a ceramic atomizing core, comprising the following steps:
  • the heat-generating slurry includes the following components by weight: organic additives 10-30% and inorganic 70% to 90% of additives, the organic additives include ethyl cellulose, terpineol, tributyl citrate and butyl acetate, the inorganic additives include nickel, chromium and the rest of the ball mill, the The mass content of the remaining ball mill in the inorganic additive is 5-30%, and the sum of the mass content of nickel and chromium in the inorganic additive is 70-95%.
  • organic additives include ethyl cellulose, terpineol, tributyl citrate and butyl acetate
  • the inorganic additives include nickel, chromium and the rest of the ball mill
  • the mass content of the remaining ball mill in the inorganic additive is 5-30%
  • the sum of the mass content of nickel and chromium in the inorganic additive is 70-95%.
  • the content of silicon dioxide in the ball abrasive is 80-97wt%
  • the content of corundum sand is 0-5wt%
  • the content of clay is 3-15wt%
  • the content of the corundum sand is not zero.
  • the material-to-ball ratio of the ball mill is 1:0.1-1, and the time is 1-5 hours.
  • the mass ratio of the part of the ball mill to paraffin is 5:2-10.
  • the temperature of the first sintering is 700-1500° C., and the time is 2-5 hours.
  • the content of ethyl cellulose in the organic additive is 5-15 wt%
  • the content of terpineol is 50-70 wt%
  • the content of tributyl citrate is 10-30 wt%
  • the temperature of the second sintering is 500-1500° C., and the time is 10-180 minutes.
  • the mass ratio of nickel to chromium is 1-9:9-1.
  • the present invention also provides the ceramic atomizing core prepared by the preparation method described in the above technical solution.
  • the present invention also provides the application of the ceramic atomizing core described in the above technical solution in processing e-liquid.
  • the invention provides a method for preparing a ceramic atomizing core, comprising the following steps: drying and ball milling sequentially after mixing silicon dioxide, corundum sand and white clay to obtain a ball mill; mixing part of the ball mill with paraffin wax and then performing Vacuum and wax to obtain a slurry; the slurry is sequentially subjected to molding, powder embedding, first sintering, powder cleaning and drying to obtain a porous ceramic material; after coating the heat-generating slurry on the surface of the porous ceramic material Carry out the second sintering to obtain the ceramic atomizing core; the heat-generating slurry includes the following components by weight: organic additives 10-30% and inorganic additives 70-90%, the organic additives include ethyl Cellulose, terpineol, tributyl citrate and butyl acetate, the inorganic additives include nickel, chromium and the remaining ball mills, the mass content of the remaining ball mills in the inorganic additives is 5
  • the present invention achieves the effect of reducing the output of harmful substances by reducing the metal content in the ceramic atomizing core.
  • the particle size of the ball abrasive is controlled by ball milling, and paraffin is used as the pore-forming agent. Wax removal occurs during the sintering process, and the porosity and porosity of the porous ceramic material are controlled.
  • the pores of the prepared porous ceramic material are 25-35 ⁇ m, and the porosity is 40-70%, thereby improving the circulation of the e-liquid. In the case of reducing the metal content, the service life of the ceramic atomizing core will not be affected.
  • Fig. 1 is the electron micrograph of the ceramic atomizing core in Example 1 under low magnification
  • Fig. 2 is an electron microscope image of the ceramic atomizing core in Example 1 at a medium magnification
  • Fig. 3 is an electron microscope image of the ceramic atomizing core in Example 1 under high magnification
  • Fig. 4 is an electron micrograph of the commercially available atomizing core in Example 1 under low magnification
  • Fig. 5 is an electron micrograph of the commercially available atomizing core in Example 1 at a medium magnification
  • FIG. 6 is an electron micrograph of the commercially available atomizing core in Example 1 under high magnification.
  • the invention provides a method for preparing a ceramic atomizing core, comprising the following steps:
  • the heat-generating slurry includes the following components by weight: organic additives 10-30% and inorganic 70% to 90% of additives, the organic additives include ethyl cellulose, terpineol, tributyl citrate and butyl acetate, the inorganic additives include nickel, chromium and the rest of the ball mill, the The mass content of the remaining ball mill in the inorganic additive is 5-30%, and the sum of the mass content of nickel and chromium in the inorganic additive is 70-95%.
  • organic additives include ethyl cellulose, terpineol, tributyl citrate and butyl acetate
  • the inorganic additives include nickel, chromium and the rest of the ball mill
  • the mass content of the remaining ball mill in the inorganic additive is 5-30%
  • the sum of the mass content of nickel and chromium in the inorganic additive is 70-95%.
  • the invention mixes silicon dioxide, corundum sand and white clay, then performs drying and ball milling in sequence to obtain ball milling material.
  • the sources of the silica, corundum sand and white clay are not particularly limited, and commercially available products well known to those skilled in the art can be used.
  • the content of silicon dioxide in the ball abrasive is preferably 80-97wt%
  • the content of corundum sand is preferably 0-5wt%
  • the content of clay is preferably 3-15wt%
  • the content of corundum sand is not 0.
  • the drying is preferably drying, the drying temperature is preferably 100-200° C., and the drying time is preferably 30-60 minutes; the drying is preferably performed in an oven.
  • the material-to-ball ratio of the ball mill is preferably 1:0.1-1, and the time is preferably 1-5 hours.
  • the present invention mixes part of the ball mill material with paraffin wax, and then performs vacuum and wax to obtain a slurry.
  • the mass ratio of the part of the ball mill to the paraffin wax is preferably 5:2-10.
  • the paraffin wax is preferably dissolved and then mixed with part of the ball mill.
  • the dissolution is preferably heating, and the heating temperature is preferably 50-350°C.
  • the mixing is preferably mechanical stirring, and the time of the mechanical stirring is preferably 1-5 hours.
  • the vacuum and wax are preferably carried out in a vacuum and wax machine, the function of the vacuum and wax is to ensure the elimination of air bubbles and avoid product air entrainment during molding; the time of the vacuum and wax is preferably 1 to 5 hours .
  • the present invention sequentially performs molding, powder embedding, first sintering, powder cleaning and drying on the slurry to obtain a porous ceramic material.
  • the forming is preferably hot die-casting, and the present invention has no special limitation on the specific method of the hot die-casting, as long as the forming can be ensured.
  • the embedding powder is preferably embedding the molded wax embryo into the wax discharge powder.
  • the present invention has no special limitation on the type and amount of the wax discharge powder, and adopts a method well known to those skilled in the art, namely Can.
  • the temperature of the first sintering is preferably 700-1500°C, more preferably 80-1200°C, and the time is preferably 2-5 hours.
  • the paraffin in the wax embryo undergoes Porous ceramic materials with specific porosity and pore size are obtained after high temperature exclusion.
  • the pores of the porous ceramic material obtained in the present invention are preferably 25-35 ⁇ m, and the porosity is preferably 40-70%, more preferably 50-60%.
  • the function of the powder removal is to remove the wax discharge powder.
  • the powder cleaning is preferably to take 2-10 mm balls and the obtained first sintered product and put them into a vibration throwing machine for 1-2 hours of powder cleaning.
  • the present invention preferably further includes the step of ultrasonic cleaning.
  • the specific method of the ultrasonic cleaning is not particularly limited in the present invention, and a method well known to those skilled in the art can be used.
  • the drying is preferably drying, the drying temperature is preferably 100-300°C, and the drying time is preferably 30-90 minutes, and the drying is preferably performed in an oven.
  • the present invention coats the heat-generating slurry on the surface of the porous ceramic material and performs second sintering to obtain the ceramic atomizing core;
  • the heat-generating slurry includes the following components by weight: organic Additives 10-30% and inorganic additives 70-90%, said organic additives include ethyl cellulose, terpineol, tributyl citrate and butyl acetate, said inorganic additives include nickel, chromium and The remaining ball milling material, the mass content of the remaining ball milling material in the inorganic additive is 5-30%, and the sum of the mass content of nickel and chromium in the inorganic additive is 70-95%.
  • the mass ratio of the exothermic slurry to the porous ceramic material is preferably 1-1.2:0.1-0.3.
  • the thickness of the wet film after coating is preferably 0.05-0.25 mm.
  • the content of ethyl cellulose in the organic additive is preferably 5-15 wt%
  • the content of terpineol is preferably 50-70 wt%
  • the content of tributyl citrate is preferably 10-30 wt%
  • the content of butyl acetate is preferably 5 to 15 wt%.
  • the mass ratio of nickel and chromium is preferably 1-9:9-1, more preferably 1:1.
  • the temperature of the second sintering is preferably 500-1500°C, more preferably 800-1200°C, and the time is preferably 10-180min, more preferably 60-120min; during the second sintering , nickel and chromium form a nickel-chromium alloy, and the remaining ball abrasives form porous ceramics.
  • the second sintering is preferably performed in a vacuum furnace.
  • the present invention also provides the ceramic atomizing core prepared by the preparation method described in the above technical solution, including a porous ceramic carrier and a metal, the metal is loaded on the surface and pores of the porous ceramic carrier, and the metal includes nickel and chromium .
  • the present invention also provides the application of the ceramic atomizing core described in the above technical solution in processing e-liquid.
  • the present invention has no special limitation on the specific manner of the application, and the methods well known to those skilled in the art can be adopted.
  • the ceramic atomizing core provided by the present invention and its preparation method and application are described in detail below in conjunction with examples, but they should not be construed as limiting the protection scope of the present invention.
  • Porous ceramic material formula: 80wt% silicon dioxide, 5wt% corundum sand, 15wt% clay;
  • Drying Put it in the oven, set at 100°C, and bake for 30 minutes;
  • Ball milling Put 25 kg of dried raw and auxiliary materials into a 50L ball mill barrel, add ball mill stones with a ball ratio of 1:0.1, and mill for 1 hour;
  • Vacuum and wax Take the fast and waxed slurry and put it into the vacuum and wax machine for degassing to ensure that there are no air bubbles in the material to avoid product air pockets during molding. Set the time for 1 hour;
  • Hot die-casting put the vacuum and waxed slurry into the molding machine for molding;
  • Buried powder bury the formed wax embryo in the wax discharge powder
  • the first sintering set the temperature at 700°C, hold the temperature for 5 hours, and remove the wax in the wax embryo through high temperature;
  • Powder cleaning take the 2mm ball and the product and put it into the vibration throwing machine, set the time for 2 hours;
  • Drying Pack the product in a stainless steel mesh bag, put it in an oven, set the temperature at 100°C, and take 90 minutes to obtain a porous ceramic material;
  • the heating slurry includes 30wt% of organic additives and inorganic additives 70wt%
  • organic additives include ethyl cellulose, terpineol, tributyl citrate and butyl acetate, the content of ethyl cellulose in the organic additives is 15wt%, the content of terpineol is 70wt%, lemon The content of tributyl acetate is 10wt%, and the content of butyl acetate is 5wt%;
  • Described inorganic additive comprises nickel, chromium and ball mill, and the mass content of ball mill in the inorganic additive is 30%, and nickel The total mass content of nickel and chromium is 70%, and the mass ratio of nickel and chromium is 1:1;
  • Wire insertion use a wire insertion machine to insert the lead wires into the two reserved holes of the porous ceramic material;
  • the second sintering Put the product into a vacuum furnace, set the temperature at 500°C, and hold it for 180 minutes to obtain a ceramic atomizing core.
  • Figures 1 to 3 are electron microscopic images of ceramic atomizing cores at different magnifications
  • Figures 4 to 6 are electron microscopic images of commercially available atomizing cores at different magnifications.
  • the white parts in Figures 1 to 6 are metal, and the gray The part is a porous ceramic material. It can be seen that the metal content in the ceramic atomizing core prepared in this embodiment is low.
  • the porous ceramic material prepared in this embodiment has a pore size of 25 ⁇ m and a porosity of 70%; the metal includes nickel and chromium.
  • the smoke is collected, and then the content of formaldehyde and acetaldehyde is analyzed.
  • the ceramic atomizing core prepared in this example The content of formaldehyde and acetaldehyde produced by chemical core is low.
  • the service life of the ceramic atomizing core prepared in this embodiment was tested, the test conditions were: 55mL per mouth, the interval between each mouth was 30 seconds, and the test current was 1.7A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种陶瓷雾化芯及其制备方法和应用,属于雾化技术领域。本发明通过减少陶瓷雾化芯中金属含量达到减少有害物质的产出的效果,同时通过限定多孔陶瓷材料的制备方法,通过球磨控制球磨料的粒径,以石蜡为造孔剂,在第一烧结的过程中发生了排蜡,控制多孔陶瓷材料的孔隙和孔隙率,制得的多孔陶瓷材料的孔隙为25~35μm,孔隙率为40~70%,进而提高烟油的流通性,达到在降低金属含量的情况下,不影响陶瓷雾化芯的使用寿命。

Description

一种陶瓷雾化芯及其制备方法和应用
本申请要求于2021年10月26日提交中国专利局、申请号为CN202111246034.5、发明名称为“一种陶瓷雾化芯及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及雾化技术领域,尤其涉及一种陶瓷雾化芯及其制备方法和应用。
背景技术
雾化芯通过将烟油加热气化,产生雾状颗粒,模仿传统烟草燃烧后的烟雾效果,现有技术的雾化芯中金属的含量在90wt%以上,烟油的主要成份是丙三醇及丙二醇,在将烟油雾化的过程产生了较多的有害物质,例如加入金属当催化剂容易产生甲醛,乙醛等有害物质,若降低金属的含量,则雾化芯会存在不导电的问题,影响雾化芯的使用寿命。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种陶瓷雾化芯及其制备方法和应用。本发明提供的陶瓷雾化芯中金属的含量低,能够减少有害物质的产出,同时不影响使用寿命。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种陶瓷雾化芯的制备方法,包括以下步骤:
将二氧化硅、刚玉砂和白土混合后依次进行干燥和球磨,得到球磨料;
将部分所述球磨料与石蜡混合后进行真空和蜡,得到浆料;
将所述浆料进行依次进行成型、埋粉、第一烧结、清粉和干燥,得到多孔陶瓷材料;
将发热浆料涂覆在所述多孔陶瓷材料的表面后进行第二烧结,得到所述陶瓷雾化芯;所述发热浆料包括以下重量含量的组分:有机添加物10~30%和无机添加物70~90%,所述有机添加物包括乙基纤维素、松油醇、 柠檬酸三丁酯和乙酸丁酯,所述无机添加物包括镍、铬和剩余所述球磨料,所述无机添加物中剩余所述球磨料的质量含量为5~30%,所述无机添加物中镍和铬的质量含量总和为70~95%。
优选地,所述球磨料中二氧化硅的含量为80~97wt%,刚玉砂的含量为0~5wt%,白土的含量为3~15wt%,且所述刚玉砂的含量不为0。
优选地,所述球磨的料球比为1:0.1~1,时间为1~5h。
优选地,所述部分所述球磨料与石蜡的质量比为5:2~10。
优选地,所述第一烧结的温度为700~1500℃,时间为2~5h。
优选地,所述有机添加物中乙基纤维素的含量为5~15wt%,松油醇的含量为50~70wt%,柠檬酸三丁酯的含量为10~30wt%,乙酸丁酯的含量为5~15wt%。
优选地,所述第二烧结的温度为500~1500℃,时间为10~180min。
优选地,所述镍和铬的质量比为1~9:9~1。
本发明还提供了上述技术方案所述制备方法制得的陶瓷雾化芯。
本发明还提供了上述技术方案所述的陶瓷雾化芯在处理烟油中的应用。
本发明提供了一种陶瓷雾化芯的制备方法,包括以下步骤:将二氧化硅、刚玉砂和白土混合后依次进行干燥和球磨,得到球磨料;将部分所述球磨料与石蜡混合后进行真空和蜡,得到浆料;将所述浆料进行依次进行成型、埋粉、第一烧结、清粉和干燥,得到多孔陶瓷材料;将发热浆料涂覆在所述多孔陶瓷材料的表面后进行第二烧结,得到所述陶瓷雾化芯;所述发热浆料包括以下重量含量的组分:有机添加物10~30%和无机添加物70~90%,所述有机添加物包括乙基纤维素、松油醇、柠檬酸三丁酯和乙酸丁酯,所述无机添加物包括镍、铬和剩余所述球磨料,所述无机添加物中剩余所述球磨料的质量含量为5~30%,所述无机添加物中镍和铬的质量含量总和为70~95%。本发明通过减少陶瓷雾化芯中金属含量达到减少有害物质的产出的效果,同时通过限定多孔陶瓷材料的制备方法,通过球磨控制球磨料的粒径,以石蜡为造孔剂,在第一烧结的过程中发生了排蜡,控制多孔陶瓷材料的孔隙和孔隙率,制得的多孔陶瓷材料的孔隙为25~35μm,孔隙率为40~70%,进而提高烟油的流通性,达到在降低金属 含量的情况下,不影响陶瓷雾化芯的使用寿命。
说明书附图
图1为实施例1中陶瓷雾化芯在低放大倍率下的电镜图;
图2为实施例1中陶瓷雾化芯在中放大倍率下的电镜图;
图3为实施例1中陶瓷雾化芯在高放大倍率下的电镜图;
图4为实施例1中市售雾化芯在低放大倍率下的电镜图;
图5为实施例1中市售雾化芯在中放大倍率下的电镜图;
图6为实施例1中市售雾化芯在高放大倍率下的电镜图。
具体实施方式
下面结合实施例和附图对本发明进一步说明。
本发明提供了一种陶瓷雾化芯的制备方法,包括以下步骤:
将二氧化硅、刚玉砂和白土混合后依次进行干燥和球磨,得到球磨料;
将部分所述球磨料与石蜡混合后进行真空和蜡,得到浆料;
将所述浆料进行依次进行成型、埋粉、第一烧结、清粉和干燥,得到多孔陶瓷材料;
将发热浆料涂覆在所述多孔陶瓷材料的表面后进行第二烧结,得到所述陶瓷雾化芯;所述发热浆料包括以下重量含量的组分:有机添加物10~30%和无机添加物70~90%,所述有机添加物包括乙基纤维素、松油醇、柠檬酸三丁酯和乙酸丁酯,所述无机添加物包括镍、铬和剩余所述球磨料,所述无机添加物中剩余所述球磨料的质量含量为5~30%,所述无机添加物中镍和铬的质量含量总和为70~95%。
本发明将二氧化硅、刚玉砂和白土混合后依次进行干燥和球磨,得到球磨料。
本发明对所述二氧化硅、刚玉砂和白土的来源没有特殊的限定,采用本领域技术人员熟知的市售商品即可。
在本发明中,所述球磨料中二氧化硅的含量优选为80~97wt%,刚玉砂的含量优选为0~5wt%,白土的含量优选为3~15wt%,且所述刚玉砂的含量不为0。
在本发明中,所述干燥优选为烘干,所述烘干的温度优选为100~200℃,时间优选为30~60分钟;所述烘干优选在烘箱中进行。
在本发明中,所述球磨的料球比优选为1:0.1~1,时间优选为1~5h。
得到球磨料后,本发明将部分所述球磨料与石蜡混合后进行真空和蜡,得到浆料。
在本发明中,所述部分球磨料与石蜡的质量比优选为5:2~10。
在本发明中,所述石蜡优选溶解后再与部分所述球磨料混合。在本发明中,所述溶解优选为加热,所述加热的温度优选为50~350℃。
在本发明中,所述混合优选为机械搅拌,所述机械搅拌的时间优选为1~5h。
在本发明中,所述真空和蜡优选在真空和蜡机中进行,所述真空和蜡的作用是保证消除气泡,避免成型时产品包气;所述真空和蜡的时间优选为1~5h。
得到浆料后,本发明将所述浆料进行依次进行成型、埋粉、第一烧结、清粉和干燥,得到多孔陶瓷材料。
在本发明中,所述成型优选为热压铸成型,本发明对所述热压铸成型的具体方式没有特殊的限定,能够保证成型即可。
在本发明中,所述埋粉优选为将成型得到的蜡胚埋入排蜡粉中,本发明对所述排蜡粉的种类和用量没有特殊的限定,采用本领域技术人员熟知的方式即可。
在本发明中,所述第一烧结的温度优选为700~1500℃,更优选为80~1200℃,时间优选为2~5h,在所述第一烧结的过程中,蜡胚中的石蜡经高温排除后得到特定孔隙率和孔径的多孔陶瓷材料。本发明得到的所述多孔陶瓷材料的孔隙优选为25~35μm,孔隙率优选为40~70%,更优选为50~60%。
在本发明中,所述清粉的作用是去除排蜡粉。
在本发明中的具体实施例中,所述清粉优选为取2~10mm的球和所得第一烧结产物一同放入振抛机,进行1~2h的清粉。
所述清粉完成后,本发明优选还包括超声波清洗的步骤,本发明对所述超声波清洗的具体方式没有特殊的限定,采用本领域技术人员熟知的方 式即可。
在本发明中,所述干燥优选为烘干,所述烘干的温度优选为100~300℃,时间优选为30~90分钟,所述烘干优选在烘箱中进行。
得到多孔陶瓷材料后,本发明将发热浆料涂覆在所述多孔陶瓷材料的表面后进行第二烧结,得到所述陶瓷雾化芯;所述发热浆料包括以下重量含量的组分:有机添加物10~30%和无机添加物70~90%,所述有机添加物包括乙基纤维素、松油醇、柠檬酸三丁酯和乙酸丁酯,所述无机添加物包括镍、铬和剩余所述球磨料,所述无机添加物中剩余所述球磨料的质量含量为5~30%,所述无机添加物中镍和铬的质量含量总和为70~95%。
本发明对所述涂覆的具体方式没有特殊的限定,采用本领域技术人员熟知的方式即可。
在本发明中,所述发热浆料与多孔陶瓷材料的质量比优选为1~1.2:0.1~0.3。
在本发明中,所述涂覆后湿膜的厚度优选为0.05~0.25mm。
在本发明中,所述有机添加物中乙基纤维素的含量优选为5~15wt%,松油醇的含量优选为50~70wt%,柠檬酸三丁酯的含量优选为10~30wt%,乙酸丁酯的含量优选为5~15wt%。
在本发明中,所述镍和铬的质量比优选为1~9:9~1,更优选为1:1。
在本发明中,所述第二烧结的温度优选为500~1500℃,更优选为800~1200℃,时间优选为10~180min,更优选为60~120min;在所述第二烧结的过程中,镍和铬形成镍铬合金,剩余所述球磨料形成多孔陶瓷。在本发明中,所述第二烧结优选在真空炉中进行。
本发明还提供了上述技术方案所述制备方法制得的陶瓷雾化芯,包括多孔陶瓷载体和金属,所述金属负载在所述多孔陶瓷载体的表面以及孔隙中,所述金属包括镍和铬。
本发明还提供了上述技术方案所述的陶瓷雾化芯在处理烟油中的应用。本发明对所述应用的具体方式没有特殊的限定,采用本领域技术人员熟知的方式即可。
为了进一步说明本发明,下面结合实例对本发明提供的陶瓷雾化芯及其制备方法和应用进行详细地描述,但不能将它们理解为对本发明保护范 围的限定。
实施例1
多孔陶瓷材料配方:二氧化硅80wt%,刚玉砂5wt%,白土15wt%;
按配方称取原辅料;
烘干:放入烘箱,设定100℃,烘烤时间30分钟;
球磨:将烘干好的原辅料总重25公斤,放入50L球磨桶,加入球磨石料球比1:0.1,球磨1小时;
快速和腊:加入石蜡10公斤,设定温度50℃,等待蜡溶解后加入球磨好的原辅料,设定时间1小时;
真空和蜡:取快速和蜡好的浆料放入真空和蜡机脱泡保证将料里没有气泡,避免成型时产品包气,设定时间1小时;
热压铸成型:真空和蜡好的浆料放入成型机成型;
埋粉:将成型好的蜡胚埋入排蜡粉中;
第一烧结:设定温度700℃,保温时间5小时,将蜡胚中的蜡经高温排除;
清粉:取2mm的球和产品一同放入振抛机,设定时间2小时;
清洗:用超声波清洗产品
烘干:将产品用不绣钢网兜装起,放入烘箱,设定温度100℃,时间90分钟,得到多孔陶瓷材料;
印刷:把多孔陶瓷材料放入治具,将发热浆料印刷在多孔陶瓷材料表面,发热浆料与多孔陶瓷材料的质量比为1:0.3,发热浆料包括有机添加物30wt%和无机添加物70wt%,有机添加物包括乙基纤维素、松油醇、柠檬酸三丁酯和乙酸丁酯,有机添加物中乙基纤维素的含量为15wt%,松油醇的含量为70wt%,柠檬酸三丁酯的含量为10wt%,乙酸丁酯的含量为5wt%;所述无机添加物包括镍、铬和球磨料,无机添加物中球磨料的质量含量为30%,无机添加物中镍和铬的质量含量总和为70%,镍和铬的质量比为1:1;
插线:用插线机将引线插入多孔陶瓷材料的两个预留孔;
第二烧结:把产品放入真空炉,设定温度500℃,保温时间180分钟,得到陶瓷雾化芯。
图1~3为陶瓷雾化芯在不同放大倍率下的电镜图,图4~6为市售雾化芯在不同放大倍率下的电镜图,图1~6中白色的部份为金属,灰色的部份为多孔陶瓷材料,可知,本实施例制得的陶瓷雾化芯中金属含量低。
本实施例制得的多孔陶瓷材料的孔隙为25μm,孔隙率为70%;金属包括镍和铬。
将烟油分别经过本实施例制得的陶瓷雾化芯以及市售雾化芯雾化后,收集烟雾,然后做甲醛和乙醛的含量分析,通过对比可知,本实施例制得的陶瓷雾化芯产生的甲醛和乙醛的含量低。
对本实施例制得的陶瓷雾化芯的使用寿命进行测试,测试条件:55mL/每口,每口间隔30秒,测试电流1.7A。
测试结果如表1所示。由表1可知,本发明制得的陶瓷雾化芯使用寿命好。
表1使用寿命测试结果
Figure PCTCN2022125667-appb-000001
Figure PCTCN2022125667-appb-000002
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种陶瓷雾化芯的制备方法,其特征在于,包括以下步骤:
    将二氧化硅、刚玉砂和白土混合后依次进行干燥和球磨,得到球磨料;
    将部分所述球磨料与石蜡混合后进行真空和蜡,得到浆料;
    将所述浆料进行依次进行成型、埋粉、第一烧结、清粉和干燥,得到多孔陶瓷材料;
    将发热浆料涂覆在所述多孔陶瓷材料的表面后进行第二烧结,得到所述陶瓷雾化芯;所述发热浆料包括以下重量含量的组分:有机添加物10~30%和无机添加物70~90%,所述有机添加物包括乙基纤维素、松油醇、柠檬酸三丁酯和乙酸丁酯,所述无机添加物包括镍、铬和剩余所述球磨料,所述无机添加物中剩余所述球磨料的质量含量为5~30%,所述无机添加物中镍和铬的质量含量总和为70~95%。
  2. 根据权利要求1所述的制备方法,其特征在于,所述球磨料中二氧化硅的含量为80~97wt%,刚玉砂的含量为0~5wt%,白土的含量为3~15wt%,且所述刚玉砂的含量不为0。
  3. 根据权利要求1所述的制备方法,其特征在于,所述球磨的料球比为1:0.1~1,时间为1~5h。
  4. 根据权利要求1所述的制备方法,其特征在于,所述部分所述球磨料与石蜡的质量比为5:2~10。
  5. 根据权利要求1或4所述的制备方法,其特征在于,所述真空和蜡的时间为1~5h。
  6. 根据权利要求1所述的制备方法,其特征在于,所述第一烧结的温度为700~1500℃,时间为2~5h。
  7. 根据权利要求1或6所述的制备方法,其特征在于,所述多孔陶瓷材料的孔隙为25~35μm,孔隙率为40~70%。
  8. 根据权利要求1所述的制备方法,其特征在于,所述发热浆料与多孔陶瓷材料的质量比为1~1.2:0.1~0.3。
  9. 根据权利要求1或8所述的制备方法,其特征在于,所述涂覆后湿膜的厚度为0.05~0.25mm。
  10. 根据权利要求1所述的制备方法,其特征在于,所述有机添加物中乙基纤维素的含量为5~15wt%,松油醇的含量为50~70wt%,柠檬酸三丁酯的含量为10~30wt%,乙酸丁酯的含量为5~15wt%。
  11. 根据权利要求1所述的制备方法,其特征在于,所述第二烧结的温度为500~1500℃,时间为10~180min。
  12. 根据权利要求1所述的制备方法,其特征在于,所述镍和铬的质量比为1~9:9~1。
  13. 权利要求1~12任一项所述制备方法制得的陶瓷雾化芯。
  14. 根据权利要求13所述的陶瓷雾化芯,其特征在于,所述陶瓷雾化芯包括多孔陶瓷载体和金属,所述金属负载在所述多孔陶瓷载体的表面以及孔隙中,所述金属包括镍和铬。
  15. 权利要求13或14所述的陶瓷雾化芯在处理烟油中的应用。
PCT/CN2022/125667 2021-10-26 2022-10-17 一种陶瓷雾化芯及其制备方法和应用 WO2023071842A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111246034.5 2021-10-26
CN202111246034.5A CN113912413B (zh) 2021-10-26 2021-10-26 一种陶瓷雾化芯及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023071842A1 true WO2023071842A1 (zh) 2023-05-04

Family

ID=79243021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125667 WO2023071842A1 (zh) 2021-10-26 2022-10-17 一种陶瓷雾化芯及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113912413B (zh)
WO (1) WO2023071842A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912413B (zh) * 2021-10-26 2022-08-23 国光(宣城)新材料科技有限公司 一种陶瓷雾化芯及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153686A (zh) * 2020-01-14 2020-05-15 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷、含该多孔陶瓷的雾化芯及其制备方法
CN111283202A (zh) * 2020-02-19 2020-06-16 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制造方法
CN112321286A (zh) * 2020-11-04 2021-02-05 深圳市博迪科技开发有限公司 一种多层多孔陶瓷材料及其制备方法
CN112321289A (zh) * 2020-10-30 2021-02-05 深圳陶陶科技有限公司 多孔陶瓷的制备方法及其雾化芯
CN112592200A (zh) * 2020-12-18 2021-04-02 深圳市康泓威科技有限公司 雾化芯用纳米多孔陶瓷及其制备方法
CN113024231A (zh) * 2021-03-17 2021-06-25 深圳陶陶科技有限公司 一种多孔陶瓷雾化芯的制备方法及电子烟
CN113912413A (zh) * 2021-10-26 2022-01-11 国光(宣城)新材料科技有限公司 一种陶瓷雾化芯及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157115B2 (en) * 2004-07-07 2007-01-02 Virginia Tech Intellectual Properties, Inc. Porous ceramic, polymer and metal materials with pores created by biological fermentation
CN109721343B (zh) * 2019-01-17 2022-05-24 东莞信柏结构陶瓷股份有限公司 多孔陶瓷原料、多孔陶瓷及其制备方法与应用
JP7482497B2 (ja) * 2019-11-11 2024-05-14 日本ゼトック株式会社 セラミックス多孔質体及びその製造方法
CN110713379B (zh) * 2019-12-02 2023-01-24 湖南福美来电子陶瓷有限公司 一种多孔陶瓷雾化芯及其制备方法
WO2021163922A1 (zh) * 2020-02-19 2021-08-26 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制造方法
CN112043011A (zh) * 2020-08-11 2020-12-08 深圳麦克韦尔科技有限公司 一种雾化芯的制造方法、雾化芯及其电子雾化装置
CN112876283B (zh) * 2021-02-03 2022-05-31 东莞市国研精瓷电子有限公司 一种具有储油、锁油功能的多孔陶瓷基体和雾化芯
CN113213902B (zh) * 2021-05-27 2022-10-04 阿特麦哲(东莞)新材料科技有限公司 彩色多孔陶瓷雾化芯及其制备方法
CN113292354A (zh) * 2021-06-10 2021-08-24 深圳陶陶科技有限公司 多孔陶瓷雾化芯及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153686A (zh) * 2020-01-14 2020-05-15 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷、含该多孔陶瓷的雾化芯及其制备方法
CN111283202A (zh) * 2020-02-19 2020-06-16 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制造方法
CN112321289A (zh) * 2020-10-30 2021-02-05 深圳陶陶科技有限公司 多孔陶瓷的制备方法及其雾化芯
CN112321286A (zh) * 2020-11-04 2021-02-05 深圳市博迪科技开发有限公司 一种多层多孔陶瓷材料及其制备方法
CN112592200A (zh) * 2020-12-18 2021-04-02 深圳市康泓威科技有限公司 雾化芯用纳米多孔陶瓷及其制备方法
CN113024231A (zh) * 2021-03-17 2021-06-25 深圳陶陶科技有限公司 一种多孔陶瓷雾化芯的制备方法及电子烟
CN113912413A (zh) * 2021-10-26 2022-01-11 国光(宣城)新材料科技有限公司 一种陶瓷雾化芯及其制备方法和应用

Also Published As

Publication number Publication date
CN113912413A (zh) 2022-01-11
CN113912413B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
CN112047753B (zh) 多孔陶瓷及其制备方法和应用
CN108585810B (zh) 微孔陶瓷及其制备方法和雾化芯
WO2023071842A1 (zh) 一种陶瓷雾化芯及其制备方法和应用
JP7312883B2 (ja) 鋳型材料及びその製造方法、鋳型の製造方法、並びに回収耐火性骨材の再生方法
CN108623322A (zh) 多孔陶瓷及其制备方法、雾化芯和电子烟
JP2011500502A5 (zh)
CN103071764A (zh) 一种用于钛及钛合金精密铸造的CaZrO3型壳及其制备方法
CN112679202A (zh) 一种多孔陶瓷组合物及其制备方法和应用该陶瓷组合物的电子烟雾化芯
CN108503378B (zh) 一种尖晶石增强氧化镁基泡沫陶瓷过滤器及其制备方法
CN105645963B (zh) 一种再结晶碳化硅制品及其制备方法
CN104926309B (zh) 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法
CN109261901A (zh) 一种易溃散型壳的制壳工艺
JP2012504092A (ja) 多孔質SiC材料の製造方法
CN114082896B (zh) 一种光固化3d打印铝基陶瓷型芯及其制备方法
JP7137376B2 (ja) セラミックス製造用顆粒の製造方法
JP6595327B2 (ja) 鋳型の積層造型方法
KR20180076355A (ko) 티타늄 합금 주조용 주형 제조방법 및 이에 의해 제조된 티타늄 합금 주조용 주형
JPH04329801A (ja) 焼結部品の製造方法
CN105817572A (zh) 一种抗裂云母粉改性石英基消失模涂料及其制备方法
JPH10265259A (ja) 溶融シリカ質耐火物およびその製造方法
TWI396759B (zh) A method for producing a metal - based ceramic composite target containing noble metal
US20100237524A1 (en) Method of manufacturing ceramic capable of adsorbing fragrance and releasing fragrant aroma
JP2008150224A (ja) セラミックスの製造方法
JP7278909B2 (ja) 積層造形用金属粉末
JPH05169185A (ja) 活性金属精密鋳造用無機バインダー及び鋳型材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE