WO2023098168A1 - Procédé de préparation de matériau d'électrode positive de batterie sodium-ion à base de manganèse de type p2 - Google Patents

Procédé de préparation de matériau d'électrode positive de batterie sodium-ion à base de manganèse de type p2 Download PDF

Info

Publication number
WO2023098168A1
WO2023098168A1 PCT/CN2022/114551 CN2022114551W WO2023098168A1 WO 2023098168 A1 WO2023098168 A1 WO 2023098168A1 CN 2022114551 W CN2022114551 W CN 2022114551W WO 2023098168 A1 WO2023098168 A1 WO 2023098168A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
manganese
solution
preparation
reaction
Prior art date
Application number
PCT/CN2022/114551
Other languages
English (en)
Chinese (zh)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2313934.8A priority Critical patent/GB2618967A/en
Priority to DE112022002537.9T priority patent/DE112022002537T5/de
Publication of WO2023098168A1 publication Critical patent/WO2023098168A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of sodium ion batteries, and in particular relates to a preparation method of a P2 type manganese-based sodium ion battery cathode material.
  • Lithium-ion batteries have been widely used in portable electronic devices, electric vehicles and other fields, and have achieved great success and a very rapid growth momentum.
  • the low reserves of lithium resources lead to rising costs of lithium-ion batteries, and sodium-ion batteries are expected to replace lithium-ion batteries in large-scale energy storage devices.
  • layered transition metal oxides, especially sodium-manganese oxides have attracted extensive attention due to their advantages such as high specific capacity and working voltage, easy preparation, environmental friendliness, non-toxicity, and low cost.
  • Layered sodium manganese oxide is one of the positive electrode materials for sodium ion batteries, which is mainly divided into two structures: P2 phase and O3 phase. Compared with the O3 phase structure, the P2 phase structure has higher ionic conductivity and lower diffusion barrier. Therefore, P2-type manganese-based layered oxides are a very potential cathode material for sodium-ion batteries.
  • the electrochemical performance of P2-Na 0.67 MnO 2 material is excellent, the theoretical specific capacity is about 173mAh/g, and the average working voltage is as high as 3.8V, which has attracted extensive attention of researchers in related fields.
  • the synthesis process of P2-Na 0.67 MnO 2 material is simple. Compared with most P2 phase materials, after sintering, high-temperature quenching is not required to ensure that the material does not undergo P2-P3 phase transformation. After sintering, natural cooling can obtain the P2 structure. It is conducive to the wide application of materials. The P2-Na 0.67 MnO 2 material will undergo P2-O2 transition when charged above 4.2V.
  • Element doping is an effective means to reduce the ordering degree of Na + vacancies, improve the diffusion ability of Na +, improve the rate performance of materials, inhibit phase transition and improve cycle stability.
  • Doping and modifying the material can improve the lattice structure of the electrode material, improve the thermal stability of the material, increase the ion diffusion capacity of the material, and reduce the capacity loss during cycling, thereby enhancing the overall electrochemical performance of the sodium-ion battery.
  • the currently reported doping modification technology is generally solid-state sintering of manganese source, sodium source and doping elements together, which makes it difficult for doping elements to enter the NaMnO 2 crystal structure or the amount of doping elements entering the structure is small, making it difficult to To achieve the ideal function of stabilizing the crystal structure.
  • Li + ion radius is smaller than the Na + ion radius
  • Li + is more likely to enter the material lattice during the one-step high-temperature solid-state synthesis process, while Na + is difficult to obtain due to its larger ion radius. It completely enters the interior of the lattice, leaving a large amount of sodium compounds on the surface of the material, which affects the electrochemical performance of the material.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method for preparing a P2-type manganese-based sodium-ion battery cathode material, which can improve the doping effect of doped metals and the intercalation of sodium ions, thereby improving the stability and electrochemical performance of the material.
  • a kind of preparation method of P2 type manganese-based sodium ion battery cathode material comprising the following steps:
  • step S1 the concentration of the oxalic acid solution is 2-5mol/L; the solid-liquid ratio of the manganese dioxide addition to the oxalic acid solution is (25-80) g : 1L.
  • step S1 the temperature of the reaction is 70-90°C.
  • the concentration of the sodium hydroxide solution is 0.5-2.0 mol/L.
  • the doping metal is at least one of copper, nickel or magnesium.
  • the alcohol solution containing doping metal is an alcohol solution of at least one of copper chloride, nickel chloride, magnesium chloride or magnesium bromide.
  • the alcohol in the alcohol solution is ethanol.
  • step S3 the concentration of the doping metal in the alcohol solution containing the doping metal is 0.05-0.35mol/L, and the amount of the alcohol solution containing the doping metal is the 0.8-1.2 times the volume of the oxalic acid solution.
  • washing the precipitate is also included after the solid-liquid separation.
  • both solid-liquid separation and washing operations are completed under light-shielding conditions, and absolute ethanol is used for the washing.
  • the manganese source is at least one of manganese dioxide, manganese oxalate, manganese acetate or manganese carbonate.
  • step S4 in the mixed material, the molar ratio of sodium to manganese is (1-3):3.
  • step S4 the temperature of the calcination is 800-1000°C.
  • step S4 the calcination time is 10-24h.
  • the present invention adopts the complexation reaction of oxalic acid and manganese dioxide, and after being neutralized by sodium hydroxide, sodium trioxalate manganate is obtained.
  • the precipitate containing sodium trioxalate manganate is used as the sodium source.
  • doped metals further stabilizes its internal structure, overcomes the problems of uneven doping of elements and easy collapse of the lattice during solid-phase sintering in the prior art, and further improves the specific capacity and cycle performance of the cathode material of sodium-ion batteries and rate performance.
  • FIG. 1 is an SEM image of a P2 type manganese-based sodium ion battery positive electrode material prepared in Example 1 of the present invention.
  • step (3) Add 2.0mol/L sodium hydroxide solution immediately after the reaction in step (2), until the pH of the solution is 4.8-5.2, after the reaction, obtain the second reaction solution, which is carried out in an ice bath;
  • step (3) Add 1.0mol/L sodium hydroxide solution immediately after the reaction in step (2), until the pH of the solution is 4.8-5.2, after the reaction, obtain the second reaction solution, which is carried out in an ice bath;
  • Preparation concentration is 100mL of nickel chloride ethanol solution of 0.07mol/L, and joins in the second reaction liquid of step (3) ice bath and carries out alcohol analysis, and ethanol is dehydrated alcohol;
  • step (3) Add 2.0mol/L sodium hydroxide solution immediately after the reaction in step (2), until the pH of the solution is 4.8-5.2, after the reaction, obtain the second reaction solution, which is carried out in an ice bath;
  • Preparation concentration is 80mL of copper chloride ethanol solution of 0.35mol/L, and joins in the second reaction liquid of step (3) ice bath and carries out alcohol analysis, and ethanol is dehydrated alcohol;
  • a P2-type manganese-based sodium-ion battery positive electrode material is prepared.
  • the difference from Example 2 is that the sodium source and the manganese source are directly sintered in solid phase without doping.
  • the specific process is as follows:
  • Manganese oxalate and sodium oxalate are mixed according to the elemental molar ratio of sodium to manganese of 2:3, ground, and calcined at 900°C for 18 hours to obtain a manganese-based sodium-ion battery cathode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé de préparation d'un matériau d'électrode positive de batterie au sodium-ion à base de manganèse de type P2 consistant à : ajouter du dioxyde de manganèse à une solution d'acide oxalique pour une réaction pour obtenir une première solution de réaction ; ajouter une solution d'hydroxyde de sodium à la première solution de réaction pour une réaction pour obtenir une seconde solution de réaction ; réaliser un bain de glace sur la seconde solution de réaction, ajouter une solution d'alcool contenant un métal dopé pour la précipitation d'alcool, et réaliser une séparation solide-liquide pour obtenir un précipité ; et mélanger le précipité avec une source de manganèse, et broyer et calciner le mélange pour obtenir le matériau d'électrode positive de batterie au sodium-ion à base de manganèse de type P2. Selon le procédé, du trioxalate de manganate de sodium est préparé au moyen d'une réaction de complexation d'acide oxalique et de dioxyde de manganèse, et la neutralisation de l'hydroxyde de sodium. Lorsque le matériau d'électrode positive de batterie au sodium-ion est préparé, un précipité contenant du trioxalate de manganate de sodium est utilisé en tant que source de sodium, et aucune source de sodium supplémentaire n'a besoin d'être ajoutée pendant le frittage, de sorte que le problème selon lequel Na+ dans une source de sodium externe est difficile à entrer complètement dans un réseau cristallin en raison d'un grand rayon ionique est évité, les résidus de sodium sur la surface du matériau sont réduits, et les performances électrochimiques du matériau sont encore améliorées.
PCT/CN2022/114551 2021-11-30 2022-08-24 Procédé de préparation de matériau d'électrode positive de batterie sodium-ion à base de manganèse de type p2 WO2023098168A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2313934.8A GB2618967A (en) 2021-11-30 2022-08-24 Preparation method for p2-type manganese-based sodium-ion battery positive electrode material
DE112022002537.9T DE112022002537T5 (de) 2021-11-30 2022-08-24 Herstellungsverfahren für positives natrium-ionen-batterie-elektrodenmaterial vom p2-typ auf manganbasis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111444990.4A CN114229908B (zh) 2021-11-30 2021-11-30 P2型锰基钠离子电池正极材料的制备方法
CN202111444990.4 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098168A1 true WO2023098168A1 (fr) 2023-06-08

Family

ID=80752250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114551 WO2023098168A1 (fr) 2021-11-30 2022-08-24 Procédé de préparation de matériau d'électrode positive de batterie sodium-ion à base de manganèse de type p2

Country Status (4)

Country Link
CN (1) CN114229908B (fr)
DE (1) DE112022002537T5 (fr)
GB (1) GB2618967A (fr)
WO (1) WO2023098168A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229908B (zh) * 2021-11-30 2023-07-07 广东邦普循环科技有限公司 P2型锰基钠离子电池正极材料的制备方法
CN115064670B (zh) * 2022-06-20 2024-02-09 中南大学 一种掺杂包覆改性的镍锰酸钠正极材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115772A1 (fr) * 2013-01-23 2014-07-31 学校法人東京理科大学 Oxyde métallique combiné, substance active pour électrode positive pour batterie rechargeable au sodium, électrode positive pour batterie rechargeable au sodium et batterie rechargeable au sodium
US20150004491A1 (en) * 2013-06-28 2015-01-01 Nichia Corporation Positive-electrode active material for non-aqueous secondary battery and method for producing the same
US20180205081A1 (en) * 2015-07-15 2018-07-19 Toyota Motor Europe Sodium layered oxide as cathode material for sodium ion battery
CN109686969A (zh) * 2018-12-14 2019-04-26 北京化工大学 一种层状过渡金属氧化物材料的制备及应用该材料的钠离子电池
CN111180706A (zh) * 2020-01-08 2020-05-19 太原理工大学 一种钠离子电池正极材料钛锰酸钠的制备方法
CN114229908A (zh) * 2021-11-30 2022-03-25 广东邦普循环科技有限公司 P2型锰基钠离子电池正极材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105692721B (zh) * 2016-01-29 2017-08-25 太原理工大学 一种钠离子电池正极材料及其制备方法和使用方法
CN105932260B (zh) * 2016-06-30 2020-10-30 中南大学 一种钠离子电池氧化物正极材料及其制备方法和应用
CN107591531A (zh) * 2017-09-25 2018-01-16 华南师范大学 一种锂/钠双离子锰基氧化物正极材料及其制备方法与应用
CN111224093B (zh) * 2019-10-12 2022-05-27 南方科技大学 具有锰浓度梯度的电极材料及其制备方法和钠离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115772A1 (fr) * 2013-01-23 2014-07-31 学校法人東京理科大学 Oxyde métallique combiné, substance active pour électrode positive pour batterie rechargeable au sodium, électrode positive pour batterie rechargeable au sodium et batterie rechargeable au sodium
US20150004491A1 (en) * 2013-06-28 2015-01-01 Nichia Corporation Positive-electrode active material for non-aqueous secondary battery and method for producing the same
US20180205081A1 (en) * 2015-07-15 2018-07-19 Toyota Motor Europe Sodium layered oxide as cathode material for sodium ion battery
CN109686969A (zh) * 2018-12-14 2019-04-26 北京化工大学 一种层状过渡金属氧化物材料的制备及应用该材料的钠离子电池
CN111180706A (zh) * 2020-01-08 2020-05-19 太原理工大学 一种钠离子电池正极材料钛锰酸钠的制备方法
CN114229908A (zh) * 2021-11-30 2022-03-25 广东邦普循环科技有限公司 P2型锰基钠离子电池正极材料的制备方法

Also Published As

Publication number Publication date
CN114229908B (zh) 2023-07-07
CN114229908A (zh) 2022-03-25
GB202313934D0 (en) 2023-10-25
DE112022002537T5 (de) 2024-03-07
GB2618967A (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2023098168A1 (fr) Procédé de préparation de matériau d'électrode positive de batterie sodium-ion à base de manganèse de type p2
Lin et al. Crystallographic facet-and size-controllable synthesis of spinel LiNi 0.5 Mn 1.5 O 4 with excellent cyclic stability as cathode of high voltage lithium ion battery
Thackeray et al. The versatility of MnO2 for lithium battery applications
WO2022170648A1 (fr) Matériau d'électrode positive à entropie élevée, son procédé de préparation et son application
Yoshio et al. Preparation of LiyMnxNi1− xO2 as a cathode for lithium-ion batteries
JP5158787B2 (ja) 新規チタン酸化物及びその製造方法、並びにそれを活物質として用いたリチウム二次電池
CN106505193A (zh) 单晶镍钴锰酸锂正极材料及其制备方法和锂离子电池
JP2021520333A (ja) O3/p2混合相ナトリウム含有ドープ層状酸化物材料
JPH0837007A (ja) リチウム含有遷移金属複合酸化物及びその製造方法並びにその用途
CN103825016A (zh) 一种富锂高镍正极材料及其制备方法
CN102569781A (zh) 一种高电压锂离子电池正极材料及其制备方法
CN102916171B (zh) 一种浓度渐变的球形镍锰酸锂正极材料及其制备方法
CN101704681B (zh) 一种尖晶石结构钛酸锂的制备方法
WO2007000075A1 (fr) Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium
WO2023155539A1 (fr) Procédé de préparation d'un matériau de phosphate de ferrovanadium sodique et son application
CN110492095A (zh) 一种锡掺杂的富锂锰基正极材料及其制备方法
CN109088067A (zh) 一种低钴掺杂尖晶石-层状结构镍锰酸锂两相复合正极材料的制备方法
CN113443662B (zh) 一种钠和/或钾掺杂高镍三元正极材料的制备方法
JP2019123668A (ja) リチウムナトリウム複合酸化物、二次電池用正極活物質および二次電池
CN114373920B (zh) 一种高熵氧化物及其制备方法和应用
CN113845152A (zh) 镍锰酸锂正极材料、其制备方法和锂离子电池
JP2003151549A (ja) 層状酸化物電極材料とその製造方法およびそれを用いる電池
CN105753072A (zh) 一种镍锰酸锂、其制备方法及用途
JP5880928B2 (ja) リチウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したリチウム二次電池
WO2024066809A1 (fr) Matériau d'électrode positive, son procédé de préparation, feuille d'électrode positive, batterie secondaire et dispositif électronique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202313934

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220824

WWE Wipo information: entry into national phase

Ref document number: P202390200

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 112022002537

Country of ref document: DE