WO2023097820A1 - 黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用 - Google Patents

黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用 Download PDF

Info

Publication number
WO2023097820A1
WO2023097820A1 PCT/CN2021/140609 CN2021140609W WO2023097820A1 WO 2023097820 A1 WO2023097820 A1 WO 2023097820A1 CN 2021140609 W CN2021140609 W CN 2021140609W WO 2023097820 A1 WO2023097820 A1 WO 2023097820A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
flavonol
group
substituted
thienyl
Prior art date
Application number
PCT/CN2021/140609
Other languages
English (en)
French (fr)
Inventor
吕超
李英
付晨曦
张冰
崔蕾蕾
齐婧琪
韦玉霞
Original Assignee
德州学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德州学院 filed Critical 德州学院
Publication of WO2023097820A1 publication Critical patent/WO2023097820A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the invention belongs to the technical field of frontier new materials, and relates to flavonoid alcohol compounds and their preparation methods and their application in detecting biothiols.
  • the current fluorescent probes for detecting biothiols use fluorescent group skeletons such as rhodamine, pyrrole fluorine boron, cyanine dyes, anthocyanins, and flavonols.
  • fluorescent group skeletons such as rhodamine, pyrrole fluorine boron, cyanine dyes, anthocyanins, and flavonols.
  • the inventors have found that the existing fluorescent probes are often indistinguishable in the detection of cysteine and homocysteine, and these two molecules cannot be distinguished. If you want to distinguish, you often need to synthesize different types of Molecular skeleton, the process is time-consuming, laborious, time-consuming and uneconomical, and the operation is cumbersome.
  • the object of the present invention is to provide flavonol compounds and their preparation methods and their application in the detection of biothiols.
  • the flavonol compounds provided by the invention are used as fluorescent probes for cysteine, Homocysteine has stable recognition performance, and has the advantages of high sensitivity, good selectivity, and low cost.
  • R 1 is selected from strong electron-withdrawing groups
  • R 2 is selected from H, aryl, substituted aryl, furyl, substituted furyl, thienyl, substituted thienyl.
  • a method for preparing the above-mentioned flavonol compounds comprises the step of obtaining the compound shown in formula I by using aldehyde compounds and 2-hydroxy-4-methoxyacetophenone as raw materials according to the following reaction formula;
  • R 1 and R 2 are as above.
  • a fluorescent probe includes a fluorescent active substance, and the fluorescent active substance is the above-mentioned flavonol compound.
  • the present invention has found through research that when the flavonol-based fluorescent group is used as the skeleton, when the acrylate group is connected to the benzene ring with a strong electron-withdrawing group at the 4-position, it is used as a fluorescent probe, which has the properties of p-cysteine, isotype Cysteine has the property of stable recognition.
  • the flavonol compounds provided by the present invention are used as fluorescent probes to detect amino acids, due to the influence of the benzene ring with a strong electron-withdrawing group on the acrylate group at the 4-position, the fluorescent probe can be combined with cysteine
  • the reactivity of acid is stronger, but it does not react to other amino acids, especially it can distinguish cysteine and homocysteine, with good selectivity and high specificity.
  • the flavonol compound provided by the invention is used as a fluorescent probe to detect cysteine, the linear range is 16-200 ⁇ M, the detection limit is 51 nmol, and it has excellent sensitivity.
  • Fig. 1 is the nuclear magnetic hydrogen spectrogram that the embodiment of the present invention 1 prepares intermediate 1;
  • Fig. 2 is the NMR spectrum figure of intermediate 1 prepared by Example 1 of the present invention.
  • Fig. 3 is the proton nuclear magnetic spectrum figure that the embodiment of the present invention 1 prepares probe HBNA;
  • Fig. 4 is the carbon nuclear magnetic spectrogram that the embodiment of the present invention 1 prepares probe HBNA;
  • Fig. 5 is the nuclear magnetic proton spectrum figure that the embodiment of the present invention 2 prepares probe HBAC;
  • Fig. 6 is the nuclear magnetic carbon spectrogram of probe HBAC prepared in embodiment 2 of the present invention.
  • Fig. 7 is the high-resolution mass spectrum of Intermediate 1 prepared in Example 1 of the present invention.
  • Fig. 8 is the high-resolution mass spectrum of probe HBNA prepared in Example 1 of the present invention.
  • Fig. 9 is the high-resolution mass spectrum of probe HBAC prepared in Example 2 of the present invention.
  • Fig. 10 is the ultraviolet absorption spectrum of intermediate 1, probe HBNA and probe HBAC prepared by Examples 1 and 2 of the present invention.
  • Fig. 11 is the fluorescence emission spectrum of intermediate probe HBNA prepared in Example 1 of the present invention in response to amino acids;
  • Fig. 12 is the fluorescence emission spectrum of the intermediate probe HBAC prepared in Example 2 of the present invention in response to amino acids.
  • the strong electron-withdrawing group described in the present invention is a strong electron-withdrawing group generally defined in chemistry, such as nitro, trihalomethyl (trifluoromethyl, trichloromethyl, etc.), tertiary amine positive ion (-N + ( R) 3 ) etc.
  • the present invention proposes flavonol compounds and their preparation methods and their application in detecting biothiols.
  • a typical embodiment of the present invention provides a flavonol compound, the chemical structure of which is shown in formula I:
  • R 1 is selected from strong electron-withdrawing groups
  • R 2 is selected from H, aryl, substituted aryl, furyl, substituted furyl, thienyl, substituted thienyl.
  • Strong electron-withdrawing groups generally include nitro, trihalomethyl (trifluoromethyl, trichloromethyl, etc.), tertiary ammonium cations (-N + (R) 3 ), in some embodiments of this embodiment, R 1 is nitro.
  • the R group When the R group is selected from aryl, substituted aryl, furyl, substituted furyl, thienyl, and substituted thienyl, it can increase the conjugated structure of the flavonol-based fluorescent group skeleton, thereby enhancing the luminous intensity of fluorescence.
  • the substituted aryl group is, for example, an aryl group substituted by an alkyl group, an amino group, a nitro group, a halogen group or the like.
  • the substituted furyl group is, for example, a furyl group substituted by an alkyl group, an amino group, a nitro group, a halogen group or the like.
  • Substituted thienyl groups such as thienyl groups substituted by alkyl groups, amino groups, nitro groups, halogen groups, etc.
  • the R group is substituted thienyl.
  • substituted thienyl groups such as halogen Thienyl groups (especially 5-halothiophen-2-yl groups) can greatly reduce the increase time of fluorescence intensity, and the detection can be realized in 1 minute.
  • Another embodiment of the present invention provides a method for preparing the above-mentioned flavonol compounds, including using aldehyde compounds and 2-hydroxy-4-methoxyacetophenone as raw materials to obtain the compound of formula I according to the following reaction formula: the step of showing the compound;
  • R 1 and R 2 are as above.
  • the conditions for preparing compound a are: first conduct a heating reaction under basic conditions, and then add hydrogen peroxide to perform the reaction under basic conditions.
  • the molar ratio of the aldehyde compound to 2-hydroxy-4-methoxyacetophenone is 0.7 ⁇ 0.9:1.
  • the process of preparing the compound shown in formula I from compound a and compound b is as follows: first convert the carboxyl group in compound b into an acid chloride group, and then carry out the reaction with compound a under the action of triethylamine and a catalyst Esterification reaction. Since the reaction between the acid chloride group and the hydroxyl group is faster, this method can better improve the reaction rate.
  • the molar ratio of compound a to compound b is 1:1.2 ⁇ 1.5.
  • the third embodiment of the present invention provides an application of the above-mentioned flavonol compounds in the detection of biothiols.
  • the fourth embodiment of the present invention provides a fluorescent probe, including a fluorescent active substance, and the fluorescent active substance is the flavonol compound mentioned above.
  • the fifth embodiment of the present invention provides an application of the above-mentioned flavonol compound or fluorescent probe in identifying cysteine and homocysteine.
  • the intermediate product 1 (176.5 mg, 0.5 mmol) prepared in Example 1 was dissolved in 30 mL of dichloromethane, and triethylamine (151 mg, 1.5 mmol) and a catalytic amount of DMAP (6.1 mg, 0.05 mmol) were added dropwise at 0°C , after magnetic stirring for 30 min, acryloyl chloride (135.8 mg, 1.5 mmol) was slowly added dropwise, and stirring was continued for 1 h after the addition was completed, and stirred for 4 h after slowly returning to room temperature.
  • Probe intermediate 1 (3.53mg, 0.01mmol), HBNA (5.28mg, 0.01mmol) and HBAC (4.07mg, 0.01mmol) were accurately weighed and dissolved in dimethyl sulfoxide to prepare a 1.0mmol/L mother solution, Store in refrigerator at 4°C for later use.
  • Various amino acids were dissolved in water and prepared into 1.0mmol/L mother liquor for later use.
  • the HBNA probe has a stronger reactivity with cysteine, a weaker reactivity with homocysteine than cysteine and stronger reactivity with other amino acids, which is mainly due to the 4-position in 4-nitrophenyl
  • the nitro group has the characteristics of strong electron-withdrawing, which can affect the acrylate group, so that the reactivity with cysteine and homocysteine is different.
  • cysteine and homocysteine can be Amino acid detection to distinguish.
  • the linear range is 16-200 ⁇ M, and the detection limit is 51 nmol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

属于前沿新材料技术领域,涉及黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用,化学结构如式I所示:其中,R 1选自强吸电子基;R 2选自H、芳基、取代芳基、呋喃基、取代呋喃基、噻吩基、取代噻吩基。所述黄酮醇类化合物作为荧光探针,对半胱氨酸、同型半胱氨酸具有稳定识别的性能,而且具有灵敏度高、选择性好、成本低廉等优势。

Description

黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用 技术领域
本发明属于前沿新材料技术领域,涉及黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
据发明人了解,目前检测生物硫醇的荧光探针采用罗丹明、吡咯亚氟硼、花菁染料、花青素、黄酮醇等荧光基团骨架。然而,发明人研究发现,现有荧光探针对于半胱氨酸、同型半胱氨酸的检测往往没有区别性,不能将这两种分子进行区分,如果想要进行区分往往需要合成不同类型的分子骨架,该过程耗时、费力,既浪费时间又不经济,操作繁琐。
发明内容
为了解决现有技术的不足,本发明的目的是提供黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用,本发明提供的黄酮醇类化合物作为荧光探针,对半胱氨酸、同型半胱氨酸具有稳定识别的性能,而且具有灵敏度高、选择性好、成本低廉等优势。
为了实现上述目的,本发明的技术方案为:
一方面,一种黄酮醇类化合物,化学结构如式I所示:
Figure PCTCN2021140609-appb-000001
其中,R 1选自强吸电子基;R 2选自H、芳基、取代芳基、呋喃基、取代呋喃基、噻吩基、取代噻吩基。
另一方面,一种上述黄酮醇类化合物的制备方法,包括以醛类化合物和2-羟基-4-甲氧基苯乙酮作为原料按照如下反应式获得式I所示化合物的步骤;
Figure PCTCN2021140609-appb-000002
其中,R 1、R 2如上所述。
第三方面,一种上述黄酮醇类化合物在检测生物硫醇中的应用。
第四方面,一种荧光探针,包括荧光活性物质,所述荧光活性物质为上述黄酮醇类化合物。
第五方面,一种上述黄酮醇类化合物或荧光探针在鉴别半胱氨酸与高半胱氨酸中的应用。
本发明经过研究发现,当以黄酮醇类荧光基团作为骨架时,丙烯酸酯基连接4位带有强吸电子基的苯环时,将其作为荧光探针,具有对半胱氨酸、同型半胱氨酸具有稳定识别的性能。
本发明的有益效果为:
经过实验表明,本发明提供的黄酮醇类化合物作为荧光探针在检测氨基酸时,由于4位带有强吸电子基的苯环对丙烯酸酯基的影响,使得该荧光探针能够与半胱氨酸的反应性更强,而对于其他氨基酸不反应,尤其是能区分半胱氨酸、同型半胱氨酸,选择性好、特异性高。另外,以本发明提供的黄酮醇类化合物作为荧光探针在检测半胱氨酸时,线性范围为16~200μM,检测限为51nmol,具有优异的灵敏度。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1制备中间体1的核磁氢谱图;
图2为本发明实施例1制备中间体1的核磁碳谱图;
图3为本发明实施例1制备探针HBNA的核磁氢谱图;
图4为本发明实施例1制备探针HBNA的核磁碳谱图;
图5为本发明实施例2制备探针HBAC的核磁氢谱图;
图6为本发明实施例2制备探针HBAC的核磁碳谱图;
图7为本发明实施例1制备中间体1高分辨质谱图;
图8为本发明实施例1制备探针HBNA高分辨质谱图;
图9为本发明实施例2制备探针HBAC高分辨质谱图;
图10为本发明实施例1、2制备中间体1、探针HBNA和探针HBAC紫外吸收谱图;
图11为本发明实施例1制备中间体探针HBNA响应氨基酸荧光发射谱图;
图12为本发明实施例2制备中间体探针HBAC响应氨基酸荧光发射谱图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本发明所述的强吸电子基为化学中一般定义的强吸电子基,例如硝基、三卤甲基(三氟甲基、三氯甲基等)、叔胺正离子(-N +(R) 3)等。
鉴于现有检测生物硫醇的荧光探针难以区别半胱氨酸和同型半胱氨酸,本发明提出了黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用。
本发明的一种典型实施方式,提供了一种黄酮醇类化合物,化学结构如式I所示:
Figure PCTCN2021140609-appb-000003
其中,R 1选自强吸电子基;R 2选自H、芳基、取代芳基、呋喃基、取代呋喃基、噻吩基、取代噻吩基。
强吸电子基一般包括硝基、三卤甲基(三氟甲基、三氯甲基等)、叔胺正离子(-N +(R) 3),该实施方式的一些实施例中,R 1为硝基。
当R 2基选自芳基、取代芳基、呋喃基、取代呋喃基、噻吩基、取代噻吩基时,能增加黄酮醇类荧光基团骨架的共轭结构,从而增强荧光的发光强度。所述取代芳基,例如烷基、氨基、硝基、卤素等基团取代的芳基。所述取代呋喃基,例如烷基、氨基、硝基、卤素等基团取代的呋喃基。取代噻吩基,例如烷基、氨基、硝基、卤素等基团取代的噻吩基。该实施方式的一些实施例中,R 2基为取代噻吩基。经过研究表明,当采用其他基团增加共轭结构时,虽然其荧光强度更高,但是总体上是随着时间的增长荧光强度逐渐增高,检测时间较长,然而,采用取代噻吩基,例如卤代噻吩基(尤其是5-卤代噻吩-2-基),能够大大降低荧光强度的增高时间,在1分钟即可实现检测。
本发明的另一种实施方式,提供了一种上述黄酮醇类化合物的制备方法,包括以醛类化合物和2-羟基-4-甲氧基苯乙酮作为原料按照如下反应式获得式I所示化合物的步骤;
Figure PCTCN2021140609-appb-000004
其中,R 1、R 2如上所述。
该实施方式的一些实施例中,制备化合物a的条件为:先在碱性条件下进行加热反应,然后在碱性条件下加入过氧化氢进行反应。
该实施方式的一些实施例中,醛类化合物和2-羟基-4-甲氧基苯乙酮的摩尔比为0.7~0.9:1。
该实施方式的一些实施例中,化合物a与化合物b制备式I所示化合物的过 程为:先将化合物b中的羧基转化为酰氯基,然后与化合物a在三乙胺和催化剂的作用下进行酯化反应。由于酰氯基与羟基的反应更迅速,因而该方法能够更好的提高反应速率。
该实施方式的一些实施例中,化合物a与化合物b的摩尔比为1:1.2~1.5。
本发明的第三种实施方式,提供了一种上述黄酮醇类化合物在检测生物硫醇中的应用。
本发明的第四种实施方式,提供了一种荧光探针,包括荧光活性物质,所述荧光活性物质为上述黄酮醇类化合物。
本发明的第五种实施方式,提供了一种上述黄酮醇类化合物或荧光探针在鉴别半胱氨酸与高半胱氨酸中的应用。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例1
1)2-(5-溴噻吩-2-基)-3-羟基-7-甲氧基-4H-苯并吡喃-4-酮(中间体产物1)的制备。
将2-溴-5-醛基噻吩(1.53g,8mmol)加入圆底烧瓶中,溶于50mL乙醇中,再加入2-羟基-4-甲氧基苯乙酮(1.66g,10mmol)和40mL 1mol/L NaOH溶液,室温搅拌10min,再50℃恒温搅拌16h后,TLC追踪监测反应完全后,将反应液倾入120mL冰水中,以2mol/L盐酸调节pH至中性。减压抽滤、蒸馏水洗涤滤饼得到黄色固体,干燥后未经纯化,直接加入到60mL乙醇和40mL 1mol/L氢氧化钠混合溶液中,在0℃下磁力搅拌反应30min后,逐滴滴加浓度为30%的过氧化氢4mL,变为浅黄色,冰水浴搅拌30min后,缓慢恢复至室温继续搅拌12h。减压抽滤出固体沉淀物、蒸馏水洗涤滤饼,干燥后用无水 乙醇重结晶,抽滤,得到灰白色粉末中间体产物1(1.75g,产率61.8%)。 1H NMR(500MHz,Chloroform-d)δ8.11(d,J=8.9Hz,1H),7.66(s,1H),7.16(d,J=4.1Hz,1H),6.98(dd,J=8.9,2.3Hz,1H),6.89(d,J=2.3Hz,1H),3.93(s,3H). 13C NMR(126MHz,Chloroform-d)δ171.9,164.4,156.9,140.9,136.0,134.3,130.9,128.7,126.8,117.4,114.9,99.9,55.9.HR-ESI-MS(m/z):calcd for C 14H 9BrO 4S 352.9478.Found:352.9476[M+H] +.如图1~2、7所示。
2)HBNA荧光探针的制备。
取3-(4-硝基苯基)丙烯酸(109.3mg,0.566mmol)溶于20mL二氯甲烷中,在氮气保护下加入DMAP(69.0mg,0.566mmol)和EDCI(108.5mg,0.566mmol)并搅拌1h。然后,加入中间体产物1(80.0mg,0.226mmol),室温下搅拌5h。加入饱和氯化铵50mL淬灭反应,用乙酸乙酯萃取有机相3次(50mL×3),合并有机相后水洗(50mL×2),饱和食盐水(50mL)洗,无水硫酸钠干燥有机相,减压浓缩得到粗产品。产物用丙酮和石油醚重结晶,得到目的产物探针HBNA,(62.1mg,产率为52%)。 1H NMR(500MHz,Chloroform-d)δ8.31(d,J=8.2Hz,2H),8.14(d,J=8.9Hz,1H),8.01(d,J=16.0Hz,1H),7.80(d,J=8.3Hz,2H),7.65(d,J=4.1Hz,1H),7.18(d,J=4.1Hz,1H),7.04–6.96(m,1H),6.94(d,J=2.4Hz,1H),6.90(s,1H),3.95(s,3H). 13C NMR(126MHz,Chloroform-d)δ170.6,164.6,162.5,156.9,149.9,148.9,145.2,140.0,132.3,131.3,130.9,130.2,129.2,127.5,124.3,120.2,119.7,117.3,114.8,100.2,56.0.HR-ESI-MS(m/z):calcd for C 23H 14BrNO 7S 527.9747.Found:527.9748[M+H] +.如图3~4、8所示。
反应路线如下所示:
Figure PCTCN2021140609-appb-000005
实施例2
取实施例1制备的中间体产物1(176.5mg,0.5mmol)溶于30mL二氯甲烷,0℃环境下滴加三乙胺(151mg,1.5mmol)和催化量DMAP(6.1mg,0.05mmol),磁力搅拌30min后,缓慢滴加丙烯酰氯(135.8mg,1.5mmol),加完后继续搅拌1h,缓慢恢复至室温后搅拌4h。TLC检测反应完全后,向反应体系中加入饱和氯化铵溶液,然后用乙酸乙酯萃取(50mL×3),合并有机相,水洗(50mL×3),饱和氯化钠溶液洗(50mL),有机相用无水硫酸钠干燥,减压浓缩得到粗产品,对粗产物进行柱层析纯化得到淡黄色固体探针HBAC(114.0mg,产率56%)。 1H NMR(500MHz,Chloroform-d)δ8.10(d,J=8.8Hz,1H),7.59(d,J=4.1Hz,1H),7.15(d,J=4.1Hz,1H),6.97(dd,J=8.9,2.2Hz,1H),6.90(s,0H),6.75(d,J=17.3Hz,1H),6.49(dd,J=17.3Hz,10.5Hz,1H),6.18(d,J=10.5Hz,1H),3.92(s,3H). 13C NMR(126MHz,Chloroform-d)δ170.6,164.5,162.4,156.8,149.8,134.4,132.3,131.2,130.8,130.1,127.4,126.8,119.6,117.3,114.7,100.1,55.9.HR-ESI-MS(m/z):calcd for C 22H 12BrNO 7481.9870.Found:481.9870[M+H] +.如图5~6、9所示。
反应路线如下所示:
Figure PCTCN2021140609-appb-000006
生物硫醇响应测试
紫外-可见吸收光谱和荧光光谱的测定
准确称取探针中间体1(3.53mg,0.01mmol)、HBNA(5.28mg,0.01mmol)和HBAC(4.07mg,0.01mmol)溶于二甲亚砜中,配成1.0mmol/L的母液,4℃冷藏保存,备用。各种氨基酸溶于水中,配制成1.0mmol/L的母液,备用。
测定紫外谱图时将中间体1、HBNA、HBAC用磷酸盐缓冲溶液-乙腈(4∶6,V/V,pH 7.4)分别稀释至20.0μmol/L进行测试。结果如图10所示。
测定荧光光谱时,分别取探针HBNA和HBAC母液200μL,加入氨基酸4.0mL,用磷酸盐缓冲溶液-乙腈(4∶6,V/V,pH 7.4)定容到10.0mL,在室温条件下,测定荧光光谱发射光谱。激发波长ex:363nm,发射狭缝均为10nm,电压240V。结果如图11~12所示。
结果表明,HBNA探针能够与半胱氨酸的反应性更强,与同型半胱氨酸反应性弱于半胱氨酸强于其它氨基酸,这主要是由于4-硝基苯基中4位的硝基具有强吸电子的特点,能够对丙烯酸酯基产生影响,从而使得与半胱氨酸和同型半胱氨酸的反应性出现差异,根据荧光强度可以对半胱氨酸和同型半胱氨酸的检测进行区分。同时,以HBAC探针在检测半胱氨酸时,线性范围为16~200μM,检测限为51nmol。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种黄酮醇类化合物,其特征是,化学结构如式I所示:
    Figure PCTCN2021140609-appb-100001
    其中,R 1选自强吸电子基;R 2选自H、芳基、取代芳基、呋喃基、取代呋喃基、噻吩基、取代噻吩基。
  2. 如权利要求1所述的黄酮醇类化合物,其特征是,R 1为硝基。
  3. 如权利要求1所述的黄酮醇类化合物,其特征是,R 2基为取代噻吩基;优选为卤代噻吩基,更优选为5-卤代噻吩-2-基。
  4. 一种权利要求1~3任一所述的黄酮醇类化合物的制备方法,其特征是,包括以醛类化合物和2-羟基-4-甲氧基苯乙酮作为原料按照如下反应式获得式I所示化合物的步骤;
    Figure PCTCN2021140609-appb-100002
    其中,R 1、R 2如权利要求1~3任一所述。
  5. 如权利要求4所述的黄酮醇类化合物的制备方法,其特征是,制备化合物a的条件为:先在碱性条件下进行加热反应,然后在碱性条件下加入过氧化氢进行反应。
  6. 如权利要求4所述的黄酮醇类化合物的制备方法,其特征是,化合物a与化合物b制备式I所示化合物的过程为:先将化合物b中的羧基转化为酰氯基,然后与化合物a在三乙胺和催化剂的作用下进行酯化反应。
  7. 如权利要求4所述的黄酮醇类化合物的制备方法,其特征是,醛类化合物和2-羟基-4-甲氧基苯乙酮的摩尔比为0.7~0.9:1;
    或,化合物a与化合物b的摩尔比为1:1.2~1.5。
  8. 一种权利要求1~3任一所述的黄酮醇类化合物在检测生物硫醇中的应用。
  9. 一种荧光探针,包括荧光活性物质,其特征是,所述荧光活性物质为权利要求1~3任一所述的黄酮醇类化合物。
  10. 一种权利要求1~3任一所述的黄酮醇类化合物或权利要求9所述的荧光探针在鉴别半胱氨酸与高半胱氨酸中的应用。
PCT/CN2021/140609 2021-12-03 2021-12-22 黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用 WO2023097820A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111469986.3 2021-12-03
CN202111469986.3A CN113999218B (zh) 2021-12-03 2021-12-03 黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用

Publications (1)

Publication Number Publication Date
WO2023097820A1 true WO2023097820A1 (zh) 2023-06-08

Family

ID=79931349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140609 WO2023097820A1 (zh) 2021-12-03 2021-12-22 黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用

Country Status (2)

Country Link
CN (1) CN113999218B (zh)
WO (1) WO2023097820A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835698B (zh) * 2022-05-23 2024-03-15 南京林业大学 一种用于检测半胱氨酸的(二苯氨基)苯基黄酮类荧光探针及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110016008A (zh) * 2019-04-19 2019-07-16 南宁师范大学 特异性识别多硫化氢和生物硫醇的荧光探针
CN110894193A (zh) * 2018-09-13 2020-03-20 南京大学 一种新型荧光探针的合成及在检测半胱氨酸中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773361B (zh) * 2014-02-25 2015-04-22 山东大学 一种以香豆素为母核的半胱氨酸荧光探针及其应用
CN108484555A (zh) * 2018-05-30 2018-09-04 济南大学 一种Cys双光子荧光探针及其制备方法和应用
CN110563689B (zh) * 2019-08-27 2022-12-30 山西大学 一种特异性检测活细胞中的半胱氨酸的长波长发射荧光探针及其制备方法和应用
CN113403063B (zh) * 2021-06-17 2023-02-21 西北大学 一种检测生物硫醇的近红外荧光探针及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110894193A (zh) * 2018-09-13 2020-03-20 南京大学 一种新型荧光探针的合成及在检测半胱氨酸中的应用
CN110016008A (zh) * 2019-04-19 2019-07-16 南宁师范大学 特异性识别多硫化氢和生物硫醇的荧光探针

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO XIAO-YAN, LU HONG-ZHAO, ZHANG QIANG, REN CHUAN-QING, XIA DONG-HUI, LIU JIAN-LI: "Design and Synthesis of a Flavone-based Fluorescent Probe for Cysteine Detection and Its Application in Living Cells Imaging", CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, vol. 48, no. 8, 1 August 2020 (2020-08-01), pages 1033 - 1040, XP093071337, DOI: 10.19756/j.issn.0253鄄3820.191686 *
HU, YUN ET AL.: "Synthesis and Properties of a Highly Selective Flavonol-based Fluorescent Probe for the Detection of Cysteine", CHINESE JOURNAL OF ANALYSIS LABORATORY, vol. 37, no. 7, 31 July 2018 (2018-07-31), XP009546839 *

Also Published As

Publication number Publication date
CN113999218B (zh) 2023-06-09
CN113999218A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
Wang et al. Highly sensitive and selective fluorometric off–on K+ probe constructed via host–guest molecular recognition and aggregation-induced emission
Krasnoperov et al. Luminescent probes for ultrasensitive detection of nucleic acids
CN104403663B (zh) 一种检测内源性h2s的荧光探针及其制备方法和应用
CN109722059B (zh) 基于嘌呤骨架的免洗类聚集诱导型细胞膜靶向染色试剂及其制备方法和用途
CN112266351B (zh) 一种双光子比率荧光探针及其制备方法与应用
CN113429335B (zh) 一种溶酶体靶向的双响应双光子荧光探针及其制备方法和用途
CN104370927A (zh) 一种希夫碱类荧光探针化合物及其制备
CN106496217A (zh) 一种新型检测h2s荧光分子探针的制备方法和应用
WO2023097820A1 (zh) 黄酮醇类化合物及制备方法与其在检测生物硫醇中的应用
Zhou et al. A novel AIEE and EISPT fluorescent probe for selective detection of cysteine
CN104910124B (zh) 9,9′‑(4,4′‑联苯基)双荧光酮溴代试剂的制备方法及应用
CN106008435B (zh) 一种用于Au3+检测的荧光增强型荧光探针及其制备方法
WO2013131235A1 (zh) 一类以萘为母体的双光子荧光探针、其制备方法及应用
CN104151867B (zh) 温度与pH双响应型环糊精探针及其制备方法
CN106867271A (zh) 一种大斯托克斯位移和长发射波长的萘酰亚胺类荧光染料及其合成方法和应用
CN105985770A (zh) 一种硫化氢荧光探针的制备及应用
CN109232594A (zh) 一种新型螺吡喃-双吡啶衍生物及其对铜(ⅱ)的裸眼检测
CN107090191A (zh) 一类罗丹明荧光染料及其制备方法
Zhou et al. Rational engineering of novel rhodamines with stable far red to NIR emission and high brightness for in vivo imaging
CN113480558A (zh) 一种雄激素受体小分子荧光探针及其制备方法和应用
CN110105280B (zh) 一种基于1,8-萘二甲酰亚胺的水溶性荧光探针及其制备方法和应用
Zhang et al. A simple and efficient fluorescent probe based on 1, 8-naphthalimide–Ebselen for selectively detecting H2S in living cells
CN106770125A (zh) 用于谷胱甘肽测定的双芳基并咪唑类荧光探针的合成方法
CN107382814B (zh) 一种基于苝的小分子荧光探针及其制备方法和应用
CN112341453A (zh) 一种基于香豆素的荧光探针及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966240

Country of ref document: EP

Kind code of ref document: A1