WO2023095820A1 - 車両用駆動装置 - Google Patents

車両用駆動装置 Download PDF

Info

Publication number
WO2023095820A1
WO2023095820A1 PCT/JP2022/043308 JP2022043308W WO2023095820A1 WO 2023095820 A1 WO2023095820 A1 WO 2023095820A1 JP 2022043308 W JP2022043308 W JP 2022043308W WO 2023095820 A1 WO2023095820 A1 WO 2023095820A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
axial direction
rotor
pinion
pinion gear
Prior art date
Application number
PCT/JP2022/043308
Other languages
English (en)
French (fr)
Inventor
山崎彰一
鳥居武史
大西智広
服部総一郎
小森貴史
山本旭
迎山航基
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Priority to JP2023563716A priority Critical patent/JP7556480B2/ja
Priority to EP22898602.2A priority patent/EP4382767A1/en
Priority to CN202280069685.8A priority patent/CN118103619A/zh
Publication of WO2023095820A1 publication Critical patent/WO2023095820A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • F16H1/08Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes the members having helical, herringbone, or like teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H2001/2881Toothed gearings for conveying rotary motion with gears having orbital motion comprising two axially spaced central gears, i.e. ring or sun gear, engaged by at least one common orbital gear wherein one of the central gears is forming the output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H2048/385Constructional details of the ring or crown gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • F16H2055/173Crown gears, i.e. gears have axially arranged teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears

Definitions

  • the present invention includes a rotating electric machine having a rotor, an output member drivingly connected to wheels, a power transmission mechanism for transmitting rotation of the rotor to the output member, and a case accommodating the rotating electric machine and the power transmission mechanism.
  • the present invention relates to a vehicle drive system.
  • Patent Document 1 An example of such a vehicle driving device is disclosed in Patent Document 1 below.
  • reference numerals in Patent Document 1 are quoted in parentheses.
  • the power transmission mechanism (21) transmits the rotation of the rotor (12) of the rotary electric machine (1) to the differential case of the differential gear mechanism (3) as an output member. (33). Then, the differential gear mechanism (3) distributes the rotation transmitted to the differential case (33) to the pair of wheels (W).
  • the power transmission mechanism (21) includes a plurality of planetary gear mechanisms (PG1, PG2) arranged side by side in the axial direction to ensure a large reduction ratio.
  • a planetary gear mechanism has a plurality of gears arranged in a radial direction, the size in the radial direction tends to be large. Therefore, the vehicle drive system (100) having a plurality of planetary gear mechanisms (PG1, PG2) arranged in the axial direction tends to be large.
  • the characteristic configuration of the vehicle drive system is as follows.
  • a rotating electric machine having a rotor; an output member drivingly connected to the wheel; a power transmission mechanism that transmits rotation of the rotor to the output member;
  • a vehicle drive device comprising: a case that houses the rotating electric machine and the power transmission mechanism,
  • the power transmission mechanism includes a planetary gear mechanism, a first gear, and a second gear
  • the planetary gear mechanism includes a sun gear, a carrier, and a ring gear
  • the sun gear is coupled to rotate integrally with the rotor
  • the carrier rotatably supports a first pinion gear and a second pinion gear that rotate integrally with each other, With one of the carrier and the ring gear as a first element and the other as a second element, the first element is coupled to rotate integrally with the first gear; the second element is fixed relative to the case; the second gear meshes with the first gear and is connected to rotate integrally with the output member;
  • the first pinion gear meshes with the
  • the carrier of the planetary gear mechanism supports the first pinion gear and the second pinion gear having different outer diameters.
  • a sun gear that rotates integrally with the rotor meshes with the large-diameter first pinion gear.
  • one of the carrier and the ring gear is connected to rotate integrally with the first gear, and the other of the carrier and the ring gear is fixed to the case.
  • a ring gear meshes with the small-diameter second pinion gear. Therefore, it is easy to secure a large reduction ratio by the planetary gear mechanism configured as described above without providing a plurality of planetary gear mechanisms. Further, along with this, it becomes possible to transmit high torque to the output member even with a small rotating electric machine.
  • the support bearing is arranged radially inside the first gear meshing with the second gear and at a position overlapping the first gear when viewed in the radial direction along the radial direction. ing.
  • a cross-sectional view along the axial direction of the vehicle drive device according to the first embodiment. 1 is a skeleton diagram of a vehicle drive system according to a first embodiment; Sectional view along the axial direction of the vehicle drive device according to the second embodiment Sectional view along the axial direction of the vehicle drive device according to the third embodiment Sectional view along the axial direction of a vehicle drive device according to another embodiment
  • the vehicle drive device 100 includes a rotating electrical machine 1 , an output member 2 , a power transmission mechanism 3 , and a case 9 .
  • the vehicle drive system 100 further includes a differential gear mechanism 4 .
  • the rotating electric machine 1 has a stator 11 and a rotor 12 .
  • An axial direction L which will be described later, is a direction along the rotation axis of the rotor 12 .
  • the rotating electric machine 1 functions as a driving force source for the wheels W (see FIG. 2).
  • the rotary electric machine 1 has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power.
  • the rotary electric machine 1 is electrically connected to a power storage device (not shown) such as a battery or a capacitor. Then, the rotating electric machine 1 is powered by the electric power stored in the power storage device to generate a driving force. Further, the rotating electric machine 1 generates power by the driving force transmitted from the wheel W side, and charges the power storage device.
  • the output member 2 is drivingly connected to wheels W provided on the vehicle (vehicle on which the vehicle drive device 100 is mounted).
  • the power transmission mechanism 3 is configured to transmit rotation of the rotor 12 to the output member 2 .
  • the power transmission mechanism 3 includes a planetary gear mechanism 31 , a first gear 32 and a second gear 33 .
  • the differential gear mechanism 4 is configured to distribute the torque transmitted to the output member 2 to the pair of wheels W.
  • the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally. It includes a state in which two rotating elements are connected so as to be able to transmit driving force via one or more transmission members.
  • Such transmission members include various members that transmit rotation at the same speed or at different speeds, such as shafts, gear mechanisms, belts, and chains.
  • the transmission member may include an engagement device for selectively transmitting rotation and driving force, such as a friction engagement device and a mesh type engagement device.
  • driving connection it refers to a state in which a plurality of rotating elements in the planetary gear mechanism are connected to each other without interposing other rotating elements.
  • the rotor 12, the planetary gear mechanism 31, and the first gear 32 are arranged on the first axis X1 as their axis. Also, the output member 2 and the second gear 33 are arranged on the second axis X2 as their axis. In this embodiment, the differential gear mechanism 4 is also arranged on the second axis X2. The first axis X1 and the second axis X2 are arranged parallel to each other.
  • the direction parallel to the first axis X1 and the second axis X2 is the "axial direction L" of the vehicle drive device 100.
  • first axial side L1 One side in the axial direction L
  • second axial side L2 the other side in the axial direction L
  • the first axial side L1 the side on which the rotor 12 is arranged with respect to the planetary gear mechanism 31
  • the opposite side is defined as the second axial side L2.
  • the direction orthogonal to each of the first axis X1 and the second axis X2 is defined as "radial direction R" with respect to each axis.
  • case 9 accommodates the rotating electric machine 1 and the power transmission mechanism 3.
  • case 9 also houses output member 2 and differential gear mechanism 4 .
  • the case 9 includes a first case portion 91, a second case portion 92 joined to the first case portion 91 from the first side L1 in the axial direction, and a and a third case portion 93 joined from the axial second side L2.
  • the first case portion 91 includes a first peripheral wall portion 91a, a second peripheral wall portion 91b, and a partition wall portion 91c.
  • the first peripheral wall portion 91a is formed so as to cover the outer side of the rotary electric machine 1 in the radial direction R.
  • the second peripheral wall portion 91b is formed so as to cover the outer side of the planetary gear mechanism 31 and the differential gear mechanism 4 in the radial direction R.
  • the partition wall portion 91c is formed so as to separate the inner space of the first peripheral wall portion 91a and the inner space of the second peripheral wall portion 91b in the axial direction L from each other.
  • the first peripheral wall portion 91a is arranged on the first side L1 in the axial direction with respect to the partition portion 91c
  • the second peripheral wall portion 91b is arranged on the second side L2 in the axial direction with respect to the partition portion 91c.
  • the first peripheral wall portion 91a is formed in a tubular shape opening on the first side L1 in the axial direction
  • the second peripheral wall portion 91b is formed in a tubular shape opening on the second side L2 in the axial direction.
  • the second case portion 92 has a first side wall portion 92a.
  • the first side wall portion 92a is formed to cover the first axial side L1 of the rotating electrical machine 1 .
  • the second case portion 92 is positioned at the first axial direction relative to the first case portion 91 so that the opening on the axial first side L1 of the first peripheral wall portion 91a is closed by the first side wall portion 92a. It is joined from the side L1.
  • the third case portion 93 has a second side wall portion 93a.
  • the second side wall portion 93a is formed to cover the second axial side L2 of the power transmission mechanism 3 and the differential gear mechanism 4 .
  • the third case portion 93 is axially positioned second relative to the first case portion 91 so that the opening on the axial second side L2 of the second peripheral wall portion 91b is closed by the second side wall portion 93a. It is joined from the side L2.
  • the stator 11 of the rotating electrical machine 1 has a cylindrical stator core 11a.
  • Stator core 11a is fixed to non-rotating member NR.
  • the stator core 11a is fixed to the first peripheral wall portion 91a of the case 9 as the non-rotating member NR.
  • a rotor 12 of the rotating electric machine 1 includes a cylindrical rotor core 12a.
  • the rotor core 12a is rotatably supported with respect to the stator core 11a.
  • the rotor 12 further includes a rotor shaft 12b coupled to rotate integrally with the rotor core 12a.
  • the rotating electrical machine 1 is an inner rotor type rotating electrical machine. Therefore, the rotor core 12a is arranged inside in the radial direction R with respect to the stator core 11a. Further, the rotor shaft 12b is arranged inside in the radial direction R with respect to the rotor core 12a.
  • the rotating electrical machine 1 is a rotating field type rotating electrical machine. Therefore, a stator coil is wound around the stator core 11a.
  • the stator coil is wound around the stator core 11a so that a pair of coil end portions 11b projecting to both sides in the axial direction L of the stator core 11a are formed.
  • the rotor core 12a is provided with permanent magnets.
  • the rotor shaft 12b is formed in a tubular shape having an axial center along the axial direction L. Further, in the present embodiment, the rotor shaft 12b is arranged to protrude from both sides in the axial direction L from the rotor core 12a. A portion of the rotor shaft 12b that protrudes from the rotor core 12a toward the first side L1 in the axial direction is rotatably supported by the first side wall portion 92a of the case 9 via a first rotor bearing B11.
  • the portion of the rotor shaft 12b that protrudes from the rotor core 12a to the second side L2 in the axial direction is rotatably supported by the partition wall 91c of the case 9 via the second rotor bearing B12.
  • the planetary gear mechanism 31 is configured to decelerate the rotation of the rotor 12 and transmit it to the first gear 32 .
  • the planetary gear mechanism 31 includes a sun gear SG, a carrier CR, and a ring gear RG.
  • the sun gear SG is connected to rotate integrally with the rotor 12 .
  • the sun gear SG is coupled via the input shaft 5 so as to rotate integrally with the rotor shaft 12b.
  • the input shaft 5 is formed to extend along the axial direction L.
  • the input shaft 5 is formed to extend from the sun gear SG to the first side L1 in the axial direction.
  • the input shaft 5 is integrally formed with the sun gear SG.
  • the input shaft 5 includes a connecting portion 51 and an enlarged diameter portion 52 .
  • the connecting portion 51 is connected to rotate integrally with the rotor shaft 12b.
  • the connecting portion 51 is arranged so as to pass through the partition portion 91c of the case 9 in the axial direction L.
  • the connecting portion 51 is arranged inside the rotor shaft 12b in the radial direction R and is connected to the rotor shaft 12b by spline engagement.
  • the enlarged diameter portion 52 is formed to have a larger diameter than the connecting portion 51 .
  • the enlarged diameter portion 52 is arranged on the second axial side L2 with respect to the partition wall portion 91c.
  • a first thrust bearing B3 that supports the input shaft 5 in the axial direction L is arranged between the enlarged diameter portion 52 and the partition wall portion 91c in the axial direction L. As shown in FIG.
  • the carrier CR rotatably supports the first pinion gear PG1 and the second pinion gear PG2 that rotate integrally with each other.
  • the first pinion gear PG1 meshes with the sun gear SG.
  • the second pinion gear PG2 meshes with the ring gear RG.
  • the second pinion gear PG2 is formed to have a smaller diameter than the first pinion gear PG1.
  • the second pinion gear PG2 is arranged on the first side L1 in the axial direction relative to the first pinion gear PG1.
  • Each of the first pinion gear PG1 and the second pinion gear PG2 rotates (revolves) around its own axis and rotates (revolves) around the sun gear SG together with the carrier CR.
  • a plurality of first pinion gears PG1 and second pinion gears PG2 are provided at intervals along their own orbital locus.
  • first element E1 one of the carrier CR and the ring gear RG will be referred to as the "first element E1" and the other as the “second element E2".
  • the first element E1 is connected to rotate integrally with the first gear 32.
  • the carrier CR is connected to the first gear 32 so as to rotate integrally therewith. That is, in this embodiment, the carrier CR is the first element E1.
  • the second element E2 is fixed with respect to the case 9.
  • the ring gear RG is fixed to the second peripheral wall portion 91b of the case 9 . That is, in this embodiment, the ring gear RG is the second element E2.
  • the first element E1 has a first connecting portion 311.
  • the first gear 32 has a second connecting portion 321 .
  • the first connecting portion 311 and the second connecting portion 321 are configured to be connected to each other so as not to rotate relative to each other.
  • the first connecting portion 311 is formed in a tubular shape with the first axis X1 as the axis.
  • the first connecting portion 311 includes a first engaging portion 311a and a first pressure contact portion 311b.
  • the second connecting portion 321 is arranged inside the first connecting portion 311 in the radial direction R. As shown in FIG.
  • the second connecting portion 321 includes a second engaging portion 321a and a second pressure contact portion 321b.
  • the first engaging portion 311a and the second engaging portion 321a are formed so as to be non-rotatably engaged with each other.
  • the first engaging portion 311a extends in the axial direction L and is composed of a plurality of internal teeth arranged in the circumferential direction about the first axis X1.
  • the second engaging portion 321a extends in the axial direction L and is composed of a plurality of external teeth arranged in the circumferential direction about the first axis X1.
  • the first pressure contact portion 311b and the second pressure contact portion 321b are formed so as to press against each other in the radial direction R so as not to move relative to each other.
  • the inner peripheral surface of the first pressure contact portion 311b and the outer peripheral surface of the second pressure contact portion 321b are formed so as to be in pressure contact with each other (in other words, contact with pressure).
  • the second press-contact portion 321b is press-fitted or tightly fitted into the first press-contact portion 311b.
  • the first pressure contact portion 311b is arranged on the second side L2 in the axial direction from the first engaging portion 311a.
  • the second pressure contact portion 321b is arranged on the second side L2 in the axial direction from the second engaging portion 321a.
  • the first element E1 and the first gear 32 are connected in the radial direction R so as not to move relative to each other.
  • the planetary gear mechanism 31 is arranged on the second axial side L2 with respect to the rotary electric machine 1 and on the first axial side L1 with respect to the first gear 32 . That is, in the present embodiment, the rotor 12, the planetary gear mechanism 31, and the first gear 32 are arranged on the first axis X1 from the first axial side L1 toward the second axial side L2 in the order described. ing.
  • the rotary electric machine 1 has a larger diameter than the planetary gear mechanism 31 .
  • the outer peripheral surface of the stator core 11 a of the rotating electric machine 1 is positioned radially outside the ring gear RG of the planetary gear mechanism 31 at the radially outermost portion.
  • the diameter of the first gear 32 is smaller than that of the planetary gear mechanism 31 .
  • the portion of the first gear 32 that is located on the outermost side in the radial direction R is radially inward of the portion of the ring gear RG of the planetary gear mechanism 31 that is located on the outermost side in the radial direction R. positioned.
  • the rotary electric machine 1, the planetary gear mechanism 31, and the first gear 32 are configured such that the dimension in the radial direction R gradually decreases from the axial direction first side L1 toward the axial direction second side L2. , on the first axis X1.
  • the first gear 32 is rotatably supported with respect to the case 9 via the first support bearing B2.
  • the first support bearing B ⁇ b>2 is arranged inside the first gear 32 in the radial direction R and overlaps the first gear 32 when viewed in the radial direction R.
  • "overlapping in a particular direction view” means that when a virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line, the virtual straight line is two It refers to the existence of at least a part of an area that intersects two elements.
  • the first support bearing B2 corresponds to the "support bearing".
  • the second side wall portion 93a of the case 9 is arranged adjacent to the first gear 32 on the axial second side L2.
  • the second side wall portion 93a is the “support wall portion SW” arranged adjacent to the first gear 32 on the side opposite to the planetary gear mechanism 31 side in the axial direction L. corresponds to
  • the second side wall portion 93a is formed with a first projecting portion 93b projecting toward the first side L1 in the axial direction.
  • the first projecting portion 93b is formed to support the first support bearing B2 from the inside in the radial direction R.
  • the first projecting portion 93b corresponds to the "bearing support portion SWa" that supports the first support bearing B2 from the inside in the radial direction R. Therefore, in the present embodiment, the third case portion 93 is provided with the bearing support portion SWa.
  • the case 9 is arranged adjacent to the first gear 32 on the opposite side of the planetary gear mechanism 31 in the axial direction L (here, the axial second side L2). provided with a supporting wall SW,
  • the support wall portion SW includes a bearing support portion SWa that supports the first support bearing B2 from the inside in the radial direction R.
  • the support wall portion SW is arranged adjacent to the first gear 32 on the side opposite to the planetary gear mechanism 31 side in the axial direction L (here, the axial direction second side L2).
  • the first gear 32 is rotatably supported with respect to the bearing support portion SWa of the support wall portion SW via the first support bearing B2 arranged inside in the radial direction R thereof.
  • the first gear 32 further includes a supported portion 322 .
  • the supported portion 322 is arranged between the input shaft 5 and the first projecting portion 93b of the case 9 in the axial direction L. As shown in FIG. In this embodiment, the supported portion 322 is formed to protrude inward in the radial direction R from the second connecting portion 321 .
  • the second thrust bearing B4 is arranged between the supported portion 322 and the input shaft 5 in the axial direction L.
  • a third thrust bearing B5 is arranged between the supported portion 322 and the first projecting portion 93b in the axial direction L.
  • the first gear 32 is supported in the axial direction L with respect to the case 9 by the second thrust bearing B4 and the third thrust bearing B5.
  • the second gear 33 meshes with the first gear 32.
  • the second gear 33 is connected to rotate integrally with the output member 2 .
  • the second gear 33 is formed with a larger diameter than the first gear 32 . Therefore, in this embodiment, the rotation of the first element E ⁇ b>1 (here, the carrier CR) is decelerated between the first gear 32 and the second gear 33 and transmitted to the output member 2 .
  • the second gear 33 is rotatably supported with respect to the case 9 via the second support bearing B6.
  • the second support bearing B6 is arranged inside the second gear 33 in the radial direction R and overlaps the second gear 33 when viewed in the radial direction R.
  • the arrangement area of the first support bearing B2 in the axial direction L and the arrangement area of the second support bearing B6 in the axial direction L overlap.
  • the phrase “the arrangement regions in a specific direction overlap” means that the arrangement region in a specific direction of one member includes at least part of the arrangement region in a specific direction of the other member. means that
  • the second side wall portion 93a is formed with a second projecting portion 93c projecting toward the first side L1 in the axial direction.
  • the second projecting portion 93c is formed to support the second support bearing B6 from the inside in the radial direction R. As shown in FIG.
  • the differential gear mechanism 4 includes a differential case 41, a pair of pinion gears 42, a first side gear 43 and a second side gear 44.
  • the pair of pinion gears 42 and the first side gear 43 and the second side gear 44 are all bevel gears.
  • the differential case 41 is a hollow member that accommodates a pair of pinion gears 42 and a first side gear 43 and a second side gear 44 .
  • the differential case 41 is connected to rotate integrally with the second gear 33 . Therefore, the differential case 41 corresponds to the output member 2 in this embodiment.
  • the differential case 41 is rotatably supported with respect to the case 9 via the differential bearing B7.
  • the end portion of the differential case 41 on the first side L1 in the axial direction is rotatably supported by the second peripheral wall portion 91b of the case 9 via the differential bearing B7.
  • the pair of pinion gears 42 are arranged to face each other with a gap in the radial direction R with respect to the second axis X2.
  • the pair of pinion gears 42 are attached to a pinion shaft 42a supported so as to rotate integrally with the differential case 41.
  • Each of the pair of pinion gears 42 is configured to be rotatable (rotational) about the pinion shaft 42a and rotatable (orbital) about the second axis X2.
  • the first side gear 43 and the second side gear 44 mesh with the pair of pinion gears 42 .
  • the first side gear 43 and the second side gear 44 are arranged to rotate about the second axis X2.
  • the first side gear 43 is arranged on the first side L1 in the axial direction with respect to the pinion shaft 42a.
  • the second side gear 44 is arranged on the second side L2 in the axial direction with respect to the pinion shaft 42a.
  • the first side gear 43 is driven by a first drive shaft DS1 (see FIG. 2) to the wheel W on the first side L1 in the axial direction via the transmission shaft 6 extending in the axial direction L. ) so as to rotate together.
  • the transmission shaft 6 is inserted from the first side L1 in the axial direction inside the first side gear 43 in the radial direction R, and they are connected to each other by spline engagement.
  • the transmission shaft 6 is arranged on the second axis X2.
  • the transmission shaft 6 is arranged so as to pass through the outer side of the rotary electric machine 1 in the radial direction R inside the case 9 and penetrate the first side wall portion 92a in the axial direction L.
  • the transmission shaft 6 is connected to rotate integrally with the first drive shaft DS1 (see FIG. 2).
  • a portion of the transmission shaft 6 closer to the first axial side L1 than the first case portion 91 is formed in a tubular shape that opens to the first axial side L1.
  • a first drive shaft DS1 is inserted from a first axial side L1 inside the cylindrical portion of the transmission shaft 6 in the radial direction R, and they are connected to each other by spline engagement.
  • the second side gear 44 is connected to rotate integrally with the second drive shaft DS2 (see FIG. 2) drivingly connected to the wheel W on the axial second side L2.
  • the second drive shaft DS2 is inserted from the axial second side L2 inside the second side gear 44 in the radial direction R, and they are connected to each other by spline engagement.
  • the differential gear mechanism 4 is arranged on the first side L1 in the axial direction with respect to the second gear 33 . That is, in the present embodiment, the differential gear mechanism 4 and the second gear 33 are arranged on the second axis X2 in the order described from the axial first side L1 toward the axial second side L2.
  • the second gear 33 has a larger diameter than the differential gear mechanism 4. Therefore, in the present embodiment, the differential gear mechanism 4 and the second gear 33 are configured such that the dimension in the radial direction R gradually increases from the first axial side L1 toward the second axial side L2. It is placed on X2.
  • the vehicle drive system 100 a rotating electric machine 1 including a rotor 12; an output member 2 drivingly connected to the wheel W; a power transmission mechanism 3 that transmits the rotation of the rotor 12 to the output member 2;
  • a vehicle drive device 100 including a case 9 that houses a rotating electric machine 1 and a power transmission mechanism 3,
  • the power transmission mechanism 3 includes a planetary gear mechanism 31, a first gear 32, and a second gear 33,
  • the planetary gear mechanism 31 includes a sun gear SG, a carrier CR, and a ring gear RG,
  • the sun gear SG is connected to rotate integrally with the rotor 12,
  • the carrier CR rotatably supports the first pinion gear PG1 and the second pinion gear PG2 that rotate integrally with each other, With one of the carrier CR and the ring gear RG as the first element E1 and the other as the second element E2,
  • the first element E1 is connected to rotate integrally with the first gear 32,
  • the second element E2 is fixed with respect
  • a two-axis configuration in which the rotary electric machine 1, the planetary gear mechanism 31, the first gear 32, and the output member 2 and the second gear 33 are arranged on separate axes can be realized.
  • the dimension in the radial direction R of the vehicle drive device 100 can be kept small compared to a multi-shaft configuration with three or more shafts including, for example, a counter gear mechanism.
  • the carrier CR of the planetary gear mechanism 31 supports the first pinion gear PG1 and the second pinion gear PG2 having different outer diameters.
  • a sun gear SG that rotates integrally with the rotor 12 meshes with the large-diameter first pinion gear PG1.
  • One of the carrier CR and the ring gear RG is connected to the first gear 32 so as to rotate integrally, and the other of the carrier CR and the ring gear RG is fixed to the case 9 .
  • a ring gear RG is in mesh with the small-diameter second pinion gear PG2. Therefore, it is easy to secure a large reduction ratio by the planetary gear mechanism 31 configured as described above without providing a plurality of planetary gear mechanisms. Further, along with this, it becomes possible to transmit a high torque to the output member 2 even with a small rotating electric machine 1 .
  • the first support bearing B2 is located inside the first gear 32 in the radial direction R with respect to the first gear 32 meshing with the second gear 33. are placed in overlapping positions.
  • the vehicle drive device 100 further includes the differential gear mechanism 4 that distributes the torque transmitted to the output member 2 to the pair of wheels W,
  • the rotor 12, the planetary gear mechanism 31, and the first gear 32 are arranged on the first axis X1 from the axial first side L1 toward the axial second side L2 in the order described,
  • the differential gear mechanism 4 and the second gear 33 are arranged on the second axis X2 parallel to the first axis X1 from the first axial side L1 toward the second axial side L2 in the order described.
  • the rotary electric machine 1, the planetary gear mechanism 31, and the differential gear mechanism 4 are arranged on the same side in the axial direction L with respect to the first gear 32 and the second gear 33 that mesh with each other. .
  • the rotary electric machine 1, the planetary gear mechanism 31, and the differential gear mechanism 4 are arranged separately on both sides in the axial direction L with respect to the first gear 32 and the second gear 33. It is easy to keep the dimension of the driving device 100 for the axial direction small.
  • each of the first gear 32 and the second gear 33 is a double-helical gear. More specifically, the first gear 32 includes a first meshing portion 32a and a second meshing portion 32b whose teeth are twisted in different directions.
  • the second gear 33 also includes a third meshing portion 33a and a fourth meshing portion 33b whose teeth are twisted in different directions.
  • the first meshing portion 32a and the third meshing portion 33a mesh with each other, and the second meshing portion 32b and the fourth meshing portion 33b mesh with each other.
  • the "torsion direction of the tooth” is the direction in which the tooth of the gear is inclined with respect to the axis of the target gear.
  • the thrust force generated by the engagement between the first gear 32 and the second gear 33 can be reduced compared to a configuration in which the first gear 32 and the second gear 33 are simply helical gears.
  • the supporting structure of the first gear 32 and the second gear 33 can be simplified. Therefore, it is easy to reduce the size of the vehicle drive device 100 .
  • each of the first pinion gear PG1 and the second pinion gear PG2 is a helical gear.
  • the first pinion gear PG1 and the second pinion gear PG2 are formed so that their teeth are twisted in the same direction.
  • the torsion angle of the teeth of the first pinion gear PG1 is greater than the torsion angle of the teeth of the second pinion gear PG2.
  • the torsion angles of the teeth of the first pinion gear PG1 and the second pinion gear PG2 are set so that the thrust forces of the first pinion gear PG1 and the second pinion gear PG2 are equal.
  • the "torsion angle of the gear” is the angle at which the tooth of the gear is inclined with respect to the axis of the target gear.
  • the thrust force generated by the engagement between the first pinion gear PG1 and the sun gear SG and the thrust force generated by the engagement between the second pinion gear PG2 and the ring gear RG can be canceled out.
  • the supporting structure of the first pinion gear PG1 and the second pinion gear PG2 by the carrier CR can be simplified.
  • Second Embodiment A vehicle drive system 100 according to a second embodiment will be described below with reference to FIG.
  • the positional relationship in the axial direction L between the planetary gear mechanism 31 and the first gear 32 and the positional relationship in the axial direction L between the second gear 33 and the differential gear mechanism 4 are the same as those in the first embodiment. different from the form. Differences from the first embodiment will be mainly described below. Note that points that are not particularly described are the same as those in the first embodiment.
  • the first gear 32 is arranged on the second axial side L2 with respect to the rotary electric machine 1 and on the first axial side L1 with respect to the planetary gear mechanism 31. ing. That is, in the present embodiment, the rotor 12, the first gear 32, and the planetary gear mechanism 31 are arranged on the first axis X1 in the order described from the first axial side L1 toward the second axial side L2. ing. Further, in the present embodiment, the first pinion gear PG1 is arranged on the first side L1 in the axial direction relative to the second pinion gear PG2.
  • the partition wall portion 91c of the case 9 is arranged adjacent to the first gear 32 on the first side L1 in the axial direction.
  • the partition wall portion 91c corresponds to the "support wall portion SW" arranged adjacent to the first gear 32 on the opposite side of the planetary gear mechanism 31 in the axial direction L. do.
  • the partition wall portion 91c is formed with a third projecting portion 91e that projects toward the second side L2 in the axial direction.
  • the third projecting portion 91e is formed in a tubular shape covering the outside of the input shaft 5 in the radial direction R.
  • the third projecting portion 91e is formed to support the first support bearing B2 from the inside in the radial direction R.
  • the third projecting portion 91e corresponds to the "bearing support portion SWa" that supports the first support bearing B2 from the inside in the radial direction R.
  • the first projecting portion 93b is formed on the second side wall portion 93a, but does not function as the bearing support portion SWa.
  • the carrier CR of the planetary gear mechanism 31 has the supported portion 322 .
  • the supported portion 322 is formed to protrude inward in the radial direction R from a portion of the carrier CR on the second axial side L2 of the second pinion gear PG2. Note that the first gear 32 does not include the supported portion 322 in this embodiment.
  • the partition wall portion 91c is formed with a second projecting portion 93c that supports the second support bearing B6 from the inside in the radial direction R. Further, in this embodiment, a differential bearing B7 that supports the differential case 41 is attached to the second side wall portion 93a.
  • a vehicle drive system 100 according to a third embodiment will be described with reference to FIG.
  • This embodiment differs from the first embodiment in that the ring gear RG is the first element E1 and the carrier CR is the second element E2. Differences from the first embodiment will be mainly described below. Note that points that are not particularly described are the same as those in the first embodiment.
  • the ring gear RG is connected to the first gear 32 so as to rotate integrally. That is, in this embodiment, the ring gear RG is the first element E1. In this example, the ring gear RG is connected to the first gear 32 via the connecting member 7 so as to rotate integrally therewith.
  • the connecting member 7 includes a radially extending portion 71 formed to extend along the radial direction R with respect to the first axis X1, and an axis extending along the axial direction L. and a directional extension 72 .
  • the inner end portion in the radial direction R of the radially extending portion 71 is connected to the second connecting portion 321 of the first gear 32 by welding.
  • the radially extending portion 71 and the axially extending portion 71 are connected to the radially R outer end portion of the axially extending portion 71 and the axially second side L2 end portion of the axially extending portion 72 .
  • the direction extending portion 72 is integrally formed.
  • a plurality of claw portions protruding toward the first axial side L1 are arranged around the first axis X1. arranged in the circumferential direction.
  • a plurality of claw portions protruding outward in the radial direction R are arranged in the circumferential direction around the first axis X1 in the first connecting portion 311 of the ring gear RG as the first element E1. .
  • the plurality of claws on the axially extending portion 72 are engaged with the plurality of claws on the first connecting portion 311 of the ring gear RG from the second axial side L2.
  • the plurality of claws on the axially extending portion 72 and the plurality of claws on the first connecting portion 311 of the ring gear RG are fixed by, for example, an annular fixing member so as not to move relative to each other in the axial direction L.
  • these claw portions may be formed so that the axially extending portion 72 moves relative to the first connecting portion 311 of the ring gear RG in the radial direction R, or may be formed so as not to move relative to the first connecting portion 311 of the ring gear RG. It may be formed.
  • the second pinion gear PG2 is arranged on the axial second side L2 relative to the first pinion gear PG1.
  • the fourth thrust bearing B8 are placed between the portion of the carrier CR on the axial second side L2 of the second pinion gear PG2 and the second connecting portion 321 of the first gear 32 in the axial direction L.
  • the fourth thrust bearing B8 supports the carrier CR and the first gear 32 in the axial direction L so that they rotate relative to each other.
  • each of the first gear 32 and the second gear 33 is a helical gear instead of a double helical gear.
  • each of the first gear 32 and the second gear 33 may be a spur gear.
  • the first thrust bearing B3 and the partition wall portion 91c are arranged between the enlarged diameter portion 52 and the rotor shaft 12b in the axial direction L, and the input shaft 5 and the first projection are arranged.
  • the configuration in which the second thrust bearing B4, the supported portion 322, and the third thrust bearing B5 are arranged between the portion 93b and the portion 93b in the axial direction L has been described as an example. However, without being limited to such a configuration, for example, a configuration as shown in FIG. 5 may be employed. In the example shown in FIG.
  • the input shaft 5 (specifically, the end portion 50 on the first side L1 in the axial direction of the input shaft 5) and the rotor shaft 12b (specifically, the second side in the axial direction of the rotor shaft 12b)
  • the enlarged diameter portion 52 extends from the second axial side L2 with respect to the rotor shaft 12b (specifically, the end surface of the rotor shaft 12b on the second axial side L2).
  • the sun gear SG is arranged to abut against the sun gear SG, and the load directed toward the first side L1 in the axial direction is transmitted to the rotor shaft 12b and supported by the first rotor bearing B11.
  • a fifth thrust bearing BR for supporting the input shaft 5 in the axial direction L is arranged between the input shaft 5 and the first projecting portion 93b in the axial direction L. is supported by the fifth thrust bearing BR.
  • the case 9 accommodates an inverter device 20 that drives and controls the rotating electric machine 1, and a catch tank 80 that stores oil that is raked up by a rotating member included in the power transmission mechanism 3. It has Specifically, the case 9 includes an accommodation chamber forming portion 91f that forms an accommodation chamber for the inverter device 20, and a fourth case portion 94 joined to the accommodation chamber forming portion 91f so as to close the opening of the accommodation chamber. , is equipped with That is, the inverter device 20 is housed in a space surrounded by the housing chamber forming portion 91 f and the fourth case portion 94 . In the example shown in FIG. 5, the first case portion 91 has an accommodation chamber forming portion 91f. In the example shown in FIG.
  • the inverter device 20 includes a power module 21 in which a plurality of elements (switching elements, etc.) constituting an inverter circuit are modularized, and an output bus bar for outputting AC power from the power module 21. 22 and.
  • the output bus bar 22 is electrically connected via a terminal block T to the power line 13 drawn from the coil end portion 11b.
  • each of the first pinion gear PG1 and the second pinion gear PG2 is a helical gear
  • each of the first pinion gear PG1 and the second pinion gear PG2 may be a spur gear.
  • the sun gear SG and the ring gear RG are also spur gears.
  • the vehicle drive device 100 includes the differential gear mechanism 4 that distributes the torque to the pair of wheels W, and the differential case 41 functions as the output member 2.
  • the vehicle drive device 100 does not include the differential gear mechanism 4 and the rotary electric machine 1 functions as a driving force source for one wheel W, the drive shaft drivingly connected to the wheel W is integrated with the drive shaft.
  • the output member 2 may be an element that rotates to
  • the power transmission mechanism (3) includes a planetary gear mechanism (31), a first gear (32) and a second gear (33),
  • the planetary gear mechanism (31) includes a sun gear (SG), a carrier (CR), and a ring gear (RG),
  • the sun gear (SG) is connected to rotate integrally with the rotor (12)
  • the carrier (CR) rotatably supports a first pinion gear (PG1) and a second pinion gear (PG2) that rotate integrally with each other, With one of the carrier (CR) and the ring gear (RG) as a first element (E1) and the other as a second element (E2),
  • the first element (E1) is connected to rotate integrally with the first gear (32), said second element (E2)
  • the rotary electric machine (1), the planetary gear mechanism (31), the first gear (32), and the output member (2) and the second gear (33) are arranged on separate axes.
  • a two-axis configuration can be realized.
  • the radial dimension (R) of the vehicle drive device (100) can be kept small compared to a multi-shaft structure with three or more shafts including a counter gear mechanism or the like.
  • the carrier (CR) of the planetary gear mechanism (31) supports the first pinion gear (PG1) and the second pinion gear (PG2) having different outer diameters.
  • a sun gear (SG) that rotates integrally with the rotor (12) meshes with the large-diameter first pinion gear (PG1).
  • One of the carrier (CR) and the ring gear (RG) is connected to rotate integrally with the first gear (32), and the other of the carrier (CR) and the ring gear (RG) is fixed to the case (9). ing.
  • a ring gear (RG) meshes with the small-diameter second pinion gear (PG2). Therefore, it is easy to secure a large reduction ratio by the planetary gear mechanism (31) configured as described above without providing a plurality of planetary gear mechanisms. Further, along with this, it becomes possible to transmit high torque to the output member (2) even with a small rotating electric machine (1).
  • the support bearing (B2) is located radially inside (R) with respect to the first gear (32) meshing with the second gear (33) and extends along the radial direction (R). It is arranged at a position overlapping with the first gear (32) when viewed in the radial direction.
  • This makes it easier to keep the dimension in the axial direction (L) of the vehicle drive device (100) small compared to a configuration in which the first gear (32) is supported by the bearing from the outside in the radial direction (R).
  • the engagement between the first gear (32) and the second gear (33) is reduced compared to a configuration in which the first gear (32) and the second gear (33) are simply helical gears.
  • the case (9) has a support wall (SW) arranged adjacent to the first gear (32) on the side opposite to the planetary gear mechanism (31) in the axial direction (L).
  • the support wall portion (SW) preferably includes a bearing support portion (SWa) that supports the support bearing (B2) from the inside in the radial direction (R).
  • the support wall (SW) is arranged adjacent to the first gear (32) on the side opposite to the planetary gear mechanism (31) in the axial direction (L).
  • the first gear (32) is rotatable with respect to the bearing support portion (SWa) of the support wall portion (SW) via the support bearing (B2) arranged inside in the radial direction (R).
  • the walls of the case (9) are arranged on both sides of the first gear (32) in the axial direction (L), and the first gear (32) is rotatable with respect to these walls.
  • the axial dimension (L) of the vehicle drive system (100) can be reduced compared to the supported configuration.
  • the second gear (33) is rotatably supported with respect to the case (9) via a second support bearing (B6), With the direction along the rotation axis of the rotor (12) as the axial direction (L), It is preferable that the arrangement area of the support bearing (B2) in the axial direction (L) and the arrangement area of the second support bearing (B6) in the axial direction (L) overlap.
  • the vehicle drive device It is easy to keep the dimension in the axial direction (L) of (100) small.
  • first element (E1) and the first gear (32) are connected so as not to move relative to each other in the radial direction (R).
  • each of the first pinion gear (PG1) and the second pinion gear (PG2) is a helical gear
  • the torsion directions of the teeth of the first pinion gear (PG1) and the second pinion gear (PG2) are the same, and the torsion angle of the teeth of the first pinion gear (PG1) is the same as that of the second pinion gear (PG2). is preferably greater than the helix angle of the toothing of the .
  • the thrust force generated by the meshing between the first pinion gear (PG1) and the sun gear (SG) and the thrust force generated by the meshing between the second pinion gear (PG2) and the ring gear (RG) are canceled out.
  • the supporting structure of the first pinion gear (PG1) and the second pinion gear (PG2) by the carrier (CR) can be simplified.
  • a direction along the rotation axis of the rotor (12) is defined as an axial direction (L), one side of the axial direction (L) is defined as an axial first side (L1), and the other side of the axial direction (L) is defined as As the axial second side (L2),
  • the rotor (12), the planetary gear mechanism (31), and the first gear (32) are arranged on the first axis (X1) from the axial first side (L1) to the axial second side ( L2) arranged in the order listed,
  • the differential gear mechanism (4) and the second gear (33) are arranged on the second axis (X2) parallel to the first axis (X1) from the first axial side (L1) in the axial direction. It is preferred that they are arranged in the stated order towards the second side (L2).
  • the rotary electric machine (1) and the planetary gear mechanism (31) are arranged on the same side in the axial direction (L) with respect to the first gear (32) and the second gear (33) that mesh with each other.
  • a dynamic gear mechanism (4) is arranged.
  • the rotary electric machine (1), the planetary gear mechanism (31), and the differential gear mechanism (4) are arranged on both sides in the axial direction (L) with respect to the first gear (32) and the second gear (33).
  • the vehicle drive system according to the present disclosure only needs to exhibit at least one of the effects described above.
  • the technology according to the present disclosure includes a rotating electric machine including a rotor, an output member drivingly connected to wheels, a power transmission mechanism that transmits the rotation of the rotor to the output member, and a case that accommodates the rotating electric machine and the power transmission mechanism. , can be used in a vehicle drive system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)

Abstract

サンギヤ(SG)は、ロータ(12)と一体的に回転するように連結され、キャリヤ(CR)は、互いに一体的に回転する第1ピニオンギヤ(PG1)と第2ピニオンギヤ(PG2)とを回転自在に支持し、キャリヤ(CR)及びリングギヤ(RG)の一方は第1ギヤ(32)と一体的に回転するように連結され、他方はケース(9)に対して固定され、第2ギヤ(33)は、第1ギヤ(32)に噛み合っていると共に、出力部材(2)と一体的に回転するように連結され、第1ピニオンギヤ(PG1)は、サンギヤ(SG)に噛み合い、第1ピニオンギヤ(PG1)よりも小径の第2ピニオンギヤ(PG2)は、リングギヤ(RG)に噛み合い、第1ギヤ(32)を支持する支持軸受(B2)は、第1ギヤ(32)に対して径方向(R)の内側であって径方向視で第1ギヤ(32)と重複する位置に配置され、第1ギヤ(32)及び第2ギヤ(33)のそれぞれはやまば歯車である。

Description

車両用駆動装置
 本発明は、ロータを備えた回転電機と、車輪に駆動連結される出力部材と、ロータの回転を出力部材に伝達する動力伝達機構と、回転電機及び動力伝達機構を収容するケースと、を備えた車両用駆動装置に関する。
 このような車両用駆動装置の一例が、下記の特許文献1に開示されている。以下、「背景技術」及び「発明が解決しようとする課題」の説明では、特許文献1における符号を括弧内に引用する。
 特許文献1の車両用駆動装置(100)では、動力伝達機構(21)が、回転電機(1)のロータ(12)の回転を、出力部材としての差動歯車機構(3)の差動ケース(33)に伝達する。そして、差動歯車機構(3)が、差動ケース(33)に伝達された回転を、一対の車輪(W)に分配する。
特開2020-175707号公報
 特許文献1の車両用駆動装置(100)では、動力伝達機構(21)が、軸方向に並んで配置された複数の遊星歯車機構(PG1,PG2)を備え、減速比を大きく確保している。一般的に、遊星歯車機構は、径方向に並んだ複数のギヤを備えているため、径方向の寸法が大きくなり易い。よって、軸方向に並んで配置された複数の遊星歯車機構(PG1,PG2)を備えた上記の車両用駆動装置(100)は、大型化し易いという課題があった。
 そこで、減速比を大きく確保しつつ、小型化が容易な車両用駆動装置の実現が望まれる。
 上記に鑑みた、車両用駆動装置の特徴構成は、
 ロータを備えた回転電機と、
 車輪に駆動連結される出力部材と、
 前記ロータの回転を前記出力部材に伝達する動力伝達機構と、
 前記回転電機及び前記動力伝達機構を収容するケースと、を備えた車両用駆動装置であって、
 前記動力伝達機構は、遊星歯車機構と、第1ギヤと、第2ギヤと、を備え、
 前記遊星歯車機構は、サンギヤと、キャリヤと、リングギヤと、を備え、
 前記サンギヤは、前記ロータと一体的に回転するように連結され、
 前記キャリヤは、互いに一体的に回転する第1ピニオンギヤと第2ピニオンギヤとを回転自在に支持し、
 前記キャリヤ及び前記リングギヤの一方を第1要素とし、他方を第2要素として、
 前記第1要素は、前記第1ギヤと一体的に回転するように連結され、
 前記第2要素は、前記ケースに対して固定され、
 前記第2ギヤは、前記第1ギヤに噛み合っていると共に、前記出力部材と一体的に回転するように連結され、
 前記第1ピニオンギヤは、前記サンギヤに噛み合い、
 前記第2ピニオンギヤは、前記第1ピニオンギヤよりも小径であり、前記リングギヤに噛み合い、
 前記第1ギヤは、支持軸受を介して前記ケースに対して回転自在に支持され、
 前記支持軸受は、前記第1ギヤに対して径方向の内側であって、前記径方向に沿う径方向視で前記第1ギヤと重複する位置に配置され、
 前記第1ギヤ及び前記第2ギヤのそれぞれは、やまば歯車である点にある。
 この特徴構成によれば、回転電機、遊星歯車機構、及び第1ギヤと、出力部材及び第2ギヤとが、互いに別軸上に配置された2軸構成を実現できる。これにより、例えばカウンタギヤ機構等を備えた3軸以上の多軸構成に比べて、車両用駆動装置の径方向の寸法を小さく抑えることができる。
 また、本特徴構成によれば、遊星歯車機構のキャリヤが、互いに外径の異なる第1ピニオンギヤ及び第2ピニオンギヤを支持している。そして、ロータと一体回転するサンギヤが、大径の第1ピニオンギヤに噛み合っている。また、キャリヤ及びリングギヤの一方が第1ギヤと一体的に回転するように連結され、キャリヤ及びリングギヤの他方がケースに固定されている。そして、リングギヤが小径の第2ピニオンギヤに噛み合っている。そのため、複数の遊星歯車機構を設けることなく、上記のように構成された遊星歯車機構により大きな減速比を確保し易い。また、これに伴い、小型の回転電機であっても高いトルクを出力部材に伝達することが可能となる。
 また、本特徴構成によれば、支持軸受が、第2ギヤに噛み合う第1ギヤに対して径方向の内側であって、径方向に沿う径方向視で第1ギヤと重複する位置に配置されている。これにより、第1ギヤが径方向の外側から軸受に支持された構成と比べて、車両用駆動装置の軸方向の寸法を小さく抑え易い。
 また、本特徴構成によれば、第1ギヤ及び第2ギヤを単なるはすば歯車とした構成に比べて、第1ギヤと第2ギヤとの噛み合いにより生じるスラスト力を低減できる。これにより、第1ギヤ及び第2ギヤの支持構造を簡略化でき、この点からも、車両用駆動装置の小型化を図り易い。
 以上のように、本特徴構成によれば、減速比を大きく確保しつつ、小型化が容易な車両用駆動装置を実現できる。
第1の実施形態に係る車両用駆動装置の軸方向に沿う断面図 第1の実施形態に係る車両用駆動装置のスケルトン図 第2の実施形態に係る車両用駆動装置の軸方向に沿う断面図 第3の実施形態に係る車両用駆動装置の軸方向に沿う断面図 その他の実施形態に係る車両用駆動装置の軸方向に沿う断面図
1.第1の実施形態
 以下では、第1の実施形態に係る車両用駆動装置100について、図面を参照して説明する。図1及び図2に示すように、車両用駆動装置100は、回転電機1と、出力部材2と、動力伝達機構3と、ケース9と、を備えている。本実施形態では、車両用駆動装置100は、差動歯車機構4を更に備えている。
 回転電機1は、ステータ11及びロータ12を備えている。後述する軸方向Lは、ロータ12の回転軸心に沿う方向である。回転電機1は、車輪W(図2参照)の駆動力源として機能する。回転電機1は、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。具体的には、回転電機1は、バッテリやキャパシタ等の蓄電装置(図示を省略)と電気的に接続されている。そして、回転電機1は、蓄電装置に蓄えられた電力により力行して駆動力を発生する。また、回転電機1は、車輪Wの側から伝達される駆動力により発電を行って蓄電装置を充電する。
 出力部材2は、車両(車両用駆動装置100が搭載される車両)が備える車輪Wに駆動連結されている。動力伝達機構3は、ロータ12の回転を出力部材2に伝達するように構成されている。動力伝達機構3は、遊星歯車機構31と、第1ギヤ32と、第2ギヤ33と、を備えている。差動歯車機構4は、出力部材2に伝達されたトルクを一対の車輪Wに分配するように構成されている。
 ここで、本願において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。なお、伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば、摩擦係合装置、噛み合い式係合装置等が含まれていても良い。ただし、遊星歯車機構の各回転要素について「駆動連結」という場合には、遊星歯車機構における複数の回転要素が、互いに他の回転要素を介することなく連結されている状態を指すものとする。
 ロータ12、遊星歯車機構31、及び第1ギヤ32は、それらの軸心としての第1軸X1上に配置されている。また、出力部材2及び第2ギヤ33は、それらの軸心としての第2軸X2上に配置されている。本実施形態では、差動歯車機構4も第2軸X2上に配置されている。第1軸X1と第2軸X2とは、互いに平行となるように配置されている。
 以下の説明では、第1軸X1及び第2軸X2に平行な方向を、車両用駆動装置100の「軸方向L」とする。そして、軸方向Lの一方側を「軸方向第1側L1」とし、軸方向Lの他方側を「軸方向第2側L2」とする。本実施形態では、軸方向Lにおいて、遊星歯車機構31に対してロータ12が配置される側を軸方向第1側L1とし、その反対側を軸方向第2側L2としている。また、第1軸X1及び第2軸X2のそれぞれに直交する方向を、各軸を基準とした「径方向R」とする。なお、どの軸を基準とするかを区別する必要がない場合や、どの軸を基準とするかが明らかである場合には、単に「径方向R」と記す場合がある。
 図1に示すように、ケース9は、回転電機1及び動力伝達機構3を収容している。本実施形態では、ケース9は、出力部材2及び差動歯車機構4も収容している。
 本実施形態では、ケース9は、第1ケース部91と、当該第1ケース部91に対して軸方向第1側L1から接合された第2ケース部92と、第1ケース部91に対して軸方向第2側L2から接合された第3ケース部93と、を備えている。
 第1ケース部91は、第1周壁部91aと、第2周壁部91bと、隔壁部91cと、を備えている。
 第1周壁部91aは、回転電機1の径方向Rの外側を覆うように形成されている。第2周壁部91bは、遊星歯車機構31及び差動歯車機構4の径方向Rの外側を覆うように形成されている。隔壁部91cは、第1周壁部91aの内部空間と第2周壁部91bの内部空間とを軸方向Lに隔てるように形成されている。本実施形態では、隔壁部91cに対して軸方向第1側L1に第1周壁部91aが配置され、隔壁部91cに対して軸方向第2側L2に第2周壁部91bが配置されている。そして、第1周壁部91aは軸方向第1側L1に開口する筒状に形成され、第2周壁部91bは軸方向第2側L2に開口する筒状に形成されている。
 第2ケース部92は、第1側壁部92aを備えている。第1側壁部92aは、回転電機1の軸方向第1側L1を覆うように形成されている。本実施形態では、第1周壁部91aの軸方向第1側L1の開口が第1側壁部92aにより塞がれるように、第2ケース部92が第1ケース部91に対して軸方向第1側L1から接合されている。
 第3ケース部93は、第2側壁部93aを備えている。第2側壁部93aは、動力伝達機構3及び差動歯車機構4の軸方向第2側L2を覆うように形成されている。本実施形態では、第2周壁部91bの軸方向第2側L2の開口が第2側壁部93aにより塞がれるように、第3ケース部93が第1ケース部91に対して軸方向第2側L2から接合されている。
 図1に示すように、回転電機1のステータ11は、円筒状のステータコア11aを備えている。ステータコア11aは、非回転部材NRに固定されている。本実施形態では、ステータコア11aは、非回転部材NRとしてのケース9の第1周壁部91aに固定されている。回転電機1のロータ12は、円筒状のロータコア12aを備えている。ロータコア12aは、ステータコア11aに対して回転可能に支持されている。本実施形態では、ロータ12は、ロータコア12aと一体的に回転するように連結されたロータ軸12bを更に備えている。
 本実施形態では、回転電機1はインナロータ型の回転電機である。そのため、ロータコア12aが、ステータコア11aに対して径方向Rの内側に配置されている。また、ロータ軸12bが、ロータコア12aに対して径方向Rの内側に配置されている。
 また、本実施形態では、回転電機1は回転界磁型の回転電機である。そのため、ステータコア11aには、ステータコイルが巻装されている。本実施形態では、ステータコイルは、ステータコア11aに対して軸方向Lの両側に突出した一対のコイルエンド部11bが形成されるように、ステータコア11aに巻装されている。また、図示は省略するが、ロータコア12aには、永久磁石が設けられている。
 本実施形態では、ロータ軸12bは、軸方向Lに沿う軸心を有する筒状に形成されている。また、本実施形態では、ロータ軸12bは、ロータコア12aから軸方向Lの両側に突出するように配置されている。そして、ロータ軸12bにおけるロータコア12aから軸方向第1側L1に突出した部分は、第1ロータ軸受B11を介して、ケース9の第1側壁部92aに対して回転自在に支持されている。一方、ロータ軸12bにおけるロータコア12aから軸方向第2側L2に突出した部分は、第2ロータ軸受B12を介して、ケース9の隔壁部91cに対して回転自在に支持されている。
 遊星歯車機構31は、ロータ12の回転を減速して、第1ギヤ32に伝達するように構成されている。遊星歯車機構31は、サンギヤSGと、キャリヤCRと、リングギヤRGと、を備えている。
 サンギヤSGは、ロータ12と一体的に回転するように連結されている。本実施形態では、サンギヤSGは、入力軸5を介して、ロータ軸12bと一体的に回転するように連結されている。
 入力軸5は、軸方向Lに沿って延在するように形成されている。本実施形態では、入力軸5は、サンギヤSGから軸方向第1側L1に延出するように形成されている。図1に示す例では、入力軸5は、サンギヤSGと一体的に形成されている。
 また、本実施形態では、入力軸5は、連結部51と、拡径部52と、を備えている。連結部51は、ロータ軸12bと一体的に回転するように連結されている。本実施形態では、連結部51は、ケース9の隔壁部91cを軸方向Lに貫通するように配置されている。そして、連結部51は、ロータ軸12bに対して径方向Rの内側に配置され、ロータ軸12bとスプライン係合により連結されている。拡径部52は、連結部51よりも大径に形成されている。本実施形態では、拡径部52は、隔壁部91cに対して軸方向第2側L2に配置されている。そして、拡径部52と隔壁部91cとの軸方向Lの間に、入力軸5を軸方向Lに支持する第1スラスト軸受B3が配置されている。
 キャリヤCRは、互いに一体的に回転する第1ピニオンギヤPG1と第2ピニオンギヤPG2とを回転自在に支持している。第1ピニオンギヤPG1は、サンギヤSGに噛み合っている。第2ピニオンギヤPG2は、リングギヤRGに噛み合っている。第2ピニオンギヤPG2は、第1ピニオンギヤPG1よりも小径に形成されている。本実施形態では、第2ピニオンギヤPG2は、第1ピニオンギヤPG1よりも軸方向第1側L1に配置されている。第1ピニオンギヤPG1及び第2ピニオンギヤPG2のそれぞれは、自己の軸心回りに回転(自転)すると共に、キャリヤCRと共にサンギヤSGを中心として回転(公転)する。第1ピニオンギヤPG1及び第2ピニオンギヤPG2のそれぞれは、自己の公転軌跡に沿って、互いに間隔を空けて複数設けられている。
 以下の説明では、キャリヤCR及びリングギヤRGの一方を「第1要素E1」とし、他方を「第2要素E2」とする。
 第1要素E1は、第1ギヤ32と一体的に回転するように連結されている。本実施形態では、キャリヤCRが第1ギヤ32と一体的に回転するように連結されている。つまり、本実施形態では、キャリヤCRが第1要素E1である。
 第2要素E2は、ケース9に対して固定されている。本実施形態では、リングギヤRGがケース9の第2周壁部91bに固定されている。つまり、本実施形態では、リングギヤRGが第2要素E2である。
 本実施形態では、第1要素E1は、第1連結部311を備えている。そして、第1ギヤ32は、第2連結部321を備えている。第1連結部311と第2連結部321とは、互いに相対回転不能に連結されるように構成されている。本実施形態では、第1連結部311は、第1軸X1を軸心とする筒状に形成されている。そして、第1連結部311は、第1係合部311aと、第1圧接部311bと、を備えている。また、本実施形態では、第2連結部321は、第1連結部311に対して径方向Rの内側に配置されている。そして、第2連結部321は、第2係合部321aと、第2圧接部321bと、を備えている。
 第1係合部311aと第2係合部321aとは、互いに相対回転不能に係合するように形成されている。本実施形態では、第1係合部311aは、軸方向Lに延在すると共に、第1軸X1を中心とした周方向に配置された複数の内歯により構成されている。そして、第2係合部321aは、軸方向Lに延在すると共に、第1軸X1を中心とした周方向に配置された複数の外歯により構成されている。
 第1圧接部311bと第2圧接部321bとは、互いに径方向Rに相対移動不能に圧接するように形成されている。本実施形態では、第1圧接部311bの内周面と、第2圧接部321bの外周面とが、互いに圧接する(言い換えれば、圧力を伴って接触する)ように形成されている。本例では、第2圧接部321bが、第1圧接部311bに圧入、或いは、隙間なく嵌合されている。また、本実施形態では、第1圧接部311bは、第1係合部311aよりも軸方向第2側L2に配置されている。そして、第2圧接部321bは、第2係合部321aよりも軸方向第2側L2に配置されている。
 このように、本実施形態では、第1要素E1と第1ギヤ32とが、径方向Rに相対移動不能に連結されている。
 この構成によれば、第1要素E1及び第1ギヤ32をケース9に対して回転可能に支持する軸受の数を少なく抑えることができる。これにより、車両用駆動装置100の部材コストを低く抑えつつ、車両用駆動装置100の軸方向Lの寸法を小さく抑えることができる。
 本実施形態では、遊星歯車機構31は、回転電機1に対して軸方向第2側L2であって、第1ギヤ32に対して軸方向第1側L1に配置されている。つまり、本実施形態では、ロータ12、遊星歯車機構31、及び第1ギヤ32が、第1軸X1上に、軸方向第1側L1から軸方向第2側L2に向かって記載の順に配置されている。
 本実施形態では、回転電機1が遊星歯車機構31よりも大径である。図1に示す例では、回転電機1のステータコア11aの外周面が、遊星歯車機構31のリングギヤRGにおける最も径方向Rの外側に位置する部分よりも径方向Rの外側に位置している。また、本実施形態では、第1ギヤ32が遊星歯車機構31よりも小径である。図1に示す例では、第1ギヤ32における最も径方向Rの外側に位置する部分が、遊星歯車機構31のリングギヤRGにおける最も径方向Rの外側に位置する部分よりも径方向Rの内側に位置している。したがって、本実施形態では、回転電機1、遊星歯車機構31、及び第1ギヤ32が、軸方向第1側L1から軸方向第2側L2に向かって径方向Rの寸法が次第に小さくなるように、第1軸X1上に配置されている。
 第1ギヤ32は、第1支持軸受B2を介して、ケース9に対して回転自在に支持されている。第1支持軸受B2は、第1ギヤ32に対して径方向Rの内側であって、径方向Rに沿う径方向視で第1ギヤ32と重複する位置に配置されている。ここで、2つの要素の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線と直交する各方向に移動させた場合に、当該仮想直線が2つの要素の双方に交わる領域が少なくとも一部に存在することを指す。本実施形態では、第1支持軸受B2が「支持軸受」に相当する。
 本実施形態では、ケース9の第2側壁部93aは、第1ギヤ32に対して軸方向第2側L2に隣接して配置されている。このように、本実施形態では、第2側壁部93aは、第1ギヤ32に対して軸方向Lにおける遊星歯車機構31の側とは反対側に隣接して配置された「支持壁部SW」に相当する。
 また、本実施形態では、第2側壁部93aに、軸方向第1側L1に向けて突出する第1突出部93bが形成されている。本実施形態では、第1突出部93bは、第1支持軸受B2を径方向Rの内側から支持するように形成されている。このように、本実施形態では、第1突出部93bは、第1支持軸受B2を径方向Rの内側から支持する「軸受支持部SWa」に相当する。そのため、本実施形態では、第3ケース部93に軸受支持部SWaが設けられている。
 上記の通り、本実施形態では、ケース9は、第1ギヤ32に対して軸方向Lにおける遊星歯車機構31の側とは反対側(ここでは、軸方向第2側L2)に隣接して配置された支持壁部SWを備え、
 支持壁部SWは、第1支持軸受B2を径方向Rの内側から支持する軸受支持部SWaを備えている。
 この構成によれば、第1ギヤ32に対して軸方向Lにおける遊星歯車機構31の側とは反対側(ここでは、軸方向第2側L2)に隣接して支持壁部SWが配置されている。そして、第1ギヤ32が、その径方向Rの内側に配置された第1支持軸受B2を介して、支持壁部SWの軸受支持部SWaに対して回転可能に支持されている。これにより、第1ギヤ32に対して軸方向Lの両側のそれぞれにケース9の壁部が配置され、それらの壁部に対して第1ギヤ32が回転可能に支持された構成と比べて、車両用駆動装置100の軸方向Lの寸法を小さく抑えることができる。
 また、本実施形態では、第1ギヤ32は、被支持部322を更に備えている。被支持部322は、入力軸5とケース9の第1突出部93bとの軸方向Lの間に配置されている。本実施形態では、被支持部322は、第2連結部321から径方向Rの内側に突出するように形成されている。
 本実施形態では、被支持部322と入力軸5との軸方向Lの間に、第2スラスト軸受B4が配置されている。そして、被支持部322と第1突出部93bとの軸方向Lの間に、第3スラスト軸受B5が配置されている。こうして、本実施形態では、第1ギヤ32は、第2スラスト軸受B4及び第3スラスト軸受B5により、ケース9に対して軸方向Lに支持されている。
 第2ギヤ33は、第1ギヤ32に噛み合っている。そして、第2ギヤ33は、出力部材2と一体的に回転するように連結されている。本実施形態では、第2ギヤ33は、第1ギヤ32よりも大径に形成されている。そのため、本実施形態では、第1要素E1(ここでは、キャリヤCR)の回転が、第1ギヤ32と第2ギヤ33との間で減速されて出力部材2に伝達される。
 本実施形態では、第2ギヤ33は、第2支持軸受B6を介して、ケース9に対して回転自在に支持されている。第2支持軸受B6は、第2ギヤ33に対して径方向Rの内側であって、径方向Rに沿う径方向視で第2ギヤ33と重複する位置に配置されている。本実施形態では、第1支持軸受B2の軸方向Lの配置領域と、第2支持軸受B6の軸方向Lの配置領域とが重なっている。ここで、2つの部材の配置に関して、「特定方向の配置領域が重なる」とは、一方の部材の特定方向の配置領域内に、他方の部材の特定方向の配置領域の少なくとも一部が含まれることを意味する。
 本実施形態では、第2側壁部93aに、軸方向第1側L1に向けて突出する第2突出部93cが形成されている。本実施形態では、第2突出部93cは、第2支持軸受B6を径方向Rの内側から支持するように形成されている。
 本実施形態では、差動歯車機構4は、差動ケース41と、一対のピニオンギヤ42と、第1サイドギヤ43及び第2サイドギヤ44と、を備えている。ここでは、一対のピニオンギヤ42、並びに第1サイドギヤ43及び第2サイドギヤ44は、いずれも傘歯車である。
 差動ケース41は、一対のピニオンギヤ42、並びに第1サイドギヤ43及び第2サイドギヤ44を収容する中空の部材である。差動ケース41は、第2ギヤ33と一体的に回転するように連結されている。そのため、本実施形態では、差動ケース41が出力部材2に相当する。
 本実施形態では、差動ケース41は、差動軸受B7を介して、ケース9に対して回転自在に支持されている。図1に示す例では、差動ケース41の軸方向第1側L1の端部が、差動軸受B7を介して、ケース9の第2周壁部91bに対して回転自在に支持されている。
 一対のピニオンギヤ42は、第2軸X2を基準とした径方向Rに間隔を空けて、互いに対向するように配置されている。そして、一対のピニオンギヤ42は、差動ケース41と一体的に回転するように支持されたピニオンシャフト42aに取り付けられている。一対のピニオンギヤ42のそれぞれは、ピニオンシャフト42aを中心として回転(自転)可能、かつ、第2軸X2を中心として回転(公転)可能に構成されている。
 第1サイドギヤ43及び第2サイドギヤ44は、一対のピニオンギヤ42に噛み合っている。第1サイドギヤ43及び第2サイドギヤ44は、第2軸X2を回転軸心として回転するように配置されている。第1サイドギヤ43は、ピニオンシャフト42aに対して軸方向第1側L1に配置されている。そして、第2サイドギヤ44は、ピニオンシャフト42aに対して軸方向第2側L2に配置されている。
 本実施形態では、第1サイドギヤ43は、軸方向Lに沿って延在する伝達軸6を介して、軸方向第1側L1の車輪Wに駆動連結された第1ドライブシャフトDS1(図2参照)と一体的に回転するように連結されている。図1に示す例では、第1サイドギヤ43に対して径方向Rの内側に、軸方向第1側L1から伝達軸6が挿入され、それらがスプライン係合によって互いに連結されている。
 伝達軸6は、第2軸X2上に配置されている。本実施形態では、伝達軸6は、ケース9の内部における回転電機1に対して径方向Rの外側を通り、第1側壁部92aを軸方向Lに貫通するように配置されている。そして、伝達軸6は、第1ドライブシャフトDS1(図2参照)と一体的に回転するように連結されている。図1に示す例では、伝達軸6における第1ケース部91よりも軸方向第1側L1の部分が、軸方向第1側L1に開口する筒状に形成されている。そして、この伝達軸6の筒状部分に対して径方向Rの内側に、軸方向第1側L1から第1ドライブシャフトDS1が挿入され、それらがスプライン係合によって互いに連結されている。
 本実施形態では、第2サイドギヤ44は、軸方向第2側L2の車輪Wに駆動連結された第2ドライブシャフトDS2(図2参照)と一体的に回転するように連結されている。図1に示す例では、第2サイドギヤ44に対して径方向Rの内側に、軸方向第2側L2から第2ドライブシャフトDS2が挿入され、それらがスプライン係合によって互いに連結されている。
 本実施形態では、差動歯車機構4は、第2ギヤ33に対して軸方向第1側L1に配置されている。つまり、本実施形態では、差動歯車機構4及び第2ギヤ33が、第2軸X2上に、軸方向第1側L1から軸方向第2側L2に向かって記載の順に配置されている。
 本実施形態では、第2ギヤ33が差動歯車機構4よりも大径である。したがって、本実施形態では、差動歯車機構4及び第2ギヤ33が、軸方向第1側L1から軸方向第2側L2に向かって径方向Rの寸法が次第に大きくなるように、第2軸X2上に配置されている。
 以上のように、車両用駆動装置100は、
 ロータ12を備えた回転電機1と、
 車輪Wに駆動連結される出力部材2と、
 ロータ12の回転を出力部材2に伝達する動力伝達機構3と、
 回転電機1及び動力伝達機構3を収容するケース9と、を備えた車両用駆動装置100であって、
 動力伝達機構3は、遊星歯車機構31と、第1ギヤ32と、第2ギヤ33と、を備え、
 遊星歯車機構31は、サンギヤSGと、キャリヤCRと、リングギヤRGと、を備え、
 サンギヤSGは、ロータ12と一体的に回転するように連結され、
 キャリヤCRは、互いに一体的に回転する第1ピニオンギヤPG1と第2ピニオンギヤPG2とを回転自在に支持し、
 キャリヤCR及びリングギヤRGの一方を第1要素E1とし、他方を第2要素E2として、
 第1要素E1は、第1ギヤ32と一体的に回転するように連結され、
 第2要素E2は、ケース9に対して固定され、
 第2ギヤ33は、第1ギヤ32に噛み合っていると共に、出力部材2と一体的に回転するように連結され、
 第1ピニオンギヤPG1は、サンギヤSGに噛み合い、
 第2ピニオンギヤPG2は、第1ピニオンギヤPG1よりも小径であり、リングギヤRGに噛み合い、
 第1ギヤ32は、第1支持軸受B2を介してケース9に対して回転自在に支持され、
 第1支持軸受B2は、第1ギヤ32に対して径方向Rの内側であって、径方向Rに沿う径方向視で第1ギヤ32と重複する位置に配置されている。
 この構成によれば、回転電機1、遊星歯車機構31、及び第1ギヤ32と、出力部材2及び第2ギヤ33とが、互いに別軸上に配置された2軸構成を実現できる。これにより、例えばカウンタギヤ機構等を備えた3軸以上の多軸構成に比べて、車両用駆動装置100の径方向Rの寸法を小さく抑えることができる。
 また、本構成によれば、遊星歯車機構31のキャリヤCRが、互いに外径の異なる第1ピニオンギヤPG1及び第2ピニオンギヤPG2を支持している。そして、ロータ12と一体回転するサンギヤSGが、大径の第1ピニオンギヤPG1に噛み合っている。また、キャリヤCR及びリングギヤRGの一方が第1ギヤ32と一体的に回転するように連結され、キャリヤCR及びリングギヤRGの他方がケース9に固定されている。そして、リングギヤRGが小径の第2ピニオンギヤPG2に噛み合っている。そのため、複数の遊星歯車機構を設けることなく、上記のように構成された遊星歯車機構31により大きな減速比を確保し易い。また、これに伴い、小型の回転電機1であっても高いトルクを出力部材2に伝達することが可能となる。
 また、本構成によれば、第1支持軸受B2が、第2ギヤ33に噛み合う第1ギヤ32に対して径方向Rの内側であって、径方向Rに沿う径方向視で第1ギヤ32と重複する位置に配置されている。これにより、第1ギヤ32が径方向Rの外側から軸受に支持された構成と比べて、車両用駆動装置100の軸方向Lの寸法を小さく抑え易い。
 以上のように、本構成によれば、減速比を大きく確保しつつ、小型化が容易な車両用駆動装置100を実現できる。
 また、上述したように、本実施形態では、車両用駆動装置100は、出力部材2に伝達されたトルクを一対の車輪Wに分配する差動歯車機構4を更に備え、
 ロータ12、遊星歯車機構31、及び第1ギヤ32が、第1軸X1上に、軸方向第1側L1から軸方向第2側L2に向かって記載の順に配置され、
 差動歯車機構4及び第2ギヤ33が、第1軸X1と平行な第2軸X2上に、軸方向第1側L1から軸方向第2側L2に向かって記載の順に配置されている。
 この構成によれば、互いに噛合う第1ギヤ32及び第2ギヤ33に対して軸方向Lの同じ側に、回転電機1及び遊星歯車機構31と、差動歯車機構4とが配置されている。これにより、回転電機1及び遊星歯車機構31と、差動歯車機構4とが、第1ギヤ32及び第2ギヤ33に対して軸方向Lの両側に分かれて配置された構成と比べて、車両用駆動装置100の軸方向Lの寸法を小さく抑え易い。
 本実施形態では、第1ギヤ32及び第2ギヤ33のそれぞれは、やまば歯車である。説明を加えると、第1ギヤ32は、歯部のねじれ方向が互いに異なる第1噛み合い部32a及び第2噛み合い部32bを備えている。また、第2ギヤ33は、歯部のねじれ方向が互いに異なる第3噛み合い部33a及び第4噛み合い部33bを備えている。第1噛み合い部32aと第3噛み合い部33aとが互いに噛み合っていると共に、第2噛み合い部32bと第4噛み合い部33bとが互いに噛み合っている。ここで、「歯部のねじれ方向」とは、対象のギヤの軸心に対して当該ギヤの歯部が傾斜している方向である。
 この構成によれば、第1ギヤ32及び第2ギヤ33を単なるはすば歯車とした構成に比べて、第1ギヤ32と第2ギヤ33との噛み合いにより生じるスラスト力を低減できる。これにより、第1ギヤ32及び第2ギヤ33の支持構造を簡略化できる。したがって、車両用駆動装置100の小型化を図り易い。
 また、本実施形態では、第1ピニオンギヤPG1及び第2ピニオンギヤPG2のそれぞれは、はすば歯車である。第1ピニオンギヤPG1と第2ピニオンギヤPG2とは、それらの歯部のねじれ方向が互いに同じとなるように形成されている。そして、第1ピニオンギヤPG1の歯部のねじれ角度は、第2ピニオンギヤPG2の歯部のねじれ角度よりも大きい。第1ピニオンギヤPG1及び第2ピニオンギヤPG2の歯部のねじれ角度は、第1ピニオンギヤPG1及び第2ピニオンギヤPG2のスラスト力が同等になるように設定される。ここで、「歯部のねじれ角度」とは、対象のギヤの軸心に対して当該ギヤの歯部が傾斜している角度である。
 この構成によれば、第1ピニオンギヤPG1とサンギヤSGとの噛み合いにより生じるスラスト力と、第2ピニオンギヤPG2とリングギヤRGとの噛み合いにより生じるスラスト力とを互いに減殺することができる。これにより、キャリヤCRによる第1ピニオンギヤPG1及び第2ピニオンギヤPG2の支持構造を簡略化することができる。また、キャリヤCRの剛性を大きく確保する必要がない。したがって、車両用駆動装置100の小型化を図り易い。
2.第2の実施形態
 以下では、第2の実施形態に係る車両用駆動装置100について、図3を参照して説明する。本実施形態では、遊星歯車機構31と第1ギヤ32との軸方向Lの位置関係、及び、第2ギヤ33と差動歯車機構4との軸方向Lの位置関係が、上記第1の実施形態とは異なっている。以下では、上記第1の実施形態との相違点を中心として説明する。なお、特に説明しない点については、上記第1の実施形態と同様とする。
 図3に示すように、本実施形態では、第1ギヤ32は、回転電機1に対して軸方向第2側L2であって、遊星歯車機構31に対して軸方向第1側L1に配置されている。つまり、本実施形態では、ロータ12、第1ギヤ32、及び遊星歯車機構31が、第1軸X1上に、軸方向第1側L1から軸方向第2側L2に向かって記載の順に配置されている。また、本実施形態では、第1ピニオンギヤPG1は、第2ピニオンギヤPG2よりも軸方向第1側L1に配置されている。
 本実施形態では、ケース9の隔壁部91cが、第1ギヤ32に対して軸方向第1側L1に隣接して配置されている。このように、本実施形態では、隔壁部91cが、第1ギヤ32に対して軸方向Lにおける遊星歯車機構31の側とは反対側に隣接して配置された「支持壁部SW」に相当する。
 また、本実施形態では、隔壁部91cに、軸方向第2側L2に向けて突出する第3突出部91eが形成されている。本実施形態では、第3突出部91eは、入力軸5の径方向Rの外側を覆う筒状に形成されている。そして、第3突出部91eは、第1支持軸受B2を径方向Rの内側から支持するように形成されている。このように、本実施形態では、第3突出部91eは、第1支持軸受B2を径方向Rの内側から支持する「軸受支持部SWa」に相当する。なお、本実施形態では、第1突出部93bが第2側壁部93aに形成されているが、軸受支持部SWaとして機能しない。
 本実施形態では、遊星歯車機構31のキャリヤCRが被支持部322を備えている。図3に示す例では、被支持部322は、キャリヤCRにおける第2ピニオンギヤPG2よりも軸方向第2側L2の部分から径方向Rの内側に突出するように形成されている。なお、本実施形態では、第1ギヤ32は被支持部322を備えていない。
 本実施形態では、隔壁部91cに、第2支持軸受B6を径方向Rの内側から支持する第2突出部93cが形成されている。また、本実施形態では、第2側壁部93aに、差動ケース41を支持する差動軸受B7が取り付けられている。
3.第3の実施形態
 以下では、第3の実施形態に係る車両用駆動装置100について、図4を参照して説明する。本実施形態は、リングギヤRGが第1要素E1であり、キャリヤCRが第2要素E2である点で、上記第1の実施形態とは異なっている。以下では、上記第1の実施形態との相違点を中心として説明する。なお、特に説明しない点については、上記第1の実施形態と同様とする。
 図4に示すように、本実施形態では、リングギヤRGが第1ギヤ32と一体的に回転するように連結されている。つまり、本実施形態では、リングギヤRGが第1要素E1である。本例では、リングギヤRGは、連結部材7を介して、第1ギヤ32と一体的に回転するように連結されている。
 連結部材7は、第1軸X1を基準とした径方向Rに沿って延在するように形成された径方向延在部71と、軸方向Lに沿って延在するように形成された軸方向延在部72と、を備えている。本例では、径方向延在部71の径方向Rの内側の端部が、第1ギヤ32の第2連結部321に対して溶接により連結されている。そして、径方向延在部71の径方向Rの外側の端部と、軸方向延在部72の軸方向第2側L2の端部とを連結するように、径方向延在部71と軸方向延在部72とが一体的に形成されている。
 また、本例では、軸方向延在部72の軸方向第1側L1の端部には、軸方向第1側L1に向けて突出する複数の爪部が、第1軸X1を中心とした周方向に配置されている。そして、第1要素E1としてのリングギヤRGの第1連結部311には、径方向Rの外側に向けて突出する複数の爪部が、第1軸X1を中心とした周方向に配置されている。軸方向延在部72における複数の爪部は、リングギヤRGの第1連結部311における複数の爪部に対して、軸方向第2側L2から係合されている。そして、軸方向延在部72における複数の爪部と、リングギヤRGの第1連結部311における複数の爪部とが、軸方向Lに相対移動しないように、例えば環状の固定部材により固定されている。なお、それらの爪部は、リングギヤRGの第1連結部311に対して軸方向延在部72が径方向Rに相対移動するように形成されていても良いし、相対移動不能となるように形成されていても良い。
 また、本実施形態では、第2ピニオンギヤPG2は、第1ピニオンギヤPG1よりも軸方向第2側L2に配置されている。
 また、本実施形態では、キャリヤCRにおける第2ピニオンギヤPG2よりも軸方向第2側L2の部分と、第1ギヤ32の第2連結部321との軸方向Lの間に、第4スラスト軸受B8が配置されている。第4スラスト軸受B8は、キャリヤCRと第1ギヤ32とが相対的に回転するように、それらを軸方向Lに支持している。
 また、本実施形態では、第1ギヤ32及び第2ギヤ33のそれぞれは、やまば歯車ではなく、はすば歯車である。なお、第1ギヤ32及び第2ギヤ33のそれぞれが、平歯車であっても良い。
4.その他の実施形態
(1)上記の実施形態では、拡径部52とロータ軸12bとの軸方向Lの間に、第1スラスト軸受B3及び隔壁部91cが配置され、入力軸5と第1突出部93bとの軸方向Lの間に、第2スラスト軸受B4、被支持部322、及び第3スラスト軸受B5が配置される構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、図5に示すような構成としても良い。図5に示す例では、入力軸5(具体的には、入力軸5の軸方向第1側L1の端部50)とロータ軸12b(具体的には、ロータ軸12bの軸方向第2側L2の端部12c)との連結部分において、拡径部52が、ロータ軸12b(具体的には、ロータ軸12bの軸方向第2側L2の端面)に対して軸方向第2側L2から当接するように配置されており、サンギヤSGに生じる軸方向第1側L1を向く荷重は、ロータ軸12bに伝達されて第1ロータ軸受B11によって支持される。また、図5に示す例では、入力軸5と第1突出部93bとの軸方向Lの間に、入力軸5を軸方向Lに支持する第5スラスト軸受BRが配置されており、サンギヤSGに生じる軸方向第2側L2を向く荷重は、第5スラスト軸受BRによって支持される。
 なお、図5に示す例では、ケース9は、回転電機1を駆動制御するインバータ装置20を収容していると共に、動力伝達機構3が備える回転部材によって掻き上げられた油を貯留するキャッチタンク80を備えている。具体的には、ケース9は、インバータ装置20の収容室を形成する収容室形成部91fと、当該収容室の開口部を閉じるように収容室形成部91fに接合される第4ケース部94と、を備えている。すなわち、インバータ装置20は、収容室形成部91fと第4ケース部94とに囲まれた空間に収容されている。図5に示す例では、第1ケース部91が収容室形成部91fを備えている。また、図5に示す例では、インバータ装置20は、インバータ回路を構成する複数の素子(スイッチング素子等)がモジュール化されたパワーモジュール21と、パワーモジュール21から交流電力を出力するための出力バスバー22と、を備えている。出力バスバー22は、端子台Tを介して、コイルエンド部11bから引き出された動力線13と電気的に接続されている。
(2)上記の実施形態では、第1ピニオンギヤPG1及び第2ピニオンギヤPG2のそれぞれがはすば歯車である構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、第1ピニオンギヤPG1及び第2ピニオンギヤPG2のそれぞれが平歯車であっても良い。その場合、サンギヤSG及びリングギヤRGも平歯車となる。
(3)上記の実施形態では、トルクを一対の車輪Wに分配する差動歯車機構4を車両用駆動装置100が備え、差動ケース41が出力部材2として機能する構成を例として説明したが、そのような構成に限定されない。例えば、車両用駆動装置100が差動歯車機構4を備えず、回転電機1が1つの車輪Wの駆動力源として機能する構成とした場合、当該車輪Wに駆動連結されたドライブシャフトと一体的に回転する要素を出力部材2としても良い。
(4)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。したがって、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
〔上記実施形態の概要〕
 以下、上記において説明した車両用駆動装置の概要について説明する。
 ロータ(12)を備えた回転電機(1)と、
 車輪(W)に駆動連結される出力部材(2)と、
 前記ロータ(12)の回転を前記出力部材(2)に伝達する動力伝達機構(3)と、
 前記回転電機(1)及び前記動力伝達機構(3)を収容するケース(9)と、を備えた車両用駆動装置(100)であって、
 前記動力伝達機構(3)は、遊星歯車機構(31)と、第1ギヤ(32)と、第2ギヤ(33)と、を備え、
 前記遊星歯車機構(31)は、サンギヤ(SG)と、キャリヤ(CR)と、リングギヤ(RG)と、を備え、
 前記サンギヤ(SG)は、前記ロータ(12)と一体的に回転するように連結され、
 前記キャリヤ(CR)は、互いに一体的に回転する第1ピニオンギヤ(PG1)と第2ピニオンギヤ(PG2)とを回転自在に支持し、
 前記キャリヤ(CR)及び前記リングギヤ(RG)の一方を第1要素(E1)とし、他方を第2要素(E2)として、
 前記第1要素(E1)は、前記第1ギヤ(32)と一体的に回転するように連結され、
 前記第2要素(E2)は、前記ケース(9)に対して固定され、
 前記第2ギヤ(33)は、前記第1ギヤ(32)に噛み合っていると共に、前記出力部材(2)と一体的に回転するように連結され、
 前記第1ピニオンギヤ(PG1)は、前記サンギヤ(SG)に噛み合い、
 前記第2ピニオンギヤ(PG2)は、前記第1ピニオンギヤ(PG1)よりも小径であり、前記リングギヤ(RG)に噛み合い、
 前記第1ギヤ(32)は、支持軸受(B2)を介して前記ケース(9)に対して回転自在に支持され、
 前記支持軸受(B2)は、前記第1ギヤ(32)に対して径方向(R)の内側であって、前記径方向(R)に沿う径方向視で前記第1ギヤ(32)と重複する位置に配置され、
 前記第1ギヤ(32)及び前記第2ギヤ(33)のそれぞれは、やまば歯車である。
 本構成によれば、回転電機(1)、遊星歯車機構(31)、及び第1ギヤ(32)と、出力部材(2)及び第2ギヤ(33)とが、互いに別軸上に配置された2軸構成を実現できる。これにより、例えばカウンタギヤ機構等を備えた3軸以上の多軸構成に比べて、車両用駆動装置(100)の径方向(R)の寸法を小さく抑えることができる。
 また、本構成によれば、遊星歯車機構(31)のキャリヤ(CR)が、互いに外径の異なる第1ピニオンギヤ(PG1)及び第2ピニオンギヤ(PG2)を支持している。そして、ロータ(12)と一体回転するサンギヤ(SG)が、大径の第1ピニオンギヤ(PG1)に噛み合っている。また、キャリヤ(CR)及びリングギヤ(RG)の一方が第1ギヤ(32)と一体的に回転するように連結され、キャリヤ(CR)及びリングギヤ(RG)の他方がケース(9)に固定されている。そして、リングギヤ(RG)が小径の第2ピニオンギヤ(PG2)に噛み合っている。そのため、複数の遊星歯車機構を設けることなく、上記のように構成された遊星歯車機構(31)により大きな減速比を確保し易い。また、これに伴い、小型の回転電機(1)であっても高いトルクを出力部材(2)に伝達することが可能となる。
 また、本構成によれば、支持軸受(B2)が、第2ギヤ(33)に噛み合う第1ギヤ(32)に対して径方向(R)の内側であって、径方向(R)に沿う径方向視で第1ギヤ(32)と重複する位置に配置されている。これにより、第1ギヤ(32)が径方向(R)の外側から軸受に支持された構成と比べて、車両用駆動装置(100)の軸方向(L)の寸法を小さく抑え易い。
 また、本構成によれば、第1ギヤ(32)及び第2ギヤ(33)を単なるはすば歯車とした構成に比べて、第1ギヤ(32)と第2ギヤ(33)との噛み合いにより生じるスラスト力を低減できる。これにより、第1ギヤ(32)及び第2ギヤ(33)の支持構造を簡略化でき、この点からも、車両用駆動装置(100)の小型化を図り易い。
 以上のように、本構成によれば、減速比を大きく確保しつつ、小型化が容易な車両用駆動装置(100)を実現できる。
 ここで、前記ロータ(12)の回転軸心に沿う方向を軸方向(L)として、
 前記ケース(9)は、前記第1ギヤ(32)に対して前記軸方向(L)における前記遊星歯車機構(31)の側とは反対側に隣接して配置された支持壁部(SW)を備え、
 前記支持壁部(SW)は、前記支持軸受(B2)を前記径方向(R)の内側から支持する軸受支持部(SWa)を備えていると好適である。
 本構成によれば、第1ギヤ(32)に対して軸方向(L)における遊星歯車機構(31)の側とは反対側に隣接して支持壁部(SW)が配置されている。そして、第1ギヤ(32)が、その径方向(R)の内側に配置された支持軸受(B2)を介して、支持壁部(SW)の軸受支持部(SWa)に対して回転可能に支持されている。これにより、第1ギヤ(32)に対して軸方向(L)の両側のそれぞれにケース(9)の壁部が配置され、それらの壁部に対して第1ギヤ(32)が回転可能に支持された構成と比べて、車両用駆動装置(100)の軸方向(L)の寸法を小さく抑えることができる。
 また、前記第2ギヤ(33)は、第2支持軸受(B6)を介して前記ケース(9)に対して回転自在に支持され、
 前記ロータ(12)の回転軸心に沿う方向を軸方向(L)として、
 前記支持軸受(B2)の前記軸方向(L)の配置領域と、前記第2支持軸受(B6)の前記軸方向(L)の配置領域とが重なっていると好適である。
 本構成によれば、支持軸受(B2)の軸方向(L)の配置領域と第2支持軸受(B6)の軸方向(L)の配置領域とが重ならない構成と比べて、車両用駆動装置(100)の軸方向(L)の寸法を小さく抑え易い。
 また、前記第1要素(E1)と前記第1ギヤ(32)とが、前記径方向(R)に相対移動不能に連結されていると好適である。
 本構成によれば、第1要素(E1)及び第1ギヤ(32)をケース(9)に対して回転可能に支持する軸受の数を少なく抑えることができる。これにより、車両用駆動装置(100)の部材コストを低く抑えつつ、車両用駆動装置(100)の軸方向(L)の寸法を小さく抑えることができる。
 また、前記第1ピニオンギヤ(PG1)及び前記第2ピニオンギヤ(PG2)のそれぞれは、はすば歯車であり、
 前記第1ピニオンギヤ(PG1)と前記第2ピニオンギヤ(PG2)との歯部のねじれ方向が互いに同じであって、前記第1ピニオンギヤ(PG1)の歯部のねじれ角度が前記第2ピニオンギヤ(PG2)の歯部のねじれ角度よりも大きいと好適である。
 本構成によれば、第1ピニオンギヤ(PG1)とサンギヤ(SG)との噛み合いにより生じるスラスト力と、第2ピニオンギヤ(PG2)とリングギヤ(RG)との噛み合いにより生じるスラスト力とを互いに減殺することができる。これにより、キャリヤ(CR)による第1ピニオンギヤ(PG1)及び第2ピニオンギヤ(PG2)の支持構造を簡略化することができる。また、キャリヤ(CR)の剛性を大きく確保する必要がない。したがって、車両用駆動装置(100)の小型化を図り易い。
 また、前記出力部材(2)に伝達されたトルクを一対の前記車輪(W)に分配する差動歯車機構(4)を更に備え、
 前記ロータ(12)の回転軸心に沿う方向を軸方向(L)とし、前記軸方向(L)の一方側を軸方向第1側(L1)とし、前記軸方向(L)の他方側を軸方向第2側(L2)として、
 前記ロータ(12)、前記遊星歯車機構(31)、及び前記第1ギヤ(32)が、第1軸(X1)上に、前記軸方向第1側(L1)から前記軸方向第2側(L2)に向かって記載の順に配置され、
 前記差動歯車機構(4)及び前記第2ギヤ(33)が、前記第1軸(X1)と平行な第2軸(X2)上に、前記軸方向第1側(L1)から前記軸方向第2側(L2)に向かって記載の順に配置されていると好適である。
 本構成によれば、互いに噛合う第1ギヤ(32)及び第2ギヤ(33)に対して軸方向(L)の同じ側に、回転電機(1)及び遊星歯車機構(31)と、差動歯車機構(4)とが配置されている。これにより、回転電機(1)及び遊星歯車機構(31)と、差動歯車機構(4)とが、第1ギヤ(32)及び第2ギヤ(33)に対して軸方向(L)の両側に分かれて配置された構成と比べて、車両用駆動装置(100)の軸方向(L)の寸法を小さく抑え易い。
 本開示に係る車両用駆動装置は、上述した各効果のうち、少なくとも1つを奏することができれば良い。
 本開示に係る技術は、ロータを備えた回転電機と、車輪に駆動連結される出力部材と、ロータの回転を出力部材に伝達する動力伝達機構と、回転電機及び動力伝達機構を収容するケースと、を備えた車両用駆動装置に利用することができる。
100:車両用駆動装置、1:回転電機、12:ロータ、2:出力部材、3:動力伝達機構、31:遊星歯車機構、32:第1ギヤ、33:第2ギヤ、4:差動歯車機構、9:ケース、SG:サンギヤ、CR:キャリヤ、RG:リングギヤ、PG1:第1ピニオンギヤ、PG2:第2ピニオンギヤ、E1:第1要素、E2:第2要素、B2:第1支持軸受(支持軸受)、B6:第2支持軸受、SW:支持壁部、SWa:軸受支持部、W:車輪、L:軸方向、L1:軸方向第1側、L2:軸方向第2側、R:径方向、X1:第1軸、X2:第2軸

Claims (6)

  1.  ロータを備えた回転電機と、
     車輪に駆動連結される出力部材と、
     前記ロータの回転を前記出力部材に伝達する動力伝達機構と、
     前記回転電機及び前記動力伝達機構を収容するケースと、を備えた車両用駆動装置であって、
     前記動力伝達機構は、遊星歯車機構と、第1ギヤと、第2ギヤと、を備え、
     前記遊星歯車機構は、サンギヤと、キャリヤと、リングギヤと、を備え、
     前記サンギヤは、前記ロータと一体的に回転するように連結され、
     前記キャリヤは、互いに一体的に回転する第1ピニオンギヤと第2ピニオンギヤとを回転自在に支持し、
     前記キャリヤ及び前記リングギヤの一方を第1要素とし、他方を第2要素として、
     前記第1要素は、前記第1ギヤと一体的に回転するように連結され、
     前記第2要素は、前記ケースに対して固定され、
     前記第2ギヤは、前記第1ギヤに噛み合っていると共に、前記出力部材と一体的に回転するように連結され、
     前記第1ピニオンギヤは、前記サンギヤに噛み合い、
     前記第2ピニオンギヤは、前記第1ピニオンギヤよりも小径であり、前記リングギヤに噛み合い、
     前記第1ギヤは、支持軸受を介して前記ケースに対して回転自在に支持され、
     前記支持軸受は、前記第1ギヤに対して径方向の内側であって、前記径方向に沿う径方向視で前記第1ギヤと重複する位置に配置され、
     前記第1ギヤ及び前記第2ギヤのそれぞれは、やまば歯車である、車両用駆動装置。
  2.  前記ロータの回転軸心に沿う方向を軸方向として、
     前記ケースは、前記第1ギヤに対して前記軸方向における前記遊星歯車機構の側とは反対側に隣接して配置された支持壁部を備え、
     前記支持壁部は、前記支持軸受を前記径方向の内側から支持する軸受支持部を備えている、請求項1に記載の車両用駆動装置。
  3.  前記第2ギヤは、第2支持軸受を介して前記ケースに対して回転自在に支持され、
     前記ロータの回転軸心に沿う方向を軸方向として、
     前記支持軸受の前記軸方向の配置領域と、前記第2支持軸受の前記軸方向の配置領域とが重なっている、請求項1又は2に記載の車両用駆動装置。
  4.  前記第1要素と前記第1ギヤとが、前記径方向に相対移動不能に連結されている、請求項1から3のいずれか一項に記載の車両用駆動装置。
  5.  前記第1ピニオンギヤ及び前記第2ピニオンギヤのそれぞれは、はすば歯車であり、
     前記第1ピニオンギヤと前記第2ピニオンギヤとの歯部のねじれ方向が互いに同じであって、前記第1ピニオンギヤの歯部のねじれ角度が前記第2ピニオンギヤの歯部のねじれ角度よりも大きい、請求項1から4のいずれか一項に記載の車両用駆動装置。
  6.  前記出力部材に伝達されたトルクを一対の前記車輪に分配する差動歯車機構を更に備え、
     前記ロータの回転軸心に沿う方向を軸方向とし、前記軸方向の一方側を軸方向第1側とし、前記軸方向の他方側を軸方向第2側として、
     前記ロータ、前記遊星歯車機構、及び前記第1ギヤが、第1軸上に、前記軸方向第1側から前記軸方向第2側に向かって記載の順に配置され、
     前記差動歯車機構及び前記第2ギヤが、前記第1軸と平行な第2軸上に、前記軸方向第1側から前記軸方向第2側に向かって記載の順に配置されている、請求項1から5のいずれか一項に記載の車両用駆動装置。
PCT/JP2022/043308 2021-11-24 2022-11-24 車両用駆動装置 WO2023095820A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023563716A JP7556480B2 (ja) 2021-11-24 2022-11-24 車両用駆動装置
EP22898602.2A EP4382767A1 (en) 2021-11-24 2022-11-24 Driving device for vehicle
CN202280069685.8A CN118103619A (zh) 2021-11-24 2022-11-24 车用驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-190505 2021-11-24
JP2021190505 2021-11-24

Publications (1)

Publication Number Publication Date
WO2023095820A1 true WO2023095820A1 (ja) 2023-06-01

Family

ID=86539527

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/043311 WO2023095821A1 (ja) 2021-11-24 2022-11-24 車両用駆動装置
PCT/JP2022/043308 WO2023095820A1 (ja) 2021-11-24 2022-11-24 車両用駆動装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043311 WO2023095821A1 (ja) 2021-11-24 2022-11-24 車両用駆動装置

Country Status (4)

Country Link
EP (2) EP4382767A1 (ja)
JP (1) JPWO2023095821A1 (ja)
CN (2) CN118119777A (ja)
WO (2) WO2023095821A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102193A (ja) * 2013-11-26 2015-06-04 アイシン・エィ・ダブリュ株式会社 車両用駆動伝達装置
DE102018117206A1 (de) * 2018-07-17 2020-01-23 Schaeffler Technologies AG & Co. KG Elektrische Achsantriebsvorrichtung mit Torque-Vectoring-Einheit
JP2020175707A (ja) 2019-04-16 2020-10-29 アイシン・エィ・ダブリュ株式会社 車両用駆動装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160777U (ja) * 1986-04-01 1987-10-13
JP6596897B2 (ja) * 2015-04-13 2019-10-30 日産自動車株式会社 モータ駆動装置
JP2019065983A (ja) * 2017-10-02 2019-04-25 トヨタ自動車株式会社 ディファレンシャル装置
JP2019113090A (ja) * 2017-12-21 2019-07-11 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
WO2019198272A1 (ja) * 2018-04-11 2019-10-17 日立オートモティブシステムズ株式会社 ディスクブレーキ及び遊星歯車減速機構
JP7222843B2 (ja) * 2019-08-02 2023-02-15 Kyb株式会社 減速機付液圧モータ
JP2021107737A (ja) * 2019-12-30 2021-07-29 ジヤトコ株式会社 動力伝達装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102193A (ja) * 2013-11-26 2015-06-04 アイシン・エィ・ダブリュ株式会社 車両用駆動伝達装置
DE102018117206A1 (de) * 2018-07-17 2020-01-23 Schaeffler Technologies AG & Co. KG Elektrische Achsantriebsvorrichtung mit Torque-Vectoring-Einheit
JP2020175707A (ja) 2019-04-16 2020-10-29 アイシン・エィ・ダブリュ株式会社 車両用駆動装置

Also Published As

Publication number Publication date
CN118103619A (zh) 2024-05-28
JPWO2023095820A1 (ja) 2023-06-01
EP4382768A1 (en) 2024-06-12
WO2023095821A1 (ja) 2023-06-01
CN118119777A (zh) 2024-05-31
JPWO2023095821A1 (ja) 2023-06-01
EP4382767A1 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
US8870697B2 (en) Power transmission device
JP7437406B2 (ja) 車両用駆動装置
JP2015205624A (ja) 車両用駆動装置
WO2023095820A1 (ja) 車両用駆動装置
JP7556480B2 (ja) 車両用駆動装置
US11460097B2 (en) Complex planetary gear unit
WO2023095822A1 (ja) 車両用駆動装置
WO2023068334A1 (ja) 車両用駆動装置
JP2021162052A (ja) 車両用駆動伝達装置
WO2023182326A1 (ja) 車両用駆動装置
JP7476761B2 (ja) 車両用駆動装置
JP2023150296A (ja) 車両用駆動装置
JP7495991B2 (ja) 車両用駆動装置
JP7517360B2 (ja) 車両用駆動装置及び遊星歯車機構の製造方法
WO2024034489A1 (ja) 車両用駆動装置
JP2023089764A (ja) 車両用駆動装置
CN118103617A (zh) 车用驱动装置
JP5747383B2 (ja) 動力伝達装置
JP2024043033A (ja) 車両用駆動伝達装置
JP2024050213A (ja) 車両用駆動伝達装置
CN118120133A (zh) 车用驱动装置
JP2022152833A (ja) 車両用駆動装置
JP2023064995A (ja) 車両用駆動装置
JP2021055781A (ja) 車両用駆動装置
JP2023067198A (ja) トルクベクタリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022898602

Country of ref document: EP

Effective date: 20240305

ENP Entry into the national phase

Ref document number: 2023563716

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280069685.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE