WO2023095384A1 - 特性測定装置 - Google Patents

特性測定装置 Download PDF

Info

Publication number
WO2023095384A1
WO2023095384A1 PCT/JP2022/028774 JP2022028774W WO2023095384A1 WO 2023095384 A1 WO2023095384 A1 WO 2023095384A1 JP 2022028774 W JP2022028774 W JP 2022028774W WO 2023095384 A1 WO2023095384 A1 WO 2023095384A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
actuator
state
movable portion
movable
Prior art date
Application number
PCT/JP2022/028774
Other languages
English (en)
French (fr)
Inventor
栄生 伊
康平 樋園
Original Assignee
株式会社鷺宮製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社鷺宮製作所 filed Critical 株式会社鷺宮製作所
Priority to CN202280075668.5A priority Critical patent/CN118235031A/zh
Publication of WO2023095384A1 publication Critical patent/WO2023095384A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/04Monodirectional test stands

Definitions

  • the present invention applies a predetermined preload to the test object, and then evaluates the dynamic characteristics and durability of the test object for automobiles (e.g., anti-vibration rubber and anti-vibration parts) under high load.
  • the present invention relates to a measuring device for measuring characteristics.
  • preload a predetermined load
  • the device under test assuming the actual vehicle condition, and then the external It is necessary to measure the load caused by the input vibration (displacement, acceleration, etc.).
  • Patent Document 1 discloses a property measuring device (hereinafter referred to as a “conventional property measuring device”) in which a base having a vibrator and a property of a test object and a support section that is mounted on a base and supports a reaction force section that functions as a weight via an air spring and a fastening mechanism.
  • a property measuring device in which a base having a vibrator and a property of a test object and a support section that is mounted on a base and supports a reaction force section that functions as a weight via an air spring and a fastening mechanism.
  • the device under test is clamped from above and below by a pair of mounting jigs fixed to the base and the support, respectively, and the distance between the pair of mounting jigs is measured.
  • vibration is applied to the device under test by a vibrator to measure the characteristic values of the device under test.
  • the supporting part 620 in the conventional characteristic measuring apparatus has a reaction force part 624 on the middle surface plate in order to cope with a wide range of vibration frequencies input by the vibration exciter during the characteristic test.
  • 622 is supported by an air spring 623 (hereinafter referred to as a "floating mass state”) (see FIG. 5A), and a state in which the reaction force portion 624 is fastened and fixed to the intermediate surface plate 622 by the fastening mechanism 700. (hereinafter referred to as “fixed state”) (see FIG. 5B).
  • a floating mass state a state in which the reaction force portion 624 is fastened and fixed to the intermediate surface plate 622 by the fastening mechanism 700.
  • the support section 620 in the conventional characteristic measuring device includes an air spring 623 in a sealed state, a stopper 625 and a fastening mechanism 700 between the intermediate platen 622 and the reaction force section 624 .
  • the fastening mechanism 700 includes an actuator 710 fixed to the lower surface of the reaction force portion 624 and a locking member 720 fixed to the upper surface of the intermediate surface plate 622 .
  • the actuator 710 includes a cylinder 711 fixed to the lower surface of the reaction force portion 624, and a movable portion 712 having a lower enlarged diameter portion 712a and an upper enlarged diameter portion 712b.
  • the lower enlarged diameter portion 712 a of the movable portion 712 can be engaged with the engaging member 720 , while the upper enlarged diameter portion 712 b of the movable portion 712 is housed in the cylinder 711 .
  • the height position of the reaction force portion 624 with respect to the intermediate surface plate 622 fluctuates when switching between the floating mass state and the fixed state.
  • the air spring 623 is further compressed downward by the actuator 710 compared to the floating mass state (see FIG. 5A). Air leaks tended to occur.
  • the positional variation of the reaction force portion 624 that occurs when switching from the fixed state to the floating mass state is not reproducible and may not be the same. Due to such positional fluctuations of the reaction force part 624, the distance between the pair of mounting jigs that applied a predetermined preload to the device under test also fluctuates, and as a result, the preload on the device under test fluctuates greatly.
  • a problem hereinafter referred to as “conventional problem (preload variation)”) has occurred.
  • An object of the present invention is to provide a characteristic measuring apparatus capable of smoothly switching between a floating mass state and a fixed state while maintaining a predetermined preload.
  • a base In order to solve the above problems, a base, a support placed on the upper part of the base, and a measuring part arranged between the base and the support for mounting a device under test thereon,
  • the support portion includes an intermediate surface plate fixed to the base portion, a reaction force portion functioning as a weight, and an air spring and a double fastening mechanism respectively arranged between the intermediate surface plate and the reaction force portion.
  • the air spring and the double fastening mechanism support the reaction force portion without changing the height in the floating mass state and the fixed state in order to maintain a predetermined preload on the device under test.
  • the double fastening mechanism includes a first actuator fixed to the reaction force portion and a second actuator fixed to the intermediate surface plate, and the reaction force portion
  • the characteristic measuring device is not supported by the first actuator and the second actuator in the floating mass state, and is supported by the first actuator and the second actuator in the fixed state.
  • the first actuator includes a first movable portion that can be separated from the lower surface of the reaction force portion
  • the second actuator includes the reaction force portion and the second actuator.
  • 1 movable part is inserted therethrough, and a second movable part having an engaging part that can be separated and connected to the lower end of the first movable part is provided, and in the floating mass state, the upper end of the first movable part and the A lower end is spaced apart from the reaction force portion and the second movable portion in the axial direction, and in the fixed state, the upper end and the lower end of the first movable portion overlap the reaction force portion and the second movable portion. may be in contact with each other.
  • the air spring and the double fastening mechanism are supported without changing the height of the reaction force portion in a temporarily fixed state between the floating mass state and the fixed state.
  • the reaction force portion may be supported only by the first actuator in the temporarily fixed state.
  • the first actuator includes a first movable portion that can be separated from the lower surface of the reaction force portion
  • the second actuator includes the reaction force portion and the second actuator.
  • 1 movable part is inserted therethrough, and a second movable part having a separable and contactable engagement part is provided at the lower end of the first movable part, and in the temporarily fixed state, the upper end of the first movable part is , by contacting the reaction force portion and separating the lower end of the first movable portion from the second movable portion, the reaction force portion may be supported without changing the height of the
  • the characteristic measuring device further includes a displacement detector that measures the displacement of the reaction force portion at least in the floating mass state, and based on the displacement signal from the displacement detector, the pressure supplied to the air spring is determined.
  • a reaction force portion height holding means for controlling may be further provided.
  • the present invention it is possible to provide a characteristic measuring device capable of smoothly switching between the floating mass state and the fixed state while maintaining a predetermined preload.
  • FIG. 1A is a front view including a partial cross section showing an example of a characteristic measuring device according to an embodiment of the present invention.
  • FIG. 1B is a top view showing an example of a characteristic measuring device according to an embodiment of the invention.
  • FIG. 2 is an enlarged cross-sectional view of the double fastening mechanism of FIG. 1A.
  • 3A is a diagram illustrating a floating mass state of the double fastening mechanism of FIG. 2.
  • FIG. 3B is a diagram for explaining a temporarily fixed state of the double fastening mechanism of FIG. 2.
  • FIG. 3C is a diagram illustrating a fixed state of the double fastening mechanism of FIG. 2.
  • FIG. 4 is a diagram for explaining the reaction force portion height holding means in the characteristic measuring device of FIG. 1A.
  • FIG. 5A is an enlarged cross-sectional view of a fastening mechanism and an air spring used in a conventional characteristic measuring device in a floating mass state.
  • FIG. 5B is an enlarged cross-sectional view of a fastening mechanism and an air spring used in a conventional characteristic measuring device in a fixed state.
  • FIG. 1A An embodiment of the present invention will be described in detail with reference to FIGS. 1A to 4.
  • FIG. the present invention is not limited to the aspect of this embodiment.
  • ⁇ About characteristic measuring device> An example of a characteristic measuring device 100 according to an embodiment of the present invention will be described with reference to FIGS. 1A and 1B. Note that the left side of the characteristic measuring device 100 in the drawing is partially shown as a cross-sectional view for explanation.
  • This property measuring device 100 is a measuring device for measuring the dynamic properties of anti-vibration rubber for automobiles, for example, as standardized in SRIS3503 (the standard of the Rubber Society of Japan).
  • the property measuring device 100 has a base portion 110 and a reaction force portion 124 placed on the upper portion of the base portion 110 and functioning as a weight. It includes a support section 120 that supports in a state, a fixed state, or the like, a measurement section 130 arranged between the base section 110 and the support section 120, and a control system (not shown). Each configuration of the characteristic measuring device 100 will be described in order below.
  • the base 110 includes legs 111 , a base air spring 112 , a base mount 113 , and an electrodynamic vibrator 114 .
  • the four legs 111 are arranged at positions contacting the ground, and fix the characteristic measuring device 100 to the ground.
  • the base air springs 112 are elastic bodies placed on top of the four legs 111, and four of them are arranged. By providing this base air spring 112, it is possible to prevent vibrations from being transmitted between the ground and the property measuring device 100 during the vibration test.
  • the base mount 113 is made of metal such as iron and has a relatively large mass.
  • the base mount section 113 is installed via the base air spring 112 such that the upper surface of the base mount section 113 is horizontal.
  • the electrodynamic vibrator 114 is fixed to the base gantry 113 with its upper portion housed in the opening 113 a of the base gantry 113 .
  • the electrodynamic shaker 114 is electrically connected to the control system and drives an electrodynamic shaker shaking table 134 installed on top of the electrodynamic shaker 114 . Since the electrodynamic vibrator 114 has a sufficient mass together with the base gantry 113, it plays a role of preventing vibration transmission similarly to the base air spring 112.
  • the base 110 has the base air springs 112 arranged between the four legs 111 and the base mount 113, and the lower portions of the legs 111 are fixed to the ground.
  • the base 110 may be in any manner as long as it prevents the transmission of vibrations and withstands external factors such as earthquakes.
  • the support section 120 includes a column 121 , an intermediate surface plate 122 , a support section air spring 123 , a double fastening mechanism 200 and a reaction force section 124 .
  • pillars 121 are arranged, the lower part of which is fixed to the base frame part 113 and the upper part of which is fixed to the intermediate surface plate 122 .
  • the strut 121 in this embodiment can be stretched in the axial direction. making it possible to measure.
  • the intermediate platen 122 has a frame shape in a plan view, and has a penetrating portion 122a in the central portion.
  • double fastening mechanisms 200 are arranged at the corners, and two support air springs 123 are arranged at the sides connecting the corners.
  • the double fastening mechanism 200 and the support air spring 123 are arranged at the corners and sides of the intermediate surface plate 122, respectively.
  • the support air springs 123 and double fastening mechanisms 200 may be arranged at the corners and sides, respectively.
  • the support part air spring 123 is an elastic body arranged between the intermediate surface plate 122 and the reaction force part 124 .
  • the support portion air spring 123 can be in a floating mass state that blocks transmission of vibration such as resonance between the base portion 110 and the reaction force portion 124 in a high frequency vibration state or the like.
  • eight support air springs 123 are used for the sake of explanation, but the present invention is not limited to this, and any other number of support air springs 123 may be used as long as a floating mass state can be constructed.
  • a spring 123 may be employed.
  • the double fastening mechanism 200 is arranged between the intermediate surface plate 122 and the reaction force part 124, and although details will be described later, two actuators (see the first actuator 210 and the second actuator 220 in FIG. 2). Prepare.
  • the double fastening mechanism 200 in the fixed state, is such that the base frame portion 113, the struts 121, the intermediate surface plate 122, and the reaction force portion 124 are firmly connected, and has high rigidity. It can be measured at low vibration frequencies, such as below about 100-150 Hz.
  • four double fastening mechanisms 200 are shown, but the present invention is not limited to this, and other fastening mechanisms may be used as long as a fixed state with sufficient coupling rigidity can be configured.
  • a number of dual fastening mechanisms 200 may be employed.
  • the double fastening mechanism 200 of the present embodiment drives two actuators to perform double fastening when switching between the floating mass state, the temporarily fixed state, and the fixed state.
  • the mechanism 200 and the support air spring 123 Through the mechanism 200 and the support air spring 123, the height position of the reaction force part 124 can be held without changing.
  • the conventional problem variation in preload
  • switching between the floating mass state and the fixed state can be performed smoothly.
  • the reaction force part 124 functions as a weight, and its lower part is inserted into the penetrating part 122 a of the intermediate surface plate 122 . Since the resonance frequency of the reaction force part 124 needs to be higher than the measurement area to be measured, it is set to a relatively large mass (for example, 1500 kg or more).
  • the measurement unit 130 includes a pair of mounting jigs 131 , a device under test 132 , a load washer 133 , and an electrodynamic vibration exciter shaking table 134 .
  • the pair of mounting jigs 131 includes an upper mounting jig 131 a installed below the reaction force portion 124 and a lower mounting jig 131 b installed above the electrodynamic vibration exciter vibration table 134 .
  • the test object 132 is an anti-vibration rubber including a phase element, such as anti-vibration rubber with a mass for automobiles, liquid-filled anti-vibration rubber, and the like.
  • a device under test 132 is held between a pair of mounting jigs 131 and measured.
  • the test object 132 in the present embodiment is anti-vibration rubber for automobiles and the like, it is not limited to this, and general industrial rubber may be used.
  • the load washer 133 is arranged above the device under test 132 via the upper attachment jig 131a.
  • the load washer 133 is a piezoelectric element with high rigidity, has a fast response speed, and has a small measurement threshold. Configure.
  • the electrodynamic shaker shaking table 134 is installed above the electrodynamic shaker 114 and controlled by the control system.
  • a diaphragm (not shown) and a coil (not shown) are directly connected to the electrodynamic vibration exciter shaking table 134, and an alternating magnetic field is arranged around them. , the electrodynamic shaker shaking table 134 is driven.
  • the vibration frequency range of the electrodynamic vibrator 114 in this embodiment is up to 3 kHz, it is not limited to this, and may be, for example, 3 kHz or higher.
  • control system mainly includes a main controller and a power amplifier housing.
  • the main controller controls the characteristic measuring device 100, and is connected to the power supply and the characteristic measuring device 100 via the activator and the operating line.
  • the main controller mainly includes a main servo controller, a charge amplifier, an exciter operating panel, an uninterruptible power supply, a user interface, and the like. Signals such as dynamic load and displacement are input to the main servo controller from various sensors of the characteristic measuring device 100, and various measurements and calculations are performed.
  • the power amplifier housing is controlled by a signal from the shaker operating panel of the main controller, and controls the operation of the electrodynamic shaker table 134 of the electrodynamic shaker 114 of the characteristic measurement device 100, for example.
  • the double fastening mechanism 200 includes a first actuator 210 and a second actuator 220.
  • the first actuator 210 includes a first cylinder 211, a first movable portion 212 housed in the first cylinder 211, a first hydraulic pressure supply/discharge path 213, and the first movable portion 212 downward.
  • a first biasing means 214 for biasing, and a fixed member 215 fixed to the lower end of the first movable portion 212 and supporting the lower side of the first biasing means 214 are provided.
  • the first cylinder 211 is a hollow cylindrical member fixed to the upper part of the intermediate surface plate 122, and has a stepped inner peripheral surface that penetrates along the axis C direction.
  • An upper end small diameter portion 211a, a first piston accommodating portion 211b, a lower guide portion 211c, and a first spring accommodating portion 211d are continuously formed so as to repeat diameter reduction and diameter expansion downward.
  • the intermediate surface plate 122 is formed with a recessed portion 122 b that is continuous with the inner peripheral surface of the first cylinder 211 .
  • the first movable portion 212 is a hollow cylindrical member that is accommodated in the first cylinder 211 and the concave portion 122b of the intermediate surface plate 122.
  • the first movable portion 212 has a through hole 212a that penetrates with the same diameter along the direction of the axis C, and a staircase. and a shaped outer peripheral surface.
  • the upper shaft portion 212b and the first piston portion 212c gradually increase in diameter, while the stepped portion 212d, the lower shaft portion 212e, and the spring contact portion 212f sequentially decrease in diameter. are formed continuously.
  • a gap is formed in the radial direction between the upper shaft portion 212b and the upper small diameter portion 211a.
  • a first sealed space is provided, although the details will be described later.
  • a predetermined radial clearance is provided to define a space to accommodate S1 and the first biasing means 214 .
  • relative sliding in the direction of the axis C is allowed between the first piston portion 212c and the first piston accommodating portion 211b and between the lower shaft portion 212e and the lower guide portion 211c.
  • a very small clearance is provided to allow this.
  • the first hydraulic pressure supply/discharge path 213 penetrates from the outer peripheral surface to the inner peripheral surface of the first cylinder 211, and switches to a connected state or a non-communicated state in which supply/discharge is possible, so that the first cylinder 211 and the first movable portion 212, the driving fluid can be supplied, discharged, and maintained.
  • the first closed space S1 never becomes zero and is always fluidly connected to the first hydraulic pressure supply/discharge path 213. Therefore, the hydraulic pressure to the first closed space S1 is can be smoothly supplied and discharged.
  • the first movable portion 212 is moved to a desired position in the direction of the axis C, The first movable part 212 is made separable.
  • the first biasing means 214 is composed of, for example, a disc spring, which is accommodated in the first spring accommodating portion 211d and the concave portion 122b of the intermediate surface plate 122, and is arranged between the lower guide portion 211c and the first movable portion 212. is sandwiched in the direction of the axis C by a fixing member 215 fixed to the lower end of the .
  • the first movable portion 212 is constantly urged downward by the first urging means 214 . Therefore, when the first hydraulic pressure supply/discharge path 213 is in a communicating state in which discharge is possible, the driving fluid is discharged from the first sealed space S1, thereby causing the first movable portion 212 to move from the reaction force portion 124.
  • the driving fluid is such that it overcomes the resultant force of the biasing force of the first biasing means 214 and the weight of the first movable portion 212 .
  • the first sealed space S1 the first movable portion 212 is arranged at a position where it abuts against the reaction force portion 124. As shown in FIG.
  • the second actuator 220 includes a second cylinder 221, a second movable portion 222 housed in the second cylinder 221, a second hydraulic pressure supply/discharge path 223, and the second movable portion 222 downward. and a second biasing means 224 for biasing.
  • the second cylinder 221 is a hollow cylindrical member fixed to the upper portion of the collar portion 124a of the reaction force portion 124, and has a stepped inner peripheral surface penetrating along the axis C direction. , the communication hole 221a, the second spring accommodating portion 221b, and the second piston accommodating portion 221c are successively increased in diameter from the top to the bottom, and the lower end guide portion 221d is continuously formed to decrease in diameter. be done.
  • an insertion hole 124b extending with the same diameter along the axis C direction is formed in the collar portion 124a of the reaction force portion 124 so as to be continuous with the inner peripheral surface of the second cylinder 221 .
  • the second movable portion 222 is a solid columnar member that extends with the same diameter along the direction of the axis C, and is inserted into the insertion hole 124b of the collar portion 124a and the through hole 212a of the first movable portion 212, respectively.
  • an engaging portion 222c accommodated in the concave portion 122b of the intermediate surface plate 122.
  • the second hydraulic pressure supply/discharge path 223 penetrates from the outer peripheral surface to the inner peripheral surface of the second cylinder 221, and switches to a connected state or a non-communicated state in which supply/discharge is possible, so that the second cylinder 221 and the second movable portion 222, the driving fluid can be supplied, discharged, and maintained in the second enclosed space S2.
  • the second movable portion 222 is moved to a desired position in the direction of the axis C, and the first movable portion 212 is moved.
  • the second movable portion 222 is made separable and contactable.
  • the second biasing means 224 is composed of, for example, a coil spring, which is housed in the second cylinder 221, and includes a second spring housing portion 221b and a spring receiving portion 222b1 provided on the second piston portion 222b. are sandwiched in the direction of the axis C.
  • the second movable portion 222 is constantly urged downward by the second urging means 224 . Therefore, when the second hydraulic pressure supply/discharge path 223 is in a dischargeable communication state, the driving fluid is discharged from the second sealed space S2, and the engagement portion 222c of the second movable portion 222 is disengaged. It is arranged at a position spaced downward from the fixing member 215 .
  • the driving fluid is such that it overcomes the resultant force of the biasing force of the second biasing means 224 and the weight of the second movable portion 222. is supplied to the second sealed space S2, the engagement portion 222c of the second movable portion 222 is arranged at a position where it contacts the fixed member 215. As shown in FIG.
  • the double fastening mechanism 200 in the floating mass state will be described.
  • the first actuator 210 is in a state in which the drive oil in the first sealed space S1 can be discharged via the first hydraulic pressure supply/discharge path 213, so that the first movable portion 212 is urged downward by the first urging means 214, and is held at a position where the lower surface of the stepped portion 212d of the first movable portion 212 contacts the upper surface of the lower guide portion 211c of the first cylinder 211. be done.
  • the second actuator 220 is in a state in which the drive oil in the second sealed space S2 can be discharged via the second hydraulic pressure supply/discharge path 223, the second movable portion 222 can 2 biasing means 224, and the lower surface of the second piston portion 222b of the second movable portion 222 is held at a position in contact with the upper surface of the lower end guide portion 221d of the second cylinder 221. .
  • the first movable portion 212 is separated from the collar portion 124a of the reaction force portion 124 by a distance l1 in the direction of the axis C, and the first movable portion 212 is separated from the second movable portion.
  • 222 and the engaging part 222c of 222 it has distance l2 in the direction of the axis line C, and is spaced apart. Therefore, the reaction force portion 124 is not supported by the first actuator 210 and the second actuator 220 and is in a floating mass state. In this floating mass state, the first hydraulic supply/discharge path 213 and the second hydraulic supply/discharge path 223 are in a state in which driving oil can be discharged or in a non-communication state.
  • the first actuator 210 is supplied with driving oil to the first closed space S1 via the first hydraulic pressure supply/discharge path 213 (see arrow d1 in the figure).
  • the movable portion 212 moves upward against the first biasing means 214 (see arrow M1 in the figure).
  • the supply of driving oil is stopped.
  • the reaction force Section 124 does not move upward.
  • driving oil is not supplied to the second closed space S2 via the second hydraulic pressure supply/discharge path 223 to the second actuator 220, the second movable portion 222 does not move.
  • the reaction force portion 124 is in a temporarily fixed state in which it is supported from below only by the first actuator 210 .
  • the first hydraulic supply/discharge path 213 is in a non-communication state
  • the second hydraulic pressure supply/discharge path 223 is in a state in which driving oil can be discharged or in a non-communication state.
  • the double fastening mechanism 200 that shifts from the temporarily fixed state to the fixed state will be described.
  • the driving oil is not supplied to the first sealed space S1 through the first hydraulic supply/discharge path 213 to the first actuator 210, so the first movable portion 212 is don't move.
  • the second actuator 220 is supplied with driving oil to the second sealed space S2 via the second hydraulic pressure supply/discharge path 223 (see arrow d2 in the figure), and the second movable part 222 is , moves upward against the second biasing means 224 (see arrow M2 in the figure).
  • the supply of drive oil is stopped at the position where the engaging portion 222c of the second movable portion 222 contacts the fixed portion 121e of the first movable portion 212 .
  • the intermediate surface plate 122 to which the first actuator 210 is fixed by fixing the second movable portion 222 to the reaction force portion 124 in the direction of the axis C through the first movable portion 212,
  • the reaction force portion 124 to which the second actuator 220 is fixed can be firmly fastened and fixed.
  • the reaction force portion 124 is firmly fastened and fixed from below by the first actuator 210 and the second actuator 220 .
  • the first hydraulic pressure supply/discharge path 213 and the second hydraulic pressure supply/discharge path 223 are in a non-communication state.
  • the double fastening mechanism 200 that shifts from the fixed state to the temporarily fixed state will be described.
  • the first actuator 210 in the first actuator 210, the first hydraulic supply/discharge path 213 is in a non-communication state, so the first movable portion 212 does not move.
  • the second actuator 220 is in a state in which the drive oil in the second sealed space S2 can be discharged via the second hydraulic pressure supply/discharge path 223 (see arrow d3 in the figure).
  • the movable portion 222 is biased by the second biasing means 224 and moves downward (see arrow M3 in the figure). After that, when the engagement portion 222c of the second movable portion 222 is separated from the first movable portion 212, the discharge of the drive oil is stopped.
  • the double fastening mechanism 200 that shifts from the temporarily fixed state to the floating mass state will be described.
  • the first actuator 210 is in a state in which the drive oil in the first sealed space S1 can be discharged via the first hydraulic pressure supply/discharge path 213 (arrow d4 in the figure). ), the first movable portion 212 is biased by the first biasing means 214 and moves downward (see arrow M4 in the drawing). After that, when the first movable portion 212 is separated from the collar portion 124a of the reaction force portion 124, the discharge of the drive oil is stopped.
  • the reaction force portion 124 is supported and fixed to the intermediate surface plate 122 while maintaining the height position of the reaction force portion 124 in the floating mass state. In the mass state, the reaction force portion 124 does not move vertically.
  • the double fastening mechanism 200 of the present embodiment switches between the floating mass state, the temporarily fixed state, and the fixed state by driving the first actuator 210 and the second actuator 220. 3A to 3C), the height position of the reaction force portion 124 (see the reference height h0 in FIGS. 3A to 3C) can be held without changing. can. As a result, the conventional problem (variation in preload) can be resolved, and switching between the floating mass state and the fixed state can be performed smoothly.
  • the double fastening mechanism 200 in this embodiment adopts a temporarily fixed state, and the reaction force portion 124 is not supported.
  • the supporting force is increased step by step from the floating mass state, the temporarily fixed state that supports soft landing from below, and the fixed state that firmly fastens and fixes from below, or vice versa.
  • the double fastening mechanism 200 is employed in place of the conventional fastening mechanism 700 (see FIGS. 5A and 5B), so that the height of the reaction force portion 124 is Without changing the position, the conventional problem (variation of preload) is solved, and it is sufficiently possible to smoothly switch between the floating mass state and the fixed state.
  • the inventors further considered the behavior of the reaction force portion 124 in the vertical direction when the double fastening mechanism 200 was employed. As a result, particularly when switching from the fixed state (see FIG. 3C) to the floating mass state (see FIG. 3A), the height position of the reaction force portion 124 is slightly below the desired reference height h0.
  • the support air spring 123 is compressed for a long period of time, causing a small amount of air to leak. It could have arisen to support alone.
  • FIG. A length holding means 300 is employed.
  • FIG. A similar reaction portion height holding means 300 is provided.
  • the reaction force portion height holding means 300 includes a proportional pressure control valve 310 , a pressure supply source 320 , a silencer 330 , a displacement detector 340 and a PID control portion 350 .
  • a proportional pressure control valve 310 controls the pressure of the reaction force portion height holding means 300 .
  • the proportional pressure control valve 310 adjusts the supply pressure PS steplessly according to the control value u from the outside.
  • a silencer 330 for muffled exhaust to the outside environment is fluidly connected, on the other hand the support air spring 123 is fluidly connected.
  • the displacement detector 340 is a wire-type displacement meter having a wire portion 340a.
  • the upper end of the wire portion 340a is fixed to the collar portion 124a of the reaction force portion 124, and outputs a displacement position H1, which is a displacement signal corresponding to the expansion and contraction of the wire portion 340a.
  • the displacement detector 340 in this embodiment is a contact displacement gauge, it is not limited to this, and for example, a non-contact displacement gauge (for example, a laser displacement gauge) may be employed.
  • the PID control unit 350 is a combination of proportional control, integral control, and differential control, and calculates a control value u from three elements: the error e between the displacement position H1 and the target position Hr, and its integration and differentiation; It controls the supply pressure PS.
  • the displacement position H1 of the reaction force section 124 can reach the target position Hr stably and quickly while suppressing overshoot.
  • the reaction force portion height holding means 300 is set to operate particularly when the temporarily fixed state is switched to the floating mass state and in the floating mass state, in which the height position of the reaction force portion 124 may fluctuate. .
  • the PID control unit 350 controls the proportional pressure control valve 310 so that the supply pressure PS becomes higher.
  • the pressure increases, and the reaction force portion 124 moves upward toward the target position Hr (see the upward arrow in FIG. 4).
  • the PID control unit 350 controls the proportional pressure control valve 310 so that the supply pressure PS becomes lower, and as a result, the internal pressure of the support air spring 123 becomes decreases, and the reaction force portion 124 moves downward toward the target position Hr (see the downward arrow in FIG. 4).
  • the reaction force portion height holding means 300 of the present embodiment controls the supply pressure PS to the support portion air spring 123 when switching from the temporarily fixed state to the floating mass state and in the floating mass state.
  • the displacement position H1 of the reaction force portion 124 can reach the target position Hr stably and quickly.
  • a new problem fluctuation of the reaction force portion in the floating mass state
  • the reaction force portion height holding means 300 in this embodiment is set to operate at least in the floating mass state (when switching from the temporarily fixed state to the floating mass state and in the floating mass state). However, it is not limited to this, and may be set to always operate (in the floating mass state, the temporarily fixed state, and the fixed state), for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

所定のプリロードを維持しつつ、フローティングマス状態と固定状態との切り替えをスムーズに行うことができる特性測定装置を提供することである。特性測定装置100であって、支持部120は、中定盤122と反力部124との間にそれぞれ配置される、エアばね123及び二重締結機構200を備え、二重締結機構200は、反力部124に固定される第1のアクチュエータ210と、中定盤122に固定される第2のアクチュエータ220と、を備え、反力部124は、第1のアクチュエータ210及び第2のアクチュエータ220により、フローティングマス状態では支持されない一方、固定状態では支持される。これにより、従来の問題点(プリロードの変動)を解消させ、フローティングマス状態と固定状態との切り替えをスムーズに行うことができる。

Description

特性測定装置
 本発明は、特に、被試験体に所定のプリロードを与えた上で、自動車用等の被試験体(例えば、防振ゴムや防振部品)に対する高負荷下での動特性や耐久性等を測定する特性測定装置に関する。
 近年、従来のガソリンエンジンを使用した車両に加えて、電動モータの回転力を利用したハイブリッドタイプの車両、及び、電気自動車(以下、「電気自動車等」という)が急速に普及しており、この電動モータの振動領域は、従来のレシプロエンジンの振動領域より高周波数帯域側へと拡大している。
 このような電気自動車等に用いられる被試験体に対する特性試験では、一般的に、実車状態を想定して、被試験体に所定の負荷(以下、「プリロード」という)を与えた上で、外部より入力される振動(変位や加速度など)によって生じる荷重などを計測する必要がある。
 例えば、特許文献1(特に、図2及び図6参照)には、特性測定装置(以下、「従来の特性測定装置」という)であって、加振機を有する基部と、被試験体の特性を荷重検出器により計測する測定部と、基部に載置され、ウエイトとして機能する反力部をエアばね及び締結機構を介して支持する支持部と、を備えるものが記載されている。この特性測定装置は、計測を行う前に、基部及び支持部のそれぞれに固定された一対の取り付け治具により、被試験体を上下方向から挟持した状態で、一対の取り付け治具間の距離を調整する工程を行い、被試験体に所定のプリロードを与えた上で、加振機により、被試験体に振動を加え、被試験体の特性値を測定していた。
特開2014-006056号公報
 図5A及び図5Bに示すように、従来の特性測定装置における支持部620は、特性試験中に、加振機により入力される幅広い振動周波数に対応するために、反力部624を中定盤622に対して、エアばね623で支持した状態(以下、「フローティングマス状態」という)(図5A参照)と、反力部624を中定盤622に対して、締結機構700で締結固定した状態(以下、「固定状態」という)(図5B参照)と、に切り替える必要があった。これにより、入力される振動周波数が約100~150Hz程度以下では、固定状態とし、150Hz~数kHz程度までは、フローティングマス状態としている。
 具体的には、従来の特性測定装置における支持部620は、中定盤622と反力部624との間に、密閉状態のエアばね623と、ストッパ625と、締結機構700と、を備える。この締結機構700は、反力部624の下面に固定されるアクチュエータ710と、中定盤622の上面に固定される係止部材720と、を備える。このアクチュエータ710は、反力部624の下面に固定されるシリンダ711と、下側拡径部712a及び上側拡径部712bを有する可動部712と、を備える。ここで、可動部712の下側拡径部712aは、係止部材720と係止可能である一方、可動部712の上側拡径部712bは、シリンダ711に収容される。
 まず、固定状態からフローティングマス状態(図5Bから図5A)へ移行する際には、シリンダ711と上側拡径部712bの上面により画定される上側密閉空間C1に駆動油を供給することにより、可動部712が下方に移動し(図5A中の黒塗矢印A1参照)、下側拡径部712aと係止部材720との係合が解放される。これにより、圧縮されていたエアばね623に復元力が生じ、反力部624が上方に移動する(図5A中の白抜き矢印B1参照)。
 次に、フローティングマス状態から固定状態(図5Aから図5B)へ移行する際には、シリンダ711と上側拡径部712bの下面により画定される下側密閉空間C2に駆動油を供給することにより、可動部712が上方に移動し(図5B中の黒塗矢印A2参照)、下側拡径部712aが係止部材720と係止する。これにより、アクチュエータ710が、エアばね623を圧縮させながら、反力部624をストッパ625に当接するまで下方に移動させる(図5B中の白抜き矢印B2参照)。
 このように、フローティングマス状態と固定状態との切り替えの際に、中定盤622に対して、反力部624の高さ位置が変動するものであった。また、これに加え、固定状態(図5B参照)では、フローティングマス状態(図5A参照)と比べ、エアばね623が、アクチュエータ710により、さらに下方向に圧縮されるため、エアばね623から外部に空気漏れなどが生じ易かった。これにより、固定状態からフローティングマス状態への切り替えの際に生じる反力部624の位置変動は、再現性はなく同じ変動とはならないことがあった。このような反力部624の位置変動によって、被試験体に所定のプリロードを与えていた一対の取り付け治具間の距離も変動し、結果、被試験体へのプリロードが大きく変動してしまうという問題(以下、「従来の問題点(プリロードの変動)」という)が生じていた。
 この従来の問題点(プリロードの変動)を解決するためには、フローティングマス状態と固定状態との切り替えを行う毎に、被試験体を上下方向から支持する一対の取り付け治具間の距離を調整する工程を行う必要があり、時間のロスや手間を要していた。
 本発明の目的は、所定のプリロードを維持しつつ、フローティングマス状態と固定状態との切り替えをスムーズに行うことができる特性測定装置を提供することである。
 上記課題を解決するために、基部と、前記基部の上部に載置される支持部と、前記基部と前記支持部との間に配置され、被試験体を取り付ける測定部と、を備え、前記支持部は、前記基部に固定される中定盤と、ウエイトとして機能する反力部と、前記中定盤と前記反力部との間にそれぞれ配置される、エアばね及び二重締結機構と、を備え、前記エアばね及び前記二重締結機構は、前記被試験体への所定のプリロードを維持するために、フローティングマス状態及び固定状態において、前記反力部の高さを変えずに支持するものであり、前記二重締結機構は、前記反力部に固定される第1のアクチュエータと、前記中定盤に固定される第2のアクチュエータと、を備え、前記反力部は、前記フローティングマス状態において、前記第1のアクチュエータ及び前記第2のアクチュエータにより支持されず、前記固定状態において、前記第1のアクチュエータ及び前記第2のアクチュエータにより支持される特性測定装置である。
 また、上記特性測定装置であって、前記第1のアクチュエータは、前記反力部の下面に離接可能な第1の可動部を備え、前記第2のアクチュエータは、前記反力部及び前記第1の可動部を挿通するとともに、前記第1の可動部の下端に離接可能な係合部を有する第2の可動部を備え、前記フローティングマス状態において、前記第1の可動部の上端及び下端は、前記反力部及び前記第2の可動部から軸線方向にそれぞれ離間し、前記固定状態において、前記第1の可動部の上端及び下端は、前記反力部及び前記第2の可動部にそれぞれ当接しているものとしてもよい。
 また、上記特性測定装置であって、前記エアばね及び前記二重締結機構は、前記フローティングマス状態と前記固定状態との間の仮固定状態において、前記反力部の高さを変えずに支持するものであり、前記反力部、前記仮固定状態において、前記第1のアクチュエータのみにより支持されるものとしてもよい。
 また、上記特性測定装置であって、前記第1のアクチュエータは、前記反力部の下面に離接可能な第1の可動部を備え、前記第2のアクチュエータは、前記反力部及び前記第1の可動部を挿通するとともに、前記第1の可動部の下端に離接可能な係合部を有する第2の可動部を備え、前記仮固定状態において、前記第1の可動部の上端を、前記反力部に当接させるとともに、前記第1の可動部の下端を、前記第2の可動部から離間させることにより、前記反力部を前記中定盤に対して、前記反力部の高さを変えずに支持するものとしてもよい。
 また、上記特性測定装置であって、少なくとも前記フローティングマス状態において、前記反力部の変位を測定する変位検出器を備え、前記変位検出器による変位信号に基づき、前記エアばねへの供給圧力を制御する反力部高さ保持手段を、さらに備えるものとしてもよい。
 本発明によれば、所定のプリロードを維持しつつ、フローティングマス状態と固定状態との切り替えをスムーズに行うことができる特性測定装置を提供することができる。
図1Aは、本発明の実施形態に係る特性測定装置の一例を示す部分断面を含む正面図である。 図1Bは、本発明の実施形態に係る特性測定装置の一例を示す上面図である。 図2は、図1Aの二重締結機構の拡大断面図である。 図3Aは、図2の二重締結機構のフローティングマス状態を説明する図である。 図3Bは、図2の二重締結機構の仮固定状態を説明する図である。 図3Cは、図2の二重締結機構の固定状態を説明する図である。 図4は、図1Aの特性測定装置における反力部高さ保持手段を説明する図である。 図5Aは、従来の特性測定装置に用いられる締結機構及びエアばねのフローティングマス状態における拡大断面図である。 図5Bは、従来の特性測定装置に用いられる締結機構及びエアばねの固定状態における拡大断面図である。
 本発明の実施形態について、図1Aから図4を参照しながら詳細に説明する。ただし、本発明は本実施形態の態様に限定されるものではない。
 <用語について>
 本明細書及び特許請求の範囲の記載において、「上」、「下」は、図1Aにおける上下に対応しており、各部材の相対的な位置関係を示すものであって、絶対的な位置関係を示すものではない。特許請求の範囲の記載における「エアばね」は、本明細書の記載における「支持部エアばね」を示す。
<特性測定装置について>
 図1A及び図1Bを用いて、本発明の実施形態に係る特性測定装置100の一例について説明する。なお、図中の特性測定装置100の左側は、説明のために、一部を断面図として示している。この特性測定装置100は、例えば、SRIS3503(日本ゴム協会標準規格)において標準化されたような、自動車用などの防振ゴムの動的性質について測定する測定装置である。
 特性測定装置100は、基部110と、基部110の上部に載置され、ウエイトとして機能する反力部124を、支持部エアばね(エアばね)123及び二重締結機構200を介して、フローティングマス状態や固定状態などで支持する支持部120と、基部110と支持部120との間に配置された測定部130と、制御システム(不図示)と、を備える。以下、特性測定装置100のそれぞれの構成について順に説明する。
<基部について>
 基部110は、脚部111と、基部エアばね112と、ベース架台部113と、動電加振機114と、を備える。
 脚部111は、地面に接する位置に4本配置され、特性測定装置100を地面に固定する。
 基部エアばね112は、4本の脚部111の上部に載置された弾性体であり、4個配置される。この基部エアばね112を設けることにより、地面と特性測定装置100との間で、振動試験の最中に、振動が伝達するのを防止することができる。
 ベース架台部113は、鉄などの金属を用いた比較的大きな質量であり、平面視略正方形板状を有し、中央部に下部に向かって階段状に拡径する開口部113aを備える。ベース架台部113は、基部エアばね112を介して、ベース架台部113の上面が水平となるように設置される。
 動電加振機114は、上部が、ベース架台部113の開口部113a内に収容された状態で、ベース架台部113に固定される。動電加振機114は、制御システムに電気的に接続され、動電加振機114の上部に設置される動電加振機振動台134を駆動する。動電加振機114は、ベース架台部113と合わせて、十分な質量を有するため、基部エアばね112と同様に、振動伝達を防止する役割を果たす。
 本実施形態における基部110は、基部エアばね112を4本の脚部111とベース架台部113との間に配置するともに、脚部111の下部を地面に固定するものとしたが、これに限らず、例えば、基部110は、振動の伝達が防止され、地震等外部の要因に耐えるものであれば、いかなる態様でもよい。
<支持部について>
 支持部120は、支柱121と、中定盤122と、支持部エアばね123と、二重締結機構200と、反力部124と、を備える。
 支柱121は、4本配置され、下部がベース架台部113に固定されるとともに、上部が中定盤122に固定される。本実施形態における支柱121は、軸方向に伸縮可能であり、例えば、軸方向に伸長させることにより、測定部130を恒温槽内に収容し測定すること、及び、サイズの大きな被試験体132を測定することを可能としている。
 中定盤122は、平面視枠形状を有し、中央部に貫通部122aを備える。この中定盤122において、角部には、二重締結機構200が配置されるとともに、角部を結ぶ辺部には、支持部エアばね123が、それぞれ2個配置される。本実施形態において、中定盤122の角部及び辺部に、二重締結機構200及び支持部エアばね123がそれぞれ配置されるものとしたが、これに限らず、例えば、中定盤122の角部及び辺部に、支持部エアばね123及び二重締結機構200がそれぞれ配置されるものであってもよい。
 支持部エアばね123は、中定盤122と反力部124との間に配置された弾性体である。支持部エアばね123は、高周波振動状態等において、基部110と反力部124との間で、共振等の振動の伝達を遮断するフローティングマス状態とすることができる。本実施形態において、説明のために、8個の支持部エアばね123を採用するものを示したが、これに限らず、フローティングマス状態が構成できるものであれば、その他の個数の支持部エアばね123を採用してもよい。
 二重締結機構200は、中定盤122と反力部124との間に配置され、詳細は後述するが、2つのアクチュエータ(図2中の第1のアクチュエータ210及び第2のアクチュエータ220参照)を備える。なお、二重締結機構200は、固定状態において、ベース架台部113、支柱121、中定盤122、反力部124が堅固に連結され、高い剛性を持ち、被試験体132の静的ばね定数計測や、約100~150Hz以下のように、低い振動周波数で測定することができる。本実施形態において、説明のために、4個の二重締結機構200を採用するものを示したが、これに限らず、十分な結合剛性を有する固定状態が構成できるものであれば、その他の個数の二重締結機構200を採用してもよい。ここで、詳細は後述するが、本実施形態の二重締結機構200は、2つのアクチュエータを駆動させることにより、フローティングマス状態、仮固定状態、及び、固定状態の切り替えの際に、二重締結機構200及び支持部エアばね123を介して、反力部124の高さ位置を変化させずに、保持することができる。これにより、従来の問題点(プリロードの変動)を解消させ、フローティングマス状態と固定状態との切り替えをスムーズに行うことができる。
 反力部124は、ウエイトとして機能するものであり、下部は、中定盤122の貫通部122aに挿入される。この反力部124の共振周波数は、計測する測定領域より高い周波数にする必要があるため、比較的大きな質量(例えば、1500kg以上)に設定される。
<測定部について>
 測定部130は、一対の取り付け治具131と、被試験体132と、ロードワッシャ133と、動電加振機振動台134と、を備える。
 一対の取り付け治具131は、反力部124の下方に設置される上部取り付け治具131aと、動電加振機振動台134の上方に設置される下部取り付け治具131bと、を備える。
 被試験体132は、自動車用等のマス付防振ゴム、液体封入防振ゴムなどの位相要素を含む防振ゴムである。被試験体132は、一対の取り付け治具131の間に狭持されて測定される。なお、本実施形態における被試験体132は、自動車用等の防振ゴムであったが、これに限らず、一般的な産業用のゴムであってもよい。
 ロードワッシャ133は、上部取り付け治具131aを介して、被試験体132の上側に配置される。ロードワッシャ133は、高剛性の圧電素子であり、応答速度が速く、計測しきい値(threshold)が小さいため、ここでは、被試験体132に加えられた動荷重を計測する動荷重計測器を構成している。
 動電加振機振動台134は、動電加振機114の上部に設置され、制御システムにより制御される。動電加振機振動台134には、振動板(不図示)とコイル部(不図示)が直結され、その周囲には、交流の磁場が配置され、このコイルに交流電流を印加することにより、動電加振機振動台134が駆動される。なお、本実施形態における動電加振機114の振動周波数領域は、3kHzまでであるが、これに限らず、例えば、3kHz以上であってもよい。
<制御システムについて>
制御システムは、図示は省略するが、主に、主制御装置と、電力増幅器筐体と、を備える。
 主制御装置は、特性測定装置100の制御を行うものであり、起動器及び操作線を介して、電源及び特性測定装置100にそれぞれ接続される。主制御装置には、主に、メインサーボコントローラと、チャージアンプと、加振機操作盤と、無停電電源装置と、ユーザインターフェイス等が含まれる。メインサーボコントローラには、特性測定装置100の各種センサから、動荷重、変位などの信号が入力され、各種の計測と演算が行われる。
 電力増幅器筐体は、主制御装置の加振機操作盤からの信号により制御され、例えば、特性測定装置100の動電加振機114の動電加振機振動台134の動作を制御する。
<二重締結機構の詳細構成について>
 図2を用いて、二重締結機構200の詳細構成について説明する。なお、図中の二重締結機構200は、説明のために、一部断面図を示している。
 二重締結機構200は、第1のアクチュエータ210と、第2のアクチュエータ220と、を備える。
<第1のアクチュエータについて>
 第1のアクチュエータ210は、第1のシリンダ211と、第1のシリンダ211に収容される第1の可動部212と、第1の油圧給排経路213と、第1の可動部212を下方に付勢する第1の付勢手段214と、第1の可動部212の下端部に固定され、第1の付勢手段214の下方を支持する固定部材215と、を備える。
 第1のシリンダ211は、中定盤122の上部に固定される中空円筒状の部材で、軸線C方向に沿って貫通する階段状の内周面を有し、この内周面には、上方から下方に向かい、縮径及び拡径を繰り返すように、上端小径部211a、第1のピストン収容部211b、下側ガイド部211c、第1のばね収容部211dが連続して形成される。また、中定盤122には、第1のシリンダ211の内周面に連続するように凹部122bが形成される。
 第1の可動部212は、第1のシリンダ211及び中定盤122の凹部122bに収容される中空円筒状の部材で、軸線C方向に沿って同一径にて貫通する貫通孔212aと、階段状の外周面と、を有する。この外周面には、上方から下方に向かい、上側軸部212b、第1のピストン部212cが順次拡径するとともに、段差部212d、下側軸部212e、ばね当接部212fが順次縮径するように、連続して形成される。
 ここで、第1の可動部212と第1のシリンダ211との配置関係について述べる。まず、上側軸部212bと上端小径部211aとの間には、半径方向に隙間が形成される。また、段差部212dと第1のピストン収容部211bとの間、及び、ばね当接部212fと第1のばね収容部211dの間には、それぞれ、詳細は後述するが、第1の密閉空間S1及び第1の付勢手段214を収容する空間を画定するために、半径方向に所定の隙間が形成される。さらに、第1のピストン部212cと第1のピストン収容部211bとの間、及び、下側軸部212eと下側ガイド部211cとの間には、軸線C方向への相対的な摺動を可能とするために、極僅かな隙間が形成される。
 第1の油圧給排経路213は、第1のシリンダ211の外周面から内周面に貫通しており、供給・排出可能な連通状態又は非連通状態へと切り替わることにより、第1のシリンダ211及び第1の可動部212により画定された第1の密閉空間S1に、駆動流体を供給、排出、及び、維持することができる。
 なお、第1の密閉空間S1は、図2に示すように、ゼロになることはなく、第1の油圧給排経路213と常時流体接続されるため、第1の密閉空間S1への液圧の供給及び排出をスムーズに行うことができる。この第1の油圧給排経路213を介して、駆動流体の液圧を制御することにより、第1の可動部212を、軸線C方向の所望の位置に移動させ、反力部124に対して第1の可動部212を離接可能にする。
 第1の付勢手段214は、例えば、皿ばねからなり、第1のばね収容部211d及び中定盤122の凹部122bに収容されており、下側ガイド部211cと、第1の可動部212の下端部に固定される固定部材215とにより、軸線C方向に挟持される。これにより、第1の可動部212は、第1の付勢手段214により、常時下方に付勢される。したがって、第1の油圧給排経路213が排出可能な連通状態である場合には、第1の密閉空間S1から駆動流体が排出されることにより、第1の可動部212が反力部124から下方に離間した位置に配置される。一方、第1の油圧給排経路213が供給可能な連通状態である場合には、第1の付勢手段214の付勢力と第1の可動部212の自重との合力に打ち勝つような駆動流体の液圧が、第1の密閉空間S1に供給されることにより、第1の可動部212が反力部124に当接した位置に配置される。
<第2のアクチュエータについて>
 第2のアクチュエータ220は、第2のシリンダ221と、第2のシリンダ221に収容される第2の可動部222と、第2の油圧給排経路223と、第2の可動部222を下方に付勢する第2の付勢手段224と、を備える。
 第2のシリンダ221は、反力部124の鍔部124aの上部に固定される中空円筒状の部材で、軸線C方向に沿って貫通する階段状の内周面を有し、この内周面には、上方から下方に向かい、連通孔221a、第2のばね収容部221b、第2のピストン収容部221cが順次拡径するとともに、下端ガイド部221dが縮径するように、連続して形成される。また、反力部124の鍔部124aには、第2のシリンダ221の内周面に連続するように、軸線C方向に沿って同一径にて延在する挿通孔124bが形成される。
 第2の可動部222は、中実円柱状の部材で、軸線C方向に沿って同一径にて延在し、鍔部124aの挿通孔124b及び第1の可動部212の貫通孔212aにそれぞれ挿通される軸部222aと、軸部222aの上端に拡径して設けられ、第2のシリンダ221に収容される第2のピストン部222bと、軸部222aの下端に拡径して形成され、中定盤122の凹部122bに収容される係合部222cと、を有する。
 ここで、第2の可動部222と、第2のシリンダ221、鍔部124a、第1の可動部212との配置関係について述べる。まず、第2のピストン部222bと第2のピストン収容部221cとの間、及び、軸部222aと下端ガイド部221dとの間には、軸線C方向への相対的な摺動を可能とするために、極僅かな隙間が形成される。また、軸部222aと挿通孔124bとの間、及び、軸部222aと貫通孔212aとの間には、半径方向に隙間が形成される。
 第2の油圧給排経路223は、第2のシリンダ221の外周面から内周面に貫通しており、供給・排出可能な連通状態又は非連通状態へと切り替わることにより、第2のシリンダ221及び第2の可動部222により画定された第2の密閉空間S2に、駆動流体を供給、排出、及び、維持することができる。この第2の油圧給排経路223を介して、駆動流体の液圧を制御することにより、第2の可動部222を、軸線C方向の所望の位置に移動させ、第1の可動部212に対して第2の可動部222を離接可能にする。
 第2の付勢手段224は、例えば、コイルばねからなり、第2のシリンダ221に収容されており、第2のばね収容部221bと、第2のピストン部222bに設けられるばね受け部222b1とにより、軸線C方向に挟持される。これにより、第2の可動部222は、第2の付勢手段224により、常時下方に付勢される。したがって、第2の油圧給排経路223が排出可能な連通状態である場合には、第2の密閉空間S2から駆動流体が排出されることにより、第2の可動部222の係合部222cが固定部材215から下方に離間した位置に配置される。一方、第2の油圧給排経路223が供給可能な連通状態である場合には、第2の付勢手段224の付勢力と第2の可動部222の自重との合力に打ち勝つような駆動流体の液圧が、第2の密閉空間S2に供給されることにより、第2の可動部222の係合部222cが固定部材215に当接した位置に配置される。
<二重締結機構の動作状態について>
 図3Aから図3Cを用いて、二重締結機構200の動作状態について説明する。なお、図中の基準高さh0は、反力部124の鍔部124aにおける下面の高さを示すものであり、フローティングマス状態、仮固定状態、固定状態のいずれの状態においても、反力部124に上下方向の変動がないことを示している。
<フローティングマス状態、仮固定状態、固定状態の順で移行する場合>
 まず、フローティングマス状態における二重締結機構200について説明する。図3Aに示すように、第1のアクチュエータ210は、第1の油圧給排経路213を介して、第1の密閉空間S1の駆動油が排出可能な状態とされるため、第1の可動部212は、第1の付勢手段214により下方へ付勢され、第1の可動部212の段差部212dの下面が、第1のシリンダ211の下側ガイド部211cの上面に当接する位置に保持される。同様に、第2のアクチュエータ220は、第2の油圧給排経路223を介して、第2の密閉空間S2の駆動油が排出可能な状態とされるため、第2の可動部222は、第2の付勢手段224により下方へ付勢され、第2の可動部222の第2のピストン部222bの下面が、第2のシリンダ221の下端ガイド部221dの上面に当接する位置に保持される。
 これにより、第1の可動部212は、反力部124の鍔部124aと、軸線C方向に距離l1を有して離間しているとともに、第1の可動部212は、第2の可動部222の係合部222cと、軸線C方向に距離l2を有して離間している。よって、反力部124は、第1のアクチュエータ210及び第2のアクチュエータ220により、支持されておらず、フローティングマス状態となっている。このフローティングマス状態において、第1の油圧給排経路213及び第2の油圧給排経路223は、駆動油が排出可能な状態又は非連通状態となっている。
 次に、フローティングマス状態から仮固定状態へと移行する二重締結機構200について説明する。図3Bに示すように、第1のアクチュエータ210には、第1の油圧給排経路213を介して、第1の密閉空間S1に駆動油が供給され(図中の矢印d1参照)、第1の可動部212は、第1の付勢手段214に抗して、上方に移動する(図中の矢印M1参照)。その後、第1の可動部212が、反力部124の鍔部124aに当接した位置で駆動油の供給が停止される。この際、第1の可動部212が反力部124に対して、ソフトランディングするように、第1のアクチュエータ210への駆動油の供給量を制御しているため、当接前後で、反力部124が上方に変動することはない。一方、第2のアクチュエータ220には、第2の油圧給排経路223を介して、第2の密閉空間S2に駆動油が供給されていないため、第2の可動部222は移動しない。
 これにより、反力部124は、下方から、第1のアクチュエータ210のみにより、下方から支持される仮固定状態となっている。この仮固定状態において、第1の油圧給排経路213は、非連通状態となっている一方、第2の油圧給排経路223は、駆動油が排出可能な状態又は非連通状態となっている。
 さらに、仮固定状態から固定状態へと移行する二重締結機構200について説明する。図3Cに示すように、第1のアクチュエータ210には、第1の油圧給排経路213を介して、第1の密閉空間S1に駆動油が供給されていないため、第1の可動部212は移動しない。一方、第2のアクチュエータ220には、第2の油圧給排経路223を介して、第2の密閉空間S2に駆動油が供給され(図中の矢印d2参照)、第2の可動部222は、第2の付勢手段224に抗して、上方に移動する(図中の矢印M2参照)。その後、第2の可動部222の係合部222cが、第1の可動部212の固定部121eに当接した位置で駆動油の供給が停止される。この際、第2の可動部222が第1の可動部212を介して、反力部124に軸線C方向に固定されることにより、第1のアクチュエータ210が固定された中定盤122と、第2のアクチュエータ220が固定された反力部124とを、堅固に締結固定させることができる。
 これにより、反力部124は、第1のアクチュエータ210及び第2のアクチュエータ220により、下方から堅固に締結固定された固定状態となっている。この固定状態において、第1の油圧給排経路213及び第2の油圧給排経路223は、非連通状態となっている。
<固定状態、仮固定状態、フローティングマス状態の順で移行する場合>
 前述した、二重締結機構200についてのフローティングマス状態、仮固定状態、固定状態の順で移行する場合と重複する説明は省略する。
 まず、固定状態から仮固定状態へと移行する二重締結機構200について説明する。図3Cに示すように、第1のアクチュエータ210において、第1の油圧給排経路213は、非連通状態となっているため、第1の可動部212は移動しない。一方、第2のアクチュエータ220は、第2の油圧給排経路223を介して、第2の密閉空間S2の駆動油が排出可能な状態とされるため(図中の矢印d3参照)、第2の可動部222は、第2の付勢手段224に付勢され、下方に移動する(図中の矢印M3参照)。その後、第2の可動部222の係合部222cが、第1の可動部212から離間した位置で駆動油の排出が停止される。
 次に、仮固定状態からフローティングマス状態へと移行する二重締結機構200について説明する。図3Bに示すように、第1のアクチュエータ210は、第1の油圧給排経路213を介して、第1の密閉空間S1の駆動油が排出可能な状態とされるため(図中の矢印d4参照)、第1の可動部212は、第1の付勢手段214に付勢され、下方に移動する(図中の矢印M4参照)。その後、第1の可動部212が、反力部124の鍔部124aから離間した位置で駆動油の排出が停止される。
 さらに、フローティングマス状態における二重締結機構200について説明する。図3Aに示すように、第1のアクチュエータ210及び第2のアクチュエータ220には、駆動油が供給されていないため、第1の可動部212及び第2の可動部222は移動しない。
 このように、仮固定状態及び固定状態では、フローティングマス状態における反力部124の高さ位置を維持したまま、反力部124を中定盤122に支持及び固定しているため、再び、フローティングマス状態となる際には、反力部124は上下方向に移動しない。
 以上で述べたように、本実施形態の二重締結機構200は、第1のアクチュエータ210及び第2のアクチュエータ220を駆動させることにより、フローティングマス状態、仮固定状態、及び、固定状態の切り替えの際に、二重締結機構200及び支持部エアばね123を介して、反力部124の高さ位置(図3Aから図3C中の基準高さh0参照)を変化させずに、保持することができる。これにより、従来の問題点(プリロードの変動)を解消させ、フローティングマス状態と固定状態との切り替えをスムーズに行うことができる。また、本実施形態の支持部エアばね123に負荷される上下方向の圧縮力は、フローティングマス状態、仮固定状態、及び、固定状態において変化しないことから、各状態へと切り替わる際に、支持部エアばね123の内部圧力が急激に上昇し、空気漏れなどが生じることを抑制することができる。さらに、本実施形態における二重締結機構200は、従来の締結機構700(図5A及び図5B参照)とは異なり、仮固定状態を採用するものであり、反力部124に対し、不支持のフローティングマス状態、下方からソフトランディングして支持する仮固定状態、下方から堅固に締結固定する固定状態へと、段階的に支持する力を増加、または、この逆に、固定状態、仮固定状態、フローティングマス状態へと段階的に支持する力を減少させることにより、急激な変動が反力部124に生じることを抑制することができる。
<反力部高さ保持手段について>
 前述したように、本実施形態の特性測定装置100において、従来の締結機構700(図5A及び図5B参照)に代えて、二重締結機構200を採用することにより、反力部124の高さ位置を変化させずに、従来の問題点(プリロードの変動)を解消させ、フローティングマス状態と固定状態との切り替えをスムーズに行うことが十分にできるものとした。その上で、発明者らは、二重締結機構200を採用した際の反力部124における上下方向の挙動について、さらなる考察を重ねた。その結果、特に、固定状態(図3C参照)からフローティングマス状態(図3A参照)へと切り替えを行った際に、反力部124の高さ位置が、所望の基準高さh0より僅かに下方に変化するおそれがあり、これは、支持部エアばね123の気密性に起因するものであることを突き止めた。具体的には、固定状態において、支持部エアばね123が、長時間圧縮されることにより、微量の空気漏れが生じ、その後、フローティングマス状態となり、支持部エアばね123が、反力部124を単独で支持するために生じ得るものであった。
 この新たな課題(以下、「フローティングマス状態における反力部の変動」という)を解決するために、図4に示すように、支持部120に、二重締結機構200に加え、反力部高さ保持手段300を採用する。ここで、図4には、説明の都合上、1つの支持部エアばね123に一つの反力部高さ保持手段300が設けられているものを示すが、他の支持部エアばね123にも同様の反力部高さ保持手段300が設けられている。
 反力部高さ保持手段300は、比例圧力制御弁310と、圧力供給源320と、サイレンサ330と、変位検出器340と、PID制御部350と、を備える。以下、反力部高さ保持手段300のそれぞれの構成について順に説明する。
 比例圧力制御弁310は、外部からの制御値uにより、供給圧力PSを無段階に調節するものであり、一方には、高圧(0.4MPa以上)の圧縮空気を供給する圧力供給源320、及び、外部環境に消音排出するサイレンサ330が流体接続され、他方には、支持部エアばね123が流体接続される。
 変位検出器340は、ワイヤ部340aを備えるワイヤ式変位計である。このワイヤ部340aの上端は、反力部124の鍔部124aに固定されており、ワイヤ部340aが伸縮に対応した変位信号である変位位置H1を出力する。なお、本実施形態における変位検出器340は、接触式変位計であるが、これに限らず、例えば、非接触変位計(例えば、レーザー式変位計)などを採用してもよい。
 PID制御部350は、比例制御、積分制御、微分制御を組み合わせたものであり、変位位置H1と目標位置Hrとの誤差e、その積分及び微分の3つの要素から、制御値uを算出し、供給圧力PSの制御を行う。このPID制御部350を用いて、供給圧力PSを制御することにより、反力部124の変位位置H1を、オーバーシュートを抑制しながら、安定かつ迅速に目標位置Hrに到達させることができる。
<反力部高さ保持手段の動作について>
 反力部高さ保持手段300は、特に、反力部124の高さ位置が変動し得る、仮固定状態からフローティングマス状態への切り替え時、及び、フローティングマス状態において動作するように設定される。
 ここで、変位位置H1が目標位置Hrより低い場合には、供給圧力PSが高くなるように、PID制御部350が、比例圧力制御弁310を制御し、その結果、支持部エアばね123の内部圧力が上昇し、反力部124は、目標位置Hrに向けて上方に移動する(図4中の上方矢印参照)。一方、変位位置H1が目標位置Hrより高い場合には、供給圧力PSが低くなるように、PID制御部350が、比例圧力制御弁310を制御し、その結果、支持部エアばね123の内部圧力が低下し、反力部124は、目標位置Hrに向けて下方に移動する(図4中の下方矢印参照)。
 このように、本実施形態の反力部高さ保持手段300は、仮固定状態からフローティングマス状態への切り替え時、及び、フローティングマス状態において、支持部エアばね123への供給圧力PSを制御することにより、反力部124の変位位置H1を、目標位置Hrへと、安定かつ迅速に到達させることができる。これにより、新たな課題(フローティングマス状態における反力部の変動)を解消し、フローティングマス状態と固定状態との切り替えをよりスムーズに行うことができる。
 なお、本実施形態における反力部高さ保持手段300は、少なくともフローティングマス状態(仮固定状態からフローティングマス状態への切り替え時、及び、フローティングマス状態)において動作するように設定されるものであるが、これに限らず、例えば、常時(フローティングマス状態、仮固定状態、及び、固定状態)において動作するように設定されてもよい。
 <その他>
 本発明は、上述した本実施形態に限られることなく、本発明の技術的思想から逸脱しない範囲で、適宜の変更や変形が可能である。
100  特性測定装置
110  基部
111  脚部
112  基部エアばね
113  ベース架台部
114  動電加振機
120  支持部
121  支柱
122  中定盤
122a  貫通部
122b  凹部
123  支持部エアばね(エアばね)
124  反力部
124a  鍔部
124b  挿通孔
130  測定部
131  一対の取り付け治具
131a  上部取り付け治具
131b  下部取り付け治具
132  被試験体
133  ロードワッシャ
134  動電加振機振動台
200  二重締結機構
210  第1のアクチュエータ
211  第1のシリンダ
211a  上端小径部
211b  第1のピストン収容部
211c  下側ガイド部
211d  第1のばね収容部
212  第1の可動部
212a  貫通孔
212b  上側軸部
212c  第1のピストン部
212d  段差部
212e  下側軸部
212f  ばね当接部
212g  固定部
213  第1の油圧給排経路
214  第1の付勢手段
212a  貫通孔
220  第2のアクチュエータ
221  第2のシリンダ
221a  連通孔
221b  第2のばね収容部
221c  第2のピストン収容部
221d  下端ガイド部
222  第2の可動部
222a  軸部
222b  第2のピストン部
222b1  ばね受け部
222c  係合部
223  第2の油圧給排経路
224  第2の付勢手段
300  反力部高さ保持手段
310  比例圧力制御弁
320  圧力供給源
330  サイレンサ
340  変位検出器
340a  ワイヤ部
350  PID制御部
C  軸線
e  誤差
H1  変位位置
Hr  目標位置
h0  基準高さ
l1  第1の可動部と反力部の鍔部との離間距離
l2  第1の可動部と第2の可動部の係合部との離間距離
PS  供給圧力
S1  第1の密閉空間
S2  第2の密閉空間
u  制御値

Claims (5)

  1.  基部と、
     前記基部の上部に載置される支持部と、
     前記基部と前記支持部との間に配置され、被試験体を取り付ける測定部と、
     を備える特性測定装置であって、
     前記支持部は、前記基部に固定される中定盤と、ウエイトとして機能する反力部と、前記中定盤と前記反力部との間にそれぞれ配置される、エアばね及び二重締結機構と、を備え、
     前記エアばね及び前記二重締結機構は、前記被試験体への所定のプリロードを維持するために、フローティングマス状態及び固定状態において、前記反力部の高さを変えずに支持するものであり、
     前記二重締結機構は、前記反力部に固定される第1のアクチュエータと、前記中定盤に固定される第2のアクチュエータと、を備え、
     前記反力部は、前記フローティングマス状態において、前記第1のアクチュエータ及び前記第2のアクチュエータにより支持されず、前記固定状態において、前記第1のアクチュエータ及び前記第2のアクチュエータにより支持されることを特徴とする特性測定装置。
  2.  前記第1のアクチュエータは、前記反力部の下面に離接可能な第1の可動部を備え、
     前記第2のアクチュエータは、前記反力部及び前記第1の可動部を挿通するとともに、前記第1の可動部の下端に離接可能な係合部を有する第2の可動部を備え、
     前記フローティングマス状態において、前記第1の可動部の上端及び下端は、前記反力部及び前記第2の可動部から軸線方向にそれぞれ離間し、
     前記固定状態において、前記第1の可動部の上端及び下端は、前記反力部及び前記第2の可動部にそれぞれ当接していることを特徴とする請求項1に記載の特性測定装置。
  3.  前記エアばね及び前記二重締結機構は、前記フローティングマス状態と前記固定状態との間の仮固定状態において、前記反力部の高さを変えずに支持するものであり、
     前記反力部は、前記仮固定状態において、前記第1のアクチュエータのみにより支持されることを特徴とする請求項1又は請求項2に記載の特性測定装置。
  4.  前記第1のアクチュエータは、前記反力部の下面に離接可能な第1の可動部を備え、
     前記第2のアクチュエータは、前記反力部及び前記第1の可動部を挿通するとともに、前記第1の可動部の下端に離接可能な係合部を有する第2の可動部を備え、
     前記仮固定状態において、前記第1の可動部の上端を、前記反力部に当接させるとともに、前記第1の可動部の下端を、前記第2の可動部から離間させることにより、前記反力部を前記中定盤に対して、前記反力部の高さを変えずに支持することを特徴とする請求項3に記載の特性測定装置。
  5.  少なくとも前記フローティングマス状態において、前記反力部の変位を測定する変位検出器を備え、前記変位検出器による変位信号に基づき、前記エアばねへの供給圧力を制御する反力部高さ保持手段を、さらに備えることを特徴とする請求項1から請求項4のいずれか1項に記載の特性測定装置。
PCT/JP2022/028774 2021-11-25 2022-07-26 特性測定装置 WO2023095384A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280075668.5A CN118235031A (zh) 2021-11-25 2022-07-26 特性测量装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021191587A JP2023078015A (ja) 2021-11-25 2021-11-25 特性測定装置
JP2021-191587 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023095384A1 true WO2023095384A1 (ja) 2023-06-01

Family

ID=86539036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028774 WO2023095384A1 (ja) 2021-11-25 2022-07-26 特性測定装置

Country Status (3)

Country Link
JP (1) JP2023078015A (ja)
CN (1) CN118235031A (ja)
WO (1) WO2023095384A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347441A (ja) * 2003-05-22 2004-12-09 Saginomiya Seisakusho Inc 荷重負荷試験方法
JP2007271268A (ja) * 2006-03-30 2007-10-18 Tokai Rubber Ind Ltd 動特性測定装置
JP2012159476A (ja) * 2011-02-02 2012-08-23 Toyota Motor Corp 振動試験装置
JP2014006056A (ja) * 2012-06-21 2014-01-16 Saginomiya Seisakusho Inc 荷重負荷試験装置
JP2020085528A (ja) * 2018-11-19 2020-06-04 株式会社鷺宮製作所 動特性測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347441A (ja) * 2003-05-22 2004-12-09 Saginomiya Seisakusho Inc 荷重負荷試験方法
JP2007271268A (ja) * 2006-03-30 2007-10-18 Tokai Rubber Ind Ltd 動特性測定装置
JP2012159476A (ja) * 2011-02-02 2012-08-23 Toyota Motor Corp 振動試験装置
JP2014006056A (ja) * 2012-06-21 2014-01-16 Saginomiya Seisakusho Inc 荷重負荷試験装置
JP2020085528A (ja) * 2018-11-19 2020-06-04 株式会社鷺宮製作所 動特性測定装置

Also Published As

Publication number Publication date
JP2023078015A (ja) 2023-06-06
CN118235031A (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
US5927699A (en) Damping apparatus
US6406010B1 (en) Fluid-filled active vibration damping device
US5931441A (en) Method of isolating vibration in exposure apparatus
US7125008B2 (en) Air-spring vibration isolation device
JP2017110809A (ja) 垂直方向に有効な空気ばねを備えた防振装置
KR930006503B1 (ko) 진동 흡수 구조체
US6598865B1 (en) Fluid-filled vibration damping device
JP2002174288A (ja) 空気圧式能動型防振装置
WO2023095384A1 (ja) 特性測定装置
KR102444620B1 (ko) 동특성 측정장치
JPS6319436A (ja) 防振装置
JP4158110B2 (ja) 空気圧切換型の流体封入式エンジンマウント
JP4023462B2 (ja) 能動型流体封入式防振装置
JP4168445B2 (ja) 防振用アクチュエータおよびそれを用いた能動型防振装置
JP4088970B2 (ja) 能動型流体封入式防振装置
JP4079072B2 (ja) 能動型流体封入式防振装置
JP4982272B2 (ja) アクティブ除振マウント機構
JP3997429B2 (ja) 能動型流体封入式防振装置
JPH11287288A (ja) 防振装置
JP4006647B2 (ja) 能動型流体封入式防振装置および能動型流体封入式防振装置の製造方法
EP4151880A1 (en) Vibration isolator for supporting a payload
JP4075061B2 (ja) 能動型流体封入式防振装置
JP2005155855A (ja) 能動型流体封入式防振装置
JP4023431B2 (ja) 能動型流体封入式防振装置
JP2002122175A (ja) 液体封入式マウント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898169

Country of ref document: EP

Kind code of ref document: A1