WO2023093496A1 - 抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法 - Google Patents

抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法 Download PDF

Info

Publication number
WO2023093496A1
WO2023093496A1 PCT/CN2022/129739 CN2022129739W WO2023093496A1 WO 2023093496 A1 WO2023093496 A1 WO 2023093496A1 CN 2022129739 W CN2022129739 W CN 2022129739W WO 2023093496 A1 WO2023093496 A1 WO 2023093496A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass percentage
mas
component
content
following components
Prior art date
Application number
PCT/CN2022/129739
Other languages
English (en)
French (fr)
Inventor
施尧
黄清芳
蓝琴
黄佳莹
欧阳福忠
Original Assignee
福建省长汀金龙稀土有限公司
厦门钨业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建省长汀金龙稀土有限公司, 厦门钨业股份有限公司 filed Critical 福建省长汀金龙稀土有限公司
Publication of WO2023093496A1 publication Critical patent/WO2023093496A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/042Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling

Definitions

  • the invention relates to an antioxidant composition, a rare earth permanent magnet, a sintered magnet material and a preparation method.
  • Sintered NdFeB magnets are the most magnetic permanent magnets in the contemporary era. They have excellent characteristics such as high magnetic energy product and high cost performance. With the continuous expansion of the application range of permanent magnets, people's demand for them has also increased, and higher requirements have been put forward for the magnetic properties of permanent magnets.
  • the technical problem to be solved by the present invention is to provide an antioxidant composition, rare earth Permanent magnets, sintered magnet materials, and preparation methods.
  • Using the anti-oxidation composition of the present invention can not only reduce the oxidation risk in the preparation process of rare earth magnet materials, but also can maintain high magnetic performance under the premise that the introduced carbon content is high and no additional control of carbon content is required.
  • the present invention solves the problems of the technologies described above through the following solutions:
  • the invention provides an antioxidant composition, which comprises the following components in terms of mass percentage:
  • mas% refers to the mass percentage of each component in the antioxidant composition.
  • the four components are polyalphaolefins with good stability and wettability, which can cover and wrap the powder to isolate other gases from direct contact with the powder; for the solution-modified surfactant fatty acid methyl ester, make Other solutions have better affinity with the powder and make the powder dispersible better; butyl oleate, which lubricates the powder, is beneficial to the flow and rotation of the powder; solvent oil, as the solvent of the above three organic substances, is volatile and easy to remove specialty.
  • the content of the polyalphaolefin is preferably 30mas%-45mas%, such as 40mas%, and mas% refers to the mass percentage of each component in the antioxidant composition.
  • the content of butyl oleate is preferably 10mas%-20mas%, and mas% refers to the mass percentage of each component in the antioxidant composition.
  • the content of the fatty acid methyl ester is preferably 1mas%-15mas%, such as 5mas% or 10mas%, where mas% refers to the mass percentage of each component in the antioxidant composition.
  • the solvent oil can be 90# solvent oil or 120# solvent oil.
  • the content of the solvent oil is preferably 10mas%-30mas%, such as 20mas% or 25mas%, where mas% refers to the mass percentage of each component in the antioxidant composition.
  • the antioxidant composition in terms of mass percentage, is composed of the following components: 40mas% of polyalphaolefin; 20mas% of butyl oleate; 10mas% of fatty acid methyl ester; 30mas% of mineral spirits.
  • the antioxidant composition is composed of the following components: polyalphaolefin 60mas%; butyl oleate 20mas%; fatty acid methyl ester 10mas%; solvent Oil 10mas%.
  • the antioxidant composition is composed of the following components: polyalphaolefin 40mas%; butyl oleate 10mas%; fatty acid methyl ester 10mas%; solvent Oil 40mas%.
  • the antioxidant composition is composed of the following components: polyalphaolefin 40mas%; butyl oleate 20mas%; fatty acid methyl ester 15mas%; solvent Oil 25mas%.
  • the antioxidant composition is composed of the following components: polyalphaolefin 30mas%; butyl oleate 30mas%; fatty acid methyl ester 20mas%; solvent Oil 20mas%.
  • the antioxidant composition is composed of the following components: polyalphaolefin 45mas%; butyl oleate 20mas%; fatty acid methyl ester 5mas%; solvent Oil 30mas%.
  • the present invention also provides a preparation method of an anti-oxidation composition, which includes the following steps: mixing the components in the above-mentioned anti-oxidation composition.
  • the present invention also provides the use of the above antioxidant composition as an antioxidant in the preparation of permanent magnets.
  • the present invention provides a material for sintered magnets, which comprises the above-mentioned anti-oxidation composition.
  • the content of the antioxidant composition is preferably 0.15mas%-0.45mas%, such as 0.2mas% or 0.4mas%, where mas% is the mass percentage of each component in the material for sintered magnet.
  • the material for the sintered magnet generally further includes the rare earth element R.
  • the content of R is preferably 29mas%-33mas%, more preferably 29.5mas%-32mas%, for example 31mas%, mas% is the mass percentage of each component in the material for sintered magnet.
  • the R includes PrNd and/or Nd.
  • the R further includes heavy rare earth element RH.
  • the RH preferably includes one or more of Tb, Dy, Ho and Gd.
  • the content of RH is 0-2.5mas%, but not 0, such as 1.5mas%, where mas% is the mass percentage of each component in the material for sintered magnet.
  • the material for the sintered magnet further includes B (boron).
  • B boron
  • the content of B is preferably 0.86mas% ⁇ 1mas%, such as 0.99mas%, 0.88mas% or 0.95mas%, where mas% is the mass percentage of each component in the material for sintered magnet.
  • the material for the sintered magnet further includes Ga (gallium).
  • the content of Ga is preferably 0-0.7mas%, but not 0, such as 0.05mas%, 0.5mas% or 0.25mas%, where mas% is the mass percentage of each component in the material for sintered magnet.
  • the material for the sintered magnet further includes Cu (copper).
  • the content of Cu is preferably 0-0.5mas%, and not 0, such as 0.36mas%, 0.4mas% or 0.16mas%, where mas% is the mass percentage of each component in the material for sintered magnet.
  • the material for the sintered magnet further includes M, and the M includes at least one of Ti, Zr and Nb.
  • the content of M is preferably 0-0.4mas%, but not 0, such as 0.2mas%, 0.28mas% or 0.3mas%, where mas% is the mass percentage of each component in the material for sintered magnet.
  • the content of the Nb is preferably 0-0.1mas%, and not 0, and the mas% is the mass percentage of each component in the material for the sintered magnet.
  • the content of the Ti is preferably 0-0.2mas%, and not 0, such as 0.18mas%, and mas% is the mass of each component in the material for sintered magnets percentage.
  • the content of Zr is preferably 0-0.3mas%, and not 0, and mas% is the mass percentage of each component in the material for the sintered magnet.
  • the material for the sintered magnet further includes Co (cobalt).
  • the content of Co is preferably 0-2mas%, more preferably 0-1.5mas%, such as 0.5mas% or 1mas%, and mas% is the mass percentage of each component in the material for sintered magnet.
  • the material for the sintered magnet further includes Al (aluminum).
  • the content of Al is preferably 0-0.5mas%, such as 0.3mas%, where mas% is the mass percentage of each component in the material for the sintered magnet.
  • the material for the sintered magnet generally further includes Fe (iron).
  • the content of Fe is preferably 64mas%-70mas%.
  • the material for the sintered magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas% , B0.99mas% and antioxidant composition 0.2mas%, and the balance is iron; wherein, the antioxidant composition is composed of the following components: polyalphaolefin 40mas%; butyl oleate 20mas%; fatty acid methyl ester 10mas %; mineral spirits 30mas%, mas% refers to the mass percentage of each component in the antioxidant composition.
  • the material for the sintered magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas% , B0.99mas% and antioxidant composition 0.2mas%, and the balance is iron; wherein, the antioxidant composition is composed of the following components: polyalphaolefin 60mas%; butyl oleate 20mas%; fatty acid methyl ester 10mas %; mineral spirits 10mas%, mas% refers to the mass percentage of each component in the antioxidant composition.
  • the material for the sintered magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas% , B0.99mas% and antioxidant composition 0.2mas%, the balance is iron; wherein, the antioxidant composition consists of the following components: polyalphaolefin 40mas%; butyl oleate 10mas%; fatty acid methyl ester 10mas %; solvent oil 40mas%, mas% refers to the mass percentage of each component in the antioxidant composition.
  • the material for the sintered magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas% , B0.99mas% and antioxidant composition 0.2mas%, and the balance is iron; wherein, the antioxidant composition is composed of the following components: polyalphaolefin 40mas%; butyl oleate 20mas%; fatty acid methyl ester 15mas %; mineral spirits 25mas%, mas% refers to the mass percentage of each component in the antioxidant composition.
  • the material for the sintered magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas% , B0.99mas% and antioxidant composition 0.2mas%, the balance is iron; wherein, the antioxidant composition is made up of the following components: polyalphaolefin 30mas%; Butyl oleate 30mas%; Fatty acid methyl ester 20mas %; mineral spirits 20mas%, mas% refers to the mass percentage of each component in the antioxidant composition.
  • the material for the sintered magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas% , B0.99mas% and antioxidant composition 0.2mas%, and the balance is iron; wherein, the antioxidant composition is composed of the following components: polyalphaolefin 45mas%; butyl oleate 20mas%; fatty acid methyl ester 5mas %; mineral spirits 30mas%, mas% refers to the mass percentage of each component in the antioxidant composition.
  • the material for the sintered magnet consists of the following components: PrNd31mas%, Co0.5mas%, Cu0.4mas%, Ga0.5mas%, Ti0.2mas%, B0 .88mas% and 0.2mas% of antioxidant composition, and the balance is iron; wherein, the antioxidant composition is composed of the following components: polyalphaolefin 40mas%; butyl oleate 20mas%; fatty acid methyl ester 10mas%; Mineral spirit 30mas%, mas% refers to the mass percentage of each component in the antioxidant composition.
  • the material for sintered magnet is composed of the following components: PrNd29.5mas%, Dy2.5mas%, Co1.5mas%, Cu0.16mas%, Ga0.25mas% , Al0.3mas%, Zr0.3mas%, B0.95mas%, and antioxidant composition 0.2mas%, the balance is iron; wherein, the antioxidant composition is composed of the following components: polyalphaolefin 40mas%; oil Butyl acid 20mas%; Fatty acid methyl ester 10mas%; Solvent oil 30mas%, mas% refers to the mass percentage of each component in the antioxidant composition.
  • the material for the sintered magnet consists of the following components: PrNd31mas%, Co0.5mas%, Cu0.4mas%, Ga0.5mas%, Ti0.2mas%, B0 .88mas% and 0.4mas% of antioxidant composition, and the balance is iron; wherein, the antioxidant composition is composed of the following components: polyalphaolefin 40mas%; butyl oleate 20mas%; fatty acid methyl ester 10mas%; Mineral spirit 30mas%, mas% refers to the mass percentage of each component in the antioxidant composition.
  • the present invention also provides a sintered magnet, which comprises the following components in terms of mass percentage:
  • R 29mas%-33mas%, the R is a rare earth element
  • Ga 0 ⁇ 0.7mas%, and not 0;
  • M 0-0.4mas%, and not 0; said M includes at least one of Ti, Zr and Nb;
  • Al 0 ⁇ 0.5mas%, and not 0;
  • Co 0-2mas%; mas% is the mass percentage of each component in the sintered magnet.
  • the R includes PrNd and/or Nd.
  • the R further includes the heavy rare earth element RH.
  • the RH includes one or more of Tb, Dy, Ho and Gd.
  • the content of RH is 0-2.5mas%, but not 0, such as 1.5mas%, where mas% is the mass percentage of each component in the sintered magnet.
  • the content of R is 29.5mas%-32mas%, such as 31mas%, where mas% is the mass percentage of each component in the sintered magnet.
  • the content of B is preferably 0.86mas%-0.99mas%, such as 0.88mas% or 0.95mas%, where mas% is the mass percentage of each component in the sintered magnet.
  • the Ga content is preferably 0-0.5mas%, and is not 0, such as 0.05mas% or 0.25mas%, where mas% is the mass of each component in the sintered magnet percentage.
  • the content of Cu is preferably 0-0.4mas%, and is not 0, such as 0.36mas% or 0.16mas%, and mas% is the mass of each component in the sintered magnet percentage.
  • the content of M is preferably 0-0.3mas%, but not 0, such as 0.2mas% or 0.28mas%, where mas% is the mass percentage of each component in the sintered magnet.
  • the content of the Nb is preferably 0-0.1mas%, and not 0, and the mas% is the mass percentage of each component in the sintered magnet.
  • the content of Ti is preferably 0-0.2mas%, but not 0, such as 0.18mas%, where mas% is the mass percentage of each component in the sintered magnet.
  • the content of Zr is preferably 0-0.3mas%, and not 0, and mas% is the mass percentage of each component in the sintered magnet.
  • the content of Co is 0-1.5mas%, such as 0.5mas% or 1mas%, where mas% is the mass percentage of each component in the sintered magnet.
  • the content of Al is 0-0.3mas%, but not 0, and mas% is the mass percentage of each component in the sintered magnet.
  • the content of C is 0.1126mas%, 0.1378mas%, 0.109mas%, 0.117mas%, 0.1209mas%, 0.1140mas%, 0.1165mas%, 0.1178mas% or 0.1255mas%
  • mas% is the mass percentage of each component in the sintered magnet.
  • the sintered magnet generally further includes Fe (iron).
  • the content of Fe is preferably 64mas%-70mas%.
  • the sintered magnet in terms of mass percentage, is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0 .99mas% and C0.1126mas%, the balance is iron.
  • the sintered magnet in terms of mass percentage, is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0 .99mas% and C0.1378mas%, the balance is iron.
  • the sintered magnet in terms of mass percentage, is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0 .99mas% and C0.109mas%, the balance is iron.
  • the sintered magnet in terms of mass percentage, is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0 .99mas% and C0.117mas%, the balance is iron.
  • the sintered magnet in terms of mass percentage, is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0 .99mas% and C0.1209mas%, the balance is iron.
  • the sintered magnet in terms of mass percentage, is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0 .99mas% and C0.114mas%, the balance is iron.
  • the sintered magnet in terms of mass percentage, is composed of the following components: PrNd31mas%, Co0.5mas%, Cu0.4mas%, Ga0.5mas%, Ti0.2mas%, B0.88mas % and C0.1165mas%, the balance is iron.
  • the sintered magnet in terms of mass percentage, is composed of the following components: PrNd29.5mas%, Dy2.5mas%, Co1.5mas%, Cu0.16mas%, Ga0.25mas%, Al0 .3mas%, Zr0.3mas%, B0.95mas% and C0.1178mas%, the balance is iron.
  • the sintered magnet in terms of mass percentage, is composed of the following components: PrNd31mas%, Co0.5mas%, Cu0.4mas%, Ga0.5mas%, Ti0.2mas%, B0.88mas % and C0.1255mas%, the balance is iron.
  • the present invention also provides a rare earth permanent magnet, which comprises the following components in terms of mass percentage:
  • R 29mas%-33mas%; the R is a rare earth element and includes a heavy rare earth element RH;
  • Ga 0 ⁇ 0.7mas%, and not 0;
  • M 0-0.4mas%, and not 0; said M includes at least one of Ti, Zr and Nb;
  • Al 0 ⁇ 0.5mas%, and not 0;
  • Co 0-2mas%; mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the R includes PrNd and/or Nd.
  • the content of R is 29.5mas%-32mas%, such as 31mas% or 30mas%, where mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the RH preferably includes one or more of Tb, Dy, Ho and Gd, more preferably includes Dy and/or Tb.
  • the RH content is 0-2.5mas%, but not 0, such as 1.5mas% or 0.5mas%, where mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the content of B is 0.86mas%-0.99mas%, such as 0.88mas% or 0.95mas%, where mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the Ga content is 0-0.5mas%, but not 0, such as 0.05mas% or 0.25mas%, where mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the content of Cu is 0-0.4mas%, but not 0, such as 0.36mas% or 0.16mas%, where mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the content of M is preferably 0-0.3mas%, but not 0, such as 0.2mas% or 0.28mas%, where mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the content of the Nb is preferably 0-0.1mas%, and not 0, and the mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the content of the Ti is preferably 0-0.2mas%, and not 0, such as 0.18mas%, and mas% is the mass percentage of each component in the rare earth permanent magnet .
  • the content of Zr is preferably 0-0.3mas%, and not 0, and mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the content of Co is 0-1.5mas%, such as 0.5mas% or 1mas%, and mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the content of Al is 0-0.3mas%, and not 0, and mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the content of C is 0.115mas%, 0.1392mas%, 0.111mas%, 0.1195mas%, 0.1225mas%, 0.1165mas%, 0.1165mas%, 0.1178mas% or 0.1255mas%
  • mas% is the mass percentage of each component in the rare earth permanent magnet.
  • the rare earth permanent magnet generally also includes Fe (iron).
  • the content of Fe is preferably 64mas%-70mas%.
  • the rare earth permanent magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0.99mas%, Tb0.5mas% and C0.115mas%, the balance is iron.
  • the rare earth permanent magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0.99mas%, Tb0.5mas% and C0.1392mas%, the balance is iron.
  • the rare earth permanent magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0.99mas%, Tb0.5mas% and C0.111mas%, the balance is iron.
  • the rare earth permanent magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0.99mas%, Tb0.5mas% and C0.1195mas%, the balance is iron.
  • the rare earth permanent magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0.99mas%, Tb0.5mas% and C0.1225mas%, the balance is iron.
  • the rare earth permanent magnet is composed of the following components: Nd29.5mas%, Cu0.36mas%, Ga0.05mas%, Nb0.1mas%, Ti0.18mas%, B0.99mas%, Tb0.5mas% and C0.1165mas%, the balance is iron.
  • the rare earth permanent magnet in terms of mass percentage, is composed of the following components: PrNd31mas%, Co0.5mas%, Cu0.4mas%, Ga0.5mas%, Ti0.2mas%, B0. 88mas% and C0.1165mas%, the balance is iron.
  • the rare earth permanent magnet is composed of the following components: PrNd29.5mas%, Dy2.5mas%, Co1.5mas%, Cu0.16mas%, Ga0.25mas%, Al0.3mas%, Zr0.3mas%, B0.95mas% and C0.1178mas%, the balance is iron.
  • the rare earth permanent magnet in terms of mass percentage, is composed of the following components: PrNd31mas%, Co0.5mas%, Cu0.4mas%, Ga0.5mas%, Ti0.2mas%, B0. 88mas% and C0.1255mas%, the balance is iron.
  • the present invention also provides a kind of preparation method of sintered magnet, and described preparation method comprises the following steps:
  • the operation and conditions of the smelting can be the conventional smelting process in the field, generally an ingot casting process or a quick-setting sheet process for smelting and casting to obtain alloy flakes.
  • the melting temperature may be 1300-1700°C, for example, 1500°C.
  • the melting equipment is generally a high-frequency vacuum melting furnace and/or a medium-frequency vacuum melting furnace.
  • the intermediate frequency vacuum smelting furnace can be an intermediate frequency vacuum induction quick-setting belt throwing furnace.
  • the coarse crushing is generally hydrogen crushing.
  • the hydrogen fragmentation generally includes hydrogen absorption, dehydrogenation and cooling treatment.
  • the hydrogen absorption temperature is generally 20-200°C, preferably 20-40°C (ie room temperature).
  • the hydrogen absorption pressure is generally 50-600kPa, for example 90kPa.
  • the dehydrogenation temperature is generally 400-650°C, such as 550°C.
  • the fine pulverization is generally jet milled powder.
  • the gas flow in the jet milling may be, for example, nitrogen and/or argon.
  • the pressure of the jet milling powder is generally 0.1-2 MPa, preferably 0.5-0.7 MPa, for example 0.65 MPa.
  • the efficiency of the jet milling powder can vary according to different equipment, for example, it can be 30-400kg/h, preferably 200kg/h.
  • the molding operation and conditions may be conventional molding processes in the art, such as magnetic field molding.
  • the magnetic field strength of the magnetic field forming method is generally above 1.5T.
  • the sintering operation and conditions may be conventional sintering processes in the art, such as vacuum sintering process and/or inert atmosphere sintering process.
  • the vacuum sintering process or the inert atmosphere sintering process are conventional operations in the field.
  • the initial sintering stage can be carried out under the condition that the degree of vacuum is lower than 0.5 Pa.
  • the inert atmosphere may be an atmosphere containing an inert gas conventional in the art, not limited to helium and argon, and may also be nitrogen.
  • the sintering temperature may be 1000-1200°C, preferably 1030-1090°C.
  • the sintering time may be 0.5-10 hours, preferably 2-8 hours.
  • the invention also provides a sintered magnet prepared by the preparation method of the sintered magnet.
  • the present invention also provides a preparation method of a rare-earth permanent magnet, the preparation method comprising the following steps: the above-mentioned sintered magnet is prepared in one of the following two ways:
  • Method 1 After the first-level aging treatment and the second-level aging treatment in sequence;
  • Method 2 sequentially undergo grain boundary diffusion treatment and secondary aging treatment.
  • the heavy rare earth elements in the grain boundary diffusion treatment preferably include Tb and/or Dy.
  • the grain boundary diffusion treatment can be processed according to conventional processes in this field, for example, a substance containing Tb or a substance containing Dy is deposited on the surface of the sintered magnet by vapor deposition, coating or sputtering, and after diffusion Heat treatment, you can.
  • the substance containing Tb or Dy may be Tb or Dy metal, a compound or alloy containing Tb or Dy.
  • the temperature of the grain boundary diffusion treatment may be 800-900°C, for example, 850°C.
  • the time for the grain boundary diffusion treatment may be 12-48 hours, such as 24 hours.
  • the temperature of the primary aging treatment is preferably 880°C-920°C, such as 900°C.
  • the time for the primary aging is preferably 2h-4h, for example 2h.
  • the temperature of the secondary aging treatment is preferably 460°C-520°C, for example 490°C.
  • the time for the secondary aging is preferably 2h-4h, for example 2h.
  • the present invention also provides a rare earth permanent magnet prepared by the above preparation method.
  • the invention also provides the application of the sintered magnet and/or the rare earth permanent magnet as the permanent magnet motor rotor.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progress effect of the present invention is that: the antioxidant composition of the present invention can improve the dispersibility of the powder, improve the grinding efficiency, and the functional groups carried by the organic matter in the antioxidant composition have good binding properties with NdFeB, and the wettability Excellent, can wrap the magnetic powder very well, prevent the contact between oxygen, nitrogen and the magnetic powder, play the role of anti-oxidation and reduce the nitrogen content; at the same time, under the premise of high carbon content, the sintered magnet and the rare earth permanent magnet of the application are still Maintain high remanence and coercive force.
  • Fig. 1 is the EPMA diagram of the rare earth permanent magnet in embodiment 1.
  • Fine pulverization process under nitrogen atmosphere, under the condition that the pulverization chamber pressure is 0.65MPa, the mixture of the powder after the hydrogen crushing pulverization and the antioxidant composition of 50% consumption is carried out jet mill pulverization (jet mill powder).
  • jet mill powder The efficiency can vary according to different equipment, for example, it can be 200kg/h) to get fine powder.
  • Tb alloy containing 0.5mas% Tb is used to coat the surface of the sintered magnet, and diffused at a temperature of 850°C for 24h, then cooled to room temperature, and then Vacuum heat treatment at 490°C for 2 hours to obtain rare earth permanent magnets.
  • step (6) is as follows:
  • the sintered magnet is first vacuum heat-treated at 900°C for 2 hours, and then vacuum heat-treated at 490°C for 2 hours to obtain a rare earth permanent magnet.
  • Example 1 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1126
  • Example 2 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1378
  • Example 3 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1090
  • Example 4 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1170
  • Example 5 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1209
  • Example 6 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal.
  • Example 1 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1150
  • Example 2 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1392
  • Example 3 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1110
  • Example 4 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1195
  • Example 5 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1225
  • Example 6 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1165
  • Example 7 / 31 / / 0.5 0.4 0.5 / / 0.2 / 0.88 Bal. 1165
  • Example 8 / 29.5 2.5 / 1.5 0.16 0.25 0.3 / / 0.3 0.95 Bal. 1178
  • Example 9 / 31 / / 0.5 0.4 0.5 / / 0.2 / 0.88 Bal. 1255 Comparative example 1 29.5 / / 0.5 the 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 900
  • Comparative example 2 / 31 / / 0.5 0.4 0.5 / / 0.2 / 0.88 Bal. 845 Comparative example 3 / 29.5 2.5 / 1.5 0.16 0.25 0.3 / / 0.3 0.95 Bal. 880
  • the oxygen content in the examples is equivalent to that of the comparative examples, indicating that the antioxidant effect of the antioxidant composition of the present application is equivalent to that of existing antioxidants; meanwhile, the nitrogen content in the examples is significantly reduced from about 400ppm to More than 100 ppm, this is because the nitrogen in the magnet is mainly introduced by the jet mill powder, the working gas of the jet mill is nitrogen (if it is argon gas during the jet mill powder, will it not appear), the air flow drives the coarse powder to interact with each other The instantaneous temperature of the collision is relatively high, which causes the magnetic powder to be combined with nitrogen.
  • the anti-oxidation composition of the present invention has a better affinity with the magnetic powder and because it contains long-chain hydrocarbons, it has better high temperature stability, so it occurs in the powder There is a protective effect on the surface of the powder during collision, reducing the direct contact with nitrogen, so the nitrogen content is significantly reduced; and although the carbon content in the embodiment is relatively high, the sintered magnet and the rare earth permanent magnet of the present application still maintain a high remanence with coercivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法。该抗氧化组合物包括如下组分:聚α烯烃30mas%~60mas%;油酸丁酯10mas%~30mas%;脂肪酸甲酯1mas%~20mas%;溶剂油10mas%~40mas%。该抗氧化组合物在用于制备永磁体的过程中,可以提高粉体的分散性、提高磨粉效率,浸润性优异,可以很好的包裹着磁粉,阻止氧、氮与磁粉的接触,起到了防氧化的作用、降低氮含量;同时在碳含量较高的前提下,能够保证烧结磁铁与稀土永磁体的较高剩磁与矫顽力。

Description

抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法 技术领域
本发明涉及一种抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法。
背景技术
烧结钕铁硼磁体是当代磁性最强的永磁体,其具有高磁能积、高性价比等优异特性,现已应用于航空、航天、微波通讯技术、电子、电声、机电等领域中,但是随着永磁体应用范围的不断扩大,人们对其的需求也随之增大,对永磁体的磁性能也提出了更高的需求。
现有技术制备钕铁硼磁体材料的过程中,在气流磨过程或者成型过程均会混入一定的润滑剂或者抗氧化剂,也就是会引入一定量的碳元素,而碳含量较高会导致矫顽力下降,故本领域技术人员一般将碳含量控制在1050ppm以下。
因此,亟需一种适宜的抗氧化剂,不仅能够降低钕铁硼磁体材料制备过程中的氧化风险,而且能够在所引入的碳含量较高、且无需额外控制碳含量的前提下,依然保持较高的磁性能。
发明内容
本发明要解决的技术问题是为了克服现有技术中传统的抗氧化剂会将碳引入到稀土磁体中,导致碳含量较高,矫顽力下降的缺陷,而提供一种抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法。采用本发明抗氧化组合物不仅能够降低稀土磁体材料制备过程中的氧化风险,而且能够在所引入的碳含量较高、且无需额外控制碳含量的前提下,依然保持较高的磁性能。
本发明是通过以下方案来解决上述技术问题的:
本发明提供了一种抗氧化组合物,以质量百分比计,其包括如下组分:
聚α烯烃30mas%~60mas%;
油酸丁酯10mas%~30mas%;
脂肪酸甲酯1mas%~20mas%;
溶剂油10mas%~40mas%;
mas%是指各组分占所述抗氧化组合物的质量百分比。
上述抗氧化组合物中,四种组分分别是具有良好的稳定和浸润性的聚α烯烃,可覆盖包裹粉末隔绝其他气体与粉末直接接触;对溶液改性的表面活性剂脂肪酸甲酯,使其他溶液与粉末亲和力更好以及使得粉末分散性更好;对粉末起到润滑作用的油酸丁酯,有利于粉末流动和转动;溶剂油作为以上三种有机物的溶剂,有着易挥发易脱除的特点。
本发明中,所述聚α烯烃的含量较佳地为30mas%~45mas%,例如40mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
本发明中,所述油酸丁酯的含量较佳地为10mas%~20mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
本发明中,所述脂肪酸甲酯的含量较佳地为1mas%~15mas%,例如5mas%或者10mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
本发明中,所述溶剂油可为90#溶剂油或者120#溶剂油。
本发明中,所述溶剂油的含量较佳地为10mas%~30mas%,例如20mas%或者25mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
在本发明一优选实施例中,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油30mas%。在本发明一优选实施例中,较佳地,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃60mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油10mas%。
在本发明一优选实施例中,较佳地,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃40mas%;油酸丁酯10mas%;脂肪酸甲酯10mas%;溶剂油40mas%。
在本发明一优选实施例中,较佳地,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯15mas%;溶剂油25mas%。
在本发明一优选实施例中,较佳地,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃30mas%;油酸丁酯30mas%;脂肪酸甲酯20mas%;溶剂油20mas%。
在本发明一优选实施例中,较佳地,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃45mas%;油酸丁酯20mas%;脂肪酸甲酯5mas%;溶剂油30mas%。
本发明还提供了一种抗氧化组合物的制备方法,其包括如下步骤:将上述抗氧化组合物中的各组分混合即可。
本发明还提供了一种上述抗氧化组合物在制备永磁体中作为抗氧化剂的用途。
本发明提供了一种烧结磁铁用材料,其包括上述抗氧化组合物。
本发明中,所述抗氧化组合物的含量较佳地为0.15mas%-0.45mas%,例如0.2mas%或者0.4mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比。
本发明中,所述烧结磁铁用材料一般还包括稀土元素R。所述R的含量较佳地为29mas%~33mas%,更佳地为29.5mas%~32mas%,例如31mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比。
其中,较佳地,所述R包括PrNd和/或Nd。较佳地,所述R还包括重稀土元素RH。所述RH较佳地包括Tb、Dy、Ho和Gd中的一种或多种。较佳地,所述RH的含量为0~2.5mas%、且不为0,例如1.5mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比。
本发明中,较佳地,所述烧结磁铁用材料还包括B(硼)。所述B的含量较佳地为0.86mas%~1mas%,例如0.99mas%、0.88mas%或者0.95mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比。
本发明中,较佳地,所述烧结磁铁用材料还包括Ga(镓)。所述Ga的含量较佳地为0~0.7mas%、且不为0,例如0.05mas%、0.5mas%或者0.25mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比。
本发明中,较佳地,所述烧结磁铁用材料还包括Cu(铜)。所述Cu的含量较佳地为0~0.5mas%、且不为0,例如0.36mas%、0.4mas%或者0.16mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比。
本发明中,较佳地,所述烧结磁铁用材料还包括M,所述M包含Ti、Zr和Nb中的至少一种。所述M的含量较佳地为0~0.4mas%、且不为0,例如0.2mas%、0.28mas%或者0.3mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比。
其中,当所述M包括Nb时,所述Nb的含量较佳地为0~0.1mas%、且不为0,mas%为各组分占所述烧结磁铁用材料的质量百分比。
其中,当所述M包括Ti时,所述Ti的含量较佳地为0~0.2mas%、且不为0,例如0.18mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比。
其中,当所述M包括Zr时,所述Zr的含量较佳地为0~0.3mas%、且不为0,mas%为各组分占所述烧结磁铁用材料的质量百分比。
本发明中,较佳地,所述烧结磁铁用材料还包括Co(钴)。所述Co的含量较佳地为0~2mas%,更佳地为0~1.5mas%,例如0.5mas%或者1mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比。
本发明中,较佳地,所述烧结磁铁用材料还包括Al(铝)。所述Al的含量较佳地为0~0.5mas%,例如0.3mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比。
本发明中,所述烧结磁铁用材料一般还包括Fe(铁)。所述Fe的含量较佳地为64mas%~70mas%。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述 抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油30mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃60mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油10mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯10mas%;脂肪酸甲酯10mas%;溶剂油40mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯15mas%;溶剂油25mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃30mas%;油酸丁酯30mas%;脂肪酸甲酯20mas%;溶剂油20mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃45mas%;油酸丁酯20mas%;脂肪酸甲酯5mas%;溶剂油30mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁用材料由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油30mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁用材料由如下组分组成:PrNd29.5mas%、Dy2.5mas%、Co1.5mas%、Cu0.16mas%、Ga0.25mas%、Al0.3mas%、Zr0.3mas%、B0.95mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油30mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁用材料由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和抗氧化组合物0.4mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油30mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
本发明还提供了一种烧结磁铁,以质量百分比计,其包括如下组分:
R:29mas%~33mas%,所述R为稀土元素;
B:0.86mas%~1mas%;
Ga:0~0.7mas%、且不为0;
Cu:0~0.5mas%、且不为0;
M:0~0.4mas%、且不为0;所述M包含Ti、Zr和Nb中的至少一种;
Al:0~0.5mas%、且不为0;
Fe:64mas%~70mas%;
C:0.1~0.2mas%;
Co:0~2mas%;mas%为各组分占所述烧结磁铁的质量百分比。
本发明中,较佳地,所述R包括PrNd和/或Nd。其中,较佳地,所述R还包括重稀土元素RH。较佳地,所述RH包括Tb、Dy、Ho和Gd中的一种或多种。较佳地,所述RH的含量为0~2.5mas%、且不为0,例如1.5mas%,mas%为各组分占所述烧结磁铁的质量百分比。
本发明中,较佳地,所述R的含量为29.5mas%~32mas%,例如31mas%,mas%为各组分占所述烧结磁铁的质量百分比。
本发明中,较佳地,所述B的含量较佳地为0.86mas%~0.99mas%,例如0.88mas%或者0.95mas%,mas%为各组分占所述烧结磁铁的质量百分比。
本发明中,较佳地,所述Ga的含量较佳地为0~0.5mas%、且不为0,例如0.05mas%或者0.25mas%,mas%为各组分占所述烧结磁铁的质量百分比。
本发明中,较佳地,所述Cu的含量较佳地为0~0.4mas%、且不为0,例如0.36mas%或者0.16mas%,mas%为各组分占所述烧结磁铁的质量百分比。
本发明中,所述M的含量较佳地为0~0.3mas%、且不为0,例如0.2mas%或者0.28mas%,mas%为各组分占所述烧结磁铁的质量百分比。
其中,当所述M包括Nb时,所述Nb的含量较佳地为0~0.1mas%、且不为0,mas%为各组分占所述烧结磁铁的质量百分比。
其中,当所述M包括Ti时,所述Ti的含量较佳地为0~0.2mas%、且不为0,例如0.18mas%,mas%为各组分占所述烧结磁铁的质量百分比。
其中,当所述M包括Zr时,所述Zr的含量较佳地为0~0.3mas%、且不为0,mas%为各组分占所述烧结磁铁的质量百分比。
本发明中,较佳地,所述Co的含量为0~1.5mas%,例如0.5mas%或者1mas%,mas%为各组分占所述烧结磁铁的质量百分比。
本发明中,较佳地,所述Al的含量为0~0.3mas%、且不为0,mas%为各组分占所述烧结磁铁的质量百分比。
本发明中,较佳地,所述C的含量为0.1126mas%、0.1378mas%、0.109mas%、0.117mas%、0.1209mas%、0.1140mas%、0.1165mas%、0.1178mas%或者0.1255mas%,mas%为各组分占所述烧结磁铁的质量百分比。
本发明中,所述烧结磁铁一般还包括Fe(铁)。所述Fe的含量较佳地为64mas%~70mas%。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.1126mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.1378mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.109mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.117mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.1209mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁由如下组分 组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.114mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和C0.1165mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁由如下组分组成:PrNd29.5mas%、Dy2.5mas%、Co1.5mas%、Cu0.16mas%、Ga0.25mas%、Al0.3mas%、Zr0.3mas%、B0.95mas%和C0.1178mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述烧结磁铁由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和C0.1255mas%,余量为铁。
本发明还提供了一种稀土永磁体,以质量百分比计,其包括如下组分:
R:29mas%~33mas%;所述R为稀土元素、且包括重稀土元素RH;
B:0.86mas%~1mas%;
Ga:0~0.7mas%、且不为0;
Cu:0~0.5mas%、且不为0;
M:0~0.4mas%、且不为0;所述M包含Ti、Zr和Nb中的至少一种;
Al:0~0.5mas%、且不为0;
Fe:64mas%~70mas%;
C:0.1~0.2mas%;
Co:0~2mas%;mas%为各组分占所述稀土永磁体的质量百分比。
本发明中,较佳地,所述R包括PrNd和/或Nd。
本发明中,较佳地,所述R的含量为29.5mas%~32mas%,例如31mas%或者30mas%,mas%为各组分占所述稀土永磁体的质量百分比。
本发明中,所述RH较佳地包括Tb、Dy、Ho和Gd中的一种或多种,更佳地包括Dy和/或Tb。
本发明中,较佳地,所述RH的含量为0~2.5mas%、且不为0,例如1.5mas% 或者0.5mas%,mas%为各组分占所述稀土永磁体的质量百分比。
本发明中,较佳地,所述B的含量为0.86mas%~0.99mas%,例如0.88mas%或者0.95mas%,mas%为各组分占所述稀土永磁体的质量百分比。
本发明中,较佳地,所述Ga的含量为0~0.5mas%、且不为0,例如0.05mas%或者0.25mas%,mas%为各组分占所述稀土永磁体的质量百分比。
本发明中,较佳地,所述Cu的含量为0~0.4mas%、且不为0,例如0.36mas%或者0.16mas%,mas%为各组分占所述稀土永磁体的质量百分比。
本发明中,所述M的含量较佳地为0~0.3mas%、且不为0,例如0.2mas%或者0.28mas%,mas%为各组分占所述稀土永磁体的质量百分比。
其中,当所述M包括Nb时,所述Nb的含量较佳地为0~0.1mas%、且不为0,mas%为各组分占所述稀土永磁体的质量百分比。
其中,当所述M包括Ti时,所述Ti的含量较佳地为0~0.2mas%、且不为0,例如0.18mas%,mas%为各组分占所述稀土永磁体的质量百分比。
其中,当所述M包括Zr时,所述Zr的含量较佳地为0~0.3mas%、且不为0,mas%为各组分占所述稀土永磁体的质量百分比。
本发明中,较佳地,所述Co的含量为0~1.5mas%,例如0.5mas%或者1mas%,mas%为各组分占所述稀土永磁体的质量百分比。
本发明中,较佳地,所述Al的含量为0~0.3mas%、且不为0,mas%为各组分占所述稀土永磁体的质量百分比。
本发明中,较佳地,所述C的含量为0.115mas%、0.1392mas%、0.111mas%、0.1195mas%、0.1225mas%、0.1165mas%、0.1165mas%、0.1178mas%或者0.1255mas%,mas%为各组分占所述稀土永磁体的质量百分比。
本发明中,所述稀土永磁体一般还包括Fe(铁)。所述Fe的含量较佳地为64mas%~70mas%。
在本发明一优选实施例中,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.115mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.1392mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.111mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.1195mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.1225mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.1165mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述稀土永磁体由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和C0.1165mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述稀土永磁体由如下组分组成:PrNd29.5mas%、Dy2.5mas%、Co1.5mas%、Cu0.16mas%、Ga0.25mas%、Al0.3mas%、Zr0.3mas%、B0.95mas%和C0.1178mas%,余量为铁。
在本发明一优选实施例中,以质量百分比计,所述稀土永磁体由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和C0.1255mas%,余量为铁。
本发明还提供了一种烧结磁铁的制备方法,所述制备方法包括如下步骤:
将上述烧结磁铁用材料中除所述抗氧化组合物之外的组分熔炼、粗粉碎,得到粗粉末;再将所述粗粉末与40%~60%用量的所述抗氧化组合物的混合 物经细粉碎,即得细粉末;再将细粉末与剩余的所述抗氧化组合物的混合物成型、烧结即得。
本发明中,所述熔炼的操作和条件可为本领域常规的熔炼工艺,一般为铸锭工艺或速凝片工艺进行熔炼浇铸,得到合金片。
本发明中,所述熔炼的温度可为1300~1700℃,例如1500℃。
本发明中,所述熔炼的设备一般为高频真空熔炼炉和/或中频真空熔炼炉。所述中频真空熔炼炉可为中频真空感应速凝甩带炉。
本领域技术人员知晓,因熔炼和烧结工艺中通常会损耗稀土元素,为保证终产品的质量,一般会在熔炼过程中在原料组合物的配方基础中额外添加0~0.3wt%的稀土元素(一般为Nd元素),百分比为额外添加的稀土元素的含量占所述烧结磁铁用材料的质量百分比;另外这部分额外添加的稀土元素的含量不计入原料组合物的范畴。
本发明中,所述粗破碎一般为氢破碎。
其中,所述氢破碎一般包括吸氢、脱氢和冷却处理。所述吸氢的温度一般为20~200℃,较佳地为20~40℃(即室温)。所述吸氢的压力一般为50~600kPa,例如90kPa。所述脱氢的温度一般为400~650℃,例如550℃。
本发明中,所述细粉碎一般为气流磨制粉。所述气流磨制粉中的气流例如可为氮气和/或氩气。所述气流磨制粉的压力一般为0.1~2MPa,优选0.5~0.7MPa,例如0.65MPa。所述气流磨制粉的效率可根据设备不同有所差别,例如可为30-400kg/h,优选200kg/h。
本发明中,所述成型的操作和条件可为本领域常规的成型工艺,例如磁场成型法。所述的磁场成型法的磁场强度一般在1.5T以上。
本发明中,所述烧结的操作和条件可为本领域常规的烧结工艺,例如真空烧结工艺和/或惰性气氛烧结工艺。所述真空烧结工艺或所述惰性气氛烧结工艺均为本领域常规操作。当采用惰性气氛烧结工艺时,所述烧结开始阶段可在真空度低于0.5Pa的条件下进行。所述惰性气氛可为本领域常规的含有惰性气体的气氛,不限于氦气、氩气,还可为氮气。
本发明中,所述烧结的温度可为1000~1200℃,较佳地为1030~1090℃。
本发明中,所述烧结的时间可为0.5~10h,较佳地为2~8h。
本发明还提供了一种由烧结磁铁的制备方法制得的烧结磁铁。
本发明还提供了一种稀土永磁体的制备方法,所述制备方法包括如下步骤:将上述烧结磁铁经如下两种方式之一制得:
方式一:依次经过一级时效处理与二级时效处理;
方式二:依次经过晶界扩散处理与二级时效处理。
本发明中,所述晶界扩散处理中的重稀土元素较佳地包括Tb和/或Dy。
本发明中,所述晶界扩散处理可按本领域常规的工艺进行处理,例如,在所述烧结磁铁的表面蒸镀、涂覆或溅射附着含有Tb的物质或含Dy的物质,经扩散热处理,即可。
其中,所述含有Tb或Dy的物质可为Tb或Dy金属、含有Tb或Dy的化合物或合金。
其中,所述晶界扩散处理的温度可为800~900℃,例如850℃。
其中,所述晶界扩散处理的时间可为12~48h,例如24h。
本发明中,所述一级时效处理的温度较佳地为880℃-920℃,例如900℃。
所述一级时效的时间较佳地为2h~4h,例如2h。
本发明中,所述二级时效处理的温度较佳地为460℃~520℃,例如490℃。
所述二级时效的时间较佳地为2h~4h,例如2h。
本发明还提供一种由上述制备方法制得的稀土永磁体。
本发明还提供一种烧结磁铁和/或稀土永磁体作为永磁电机转子的应用。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:本发明的抗氧化组合物可以提高粉体的分散性、提高磨粉效率,并且该抗氧化组合物中的有机物所携带的官能团与NdFeB的结合性好,浸润性优异,可以很好的包裹着磁粉,阻止氧、氮与磁 粉的接触,起到了防氧化的作用、降低氮含量;同时在碳含量较高的前提下,本申请的烧结磁铁与稀土永磁体仍然保持较高剩磁与矫顽力。
附图说明
图1为实施例1中稀土永磁体的EPMA图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1~6以及对比例1
(1)熔炼过程:按照表1和表2中的配方,将除了抗氧化组合物(抗氧化组合物的配方具体见表2)之外的原料配制,在高频真空熔炼炉中以1500℃的条件进行真空熔炼,再在中频真空感应速凝甩带炉中通入氩气,进行铸造,再急冷合金,得合金片。
(2)粗粉碎过程:将合金片放置于氢破用炉中,在室温下将放置急冷合金的氢破用炉抽真空,而后向氢破用炉内通入纯度为99.9%的氢气,维持氢气的压力90kPa,充分吸氢后,边抽真空边升温,充分脱氢,之后进行冷却,取出氢破粉碎后的粉末。其中,吸氢的温度为室温,脱氢的温度为550℃。
(3)细粉碎过程:在氮气气氛下,在粉碎室压力为0.65MPa的条件下,对氢破粉碎后的粉末与50%用量的抗氧化组合物的混合物进行气流磨粉碎(气流磨制粉的效率可根据设备不同有所差别,例如可为200kg/h),得到细粉。
(4)成型过程:将经气流磨之后的粉末与剩余抗氧化组合物混合、并在1.5T以上的磁场强度中压制成型,得到成型体。
(5)烧结过程:将各成型体搬至烧结炉中进行烧结,烧结在低于0.5Pa的真空下,以1030-1090℃烧结8h,得烧结磁铁。
(6)晶界扩散与时效处理过程:将烧结磁铁表面净化后,采用含有0.5mas%Tb的Tb合金涂覆于烧结磁铁的表面,并以850℃的温度扩散24h,之后冷却至室温,再以490℃条件下真空热处理2h,即得稀土永磁体。
表1烧结磁铁用材料(mas%)
Figure PCTCN2022129739-appb-000001
注:上表中“/”表示不含有该元素
表2
Figure PCTCN2022129739-appb-000002
Figure PCTCN2022129739-appb-000003
实施例7~9以及对比例2~3
与实施例1~6以及对比例1的制备方法不同之处仅在于步骤(6)如下:
(6)时效处理过程:将烧结磁铁先以900℃条件下真空热处理2h,再以490℃条件下真空热处理2h,即得稀土永磁体。
效果实施例
分别取实施例1~9以及对比例1~3的烧结磁铁与稀土永磁体,测定其磁性能和成分。
(1)将实施例1~9以及对比例1~3的烧结磁铁和稀土永磁体的各成分使用高频电感耦合等离子体发射光谱仪(ICP-OES,Icap6300)进行测定;下表3与4所示为成分检测结果。
表3烧结磁铁(mas%)
编号 Nd PrNd Dy Co Cu Ga Al Nb Ti Zr B Fe C/ppm
实施例1 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1126
实施例2 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1378
实施例3 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1090
实施例4 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1170
实施例5 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1209
实施例6 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1140
实施例7 / 31 / 0.5 0.4 0.5 / / 0.2 / 0.88 Bal. 1165
实施例8 / 29.5 2.5 1.5 0.16 0.25 0.3 / / 0.3 0.95 Bal. 1178
实施例9 / 31 / 0.5 0.4 0.5 / / 0.2 / 0.88 Bal. 1255
对比例1 29.5 / / / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 873
对比例2 / 31 / 0.5 0.4 0.5 / / 0.2 / 0.88 Bal. 845
对比例3 / 29.5 2.5 1.5 0.16 0.25 0.3 / / 0.3 0.95 Bal. 880
注:上表中“/”表示不含有该元素
表4稀土永磁体(mas%)
编号 Nd PrNd Dy Tb Co Cu Ga Al Nb Ti Zr B Fe C/ppm
实施例1 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1150
实施例2 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1392
实施例3 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1110
实施例4 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1195
实施例5 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1225
实施例6 29.5 / / 0.5 / 0.36 0.05 / 0.10 0.18 / 0.99 Bal. 1165
实施例7 / 31 / / 0.5 0.4 0.5 / / 0.2 / 0.88 Bal. 1165
实施例8 / 29.5 2.5 / 1.5 0.16 0.25 0.3 / / 0.3 0.95 Bal. 1178
实施例9 / 31 / / 0.5 0.4 0.5 / / 0.2 / 0.88 Bal. 1255
对比例1 29.5 / / 0.5   0.36 0.05 / 0.10 0.18 / 0.99 Bal. 900
对比例2 / 31 / / 0.5 0.4 0.5 / / 0.2 / 0.88 Bal. 845
对比例3 / 29.5 2.5 / 1.5 0.16 0.25 0.3 / / 0.3 0.95 Bal. 880
注:上表中“/”表示不含有该元素
(2)磁性能评价:将实施例1~9以及对比例1~3烧结磁铁和稀土永磁体使用英国Hirst公司的PFM-14磁性能测量仪进行磁性能检测;下表5所示为磁性能检测结果。
由表5可知,实施例中的氧含量与对比例相当,说明本申请的抗氧化组合物的抗氧化效果与现有的抗氧化剂相当;同时,实施例中的氮含量从400ppm左右明显下降至100多ppm,这是由于磁体中的氮主要是由气流磨制粉引入,气流磨的工作气为氮气(若气流磨制粉时为氩气,是否就不会出现),气流带动粗粉相互碰撞瞬时温度较高,这就使磁粉有与氮结合的情况,本发明的抗氧化组合物与磁粉的亲和性较好且由于含有长链烃类高温稳定性较好,所以在粉体发生碰撞时在粉体表面有保护作用,减少与氮的直接接触,遂氮含量明显降低;并且虽然实施例中的碳含量较高,但本申请的烧结磁铁与稀土永磁体仍然保持较高剩磁与矫顽力。
表5磁性能评价
Figure PCTCN2022129739-appb-000004
Figure PCTCN2022129739-appb-000005
注:上表中“/”表示不含有该元素
(3)微观结构的测定:通过EPMA-1720测试实施例1的稀土永磁体(如图1所示),由图1可知,C主要分布在晶界三叉晶界处,部分位置与O重合形成稀土氧化物,但也有不重合的,C与稀土分布位置重合,形成了稀土碳化物,该些微观结构的改变从机理上解释了本申请的烧结磁铁或者稀土永磁体在碳含量较高的前提下,仍能保持较高剩磁与矫顽力。

Claims (10)

  1. 一种抗氧化组合物,其特征在于,以质量百分比计,其包括如下组分:
    聚α烯烃30mas%~60mas%;
    油酸丁酯10mas%~30mas%;
    脂肪酸甲酯1mas%~20mas%;
    溶剂油10mas%~40mas%;
    mas%是指各组分占所述抗氧化组合物的质量百分比。
  2. 如权利要求1所述的抗氧化组合物,其特征在于,所述聚α烯烃的含量为30mas%~45mas%,例如40mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    和/或,所述油酸丁酯的含量为10mas%~20mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    和/或,所述脂肪酸甲酯的含量为1mas%~15mas%,例如5mas%或者10mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    和/或,所述溶剂油为90#溶剂油或者120#溶剂油;
    和/或,所述溶剂油的含量为10mas%~30mas%,例如20mas%或者25mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    或者,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油30mas%;
    或者,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃60mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油10mas%;
    或者,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃40mas%;油酸丁酯10mas%;脂肪酸甲酯10mas%;溶剂油40mas%;
    或者,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯15mas%;溶剂油25mas%;
    或者,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃30mas%;油酸丁酯30mas%;脂肪酸甲酯20mas%;溶剂油20mas%;
    或者,以质量百分比计,所述抗氧化组合物由以下组分组成:聚α烯烃 45mas%;油酸丁酯20mas%;脂肪酸甲酯5mas%;溶剂油30mas%。
  3. 一种如权利要求1或2所述的抗氧化组合物在制备永磁体中作为抗氧化剂的用途。
  4. 一种烧结磁铁用材料,其特征在于,其包括如权利要求1或2所述的抗氧化组合物;
    所述抗氧化组合物的含量较佳地为0.15mas%-0.45mas%,例如0.2mas%或者0.4mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    所述烧结磁铁用材料较佳地还包括稀土元素R;所述R的含量较佳地为29mas%~33mas%,更佳地为29.5mas%~32mas%,例如31mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    所述R较佳地包括PrNd和/或Nd;所述R更佳地还包括重稀土元素RH;所述RH较佳地包括Tb、Dy、Ho和Gd中的一种或多种;较佳地,所述RH的含量为0~2.5mas%、且不为0,例如1.5mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    较佳地,所述烧结磁铁用材料还包括B;所述B的含量较佳地为0.86mas%~1mas%,例如0.99mas%、0.88mas%或者0.95mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    较佳地,所述烧结磁铁用材料还包括Ga;所述Ga的含量较佳地为0~0.7mas%、且不为0,例如0.05mas%、0.5mas%或者0.25mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    较佳地,所述烧结磁铁用材料还包括Cu;所述Cu的含量较佳地为0~0.5mas%、且不为0,例如0.36mas%、0.4mas%或者0.16mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    较佳地,所述烧结磁铁用材料还包括M,所述M包含Ti、Zr和Nb中的至少一种;所述M的含量较佳地为0~0.4mas%、且不为0,例如0.2mas%、0.28mas%或者0.3mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    其中,当所述M包括Nb时,所述Nb的含量较佳地为0~0.1mas%、且不为0,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    其中,当所述M包括Ti时,所述Ti的含量较佳地为0~0.2mas%、且不为0,例如0.18mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    其中,当所述M包括Zr时,所述Zr的含量较佳地为0~0.3mas%、且不为0,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    较佳地,所述烧结磁铁用材料还包括Co;所述Co的含量较佳地为0~2mas%,更佳地为0~1.5mas%,例如0.5mas%或者1mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    较佳地,所述烧结磁铁用材料还包括Al;所述Al的含量较佳地为0~0.5mas%,例如0.3mas%,mas%为各组分占所述烧结磁铁用材料的质量百分比;
    所述烧结磁铁用材料还包括Fe,所述Fe的含量较佳地为64mas%~70mas%;
    较佳地,
    以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油30mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    或者,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃60mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油10mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    或者,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas% 和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯10mas%;脂肪酸甲酯10mas%;溶剂油40mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    或者,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯15mas%;溶剂油25mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    或者,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃30mas%;油酸丁酯30mas%;脂肪酸甲酯20mas%;溶剂油20mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    或者,以质量百分比计,所述烧结磁铁用材料由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃45mas%;油酸丁酯20mas%;脂肪酸甲酯5mas%;溶剂油30mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    或者,以质量百分比计,所述烧结磁铁用材料由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油30mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    或者,以质量百分比计,所述烧结磁铁用材料由如下组分组成:PrNd29.5mas%、Dy2.5mas%、Co1.5mas%、Cu0.16mas%、Ga0.25mas%、Al0.3mas%、Zr0.3mas%、B0.95mas%和抗氧化组合物0.2mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯20 mas%;脂肪酸甲酯10mas%;溶剂油30mas%,mas%是指各组分占所述抗氧化组合物的质量百分比;
    或者,以质量百分比计,所述烧结磁铁用材料由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和抗氧化组合物0.4mas%,余量为铁;其中,所述抗氧化组合物由如下组分组成:聚α烯烃40mas%;油酸丁酯20mas%;脂肪酸甲酯10mas%;溶剂油30mas%,mas%是指各组分占所述抗氧化组合物的质量百分比。
  5. 一种烧结磁铁,其特征在于,以质量百分比计,其包括如下组分:
    R:29mas%~33mas%,所述R为稀土元素;
    B:0.86mas%~1mas%;
    Ga:0~0.7mas%、且不为0;
    Cu:0~0.5mas%、且不为0;
    M:0~0.4mas%、且不为0;所述M包含Ti、Zr和Nb中的至少一种;
    Al:0~0.5mas%、且不为0;
    Fe:64mas%~70mas%;
    C:0.1~0.2mas%;
    Co:0~2mas%;mas%为各组分占所述烧结磁铁的质量百分比。
  6. 如权利要求5所述的烧结磁铁,其特征在于,所述R包括PrNd和/或Nd;较佳地,所述R还包括重稀土元素RH;较佳地,所述RH包括Tb、Dy、Ho和Gd中的一种或多种;较佳地,所述RH的含量为0~2.5mas%、且不为0,例如1.5mas%,mas%为各组分占所述烧结磁铁的质量百分比;
    和/或,所述R的含量为29.5mas%~32mas%,例如31mas%,mas%为各组分占所述烧结磁铁的质量百分比;
    和/或,所述B的含量为0.86mas%~0.99mas%,例如0.88mas%或者0.95mas%,mas%为各组分占所述烧结磁铁的质量百分比;
    和/或,所述Ga的含量为0~0.5mas%、且不为0,例如0.05mas%或者0.25mas%,mas%为各组分占所述烧结磁铁的质量百分比;
    和/或,所述Cu的含量为0~0.4mas%、且不为0,例如0.36mas%或者0.16mas%,mas%为各组分占所述烧结磁铁的质量百分比;
    和/或,所述M的含量为0~0.3mas%、且不为0,例如0.2mas%或者0.28mas%,mas%为各组分占所述烧结磁铁的质量百分比;
    其中,当所述M包括Nb时,所述Nb的含量较佳地为0~0.1mas%、且不为0,mas%为各组分占所述烧结磁铁的质量百分比;
    其中,当所述M包括Ti时,所述Ti的含量较佳地为0~0.2mas%、且不为0,例如0.18mas%,mas%为各组分占所述烧结磁铁的质量百分比;
    其中,当所述M包括Zr时,所述Zr的含量较佳地为0~0.3mas%、且不为0,mas%为各组分占所述烧结磁铁的质量百分比;
    和/或,所述Co的含量为0~1.5mas%,例如0.5mas%或者1mas%,mas%为各组分占所述烧结磁铁的质量百分比;
    和/或,所述Al的含量为0~0.3mas%、且不为0,mas%为各组分占所述烧结磁铁的质量百分比;
    和/或,所述C的含量为0.1126mas%、0.1378mas%、0.109mas%、0.117mas%、0.1209mas%、0.1140mas%、0.1165mas%、0.1178mas%或者0.1255mas%,mas%为各组分占所述烧结磁铁的质量百分比;
    和/或,所述烧结磁铁还包括Fe,所述Fe的含量为64mas%~70mas%;
    或者,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.1126mas%,余量为铁;
    或者,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.1378mas%,余量为铁;
    或者,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.109mas%,余量为铁;
    或者,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.117mas%,余量为铁;
    或者,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.1209mas%,余量为铁;
    或者,以质量百分比计,所述烧结磁铁由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%和C0.114mas%,余量为铁;
    或者,以质量百分比计,所述烧结磁铁由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和C0.1165mas%,余量为铁;
    或者,以质量百分比计,所述烧结磁铁由如下组分组成:PrNd29.5mas%、Dy2.5mas%、Co1.5mas%、Cu0.16mas%、Ga0.25mas%、Al0.3mas%、Zr0.3mas%、B0.95mas%和C0.1178mas%,余量为铁;
    或者,以质量百分比计,所述烧结磁铁由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和C0.1255mas%,余量为铁。
  7. 一种稀土永磁体,以质量百分比计,其包括如下组分:
    R:29mas%~33mas%;所述R为稀土元素、且包括重稀土元素RH;
    B:0.86mas%~1mas%;
    Ga:0~0.7mas%、且不为0;
    Cu:0~0.5mas%、且不为0;
    M:0~0.4mas%、且不为0;所述M包含Ti、Zr和Nb中的至少一种;
    Al:0~0.5mas%、且不为0;
    Fe:64mas%~70mas%;
    C:0.1~0.2mas%;
    Co:0~2mas%;mas%为各组分占所述稀土永磁体的质量百分比;
    较佳地,所述R包括PrNd和/或Nd;
    较佳地,所述R的含量为29.5mas%~32mas%,例如31mas%或者30mas%,mas%为各组分占所述稀土永磁体的质量百分比;
    所述RH较佳地包括Tb、Dy、Ho和Gd中的一种或多种,更佳地包括Dy和/或Tb;
    所述RH的含量较佳地为0~2.5mas%、且不为0,例如1.5mas%或者0.5mas%,mas%为各组分占所述稀土永磁体的质量百分比;
    较佳地,所述B的含量为0.86mas%~0.99mas%,例如0.88mas%或者0.95mas%,mas%为各组分占所述稀土永磁体的质量百分比;
    较佳地,所述Ga的含量为0~0.5mas%、且不为0,例如0.05mas%或者0.25mas%,mas%为各组分占所述稀土永磁体的质量百分比;
    较佳地,所述Cu的含量为0~0.4mas%、且不为0,例如0.36mas%或者0.16mas%,mas%为各组分占所述稀土永磁体的质量百分比;
    所述M的含量较佳地为0~0.3mas%、且不为0,例如0.2mas%或者0.28mas%,mas%为各组分占所述稀土永磁体的质量百分比;
    其中,当所述M包括Nb时,所述Nb的含量较佳地为0~0.1mas%、且不为0,mas%为各组分占所述稀土永磁体的质量百分比;
    其中,当所述M包括Ti时,所述Ti的含量较佳地为0~0.2mas%、且不为0,例如0.18mas%,mas%为各组分占所述稀土永磁体的质量百分比;
    其中,当所述M包括Zr时,所述Zr的含量较佳地为0~0.3mas%、且不为0,mas%为各组分占所述稀土永磁体的质量百分比;
    较佳地,所述Co的含量为0~1.5mas%,例如0.5mas%或者1mas%,mas%为各组分占所述稀土永磁体的质量百分比;
    较佳地,所述Al的含量为0~0.3mas%、且不为0,mas%为各组分占所述稀土永磁体的质量百分比;
    较佳地,所述C的含量为0.115mas%、0.1392mas%、0.111mas%、 0.1195mas%、0.1225mas%、0.1165mas%、0.1165mas%、0.1178mas%或者0.1255mas%,mas%为各组分占所述稀土永磁体的质量百分比;
    所述稀土永磁体还包括Fe,所述Fe的含量较佳地为64mas%~70mas%;
    较佳地,
    以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.115mas%,余量为铁;
    或者,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.1392mas%,余量为铁;
    或者,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.111mas%,余量为铁;
    或者,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.1195mas%,余量为铁;
    或者,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.1225mas%,余量为铁;
    或者,以质量百分比计,所述稀土永磁体由如下组分组成:Nd29.5mas%、Cu0.36mas%、Ga0.05mas%、Nb0.1mas%、Ti0.18mas%、B0.99mas%、Tb0.5mas%和C0.1165mas%,余量为铁;
    或者,以质量百分比计,所述稀土永磁体由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和C0.1165mas%,余量为铁;
    或者,以质量百分比计,所述稀土永磁体由如下组分组成:PrNd29.5mas%、Dy2.5mas%、Co1.5mas%、Cu0.16mas%、Ga0.25mas%、 Al0.3mas%、Zr0.3mas%、B0.95mas%和C0.1178mas%,余量为铁;
    或者,以质量百分比计,所述稀土永磁体由如下组分组成:PrNd31mas%、Co0.5mas%、Cu0.4mas%、Ga0.5mas%、Ti0.2mas%、B0.88mas%和C0.1255mas%,余量为铁。
  8. 一种烧结磁铁的制备方法,其特征在于,所述制备方法包括如下步骤:
    将如权利要求4所述的烧结磁铁用材料中除所述抗氧化组合物之外的组分熔炼、粗粉碎,得到粗粉末;再将所述粗粉末与40%~60%用量的所述抗氧化组合物的混合物经细粉碎,即得细粉末;再将细粉末与剩余的所述抗氧化组合物的混合物成型、烧结即得。
  9. 一种稀土永磁体的制备方法,其特征在于,所述制备方法包括如下步骤:将如权利要求5或6所述的烧结磁铁经如下两种方式之一制得:
    方式一:依次经过一级时效处理与二级时效处理;
    方式二:依次经过晶界扩散处理与二级时效处理;
    方式一中,所述一级时效处理的温度较佳地为880℃-920℃,例如900℃;
    方式一中,所述一级时效的时间较佳地为2h~4h;
    方式二中,所述晶界扩散处理中的重稀土元素较佳地包括Tb和/或Dy;
    其中,所述晶界扩散处理的温度较佳地为800~900℃,例如850℃;
    其中,所述晶界扩散处理的时间较佳地为12~48h,例如24h;
    方式一中和/或方式二中,所述二级时效处理的温度较佳地为460℃~520℃,例如490℃;
    方式一中和/或方式二中,所述二级时效的时间较佳地为2h~4h。
  10. 一种如权利要求5或6所述的烧结磁铁和/或如权利要求7所述的稀土永磁体作为永磁电机转子的应用。
PCT/CN2022/129739 2021-11-25 2022-11-04 抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法 WO2023093496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111414971.7 2021-11-25
CN202111414971.7A CN114220622A (zh) 2021-11-25 2021-11-25 抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法

Publications (1)

Publication Number Publication Date
WO2023093496A1 true WO2023093496A1 (zh) 2023-06-01

Family

ID=80698330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129739 WO2023093496A1 (zh) 2021-11-25 2022-11-04 抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法

Country Status (3)

Country Link
CN (1) CN114220622A (zh)
TW (1) TW202321364A (zh)
WO (1) WO2023093496A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220622A (zh) * 2021-11-25 2022-03-22 福建省长汀金龙稀土有限公司 抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法
CN115763051A (zh) * 2022-12-15 2023-03-07 浙江英洛华磁业有限公司 一种高性能低镓烧结永磁体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542644A (zh) * 2007-06-29 2009-09-23 Tdk株式会社 稀土磁铁
JP2014150119A (ja) * 2013-01-31 2014-08-21 Hitachi Metals Ltd R−t−b系焼結磁石の製造方法
CN107275025A (zh) * 2016-04-08 2017-10-20 沈阳中北通磁科技股份有限公司 一种含铈钕铁硼磁钢及制造方法
CN109509605A (zh) * 2019-01-11 2019-03-22 宁波复能新材料股份有限公司 一种多层结构稀土永磁体及其制备方法
CN111210963A (zh) * 2020-02-07 2020-05-29 钢铁研究总院 高性能钇铈基稀土永磁体及制备方法
CN114220622A (zh) * 2021-11-25 2022-03-22 福建省长汀金龙稀土有限公司 抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542644A (zh) * 2007-06-29 2009-09-23 Tdk株式会社 稀土磁铁
JP2014150119A (ja) * 2013-01-31 2014-08-21 Hitachi Metals Ltd R−t−b系焼結磁石の製造方法
CN107275025A (zh) * 2016-04-08 2017-10-20 沈阳中北通磁科技股份有限公司 一种含铈钕铁硼磁钢及制造方法
CN109509605A (zh) * 2019-01-11 2019-03-22 宁波复能新材料股份有限公司 一种多层结构稀土永磁体及其制备方法
CN111210963A (zh) * 2020-02-07 2020-05-29 钢铁研究总院 高性能钇铈基稀土永磁体及制备方法
CN114220622A (zh) * 2021-11-25 2022-03-22 福建省长汀金龙稀土有限公司 抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法

Also Published As

Publication number Publication date
CN114220622A (zh) 2022-03-22
TW202321364A (zh) 2023-06-01

Similar Documents

Publication Publication Date Title
WO2023093496A1 (zh) 抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法
TWI704238B (zh) 低B含量的R-Fe-B系燒結磁鐵及其製備方法
WO2021109568A1 (zh) 一种r-t-b系永磁材料、制备方法和应用
WO2021098223A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
CN111599562B (zh) 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
KR102589802B1 (ko) 네오디뮴철붕소 자성체재료, 원료조성물과 제조방법 및 응용
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021114648A1 (zh) 一种r-t-b系永磁材料、原料组合物、制备方法、应用
CN111540557B (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
CN111524674A (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
WO2023093495A1 (zh) 稀土永磁体、烧结磁铁类材料、制备方法、应用
CN112992463A (zh) 一种r-t-b磁体及其制备方法
WO2023035490A1 (zh) 一种含La的R-T-B稀土永磁体
TWI742969B (zh) R-t-b系永磁材料、原料組合物、製備方法、應用
KR102606749B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
WO2021169898A1 (zh) 一种钕铁硼材料及其制备方法和应用
WO2021169895A1 (zh) 一种钕铁硼材料及其制备方法和应用
WO2021258280A1 (zh) 一种无重稀土高性能钕铁硼永磁材料及其制备方法
CN111524672B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021169903A1 (zh) 一种稀土永磁材料及其制备方法和应用
EP4287220A1 (en) Method of preparing a ndfeb magnet and a ndfeb magnet obtained thereby
EP4287227A1 (en) Diffusion source material and its use for preparation of ndfeb magnets
EP4156213A1 (en) A high temperature resistant magnet and a method thereof
WO2022193820A1 (zh) 一种r-t-b磁体及其制备方法
WO2022193819A1 (zh) 一种r-t-b磁体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897579

Country of ref document: EP

Kind code of ref document: A1