WO2023093189A1 - 基于碳纳米片的钠离子电池负极材料及其制备方法和应用 - Google Patents

基于碳纳米片的钠离子电池负极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023093189A1
WO2023093189A1 PCT/CN2022/116266 CN2022116266W WO2023093189A1 WO 2023093189 A1 WO2023093189 A1 WO 2023093189A1 CN 2022116266 W CN2022116266 W CN 2022116266W WO 2023093189 A1 WO2023093189 A1 WO 2023093189A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceo
preparation
carbon
negative electrode
electrode material
Prior art date
Application number
PCT/CN2022/116266
Other languages
English (en)
French (fr)
Inventor
余海军
李爱霞
谢英豪
张学梅
卢治旭
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2315066.7A priority Critical patent/GB2619874A/en
Publication of WO2023093189A1 publication Critical patent/WO2023093189A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention belongs to the technical field of sodium ion batteries, and in particular relates to a negative electrode material for sodium ion batteries based on carbon nanosheets and a preparation method and application thereof.
  • Sodium-ion batteries have many advantages such as abundant resources, low cost, high energy conversion efficiency, long cycle life, low maintenance costs, and high safety, and can meet the application requirements of high cost performance and high safety in the field of new energy batteries.
  • Non-carbon materials exhibit high storage capacity for both lithium and sodium, but due to problems such as low conductivity, large volume change, and easy pulverization, they have not yet achieved large-scale application even in highly commercialized lithium-ion batteries, while Carbon-based materials not only have a low sodium intercalation platform, high capacity and good cycle stability, but also have the advantages of abundant resources and simple preparation. Therefore, carbon materials are the most promising key anode materials to promote the industrialization of sodium ions, but the stability of existing carbon materials is still not good enough, and the relatively low specific capacity cannot meet the long-term use of sodium-ion batteries.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a sodium ion battery negative electrode material based on carbon nanosheets and its preparation method and application. The stability and specific capacity of the sodium ion battery negative electrode material are high.
  • the present invention adopts the following technical solutions:
  • a negative electrode material for a sodium ion battery wherein the negative electrode material for the sodium ion battery is graphene oxide@CeO 2 /carbon nanosheet.
  • the conductivity of the graphene oxide@CeO 2 /carbon nanosheet is 4.8 ⁇ 10 -3 -7.5 ⁇ 10 -3 .
  • a preparation method of a sodium ion battery negative electrode material comprising the following steps:
  • the preparation process of the carbon nanosheets is as follows: calcining the carbon source, cooling to room temperature, stirring and dispersing the carbon source in an organic acid solution, separating solid and liquid, washing the solid phase until neutral, Dry to obtain carbon nanosheets.
  • the calcination is divided into two calcinations, the temperature of the first calcination is 100-200°C, the time of the first calcination is 1-2h, and the atmosphere of the first calcination is an air atmosphere; the second calcination The temperature for the second calcination is 500-700°C, the time for the second calcination is 4-6 hours, and the atmosphere for the second calcination is Ar.
  • the carbon source is at least one of citric acid and malic acid.
  • the organic acid is at least one of acetic acid, citric acid, oxalic acid and malic acid.
  • the preparation process of the CeO is: add ammonium bicarbonate solution to the cerium chloride solution, react, stop adding ammonium bicarbonate when the pH of the solution reaches 7, stir, filter, wash and precipitate with alcohol until neutral, dry, Roasting and then irradiating with X-rays can produce CeO 2 .
  • CeO2 has excellent redox ability, so that oxygen vacancies are easily formed in the ceria lattice, and the oxygen vacancies of CeO2 are increased by X-ray irradiation.
  • the concentration of the cerium chloride is 0.5-2 mol/L.
  • the concentration of the ammonium bicarbonate is 0.5-2 mol/L.
  • the solvent is one of ethanol and deionized water.
  • the stirring reaction time is 2-4h.
  • the temperature of the water-bath reaction is 60-80° C.
  • the time of the water-bath reaction is 2-4 hours.
  • the binder is glucose
  • Glucose acts as both a binder and a carbon source.
  • the mass ratio of the carbon nanosheets to CeO 2 is (5-10):1.
  • the mass ratio of graphene oxide to carbon nanosheets/CeO 2 is 1:(2-5).
  • the invention also provides a battery, including the negative electrode material of the sodium ion battery.
  • the specific capacity of the battery is 780-870mAh/g.
  • the present invention first attaches CeO 2 to the carbon nanosheets; wherein, the carbon nanosheets are not only the attachment sites of CeO 2 , but also improve the conductivity of the negative electrode material and provide buffer space for the expansion of the negative electrode material; Wrap the outer layer; make CeO 2 in the middle of carbon nanosheets and graphene oxide, which increases the stability of the material, and graphene oxide further improves the conductivity of the negative electrode material.
  • the carbon source of the present invention is citric acid and malic acid, which will produce CO2 under heating conditions, which will increase the pore volume of the carbon nanosheets in the process, provide more attachment points for CeO2 , and improve the quality of the negative electrode material.
  • specific capacity CeO 2 has excellent redox ability, and the oxygen vacancies of CeO 2 are increased by X-ray irradiation; the increase of oxygen vacancies improves the stability and specific capacity of negative electrode materials.
  • Fig. 1 is the SEM image of the graphene oxide @CeO 2 / carbon nanosheet that the embodiment 1 of the present invention makes;
  • FIG. 2 is an XRD pattern of graphene oxide@CeO 2 /carbon nanosheets prepared in Example 1 of the present invention.
  • citric acid into a crucible, first place it in an Ar atmosphere at 100°C for 1 hour, then place it under an Ar atmosphere at 500°C for 4 hours, cool it down to room temperature, then disperse it in the acetic acid solution and stir it for 2 hours, Filter and rinse with deionized water until neutral, and dry at 60°C for 2 hours to obtain carbon nanosheets;
  • step (3) Add 5g of carbon nanosheets in step (1) to the ethanol solution, add glucose and 1g of CeO in step (2) Stir and react for 2h, then put the solution in a water bath at 60°C and react for 2h, filter And rinse with deionized water to neutrality, and dry at 60°C to obtain carbon nanosheets/CeO 2 composite material;
  • step (3) Add 6g of carbon nanosheets in step (1) to the ethanol solution, then add glucose and 1g of CeO in step (2) Stirring and reacting for 2h, then putting the solution in a water bath at 60°C and reacting for 2h, Filter and rinse with deionized water to neutrality, and dry at 60°C to obtain carbon nanosheets/CeO composites ;
  • step (3) Add 8 g of carbon nanosheets in step (1) to the ethanol solution, then add glucose and 1 g of CeO in step (2) After stirring and reacting for 2 h, the solution is then reacted in a water bath at 60 ° C for 2 h, Filter and rinse with deionized water to neutrality, and dry at 60°C to obtain carbon nanosheets/CeO composites ;
  • step (3) Add 10g of carbon nanosheets in step (1) to the ethanol solution, then add glucose and 1g of CeO in step (2) After stirring and reacting for 2h, put the solution in a water bath at 60°C and react for 2h, Filter and rinse with deionized water to neutrality, and dry at 60°C to obtain carbon nanosheets/CeO composites ;
  • Example 4 the CeO in the step ( 2 ) of this example is not irradiated by X-rays.
  • the method for preparing the negative electrode material of the sodium ion battery of this comparative example comprises the following specific steps:
  • Figure 1 is the SEM image of the graphene oxide @CeO 2 /carbon nanosheets prepared in Example 1 of the present invention; it can be seen from Figure 1 that the negative electrode material has rich pore size, which is conducive to the intercalation of lithium, and at the same time provides relaxation for volume expansion Space.
  • Figure 2 is the XRD pattern of graphene oxide@CeO 2 /carbon nanosheets prepared in Example 1 of the present invention; from Figure 2, it can be seen that CeO 2 has been successfully loaded on graphene oxide, and the peak of CeO 2 appears.

Abstract

基于碳纳米片的钠离子电池负极材料及其制备方法和应用,钠离子电池负极材料为氧化石墨烯@CeO 2/碳纳米片;制备方法为:先在碳纳米片上附着CeO 2,再通过氧化石墨烯包裹外层,使CeO 2处于碳纳米片和氧化石墨烯的中间。

Description

基于碳纳米片的钠离子电池负极材料及其制备方法和应用 技术领域
本发明属于钠离子电池技术领域,具体涉及基于碳纳米片的钠离子电池负极材料及其制备方法和应用。
背景技术
随着电动车产业以及可再生能源(如风能、太阳能等)在世界范围内的快速发展,大规模的能源储存技术已经成为制约其可持续发展的关键,也是未来解决风能及太阳能等可再生能源不连续性与能源需求连续性矛盾的主要途径。钠离子电池具有资源丰富、成本低廉、能量转换效率高、循环寿命长、维护费用低、安全性高等诸多优势,能够满足新能源电池领域高性价比和高安全性等的应用要求。
近几年钠离子电池的研究相继取得重要的进展,其中负极材料的研究主要集中于碳材料以及一些非碳材料(金属及氧化物材料、合金材料及磷等)。非碳材料对锂和钠都表现出高的存储容量,但是由于导电率低、体积变化大和易粉化等问题,即便在商业化程度很高的锂离子电池中仍未获得大规模应用,而碳基材料不仅具有较低的嵌钠平台,较高的容量和良好的循环稳定性,还具有资源丰富,制备简单等优点。因此,碳材料是最有希望推动钠离子产业化的关键负极材料,但现有的碳材料稳定性仍然不够好,比容量比较低不能满足钠离子电池长久的使用。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种基于碳纳米片的钠离子电池负极材料及其制备方法和应用,该钠离子电池负极材料的稳定性和比容量高。
为实现上述目的,本发明采用以下技术方案:
一种钠离子电池负极材料,所述钠离子电池负极材料为氧化石墨烯@CeO 2/碳纳米片。
优选地,所述氧化石墨烯@CeO 2/碳纳米片的导电率为4.8×10 -3-7.5×10 -3
一种钠离子电池负极材料的制备方法,包括以下步骤:
将碳纳米片和溶剂混合,再加入粘结剂和CeO 2搅拌反应,水浴反应,固液分离,取固相得到碳纳米片/CeO 2复合材料;
将所述碳纳米片/CeO 2复合材料加入氧化石墨烯溶液中搅拌,固液分离,取固相煅烧,得到所述钠离子电池负极材料氧化石墨烯@CeO 2/碳纳米片。
优选地,所述碳纳米片的制备过程为:将碳源进行煅烧,冷却至室温后,再将所述碳源搅拌分散在有机酸溶液中,固液分离,取固相洗涤至中性,干燥,得到碳纳米片。
进一步优选地,所述煅烧分为两次煅烧,第一次煅烧的温度为100~200℃,第一次煅烧的时间为1~2h,第一次煅烧的气氛为空气气氛;第二次煅烧的温度为500~700℃,第二次煅烧的时间为4~6h,第二次煅烧的气氛为Ar。
进一步优选地,所述碳源为柠檬酸和苹果酸中的至少一种。
进一步优选地,所述有机酸为醋酸、柠檬酸、草酸和苹果酸中的至少一种。
优选地,所述CeO 2的制备过程为:向氯化铈溶液中加入碳酸氢铵溶液,反应,溶液pH达7时停止加入碳酸氢铵,搅拌,过滤,醇洗沉淀至中性,干燥,焙烧,再通过X射线照射,制得CeO 2
其中,CeO 2具有优异的氧化还原能力,从而二氧化铈晶格中容易形成氧空位,通过X射线照射,增加了CeO 2的氧空位。
进一步优选地,所述氯化铈的浓度为0.5~2mol/L。
进一步优选地,所述碳酸氢铵的浓度为0.5~2mol/L。
优选地,所述溶剂为乙醇、去离子水中的一种。
优选地,所述搅拌反应的时间为2-4h。
优选地,所述水浴反应的温度为60~80℃,水浴反应的时间为2~4h。
优选地,所述粘结剂为葡萄糖。
葡萄糖既可以充当粘结剂又可以充当碳源。
优选地,所述碳纳米片和CeO 2的质量比为(5~10):1。
优选地,所述氧化石墨烯和碳纳米片/CeO 2的质量比为1:(2~5)。
本发明还提供一种电池,包括所述的钠离子电池负极材料。
优选地,所述电池的比容量为780-870mAh/g。
相对于现有技术,本发明的有益效果如下:
1、本发明先通过在碳纳米片上附着CeO 2;其中,碳纳米片不仅是CeO 2的附着位点,还能改善负极材料的导电性,为负极材料膨胀提供缓存空间;再通过氧化石墨烯包裹外层;使 CeO 2处于碳纳米片和氧化石墨烯的中间,增加了材料的稳定性,氧化石墨烯进一步改善了负极材料的导电性能。
2、本发明的碳源为柠檬酸和苹果酸,在加热的条件下会产生CO 2,在此过程中会增加碳纳米片的孔体积,为CeO 2提供更多的附着点,提高负极材料的比容量。CeO 2具有优异的氧化还原能力,通过X射线照射,增加了CeO 2的氧空位;氧空位的增加,提高了负极材料的稳定性和比容量。
附图说明
图1为本发明实施例1制得的氧化石墨烯@CeO 2/碳纳米片的SEM图;
图2为本发明实施例1制得的氧化石墨烯@CeO 2/碳纳米片的XRD图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的钠离子电池负极材料制备的方法,包括以下步骤:
(1)将柠檬酸放入坩埚中,先置于100℃Ar气氛下煅烧1h,再置于500℃Ar气氛下煅烧4h,冷却至室温后,再将其分散在醋酸溶液中并搅拌2h,过滤并用去离子水冲洗至中性,在60℃干燥2h后,得到碳纳米片;
(2)取0.5mol/L碳酸氢铵溶液加入50mL 0.5mol/L氯化铈溶液,反应温度60℃,溶液pH值达7时停止加入碳酸氢铵,继续搅拌1h,然后过滤,醇洗沉淀至中性,80℃下干燥3h,500℃下焙烧2h,再通过X射线照射2h,制得CeO 2
(3)将5g步骤(1)的碳纳米片加入到乙醇溶液中,加入葡萄糖和1g步骤(2)中的CeO 2搅拌反应2h后,再将溶液在60℃的水浴中并反应2h,过滤并用去离子水冲洗至中性,在60℃下干燥得到碳纳米片/CeO 2复合材料;
(4)将1mol氧化石墨烯,加入到去离子水中,在常温条件下搅拌1h,得到溶液A,将2mol步骤(3)的碳纳米片/CeO 2复合材料加入到溶液中,搅拌2h,过滤干燥,置于800℃Ar气氛下煅烧4h,得到钠离子电池负极材料氧化石墨烯@CeO 2/碳纳米片。
实施例2
本实施例的钠离子电池负极材料制备的方法,包括以下具体步骤:
(1)将苹果酸放入坩埚中,先置于Ar气氛和120℃下煅烧1.2h,再置于Ar气氛和550℃下煅烧4.5h,冷却至室温后,再将其分散在醋酸溶液中并搅拌3h,过滤并用去离子水冲洗至中性,在60℃干燥3h后,得到碳纳米片;
(2)取1mol/L碳酸氢铵溶液加入50mL1mol/L氯化铈溶液,反应温度60℃,溶液pH达7时停止加入碳酸氢铵,继续搅拌1h,然后过滤,醇洗沉淀至中性,80℃下干燥3h,500℃下焙烧2h,再通过X射线照射2h,制得CeO 2
(3)将6g步骤(1)的碳纳米片加入到乙醇溶液中,再加入葡萄糖和1g步骤(2)中的CeO 2搅拌反应2h后,再将溶液在60℃的水浴中并反应2h,过滤并用去离子水冲洗至中性,在60℃下干燥得到碳纳米片/CeO 2复合材料;
(4)将1mol氧化石墨烯,加入到去离子水中,在常温条件下搅拌1h,得到溶液A,将3mol步骤(3)的碳纳米片/CeO 2复合材料加入到溶液中,搅拌2.5h,过滤干燥,置于Ar气氛和820℃下煅烧4.5h,得到钠离子电池负极材料氧化石墨烯@CeO 2/碳纳米片。
实施例3
本实施例的钠离子电池负极材料制备的方法,包括以下具体步骤:
(1)将苹果酸放入坩埚中,先置于Ar气氛和150℃下煅烧1.5h,再置于Ar气氛和600℃下煅烧5h,冷却至室温后,将苹果酸分散在草酸溶液中并搅拌5h,过滤并用去离子水冲洗至中性。在60℃干燥5h后,得到碳纳米片;
(2)取1.5mol/L碳酸氢铵溶液加入50mL1.5mol/L氯化铈溶液,反应温度60℃,溶液pH值达7时停止加入碳酸氢铵,继续搅拌1h,然后过滤,醇洗沉淀至中性,80℃下干燥3h,500℃下焙烧2h,再通过X射线照射2h,制得CeO 2
(3)将8g步骤(1)的碳纳米片加入到乙醇溶液中,再加入葡萄糖和1g步骤(2)中的CeO 2搅拌反应2h后,再将溶液在60℃的水浴中并反应2h,过滤并用去离子水冲洗至中性,在60℃下干燥得到碳纳米片/CeO 2复合材料;
(4)将1mol氧化石墨烯,加入到去离子水中,在常温条件下搅拌1.5h,得到溶液A,将4mol步骤(3)的碳纳米片/CeO 2复合材料加入到溶液中,搅拌3h,过滤干燥,置于Ar气氛和850℃下煅烧5h,得到钠离子电池负极材料氧化石墨烯@CeO 2/碳纳米片。
实施例4
本实施例的钠离子电池负极材料制备的方法,包括以下具体步骤:
(1)将苹果酸放入坩埚中,先置于Ar气氛和200℃下煅烧2h,再置于700℃Ar气氛下煅烧6h,冷却至室温后,再将苹果酸分散在草酸溶液中并搅拌6h,过滤并用去离子水冲洗至中性,在60℃干燥6h后,得到碳纳米片;
(2)取2mol/L碳酸氢铵溶液加入50mL2mol/L氯化铈溶液,反应温度60℃,溶液pH达7时停止加入碳酸氢铵,继续搅拌1h,然后过滤,醇洗沉淀至中性,80℃下干燥3h,500℃下焙烧2h,再通过X射线照射2h,制得CeO 2
(3)将10g步骤(1)的碳纳米片加入到乙醇溶液中,再加入葡萄糖和1g步骤(2)中的CeO 2搅拌反应2h后,再将溶液在60℃的水浴中并反应2h,过滤并用去离子水冲洗至中性,在60℃下干燥得到碳纳米片/CeO 2复合材料;
(4)将1mol氧化石墨烯,加入到去离子水中,在常温条件下搅拌2h,得到溶液A,将5mol步骤(3)的碳纳米片/CeO 2复合材料加入到溶液中,搅拌4h,过滤干燥,置于Ar气氛和900℃下煅烧6h,得到钠离子电池负极材料氧化石墨烯@CeO 2/碳纳米片。
实施例5
本实施例与实施例4相比,本实施例的步骤(2)的CeO 2不通过X射线照射。
对比例1
本对比例的钠离子电池负极材料制备的方法,包括以下具体步骤:
(1)将苹果酸放入坩埚中,先置于Ar气氛和200℃下煅烧2h,再置于700℃Ar气氛下煅烧6h,冷却至室温后,再将苹果酸分散在草酸溶液中并搅拌6h,过滤并用去离子水冲洗至中性,在60℃干燥6h后,得到碳纳米片;
(2)将1mol氧化石墨烯,加入到去离子水中,在常温条件下搅拌2h,得到溶液A,将5mol步骤(1)的碳纳米片加入到溶液中,搅拌4h,过滤干燥,置于Ar气氛和900℃下煅烧6h,得到钠离子电池负极材料氧化石墨烯@碳纳米片。
实施例1-5与对比例1、碳纳米片分析:
表1:实施例1-5与对比例1制得的钠离子电池效果数据
Figure PCTCN2022116266-appb-000001
Figure PCTCN2022116266-appb-000002
图1为本发明实施例1制得的氧化石墨烯@CeO 2/碳纳米片的SEM图;从图1可以看出,负极材料孔径丰富,有利于锂的嵌入,同时给体积膨胀提供了缓和的空间。
图2为本发明实施例1制得的氧化石墨烯@CeO 2/碳纳米片的XRD图;从图2可以得到CeO 2已经成功的负载到了氧化石墨烯上,出现了CeO 2的峰。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种钠离子电池负极材料,其特征在于,所述钠离子电池负极材料为氧化石墨烯@CeO 2/碳纳米片。
  2. 权利要求1所述的钠离子电池负极材料的制备方法,其特征在于,包括以下步骤:
    将碳纳米片和溶剂混合,再加入粘结剂、CeO 2搅拌反应,水浴反应,固液分离,取固相,得到碳纳米片/CeO 2复合材料;
    将所述碳纳米片/CeO 2复合材料加入氧化石墨烯溶液中搅拌,固液分离,取固相煅烧,得到所述钠离子电池负极材料。
  3. 根据权利要求2所述的制备方法,其特征在于,所述碳纳米片的制备过程为:将碳源进行煅烧,冷却,再将所述碳源搅拌分散在有机酸溶液中,固液分离,取固相洗涤至中性,干燥,得到碳纳米片。
  4. 根据权利要求3所述的制备方法,其特征在于,所述煅烧分为两次煅烧,第一次煅烧的温度为100~200℃,第一次煅烧的时间为1~2h,第一次煅烧的气氛为空气气氛;第二次煅烧的温度为500~700℃,第二次煅烧的时间为4~6h,第二次煅烧的气氛为Ar。
  5. 根据权利要求3所述的制备方法,其特征在于,所述碳源为柠檬酸和苹果酸中的至少一种。
  6. 根据权利要求3所述的制备方法,其特征在于,所述有机酸为醋酸、柠檬酸、草酸和苹果酸中的至少一种。
  7. 根据权利要求2所述的制备方法,其特征在于,所述CeO 2的制备过程为:向氯化铈溶液中加入碳酸氢铵溶液,反应,溶液pH达7时停止加入碳酸氢铵,搅拌,过滤,醇洗沉淀至中性,干燥,焙烧,再通过X射线照射,制得CeO 2
  8. 根据权利要求2所述的制备方法,其特征在于,所述粘结剂为葡萄糖。
  9. 根据权利要求2所述的制备方法,其特征在于,所述碳纳米片和CeO 2的质量比为(5~10):1;所述氧化石墨烯和碳纳米片/CeO 2的质量比为1:(2~5)。
  10. 一种电池,其特征在于,包括权利要求1所述的钠离子电池负极材料。
PCT/CN2022/116266 2021-11-26 2022-08-31 基于碳纳米片的钠离子电池负极材料及其制备方法和应用 WO2023093189A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2315066.7A GB2619874A (en) 2021-11-26 2022-08-31 Carbon nanosheet-based sodium-ion battery negative electrode material, and preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111424070.6 2021-11-26
CN202111424070.6A CN114229829B (zh) 2021-11-26 2021-11-26 基于碳纳米片的钠离子电池负极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023093189A1 true WO2023093189A1 (zh) 2023-06-01

Family

ID=80751463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116266 WO2023093189A1 (zh) 2021-11-26 2022-08-31 基于碳纳米片的钠离子电池负极材料及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN114229829B (zh)
GB (1) GB2619874A (zh)
WO (1) WO2023093189A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229829B (zh) * 2021-11-26 2023-07-07 广东邦普循环科技有限公司 基于碳纳米片的钠离子电池负极材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151495A (zh) * 2013-03-20 2013-06-12 河南师范大学 一种锂离子电池复合负极材料的制备方法
CN104659367A (zh) * 2015-03-17 2015-05-27 东莞市迈科科技有限公司 一种锂离子电池负极材料的制备方法
CN106505246A (zh) * 2017-01-05 2017-03-15 江苏大学 一种多级多孔结构四氧化三锰/碳纳米片锂离子电池负极材料的制备方法
CN109585831A (zh) * 2018-12-04 2019-04-05 浙江理工大学 一种夹心式结构的复合材料及其制备方法和应用
CN109659544A (zh) * 2018-12-24 2019-04-19 肇庆市华师大光电产业研究院 一种石墨烯包覆双金属硫化物的锂/钠离子电池负极材料的制备方法
CN110252372A (zh) * 2019-05-31 2019-09-20 江苏大学 一种二维rGO/R-CeO2/CNNS层级结构复合光催化剂的制备方法
CN111785947A (zh) * 2020-07-23 2020-10-16 合肥国轩高科动力能源有限公司 一种复合负极材料及其制备方法和应用
CN114229829A (zh) * 2021-11-26 2022-03-25 广东邦普循环科技有限公司 基于碳纳米片的钠离子电池负极材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103611523A (zh) * 2013-11-08 2014-03-05 南京大学 一种高分散层状纳米二氧化铈/石墨烯复合材料的制备方法
US11189825B2 (en) * 2015-11-13 2021-11-30 Nanograf Corporation Graphene-encapsulated electroactive material for use in a lithium ion electrochemical cell
CN107993855A (zh) * 2017-11-16 2018-05-04 三峡大学 一种高电压钠离子超级电容器的制备方法
CN109286018B (zh) * 2018-12-06 2021-12-31 中国科学院兰州化学物理研究所 一种超薄二维碳片的制备方法
CN111519228B (zh) * 2020-04-29 2022-02-22 江苏纳欧新材料有限公司 一种氧化铈纳米棒阵列/石墨烯复合材料的制备方法及其在光阴极保护中的应用
CN112786874B (zh) * 2021-01-29 2022-06-03 复旦大学 一种钠离子电池的电极材料及其制备和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151495A (zh) * 2013-03-20 2013-06-12 河南师范大学 一种锂离子电池复合负极材料的制备方法
CN104659367A (zh) * 2015-03-17 2015-05-27 东莞市迈科科技有限公司 一种锂离子电池负极材料的制备方法
CN106505246A (zh) * 2017-01-05 2017-03-15 江苏大学 一种多级多孔结构四氧化三锰/碳纳米片锂离子电池负极材料的制备方法
CN109585831A (zh) * 2018-12-04 2019-04-05 浙江理工大学 一种夹心式结构的复合材料及其制备方法和应用
CN109659544A (zh) * 2018-12-24 2019-04-19 肇庆市华师大光电产业研究院 一种石墨烯包覆双金属硫化物的锂/钠离子电池负极材料的制备方法
CN110252372A (zh) * 2019-05-31 2019-09-20 江苏大学 一种二维rGO/R-CeO2/CNNS层级结构复合光催化剂的制备方法
CN111785947A (zh) * 2020-07-23 2020-10-16 合肥国轩高科动力能源有限公司 一种复合负极材料及其制备方法和应用
CN114229829A (zh) * 2021-11-26 2022-03-25 广东邦普循环科技有限公司 基于碳纳米片的钠离子电池负极材料及其制备方法和应用

Also Published As

Publication number Publication date
GB2619874A (en) 2023-12-20
GB202315066D0 (en) 2023-11-15
CN114229829A (zh) 2022-03-25
CN114229829B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
CN108172799A (zh) 一种核壳结构锂离子电池的三元正极材料及其制备方法
CN110943213B (zh) 一种MOF衍生多孔碳盒负载Co3V2O8复合负极材料及其制备方法和应用
CN109148859B (zh) 一种双碳层包覆氧化锰复合材料的制备方法
CN112928255B (zh) 一种锂硫电池复合正极材料及其制备方法与应用
CN104157858B (zh) 分级多孔四氧化三铁/石墨烯纳米线及其制备方法和应用
CN103346297A (zh) 一种碳包覆复合金属氧化物电极材料的制备方法
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
WO2023179048A1 (zh) 一种氟铝共掺杂的钴酸锂正极材料及其制备方法
WO2023040406A1 (zh) 一种有序三维骨架结构金属草酸盐锂离子电池负极材料的制备方法
CN110808363A (zh) 一种硅酸锂包覆的富锂锰基正极材料及其制备方法与应用
CN113753971A (zh) 一种单晶三元正极材料及其制备方法与应用
WO2023093187A1 (zh) 一种钠离子电池正极材料及其制备方法和应用
WO2023093189A1 (zh) 基于碳纳米片的钠离子电池负极材料及其制备方法和应用
CN109888238A (zh) 一种高比容量、高倍率性能的锂离子电池负极材料及其制备方法
CN112777611A (zh) 一种菱形相普鲁士蓝衍生物及其制备方法和应用
CN107742706A (zh) 一种石墨烯复合金属硼化物和硫复合纳米材料的制备方法及其应用
CN109616660B (zh) 四氧化三钴负载于碳纳米片电极材料的制备方法及其产品和应用
CN109244446B (zh) 一种改性镍钴锰三元正极材料及其制备方法
WO2024077843A1 (zh) 一种普鲁士蓝电极材料及其制备方法与应用
CN114937764B (zh) 一种双碳层保护的二硫化钴复合材料及其制备方法与应用
WO2023093161A1 (zh) 一种锰酸锌负极材料的制备方法
CN114506835A (zh) 废磷酸铁锂缺陷修复并构筑三维多孔碳网的方法和应用
CN107293724A (zh) 一种钛酸钴/二氧化钛/钴@碳复合材料及其制备方法和作为钠离子负极材料的应用
CN113930802A (zh) 用于析氢、析氧和氧还原多功能电催化的氮掺杂碳负载卤氮共配位钌单原子及其制备方法
CN109755531B (zh) 基于酸角壳的多孔碳-硫复合材料及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202315066

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220831

WWE Wipo information: entry into national phase

Ref document number: P202390201

Country of ref document: ES