WO2023092925A1 - 振动抑制方法及装置、伺服驱动器和伺服驱动系统 - Google Patents

振动抑制方法及装置、伺服驱动器和伺服驱动系统 Download PDF

Info

Publication number
WO2023092925A1
WO2023092925A1 PCT/CN2022/085648 CN2022085648W WO2023092925A1 WO 2023092925 A1 WO2023092925 A1 WO 2023092925A1 CN 2022085648 W CN2022085648 W CN 2022085648W WO 2023092925 A1 WO2023092925 A1 WO 2023092925A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
current
phase
servo motor
servo
Prior art date
Application number
PCT/CN2022/085648
Other languages
English (en)
French (fr)
Inventor
王坤
陈杰
刘灼
Original Assignee
广东美的智能科技有限公司
高创传动科技开发(深圳)有限公司
东菱技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的智能科技有限公司, 高创传动科技开发(深圳)有限公司, 东菱技术有限公司 filed Critical 广东美的智能科技有限公司
Publication of WO2023092925A1 publication Critical patent/WO2023092925A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present disclosure relates to the technical field of electromechanical control, and in particular to a vibration suppression method, a computer-readable storage medium, a servo driver, a vibration suppression device and a servo drive system.
  • harmonic reducers are usually used to achieve deceleration and torque amplification. Due to the unique mechanical structure of the harmonic reducer, the reduction device has a low-frequency vibration. When the motor rotation frequency is at the natural frequency of the reduction device When it is nearby, it will excite resonance and cause speed fluctuations, which will affect the command followability of the manipulator. This effect is particularly prominent in the occasion where trajectory tracking is required.
  • an object of the present disclosure is to propose a vibration suppression method.
  • the resonance can be effectively suppressed by means of current compensation, the response speed is fast, the lag time is short, and the compensation effect is independent Controllable, better stability, and not affected by other regulator parameters.
  • a second object of the present disclosure is to propose a computer-readable storage medium.
  • the third purpose of the present disclosure is to provide a servo driver.
  • a fourth object of the present disclosure is to provide a vibration suppression device.
  • a fifth objective of the present disclosure is to provide a servo drive system.
  • the embodiment of the first aspect of the present disclosure proposes a vibration suppression method, which is applied to a servo drive.
  • the method includes: when the servo drive drives a servo motor with a harmonic reducer to work, according to the servo motor rotor The position difference between the position feedback value and the position command determines the current compensation value; the current compensation value is applied to the current regulator in the servo driver, so that the current regulator controls the servo motor according to the current compensation value, current feedback value and current command , to suppress the resonance caused by the harmonic reducer.
  • the current compensation value is determined according to the position difference between the rotor position feedback value of the servo motor and the position command, and the The current compensation value is applied to the current regulator, and the current regulator controls the servo motor according to the current compensation value, current feedback value and current command, so as to suppress the resonance caused by the harmonic reducer. Therefore, when the servo motor and the harmonic reducer vibrate due to resonance, the method effectively suppresses the resonance through current compensation, has fast response speed, short lag time, independent controllable compensation effect, better stability, and is not affected by Influence of other regulator parameters.
  • the embodiment of the second aspect of the present disclosure provides a computer-readable storage medium on which a vibration suppression program is stored, and when the vibration suppression program is executed by a processor, the above vibration suppression method is implemented.
  • the resonance is effectively suppressed by means of current compensation, the response speed is fast, and the lag time is short , the compensation effect is independently controllable, the stability is better, and it is not affected by other regulator parameters.
  • a servo driver proposed in the embodiment of the third aspect of the present disclosure includes a memory, a processor, and a vibration suppression program stored in the memory and operable on the processor.
  • the processor runs the vibration suppression program to The vibration suppression method described above is caused to be executed.
  • the servo driver of the embodiment of the present disclosure by implementing the above-mentioned vibration suppression method, when the servo motor and the harmonic reducer resonate to generate vibration, the resonance is effectively suppressed by means of current compensation, the response speed is fast, the lag time is short, and the compensation effect Independently controllable, better stability, and not affected by other regulator parameters.
  • a vibration suppression device proposed in the embodiment of the fourth aspect of the present disclosure is applied to a servo drive, and the device includes: a determination module, used for when the servo drive drives a servo motor with a harmonic reducer to work, Determine the current compensation value according to the position difference between the rotor position feedback value and the position command of the servo motor; the compensation module is used to apply the current compensation value to the current regulator in the servo drive, so that the current regulator can use the current compensation value, current Feedback value and current command control the servo motor to suppress.
  • the determination module determines the current compensation value according to the position difference between the rotor position feedback value and the position command of the servo motor
  • the compensation module applies the current compensation value to the current regulator in the servo driver, so that the current regulator controls the servo motor according to the current compensation value, current feedback value and current command, so as to suppress the resonance caused by the harmonic reducer. Therefore, when the servo motor and the harmonic reducer vibrate due to resonance, the device can effectively suppress the resonance through current compensation, with fast response speed, short lag time, independent controllable compensation effect, better stability, and is not affected by Influence of other regulator parameters.
  • a servo drive system proposed in the embodiment of the fifth aspect of the present disclosure includes: a servo motor, the output end of the servo motor is provided with a harmonic reducer; a servo drive, the servo drive includes a position regulator, a speed regulator and a current regulator; the current compensation module is used to determine the current compensation value according to the position difference between the rotor position feedback value of the servo motor and the position command when the servo drive drives the servo motor; wherein, the position regulator is used to adjust the position difference process to obtain the speed command; the speed regulator is used to process the speed difference between the speed feedback value and the speed command of the servo motor to obtain the current command; the current regulator is used to obtain the current command according to the current compensation value, current feedback value and The current command controls the servo motor to suppress the resonance caused by the harmonic reducer.
  • the current compensation value is determined by the current compensation module according to the position difference between the rotor position feedback value and the position command of the servo motor, and the speed regulator is used to determine the current compensation value.
  • the speed difference between the speed feedback value and the speed command of the servo motor is processed, and the current command is obtained.
  • the current regulator controls the servo motor according to the current compensation value, current feedback value and current command, so as to reduce the noise caused by the harmonic reducer. Resonance is suppressed. Therefore, when the servo motor and the harmonic reducer resonate and vibrate, the system can effectively suppress the resonance through current compensation, with fast response speed, short lag time, independent controllable compensation effect, better stability, and is not affected by Influence of other regulator parameters.
  • FIG. 1 is a flowchart of a vibration suppression method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of determining a current compensation value according to an embodiment of the present disclosure
  • FIG. 3 is a schematic block diagram of a servo drive system according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic block diagram of a current compensation module according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic block diagram of a vibration suppression device according to an embodiment of the present disclosure.
  • the harmonic reducer is generally composed of four basic components: a wave generator, a flexible gear, a flexible bearing, and a rigid gear.
  • the wave generator is equipped with a flexible bearing to make the flexible gear produce controllable elastic deformation, and meshes with the rigid gear to transmit motion. and power gear transmission. Since the various components of the harmonic reducer are not completely ideal, the harmonic reducer itself has a natural frequency of low-frequency vibration. When the servo driver drives the servo motor to work, and the operating frequency of the servo motor is at the natural frequency of the harmonic reducer, the servo motor and the harmonic reducer will resonate.
  • the vibration of the harmonic reducer will be transmitted to the end of the robot, the end will vibrate, which greatly reduces the trajectory accuracy and repeat positioning accuracy of the robot. For example, when a robot welds complex curved surfaces and cuts complex shapes, affected by the vibration of the harmonic reducer, the trajectory of the robot will be rough or even discontinuous, which is not conducive to the optimization of the trajectory of the robot. Therefore, it is necessary to suppress the resonance generated by the harmonic reducer during the operation of the servo motor.
  • this disclosure proposes a vibration suppression method.
  • the resonance is effectively suppressed by means of current compensation, the response speed is fast, the lag time is short, and the compensation effect can be independent. control, the stability is better, and it is not affected by other regulator parameters.
  • the following describes in detail how the vibration suppression method of the present disclosure achieves effective suppression of resonance.
  • FIG. 1 is a flowchart of a vibration suppression method according to an embodiment of the present disclosure.
  • the vibration suppression method of the embodiment of the present disclosure may include the following steps:
  • the servo motor in this embodiment has a harmonic reducer, and the servo driver can drive the servo motor to drive the harmonic reducer to drive the load.
  • the rotor inside the servo motor is a permanent magnet.
  • the three-phase electricity controlled by the servo driver forms an electromagnetic field.
  • the rotor of the servo motor rotates under the action of this magnetic field.
  • the encoder that comes with the servo motor collects the position of the rotor and generates a feedback signal. To the driver, the driver adjusts the angle of rotation of the rotor according to the comparison between the feedback value and the target value.
  • the servo driver receives the position command and the rotor position feedback value output by the servo motor, and the position regulator processes the deviation between the position command and the rotor position feedback value to generate the speed command , the speed regulator processes the deviation between the speed command and the speed feedback value to generate a current command, the current regulator processes the current command and the current feedback value, and the processing result drives the servo motor to work.
  • the operating frequency of the servo motor is near the natural frequency of the harmonic reducer, the servo motor and the harmonic reducer will resonate. At this time, the position feedback of the motor rotor will fluctuate.
  • the current compensation value needs to be generated according to the rotor position deviation, that is, the compensation value is generated directly, without considering the influence of the parameters of the regulator (position regulator and speed regulator) itself, the compensation effect is independently controllable, and the stability is better .
  • the servo drive system of the embodiment of the present disclosure may further include a speed sensor S for detecting the current rotational speed of the servo motor to obtain a speed feedback value.
  • the current compensation value determined in the above step S101 is directly applied to the current regulator, and combined with the current command generated by the position regulator and the speed regulator and the current feedback value generated by the servo motor, a driving command is generated to control the servo motor.
  • the motor is driven and controlled. Since the current compensation value directly acts on the current regulator, the hysteresis is small, the compensation speed is fast, and it is not affected by the parameters of the position regulator and speed regulator, the compensation effect is independently controllable, and the stability is better.
  • the method before the current regulator controls the servo motor according to the current compensation value, the current feedback value and the current command, the method further includes: using the position regulator to control the relationship between the rotor position feedback value and the position command of the servo motor Process the position difference between them to obtain the speed command; process the speed difference between the speed feedback value of the servo motor and the speed command through the speed regulator to obtain the current command.
  • the speed feedback value of the servo motor is determined according to the rotor position feedback value of the servo motor.
  • the servo drive includes a current regulator, a speed regulator, and a position regulator.
  • the three regulators are in series structure, the innermost layer is the current regulator, the second is the speed regulator, and the outermost layer is the position regulator.
  • the upper computer sends a position command according to the user's demand for the moving position of the load.
  • the internal encoder of the servo motor generates position feedback according to the position, speed and current value of the rotor. Speed feedback and current feedback are sent to the servo drive.
  • the role of the position regulator is to process the deviation between the position command and the position feedback value, output the speed command, and the speed feedback value of the servo motor is determined according to the position feedback of the motor rotor;
  • the deviation between the speed feedback values is processed, and the current command is output;
  • the function of the current regulator is to process the deviation between the current command and the current feedback value, and the torque command is output.
  • the servo driver can adjust the running state of the servo motor according to the received feedback signal during the running process of the servo motor.
  • the servo driver adjusts the output torque to adjust the servo motor. Since the output of the current regulator is a torque command, it is adjusted through the current regulator. , the servo driver has the least amount of computation and the fastest response.
  • the servo motor and the harmonic reducer will resonate.
  • Accuracy requires quick suppression of vibrations.
  • the position command and position feedback have a deviation, and the position difference signal is collected in real time to generate a current compensation value and send it to the current regulator.
  • the current regulator outputs the current compensation value according to the current compensation module and the servo motor.
  • the current feedback value and the current command output by the speed regulator output the torque command and send it to the servo motor.
  • the servo motor After the servo motor receives the torque command, it quickly adjusts the operating frequency of the servo motor according to the torque command, so that the operating frequency is far away from the natural frequency of the resonant reducer, so that the resonance between the servo motor and the harmonic reducer is weakened or even disappeared. , eliminating the speed fluctuation of the load caused by resonance, so that the operation of the load remains accurate.
  • the position regulator when the servo motor and the harmonic reducer resonate, the position feedback of the motor rotor will fluctuate in a sinusoidal manner, resulting in The position deviation fluctuates, the position regulator generates a speed command according to the position deviation, and sends it to the speed regulator, and then the speed regulator generates a current command to the current regulator according to the speed deviation between the speed command and the speed feedback value, and finally the current regulator according to The deviation between the current command and the current feedback value outputs the adjustment torque to adjust the running state of the servo motor.
  • the response to the resonance phenomenon is slow, there is a large hysteresis, and the resonance cannot be suppressed quickly and effectively.
  • the vibration suppression method of the embodiment of the present disclosure can quickly determine the current compensation value when the servo motor and the harmonic reducer resonate, and adjust the operating frequency of the servo motor through the current regulator according to the current compensation value, thereby quickly To suppress the resonance, eliminate the influence of the load accuracy due to the vibration of the harmonic reducer, the response is fast, and the adjustment time is short.
  • FIG. 2 is a flowchart of a vibration suppression method according to an embodiment of the present disclosure.
  • determining the current compensation value according to the position difference between the rotor position feedback value and the position command of the servo motor may include the following steps:
  • generating a sinusoidal signal according to the position difference includes: performing band-pass filtering on the position difference to obtain a vibration signal, and smoothing the difference between the position difference and the vibration signal to obtain a DC bias ; Subtract the DC offset from the position difference to obtain a sinusoidal signal.
  • the method before band-pass filtering the position difference through the band-pass filter, the method further includes: adjusting the bandwidth of the band-pass filter according to the actual vibration frequency.
  • a band-pass filter refers to a filter that can pass frequency components in a certain frequency range, but attenuates frequency components in other ranges to a very low level
  • the bandwidth of a band-pass filter refers to the band-pass filter. The difference between the maximum frequency and the minimum frequency allowed to pass.
  • the bandwidth of the band-pass filter can be adjusted according to the actual vibration frequency of the harmonic reducer, so that the interference signal in the position difference signal passing through the band-pass filter can be filtered Off, to eliminate interference items, so that the obtained vibration signal is more accurate.
  • the position feedback of the motor rotor will fluctuate sinusoidally, and the difference between the position command and the position feedback, that is, the position difference signal fluctuates, and the position difference signal passes through the band After being processed by a filter, the vibration signal of the servo motor can be obtained.
  • the vibration signal is similar to a sinusoidal signal, but there is a phase lag compared with the original position difference signal, and the amplitude of the signal will be attenuated, so it cannot be used directly and needs further processing.
  • the difference between the position difference signal and the vibration signal is made, and the obtained difference is input into the moving average filter to smooth the difference, so as to obtain the DC offset in the position difference signal. Then, subtract the DC offset in the position difference signal from the position difference signal to obtain a sinusoidal signal u i with no phase lag and no amplitude attenuation.
  • the moving average filter is based on statistical laws, and the continuous sampling data is regarded as a queue with a fixed length of N. After a new measurement, the first data of the above queue is removed. The remaining N-1 pieces of data are moved forward sequentially, and new sampling data is inserted as the tail of the new queue; then the arithmetic operation is performed on this queue, and the result is used as the result of this measurement. Therefore, using a moving average filter to filter the signal can further reduce the fluctuation of the input signal.
  • S202 Perform amplitude detection on the sinusoidal signal to obtain the amplitude of the sinusoidal signal.
  • the amplitude of the sinusoidal signal can be obtained after the amplitude detection of the sinusoidal signal is performed by the amplitude detection module.
  • the amplitude of the sinusoidal signal u i is Ui
  • the sinusoidal signal u i can be expressed as
  • S203 Determine a standard sinusoidal signal according to the sinusoidal signal and the amplitude of the sinusoidal signal.
  • determining the standard sinusoidal signal according to the sinusoidal signal and the amplitude of the sinusoidal signal includes: dividing the sinusoidal signal by the amplitude of the sinusoidal signal to obtain the standard sinusoidal signal.
  • performing transformation processing on the position difference includes: performing Fourier transform on the position difference to obtain an actual vibration frequency, and performing integral calculation on the actual vibration frequency to obtain a phase signal.
  • the position feedback of the motor rotor will fluctuate sinusoidally, and the difference between the position command and the position feedback, that is, the position difference signal will fluctuate.
  • the phase signal of the difference signal is ⁇ .
  • S205 Perform phase-locked loop processing on the phase signal according to the standard sinusoidal signal.
  • performing phase-locked loop processing on the phase signal according to the standard sine signal may include: performing cosine calculation on the sum of the phase signal and the phase compensation signal to obtain a unit cosine signal, and calculating the standard sine signal and the unit cosine
  • the product of the signal is processed by low-pass filtering and moving average filtering to obtain the error signal; the error signal is subjected to hysteresis processing; when the error signal is greater than the preset threshold, the error signal is adjusted by PI (Proportional Integral, proportional integral) to obtain Phase compensation signal; when the error signal is less than or equal to a preset threshold, the phase of the determined position difference is locked.
  • the preset threshold can be specifically set according to the vibration condition of the servo motor.
  • the phase signal ⁇ of the position difference signal and the phase compensation signal of the position difference signal can be obtained
  • the error signal u e can be obtained: where the phase of the error signal
  • hysteresis processing is performed on the error signal ue . Specifically, when the error signal ue is greater than a certain threshold (can be calibrated according to the actual situation), the error signal ue is output to the PI regulator, and PI adjustment is performed on the error signal ue to obtain the phase compensation signal ⁇ * , otherwise the PI regulator input is 0. If the error signal ue is continuously smaller than or equal to the preset threshold, it can be determined that the phase ⁇ of the position difference signal has been locked.
  • a certain threshold can be calibrated according to the actual situation
  • determining the current compensation value according to the amplitude of the sinusoidal signal, the phase signal, and the phase compensation signal output by the phase-locked loop includes: after calculating the sine of the sum of the phase signal and the phase compensation signal, multiplying by the sine The amplitude of the signal to obtain the current compensation value.
  • the current compensation value is obtained by the formula Ui*sin( ⁇ * + ⁇ ).
  • the above method further includes: adjusting the current compensation value according to a preset compensation coefficient.
  • the preset compensation coefficient is specifically set according to the servo motor.
  • the current compensation value when the current compensation value is large, the current compensation value can be adjusted through the compensation coefficient and sent to the current regulator.
  • the current command output by the device and the output torque command are sent to the servo motor.
  • the servo motor After the servo motor receives the torque command, it quickly adjusts the operating frequency of the servo motor according to the torque command, so that the operating frequency is far away from the natural frequency of the resonant reducer, so that the resonance between the servo motor and the harmonic reducer is weakened or even disappeared. , eliminating the speed fluctuation of the load caused by resonance, so that the operation of the load remains accurate.
  • the vibration suppression method of the embodiment of the present disclosure when the servo motor and the harmonic reducer resonate to generate vibration, the resonance is effectively suppressed by means of current compensation, the response speed is fast, the lag time is short, and the compensation effect can be independently controlled. control, the stability is better, and it is not affected by other regulator parameters.
  • the present disclosure also proposes a servo drive system.
  • FIG. 3 is a schematic block diagram of a servo drive system according to an embodiment of the disclosure.
  • the servo drive system 300 of the embodiment of the present disclosure includes: a servo motor 310 , a servo driver 320 , and a current compensation module 330 .
  • the output end of the servo motor 310 is provided with a harmonic reducer.
  • the servo driver 320 includes a position regulator 321 , a speed regulator 322 and a current regulator 323 .
  • the current compensation module 330 is used to determine the current compensation value according to the position difference between the rotor position feedback value and the position command of the servo motor 310 when the servo driver 320 drives the servo motor 310 .
  • the position regulator 321 is used to process the position difference to obtain a speed command.
  • the speed regulator 322 is used to process the speed difference between the speed feedback value of the servo motor 310 and the speed command to obtain the current command.
  • the current regulator 323 is used to control the servo motor 310 according to the current compensation value, the current feedback value and the current command, so as to suppress the resonance caused by the harmonic reducer.
  • the servo drive system 300 may further include a speed sensor S for detecting the current rotational speed of the servo motor 310 to obtain a speed feedback value.
  • the speed feedback value of the servo motor 310 is determined according to the rotor position feedback value of the servo motor 310 .
  • the servo driver 320 includes a current regulator 323 , a speed regulator 322 , and a position regulator 321 .
  • the three regulators are in series structure, the innermost layer is the current regulator 323 , the second is the speed regulator 322 , and the outermost layer is the position regulator 321 .
  • the servo driver 320 forms three closed-loop negative feedback PID adjustment systems through three regulators and the servo motor 310 .
  • the innermost PID loop is the current loop.
  • the current regulator 323 detects the output current of each phase of the servo driver 320 to the servo motor 310 through the Hall device.
  • the current regulator 323 performs PID adjustment according to the current feedback value and outputs a torque command, thereby
  • the output current should be as close to the set current as possible, that is to say, the current loop controls the torque of the motor, so in the torque mode, the operation of the servo driver 320 is the smallest and the dynamic response is the fastest.
  • the second loop is the speed loop.
  • the speed regulator 322 performs negative feedback PID adjustment through the detected signal of the servo motor 310 encoder.
  • the PID output in the loop of the speed loop is the setting of the current loop, that is, the current command, so when the speed loop When controlling and adjusting the servo motor 310, related calculations of the speed loop and the current loop are included.
  • the third loop is the position loop, which is the outermost loop.
  • the output of the position regulator 321 is the setting of the speed loop (speed command).
  • the system performs calculations of all three loops. At this time, the system calculation amount is the largest. , and the dynamic response speed is also the slowest. Therefore, the current loop is the basis for controlling the servo motor 310. While the speed regulator 322 and the position regulator 321 are controlling, the servo drive system 300 is actually controlling the current (torque) to achieve the speed and torque of the servo motor 310. The corresponding control of the position.
  • the servo motor 310 and the harmonic reducer will resonate.
  • the accuracy of load operation requires rapid suppression of vibration.
  • the speed command is still only generated through the position regulator 321 according to the position deviation, the speed command is passed through the speed regulator 322 to generate a current command, and the current command and the current deviation are passed through the current regulator 323 to generate a drive command, then the operation of the servo driver 320
  • the amount will be very large, and there will be a large lag in the adjustment of the servo motor 310, and the resonance cannot be effectively suppressed.
  • the current compensation value needs to be generated according to the rotor position deviation of the servo motor 310, that is, the compensation value is directly generated without considering the influence of the parameters of the regulator (position regulator 321 and speed regulator 322) itself, and the compensation effect can be determined independently. Control, better stability.
  • the current compensation module 330 collects the position difference signal, generates a current compensation value, and sends it to the current regulator 323.
  • the current compensation value, the current feedback value sent by the servo motor 310 , the current command output by the speed regulator 322 , and the output torque command are sent to the servo motor 310 .
  • the servo motor 310 After the servo motor 310 receives the torque command, it quickly adjusts the operating frequency of the servo motor 310 according to the torque command, so that the operating frequency is far away from the natural frequency of the resonant reducer, so that the resonance phenomenon between the servo motor 310 and the harmonic reducer Weaken or even disappear, eliminating the speed fluctuation of the load caused by resonance, and keeping the load running precisely. Since the current compensation value directly acts on the current regulator 323, the hysteresis is small, the compensation speed is fast, and it is not affected by the parameters of the position regulator 321 and the speed regulator 322, the compensation effect is independently controllable, and the stability is better.
  • the servo drive system of the embodiment of the present disclosure can quickly determine the current compensation value through the current compensation module when the servo motor and the harmonic reducer resonate, and adjust the operating frequency of the servo motor through the current regulator according to the current compensation value , so that the resonance can be quickly suppressed, and the load accuracy affected by the vibration of the harmonic reducer can be eliminated, the response is fast, and the adjustment time is short.
  • FIG. 4 is a schematic block diagram of a current compensation module according to an embodiment of the disclosure.
  • the current compensation module 330 includes: a signal generation unit 331, configured to generate a sinusoidal signal according to a position difference; an amplitude detection unit 332, configured to perform amplitude detection on the sinusoidal signal, Obtain the amplitude of the sinusoidal signal; Division unit 333 is used to divide the sinusoidal signal by the amplitude of the sinusoidal signal to determine the standard sinusoidal signal; Transformation unit 334 is used to transform the position difference to obtain the phase signal; Phase-locked loop The unit 335 is used to perform phase-locked loop processing on the phase signal according to the standard sinusoidal signal; the compensation current calculation unit 336 is used to perform phase-locked loop processing on the phase signal according to the amplitude of the sinusoidal signal, phase signal and The phase compensation signal output by the phase locked loop determines the current compensation value.
  • the position feedback of the rotor of the servo motor 310 will fluctuate sinusoidally, and the difference between the position command and the position feedback, that is, the position difference signal will fluctuate, and the position
  • the difference signal generates a sinusoidal signal of the position difference through the signal generation unit 331 , and the amplitude of the sinusoidal signal can be determined after the sinusoidal signal of the position difference is detected by the amplitude detection unit 332 .
  • the dividing unit 333 divides the sinusoidal signal by its amplitude to obtain a standard sinusoidal signal.
  • the phase locked loop unit 335 performs phase locked loop processing on the phase signal according to the standard sinusoidal signal.
  • the compensation current calculation unit 336 determines the current compensation value according to the amplitude of the sinusoidal signal, the phase signal and the phase compensation signal output by the phase locked loop.
  • the signal generation unit 331 includes: a band-pass filter for performing band-pass filtering on the position difference to obtain a vibration signal; a first moving average filter for calculating the difference between the position difference and the vibration signal The difference between them is smoothed to obtain a DC offset; the subtractor is used to subtract the DC offset from the position difference to obtain a sinusoidal signal.
  • the bandwidth of the band-pass filter is also adjusted according to the actual vibration frequency.
  • the position feedback value of the rotor of the servo motor 310 will fluctuate sinusoidally, and the difference between the position command and the position feedback value value, that is, the position difference signal fluctuates.
  • the current compensation module 330 collects the fluctuating position difference signal, it filters the position difference signal through a band-pass filter to obtain a vibration signal of the servo motor 310 .
  • the vibration signal is similar to a sinusoidal signal, but there is a phase lag compared with the original position difference signal, and the amplitude of the signal will be attenuated, so it cannot be used directly and needs further processing.
  • the difference between the position difference signal and the vibration signal is made, and the obtained difference is input into the first moving average filter for smoothing the difference, and then the first moving average filter outputs the DC offset in the position difference signal.
  • the position difference signal and the DC offset in the position difference signal are sent to the subtractor, and the position difference signal is subtracted from the DC offset in the position difference signal by the subtractor to obtain a sine wave without phase lag and amplitude attenuation signal u i .
  • the amplitude of the sinusoidal signal can be obtained.
  • the amplitude of the sinusoidal signal u i is Ui
  • the sinusoidal signal u i can be expressed as
  • the sinusoidal signal u i and the amplitude Ui are sent to the divider, and the sinusoidal signal u i is divided by the amplitude Ui through the divider, and the sinusoidal signal can be normalized to a standard sinusoidal signal with an amplitude of '1' u′ i , for example, can be obtained by the formula Get the standard sinusoidal signal, where, Indicates the phase compensation signal.
  • the transformation unit 334 includes: a Fourier transform processor, used to perform Fourier transform on the position difference to obtain the actual vibration frequency; an integrator, used to perform integral calculation on the actual vibration frequency to obtain phase signal.
  • the position feedback of the rotor of the servo motor 310 will fluctuate sinusoidally, and the difference between the position command and the position feedback, that is, the position difference signal will fluctuate.
  • the phase-locked loop unit 335 includes: a cosine calculator, used to perform cosine calculation on the sum of the phase signal and the phase compensation signal, to obtain a unit cosine signal; a multiplier, used to calculate the standard sine signal and the unit The cosine signal is multiplied; the low-pass filter is used to perform low-pass filtering on the output of the multiplier; the second moving average filter is used to perform moving average filtering on the output of the low-pass filter to obtain the error signal; the hysteresis processor is used to perform hysteresis processing on the error signal; the PI regulator is used to perform PI adjustment on the error signal to obtain a phase compensation signal when the error signal is greater than a preset threshold; the compensation judgment part is used to When the error signal is less than or equal to a preset threshold, the phase for determining the position difference is locked.
  • a cosine calculator used to perform cosine calculation on the sum of the phase signal and the phase compensation signal, to obtain a unit cosine signal
  • the error signal u e can be obtained: where the phase of the error signal
  • the error signal ue is sent to a hysteresis processor, and hysteresis processing is performed on the error signal ue .
  • a certain threshold can be calibrated according to the actual situation
  • the error signal ue is output to the PI regulator, and the error signal ue is PI adjusted to obtain the phase compensation signal ⁇ * , otherwise the PI Regulator input is 0.
  • the compensation judgment part may determine that the phase ⁇ of the position difference signal has been locked.
  • the compensation current calculation unit 336 includes: a sine calculator, configured to perform a sine calculation on the sum of the phase signal and the phase compensation signal, and then multiply the amplitude of the sinusoidal signal to obtain a current compensation value.
  • the current compensation value can be obtained by the formula Ui*sin( ⁇ * + ⁇ ).
  • the current regulator 323 outputs a torque command according to the current compensation value output by the current compensation module 330 , the current feedback value sent by the servo motor 310 and the current command output by the speed regulator 322 , and transmits it to the servo motor 310 .
  • the servo motor 310 After the servo motor 310 receives the torque command, it quickly adjusts the operating frequency of the servo motor 310 according to the torque command, so that the operating frequency is far away from the natural frequency of the resonant reducer, so that the resonance phenomenon between the servo motor 310 and the harmonic reducer Weaken or even disappear, eliminating the speed fluctuation of the load caused by resonance, and keeping the load running precisely.
  • the resonance is effectively suppressed by means of current compensation, the response speed is fast, the lag time is short, and the compensation effect can be independently achieved. control, the stability is better, and it is not affected by other regulator parameters.
  • the present disclosure also proposes a vibration suppression device.
  • FIG. 5 is a schematic block diagram of a vibration suppression device according to an embodiment of the present disclosure.
  • the vibration suppression device 500 of the embodiment of the present disclosure is applied to a servo drive, and the device includes: a determination module 510 and a compensation module 520 .
  • the determination module 510 is used to determine the current compensation value according to the position difference between the rotor position feedback value and the position command of the servo motor when the servo driver drives the servo motor with the harmonic reducer to work.
  • the compensation module 520 is used to apply the current compensation value to the current regulator in the servo drive, so that the current regulator controls the servo motor according to the current compensation value, current feedback value and current command, so as to correct the resonance caused by the harmonic reducer inhibition.
  • the servo motor in this embodiment has a harmonic reducer, and the servo driver can drive the servo motor to drive the harmonic reducer to drive the load.
  • the rotor inside the servo motor is a permanent magnet.
  • the three-phase electricity controlled by the servo driver forms an electromagnetic field.
  • the rotor of the servo motor rotates under the action of this magnetic field.
  • the encoder that comes with the servo motor collects the position of the rotor and generates a feedback signal. To the driver, the driver adjusts the angle of rotation of the rotor according to the comparison between the feedback value and the target value.
  • the servo driver receives the position command and the rotor position feedback value output by the servo motor.
  • the position regulator processes the deviation between the position command and the rotor position feedback value to generate a speed command.
  • the deviation between the command and the speed feedback value is processed to generate a current command, the current regulator processes the current command and the current feedback value, and the processing result drives the servo motor to work.
  • the operating frequency of the servo motor is near the natural frequency of the harmonic reducer, the servo motor and the harmonic reducer will resonate. At this time, the rotor position feedback value of the servo motor will fluctuate.
  • the current compensation value needs to be generated according to the rotor position deviation, that is, the compensation value is generated directly, without considering the influence of the parameters of the regulator (position regulator and speed regulator) itself, the compensation effect is independently controllable, and the stability is better .
  • Servo drives include current regulators, speed regulators, and position regulators.
  • the three regulators are in series structure, the innermost layer is the current regulator, the second is the speed regulator, and the outermost layer is the position regulator.
  • the upper computer sends a position command according to the user's demand for the moving position of the load.
  • the internal encoder of the servo motor generates position feedback according to the position, speed and current value of the rotor. Speed feedback and current feedback are sent to the servo drive.
  • the function of the position regulator is to process the deviation between the position command and the position feedback value, and output the speed command
  • the function of the speed regulator is to process the deviation between the speed command and the speed feedback value, and output the current command
  • the function of the current regulator is to process the deviation between the current command and the current feedback value, and output the torque command.
  • the servo driver can adjust the running state of the servo motor according to the received feedback signal during the running process of the servo motor. When fluctuations occur during the operation of the servo motor and it is necessary to adjust the operating state of the servo motor, the servo driver adjusts the servo motor by adjusting the output torque. Since the output of the current regulator is a torque command, it is adjusted through the current regulator. , the servo driver has the least amount of computation and the fastest response.
  • the determination module 510 collects the position difference signal in real time, generates a current compensation value, and the compensation module 520 and send it to the current regulator.
  • the current regulator outputs a torque command according to the current compensation value output by the compensation module 520, the current feedback value sent by the servo motor and the current command output by the speed regulator, and transmits it to the servo motor.
  • the servo motor After the servo motor receives the torque command, it quickly adjusts the operating frequency of the servo motor according to the torque command, so that the operating frequency is far away from the natural frequency of the resonant reducer, so that the resonance between the servo motor and the harmonic reducer is weakened or even disappeared. , eliminating the speed fluctuation of the load caused by resonance, so that the operation of the load remains accurate.
  • the vibration suppression device of the embodiment of the present disclosure can quickly determine the current compensation value through the determination module when the servo motor and the harmonic reducer resonate, and then send it to the current regulator through the compensation module, and the current regulator according to The current compensation value adjusts the operating frequency of the servo motor, so that the resonance can be quickly suppressed, and the load accuracy affected by the vibration of the harmonic reducer can be eliminated, and the response is fast and the adjustment time is short.
  • the vibration signal of the servo motor can be obtained.
  • the vibration signal is similar to a sinusoidal signal, but there is a phase lag compared with the original position difference signal, and the amplitude of the signal will be attenuated, so it cannot be used directly and needs further processing.
  • the determining module 510 makes a difference between the position difference signal and the vibration signal, and inputs the obtained difference into a moving average filter to smooth the difference, thereby obtaining a DC offset in the position difference signal. Then, the determination module 510 subtracts the DC offset in the position difference signal from the position difference signal to obtain a sinusoidal signal u i with no phase lag and no amplitude attenuation.
  • the moving average filter is based on statistical laws, and the continuous sampling data is regarded as a queue with a fixed length of N. After a new measurement, the first data of the above queue is removed. The remaining N-1 pieces of data are moved forward sequentially, and new sampling data is inserted as the tail of the new queue; then the arithmetic operation is performed on this queue, and the result is used as the result of this measurement. Therefore, using a moving average filter to filter the signal can further reduce the fluctuation of the input signal.
  • the amplitude of the sinusoidal signal can be obtained.
  • the amplitude of the sinusoidal signal u i is Ui, then the sinusoidal signal u i can be expressed as
  • the determination module 510 divides the acquired sinusoidal signal u i by the amplitude Ui, that is, normalizes the sinusoidal signal to a standard sinusoidal signal u' i with an amplitude of '1', for example, the formula Get the standard sinusoidal signal, where, Indicates the phase compensation signal.
  • the determination module 510 performs Fourier transform FFT on the position difference signal to obtain the actual vibration frequency ⁇ o of the servo motor.
  • the determination module 510 then integrates the actual vibration frequency ⁇ o of the servo motor to obtain the phase signal of the position difference signal as ⁇ .
  • the phase signal ⁇ of the position difference signal and the phase compensation signal of the position difference signal can be obtained Then through the determination module 510, the phase signal ⁇ and the phase compensation signal
  • the determination module 510 multiplies the standard sine signal u′ i by the unit cosine signal u o to obtain:
  • the determination module 510 filters the product u' i u o of the standard sine signal u ' i and the unit cosine signal u o through a low-pass filter to filter out the part with higher frequency in the product u' i u o , and then passes through the moving average filter After filtering by filter, the error signal u e can be obtained: where the phase of the error signal
  • the determination module 510 performs hysteresis processing on the error signal ue . Specifically, when the error signal ue is greater than a certain threshold (can be calibrated according to the actual situation), the determination module 510 outputs the error signal ue to the PI regulator, and performs PI adjustment on the error signal ue to obtain phase compensation signal ⁇ * , otherwise the PI regulator input is 0. If the error signal ue is continuously smaller than or equal to the preset threshold, the determination module 510 may determine that the phase ⁇ of the position difference signal has been locked.
  • a certain threshold can be calibrated according to the actual situation
  • the determination module 510 sums the phase compensation signal ⁇ * and the phase ⁇ of the position difference signal, performs a sinusoidal calculation on the sum of the two, and then multiplies it by the amplitude Ui of the sinusoidal signal to obtain a current compensation value, for example,
  • the current compensation value is obtained by the formula Ui*sin( ⁇ * + ⁇ ).
  • the determination module 510 can adjust the current compensation value through the compensation coefficient and send it to the current regulator. And the current command output by the speed regulator, the output torque command is sent to the servo motor. After the servo motor receives the torque command, it quickly adjusts the operating frequency of the servo motor according to the torque command, so that the operating frequency is far away from the natural frequency of the resonant reducer, so that the resonance between the servo motor and the harmonic reducer is weakened or even disappeared. , eliminating the speed fluctuation of the load caused by resonance, so that the operation of the load remains accurate.
  • the vibration suppression device of the embodiment of the present disclosure when the servo motor and the harmonic reducer resonate to generate vibration, the resonance is effectively suppressed by means of current compensation, the response speed is fast, the lag time is short, and the compensation effect can be independently controlled. control, the stability is better, and it is not affected by other regulator parameters.
  • the present disclosure also proposes a computer-readable storage medium.
  • the computer-readable storage medium of the embodiment of the present disclosure stores a vibration suppression program thereon, and when the vibration suppression program is executed by a processor, the above vibration suppression method is implemented.
  • the resonance is effectively suppressed by means of current compensation, the response speed is fast, and the lag time is short , the compensation effect is independently controllable, the stability is better, and it is not affected by other regulator parameters.
  • the present disclosure also proposes a servo driver.
  • the servo driver of the embodiment of the present disclosure includes a memory, a processor, and a vibration suppression program stored in the memory and operable on the processor.
  • the processor executes the vibration suppression program to execute the above vibration suppression method.
  • the servo driver of the embodiment of the present disclosure by implementing the above-mentioned vibration suppression method, when the servo motor and the harmonic reducer resonate to generate vibration, the resonance is effectively suppressed by means of current compensation, the response speed is fast, the lag time is short, and the compensation effect Independently controllable, better stability, and not affected by other regulator parameters.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device.
  • computer-readable media include the following: electrical connection with one or more wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, as it may be possible, for example, by optically scanning the paper or other medium, followed by editing, interpreting, or other suitable processing if necessary.
  • the program is processed electronically and stored in computer memory.
  • various parts of the present disclosure may be implemented in hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques known in the art: Discrete logic circuits, ASICs with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

提供一种震动抑制方法及装置(500)、伺服驱动器(320)和伺服驱动系统(300),方法应用于伺服驱动器(320),方法包括:在伺服驱动器(320)驱动带有谐波减速机的伺服电机(310)进行工作时,根据伺服电机(310)的转子位置反馈值与位置指令之间的位置差确定电流补偿值(S101);将电流补偿值施加到伺服驱动器(320)中的电流调节器(323),以便电流调节器(323)根据电流补偿值、电流反馈值和电流指令对伺服电机(310)进行控制,以对谐波减速机引起的共振进行抑制(S102)。

Description

振动抑制方法及装置、伺服驱动器和伺服驱动系统
相关申请的交叉引用
本公开要求于2021年11月25日提交的申请号为202111412715.4,名称为“振动抑制方法及装置、伺服驱动器和伺服驱动系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及机电控制技术领域,尤其涉及一种震动抑制方法、一种计算机可读存储介质、一种伺服驱动器、一种震动抑制装置和一种伺服驱动系统。
背景技术
在机械臂等空间狭小的场合中,通常会使用谐波减速器来实现减速和扭矩放大,由于谐波减速机特有的机械结构,减速装置存在一个低频震动,当电机旋转频率在减速装置固有频率附近时,会激发共振,引起速度的波动,从而影响机械臂的指令跟随性,这种影响在要求轨迹跟踪的场合中显得尤为突出。
相关技术中,为了抑制共振,提出了一种在位置指令与位置反馈产生偏差时,位置调节器产生速度调节指令至速度调节器,速度调节器产生电流调节指令至电流调节器,但是这一过程存在较大的滞后,无法有效抑制共振,并且依赖于各调节器的参数,抑制效果不好。
公开内容
本公开旨在至少在一定程度上解决现有技术中的上述技术问题之一。为此,本公开的一个目的在于提出一种震动抑制方法,在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
本公开的第二个目的在于提出一种计算机可读存储介质。
本公开的第三个目的在于提出一种伺服驱动器。
本公开的第四个目的在于提出一种震动抑制装置。
本公开的第五个目的在于提出一种伺服驱动系统。
为达到上述目的,本公开第一方面实施例提出了一种震动抑制方法,应用于伺服驱动器,方法包括:在伺服驱动器驱动带有谐波减速机的伺服电机进行工作时,根据伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值;将电流补偿值施加到伺服驱动器中的电流调节器,以便电流调节器根据电流补偿值、电流反馈值和电流指令对伺服电机进行控制,以对谐波减速机引起的共振进行抑制。
根据本公开实施例的震动抑制方法,在伺服驱动器驱动带有谐波减速机的伺服电机 进行工作时,根据伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值,并将电流补偿值施加到电流调节器,电流调节器根据电流补偿值、电流反馈值和电流指令对伺服电机进行控制,以对谐波减速机引起的共振进行抑制。由此,该方法在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
为达到上述目的,本公开第二方面实施例提出了一种计算机可读存储介质,其上存储有震动抑制程序,该震动抑制程序被处理器执行时实现上述的震动抑制方法。
根据本公开实施例的计算机可读存储介质,通过执行上述的震动抑制方法,在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
为达到上述目的,本公开第三方面实施例提出的一种伺服驱动器,包括存储器、处理器及存储在存储器上并可在处理器上运行的震动抑制程序,处理器通过运行震动抑制程序,以使上述的震动抑制方法被执行。
根据本公开实施例的伺服驱动器,通过执行上述的震动抑制方法,在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
为达到上述目的,本公开第四方面实施例提出的一种震动抑制装置,应用于伺服驱动器,装置包括:确定模块,用于在伺服驱动器驱动带有谐波减速机的伺服电机进行工作时,根据伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值;补偿模块,用于将电流补偿值施加到伺服驱动器中的电流调节器,以便电流调节器根据电流补偿值、电流反馈值和电流指令对伺服电机进行控制,以对进行抑制。
根据本公开实施例的震动抑制装置,在伺服驱动器驱动带有谐波减速机的伺服电机进行工作时,确定模块根据伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值,补偿模块将电流补偿值施加到伺服驱动器中的电流调节器,以便电流调节器根据电流补偿值、电流反馈值和电流指令对伺服电机进行控制,以对谐波减速机引起的共振进行抑制。由此,该装置在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
为达到上述目的,本公开第五方面实施例提出的一种伺服驱动系统,包括:伺服电机,伺服电机的输出端设置有谐波减速机;伺服驱动器,伺服驱动器包括位置调节器、速度调节器和电流调节器;电流补偿模块,用于在伺服驱动器驱动伺服电机时根据伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值;其中,位置调节器,用于对位置差进行处理,获得速度指令;速度调节器,用于对伺服电机的速度反馈值与速度指令之间的速度差进行处理,获得电流指令;电流调节器,用于根据电流补偿值、电流反馈值和电流指令对伺服电机进行控制,以对谐波减速机引起的共振进行抑制。
根据本公开实施例的伺服驱动系统,在伺服驱动器驱动所述伺服电机时,通过电流 补偿模块根据伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值,通过速度调节器对伺服电机的速度反馈值与速度指令之间的速度差进行处理,获得电流指令,,电流调节器根据电流补偿值、电流反馈值和电流指令对伺服电机进行控制,以对谐波减速机引起的共振进行抑制。由此,该系统在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1为根据本公开实施例的震动抑制方法的流程图;
图2为根据本公开的一个实施例的确定电流补偿值的流程图;
图3为根据本公开实施例的伺服驱动系统的方框示意图;
图4为根据本公开的一个实施例的电流补偿模块方框示意图;
图5为根据本公开实施例的震动抑制装置的方框示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例提出的震动抑制方法及装置、伺服驱动器和伺服驱动系统。
现有的机器人和数控技术已在各行各业中广泛应用,其驱动和控制主要都依靠伺服系统来执行,所以在现代工业自动化系统中,伺服系统已经是不可缺少的关键环节,伺服系统按其驱动元件划分,有步进式伺服系统、直流电动机(简称直流电机)伺服系统、交流电动机(简称交流电机)伺服系统。其中,交流伺服系统在现代自动化领域的应用日益广泛,如运用在纺织、包装、装配、激光加工等定位控制装置中。
在伺服系统中,伺服电机的输出端与谐波减速机相连,并通过谐波减速机驱动负载运动。谐波减速机一般由波发生器、柔性齿轮、柔性轴承、刚性齿轮四个基本构件组成,通过波发生器装配上柔性轴承使柔性齿轮产生可控弹性变形,并与刚性齿轮相啮合来传递运动和动力的齿轮传动。由于谐波减速机的各个组成部件并不是完全理想的部件,因此谐波减速机本身具有一个低频震动的固有频率。当伺服驱动器驱动伺服电机工作,伺服电机的运行频率在谐波减速机的固有频率时,伺服电机与谐波减速机会产生共振。由于谐波减速器的震动会传递到机器人末端,从而使末端出现抖动,大大降低了机器人的轨迹精度、重复定位精度。例如,在机器人焊接复杂曲面、切割复杂形状时,受谐波减速器震动影响,机器人的运动轨迹会出现不光滑,甚至是运动轨迹不连续的情况,不利于对机器人轨迹进 行优化。因此需要对伺服电机运行过程中因谐波减速机产生的共振加以抑制。
为了有效抑制共振,本公开提出了一种震动抑制方法,在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。下面详细描述本公开的震动抑制方法如何实现有效抑制共振。
图1为根据本公开实施例的震动抑制方法的流程图。
如图1所示,本公开实施例的震动抑制方法可包括以下步骤:
S101,在伺服驱动器驱动带有谐波减速机的伺服电机进行工作时,根据伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值。
具体而言,本实施例中的伺服电机带有谐波减速机,伺服驱动器可以驱动伺服电机带动谐波减速机运动,以带动负载。伺服电机内部的转子是永磁铁,伺服驱动器控制的三相电形成电磁场,伺服电机的转子在此磁场的作用下转动,同时伺服电机自带的编码器对转子的位置进行采集,并生成反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
如图3所示,在伺服电机工作过程中,伺服驱动器接收位置指令以及伺服电机输出的转子位置反馈值,位置调节器对位置指令和转子位置反馈值之间的偏差进行处理,以生成速度指令,速度调节器对速度指令和速度反馈值之间的偏差进行处理,以生成电流指令,电流调节器对电流指令和电流反馈值进行处理,处理结果驱动伺服电机工作。当伺服电机运行频率在谐波减速机的固有频率附近时,伺服电机与谐波减速机产生共振,此时电机转子的位置反馈会出现波动,如果仍然只根据位置偏差经过位置调节器生成电流指令,电流偏差经过电流调节器生成驱动指令,那么就会出现很大的滞后,不能有效抑制共振。此时,需要根据转子位置偏差生成电流补偿值,即直接生成补偿值,不需要考虑调节器(位置调节器和速度调节器)自身的参数产生的影响,补偿效果独立可控,稳定性更好。
在本公开的一个实施例中,如图3和图4所示,本公开实施例的伺服驱动系统还可包括速度传感器S,用于检测伺服电机的当前转速,得到速度反馈值。
S102,将电流补偿值施加到伺服驱动器中的电流调节器,以便电流调节器根据电流补偿值、电流反馈值和电流指令对伺服电机进行控制,以对谐波减速机引起的共振进行抑制。
也就是说,将上述步骤S101确定的电流补偿值直接施加在电流调节器中,结合通过位置调节器、速度调节器生成的电流指令和伺服电机产生的电流反馈值,生成驱动指令,以对伺服电机进行驱动控制。由于电流补偿值是直接作用在电流调节器上,因此滞后小,补偿速度快,并且不受位置调节器和速度调节器参数的影响,补偿效果独立可控,稳定性更好。
根据本公开的一个实施例,在电流调节器根据电流补偿值、电流反馈值和电流指令对伺服电机进行控制之前,方法还包括:通过位置调节器对伺服电机的转子位置反馈值与位置指令之间的位置差进行处理,获得速度指令;通过速度调节器对伺服电机的速度反馈值与速度指令之间的速度差进行处理,获得电流指令。其中,伺服电机的速度反馈值根据伺 服电机的转子位置反馈值确定。
具体而言,伺服驱动器包括有电流调节器、速度调节器、位置调节器。三个调节器为串联式结构,最内层为电流调节器,其次为速度调节器,最外层为位置调节器。在伺服电机工作过程中,上位机根据用户对负载所要移动位置的需求发送位置指令,伺服电机在运行过程中,伺服电机内部自带的编码器根据转子的位置、转速以及电流值生成位置反馈、速度反馈、电流反馈,输送至伺服驱动器中。其中,位置调节器的作用是对位置指令与位置反馈值之间的偏差进行处理,输出速度指令,伺服电机的速度反馈值根据电机转子的位置反馈确定;速度调节器的作用是对速度指令与速度反馈值之间的偏差进行处理,输出电流指令;电流调节器的作用是对电流指令与电流反馈值之间的偏差进行处理,输出转矩指令。伺服驱动器可以根据接收到的伺服电机运行过程中的反馈信号,对伺服电机的运行状态进行调整。当伺服电机运行过程中出现波动需要对伺服电机的运转状态进行调节时,伺服驱动器通过调整输出转矩对伺服电机进行调节,由于电流调节器输出的是转矩指令,因此通过电流调节器进行调节时,伺服驱动器的运算量最小,响应最快。
具体地,在伺服电机工作过程中,当伺服电机的运转频率在谐波减速机的固有频率附近时,伺服电机与谐波减速机产生共振现象,为避免谐波减速机的震动影响负载运行的精确度,需要迅速地对震动加以抑制。此时,由于共振产生导致位置指令与位置反馈产生偏差,实时采集位置差信号,生成电流补偿值,并传送至电流调节器,电流调节器根据电流补偿模块输出的电流补偿值、伺服电机发送的电流反馈值和速度调节器输出的电流指令,输出转矩指令,传送至伺服电机。伺服电机在接收到转矩指令后,根据转矩指令快速地调整伺服电机的运行频率,使运行频率远离谐振减速机的固有频率,使得伺服电机与谐波减速机之间的共振现象减弱甚至消失,消除了负载因共振引起的速度波动,使负载的运行保持精准。
需要说明的是,如果在没有生成电流补偿值的情况下,当伺服电机与谐波减速机发生共振时,电机转子的位置反馈将会出现以正弦变化的波动,位置指令与位置反馈运算后导致位置偏差波动,位置调节器根据位置偏差产生速度指令,并传送至速度调节器,然后速度调节器根据速度指令与速度反馈值之间的速度偏差产生电流指令至电流调节器,最后电流调节器根据电流指令与电流反馈值之间的偏差输出调节转矩,调节伺服电机的运行状态。在整个调节过程中,对共振现象的响应较慢,存在较大的滞后,无法快速有效地抑制共振。
由此,本公开实施例的震动抑制方法,在伺服电机与谐波减速机产生共振时,能够迅速确定电流补偿值,并通过电流调节器根据电流补偿值调节伺服电机的运转频率,从而能够快速地抑制共振,消除因谐波减速机的震动而影响负载精度,响应迅速,调整时间短。
下面具体描述确定电流补偿值的方法。
图2为根据本公开的一个实施例的震动抑制方法的流程图。
如图2所示,根据本公开的一个实施例,根据伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值,可包括以下步骤:
S201,根据位置差生成正弦信号。
根据本公开的一个实施例,根据位置差生成正弦信号,包括:对位置差进行带通滤波处理,获得震动信号,并对位置差与震动信号之间的差值进行平滑处理,获得直流偏置;将位置差减去直流偏置,获得正弦信号。
根据本公开的一个实施例,在通过带通滤波器对位置差进行带通滤波处理之前,方法还包括:根据实际震动频率对带通滤波器的带宽进行调整。
具体而言,带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,而带通滤波器的带宽就是指带通滤波器允许通过的最大频率与最小频率的差值。在使用带通滤波器对位置差信号进行过滤之前,可以根据谐波减速机的实际震动频率,调整带通滤波器的带宽,从而可以将通过带通滤波器的位置差信号中的干扰信号过滤掉,排除干扰项,使获得的震动信号更加准确。
具体地,当伺服电机与谐波减速机发生共振时,电机转子的位置反馈将会出现以正弦变化的波动,位置指令与位置反馈的差值,即位置差信号产生波动,位置差信号经过带通滤波器处理后,可以得到伺服电机的震动信号。震动信号近似正弦信号,但与原位置差信号相比存在相位滞后,并且信号的幅值会产生衰减,无法直接使用,需要进一步地进行处理。
将位置差信号与震动信号作差,并将得到的差值输入移动平均滤波器中,以对差值进行平滑处理,从而得到位置差信号中的直流偏置。然后,将位置差信号减去位置差信号中的直流偏置,即可得到无相位滞后,无幅值衰减的正弦信号u i
可以理解的是,移动平均滤波器的工作原理是:移动平均滤波基于统计规律,将连续的采样数据看成一个长度固定为N的队列,在新的一次测量后,上述队列的首数据去掉,其余N-1个数据依次前移,并将新的采样数据插入,作为新队列的尾;然后对这个队列进行算术运算,并将其结果做为本次测量的结果。因此使用移动平均滤波器对信号进行过滤,可以进一步减少输入信号的波动。
S202,对正弦信号进行幅值检测,获得正弦信号的幅值。
其中,正弦信号通过幅值检测模块进行幅值检测后,可以获得正弦信号的幅值。例如,经过幅值检测模块检测后,正弦信号u i的幅值为Ui,则正弦信号u i可以表达为
Figure PCTCN2022085648-appb-000001
S203,根据正弦信号和正弦信号的幅值确定标准正弦信号。
根据本公开的一个实施例,根据正弦信号和正弦信号的幅值确定标准正弦信号,包括:将正弦信号除以正弦信号的幅值,获得标准正弦信号。
具体地,将通过上述步骤S202获取的正弦信号u i除以幅值Ui,即将正弦信号归一化为幅值为‘1’的标准正弦信号u′ i,例如,可通过公式
Figure PCTCN2022085648-appb-000002
得到标准 正弦信号,其中,
Figure PCTCN2022085648-appb-000003
表示相位补偿信号。
S204,对位置差进行变换处理,获得相位信号。
根据本公开的一个实施例,对位置差进行变换处理,包括:对位置差进行傅里叶变换,获得实际震动频率,并对实际震动频率进行积分计算,获得相位信号。
具体而言,当伺服电机与谐波减速机发生共振时,电机转子的位置反馈将会出现以正弦变化的波动,位置指令与位置反馈的差值,即位置差信号产生波动。对位置差信号进行傅里叶变换FFT(Fast Fourier Transform,快速傅里叶变换),可以得到伺服电机的实际震动频率ω o,再对伺服电机的实际震动频率ω o进行积分处理,可以得到位置差信号的相位信号为θ。
S205,根据标准正弦信号对相位信号进行锁相环处理。
根据本公开的一个实施例,根据标准正弦信号对相位信号进行锁相环处理,可包括:对相位信号与相位补偿信号之和进行余弦计算,获得单位余弦信号,并对标准正弦信号与单位余弦信号的乘积进行低通滤波处理和移动平均滤波处理,获得误差信号;对误差信号进行滞环处理;在误差信号大于预设阈值时,对误差信号进行PI(Proportional Integral,比例积分)调节,获得相位补偿信号;在误差信号小于等于预设阈值时,确定位置差的相位被锁住。其中,预设阈值可以根据伺服电机的震动情况进行具体设定。
具体而言,经上述步骤S201-步骤S204处理后,可以得到位置差信号的相位信号θ以及位置差信号的相位补偿信号
Figure PCTCN2022085648-appb-000004
将相位信号θ与相位补偿信号
Figure PCTCN2022085648-appb-000005
之和进行余弦计算,可以得到单位余弦信号u o,例如,可通过公式u o=cos(ω ot+θ *)得到单位余弦信号u o
进一步地,将标准正弦信号u′ i与单位余弦信号u o相乘,得到:
Figure PCTCN2022085648-appb-000006
将标准正弦信号u′ i与单位余弦信号u o的乘积u′ iu o,经低通滤波器过滤掉乘积u′ iu o中频率较高的部分之后,再通过移动平均滤波器滤波后,可以得到误差信号u e
Figure PCTCN2022085648-appb-000007
其中,误差信号的相位
Figure PCTCN2022085648-appb-000008
进一步地,对误差信号u e进行滞环处理。具体地,当误差信号u e大于某一阈值(可根据实际情况进行标定)时,将误差信号u e输出给PI调节器,并对误差信号u e进行PI 调节,以获得相位补偿信号θ *,否则PI调节器输入为0。若误差信号u e持续小于等于预设阈值,则可以确定位置差信号的相位θ已被锁住。
S206,将位置差的相位锁住时根据正弦信号的幅值、相位信号和锁相环输出的相位补偿信号确定电流补偿值。
根据本公开的一个实施例,根据正弦信号的幅值、相位信号和锁相环输出的相位补偿信号确定电流补偿值,包括:对相位信号与相位补偿信号之和进行正弦计算后,乘以正弦信号的幅值,获得电流补偿值。
具体地,将相位补偿信号θ *和位置差信号的相位θ进行求和之后,并对二者的和值进行正弦计算,再乘以正弦信号的幅值Ui,得到电流补偿值,例如,可通过公式Ui*sin(θ *+θ)得到电流补偿值。
根据本公开的一个实施例,在获得电流补偿值之后,上述的方法还包括:根据预设补偿系数对电流补偿值进行调节。其中,预设补偿系数是根据伺服电机进行具体设定。
具体地,当电流补偿值较大时,可以通过补偿系数调节电流补偿值,并传送至电流调节器,电流调节器根据电流补偿模块输出的电流补偿值、伺服电机发送的电流反馈值和速度调节器输出的电流指令,输出转矩指令,传送至伺服电机。伺服电机在接收到转矩指令后,根据转矩指令快速地调整伺服电机的运行频率,使运行频率远离谐振减速机的固有频率,使得伺服电机与谐波减速机之间的共振现象减弱甚至消失,消除了负载因共振引起的速度波动,使负载的运行保持精准。
综上所述,根据本公开实施例的震动抑制方法,在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
对应上述实施例,本公开还提出了一种伺服驱动系统。
图3为根据本公开实施例的伺服驱动系统的方框示意图。
如图3所示,本公开实施例的伺服驱动系统300包括:伺服电机310、伺服驱动器320、电流补偿模块330。
其中,伺服电机310的输出端设置有谐波减速机。伺服驱动器320包括位置调节器321、速度调节器322和电流调节器323。电流补偿模块330用于在伺服驱动器320驱动伺服电机310时根据伺服电机310的转子位置反馈值与位置指令之间的位置差确定电流补偿值。其中,位置调节器321用于对位置差进行处理,获得速度指令。速度调节器322用于对伺服电机310的速度反馈值与速度指令之间的速度差进行处理,获得电流指令。电流调节器323用于根据电流补偿值、电流反馈值和电流指令对伺服电机310进行控制,以对谐波减速机引起的共振进行抑制。其中,在本公开的一个实施例中,伺服驱动系统300还可包括速度传感器S,用于检测伺服电机310的当前转速,得到速度反馈值。
进一步地,根据本公开的一个实施例,伺服电机310的速度反馈值根据伺服电机310的转子位置反馈值确定。
具体而言,如图3所示,伺服驱动器320包括有电流调节器323、速度调节器322、位置调节器321。三个调节器为串联式结构,最内层为电流调节器323,其次为速度调节器322,最外层为位置调节器321。伺服驱动器320通过三个调节器与伺服电机310形成三个闭环负反馈PID调节系统。最内的PID环就是电流环,电流调节器323通过霍尔装置检测伺服驱动器320给伺服电机310的各相的输出电流,电流调节器323根据电流反馈值进行PID调节,输出转矩指令,从而达到输出电流尽量接近等于设定电流,也就是说,电流环就是控制电机转矩的,所以在转矩模式下伺服驱动器320的运算最小,动态响应最快。第二环是速度环,速度调节器322通过检测的伺服电机310编码器的信号来进行负反馈PID调节,速度环的环内PID输出就是电流环的设定,即电流指令,所以当速度环控制调整伺服电机310时,就包含了速度环和电流环的相关运算。第三环是位置环,它是最外环,位置调节器321输出就是速度环的设定(速度指令),位置控制模式下系统进行了所有三个环的运算,此时的系统运算量最大,动态响应速度也最慢。因此,电流环是控制伺服电机310的根本,在速度调节器322和位置调节器321控制的同时,伺服驱动系统300实际也在进行电流(转矩)的控制以达到对伺服电机310的速度和位置的相应控制。
具体地,在伺服电机310运转过程中,当伺服电机310的运转频率在谐波减速机的固有频率附近时,伺服电机310与谐波减速机产生共振现象,为避免谐波减速机的震动影响负载运行的精确度,需要讯速地对震动加以抑制。此时,如果仍然只根据位置偏差经过位置调节器321生成速度指令,速度指令进过速度调节器322生成电流指令,电流指令与电流偏差经过电流调节器323生成驱动指令,那么伺服驱动器320的运算量会非常大,对伺服电机310的调节就会出现很大的滞后,不能有效抑制共振。此时,需要根据伺服电机310的转子位置偏差生成电流补偿值,即直接生成补偿值,不需要考虑调节器(位置调节器321和速度调节器322)自身的参数产生的影响,补偿效果独立可控,稳定性更好。
具体地,由于共振产生导致位置指令与位置反馈产生偏差时,电流补偿模块330采集到位置差信号,生成电流补偿值,并传送至电流调节器323,电流调节器323根据电流补偿模块330输出的电流补偿值、伺服电机310发送的电流反馈值和速度调节器322输出的电流指令,输出转矩指令,传送至伺服电机310。伺服电机310在接收到转矩指令后,根据转矩指令快速地调整伺服电机310的运行频率,使运行频率远离谐振减速机的固有频率,使得伺服电机310与谐波减速机之间的共振现象减弱甚至消失,消除了负载因共振引起的速度波动,使负载的运行保持精准。由于电流补偿值是直接作用在电流调节器323上,因此滞后小,补偿速度快,并且不受位置调节器321和速度调节器322参数的影响,补偿效果独立可控,稳定性更好。
由此,本公开实施例的伺服驱动系统,在伺服电机与谐波减速机产生共振时,通过电流补偿模块能够迅速确定电流补偿值,并通过电流调节器根据电流补偿值调节伺服电机的运转频率,从而能够快速地抑制共振,消除因谐波减速机的震动而影响负载精度,响应迅 速,调整时间短。
图4为根据本公开的一个实施例的电流补偿模块的方框示意图。
如图4所示,根据本公开的一个实施例,电流补偿模块330包括:信号生成单元331,用于根据位置差生成正弦信号;幅值检测单元332,用于对正弦信号进行幅值检测,获得正弦信号的幅值;除法单元333,用于将正弦信号除以正弦信号的幅值,以确定标准正弦信号;变换单元334,用于对位置差进行变换处理,获得相位信号;锁相环单元335,用于根据标准正弦信号对相位信号进行锁相环处理;补偿电流计算单元336,用于在锁相环单元335将位置差的相位锁住时根据正弦信号的幅值、相位信号和锁相环输出的相位补偿信号确定电流补偿值。
具体而言,当伺服电机310与谐波减速机发生共振时,伺服电机310转子的位置反馈将会出现以正弦变化的波动,位置指令与位置反馈的差值,即位置差信号产生波动,位置差信号通过信号生成单元331生成位置差的正弦信号,位置差的正弦信号经过幅值检测单元332检测以后,可以确定正弦信号的幅值。除法单元333在接收到正弦信号以及正弦信号的幅值以后,将正弦信号除以其幅值,从而可以得到标准正弦信号。
进一步地,位置差信号经过变换单元334处理后,可以得到位置差的相位信号,然后通过锁相环单元335,根据标准正弦信号对相位信号进行锁相环处理。在锁相环单元335将位置差的相位锁住时,补偿电流计算单元336根据正弦信号的幅值、相位信号和锁相环输出的相位补偿信号确定电流补偿值。
根据本公开的一个实施例,信号生成单元331包括:带通滤波器,用于对位置差进行带通滤波处理,获得震动信号;第一移动平均滤波器,用于对位置差与震动信号之间的差值进行平滑处理,获得直流偏置;减法器,用于将位置差减去直流偏置,获得正弦信号。其中,带通滤波器的带宽还根据实际震动频率进行调整。
具体而言,继续参考图3和图4,当伺服电机310与谐波减速机发生共振时,伺服电机310转子的位置反馈值将会出现以正弦变化的波动,位置指令与位置反馈值的差值,即位置差信号产生波动。电流补偿模块330采集到波动的位置差信号之后,将位置差信号经过带通滤波器过滤,可以得到伺服电机310的震动信号。震动信号近似正弦信号,但与原位置差信号相比存在相位滞后,并且信号的幅值会产生衰减,无法直接使用,需要进一步地进行处理。
将位置差信号与震动信号作差,并将得到的差值输入第一移动平均滤波器中,以对差值进行平滑处理后,第一移动平均滤波器输出位置差信号中的直流偏置。将位置差信号与位置差信号中的直流偏置输送至减法器中,通过减法器将位置差信号减去位置差信号中的直流偏置,就可以得到无相位滞后,无幅值衰减的正弦信号u i
正弦信号通过幅值检测单元332进行幅值检测后,可以获得正弦信号的幅值。例如,经过幅值检测单元332检测后,正弦信号u i的幅值为Ui,则正弦信号u i可以表达为
Figure PCTCN2022085648-appb-000009
进一步地,将正弦信号u i和幅值Ui输送至除法器中,通过除法器将正弦信号u i除以幅值Ui,可以将正弦信号归一化为幅值为‘1’的标准正弦信号u′ i,例如,可通过公式
Figure PCTCN2022085648-appb-000010
得到标准正弦信号,其中,
Figure PCTCN2022085648-appb-000011
表示相位补偿信号。
根据本公开的一个实施例,变换单元334包括:傅里叶变换处理器,用于对位置差进行傅里叶变换,获得实际震动频率;积分器,用于对实际震动频率进行积分计算,获得相位信号。
具体而言,当伺服电机310与谐波减速机发生共振时,伺服电机310转子的位置反馈将会出现以正弦变化的波动,位置指令与位置反馈的差值,即位置差信号产生波动。将位置差信号输送至傅里叶变换处理器中,以对位置差信号进行傅里叶变换FFT,可以得到伺服电机310的实际震动频率ω o,再将实际震动频率ω o输送至积分器中,对伺服电机310的实际震动频率ω o进行积分处理,可以得到位置差信号的相位信号为θ。
根据本公开的一个实施例,锁相环单元335包括:余弦计算器,用于对相位信号与相位补偿信号之和进行余弦计算,获得单位余弦信号;乘法器,用于对标准正弦信号与单位余弦信号进行乘法计算;低通滤波器,用于对乘法器的输出结果进行低通滤波处理;第二移动平均滤波器,用于对低通滤波器的输出结果进行移动平均滤波处理,获得误差信号;滞环处理器,用于对误差信号进行滞环处理;PI调节器,用于在误差信号大于预设阈值时,对误差信号进行PI调节,获得相位补偿信号;补偿判断部,用于在误差信号小于等于预设阈值时,确定位置差的相位被锁住。
具体而言,将位置差信号的相位信号θ以及位置差信号的相位补偿信号
Figure PCTCN2022085648-appb-000012
输送至预先计算器中,将相位信号θ与相位补偿信号
Figure PCTCN2022085648-appb-000013
之和进行余弦计算,可以得到单位余弦信号u o,例如,可通过公式u o=cos(ω ot+θ *)得到单位余弦信号u o
进一步地,将标准正弦信号u′ i与单位余弦信号u o通过乘法器进行乘法计算,可以得到:
Figure PCTCN2022085648-appb-000014
将标准正弦信号u′ i与单位余弦信号u o的乘积u′ iu o输送至低通滤波器,通过低通滤波器过滤掉乘积u′ iu o中频率较高的部分之后,再通过第二移动平均滤波器滤波后,可以得到 误差信号u e
Figure PCTCN2022085648-appb-000015
其中,误差信号的相位
Figure PCTCN2022085648-appb-000016
进一步地,将误差信号u e输送至滞环处理器,并对误差信号u e进行滞环处理。当误差信号u e大于某一阈值(可根据实际情况进行标定)时,将误差信号u e输出给PI调节器,并对误差信号u e进行PI调节,以获得相位补偿信号θ *,否则PI调节器输入为0。当误差信号u e持续小于等于预设阈值时,补偿判断部可以确定位置差信号的相位θ已被锁住。
根据本公开的一个实施例,补偿电流计算单元336包括:正弦计算器,用于对相位信号与相位补偿信号之和进行正弦计算后,乘以正弦信号的幅值,获得电流补偿值。
具体地,将相位补偿信号θ *和位置差信号的相位θ进行求和之后,输送至正弦计算器以对二者的和值进行正弦计算,再乘以正弦信号的幅值Ui,得到电流补偿值,例如,可通过公式Ui*sin(θ *+θ)得到电流补偿值。
进一步地,电流调节器323根据电流补偿模块330输出的电流补偿值、伺服电机310发送的电流反馈值和速度调节器322输出的电流指令,输出转矩指令,传送至伺服电机310。伺服电机310在接收到转矩指令后,根据转矩指令快速地调整伺服电机310的运行频率,使运行频率远离谐振减速机的固有频率,使得伺服电机310与谐波减速机之间的共振现象减弱甚至消失,消除了负载因共振引起的速度波动,使负载的运行保持精准。
综上所述,据本公开实施例的伺服驱动系统,在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
对应上述实施例,本公开还提出了一种震动抑制装置。
图5为根据本公开实施例的震动抑制装置的方框示意图。
如图5所示,本公开实施例的震动抑制装置500,应用于伺服驱动器,装置包括:确定模块510和补偿模块520。
其中,确定模块510用于在伺服驱动器驱动带有谐波减速机的伺服电机进行工作时,根据伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值。补偿模块520用于将电流补偿值施加到伺服驱动器中的电流调节器,以便电流调节器根据电流补偿值、电流反馈值和电流指令对伺服电机进行控制,以对谐波减速机引起的共振进行抑制。
具体而言,本实施例中的伺服电机带有谐波减速机,伺服驱动器可以驱动伺服电机带动谐波减速机运动,以带动负载。伺服电机内部的转子是永磁铁,伺服驱动器控制的三相电形成电磁场,伺服电机的转子在此磁场的作用下转动,同时伺服电机自带的编码器对转 子的位置进行采集,并生成反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
在伺服电机工作过程中,伺服驱动器接收位置指令以及伺服电机输出的转子位置反馈值,位置调节器对位置指令和转子位置反馈值之间的偏差进行处理,以生成速度指令,速度调节器对速度指令和速度反馈值之间的偏差进行处理,以生成电流指令,电流调节器对电流指令和电流反馈值进行处理,处理结果驱动伺服电机工作。当伺服电机运行频率在谐波减速机的固有频率附近时,伺服电机与谐波减速机产生共振,此时伺服电机的转子位置反馈值会出现波动,如果仍然只根据位置偏差经过位置调节器生成电流指令,电流偏差经过电流调节器生成驱动指令,那么就会出现很大的滞后,不能有效抑制共振。此时,需要根据转子位置偏差生成电流补偿值,即直接生成补偿值,不需要考虑调节器(位置调节器和速度调节器)自身的参数产生的影响,补偿效果独立可控,稳定性更好。
伺服驱动器包括有电流调节器、速度调节器、位置调节器。三个调节器为串联式结构,最内层为电流调节器,其次为速度调节器,最外层为位置调节器。在伺服电机工作过程中,上位机根据用户对负载所要移动位置的需求发送位置指令,伺服电机在运行过程中,伺服电机内部自带的编码器根据转子的位置、转速以及电流值生成位置反馈、速度反馈、电流反馈,输送至伺服驱动器中。其中,位置调节器的作用是对位置指令与位置反馈值之间的偏差进行处理,输出速度指令;速度调节器的作用是对速度指令与速度反馈值之间的偏差进行处理,输出电流指令;电流调节器的作用是对电流指令与电流反馈值之间的偏差进行处理,输出转矩指令。伺服驱动器可以根据接收到的伺服电机运行过程中的反馈信号,对伺服电机的运行状态进行调整。当伺服电机运行过程中出现波动需要对伺服电机的运转状态进行调节时,伺服驱动器通过调整输出转矩对伺服电机进行调节,由于电流调节器输出的是转矩指令,因此通过电流调节器进行调节时,伺服驱动器的运算量最小,响应最快。
在伺服电机工作过程中,伺服电机和谐波减速机产生共振现象时,此时由于共振产生导致位置指令与位置反馈产生偏差,确定模块510实时采集位置差信号,生成电流补偿值,由补偿模块520并传送至电流调节器,电流调节器根据补偿模块520输出的电流补偿值、伺服电机发送的电流反馈值和速度调节器输出的电流指令,输出转矩指令,传送至伺服电机。伺服电机在接收到转矩指令后,根据转矩指令快速地调整伺服电机的运行频率,使运行频率远离谐振减速机的固有频率,使得伺服电机与谐波减速机之间的共振现象减弱甚至消失,消除了负载因共振引起的速度波动,使负载的运行保持精准。
由此,本公开实施例的震动抑制装置,在伺服电机与谐波减速机产生共振时,通过确定模块能够迅速确定电流补偿值,再通过补偿模块输送至电流调节器,并通过电流调节器根据电流补偿值调节伺服电机的运转频率,从而能够快速地抑制共振,消除因谐波减速机的震动而影响负载精度,响应迅速,调整时间短。
下面通过一个具体实施例描述确定模块确定电流补偿值的具体过程。
具体而言,当伺服电机与谐波减速机发生共振时,电机转子的位置反馈将会出现以正弦变化的波动,位置指令与位置反馈的差值,即位置差信号产生波动,确定模块510采集 到位置差信号并经过带通滤波器处理后,可以得到伺服电机的震动信号。震动信号近似正弦信号,但与原位置差信号相比存在相位滞后,并且信号的幅值会产生衰减,无法直接使用,需要进一步地进行处理。
确定模块510将位置差信号与震动信号作差,并将得到的差值输入移动平均滤波器中,以对差值进行平滑处理,从而得到位置差信号中的直流偏置。然后,确定模块510将位置差信号减去位置差信号中的直流偏置,即可得到无相位滞后,无幅值衰减的正弦信号u i
可以理解的是,移动平均滤波器的工作原理是:移动平均滤波基于统计规律,将连续的采样数据看成一个长度固定为N的队列,在新的一次测量后,上述队列的首数据去掉,其余N-1个数据依次前移,并将新的采样数据插入,作为新队列的尾;然后对这个队列进行算术运算,并将其结果做为本次测量的结果。因此使用移动平均滤波器对信号进行过滤,可以进一步减少输入信号的波动。
正弦信号通过幅值检测模块进行幅值检测后,可以获得正弦信号的幅值。例如,经过幅值检测模块检测后,正弦信号u i的幅值为Ui,则正弦信号u i可以表达为
Figure PCTCN2022085648-appb-000017
具体地,确定模块510将获取的正弦信号u i除以幅值Ui,即将正弦信号归一化为幅值为‘1’的标准正弦信号u′ i,例如,可通过公式
Figure PCTCN2022085648-appb-000018
得到标准正弦信号,其中,
Figure PCTCN2022085648-appb-000019
表示相位补偿信号。
当伺服电机与谐波减速机发生共振时,电机转子的位置反馈将会出现以正弦变化的波动,位置指令与位置反馈的差值,即位置差信号产生波动。确定模块510对位置差信号进行傅里叶变换FFT,可以得到伺服电机的实际震动频率ω o。确定模块510再对伺服电机的实际震动频率ω o进行积分处理,可以得到位置差信号的相位信号为θ。
经确定模块510处理后,可以得到位置差信号的相位信号θ以及位置差信号的相位补偿信号
Figure PCTCN2022085648-appb-000020
再通过确定模块510将相位信号θ与相位补偿信号
Figure PCTCN2022085648-appb-000021
之和进行余弦计算,可以得到单位余弦信号u o,例如,可通过公式u o=cos(ω ot+θ *)得到单位余弦信号u o
进一步地,确定模块510将标准正弦信号u′ i与单位余弦信号u o相乘,得到:
Figure PCTCN2022085648-appb-000022
确定模块510将标准正弦信号u′ i与单位余弦信号u o的乘积u′ iu o,经低通滤波器过滤掉乘积u′ iu o中频率较高的部分之后,再通过移动平均滤波器滤波后,可以得到误差信号u e
Figure PCTCN2022085648-appb-000023
其中,误差信号的相位
Figure PCTCN2022085648-appb-000024
进一步地,确定模块510对误差信号u e进行滞环处理。具体地,当误差信号u e大于某一阈值(可根据实际情况进行标定)时,确定模块510将误差信号u e输出给PI调节器,并对误差信号u e进行PI调节,以获得相位补偿信号θ *,否则PI调节器输入为0。若误差信号u e持续小于等于预设阈值,确定模块510则可以确定位置差信号的相位θ已被锁住。
确定模块510将相位补偿信号θ *和位置差信号的相位θ进行求和之后,并对二者的和值进行正弦计算,再乘以正弦信号的幅值Ui,得到电流补偿值,例如,可通过公式Ui*sin(θ *+θ)得到电流补偿值。
具体地,当电流补偿值较大时,确定模块510可以通过补偿系数调节电流补偿值,并传送至电流调节器,电流调节器根据电流补偿模块输出的电流补偿值、伺服电机发送的电流反馈值和速度调节器输出的电流指令,输出转矩指令,传送至伺服电机。伺服电机在接收到转矩指令后,根据转矩指令快速地调整伺服电机的运行频率,使运行频率远离谐振减速机的固有频率,使得伺服电机与谐波减速机之间的共振现象减弱甚至消失,消除了负载因共振引起的速度波动,使负载的运行保持精准。
需要说明的是,前述对方法实施例的解释说明也适用于该实施例的装置,原理相同,此处不再赘述。
综上所述,根据本公开实施例的震动抑制装置,在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
对应上述实施例,本公开还提出了一种计算机可读存储介质。
本公开实施例的计算机可读存储介质,其上存储有震动抑制程序,该震动抑制程序被处理器执行时实现上述的震动抑制方法。
根据本公开实施例的计算机可读存储介质,通过执行上述的震动抑制方法,在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
对应上述实施例,本公开还提出了一种伺服驱动器。
本公开实施例的伺服驱动器,包括存储器、处理器及存储在存储器上并可在处理器上运行的震动抑制程序,处理器通过运行震动抑制程序,以使上述的震动抑制方法被执行。
根据本公开实施例的伺服驱动器,通过执行上述的震动抑制方法,在伺服电机与谐波减速机共振而产生震动时,通过电流补偿的方式有效抑制共振,响应速度快,滞后时间短,补偿效果独立可控,稳定性更好,且不受其他调节器参数的影响。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (22)

  1. 震动抑制方法,应用于伺服驱动器,所述方法包括:
    在所述伺服驱动器驱动带有谐波减速机的伺服电机进行工作时,根据所述伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值;
    将所述电流补偿值施加到所述伺服驱动器中的电流调节器,以便所述电流调节器根据所述电流补偿值、电流反馈值和电流指令对所述伺服电机进行控制,以对所述谐波减速机引起的共振进行抑制。
  2. 根据权利要求1所述的方法,其中,根据所述伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值,包括:
    根据所述位置差生成正弦信号,并对所述正弦信号进行幅值检测,获得所述正弦信号的幅值,以及根据所述正弦信号和所述正弦信号的幅值确定标准正弦信号;
    对所述位置差进行变换处理,获得相位信号,并根据所述标准正弦信号对所述相位信号进行锁相环处理,以将所述位置差的相位锁住时根据所述正弦信号的幅值、所述相位信号和锁相环输出的相位补偿信号确定所述电流补偿值。
  3. 根据权利要求2所述的方法,其中,根据所述位置差生成正弦信号,包括:
    对所述位置差进行带通滤波处理,获得震动信号,并对所述位置差与所述震动信号之间的差值进行平滑处理,获得直流偏置;
    将所述位置差减去所述直流偏置,获得所述正弦信号。
  4. 根据权利要求2所述的方法,其中,根据所述正弦信号和所述正弦信号的幅值确定标准正弦信号,包括:
    将所述正弦信号除以所述正弦信号的幅值,获得所述标准正弦信号。
  5. 根据权利要求3所述的方法,其中,对所述位置差进行变换处理,包括:
    对所述位置差进行傅里叶变换,获得实际震动频率,并对所述实际震动频率进行积分计算,获得所述相位信号。
  6. 根据权利要求5所述的方法,其中,在通过带通滤波器对所述位置差进行带通滤波处理之前,所述方法还包括:
    根据所述实际震动频率对所述带通滤波器的带宽进行调整。
  7. 根据权利要求2-6中任一项所述的方法,其中,根据所述标准正弦信号对所述相位信号进行锁相环处理,包括:
    对所述相位信号与所述相位补偿信号之和进行余弦计算,获得单位余弦信号,并对所述标准正弦信号与所述单位余弦信号的乘积进行低通滤波处理和移动平均滤波处理,获得误差信号;
    对所述误差信号进行滞环处理;
    在所述误差信号大于预设阈值时,对所述误差信号进行PI调节,获得所述相位补偿信号;
    在所述误差信号小于等于预设阈值时,确定所述位置差的相位被锁住。
  8. 根据权利要求7所述的方法,其中,根据所述正弦信号的幅值、所述相位信号和锁相环输出的相位补偿信号确定所述电流补偿值,包括:
    对所述相位信号与所述相位补偿信号之和进行正弦计算后,乘以所述正弦信号的幅值,获得所述电流补偿值。
  9. 根据权利要求7所述的方法,其中,在获得所述电流补偿值之后,所述方法还包括:
    根据预设补偿系数对所述电流补偿值进行调节。
  10. 根据权利要求1所述的方法,其中,在所述电流调节器根据所述电流补偿值、电流反馈值和电流指令对所述伺服电机进行控制之前,所述方法还包括:
    通过位置调节器对所述伺服电机的转子位置反馈值与位置指令之间的位置差进行处理,获得速度指令;
    通过速度调节器对所述伺服电机的速度反馈值与所述速度指令之间的速度差进行处理,获得所述电流指令。
  11. 根据权利要求10所述的方法,其中,所述伺服电机的速度反馈值根据所述伺服电机的转子位置反馈值确定。
  12. 计算机可读存储介质,其上存储有震动抑制程序,该震动抑制程序被处理器执行时实现根据权利要求1-11中任一项所述的震动抑制方法。
  13. 伺服驱动器,包括存储器、处理器及存储在存储器上并可在处理器上运行的震动抑制程序,所述处理器通过运行所述震动抑制程序,以使权利要求1-11中任一项所述的震动抑制方法被执行。
  14. 震动抑制装置,应用于伺服驱动器,所述装置包括:
    确定模块,用于在所述伺服驱动器驱动带有谐波减速机的伺服电机进行工作时,根据所述伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值;
    补偿模块,用于将所述电流补偿值施加到所述伺服驱动器中的电流调节器,以便所述电流调节器根据所述电流补偿值、电流反馈值和电流指令对所述伺服电机进行控制,以对所述谐波减速机引起的共振进行抑制。
  15. 伺服驱动系统,包括:
    伺服电机,所述伺服电机的输出端设置有谐波减速机;
    伺服驱动器,所述伺服驱动器包括位置调节器、速度调节器和电流调节器;
    电流补偿模块,用于在所述伺服驱动器驱动所述伺服电机时根据所述伺服电机的转子位置反馈值与位置指令之间的位置差确定电流补偿值;
    其中,所述位置调节器,用于对所述位置差进行处理,获得速度指令;
    所述速度调节器,用于对所述伺服电机的速度反馈值与所述速度指令之间的速度差进行处理,获得电流指令;
    所述电流调节器,用于根据所述电流补偿值、电流反馈值和所述电流指令对所述伺 服电机进行控制,以对所述谐波减速机引起的共振进行抑制。
  16. 根据权利要求15所述的伺服驱动系统,其中,所述电流补偿模块包括:
    信号生成单元,用于根据所述位置差生成正弦信号;
    幅值检测单元,用于对所述正弦信号进行幅值检测,获得所述正弦信号的幅值;
    除法单元,用于将所述正弦信号除以所述正弦信号的幅值,以确定标准正弦信号;
    变换单元,用于对所述位置差进行变换处理,获得相位信号;
    锁相环单元,用于根据所述标准正弦信号对所述相位信号进行锁相环处理;
    补偿电流计算单元,用于在所述锁相环单元将所述位置差的相位锁住时根据所述正弦信号的幅值、所述相位信号和锁相环输出的相位补偿信号确定所述电流补偿值。
  17. 根据权利要求16所述的伺服驱动系统,其中,所述生成单元包括:
    带通滤波器,用于对所述位置差进行带通滤波处理,获得震动信号;
    第一移动平均滤波器,用于对所述位置差与所述震动信号之间的差值进行平滑处理,获得直流偏置;
    减法器,用于将所述位置差减去所述直流偏置,获得所述正弦信号。
  18. 根据权利要求17所述的伺服驱动系统,其中,所述变换单元包括:
    傅里叶变换处理器,用于对所述位置差进行傅里叶变换,获得实际震动频率;
    积分器,用于对所述实际震动频率进行积分计算,获得所述相位信号。
  19. 根据权利要求18所述的伺服驱动系统,其中,所述带通滤波器的带宽还根据所述实际震动频率进行调整。
  20. 根据权利要求16-19中任一项所述的伺服驱动系统,其中,所述锁相环单元包括:
    余弦计算器,用于对所述相位信号与所述相位补偿信号之和进行余弦计算,获得单位余弦信号;
    乘法器,用于对所述标准正弦信号与所述单位余弦信号进行乘法计算;
    低通滤波器,用于对所述乘法器的输出结果进行低通滤波处理;
    第二移动平均滤波器,用于对所述低通滤波器的输出结果进行移动平均滤波处理,获得误差信号;
    滞环处理器,用于对所述误差信号进行滞环处理;
    PI调节器,用于在所述误差信号大于预设阈值时,对所述误差信号进行PI调节,获得所述相位补偿信号;
    补偿判断部,用于在所述误差信号小于等于预设阈值时,确定所述位置差的相位被锁住。
  21. 根据权利要求20所述的伺服驱动系统,其中,所述补偿电流计算单元包括:
    正弦计算器,用于对所述相位信号与所述相位补偿信号之和进行正弦计算后,乘以所述正弦信号的幅值,获得所述电流补偿值。
  22. 根据权利要求15所述的伺服驱动系统,其中,所述伺服电机的速度反馈值根 据所述伺服电机的转子位置反馈值确定。
PCT/CN2022/085648 2021-11-25 2022-04-07 振动抑制方法及装置、伺服驱动器和伺服驱动系统 WO2023092925A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111412715.4A CN114123895B (zh) 2021-11-25 2021-11-25 振动抑制方法及装置、伺服驱动器和伺服驱动系统
CN202111412715.4 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023092925A1 true WO2023092925A1 (zh) 2023-06-01

Family

ID=80373099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085648 WO2023092925A1 (zh) 2021-11-25 2022-04-07 振动抑制方法及装置、伺服驱动器和伺服驱动系统

Country Status (2)

Country Link
CN (1) CN114123895B (zh)
WO (1) WO2023092925A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123895B (zh) * 2021-11-25 2022-11-15 广东美的智能科技有限公司 振动抑制方法及装置、伺服驱动器和伺服驱动系统
CN114448313B (zh) * 2022-03-03 2024-01-23 西安热工研究院有限公司 一种基于伺服驱动器的振动补偿系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343284A (ja) * 1993-05-31 1994-12-13 Toyota Motor Corp Acサーボモータの繰り返し制御方法及び装置
JP2005174082A (ja) * 2003-12-12 2005-06-30 Yaskawa Electric Corp 位置決め制御装置
JP2008155677A (ja) * 2006-12-21 2008-07-10 Nsk Ltd パワーステアリング制御装置、および方法
JP2016111742A (ja) * 2014-12-03 2016-06-20 トヨタ自動車株式会社 車両駆動装置
CN114123895A (zh) * 2021-11-25 2022-03-01 广东美的智能科技有限公司 振动抑制方法及装置、伺服驱动器和伺服驱动系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515442B1 (en) * 1998-09-28 2003-02-04 Kabushiki Kaisha Yaskawa Denki Position controller
CN103986392B (zh) * 2014-04-10 2016-08-17 南京工程学院 一种低速直驱式交流伺服系统的控制方法
CN106655957B (zh) * 2016-11-21 2019-01-15 广东华中科技大学工业技术研究院 一种用于动力锂电池制备装置的防谐振控制系统及方法
CN113054877B (zh) * 2021-01-12 2023-09-29 北京控制工程研究所 基于特征频率观测器的永磁电机谐波扰动力矩抑制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343284A (ja) * 1993-05-31 1994-12-13 Toyota Motor Corp Acサーボモータの繰り返し制御方法及び装置
JP2005174082A (ja) * 2003-12-12 2005-06-30 Yaskawa Electric Corp 位置決め制御装置
JP2008155677A (ja) * 2006-12-21 2008-07-10 Nsk Ltd パワーステアリング制御装置、および方法
JP2016111742A (ja) * 2014-12-03 2016-06-20 トヨタ自動車株式会社 車両駆動装置
CN114123895A (zh) * 2021-11-25 2022-03-01 广东美的智能科技有限公司 振动抑制方法及装置、伺服驱动器和伺服驱动系统

Also Published As

Publication number Publication date
CN114123895A (zh) 2022-03-01
CN114123895B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2023092925A1 (zh) 振动抑制方法及装置、伺服驱动器和伺服驱动系统
US9268316B2 (en) Method for automatically estimating a friction coefficient in a mechanical system
KR101521487B1 (ko) 동력계 시스템
JP4411796B2 (ja) 速度センサを持たない誘導モータドライブの制御システム、オブザーバ及び制御方法
CN109347391B (zh) 一种考虑系统噪声的朗道自适应转动惯量辨识方法
Byl et al. A loop shaping perspective for tuning controllers with adaptive feedforward cancellation
US8541972B2 (en) Method for suppressing speed ripple by using torque compensator based on activation function
CN104993766A (zh) 一种二质量系统谐振抑制方法
JP2009227186A (ja) 車両速度制御装置
WO2018156683A1 (en) System parameter identification method based on rate-limited relay with hysteresis and sinusoidal injection
JP5659727B2 (ja) クレーン振れ角検出方法及び装置、並びにクレーン振れ止め制御方法及び装置
JP2019168777A (ja) 制御系設計支援装置、制御系設計支援方法、及び制御系設計支援プログラム
KR101005930B1 (ko) 풍력 발전기의 피치 제어 시스템 및 방법을 실행하는 프로그램 기록매체
US20220321043A1 (en) Motor Control Device and Automatic Adjustment Method For Same
JP4789067B2 (ja) システム同定装置およびそれを備えたモータ制御装置
CN113879566B (zh) 一种控制力矩陀螺框架系统高频扰动的自适应补偿方法
JP2010022132A (ja) 慣性モーメント同定器を備えたモータ制御装置
CN112398402A (zh) 基于快速有效集的电机模型预测控制方法、装置及控制器
TWI833538B (zh) 馬達控制裝置及其自動調整方法
TWI423579B (zh) Servo motor drive control system
WO2019198507A1 (ja) 制御装置、電力変換装置、空調システム、制御方法、及びプログラム
JP5277790B2 (ja) 慣性モーメント同定器を備えたモータ制御装置
JP2009175946A (ja) 位置制御装置
Zhang et al. Fast position predictive control with current and speed limits for permanent magnet motor systems without weight coefficients
Zhang et al. Starting Torque Control Strategy Based on Offset-Free Model Predictive Control Theory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897026

Country of ref document: EP

Kind code of ref document: A1