WO2023092863A1 - 一种非洲猪瘟病毒asfv基因的重组病毒组合及由其制备的疫苗 - Google Patents

一种非洲猪瘟病毒asfv基因的重组病毒组合及由其制备的疫苗 Download PDF

Info

Publication number
WO2023092863A1
WO2023092863A1 PCT/CN2022/074457 CN2022074457W WO2023092863A1 WO 2023092863 A1 WO2023092863 A1 WO 2023092863A1 CN 2022074457 W CN2022074457 W CN 2022074457W WO 2023092863 A1 WO2023092863 A1 WO 2023092863A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
mgf
recombinant
virus
swine fever
Prior art date
Application number
PCT/CN2022/074457
Other languages
English (en)
French (fr)
Inventor
扈荣良
周鑫韬
郭晓盼
陈腾
岳慧贤
张艳艳
张守峰
张菲
Original Assignee
中国人民解放军军事科学院军事医学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军军事科学院军事医学研究院 filed Critical 中国人民解放军军事科学院军事医学研究院
Publication of WO2023092863A1 publication Critical patent/WO2023092863A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/12011Asfarviridae
    • C12N2710/12022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/12011Asfarviridae
    • C12N2710/12034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16711Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
    • C12N2710/16741Use of virus, viral particle or viral elements as a vector
    • C12N2710/16743Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20111Lyssavirus, e.g. rabies virus
    • C12N2760/20141Use of virus, viral particle or viral elements as a vector
    • C12N2760/20143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/10011Arteriviridae
    • C12N2770/10041Use of virus, viral particle or viral elements as a vector
    • C12N2770/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Definitions

  • the invention relates to a recombinant virus combination of ASFV gene of African swine fever virus and a vaccine prepared therefrom, belonging to the technical field of veterinary biological products.
  • African swine fever African swine fever
  • ASF African swine fever
  • ASF African Swine Fever
  • ASFV African Swine Fever Virus
  • the African swine fever virus genome is 170-193kb in length, contains 150-180 ORFs, and is presumed to encode about 165 proteins. Among them, a large number of genes related to virus virulence, immunosuppression, inhibition of apoptosis, etc. have been found, including multi-gene family genes. Studies suggest that its virulence factors include 9GL, UK, I177L, etc.
  • immunosuppressive Factors include MGF100, MGF110, MGF300, MGF360, and MGF505 (Afonso et al., 2004) (Li et al., 2021) (Reis et al., 2016), blood adsorption factors such as CD2v, EP153R, etc. (Rodriguez et al. ,1993).
  • the attenuated vaccine strains that have deleted genes such as ASFV MGF360, MGF505, CD2v, UK, and A238L, as well as the natural attenuated strains isolated from domestic pigs or wild boar herds, have proved to have certain immune protection effects in pigs, but some virulence It has been proved in field experiments that the strain can produce chronic lesions, such as skin ulcers, fever, joint swelling, stiff pigs, sow abortion, and clinical abnormal symptoms during the fattening period and other adverse reactions (King et al., 2011; Leitao et al., 2001 ; Revilla et al., 1992, personal communication).
  • Recombinant vaccines and subunit vaccines constructed using some ASFV genes such as p30, p54, p72, CD2v, etc. have been reported to have certain immune effects, such as the use of two genes such as p30, p54, p72, EP402R, and C-type Lectin (EP153R).
  • the above protein subunit mixtures and gene tandem expression protein products some reports have a certain immune protection effect, and some reports do not have sufficient immunoprotective properties. So far, no vaccine application with better effect has been seen, and there is no subunit Vaccines are approved for marketing.
  • the Spanish research team selected EP153R, p10, p15, CP80R, I329L, H108R, K196R, CP312R, F334L, NP419L, NP868R, B66L, H339R, R298L and K145R, B385R, F165R, F778R, S273R, MGF100-1L, A224L, MGF505-6R, B175L, the recombinant adenovirus "cocktail" using these genes, and adopt The best adjuvants were used for immunization and challenge, and it turned out that these antigen combinations did not confer challenge protection in immunized pigs (Cadenas-Fernández et al., 2020).
  • virulence genes of ASFV are not completely clear except those mentioned above. Some genes have the function of inhibiting the production of interferon, some have the function of inhibiting apoptosis, and some of them play the role of similar inflammatory factors. At present, after the deletion or mutation of some proteins MGF110, MGF360, MGF505 and UK, CD2v, DP71L, 9GL, B119L, I329L, DP148R, M448R and other genes in the multi-gene family, the virulence of the virus is mostly or completely lost. Past studies have shown that pigs immunized with many ASFV gene combinations do not provide complete protection against ASFV infection.
  • One object of the present invention is to provide an African swine fever virus protein combination.
  • the African swine fever virus protein combination provided by the invention includes the following three proteins: MGF 110-5L-6L protein, B119L protein and DP96R protein.
  • the above ASFV protein combination also includes any 1, any 2, any 3, any 4, any 5, any 6, any 7, any 8, any 9, any 10 of the following 13 proteins species, any 11 species, any 12 species or all 13 species;
  • the 13 proteins are MGF 110-9L, I329L, MGF 505-5R, B438L, O61R, E199L, M448R, MGF 505-7R, A137R, I177L, I226R, DP71L and K196R.
  • the above-mentioned proteins are all from African swine fever virus, and can be full-length proteins, or protein truncated bodies with the same function.
  • the protein MGF 110-5L-6L is any of the following:
  • the protein B119L is any of the following:
  • the protein DP96R is any of the following:
  • the protein B438L is any of the following:
  • the protein O61R is any of the following:
  • the protein E199L is any of the following:
  • the protein I329L is any of the following:
  • the protein MGF 505-5R is any of the following:
  • the protein DP71L is any of the following:
  • the protein K196R is any of the following:
  • the protein M448R is any of the following:
  • the protein MGF 505-7R is any of the following:
  • the protein A137R is any of the following:
  • the protein I177L is any of the following:
  • the protein I226R is any of the following:
  • the protein MGF 110-9L is any of the following:
  • ASFV protein combination is any combination of the following:
  • MGF 110-5L-6L B119L
  • DP96R DP96R
  • Another object of the present invention is to provide an African swine fever virus gene combination.
  • the gene combination provided by the present invention includes the following three genes: gene MGF 110-5L-6L, gene B119L and gene DP96R.
  • the above African swine fever virus gene combination also includes any 1, any 2, any 3, any 4, any 5, any 6, any 7, any 8, any 9 of the following 13 genes , any 10, any 11, any 12 or all 13;
  • the 13 genes are gene MGF 110-9L, gene I329L, gene MGF 505-5R, gene B438L, gene O61R, gene E199L, gene M448R, gene MGF 505-7R, gene A137R, gene I177L, gene I226R, gene DP71L and gene K196R.
  • the gene MGF 110-5L-6L is any of the following:
  • the gene B119L is any of the following:
  • the gene DP96R is any of the following:
  • the gene B438L is any of the following:
  • the gene O61R is any of the following:
  • the gene E199L is any of the following:
  • the gene I329L is any of the following:
  • the gene MGF 505-5R is any of the following:
  • the gene DP71L is any of the following:
  • the gene K196R is any of the following:
  • the gene M448R is any of the following:
  • the gene MGF 505-7R is any of the following:
  • the gene A137R is any of the following:
  • the gene I177L is any of the following:
  • the gene I226R is any of the following:
  • the gene MGF 110-9L is any of the following:
  • Yet another object of the present invention is to provide recombinant vector sets.
  • the recombinant vector set provided by the present invention includes a recombinant vector or a recombinant vector set expressing genes MGF 110-5L-6L, gene B119L and gene DP96R.
  • the above recombinant vector group also includes expression of any 1, any 2, any 3, any 4, any 5, any 6, any 7, any 8, any 9, any of the following 13 genes 10, any 11, any 12 or all 13 recombinant vectors or sets of recombinant vectors.
  • the 13 genes are gene MGF 110-9L, gene I329L, gene MGF 505-5R, gene B438L, gene O61R, gene E199L, gene M448R, gene MGF 505-7R, gene A137R, gene I177L, gene I226R, gene DP71L and gene K196R.
  • the above-mentioned recombinant vector is a recombinant vector obtained by inserting each gene or multiple genes into an expression vector;
  • the above-mentioned recombinant vector group is a recombinant vector group composed of each of the above-mentioned recombinant vectors;
  • each gene is distributed individually or in multiples on each recombinant vector; that is, each recombinant vector can express a single gene, or multiple gene-coupled genes.
  • the above-mentioned expression vectors include but are not limited to: human adenovirus type 5, pox virus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus, porcine adenovirus, porcine encephalitis virus, swine fever virus, rabies virus, retrovirus, para Myxovirus or other viral vector systems or bacterial vector systems that can produce transient infection, stable infection or continuous expression of foreign genes in mammals without causing any abnormal clinical symptoms.
  • the recombinant vector is, for example, a recombinant adenovirus vector, a recombinant porcine reproductive and respiratory syndrome virus vector, a recombinant porcine pseudorabies virus vector or a recombinant rabies virus vector.
  • Yet another object of the present invention is to provide recombinant virus combinations.
  • the recombinant virus combination provided by the invention comprises a recombinant virus or a recombinant virus group expressing genes MGF 110-5L-6L, gene B119L and gene DP96R.
  • the above recombinant virus combination also includes expression of any 1, any 2, any 3, any 4, any 5, any 6, any 7, any 8, any 9, any of the following 13 genes 10, any 11, any 12 or all 13 recombinant viruses or groups of recombinant viruses;
  • the 13 genes are gene MGF 110-9L, gene I329L, gene MGF 505-5R, gene B438L, gene O61R, gene E199L, gene M448R, gene MGF 505-7R, gene A137R, gene I177L, gene I226R, gene DP71L and gene K196R.
  • the recombinant virus is a recombinant virus obtained by separately packaging recombinant vectors expressing individual genes or recombinant vectors expressing multiple genes.
  • the above-mentioned recombinant virus group is a recombinant virus group composed of each of the above-mentioned recombinant viruses;
  • each gene is distributed individually or in multiples on each recombinant virus; that is, each recombinant virus can express a single gene, or multiple gene-coupled genes.
  • the above-mentioned combination of recombinant viruses may be a combination of the same type of vector virus, or a combination of different types of vector viruses.
  • the recombinant adenovirus is used to transfect the cells with the recombinant adenovirus vector expressing the target gene and the backbone plasmid pacAd5 9.2-100, and then package the recombinant adenovirus.
  • the recombinant adenovirus group can be a combination of 3 or more recombinant adenoviruses, and the amount of each virus used is greater than or equal to 10 8.0 TCID 50 ; as shown in Figure 8-12 and Figure 14 in the embodiment.
  • Recombinant PRRS virus is to transfect cells with a recombinant PRRS virus vector expressing a target gene, and then package the recombinant PRRS virus.
  • the recombinant PRRS virus group can be a combination of 3 or more recombinant PRRS viruses, and the amount of each virus used is greater than or equal to 10 3.5 TCID 50 ; as shown in Figure 17 of the embodiment.
  • the recombinant pseudorabies virus is to transfect cells with the recombinant pseudorabies virus vector expressing the target gene, and then package the recombinant pseudorabies virus.
  • the recombinant pseudorabies virus group can be a combination of 3 or more recombinant pseudorabies viruses, and the amount of each virus used is greater than or equal to 10 4.5 TCID 50 ; as shown in Figure 20 of the embodiment.
  • the recombinant rabies virus is to transfect the cells with the recombinant rabies virus vector expressing the target gene and the vector expressing N, P, G and L structural genes, and then package the recombinant rabies virus.
  • the recombinant rabies virus group can be a combination of 3 or more recombinant rabies viruses, and the amount of each virus used is greater than or equal to 10 6.0 TCID 50 ; as shown in Figure 24 of the embodiment;
  • the recombinant virus group can also be a combination of 3 or more recombinant adenoviruses and 3 or more recombinant rabies viruses, and the amount of each virus used is greater than or equal to 10 6.0 TCID 50 ; as shown in Figure 25 and Figure 26 in the embodiment the combination shown;
  • the recombinant virus group can also be a combination of 3 or more recombinant PRRS virus groups and 3 or more recombinant pseudorabies viruses, such as the combination shown in Figure 27 in the embodiment.
  • the recombinant virus groups can be mixed together for injection, or can be divided into two injections.
  • the titers of recombinant PRRSV are all 10 5.5 TCID 50 /ml
  • the titers of recombinant PRV are all 10 6.5 TCID 50 /ml.
  • Another object of the present invention is to provide a product capable of preventing and/or treating diseases caused by African swine fever virus infection.
  • the active ingredient of the product provided by the invention is the combination of the above-mentioned recombinant viruses.
  • the above-mentioned combination of recombinant viruses can be any combination of three recombinant viruses or more than three recombinant viruses, mixed together according to a certain ratio and used directly or in batches.
  • the above-mentioned products also include adjuvants or immunopotentiators or immunomodulators or other vaccines.
  • the above-mentioned adjuvants can be salt adjuvants such as aluminum gel, different polysaccharide adjuvants, biological protein adjuvants, nucleic acid adjuvants or nanomaterial adjuvants, etc.; in the embodiments of the present invention, further, the adjuvant It is a polysaccharide adjuvant, specifically pachyphyllin or schisandra polysaccharide.
  • the aforementioned products are in particular vaccines.
  • the present invention also provides a method for preventing African swine fever virus, which is to realize immunization after immunizing animals with the above product.
  • each recombinant virus in the product is mixed in a certain proportion and then immunized.
  • the above-mentioned immunization is one immunization or multiple batch immunizations; the titers of each recombinant virus in the recombinant virus combination in each immunization are mixed in equal proportions or mixed in different proportions.
  • the invention provides a combination of ASFV gene recombinant virus and the vaccine prepared therefrom, that is, using MGF 110-9L, MGF 110-5L-6L, B119L, DP96R, I329L, MGF 505-5R, B438L, O61R of ASFV , E199L, M448R, MGF 505-7R, A137R, I177L, I226R, DP71L, K196R and other genes are used as target genes to construct recombinant viruses or recombinant bacteria of different viral or bacterial vectors, and the recombinant viruses or recombinant bacteria of these different genes are combined , the cultured virus liquid or bacterial culture liquid is mixed in equal proportions or in different proportions and used directly, or mixed with adjuvants and immune enhancers, and used to immunize susceptible animals, all of which can show good immunity to African swine fever virus
  • the challenge protection function can protect susceptible pigs from natural infection or artificial challenge of ASFV vir
  • the virulence antigen gene of African swine fever virus can also be memorized by the body's immune system. After being expressed in the body, it stimulates the body to have a specific immune protection response and memory response, so that the body can resist ASFV infection. Immunity was further improved after combination of virulence antigen gene and structural protein gene.
  • Figure 1 is a schematic diagram of the construction of African swine fever virus gene-human adenovirus type 5 recombinant virus.
  • Figure 2 is a schematic diagram of the construction of African swine fever virus gene-rabies virus vector recombinant virus. O61R, E199L, M448R, MGF 505-7R, A137R, I177L, I226R, DP71L, K196R and other genes alone or two or more independent or fused gene fragments.
  • Figure 3 is a schematic diagram of the construction of African swine fever virus gene-PRRSV vector recombinant virus. E199L, M448R, MGF 505-7R, A137R, I177L, I226R, DP71L, K196R and other genes alone or two or more independent or fused gene fragments.
  • Figure 4 is a schematic diagram of the construction of African swine fever virus gene-PRV vector recombinant virus. E199L, M448R, MGF 505-7R, A137R, I177L, I226R, DP71L, K196R and other genes alone or two or more independent or fused gene fragments.
  • Figure 5 shows the amplification primers and product sizes of each gene.
  • Fig. 6 is the titer determination result of recombinant adenovirus.
  • Figure 7 shows the amplification primers and product sizes of p30, p54, p72, pCD2v, pF317L, and pp62 genes.
  • Figure 8 shows the results of immune challenge with different recombinant virus combinations and traditional target protein recombinant viruses.
  • Figure 9 shows the results of immune challenge with different recombinant virus combinations and traditional target protein recombinant viruses.
  • Figure 10 shows the results of immune challenge with different recombinant virus combinations and traditional target protein recombinant viruses.
  • Figure 11 shows the results of challenge of pigs immunized with different gene recombinant adenovirus combinations.
  • Figure 12 shows the results of challenge of pigs immunized with different gene recombinant adenovirus combinations.
  • Figure 13 shows the recombinant virus specific amplification primers and product size.
  • Figure 14 is a comparison of the immune effects of different three-gene fusion recombinant viruses and traditional target protein recombinant viruses.
  • Figure 15 shows the recombinant PRRSV virus-specific primers and product size.
  • Figure 16 is the titer determination result of recombinant PRRSV.
  • Figure 17 shows the results of challenge of pigs immunized with recombinant PRRSV with different gene combinations.
  • Figure 18 shows the recombinant PRV virus-specific primers and product size.
  • Figure 19 is the titer determination result of African swine fever virus gene-recombinant PRV.
  • Figure 20 shows the results of the challenge of pigs immunized with recombinant PRV such as MGF 110-9L.
  • Figure 21 is the preparation of transfection solution.
  • Figure 22 is ASFV gene-recombinant RABV virus-specific identification primers and product size.
  • Figure 23 is the titer determination result of African swine fever virus gene-recombined RABV.
  • Figure 24 is the result of ASFV gene recombinant rabies virus immune pig challenge.
  • Figure 25 shows the results of ASFV gene-recombinant adenovirus and recombinant rabies virus immunized pigs.
  • Figure 26 shows the results of ASFV gene recombinant adenovirus and recombinant rabies virus immunized pigs.
  • Figure 27 shows the results of ASFV gene recombinant PRRSV and recombinant PRV immune pig challenge.
  • Cells HEK293AD cells (purchased from Invitrogen, USA) are stored in the laboratory of our unit and need to be cultured in DMEM medium or full suspension medium containing 1%-10% fetal bovine serum.
  • BHK-21 cells (purchased from China Veterinary Drug Control Institute), stored in the laboratory of the unit, need to be cultured in DMEM medium or full suspension medium containing 1%-10% fetal bovine serum.
  • Marc-145 cells purchased from China Veterinary Drug Control Institute
  • Vero cells (purchased from the China Veterinary Drug Control Institute), stored in the laboratory of the unit, need to be cultured in DMEM medium containing 1%-10% fetal bovine serum.
  • the plasmid vector pacAd5 CMVK-NpA purchased from Invitrogen, USA
  • the backbone plasmid pacAd5 9.2-100 purchased from Invitrogen, USA
  • Rabies virus vaccine strain SRV 9 strain an attenuated vaccine strain preserved in our laboratory (Yue Junming, Hou Shikuan, Yin Zhen. Research status of rabies vaccine oral immunization[J]. Chinese Journal of Zoonoses, 1994, 10(3) :32-35.).
  • the PRRSV vaccine candidate strain is the PRRSV-A1 strain synthesized by our laboratory (the full length of the gene is synthesized by Jilin Kumei Biotechnology Co., Ltd., the 59th-15453bp of sequence 33), which is a rescued attenuated vaccine strain with infectivity Genomes are cloned in plasmids.
  • the pseudorabies virus strain is the vaccine candidate strain JL14- ⁇ gI/gE.
  • the specific construction method the virulent JL strain isolated and identified by our laboratory is attenuated by the homologous recombination of gI and gE genes to become a vaccine candidate Strain JL14- ⁇ gI/gE strain (candidate strain JL14- ⁇ gI/gE is recorded in the following literature: Zhou Xintao. Construction and characteristics of pseudorabies virus gene deletion strain JL14- ⁇ gI/gE/TK[D]. Jilin Agricultural University , 2018.).
  • African swine fever virus SY18 strain (recorded in the following documents: Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, Zhang S, Cao P, Li X, Tian K, Qiu HJ, Hu R (2016)Emergence of African Swine Fever in China,2018.Transboundary and emerging diseases 65(6):1482-1484.doi:10.1111/tbed.12989), isolated in 2018 by the Epidemiology Laboratory of the Military Veterinary Research Institute.
  • GenBank accession number of the genome sequence of this virus MH766894 (submitted on August 17, 2018).
  • the strain used in this research is the fourth-generation multiplication virus of PAM cells, which is stored at -80°C.
  • African swine fever virus target genes MGF 110-5L-6L, B119L, DP96R, B438L, O61R, E199L, I329L, MGF 505-5R, DP71L, K196R, M448R, MGF 505-7R, A137R, I177L, I226R, MGF 110- 9L.
  • African swine fever virus target gene MGF 110-5L-6L (sequence 1), B119L (sequence 2), DP96R (sequence 3), B438L (sequence 4), O61R (sequence 5), E199L (sequence 6), I329L (sequence 7), MGF 505-5R (SEQ 8), DP71L (SEQ 9), K196R (SEQ 10), M448R (SEQ 11), MGF 505-7R (SEQ 12), A137R (SEQ 13), I177L (SEQ 14)
  • the nucleotide sequences of , I226R (sequence 15), and MGF 110-9L (sequence 16) are sequentially sequence 1-sequence 16.
  • the amino acid sequences of , I226R (SEQ ID NO: 31), and MGF 110-9L (SEQ ID NO: 32) are sequence 17-SEQ ID NO: 32.
  • Embodiment 1 Construction of recombinant adenovirus expressing African swine fever virus target gene and immune effect
  • This embodiment provides African swine fever virus target genes MGF 110-5L-6L, B119L, DP96R, B438L, O61R, E199L, I329L, MGF 505-5R, DP71L, K196R, M448R, MGF 505-7R, A137R, I177L, Construction of I226R, MGF 110-9L recombinant adenovirus (the construction and use strategies of ASFV gene recombinant virus of other replication-deficient and replicable vector DNA viruses are similar).
  • the genome of African swine fever virus SY18 strain was extracted by conventional methods, and ASFV MGF 110-5L-6L, B119L, DP96R, B438L, O61R, E199L, I329L, MGF 505- Primers for 5R, DP71L, K196R, M448R, MGF 505-7R, A137R, I177L, I226R, MGF 110-9L target genes ( Figure 5).
  • the PCR method was used to amplify separately to obtain homologous recombination gene fragments of each gene.
  • the following recombinant plasmids are plasmids obtained by inserting each gene fragment into the EcoRI site of the plasmid pacAd5 CMVK-NpA (human type 5 adenovirus expression vector).
  • the homologous recombination gene fragments of the above-mentioned genes were respectively connected with the linearized pacAd5 CMVK-NpA plasmid obtained after digestion with EcoRI, and then transformed into Escherichia coli competent cells for homologous recombination to obtain the following 16 recombinant plasmids: pAdCMV- MGF 110-5L-6L, pAdCMV-B119L, pAdCMV-DP96R, pAdCMV-B438L, pAdCMV-O61R, pAdCMV-E199L, pAdCMV-I329L, pAdCMV-MGF 505-5R, pAdCMV-DP71L, pAdCMV-K196R, pAdCMV-M448 R, pAdCMV-MGF 505-7R, pAdCMV-A137R, pAdCMV-I177L
  • the above 16 kinds of recombinant plasmids were respectively ASFV MGF 110-5L-6L, B119L, DP96R, B438L, O61R, E199L, I329L, MGF 505-5R, DP71L, K196R, M448R, MGF 505-7R, A137R, I177L, I226R, MGF 110-9L
  • target genes are vectors obtained by inserting the homologous recombination gene fragments of each gene into the EcoRI restriction site of the pacAd5 CMVK-NpA plasmid, and the 16 recombinant plasmids express the corresponding 16 target genes.
  • the above-mentioned recombinant plasmids digested by restriction enzymes were mixed in a certain proportion (2 micrograms) with restriction plasmid pacAd5 9.2-100 (4 micrograms), and then mixed with 12 microliters of transfection reagent ( 2000) after mixing, add 2ml of cell culture medium, evenly add to the cell monolayer, transfect HEK293AD cells that grow into a monolayer of 25CM 2 , and after 3 days, the transfected cells are subcultured. After growing to a monolayer, follow the The above steps were performed separately for the second transfection.
  • the P3 generation recombinant adenovirus expressing each target gene obtained in the above 2 was titered, and the measuring method was as follows: the virus culture solution was serially diluted 10 times, and a total of 12 dilutions were made, and 8 replicate wells were inoculated for each dilution. Inoculate HEK293AD cells in a 96-well plate with an inoculum volume of 0.1ml/well. When cultured at 37°C for 5-6 days after inoculation, observe the cytopathic changes under a light microscope, and calculate the TCID 50 of the virus according to the Reed-Muench method.
  • rAdv-MGF 110-5L-6L rAdv-B119L
  • rAdv-DP96R rAdv-B438L
  • rAdv-O61R rAdv-E199L
  • rAdv-I329L rAdv-MGF 505- 5R
  • rAdv-DP71L rAdv-K196R
  • rAdv-M448R rAdv-MGF 505-7R
  • rAdv-A137R rAdv-I177L
  • rAdv-I226R rAdv-MGF 110-9L (as shown in Figure 6).
  • the present invention adopts the recombinant adenovirus rAdv-MGF 110-5L-6L, rAdv-B119L, rAdv-DP96R, rAdv-B438L, rAdv-O61R, rAdv-E199L, rAdv-I329L, rAdv- According to 3, 4, 5, 6 , 7, 8...12 gene recombinant adenovirus combinations for immune protection tests (other replication-deficient and replicable vector DNA viruses and other combinations and use strategies of these genes are similar), as follows:
  • the recombinant adenoviruses prepared above were combined according to the combinations of 3, 4, 5, 6, 7, 8...12 gene recombinant adenoviruses shown in Figure 8- Figure 10 (10 8.0 TCID 50 were used for each virus) to obtain For vaccines in different combinations, the total volume is 2ml, and 100 micrograms of pachyphyllin are added to each vaccine;
  • Poria cocos polysaccharide is prepared according to the following method: crush 10Kg Poria cocos tubers, add 50Kg distilled water to soak overnight, heat to 80°C, keep for 2 hours, and keep stirring, and collect the supernatant by centrifuging at 10000rpm (centrifugal force: 12857g g) for 15 minutes in a continuous centrifuge , and evaporate the water to 1/10 of the volume of the supernatant by a rotary evaporator.
  • mice were injected into pig neck muscles respectively (10 8.0 TCID 50 was used for each virus, and 100 micrograms were added per head (total volume 2ml) after each virus was mixed. Poria cocos), 5 heads in each group.
  • Control immunization group use the mixture of recombinant adenovirus expressing p30, p54, p72, pCD2v, pF317L, pp62 and pp220 genes respectively as a control (each virus uses 10 8.0 TCID 50 , mix each head portion (2ml) and add 100 micrograms of pachyphyllin), 5 heads in each group.
  • Recombinant adenoviruses expressing p30, p54, p72, pCD2v, pF317L, pp62, and pp220 genes were prepared according to the construction method of recombinant adenoviruses in No. 1.
  • the template was the African swine fever virus SY 18 strain genome, primer sequences and amplified genes The size is shown in Figure 7.
  • Infection control group No injection of any virus was used as the challenge control group, with 5 animals in each group.
  • the African swine fever virus SY18 strain was used to virulently infect the above-mentioned each experimental group, the control immunization group and the challenge control group.
  • the present invention adopts the recombinant adenovirus rAdv-MGF 110-9L, rAdv-MGF 110-5L-6L, rAdv-MGF 505-5R, rAdv-B119L, rAdv-DP96R, rAdv-I329L, rAdv-DP96R, rAdv-I329L, More than 9 (9, 10 , 11, 12, 13, 14, 15, 16) immunization and challenge experiments of recombinant adenovirus combinations.
  • the recombinant adenovirus prepared in the above-mentioned one is randomly selected more than 9 combinations including 9, 10, 11, 12, 13, 14, 15, and 16 recombinant adenoviruses as a vaccine, as shown in Figure 11-12, each The virus titer of each recombinant adenovirus in the combination is 10 8 TCID 50 -10 10 TCID 50 /ml, each combination takes 10 8 TCID 50 of each recombinant virus, mixes them in equal proportions, and adds them to each vaccine 100 micrograms of schisandra polysaccharide;
  • Schisandra polysaccharides were prepared as follows: 10Kg Schisandra leaves were crushed, soaked in 50Kg distilled water overnight, heated to 80°C, maintained for 2 hours, and kept stirring, centrifuged at 10000rpm (centrifugal force: 12857g) for 15 minutes in a continuous centrifuge to collect the supernatant, Evaporate water by rotary evaporator to 1/10 of the supernatant volume.
  • Control immunization group (combination of immunized traditional vector vaccines): use the mixture of recombinant adenovirus expressing p30, p54, p72, pCD2v, pF317L, pp62, pp220 genes respectively as control (10 8.0 TCID 50 for each virus, mix and then Add 100 micrograms of Schisandra polysaccharide), 5 heads in each group.
  • Infection control group No injection of any virus was used as the challenge control group, with 5 animals in each group.
  • the African swine fever virus SY18 strain was used to virulently infect the above-mentioned each experimental group, the control immunization group and the challenge control group.
  • Challenge Each head was orally administered 10 3.0 TCID 50 /2ml ASFV virulent SY18 strain, observed for 28 days, and the clinical manifestations and final outcome were recorded.
  • Example 2 Construction of recombinant adenovirus expressing African swine fever virus multi-target gene and immune effect
  • the present invention provides the construction and immune effect of ASFV three-gene fusion recombinant adenovirus (other replication-deficient and replicable carrier DNA viruses have similar construction and combination strategies for the fusion of any three genes and above), as follows:
  • the nucleotides of the coding regions of the three genes in the MGF 110-5L-6L gene sequence + linker sequence + DP96R gene sequence + linker sequence + B119L gene sequence were sequentially connected in series by the In-fusion method to obtain a three-gene fusion fragment (group A , MGF 110-5L-6L-DP96R-B119L);
  • the nucleotides of the coding regions of the three genes in the B438L gene sequence + linker sequence + O61R gene sequence + linker sequence + E199L gene sequence were sequentially connected in series by the In-fusion method to obtain a three-gene fusion fragment (Group B, B438L-O61R- E199L);
  • the nucleotides of the coding regions of the three genes in the MGF 505-5R gene sequence + linker sequence + I329L gene sequence + linker sequence + M448R gene sequence were sequentially connected in series by the In-fusion method to obtain a three-gene fusion fragment (Group C, MGF 505-5R-I329L-M448R);
  • the three-gene fusion recombinant adenovirus was respectively constructed: first, each three-gene fusion fragment was amplified to obtain a homologous recombination fragment (the three-gene fusion fragment was used as a template, and the amplification required Primers and product sizes are shown in Figure 13), constructed into the EcoRI restriction site of pacAd5 CMVK-NpA plasmid by homologous recombination to obtain recombinant plasmid, and then transfected recombinant plasmid and backbone plasmid pacAd5 9.2-100 into HEK293AD cells , harvest the freeze-thaw solution until each P3 generation three-gene fusion recombinant adenovirus is obtained, named rAdv-MGF 110-5L-6L-DP96R-B119L(A), rAdv-B438L-O61R-E199L(
  • each virus culture solution obtained was diluted serially by 10 times respectively, and diluted 12 times in total. Eight replicates were inoculated for each dilution, and each dilution was inoculated into 96-well plates. On HEK293AD cells, the inoculum volume was 0.1ml/well, and when cultured at 37°C for 5-6 days after inoculation, the cytopathic changes were observed under a light microscope, and the TCID 50 of the virus was calculated according to the Reed-Muench method. The result is shown in Figure 14.
  • Experimental group Take 10 8.0 TCID 50 of each three-gene fusion recombinant adenovirus prepared in the above-mentioned one (shown in FIG. 14 ), mix them with A, A+B, A+B+C, and A+C respectively, and then add 100 micrograms Poria cocos polysaccharide; injected into pig neck muscles, immunized 5 pigs in each group.
  • Control immunization group three virus mixtures of recombinant adenoviruses expressing p30, p54, and p72 were used as controls, each virus was used with 10 8.0 TCID 50 , and 100 micrograms of pachyphyllin was added after mixing, and 5 heads were immunized in each group.
  • Infection control group No injection of any virus was used as the challenge control group, with 5 animals in each group.
  • the African swine fever virus SY18 strain was used to virulently infect the above-mentioned each experimental group, the control immunization group and the challenge control group.
  • To challenge take 10 3.0 TCID 50 /2ml ASFV virulent SY18 strain orally. Observe the survival of the pigs.
  • rAdv-MGF 110-5L-6L-DP96R-B119L A
  • rAdv-B438L-O61R-E199L B
  • rAdv-MGF 505-5R-I329L-M448R C
  • Embodiment 3 construction and immunogenicity detection of ASFV gene recombinant PRRSV virus
  • MGF 110-9L, MGF 110-5L-6L, B119L, DP96R, I329L, MGF 505-5R, B438L, O61R, E199L, M448R, MGF 505-7R, A137R, I177L, I226R, DP71L, K196R gene recombinant PRRSV details as follows:
  • the virus rescue plasmid was constructed using the plasmid pcDNA3.1 as a carrier, and inserted Ha mRz-PRRSV (5'UTR-ORF1-TRS-PacI-ORF2-ORF3-ORF4-ORF5-ORF6-ORF7-3'UTR at the position shown in Figure 3 )-HdvRz fragment (sequence 33) was inserted between the EcoRV restriction sites of plasmid pcDNA3.1 (Invitrogen, catalog number: V7 90-20) to obtain a plasmid.
  • Ha mRz-PRRSV 5'UTR-ORF1-TRS-PacI-ORF2-ORF3-ORF4-ORF5-ORF6-ORF7-3'UTR at the position shown in Figure 3
  • Ha mRz-PRRSV 5'UTR-ORF1-TRS-PacI-ORF2-ORF3-ORF4-ORF5-ORF6-
  • HamRz-PRRSV 5'UTR-ORF1-Pac I-TRS-ORF2-ORF3-ORF4-ORF5-ORF6-ORF7-3'UTR
  • HdvRz fragment shown in sequence 33 is hammerhead-shaped at position 1-58
  • the ribozyme encoding gene, the 12048-12048 position is the enzyme cutting site Pac I, the 12049-12087 position is the transcription regulation sequence TRS, and the 15454-15537 position is the hepatitis D ribozyme encoding gene.
  • PCR amplification bands MGF 110-9L, MGF 110-5L-6L, B119L, DP96R, I329L , MGF 505-5R, B438L, O61R, E199L, M448R, MGF 505-7R, A137R, I177L, I226R, DP71L, K196R genes were respectively cloned into the plasmid pcDNA-HH-PRRSV digested by EcoRV according to the positions shown in Figure 3 On -TRS, construct recombinant PRRSV rescue plasmids pcDNA-HH-PRRSV-MGF 110-9L, pcDNA-HH-PRRSV-MGF 110-5L-6L, pcDNA-HH-PRRSV-B119L, pcDNA-HH-PRRS
  • the above-mentioned recombinant plasmid is a plasmid obtained by inserting each gene fragment into the Pac I site of the plasmid pcDNA-HH-PRRSV-TRS.
  • the recombinant PRRSV rescue plasmid pcDNA-HH-PRRSV-MGF 110-9L was transfected into BHK-21 cells, frozen and thawed twice after 3 days, the supernatant was collected and transferred to Marc145 cells, and observed for 4 days, if cell lesions were found, it proved the recombinant virus The rescue was successful and it was labeled as rPRRSV-MGF 110-9L.
  • identification primer upstream primer: 5'-TGCTGGAAAGTGATGTTGGAC-3' (sequence 39)
  • BHK cells were transfected with the corresponding rescue plasmids to rescue the cells expressing MGF 110-9L, MGF 110-5L-6L, B119L, DP96R, I329L, MGF 505-5R, B438L, O61R, E199L, M448R, MGF 505-7R, A137R, I177L, I226R, DP71L, K196R gene recombinant PRRSV virus rPRRSV-MGF 110-9L, rPRRSV-MGF 110-5L-6L, rPRRSV-B119L, rPRRSV-DP96R, rPRRSV-I329L, rPRRSV-MGF 505-5R, rPRRSV-B438L, rPRRSV-O61R, rPRRSV-E199L, rPRRSV-M448R, rPRRSV-MGF 505-7R, rPRRSV-A137R, rPR
  • Combination 1 rPRRSV-MGF 110-5L-6L, rPRRSV-DP96R, rPRRSV-B119L, rPRRSV-B438L, rPRRSV-O61R, rPRRSV-E199L
  • Combination 2 rPRRSV-MGF 110-5L-6L, rPRRSV-DP96R, rPRRSV-B119L, rPRRSV-B438L, rPRRSV-O61R, rPRRSV-E199L, rPRRSV-I329L
  • Combination 3 rPRRSV-MGF 110-5L-6L, rPRRSV-DP96R, rPRRSV-B119L, rPRRSV-B438L, rPRRSV-O61R, rPRRSV-E199L, rPRRSV-I329L, rPRRSV-MGF 505-5R
  • Combination 4 rPRRSV-MGF 110-5L-6L, rPRRSV-DP96R, rPRRSV-B119L, rPRRSV-B438L, rPRRSV-O61R, rPRRSV-E199L, rPRRSV-M448R, rPRRSV-MGF 505-7R
  • Combination 5 rPRRSV-MGF 110-5L-6L, rPRRSV-DP96R, rPRRSV-B119L, rPRRSV-B438L, rPRRSV-O61R, rPRRSV-E199L, rPRRSV-DP71L, rPRRSV-K196R
  • Combination 6 rPRRSV-MGF 110-9L, rPRRSV-MGF 110-5L-6L, rPRRSV-B119L, rPRRSV-DP96R, rPRRSV-I329L, rPRRSV-MGF 505-5R, rPRRSV-B438L, rPRRSV-O61R, rPRRSV-E199L, rPRRSV-M448R, rPRRSV-MGF 505-7R, rPRRSV-A137R, rPRRSV-I177L, rPRRSV-I226R, rPRRSV-DP71L, rPRRSV-K196R
  • mice the recombinant PRRSV virus in each combination prepared above-mentioned one is respectively taken 10 5.5 TCID 50 /ml and each recombinant virus is mixed in equal proportions, each virus is 0.3ml, and 100 micrograms of schisandra polysaccharides are added after mixing; injection into pig neck muscle , each group immunized 5 heads.
  • Immune traditional vector vaccine combination group use rAdv-p30, p54, p72, pCD2v, pF317L, pp62, pp220 recombinant adenovirus mixture as a control, use 10 6.0 TCID 50 for each virus, add 100 micrograms of Schisandra polysaccharide after mixing, each The group was immunized with 5 heads.
  • Non-immune challenge control group no virus injection was used as the challenge control group, with 5 animals in each group.
  • the African swine fever virus SY18 strain was used to virulently infect the above-mentioned each experimental group, the control immunization group and the challenge control group.
  • Challenge (10 3.0 TCID 50 /2ml ASFV virulent SY18 strain orally administered to each head). Observed for 28 days, and recorded the clinical manifestations and final outcome.
  • Embodiment 4 construction and immunogenicity detection of ASFV gene recombinant PRV virus
  • the pUC- ⁇ TK-EGFP plasmid is based on the plasmid pUC19 (Takara Company, Code No.3219), and the TK Right Arm -EGFP-TK Left Arm fragment (sequence 34) is inserted between the Xba I and Sph I restriction sites of the pUC19 plasmid income.
  • the above-mentioned recombinant plasmid is a plasmid obtained by recombining each gene fragment under the action of In-Fusion enzyme and inserting the linearized fragment of pUC- ⁇ TK-EGFP obtained by PCR between GCCACC (Kozak sequence) and EGFP gene.
  • BHK cells were transfected with corresponding homologous recombination plasmids, rescued and purified to obtain PRV-MGF 110-9L, PRV-MGF 110-5L-6L, PRV-B119L, DP96R, PRV-I329L, PRV-MGF 505 -5R, PRV-B438L, PRV-O61R, PRV-E199L, PRV-M448R, PRV-MGF 505-7R, PRV-A137R, PRV-I177L, PRV-I226R, PRV-DP71L, PRV-K196R gene recombinant pseudorabies virus , after being correctly identified with identification primers, store at -40°C.
  • the immune and challenge tests are as follows:
  • Combination 1 PRV-MGF 110-5L-6L, PRV-DP96R, PRV-B119L
  • Combination 2 PRV-MGF 110-5L-6L, PRV-DP96R, PRV-B119L, PRV-MGF 505-5R, PRV-I329L, PRV-MGF 505-7R, PRV-B438L, PRV-E199L
  • Combination 3 PRV-MGF 110-5L-6L, PRV-B119L, PRV-DP96R, PRV-MGF 505-5R, PRV-I329L, PRV-B438L, PRV-O61R, PRV-E199L
  • Combination 4 PRV-MGF 110-9L, PRV-MGF 110-5L-6L, PRV-MGF 505-5R, PRV-B119L, PRV-DP96R, PRV-I329L, PRV-B438L, PRV-O61R, PRV-E199L, PRV-M448R, PRV-MGF 505-7R, PRV-A137R, PRV-I177L, PRV-I226R, PRV-DP71L, PRV-K196R
  • mice 106.5 TCID50 /ml of the recombinant PRV viruses in each combination prepared in the above-mentioned one were mixed in equal proportions of each recombinant virus, 0.1 ml of each virus, and 100 micrograms of 4% nano-schisandra polysaccharides were added after mixing; Inject the neck muscles of pigs, and immunize 5 pigs in each group.
  • Immune traditional vector vaccine combination group use rAdv-p30, p54, p72, pCD2v, pF317L, pp62, pp220 recombinant adenovirus mixture as a control, use 10 8.0 TCID 50 for each virus, add 100 micrograms of Schisandra polysaccharide after mixing, each The group was immunized with 5 heads.
  • Non-immune challenge control group no virus injection was used as the challenge control group, with 5 animals in each group.
  • the African swine fever virus SY18 strain was used to virulently infect the above-mentioned each experimental group, the control immunization group and the challenge control group.
  • Challenge (10 3.0 TCID 50 /2ml ASFV virulent SY18 strain orally administered to each head). Observed for 28 days, and recorded the clinical manifestations and final outcome.
  • Embodiment 5 construction and immunogenicity detection of ASFV gene recombinant rabies virus
  • RABV rabies virus
  • Each gene fragment was connected with pcDNA3.1-SRV 9 -PacI linearized vector by in-fusion, and the plasmids with PCR identification and nucleic acid fragment sequencing were named as pcDNA3.1-SRV 9 -MGF 110-9L and pcDNA3 respectively.
  • the above-mentioned recombinant plasmid is a plasmid obtained by inserting homologous recombination of each gene segment into the PacI restriction site of the plasmid pcDNA3.1-SRV 9 -PacI.
  • the linearized vector pcDNA3.1 (purchased from Invitrogen, an expression vector constructed and preserved in our laboratory) was digested with EcoRV; the amplification of N, P, G and L structural gene fragments was obtained by amplifying the full-length transcription vector as a template; The four fragments were connected with linearized vector plasmids by homologous recombination, transformed into Escherichia coli, and the correct plasmids were identified by sequencing. Prepared for virus transfection rescue.
  • pcDNA3.1-N is a plasmid obtained by inserting the SRV 9 -N gene (submission date: Jun 22, 2004, GenBank: AF 499686.2, 71st to 1423bp) into the EcoRV restriction site of the pcDNA3.1 vector;
  • pcDNA3.1-P is a plasmid obtained by inserting the SRV 9 -P gene (submitted on Jun 22, 2004, GenBank: AF 499686.2, 1514-2407bp) into the EcoRV restriction site of the pcDNA3.1 vector;
  • pcDNA3.1-G is a plasmid obtained by inserting the SRV 9 -G gene (submission date: Jun 22, 2004, GenBank: AF 499686.2, 3317-4891 bp) into the EcoRV restriction site of the pcDNA3.1 vector;
  • pcDNA3.1-L is a plasmid obtained by inserting SRV 9 -L gene (submission date: Jun 22, 2004, GenBank: AF 499686.2, 5414-11797bp) into the EcoRV restriction site of pcDNA3.1 vector.
  • cell BSR golden hamster kidney cells, Shanghai Cell Bank, Cat. No. -BFN60810674
  • the inoculum size is 5% (V/ V); a part is used for direct immunofluorescence identification (for RABV-N and -A137R): according to whether there is a fluorescent signal in the well, it is determined whether the virus rescue is successful, and whether the exogenous gene -A137R is correctly expressed.
  • the FITC-labeled RABV antibody required for immunofluorescence identification was purchased from Jilin Bauhinia Shenzhou Biotechnology Co., Ltd., the product catalog number is ZJ-023-016.
  • the immune and challenge tests are as follows:
  • Combination 1 SRV 9 -MGF 110-5L-6L, SRV 9 -DP96R, SRV 9 -B119L (combination 1);
  • Combo 2 SRV 9 -MGF 110-5L-6L, SRV 9 -DP96R, SRV 9 -B119L, SRV 9 -MGF 505-5R, SRV 9 -MGF 110-9L, SRV 9 -I329L, SRV 9 -B438L, SRV 9 -E199L, (combination 2);
  • Combo 3 SRV 9 -MGF 110-5L-6L, SRV 9 -DP96R, SRV 9 -B119L, SRV 9 -MGF 505-7R, SRV 9 -A137R, SRV 9 -I177L, SRV 9 -I226R, SRV 9 -DP71L , SRV 9 -K196R (combination 3);
  • Combo 4 SRV 9 -MGF 110-9L, SRV 9 -MGF 110-5L-6L, SRV 9 -B119L, SRV 9 -DP96R, SRV 9 -O61R, SRV 9 -E199L, SRV 9 -M448R, SRV 9 -MGF 505-7R (combination 4);
  • Combo 5 SRV 9 -MGF 110-9L, SRV 9 -MGF 110-5L-6L, SRV 9 -MGF 505-5R, SRV 9 -B119L, SRV 9 -DP96R, SRV 9 -I329L, SRV 9 -B438L, SRV 9 -O61R, SRV 9 -E199L, SRV 9 -M448R, SRV 9 -MGF 505-7R, SRV 9 -A137R, SRV 9 -I177L, SRV 9 -I226R, SRV 9 -DP71L, SRV 9 -K196R (combination 5) ;
  • mice 10 8.0 TCID 50 /ml of the recombinant RAB V virus in each combination prepared above were mixed in equal proportions of each recombinant virus, 0.1ml of each virus, and directly injected into pig neck muscles after mixing, each group Immune to 5 heads.
  • Immune traditional vector vaccine combination group use the mixture of recombinant adenovirus expressing p30, p54, p72, pCD2v, pF317L, pp62, pp220 respectively as control, use 10 8.0 TCID 50 for each virus, inject directly after mixing, each group is immunized 5 heads.
  • Non-immune challenge control group no virus injection was used as the challenge control group, with 5 animals in each group.
  • the African swine fever virus SY18 strain was used to virulently infect the above-mentioned each experimental group, the control immunization group and the challenge control group.
  • Challenge (10 3.0 TCID 50 /2ml ASFV virulent SY18 strain orally administered to each head). Observed for 28 days, and recorded the clinical manifestations and final outcome.
  • Embodiment 6 the immunization and challenge experiment of recombinant adenovirus and recombinant rabies virus
  • the titer of each recombinant adenovirus is 10 8.5 TCID 50 /ml, mix in equal proportions, take 0.1ml of each virus, and directly immunize after mixing; the titer of each recombinant rabies virus is 10 8.0 TCID 50 /ml, etc. Mix in proportion, take 0.1ml of each, mix and use directly for immunization. A total of 5 pigs were immunized.
  • Non-immune challenge control group no virus injection was used as the challenge control group, with 5 animals in each group.
  • the immunized pigs and the non-immune challenge pigs were orally administered 10 3.0 TCID 50 /2ml ASFV virulent SY18 strain, observed for 28 days, and the clinical manifestations and final outcome were recorded.
  • Embodiment 7 Immunization and challenge test of recombinant adenovirus and recombinant rabies virus
  • the titer of each recombinant adenovirus is 10 8.5 TCID 50 /ml, mix in equal proportions, take 0.1ml of each virus, and directly immunize after mixing; the titer of each recombinant rabies virus is 10 8.0 TCID 50 /ml, etc. Mix in proportion, take 0.1ml of each, mix and use directly for immunization. A total of 5 pigs were immunized.
  • Non-immune challenge control group no virus injection was used as the challenge control group, with 5 animals in each group.
  • the immunized pigs and the non-immune challenge pigs were orally administered 10 3.0 TCID 50 /2ml ASFV virulent SY18 strain, observed for 28 days, and the clinical manifestations and final outcome were recorded.
  • Embodiment 8 the immunization and challenge test of recombinant PRRSV and recombinant PRV
  • ASFV MGF 110-9L, MGF 110-5L-6L, B119L, DP96R, I329L, MGF 505-5R, B438L, O61R, E199L, M448R, MGF 505-7R, A137R, I226R, DP71L, K196R gene group PRR SV Immunization and challenge experiments with recombinant PRV
  • PRV-MGF 110-5L-6L, PRV-B119L, PRV-DP96R, PRV-I329L, PRV-MGF 505-5R, PRV-B438L, PRV-O61R, PRV-E199L, PRV-K196R two groups Recombinant virus combination, the titer of each recombinant PRRSV is 10 5.5 TCID 50 /ml, mixed in equal proportions, 0.1ml of each virus, and used directly after mixing; the titer of each recombinant PRRSV is 10 6.5 TC
  • Proportional mixing 0.1ml of each recombinant virus, freeze-dried after mixing.
  • the two groups of vaccines were injected intramuscularly into pig neck muscles first (recombinant PRRSV) and then (recombinant PRV), with an interval of 14 days. A total of 5 pigs were immunized.
  • Non-immune challenge control group no virus injection was used as the challenge control group, with 5 animals in each group.
  • the immunized pigs and the non-immune challenge pigs were orally administered 10 3.0 TCID 50 /2ml ASFV virulent SY18 strain, observed for 28 days, and the clinical manifestations and final outcome were recorded.
  • the present invention provides a combination of recombinant viruses based on the ASFV gene and the vaccine prepared therefrom. After the pig is immunized with this type of vaccine, it can protect susceptible pigs from natural infection or artificial attack of ASFV.
  • the prevention of African swine fever that is, the combination of recombinant viruses constructed from such virulence antigen genes and structural proteins, after immunizing pigs, can completely resist the attack of virulence without developing disease.

Abstract

本发明公开了一种非洲猪瘟病毒ASFV基因的重组病毒组合及由其制备的疫苗。本发明提供了非洲猪瘟病毒蛋白组合,其包括如下3种蛋白:MGF 110-5L-6L蛋白、B119L蛋白和DP96R蛋白。上述ASFV蛋白组合还包括如下13种蛋白中的至少一种;所述13种蛋白为MGF 110-9L、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L和K196R。本发明提供的一种基于ASFV基因的重组病毒的组合及由其制备的疫苗,用该类疫苗免疫猪以后,可保护易感猪免受ASFV的自然感染或人为攻击,用于非洲猪瘟的预防。

Description

一种非洲猪瘟病毒ASFV基因的重组病毒组合及由其制备的疫苗 技术领域
本发明涉及一种非洲猪瘟病毒ASFV基因的重组病毒组合及由其制备的疫苗,属于兽用生物制品技术领域。
背景技术
非洲猪瘟(African Swine Fever,ASF)是猪的一种烈性传染病,死亡率接近100%,是养猪业的主要危害,并在流行地区造成重大损失。非洲猪瘟由非洲猪瘟病毒(African Swine Fever Virus,ASFV)感染引起,目前由该病毒制备的灭活疫苗和活疫苗均未获批上市。非洲猪瘟的防控一直以来主要采取扑杀和尸体清除的方法,并采取严格的生物安全措施进行防范。
非洲猪瘟病毒基因组全长170-193kb,含有150-180个ORFs,推测可编码约165种蛋白。其中已发现包括多基因家族基因等在内的大量与病毒毒力、免疫抑制、抑制凋亡等相关的基因。研究认为其毒力因子包括9GL、UK、I177L等(Lewis et al.,2000)(Zsak et al.,1998)(O’Donnell et al.,2015)(Borca et al.,2020),免疫抑制因子包括MGF100、MGF110、MGF300、MGF360以及MGF505等(Afonso et al.,2004)(Li et al.,2021)(Reis et al.,2016),血吸附因子如CD2v、EP153R等(Rodriguez et al.,1993)。
近年来针对ASFV MGF360、MGF505、CD2v、UK、A238L等基因进行缺失的减毒疫苗株,以及在家猪或野猪群中分离的自然弱毒株,在猪体内证实有一定的免疫保护效果,但有些毒株在田间试验中证明可产生慢性病变,如皮肤溃疡、发热、关节肿胀、僵猪、母猪流产和育肥期出现临床异常症状等不良反应(King et al.,2011;Leitao et al.,2001;Revilla et al.,1992,个人通讯)。最近几年,美国梅岛实验室公开发表的I177L基因、A137R基因、中国农业科学院长春兽医研究所公开发表的I226R基因等单个基因缺失的ASFV活病毒弱毒疫苗侯选株,在实验免疫研究中表现出良好的安全性和免疫效果,可以抵抗高剂量强毒株的注射攻毒(Borca et al.,2020;Gladue et al.,2021;Zhang et al.,2021)。多个基因缺失活毒 株都已申请专利。但是,人们对活疫苗变异等方面的担心使该类疫苗获批上市变得缓慢。采用ASFV的一些基因如p30、p54、p72、CD2v等构建的重组疫苗和亚单位疫苗据报道有一定的免疫效果,如采用p30、p54、p72、EP402R、C-type Lectin(EP153R)等两个以上蛋白亚单位混合物和基因串联表达蛋白产物,有的报道具有一定的免疫保护效果,有的则报道没有足够的免疫保护原性,迄今未见效果更好的疫苗应用,也没有一种亚单位疫苗获批上市。
活载体疫苗研究最近几年较为活跃,美国堪萨斯州立大学的研究表明采用p32、p54、pp62、p72、A104R、K205R、B438L、EP402RΔPRR、B602L、B119L、A151R基因的重组腺病毒组合可诱导显著的免疫应答,但是攻毒试验最好的结果是5/9免疫动物可以抵抗强毒攻击。2019年英国Pirbright实验室采用表达18种(I215R、I73R、CP530R[pp62]、CP204L[p32]、MGF110-5L、B646L[p72]、MGF110-4L、M448R、L8L、E146L、C129R、A151R、MGF110-1L、L10L、K78R、E184L、E165R、CP312R)抗原的重组腺病毒和重组痘苗病毒的组合免疫的动物也不能抵抗强毒攻击(Netherton et al.,2019)。
2020年西班牙的研究团队在p32、p54、A151R、B119L、B602L、EP402RΔPRR、B438L,K205R-A104R、pp62、p72、pp220基础上,又选择了EP153R、p10、p15、CP80R、I329L、H108R、K196R、CP312R、F334L、NP419L、NP868R、B66L、H339R、R298L以及K145R、B385R、F165R、F778R、S273R、MGF100-1L,A224L、MGF505-6R、B175L,利用了这些基因的重组腺病毒“鸡尾酒”,并采用最好的佐剂进行免疫和攻毒,结果是这些抗原组合不能对免疫猪提供攻毒保护(Cadenas-Fernández et al.,2020)。同样在2020年,英国研究者选用了8个基因组合,采用腺病毒和痘苗病毒两种载体免疫,结果可产生100%攻毒保护,其选择的基因包括E199L、EP153R、EP364R、F317L、I329L、MGF360-11L、MGF505-4R、MGF505-5R,其中有些基因属于免疫抑制基因(Goatley et al.,2020)。勃林格殷格翰公司申请了活载体疫苗的专利,选择的基因组合也不同。总之,不同的研究团队选择的目的基因组合均不一样,没有一定的规律可循。
因此,探索更为安全有效的新疫苗或新型活载体疫苗基因组合,一直 是养猪业中ASF防控面临的重要而现实的课题。
ASFV的毒力基因种类除了上面提到的以外目前尚不完全清楚,有的基因具有抑制干扰素产生作用、有的具有凋亡抑制作用,还有一些发挥类似炎症因子作用。目前,多基因家族中的一些蛋白MGF110、MGF360、MGF505以及UK、CD2v、DP71L、9GL、B119L、I329L、DP148R、M448R等基因在缺失或发生突变以后,病毒的毒力大部分或完全丧失。过去的研究表明,很多ASFV基因组合免疫猪都不能对ASFV感染提供完全的保护。
发明公开
本发明的一个目的是提供一种非洲猪瘟病毒蛋白组合。
本发明提供的非洲猪瘟病毒蛋白组合,其包括如下3种蛋白:MGF 110-5L-6L蛋白、B119L蛋白和DP96R蛋白。
上述ASFV蛋白组合还包括如下13种蛋白中的任意1种、任意2种、任意3种、任意4种、任意5种、任意6种、任意7种、任意8种、任意9种、任意10种、任意11种、任意12种或全部13种;
所述13种蛋白为MGF 110-9L、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L和K196R。
上述蛋白均来自非洲猪瘟病毒,且可以为蛋白全长,也可以为具有相同功能的蛋白截短体。
所述蛋白MGF 110-5L-6L为如下任一种:
1)由序列表中序列17所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白B119L为如下任一种:
1)由序列表中序列18所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白DP96R为如下任一种:
1)由序列表中序列19所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白B438L为如下任一种:
1)由序列表中序列20所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白O61R为如下任一种:
1)由序列表中序列21所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白E199L为如下任一种:
1)由序列表中序列22所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白I329L为如下任一种:
1)由序列表中序列23所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白MGF 505-5R为如下任一种:
1)由序列表中序列24所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白DP71L为如下任一种:
1)由序列表中序列25所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白K196R为如下任一种:
1)由序列表中序列26所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白M448R为如下任一种:
1)由序列表中序列27所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白MGF 505-7R为如下任一种:
1)由序列表中序列28所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白A137R为如下任一种:
1)由序列表中序列29所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白I177L为如下任一种:
1)由序列表中序列30所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白I226R为如下任一种:
1)由序列表中序列31所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质;
所述蛋白MGF 110-9L为如下任一种:
1)由序列表中序列32所示的氨基酸序列组成的蛋白质;
2)与1)至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且具有相同功能且来源于非洲猪瘟病毒的蛋白;
3)将1)或2)所示的序列末端添加标签得到的蛋白质。
上述ASFV蛋白组合为如下任一组合:
1)由如下3个基因编码的蛋白组成:MGF 110-5L-6L、B119L和DP96R;
2)由如下4个基因编码的蛋白组成:MGF 110-5L-6L、B119L、DP96R、B438L。
3)由如下5个基因编码的蛋白组成:
MGF 110-5L-6L、B119L、DP96R、B438L、O61R。
4)由如下6个基因编码的蛋白组成:
MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L;
或,MGF 110-5L-6L、B119L、DP96R、B438L、O61R、I329L;
或,MGF 110-5L-6L、B119L、DP96R、B438L、I329L、K196R;
5)由如下7个基因编码的蛋白组成:
MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、I329L
或,MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、I329L、M448R、MGF 505-7R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、I329L、DP71L、K196R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、O61R、MGF 110-9L、MGF 505-5R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、O61R、MGF 505-7R、M448R;
6)由如下8个基因编码的蛋白组成:
MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L;
或,MGF 110-5L-6L、DP96R、B119L、B438L、O61R、E199L、M448R、MGF 505-7R;
或,MGF 110-5L-6L、DP96R、B119L、B438L、O61R、E199L、DP71L、K196R;
或,MGF 110-5L-6L、B119L、DP96R、B438L I329L、M448R、MGF 505-7R、E199L;
或,MGF 110-5L-6L、B119L、DP96R、B438L、I329L、M448R、MGF 505-7R、A137R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、I329L、M448R、MGF 505-7R、I226R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、I329L、A137R、I177L、I226R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、I329L、O61R、DP71L、K196R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、I329L、MGF 505-5R、 MGF 505-7R、E199L;
或,MGF 110-5L-6L、B119L、DP96R、B438L、I329L、MGF 505-5R、O61R、E199L;
或,MGF 110-5L-6L、B119L、DP96R、B438L、I329L、MGF 505-5R、MGF 110-9L、E199L;
7)由如下9个基因编码的蛋白组成:
MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L、DP71L;
或,MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L、MGF 110-9L;
或,MGF 110-5L-6L、B119L、DP96R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R;
或,MGF 110-5L-6L、B119L、DP96R、MGF 505-7RO61R、E199L、M448R、;MGF 110-9L;
8)由如下10个基因编码的蛋白组成:
MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L、DP71L、K196R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L、MGF 110-9L、M448R。
9)由如下11个基因编码的蛋白组成:
MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L、DP71L、K196R、M448R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L、MGF 505-7R、MGF 110-9L、M448R;
10)由如下12个基因编码的蛋白组成:
MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L、DP71L、K196R、M448R、MGF 505-7R;
或,MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L、MGF 110-9L、A137R M448R、MGF 505-7R;
11)由如下13个基因编码的蛋白组成:
MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L A137R、I177L、MGF 110-9L、M448R、MGF 505-7R;
12)由如下14个基因编码的蛋白组成:
MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L MGF 110-9L、I226R。M448R、MGF 505-7R、A137R、I177L;
13)由如下15个基因编码的蛋白组成:
MGF 110-9L、M448R、MGF 505-7R、A137R、I177L、I226R、MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、MGF 505-5R、I329L DP71L;
14)由如下16个基因编码的蛋白组成:
MGF 110-9L、B119L、DP96R、B438L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、MGF 110-5L-6L、O61R、E199L、MGF 505-5R、I329L、K196R。
本发明另一个目的是提供非洲猪瘟病毒基因组合。
本发明提供的基因组合,其包括如下3种基因:基因MGF 110-5L-6L、基因B119L和基因DP96R。
上述非洲猪瘟病毒基因组合还包括如下13种基因中的任意1种、任意2个、任意3个、任意4个、任意5个、任意6个、任意7个、任意8个、任意9个、任意10个、任意11个、任意12个或全部13个;
所述13种基因为基因MGF 110-9L、基因I329L、基因MGF 505-5R、基因B438L、基因O61R、基因E199L、基因M448R、基因MGF 505-7R、基因A137R、基因I177L、基因I226R、基因DP71L和基因K196R。
所述基因MGF 110-5L-6L为如下任一种:
1)序列表中序列1所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因B119L为如下任一种:
1)序列表中序列2所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因DP96R为如下任一种:
1)序列表中序列3所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因B438L为如下任一种:
1)序列表中序列4所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因O61R为如下任一种:
1)序列表中序列5所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因E199L为如下任一种:
1)序列表中序列6所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因I329L为如下任一种:
1)序列表中序列7所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因MGF 505-5R为如下任一种:
1)序列表中序列8所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因DP71L为如下任一种:
1)序列表中序列9所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因K196R为如下任一种:
1)序列表中序列10所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同 源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因M448R为如下任一种:
1)序列表中序列11所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因MGF 505-7R为如下任一种:
1)序列表中序列12所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因A137R为如下任一种:
1)序列表中序列13所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因I177L为如下任一种:
1)序列表中序列14所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因I226R为如下任一种:
1)序列表中序列15所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
所述基因MGF 110-9L为如下任一种:
1)序列表中序列16所示的DNA分子;
2)在严格条件下与1)限定的DNA序列杂交且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子;
3)与1)或2)限定的DNA序列至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有相同功能蛋白质且来源于非洲猪瘟病毒的DNA分子。
本发明还有一个目的是提供重组载体组。
本发明提供的重组载体组,其包括表达基因MGF 110-5L-6L、基因B119L和基因DP96R的重组载体或重组载体组。
上述重组载体组还包括表达如下13种基因中的任意1种、任意2个、任意3个、任意4个、任意5个、任意6个、任意7个、任意8个、任意9个、任意10个、任意11个、任意12个或全部13个的重组载体或重组载体组。
所述13种基因为基因MGF 110-9L、基因I329L、基因MGF 505-5R、基因B438L、基因O61R、基因E199L、基因M448R、基因MGF 505-7R、基因A137R、基因I177L、基因I226R、基因DP71L和基因K196R。
上述重组载体为将各个基因或多个基因插入表达载体得到的重组载体;
上述重组载体组为由上述各个重组载体组成的重组载体组;
各个基因单独或多个分布在各个重组载体上;也就是说,每个重组载体可以表达单独的基因,也可以表达多个基因偶联基因。
上述表达载体包括但不限于:人5型腺病毒、痘病毒、猪伪狂犬病病毒、猪繁殖呼吸综合征病毒、猪腺病毒、猪乙脑病毒、猪瘟病毒、狂犬病 病毒、逆转录病毒、副粘病毒或其他可在哺乳动物体内产生一过性感染、稳定性感染或持续表达外源基因但不引起任何异常临床症状的病毒载体系统或细菌载体系统。
在本发明的实施例中,重组载体举例为重组腺病毒载体、重组猪繁殖呼吸综合征病毒载体、重组猪伪狂犬病病毒载体或重组狂犬病病毒载体。
本发明还有一个目的是提供重组病毒组合。
本发明提供的重组病毒组合,其包括表达基因MGF 110-5L-6L、基因B119L和基因DP96R的重组病毒或重组病毒组。
上述重组病毒组合还包括表达如下13种基因中的任意1种、任意2个、任意3个、任意4个、任意5个、任意6个、任意7个、任意8个、任意9个、任意10个、任意11个、任意12个或全部13个的重组病毒或重组病毒组;
所述13种基因为基因MGF 110-9L、基因I329L、基因MGF 505-5R、基因B438L、基因O61R、基因E199L、基因M448R、基因MGF 505-7R、基因A137R、基因I177L、基因I226R、基因DP71L和基因K196R。
所述重组病毒为将表达各个基因重组载体或表达多个基因的重组载体分别包装得到的重组病毒。
上述重组病毒组为由上述各个重组病毒组成的重组病毒组;
各个基因单独或多个分布在各个重组病毒上;也就是说,每个重组病毒可以表达单独的基因,也可以表达多个基因偶联基因。
上述重组病毒组合中可以为同类载体病毒组合,也可以为不同类载体病毒组合。
在本发明的实施例中,举例如下:
重组腺病毒,为将表达目标基因的重组腺病毒载体和骨架质粒pacAd5 9.2-100转染细胞,包装得到重组腺病毒。重组腺病毒组,可以为3个或3个以上的重组腺病毒组合,每种病毒使用量均大于等于10 8.0TCID 50;如实施例中图8-12、图14所示的组合。
重组蓝耳病毒,为将表达目标基因的重组蓝耳病毒载体转染细胞,包装得到重组蓝耳病毒。重组蓝耳病毒组,可以为3个或3个以上的重组蓝耳病毒组合,每种病毒使用量均大于等于10 3.5TCID 50;如实施例中图17所 示的组合。
重组伪狂犬病病毒,为将表达目标基因的重组伪狂犬病病毒载体转染细胞,包装得到重组伪狂犬病病毒。重组伪狂犬病病毒组,可以为3个或3个以上的重组伪狂犬病病毒组合,每种病毒使用量均大于等于10 4.5TCID 50;如实施例中图20所示的组合。
重组狂犬病病毒,为将表达目标基因的重组狂犬病病毒载体和表达N、P、G和L结构基因的载体转染细胞,包装得到重组狂犬病病毒。重组狂犬病病毒组,可以为3个或3个以上的重组狂犬病病毒组合,每种病毒使用量均大于等于10 6.0TCID 50;如实施例中图24所示的组合;
重组病毒组,也可以为3个或3个以上重组腺病毒和3个或3个以上重组狂犬病病毒组合,每种病毒使用量均大于等于10 6.0TCID 50;如实施例中图25和图26所示的组合;
重组病毒组,也可以为3个或3个以上重组蓝耳病毒组和3个或3个以上重组伪狂犬病病毒组合,如实施例中图27所示的组合。该重组病毒组可以混合一起注射,也可以分配2次注射,图27中重组PRRSV的滴度均为10 5.5TCID 50/ml,重组PRV的滴度均为10 6.5TCID 50/ml。
本发明还有一个目的是提供一种具有预防和/或治疗非洲猪瘟病毒感染引发的疾病的产品。
本发明提供的产品,其活性成分为上述重组病毒组合。
在该产品中,上述重组病毒组合可以任意三个重组病毒及三个以上重组病毒组合,按照一定比例混合在一起直接使用或分批使用。
上述产品中还包括佐剂或免疫增强剂或免疫调节剂或其他疫苗。
上述佐剂可以为如铝胶等盐类佐剂、不同的多糖佐剂、生物蛋白佐剂、核酸佐剂或纳米材料佐剂等;在本发明的实施例中,进一步的,所述佐剂为多糖佐剂,具体为茯苓多糖或五味子多糖。
上述非洲猪瘟病毒蛋白组合或上述的基因组合或上述重组载体组合或上述重组病毒的组合或所述产品在制备具有如下功能的产品中的应用也是本发明保护的范围:
1)治疗或抗非洲猪瘟病毒引发的疾病;
2)预防非洲猪瘟病毒引发的疾病,如非洲猪瘟。
上述产品具体为疫苗。
上述非洲猪瘟病毒蛋白组合或上述基因组合或上述重组载体组合或上述重组病毒组合或上述产品在如下任一中的应用也是本发明保护的范围内:
1)治疗或抗非洲猪瘟病毒引发的疾病;
2)预防非洲猪瘟病毒引发的疾病。
本发明还提供一种预防非洲猪瘟病毒的方法,为将上述产品免疫动物后,实现免疫。在本发明的实施例中,所述产品中各个重组病毒一定比例混合后免疫。
上述免疫为一次免疫或多次分批免疫;每次免疫中重组病毒组合中各个重组病毒的滴度为等比例混合或不同比例混合。
本发明提供了一种ASFV基因的重组病毒的组合及由其制备的疫苗,即利用ASFV的MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R等基因作为目标基因,分别构建不同的病毒或细菌载体的重组病毒或重组菌,这些不同基因的重组病毒或重组细菌组合,培养的病毒液或细菌培养液按照等比例或不同比例混合后直接使用,或与佐剂、免疫增强剂一起混合后使用,免疫易感动物,都可表现良好的对非洲猪瘟病毒的免疫攻毒保护作用,可保护易感猪免受ASFV强毒的自然感染或人为攻毒,用于非洲猪瘟的预防。
非洲猪瘟病毒的毒力抗原基因同样可以被机体的免疫系统所记忆,在体内表达后刺激机体发生特异性免疫保护反应及回忆反应,使机体对ASFV的感染发挥抵抗作用。毒力抗原基因联合结构蛋白基因后免疫力进一步提高。
附图说明
图1为非洲猪瘟病毒基因-人5型腺病毒重组病毒构建示意图,ASFV gene可以分别是MGF 110-9L、MGF 110-5L-6L、B119L、DP96R(UK)、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R等基因单独或2个及以上独立或融合的基因片段。
图2为非洲猪瘟病毒基因-狂犬病病毒载体重组病毒构建示意图,ASFV  gene可以分别是MGF 110-9L、MGF 110-5L-6L、B119L、DP96R(UK)、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R等基因单独或2个及以上独立或融合的基因片段。
图3为非洲猪瘟病毒基因-PRRSV载体重组病毒构建示意图,ASFV gene分别是MGF 110-9L、MGF 110-5L-6L、B119L、DP96R(UK)、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R等基因单独或2个及以上独立或融合的基因片段。
图4为非洲猪瘟病毒基因-PRV载体重组病毒构建示意图,ASFV gene分别是MGF 110-9L、MGF 110-5L-6L、B119L、DP96R(UK)、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R等基因单独或2个及以上独立或融合的基因片段。
图5为各基因扩增引物及产物大小。
图6为重组腺病毒滴度测定结果。
图7为p30、p54、p72、pCD2v、pF317L、pp62基因扩增引物及产物大小。
图8为不同重组病毒组合及传统目的蛋白重组病毒免疫攻毒结果。
图9为不同重组病毒组合及传统目的蛋白重组病毒免疫攻毒结果。
图10为不同重组病毒组合及传统目的蛋白重组病毒免疫攻毒结果。
图11为不同基因重组腺病毒组合免疫猪攻毒结果。
图12为不同基因重组腺病毒组合免疫猪攻毒结果。
图13为重组病毒特异性扩增引物及产物大小。
图14为不同三基因融合重组病毒与传统目的蛋白重组病毒免疫效果比较。
图15为重组PRRSV病毒特异性引物及产物大小。
图16为重组PRRSV滴度测定结果。
图17为不同基因组合重组猪繁殖呼吸综合征病毒免疫猪的攻毒结果。
图18为重组PRV病毒特异性引物及产物大小。
图19为非洲猪瘟病毒基因-重组PRV滴度测定结果。
图20为MGF 110-9L等基因重组PRV免疫猪攻毒结果。
图21为转染液的配制。
图22为ASFV基因-重组RABV病毒特异性鉴定引物及产物大小。
图23为非洲猪瘟病毒基因-重组RABV滴度测定结果。
图24为ASFV基因重组狂犬病病毒免疫猪攻毒结果。
图25为ASFV基因-重组腺病毒、重组狂犬病病毒免疫猪攻毒结果。
图26为ASFV基因重组腺病毒、重组狂犬病病毒免疫猪攻毒结果。
图27为ASFV基因重组PRRSV、重组PRV免疫猪攻毒结果。
实施发明的最佳方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中采用的细胞、毒株和载体为如下:
1、细胞HEK293AD细胞(购自美国Invitrogen公司),本单位实验室保存,需在含有1%-10%胎牛血清的DMEM培养基或全悬浮培养基中培养。BHK-21细胞(购自中国兽医药品监查所),本单位实验室保存,需在含有1%-10%胎牛血清的DMEM培养基或全悬浮培养基中培养。Marc-145细胞(购自中国兽医药品监查所),本单位实验室保存,需在含有1%-10%胎牛血清的DMEM培养基中培养。Vero细胞(购自中国兽医药品监查所),本单位实验室保存,需在含有1%-10%胎牛血清的DMEM培养基培养。
2、外源基因的表达质粒载体pacAd5 CMVK-NpA(购自美国Invitrogen公司)、骨架质粒pacAd5 9.2-100(购自美国Invitrogen公司)均在大肠杆菌中扩增和提取。
3、狂犬病病毒疫苗株本实验室保存的弱毒疫苗株SRV 9株(岳军明,侯世宽,殷震.狂犬病疫苗口服免疫的研究现状[J].中国人兽共患病杂志,1994,10(3):32-35.)。
4.PRRSV疫苗候选株为本实验室合成的PRRSV-A1株(基因全长由吉林库美生物技术有限公司合成,序列33的第59-15453bp),为一株拯救的弱毒疫苗株,感染性基因组克隆在质粒中。
5.伪狂犬病病毒毒株为疫苗候选株JL14-△gI/gE株,具体构建方法:本实验室分离鉴定的强毒JL株,通过gI、gE基因的同源重组缺失后致弱 为疫苗候选株JL14-△gI/gE株(候选株JL14-△gI/gE记载在如下文献中:周鑫韬.伪狂犬病病毒基因缺失株JL14-△gI/gE/TK构建及特性研究[D].吉林农业大学,2018.)。
6.非洲猪瘟病毒SY18株(记载在如下文献中:Zhou X,Li N,Luo Y,Liu Y,Miao F,Chen T,Zhang S,Cao P,Li X,Tian K,Qiu HJ,Hu R(2018)Emergence of African Swine Fever in China,2018.Transboundary and emerging diseases 65(6):1482-1484.doi:10.1111/tbed.12989),由军事兽医研究所流行病学研究室于2018年分离。本病毒的基因组序列的GenBank登录号:MH766894(2018年8月17日提交),本研究所使用毒株为采用PAM细胞第四代扩繁毒,于-80℃分装保存。
非洲猪瘟病毒目标基因MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、I329L、MGF 505-5R、DP71L、K196R、M448R、MGF 505-7R、A137R、I177L、I226R、MGF 110-9L。
下述实施例中的基因和蛋白序列如下:
非洲猪瘟病毒目标基因MGF 110-5L-6L(序列1)、B119L(序列2)、DP96R(序列3)、B438L(序列4)、O61R(序列5)、E199L(序列6)、I329L(序列7)、MGF 505-5R(序列8)、DP71L(序列9)、K196R(序列10)、M448R(序列11)、MGF 505-7R(序列12)、A137R(序列13)、I177L(序列14)、I226R(序列15)、MGF 110-9L(序列16)的核苷酸序列依次为序列1-序列16。
上述目标基因编码的蛋白MGF 110-5L-6L(序列17)、B119L(序列18)、DP96R(序列19)、B438L(序列20)、O61R(序列21)、E199L(序列22)、I329L(序列23)、MGF 505-5R(序列24)、DP71L(序列25)、K196R(序列26)、M448R(序列27)、MGF 505-7R(序列28)、A137R(序列29)、I177L(序列30)、I226R(序列31)、MGF 110-9L(序列32)的氨基酸序列依次为序列17-序列32。
实施例1、表达非洲猪瘟病毒目标基因的重组腺病毒构建及免疫效果
一、表达非洲猪瘟病毒目标基因的重组腺病毒构建
本实施例是提供非洲猪瘟病毒目标基因MGF 110-5L-6L、B119L、DP96R、 B438L、O61R、E199L、I329L、MGF 505-5R、DP71L、K196R、M448R、MGF 505-7R、A137R、I177L、I226R、MGF 110-9L重组腺病毒的构建(其他复制缺陷型和可复制型载体DNA病毒的ASFV基因重组毒的构建和使用策略相似)。
1、同源重组质粒的构建
采用常规方法提取非洲猪瘟病毒SY18株基因组,分别设计带有表达质粒载体pacAd5 CMVK-NpA同源臂的ASFV MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、I329L、MGF 505-5R、DP71L、K196R、M448R、MGF 505-7R、A137R、I177L、I226R、MGF 110-9L目标基因的引物(图5)。以SY18株基因组为模板,采用PCR方法分别扩增,获得各个基因的同源重组基因片段。
下述重组质粒为将各个基因片段插入质粒pacAd5 CMVK-NpA(人5型腺病毒表达载体)的EcoRI位点间得到的质粒。
将上述各个基因的同源重组基因片段分别与EcoRI酶切后得到的线性化pacAd5 CMVK-NpA质粒连接,再转化大肠杆菌感受态细胞,进行同源重组,分别获得如下16种重组质粒:pAdCMV-MGF 110-5L-6L、pAdCMV-B119L、pAdCMV-DP96R、pAdCMV-B438L、pAdCMV-O61R、pAdCMV-E199L、pAdCMV-I329L、pAdCMV-MGF 505-5R、pAdCMV-DP71L、pAdCMV-K196R、pAdCMV-M448R、pAdCMV-MGF 505-7R、pAdCMV-A137R、pAdCMV-I177L、pAdCMV-I226R、pAdCMV-MGF 110-9L。
上述16种重组质粒分别将ASFV MGF 110-5L-6L、B119L、DP96R、B438L、O61R、E199L、I329L、MGF 505-5R、DP71L、K196R、M448R、MGF 505-7R、A137R、I177L、I226R、MGF 110-9L这些目标基因通过各个基因的同源重组基因片段插入pacAd5 CMVK-NpA质粒的EcoRI酶切位点中得到的载体,16种重组质粒分别表达对应的16种目标基因。
2、重组病毒的拯救和鉴定
将重组质粒pAdCMV-MGF 110-5L-6L、pAdCMV-B119L、pAdCMV-DP96R、pAdCMV-B438L、pAdCMV-O61R、pAdCMV-E199L、pAdCMV-I329L、pAdCMV-MGF505-5R、pAdCMV-DP71L、pAdCMV-K196R、pAdCMV-M448R、pAdCMV-MGF 505-7R、pAdCMV-A137R、pAdCMV-I177L、pAdCMV-I226R、pAdCMV-MGF 110-9L和骨架质粒pacAd5 9.2-100分别采用PacI酶进行线性化,得到16种酶切后 的重组质粒和酶切后的骨架质粒pacAd5 9.2-100。
分别将上述各个酶切后的重组质粒以一定比例(2微克)和酶切骨架质粒pacAd5 9.2-100(4微克)混合,再与12微升转染试剂(
Figure PCTCN2022074457-appb-000001
2000)混合后,加入2ml细胞培养液,均匀加入到细胞单层上,转染25CM 2的长成单层的HEK293AD细胞,3天后,对转染的细胞进行传代,长至单层后,按照上述步骤分别进行第二次转染。
按以上步骤转染3次,观察到细胞有大量变圆等病变时,冻融细胞,收集并保存冻融液,分别记为P0代重组腺病毒,不同的基因片段记为不同的重组腺病毒;将P0代重组腺病毒按照一定比例(MOI值为0.1)接入25CM 2细胞瓶(10ml培养液)的新鲜HEK293AD细胞中,2天病变后冻融,并收集保存冻融液,此为P1代重组腺病毒;重复上述步骤收集到P2、P3代重组腺病毒。
3、检测
将上述2获得的表达各个目标基因的P3代重组腺病毒进行滴度测定,测定方法为:将病毒培养液作10倍系列稀释,共作12次稀释,每个稀释度接种8个重复孔,接种到96孔板的HEK293AD细胞上,接种量0.1ml/孔,接种后37℃培养5-6日时,在光镜下观察细胞病变,按照Reed-Muench法计算病毒的TCID 50
结果如下图6所示。
提取表达各个目标基因的P3代重组腺病毒的核酸,使用鉴定引物(上游引物:CGCAAATGGGCGGTAGGCGTG(序列36),下游引物:CACTGCATTCTAGTTGTGGTTT(序列37))进行重组腺病毒鉴定,预期鉴定产物大小如图5中所示,扩增出目标大小片段则为目标重组腺病毒。
将上述表达各个目标基因的重组腺病毒分别命名rAdv-MGF 110-5L-6L、rAdv-B119L、rAdv-DP96R、rAdv-B438L、rAdv-O61R、rAdv-E199L、rAdv-I329L、rAdv-MGF 505-5R、rAdv-DP71L、rAdv-K196R、rAdv-M448R、rAdv-MGF 505-7R、rAdv-A137R、rAdv-I177L、rAdv-I226R、rAdv-MGF 110-9L(如图6)。
非洲猪瘟病毒基因-重组腺病毒的构建过程示意图见图1。
二、表达非洲猪瘟病毒目标基因的重组腺病毒不同组合的免疫保护试 验
本发明采用上述一制备的表达各个目标基因的重组腺病毒rAdv-MGF 110-5L-6L、rAdv-B119L、rAdv-DP96R、rAdv-B438L、rAdv-O61R、rAdv-E199L、rAdv-I329L、rAdv-MGF 505-5R、rAdv-DP71L、rAdv-K196R、rAdv-M448R、rAdv-MGF 505-7R、rAdv-A137R、rAdv-I177L、rAdv-I226R、rAdv-MGF 110-9L按照3、4、5、6、7、8…12个基因重组腺病毒组合进行免疫保护试验(其他复制缺陷型和可复制型载体DNA病毒以及这些基因的其他组合和使用策略相似),具体如下:
1、免疫
上述一制备的重组腺病毒按照图8-图10所示的3、4、5、6、7、8…12个基因重组腺病毒组合形式组合(每种病毒均使用10 8.0TCID 50),得到不同组合形式的疫苗,总体积2ml,且在每头份疫苗中加入100微克茯苓多糖;
茯苓多糖按照如下方法制备:将10Kg茯苓块茎粉碎,加入50Kg蒸馏水浸泡过夜,加热至80℃,维持2小时,并不断搅拌,通过连续离心机以10000rpm(离心力为12857g g)离心15分钟收集上清,通过旋转蒸发器蒸发水分至上清体积的1/10。取上清若干,加入1/5体积的石油醚,37℃回流60min,取水相加入无水乙醇至乙醇终浓度为65%,静置1小时后,8000rpm(8228g)离心30min,收集沉淀,将沉淀重悬于质量体积比(g:ml)为0.9%生理盐水(Nacl水溶液)中,使沉淀的终浓度达到100mg/ml,即为茯苓多糖。
实验组:将上述添加了茯苓多糖的每种组合形式的疫苗分别注射猪颈部肌肉(每种病毒均使用10 8.0TCID 50,每种病毒混合后每头份(总体积2ml)再加100微克茯苓多糖),每组5头。
对照免疫组:利用分别表达p30、p54、p72、pCD2v、pF317L、pp62和pp220基因的重组腺病毒的混合物作为对照(每种病毒均使用10 8.0TCID 50,混合后每头份(2ml)再加100微克茯苓多糖),每组5头。
分别表达p30、p54、p72、pCD2v、pF317L、pp62、pp220基因的重组腺病毒分别按照一中的重组腺病毒的构建方法制备,模板为非洲猪瘟病毒SY 18株基因组,引物序列和扩增基因大小如图7。
提取表达各个目标基因的P3代重组腺病毒的核酸,使用鉴定引物(上游引物:CGCAAATGGGCGGTAGGCGTG(序列36),下游引物:CACTGCATTCTAGTTGTGGTTT(序列37))进行重组腺病毒鉴定,预期鉴定产物大小如图7中所示,扩增出目标大小片段则为目标重组腺病毒。
上述两组分别免疫2次,间隔14日,每次免疫剂量一致。
攻毒对照组:以不注射任何病毒作为攻毒对照,每组5头。
按照日常饲养。
2、攻毒
攻毒第二次免疫后的第14日(以第二次免疫第一天记作第1日)采用非洲猪瘟病毒SY18株对上述各个实验组、对照免疫组和攻毒对照组进行强毒攻毒:每头口服10 3.0TCID 50/2ml ASFV强毒SY18株。观察猪的存活情况。
各组合的重组腺病毒的免疫攻毒结果如图8-图10所示,可以看出,各组合的重组腺病毒均有显的攻毒保护效果,表明选择的非洲猪瘟病毒基因组合具有明显的攻毒保护效果。
三、表达非洲猪瘟病毒目标基因的重组腺病毒不同组合的免疫保护试验
本发明采用上述一制备的表达各个目标基因的重组腺病毒rAdv-MGF 110-9L、rAdv-MGF 110-5L-6L、rAdv-MGF 505-5R、rAdv-B119L、rAdv-DP96R、rAdv-I329L、rAdv-B438L、rAdv-O61R、rAdv-E199L、rAdv-M448R、rAdv-MGF 505-7R、rAdv-A137R、rAdv-I177L、rAdv-I226R、rAdv-DP71L和rAdv-K196R中9个以上(9、10、11、12、13、14、15、16个)重组腺病毒组合的免疫和攻毒试验。
1、免疫
上述一制备的重组腺病毒随机原则选取9个以上包括9、10、11、12、13、14、15、16个重组腺病毒组合作为1头份疫苗,如图11-12所示,每种组合中每种重组腺病毒的病毒滴度均为10 8TCID 50-10 10TCID 50/ml,每种组合每种重组病毒取10 8TCID 50,等比例混合,并在每头份疫苗中加入100微克五味子多糖;
五味子多糖按照如下方法制备:将10Kg五味子叶粉碎,加入50Kg蒸 馏水浸泡过夜,加热至80℃,维持2小时,并不断搅拌,通过连续离心机以10000rpm(离心力为12857g)离心15分钟收集上清,通过旋转蒸发器蒸发水分至上清体积的1/10。取上清若干,加入1/5体积的石油醚,37℃回流60min,取水相加入无水乙醇至乙醇终浓度为70%,静置1小时后,8000rpm(8228g)离心30min,收集沉淀,将沉淀重悬于质量体积比(g:ml)为0.9%生理盐水(Nacl水溶液)中,使沉淀的终浓度达到100mg/ml,即为五味子多糖。
实验组:将上述添加了五味子多糖的每种组合形式的疫苗分别肌肉注射猪颈部肌肉(每种病毒均使用10 8TCID 50/ml,等比例混合后每头份(2ml)再加100微克五味子多糖),每组5头。
对照免疫组(免疫传统载体疫苗组合):利用分别表达p30、p54、p72、pCD2v、pF317L、pp62、pp220基因的重组腺病毒的混合物作为对照(每种病毒均使用10 8.0TCID 50,混合后再加100微克五味子多糖),每组5头。
上述两组分别免疫2次,间隔14日,每次免疫剂量一致。
攻毒对照组:以不注射任何病毒作为攻毒对照,每组5头。
按照日常饲养。
2、攻毒
攻毒第二次免疫后的第14日(以第二次免疫第一天记作第1日)采用非洲猪瘟病毒SY18株对上述各个实验组、对照免疫组和攻毒对照组进行强毒攻毒:每头口服10 3.0TCID 50/2ml ASFV强毒SY18株,观察28日,记录临床表现和最终结局。
结果如图11-图12所示,通过28日内观察,攻毒对照组全部发病、死亡,免疫传统载体疫苗组合的猪全部死亡,其他免疫实验组5头猪全部健活。
实施例2、表达非洲猪瘟病毒多目标基因的重组腺病毒构建及免疫效果
本发明提供了ASFV三基因融合重组腺病毒的构建和免疫效果(其他复制缺陷型和可复制型载体DNA病毒任意三基因及以上融合的构建和组合使用策略相似),具体如下:
一、ASFV三基因融合重组腺病毒的构建
将MGF 110-5L-6L基因序列+linker序列+DP96R基因序列+linker序列+B119L基因序列中3个基因的编码区核苷酸依次通过In-fusion方法串联连接,得到三基因融合片段(A组,MGF 110-5L-6L-DP96R-B119L);
将B438L基因序列+linker序列+O61R基因序列+linker序列+E199L基因序列中3个基因的编码区核苷酸依次通过In-fusion方法串联连接,得到三基因融合片段(B组,B438L-O61R-E199L);
将MGF 505-5R基因序列+linker序列+I329L基因序列+linker序列+M448R基因序列中3个基因的编码区核苷酸依次通过In-fusion方法串联连接,得到三基因融合片段(C组,MGF 505-5R-I329L-M448R);
上述linker序列为:
gcaacaaacttctctctgctgaaacaagccggagatgtcgaagagaatcctggaccg(序列38)。
按照实施例1的一中的重组腺病毒构建方法分别构建三基因融合重组腺病毒:先将各个三基因融合片段扩增后得到同源重组片段(以三基因融合片段为模板,扩增所需引物和产物大小如图13所示),通过同源重组构建到pacAd5 CMVK-NpA质粒的EcoRI酶切位点中,得到重组质粒,再将重组质粒和骨架质粒pacAd5 9.2-100转染到HEK293AD细胞,收获冻融液,直到得到各个P3代三基因融合重组腺病毒,分别命名为rAdv-MGF 110-5L-6L-DP96R-B119L(A)、rAdv-B438L-O61R-E199L(B)、rAdv-MGF 505-5R-I329L-M448R(C)。
每种目的基因的扩增引物及产物大小见图13。
提取表达各个目标基因的P3代重组腺病毒的核酸,使用鉴定引物(上游引物:CGCAAATGGGCGGTAGGCGTG(序列36),下游引物:CACTGCATTCTAGTTGTGGTTT(序列37))进行重组腺病毒鉴定,预期鉴定产物大小如图13中所示,扩增出目标大小片段则为目标重组腺病毒。
按照常规方法测定各重组病毒的滴度,测定时,将获得的每个病毒培养液分别作10倍系列稀释,共作12次稀释,每个稀释度接种8个重复,接种到96孔板的HEK293AD细胞上,接种量0.1ml/孔,接种后37℃培养5-6日时,在光镜下观察细胞病变,按照Reed-Muench法计算病毒的TCID 50。结果如图14所示。
二、三基因融合重组腺病毒的免疫保护试验
1、免疫
实验组:上述一制备的各个三基因融合重组腺病毒(图14所示)分别取10 8.0TCID 50,以A、A+B、A+B+C、A+C分别混合后再加100微克茯苓多糖;注射猪颈部肌肉,每组免疫5头。
对照免疫组:用分别表达p30、p54、p72的重组腺病毒的三种病毒混合物作为对照,每种病毒均使用10 8.0TCID 50,混合后再加100微克茯苓多糖,每组免疫5头。
上述两组分别免疫2次,间隔14日,每次免疫剂量一致。
攻毒对照组:以不注射任何病毒作为攻毒对照,每组5头。
按照日常饲养。
2、攻毒
攻毒第二次免疫后的第14日(以第二次免疫第一天记作第1日)采用非洲猪瘟病毒SY18株对上述各个实验组、对照免疫组和攻毒对照组进行强毒攻毒,口服10 3.0TCID 50/2ml ASFV强毒SY18株。观察猪的生存情况。
结果如下:
各重组病毒构建的结果分别命名为:rAdv-MGF 110-5L-6L-DP96R-B119L(A),rAdv-B438L-O61R-E199L(B),rAdv-MGF 505-5R-I329L-M448R(C)。
各重组病毒的滴度测定结果、免疫效果如图14所示,可以看出,不免疫对照猪全部发病、死亡,免疫传统载体疫苗组合的猪全部死亡,其他免疫组5头猪全部健活。说明选择的基因及融合组合具有明显的攻毒保护效果,不同于传统的基因选择。
实施例3、ASFV基因重组PRRSV病毒的构建及免疫原性检测
MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R基因重组PRRSV的构建,具体如下:
一、ASFV基因重组PRRSV病毒的构建
1、重组载体的构建
病毒拯救质粒构建以质粒pcDNA3.1为载体,在图3所示位置插入Ha  mRz-PRRSV(5’UTR-ORF1-TRS-Pac Ⅰ-ORF2-ORF3-ORF4-ORF5-ORF6-ORF7-3’UTR)-HdvRz片段(序列33)插入质粒pcDNA3.1(Invitrogen,货号:V7 90-20)的EcoRV酶切位点间,得到的质粒。
序列33所示的HamRz-PRRSV(5’UTR-ORF1-Pac Ⅰ-TRS-ORF2-ORF3-OR F4-ORF5-ORF6-ORF7-3’UTR)-HdvRz片段中第1-58位为锤头状核酶编码基因、第12048-12048位为酶切位点Pac Ⅰ、第12049-12087为转录调控序列TRS、第15454-15537位为丁肝核酶编码基因。
以ASFV SY18株DNA为模板,参考Takara公司无缝克隆酶In-Fusion说明书要求设计引物(图15所示),PCR扩增带MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R基因,按照图3所示位置分别克隆到EcoRV酶切后的质粒pcDNA-HH-PRRSV-TRS上,构建重组PRRSV拯救质粒pcDNA-HH-PRRSV-MGF 110-9L、pcDNA-HH-PRRSV-MGF 110-5L-6L、pcDNA-HH-PRRSV-B119L、pcDNA-HH-PRRSV-DP96R、pcDNA-HH-PRRSV-I329L、pcDNA-HH-PRRSV-MGF 505-5R、pcDNA-HH-PRRSV-B438L、pcDNA-HH-PRRSV-O61R、pcDNA-HH-PRRSV-E199L、pcDNA-HH-PRRSV-M448R、pcDNA-HH-PRRSV-MGF 505-7R、pcDNA-HH-PRRSV-A137R、pcDNA-HH-PRRSV-I177L、pcDNA-HH-PRRSV-I226R、pcDNA-HH-PRRSV-DP71L、pcDNA-HH-PRRSV-K196R。
上述重组质粒为将各个基因片段插入质粒pcDNA-HH-PRRSV-TRS的Pac Ⅰ位点间得到的质粒。
2、重组病毒的拯救和鉴定
以MGF 110-9L基因重组PRRSV的拯救、鉴定为例。
将重组PRRSV拯救质粒pcDNA-HH-PRRSV-MGF 110-9L转染BHK-21细胞,3天后冻融2次,收集上清转接到Marc145细胞,观察4天,若发现细胞病变即证明重组病毒拯救成功,标记为rPRRSV-MGF 110-9L。
用鉴定引物(上游引物:5’-TGCTGGAAAGTGATGTTGGAC-3’(序列39),下游引物:5’-TGCTCAGGGTGAACGGTAGA-3’(序列40))对重组病毒rPR RSV-MGF 110-9L进行RT-PCR鉴定,得到目标产物大小正确(如图15中所示),则为目标重组病毒。
以同样的方法,分别用对应的拯救质粒转染BHK细胞,拯救得到表达MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R基因的重组PRRSV病毒rPRRSV-MGF 110-9L、rPRRSV-MGF 110-5L-6L、rPRRSV-B119L、rPRRSV-DP96R、rPRRSV-I329L、rPRRSV-MGF 505-5R、rPRRSV-B438L、rPRRSV-O61R、rPRRSV-E199L、rPRRSV-M448R、rPRRSV-MGF 505-7R、rPRRSV-A137R、rPRRSV-I177L、rPRRSV-I226R、rPRRSV-DP71L、rPRRSV-K196R,用鉴定引物进行RT-PCR鉴定。
非洲猪瘟病毒基因-重组PRRSV的构建和拯救过程见图3。
测定非洲猪瘟病毒基因-重组PRRSV的滴度,测定时,将获得的每个重组病毒的培养液分别作10倍系列稀释,共作12次稀释,每个稀释度接种8个重复,接种到96孔板的Marc-145细胞上,接种量0.1ml/孔,接种后37℃培养4-5日时,在光镜下观察细胞病变,按照Reed-Muench法计算病毒的TCID 50。结果如下图16所示。
二、表达非洲猪瘟病毒目标基因的重组PRRSV病毒不同组合的免疫保护试验
MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R基因重组PRRSV的免疫和攻毒试验如下:
1、免疫
分别以10 6.0TCID 50以上的各重组PRRSV病毒液组合,按照等比例混合。
组合1:rPRRSV-MGF 110-5L-6L、rPRRSV-DP96R、rPRRSV-B119L、rPRRSV-B438L、rPRRSV-O61R、rPRRSV-E199L
组合2:rPRRSV-MGF 110-5L-6L、rPRRSV-DP96R、rPRRSV-B119L、rPRRSV-B438L、rPRRSV-O61R、rPRRSV-E199L、rPRRSV-I329L
组合3:rPRRSV-MGF 110-5L-6L、rPRRSV-DP96R、rPRRSV-B119L、rPRRSV-B438L、rPRRSV-O61R、rPRRSV-E199L、rPRRSV-I329L、rPRRSV-MGF 505-5R
组合4:rPRRSV-MGF 110-5L-6L、rPRRSV-DP96R、rPRRSV-B119L、rPRRSV-B438L、rPRRSV-O61R、rPRRSV-E199L、rPRRSV-M448R、rPRRSV-MGF  505-7R
组合5:rPRRSV-MGF 110-5L-6L、rPRRSV-DP96R、rPRRSV-B119L、rPRRSV-B438L、rPRRSV-O61R、rPRRSV-E199L、rPRRSV-DP71L、rPRRSV-K196R
组合6:rPRRSV-MGF 110-9L、rPRRSV-MGF 110-5L-6L、rPRRSV-B119L、rPRRSV-DP96R、rPRRSV-I329L、rPRRSV-MGF 505-5R、rPRRSV-B438L、rPRRSV-O61R、rPRRSV-E199L、rPRRSV-M448R、rPRRSV-MGF 505-7R、rPRRSV-A137R、rPRRSV-I177L、rPRRSV-I226R、rPRRSV-DP71L、rPRRSV-K196R
实验组:上述一制备的各个组合中的重组PRRSV病毒分别取10 5.5TCID 50/ml每种重组病毒等比例混合,每种病毒0.3ml,混合后再加100微克五味子多糖;注射猪颈部肌肉,每组免疫5头。
免疫传统载体疫苗组合组:用rAdv-p30、p54、p72、pCD2v、pF317L、pp62、pp220重组腺病毒混合物作为对照,每种病毒均使用10 6.0TCID 50,混合后再加100微克五味子多糖,每组免疫5头。
上述两组分别免疫2次,间隔14日,每次免疫剂量一致。
不免疫攻毒对照组:以不注射任何病毒作为攻毒对照,每组5头。
按照日常饲养。
2、攻毒
攻毒第二次免疫后的第14日(以第二次免疫第一天记作第1日)采用非洲猪瘟病毒SY18株对上述各个实验组、对照免疫组和攻毒对照组进行强毒攻毒(每头口服10 3.0TCID 50/2ml ASFV强毒SY18株)。观察28日,记录临床表现和最终结局。
结果如图17所示,不免疫对照猪全部发病、死亡,免疫传统载体疫苗组合的猪全部死亡,其他免疫组5头猪全部健活。
实施例4、ASFV基因重组PRV病毒的构建及免疫原性检测
MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R基因重组伪狂犬病病毒的构建,具体如下:
一、ASFV基因重组PRV病毒的构建
pUC-ΔTK-EGFP质粒以质粒pUC19(Takara公司,Code No.3219)基础,将TK Right Arm-EGFP-TK Left Arm片段(序列34)插入pUC19质粒的Xba Ⅰ和Sph Ⅰ酶 切位点之间所得。
以ASFV SY18株DNA为模板,参考Takara公司无缝克隆酶In-Fusion说明书要求设计引物(图18),PCR扩增带MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R基因对应片段,按照图4所示位置分别克隆到pUC-ΔTK-EGFP质粒上,构建同源重组质粒pUC-ΔTK-EGFP-MGF 110-9L、pUC-ΔTK-EGFP-MGF 110-5L-6L、pUC-ΔTK-EGFP-B119L、pUC-ΔTK-EGFP-DP96R、pUC-ΔTK-EGFP-I329L、pUC-ΔTK-EGFP-MGF 505-5R、pUC-ΔTK-EGFP-B438L、pUC-ΔTK-EGFP-O61R、pUC-ΔTK-EGFP-E199L、pUC-ΔTK-EGFP-M448R、pUC-ΔTK-EGFP-MGF 505-7R、pUC-ΔTK-EGFP-A137R、pUC-ΔTK-EGFP-I177L、pUC-ΔTK-EGFP-I226R、pUC-ΔTK-EGFP-DP71L、pUC-ΔTK-EGFP-K196R。
上述重组质粒为将各个基因片段在In-Fusion酶作用下重组,插入PCR获得的pUC-ΔTK-EGFP线性化片段的GCCACC(Kozak序列)和EGFP基因之间,得到的质粒。
2、重组病毒拯救、纯化及鉴定
以MGF 110-9L基因重组伪狂犬病病毒的拯救、纯化及鉴定为例。
将重组质粒pUC-ΔTK-EGFP-MGF 110-9L转染BHK细胞,5h后以0.1MOI感染病毒JL14-△gI/gE中;培养24h后,挑取有绿色荧光的细胞,至新鲜的正常BHK细胞,完成一轮纯化;以此步骤纯化4轮后,收集荧光细胞,冻融三次,在BHK细胞上进行3轮有限稀释,收集末轮有限稀释孔荧光细胞并保存;使用鉴定引物(上游引物:5’-GGCTGACCGCCCAACGA-3’(序列41),下游引物:5’-CCTTGCTCACCATCGGTCC-3’(序列42))进行纯度鉴定,鉴定条带大小如图18中所示;所得纯化后的毒株即命名为rPRV JLΔTKΔgIgE-MGF 110-9L。
以同样的方法,用对应的同源重组质粒转染BHK细胞,拯救纯化得到PRV-MGF 110-9L、PRV-MGF 110-5L-6L、PRV-B119L、DP96R、PRV-I329L、PRV-MGF 505-5R、PRV-B438L、PRV-O61R、PRV-E199L、PRV-M448R、PRV-MGF 505-7R、PRV-A137R、PRV-I177L、PRV-I226R、PRV-DP71L、PRV-K196R基因重组伪狂犬病病毒,用鉴定引物鉴定正确后,-40℃保存。
非洲猪瘟病毒基因-重组伪狂犬病病毒的构建和拯救过程见图4。
测定非洲猪瘟病毒基因-重组伪狂犬病病毒的滴度,测定时,将获得的每个重组病毒的培养液分别作10倍系列稀释,共作12次稀释,每个稀释度接种8个重复,接种到96孔板的Vero细胞上,接种量0.1ml/孔,接种后37℃培养3-4日时,在光镜下观察细胞病变,按照Reed-Muench法计算病毒的TCID 50。结果如图19所示。
二、表达非洲猪瘟病毒目标基因的重组PRV病毒不同组合的免疫保护试验
MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R基因重组伪狂犬病病毒的免疫和攻毒试验如下:
1、免疫
组合1:PRV-MGF 110-5L-6L、PRV-DP96R、PRV-B119L
组合2:PRV-MGF 110-5L-6L、PRV-DP96R、PRV-B119L、PRV-MGF 505-5R、PRV-I329L、PRV-MGF 505-7R、PRV-B438L、PRV-E199L
组合3:PRV-MGF 110-5L-6L、PRV-B119L、PRV-DP96R、PRV-MGF 505-5R、PRV-I329L、PRV-B438L、PRV-O61R、PRV-E199L
组合4:PRV-MGF 110-9L、PRV-MGF 110-5L-6L、PRV-MGF 505-5R、PRV-B119L、PRV-DP96R、PRV-I329L、PRV-B438L、PRV-O61R、PRV-E199L、PRV-M448R、PRV-MGF 505-7R、PRV-A137R、PRV-I177L、PRV-I226R、PRV-DP71L、PRV-K196R
实验组:上述一制备的各个组合中的重组PRV病毒分别取10 6.5TCID 50/ml,每种重组病毒等比例混合,每种病毒0.1ml,混合后再加100微克刺4%纳米五味子多糖;注射猪颈部肌肉,每组免疫5头。
免疫传统载体疫苗组合组:用rAdv-p30、p54、p72、pCD2v、pF317L、pp62、pp220重组腺病毒混合物作为对照,每种病毒均使用10 8.0TCID 50,混合后再加100微克五味子多糖,每组免疫5头。
上述两组分别免疫2次,间隔14日,每次免疫剂量一致。
不免疫攻毒对照组:以不注射任何病毒作为攻毒对照,每组5头。
按照日常饲养。
2、攻毒
攻毒第二次免疫后的第14日(以第二次免疫第一天记作第1日)采用非洲猪瘟病毒SY18株对上述各个实验组、对照免疫组和攻毒对照组进行强毒攻毒(每头口服10 3.0TCID 50/2ml ASFV强毒SY18株)。观察28日,记录临床表现和最终结局。
结果如图20所示,攻毒结果通过28日内观察,不免疫对照猪全部发病、死亡,免疫传统载体疫苗组合的猪全部死亡,免疫组合1有2头出现厌食、沉郁、卧地、高烧、死亡,另外3头轻微发热,最后康复。免疫组合2及其他免疫组的5头猪全部健活。
实施例5、ASFV基因重组狂犬病病毒的构建及免疫原性检测
ASFV MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R单个基因、两个及以上独立基因、两个及以上融合基因可复制型基因重组狂犬病病毒的构建(其他可复制型RNA病毒载体构建策略类似)
一、ASFV基因重组SRV 9病毒的构建
1.RABV全长基因组转录载体的构建
(1)pcDNA3.1-SRV 9-PacI质粒的线性化
以PacI酶切pcDNA3.1-SRV 9-PacI质粒(本实验室在pcDNA3.1载体的EcoRV酶切位点中连入HamRZ-SRV 9-pacI-HdvRZ序列(序列35),包含核酶和SRV 9毒株全长基因组cDNA序列,且在全长基因组的P和M基因之间引入PacI酶切位点,以便后续的外源基因克隆),获得线性化载体。
(2)表达外源基因重组载体质粒构建
扩增(引物和目的条带大小为图22)获得MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R等基因片段,两侧含有狂犬病病毒(RABV)同源臂。
用各基因片段分别与pcDNA3.1-SRV 9-PacI线性化载体进行in-fusion连接,菌液PCR鉴定和核酸片段测序正确的质粒分别命名为pcDNA3.1-SRV 9-MGF 110-9L、pcDNA3.1-SRV 9-MGF 110-5L-6L、pcDNA3.1-SRV 9-MGF 505-5R、pcDNA3.1-SRV 9-B119L、pcDNA3.1-SRV 9-DP96R、 pcDNA3.1-SRV 9-I329L、pcDNA3.1-SRV 9-B438L、pcDNA3.1-SRV 9-O61R、pcDNA3.1-SRV 9-E199L、pcDNA3.1-SRV 9-M448R、pcDNA3.1-SRV 9-MGF 505-7R、pcDNA3.1-SRV 9-A137R、pcDNA3.1-SRV 9-I177L、pcDNA3.1-SRV 9-I226R、pcDNA3.1-SRV 9-DP71L、pcDNA3.1-SRV 9-K196R。
上述重组质粒为将各个基因片段同源重组插入质粒pcDNA3.1-SRV 9-PacI的PacI酶切位点间得到的质粒。
2、辅助质粒的构建
以EcoRV酶切线性化载体pcDNA3.1(购自Invitrogen,本实验室构建保存的表达载体);以全长转录载体为模板扩增获得N、P、G和L结构基因片段的扩增;将4个片段分别与线性化的载体质粒进行同源重组连接,转化大肠杆菌,测序鉴定出正确的质粒。备用于病毒的转染拯救。
pcDNA3.1-N为将SRV 9-N基因(提交日为Jun 22,2004,GenBank:AF 499686.2,第71~1423bp)插入到pcDNA3.1载体的EcoRV酶切位点间得到的质粒;
pcDNA3.1-P为将SRV 9-P基因(提交日为Jun 22,2004,GenBank:AF 499686.2,第1514~2407bp)插入到pcDNA3.1载体的EcoRV酶切位点间得到的质粒;
pcDNA3.1-G为将SRV 9-G基因(提交日为Jun 22,2004,GenBank:AF 499686.2,第3317~4891bp)插入到pcDNA3.1载体的EcoRV酶切位点间得到的质粒;
pcDNA3.1-L为将SRV 9-L基因(提交日为Jun 22,2004,GenBank:AF 499686.2,第5414~11797bp)插入到pcDNA3.1载体的EcoRV酶切位点间得到的质粒。
3.重组病毒的拯救
(1)提前12-24h,铺细胞BSR(金黄仓鼠肾细胞,上海细胞库,货号-BFN60810674),于6孔板中,共准备2孔细胞,其中1个用于转染,1个用于空白对照。
(2)转染:待细胞长至单层后,准备进行转染。转染体系如下图21(以-A137R基因为例,其余重组病毒的拯救方法相同):
(3)每天观察转染细胞状况,5-7天(根据细胞状态),直接刮取细 胞,吹打均匀,一部分接到新的单层BSR细胞中继续扩大培养,接种量为5%(V/V);一部分用于直接免疫荧光鉴定(针对RABV-N和-A137R):根据孔中是否有荧光信号判定病毒是否拯救成功,外源基因-A137R是否正确表达。
(4)遗传稳定性鉴定:重组病毒连续传代10次,选取2、4、6、8、10共5个代次的病毒进行序列、滴度测定和免疫荧光鉴定。结果病毒传代后序列和蛋白特性表现稳定。
以同样的方法,分别用其他重组质粒重组病毒的拯救,获得重组病毒SRV 9-MGF 110-9L、SRV 9-MGF 110-5L-6L、SRV 9-MGF 505-5R、SRV 9-B119L、SRV 9-DP96R、SRV 9-I329L、SRV 9-B438L、SRV 9-O61R、SRV 9-E199L、SRV 9-M448R、SRV 9-MGF 505-7R、SRV 9-A137R、SRV 9-I177L、SRV 9-I226R、SRV 9-DP71L、SRV 9-K196R。
免疫荧光鉴定所需要的FITC标记RABV抗体购自吉林紫荆神州生物技术有限公司,产品目录号为ZJ-023-016.
提取表达各个目标基因的P3代重组狂犬病病毒的核酸,使用鉴定引物(上游引物:TGGTGAGATAGCCAAGGTG(序列43),下游引物:AACTCAGTATCATCATCCCAAG(序列44))进行外源基因鉴定,预期鉴定产物大小如图22中所示,扩增出目标大小片段则为目标重组腺病毒。
非洲猪瘟病毒基因-重组狂犬病病毒的构建和拯救过程见图2。
测定非洲猪瘟病毒基因-重组狂犬病病毒的滴度,测定时,将获得的每个重组病毒的培养液分别作10倍系列稀释,共作12次稀释,每个稀释度接种8个重复,接种到96孔板的BHK细胞上,接种量0.1ml/孔,接种后37℃培养4-5日时,进行荧光抗体染色。在荧光显微镜下观察病毒增殖情况,按照Reed-Muench法计算病毒的TCID 50。结果如图23所示。
二、表达非洲猪瘟病毒目标基因的重组SRV 9病毒不同组合的免疫保护试验
ASFV MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R基因重狂犬病病毒的免疫和攻毒试验如下:
1、免疫
组合1:SRV 9-MGF 110-5L-6L、SRV 9-DP96R、SRV 9-B119L(组合1);
组合2:SRV 9-MGF 110-5L-6L、SRV 9-DP96R、SRV 9-B119L、SRV 9-MGF 505-5R、SRV 9-MGF 110-9L、SRV 9-I329L、SRV 9-B438L、SRV 9-E199L、(组合2);
组合3:SRV 9-MGF 110-5L-6L、SRV 9-DP96R、SRV 9-B119L、SRV 9-MGF 505-7R、SRV 9-A137R、SRV 9-I177L、SRV 9-I226R、SRV 9-DP71L、SRV 9-K196R(组合3);
组合4:SRV 9-MGF 110-9L、SRV 9-MGF 110-5L-6L、SRV 9-B119L、SRV 9-DP96R、SRV 9-O61R、SRV 9-E199L、SRV 9-M448R、SRV 9-MGF 505-7R(组合4);
组合5:SRV 9-MGF 110-9L、SRV 9-MGF 110-5L-6L、SRV 9-MGF 505-5R、SRV 9-B119L、SRV 9-DP96R、SRV 9-I329L、SRV 9-B438L、SRV 9-O61R、SRV 9-E199L、SRV 9-M448R、SRV 9-MGF 505-7R、SRV 9-A137R、SRV 9-I177L、SRV 9-I226R、SRV 9-DP71L、SRV 9-K196R(组合5);
实验组:上述一制备的各个组合中的重组RAB V病毒分别取10 8.0TCID 50/ml,每种重组病毒等比例混合,每种病毒0.1ml,混合后直接进行注射猪颈部肌肉,每组免疫5头。
免疫传统载体疫苗组合组:分别用表达p30、p54、p72、pCD2v、pF317L、pp62、pp220重组腺病毒的混合物作为对照,每种病毒均使用10 8.0TCID 50,混合后直接进行注射,每组免疫5头。
上述两组分别免疫2次,间隔14日,每次免疫剂量一致。
不免疫攻毒对照组:以不注射任何病毒作为攻毒对照,每组5头。
按照日常饲养。
2、攻毒
攻毒第二次免疫后的第14日(以第二次免疫第一天记作第1日)采用非洲猪瘟病毒SY18株对上述各个实验组、对照免疫组和攻毒对照组进行强毒攻毒(每头口服10 3.0TCID 50/2ml ASFV强毒SY18株)。观察28日,记录临床表现和最终结局。
结果如图24所示,攻毒结果通过28日内观察,不免疫对照猪全部发病、死亡,免疫传统载体疫苗组合的猪全部死亡,其他免疫组5头猪全部 健活。
实施例6、重组腺病毒和重组狂犬病病毒的免疫和攻毒试验
ASFV MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R基因重组腺病毒和重组狂犬病病毒的免疫和攻毒试验,具体如下:
1、免疫
实验组:rAdv-MGF 110-5L-6L、rAdv-DP96R、rAdv-B119L、rAdv-DP71L、rAdv-K196R、rAd-O61R、rAdv-E199L、rAdv-MGF 505-5R基因重组腺病毒和SRV 9-MGF 110-5L-6L、SRV 9-DP96R、SRV 9-B119L、SRV 9-O61R、SRV 9-DP71L、SRV 9-K196R、SRV 9-E199L、SRV 9-MGF 505-5R基因重组狂犬病病毒两组重组病毒组合;两组疫苗组合先(重组腺病毒)后(重组狂犬病病毒)肌肉注射猪颈部肌肉,间隔14日。每种重组腺病毒的滴度为10 8.5TCID 50/ml,等比例混合,每种病毒取0.1ml,混合后直接进行免疫;每种重组狂犬病病毒的滴度为10 8.0TCID 50/ml,等比例混合,每种取0.1ml,混合后直接使用进行免疫。共免疫5头猪。
不免疫攻毒对照组:以不注射任何病毒作为攻毒对照,每组5头。
按照日常饲养。
2、攻毒
攻毒第二次免疫后14日,免疫猪连同不免疫攻毒对照猪每头口服10 3.0TCID 50/2ml ASFV强毒SY18株,观察28日,记录临床表现和最终结局。
结果如图25所示,攻毒结果通过28日内观察,不免疫对照猪全部发病、死亡。免疫组5头猪全部健活。
实施例7、重组腺病毒和重组狂犬病病毒的免疫和攻毒试验
ASFV MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L、K196R基因重组腺病毒和重组狂犬病病毒的免疫和攻毒试验如下:
实验组:rAdv-MGF 110-9L、rAdv-MGF 110-5L-6L、rAdv-B119L、rAdv-DP96R、rAdv-I329L、rAdv-E199L、rAdv-M448R、rAdv-MGF 505-7R、rAdv-A137R基因重组腺病毒和SRV 9-MGF 110-5L-6L、SRV 9-B119L、SRV 9-DP96R、SRV 9-I329R、SRV 9-E199L、SRV 9-M448R、SRV 9-MGF 505-7R、 SRV 9-A137R基因重组狂犬病病毒两组重组病毒组合,两组疫苗组合先(重组腺病毒)后(重组狂犬病病毒)肌肉注射猪颈部肌肉,间隔14日。每种重组腺病毒的滴度为10 8.5TCID 50/ml,等比例混合,每种病毒取0.1ml,混合后直接进行免疫;每种重组狂犬病病毒的滴度为10 8.0TCID 50/ml,等比例混合,每种取0.1ml,混合后直接使用进行免疫。共免疫5头猪。
不免疫攻毒对照组:以不注射任何病毒作为攻毒对照,每组5头。
按照日常饲养。
2、攻毒
攻毒第二次免疫后14日,免疫猪连同不免疫攻毒对照猪每头口服10 3.0TCID 50/2ml ASFV强毒SY18株,观察28日,记录临床表现和最终结局。
结果如图26所示,攻毒结果通过28日内观察,不免疫对照猪全部发病、死亡。免疫组5头猪全部健活。
实施例8、重组PRRSV和重组PRV的免疫和攻毒试验
ASFV MGF 110-9L、MGF 110-5L-6L、B119L、DP96R、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I 177L、I226R、DP71L、K196R基因重组PRRSV和重组PRV的免疫和攻毒试验
1、免疫
实验组:基因重组PRRSVs:PRRSV-MGF 110-5L-6L、PRRSV-B119L、PRRSV-DP96R、PRRSV-I329L、PRRSV-MGF 505-5R、PRRSV-I226R、PRRSV-B438L、PRRSV-E199L、PRRSV-K196R和基因重组PRVs:PRV-MGF 110-5L-6L、PRV-B119L、PRV-DP96R、PRV-I329L、PRV-MGF 505-5R、PRV-B438L、PRV-O61R、PRV-E199L、PRV-K196R两组重组病毒组合,每种重组PRRSV的滴度为10 5.5TCID 50/ml,等比例混合,每种病毒0.1ml,混合后直接使用;每种重组PRV的滴度为10 6.5TCID 50/ml,等比例混合,每种重组病毒0.1ml,混合后冻干。两组疫苗组合先(重组PRRSV)后(重组PRV)肌肉注射猪颈部肌肉,间隔14日。共免疫5头猪。
不免疫攻毒对照组:以不注射任何病毒作为攻毒对照,每组5头。
按照日常饲养。
2、攻毒
攻毒第二次免疫后14日,免疫猪连同不免疫攻毒对照猪每头口服 10 3.0TCID 50/2ml ASFV强毒SY18株,观察28日,记录临床表现和最终结局。
结果如图27所示,攻毒结果通过28日内观察,不免疫对照猪全部发病、死亡。死亡猪检测为ASFV阳性。免疫组5头猪全部健活。
工业应用
本发明的实验证明了,本发明提供基于ASFV基因的重组病毒的组合及由其制备的疫苗,用该类疫苗免疫猪以后,可保护易感猪免受ASFV的自然感染或人为攻击,用于非洲猪瘟的预防,即由这类毒力抗原基因和结构蛋白构建的重组病毒组合在一起,免疫猪以后,可完全抵抗强毒的攻击而不发病。

Claims (13)

  1. 非洲猪瘟病毒蛋白组合,其包括如下3种蛋白:MGF 110-5L-6L蛋白、B119L蛋白和DP96R蛋白。
  2. 根据权利要求1所述的非洲猪瘟病毒蛋白组合,其特征在于:所述非洲猪瘟病毒蛋白组合还包括如下13种蛋白中的任意1种、任意2种、任意3种、任意4种、任意5种、任意6种、任意7种、任意8种、任意9种、任意10种、任意11种、任意12种或全部13种;
    所述13种蛋白为MGF 110-9L、I329L、MGF 505-5R、B438L、O61R、E199L、M448R、MGF 505-7R、A137R、I177L、I226R、DP71L和K196R。
  3. 非洲猪瘟病毒基因组合,其包括如下3种基因:基因MGF 110-5L-6L、基因B119L和基因DP96R。
  4. 根据权利要求3所述的非洲猪瘟病毒基因组合,其特征在于:所述非洲猪瘟病毒基因组合还包括如下13种基因中的任意1种、任意2种、任意3种、任意4种、任意5种、任意6种、任意7种、任意8种、任意9种、任意10种、任意11种、任意12种或全部13种;
    所述13种基因为基因MGF 110-9L、基因I329L、基因MGF 505-5R、基因B438L、基因O61R、基因E199L、基因M448R、基因MGF 505-7R、基因A137R、基因I177L、基因I226R、基因DP71L和基因K196R。
  5. 重组载体组合,其包括表达基因MGF 110-5L-6L、基因B119L和基因DP96R的重组载体或重组载体组。
  6. 根据权利要求5所述的重组载体组合,其特征在于:所述重组载体组合还包括表达如下13种基因中的任意1种、任意2种、任意3种、任意4种、任意5种、任意6种、任意7种、任意8种、任意9种、任意10种、任意11种、任意12种或全部13种的重组载体或重组载体组;
    所述13种基因为基因MGF 110-9L、基因I329L、基因MGF 505-5R、基因B438L、基因O61R、基因E199L、基因M448R、基因MGF 505-7R、基因A137R、基因I177L、基因I226R、基因DP71L和基因K196R。
  7. 重组病毒组合,其包括表达基因MGF 110-5L-6L、基因B119L和基因DP96R的重组病毒或重组病毒组。
  8. 根据权利要求7所述的重组病毒组合,其特征在于:所述重组病 毒组合还包括表达如下13种基因中的任意1种、任意2种、任意3种、任意4种、任意5种、任意6种、任意7种、任意8种、任意9种、任意10种、任意11种、任意12种或全部13种的重组病毒或重组病毒组;
    所述13种基因为基因MGF 110-9L、基因I329L、基因MGF 505-5R、基因B438L、基因O61R、基因E199L、基因M448R、基因MGF 505-7R、基因A137R、基因I177L、基因I226R、基因DP71L和基因K196R;
    所述重组病毒为将表达各个基因重组载体或表达多个基因的重组载体分别包装得到的重组病毒。
  9. 一种具有预防和/或治疗非洲猪瘟病毒引发的疾病的产品,其活性成分为权利要求7或8所述的重组病毒组合。
  10. 根据权利要求9所述的产品,其特征在于:所述产品还包括佐剂或免疫增强剂或免疫调节剂或其他疫苗。
  11. 权利要求1或2所述非洲猪瘟病毒蛋白组合或权利要求3或4所述的基因组合或权利要求5或6所述的重组载体组合或权利要求7或8所述的重组病毒组合在制备具有如下任一功能的产品中的应用:
    1)治疗或抗非洲猪瘟病毒引发的疾病;
    2)预防非洲猪瘟病毒引发的疾病。
  12. 权利要求1或2所述非洲猪瘟病毒蛋白组合或权利要求3或4所述的基因组合或权利要求5或6所述的重组载体组合或权利要求7或8所述的重组病毒组合或权利要求9或10所述产品在如下任一中的应用:
    1)治疗或抗非洲猪瘟病毒引发的疾病;
    2)预防非洲猪瘟病毒引发的疾病。
  13. 一种预防非洲猪瘟病毒引发的动物疾病的方法,为将权利要求9或10所述产品免疫动物,实现预防非洲猪瘟病毒引发的动物疾病。
PCT/CN2022/074457 2021-11-29 2022-01-28 一种非洲猪瘟病毒asfv基因的重组病毒组合及由其制备的疫苗 WO2023092863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111428345.3 2021-11-29
CN202111428345.3A CN113831394B (zh) 2021-11-29 2021-11-29 一种非洲猪瘟病毒asfv基因的重组病毒组合及由其制备的疫苗

Publications (1)

Publication Number Publication Date
WO2023092863A1 true WO2023092863A1 (zh) 2023-06-01

Family

ID=78971861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074457 WO2023092863A1 (zh) 2021-11-29 2022-01-28 一种非洲猪瘟病毒asfv基因的重组病毒组合及由其制备的疫苗

Country Status (2)

Country Link
CN (1) CN113831394B (zh)
WO (1) WO2023092863A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117701779A (zh) * 2024-02-04 2024-03-15 湖南派智生物科技有限公司 鉴别非洲猪瘟毒株的方法、引物探针组合、试剂、试剂盒及应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831394B (zh) * 2021-11-29 2022-04-12 中国人民解放军军事科学院军事医学研究院 一种非洲猪瘟病毒asfv基因的重组病毒组合及由其制备的疫苗
CN116492456B (zh) * 2023-03-31 2024-04-23 中国人民解放军军事科学院军事医学研究院 非洲猪瘟病毒d129l基因及其在制备复制缺陷型非洲猪瘟疫苗中的应用
CN116284261B (zh) * 2023-04-04 2024-04-19 中国人民解放军军事科学院军事医学研究院 一种非洲猪瘟病毒结构蛋白组合物及其制备的疫苗

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952310A (zh) * 2016-07-01 2019-06-28 美国农业部 保护免受亲本病毒Georgia 2007分离株攻击的合理开发的非洲猪瘟减毒病毒毒株
CN110269932A (zh) * 2019-06-24 2019-09-24 北京生科基因科技有限公司 非洲猪瘟病毒疫苗及其用途
CN113543801A (zh) * 2019-03-27 2021-10-22 勃林格殷格翰动物保健有限公司 含有非洲猪瘟病毒肽及蛋白的免疫原性组合物及疫苗以及其用途
CN113831394A (zh) * 2021-11-29 2021-12-24 中国人民解放军军事科学院军事医学研究院 一种非洲猪瘟病毒asfv基因的重组病毒组合及由其制备的疫苗

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190307879A1 (en) * 2015-12-04 2019-10-10 The Texas A&M University System Adenovirus-vectored multivalent vaccine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952310A (zh) * 2016-07-01 2019-06-28 美国农业部 保护免受亲本病毒Georgia 2007分离株攻击的合理开发的非洲猪瘟减毒病毒毒株
CN113543801A (zh) * 2019-03-27 2021-10-22 勃林格殷格翰动物保健有限公司 含有非洲猪瘟病毒肽及蛋白的免疫原性组合物及疫苗以及其用途
CN110269932A (zh) * 2019-06-24 2019-09-24 北京生科基因科技有限公司 非洲猪瘟病毒疫苗及其用途
CN113831394A (zh) * 2021-11-29 2021-12-24 中国人民解放军军事科学院军事医学研究院 一种非洲猪瘟病毒asfv基因的重组病毒组合及由其制备的疫苗

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NETHERTON CHRISTOPHER L., GOATLEY LYNNETTE C., REIS ANA LUISA, PORTUGAL RAQUEL, NASH RACHEL H., MORGAN SOPHIE B., GAULT LYNDEN, NI: "Identification and Immunogenicity of African Swine Fever Virus Antigens", FRONTIERS IN IMMUNOLOGY, vol. 10, 19 June 2019 (2019-06-19), pages 1 - 21, XP055837179, DOI: 10.3389/fimmu.2019.01318 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117701779A (zh) * 2024-02-04 2024-03-15 湖南派智生物科技有限公司 鉴别非洲猪瘟毒株的方法、引物探针组合、试剂、试剂盒及应用

Also Published As

Publication number Publication date
CN113831394B (zh) 2022-04-12
CN113831394A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
CN110093324B (zh) 基因缺失的减毒非洲猪瘟病毒及其作为疫苗的应用
WO2023092863A1 (zh) 一种非洲猪瘟病毒asfv基因的重组病毒组合及由其制备的疫苗
JP6368725B2 (ja) 豚ヘルペスウイルス遺伝子欠失株、ワクチン組成物及びその製造方法と応用
US10240131B2 (en) Type II pseudorabies virus attenuated strain, its preparation method and application
CN110551695A (zh) 非洲猪瘟病毒四基因缺失弱毒株及其应用
CN107805631B (zh) 编码传染性喉气管炎病毒和新城疫病毒抗原的重组非致病性马立克氏病病毒构建体
JP6913747B2 (ja) イヌアデノウイルスベクター
WO2022007742A1 (zh) 一种重组的伪狂犬病病毒及其疫苗组合物
CN112625095B (zh) 一种猪轮状病毒重组蛋白以及表达该蛋白的重组腺病毒和应用
CN110628730A (zh) 表达猪繁殖与呼吸综合征病毒gp蛋白的重组猪伪狂犬病病毒及应用
CN108220251B (zh) 一种重组传染性脓疱溶瘤病毒及其制备方法与应用
CN114958783B (zh) 一种三基因缺失的猫疱疹病毒i型重组病毒、猫传染性鼻气管炎活疫苗以及制备方法
TW201823458A (zh) 新穎ehv插入位點orf70
Su et al. A recombinant field strain of Marek's disease (MD) virus with reticuloendotheliosis virus long terminal repeat insert lacking the meq gene as a vaccine against MD
JP7387623B2 (ja) 標的タンパク質を安定して発現できる組換えウイルス
TW201823466A (zh) 新穎之啟動子
JP3045609B2 (ja) 抗マレック病組み換えフォウルポックスウィルス
WO2022027749A1 (zh) 耐热表型稳定遗传、携带负标记的重组口蹄疫病毒无毒株及o/a型口蹄疫二价灭活疫苗
CN110257428B (zh) 一种表达猪圆环病毒3型orf2基因的重组腺病毒及制备方法与应用
CN109022373B (zh) 鸭瘟病毒ul56基因3’端缺失和lorf5基因缺失突变株及其构建方法与应用
CN114292823A (zh) 携带基因VII型新城疫病毒F和HN基因的重组LaSota疫苗株及其构建方法和应用
CN116284261B (zh) 一种非洲猪瘟病毒结构蛋白组合物及其制备的疫苗
CN116492456B (zh) 非洲猪瘟病毒d129l基因及其在制备复制缺陷型非洲猪瘟疫苗中的应用
CN116492455B (zh) 非洲猪瘟病毒k421r基因及利用其制备的复制缺陷型非洲猪瘟疫苗
WO2024008014A1 (zh) 抗SARS-CoV-2或其突变体感染的药物组合物及其联合用药物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896967

Country of ref document: EP

Kind code of ref document: A1