TW201823458A - 新穎ehv插入位點orf70 - Google Patents

新穎ehv插入位點orf70 Download PDF

Info

Publication number
TW201823458A
TW201823458A TW106131993A TW106131993A TW201823458A TW 201823458 A TW201823458 A TW 201823458A TW 106131993 A TW106131993 A TW 106131993A TW 106131993 A TW106131993 A TW 106131993A TW 201823458 A TW201823458 A TW 201823458A
Authority
TW
Taiwan
Prior art keywords
seq
sequence
ehv
vector
interest
Prior art date
Application number
TW106131993A
Other languages
English (en)
Other versions
TWI817933B (zh
Inventor
艾莉絲 蒙度
安德斯 葛里
克莉絲汀娜 瑞美
Original Assignee
德商百靈佳殷格翰維美迪加股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商百靈佳殷格翰維美迪加股份有限公司 filed Critical 德商百靈佳殷格翰維美迪加股份有限公司
Publication of TW201823458A publication Critical patent/TW201823458A/zh
Application granted granted Critical
Publication of TWI817933B publication Critical patent/TWI817933B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/544Mucosal route to the airways
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16711Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
    • C12N2710/16734Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16711Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
    • C12N2710/16741Use of virus, viral particle or viral elements as a vector
    • C12N2710/16743Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/12011Bunyaviridae
    • C12N2760/12034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/12011Bunyaviridae
    • C12N2760/12071Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16171Demonstrated in vivo effect

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本發明係關於(載體)疫苗之領域,且尤其係關於新穎EHV插入位點ORF70。本發明進一步係關於適於表現所關注之基因,尤其抗原編碼序列之相關表現盒及載體。本發明之病毒載體可用於產生免疫原性組合物或疫苗。

Description

新穎EHV插入位點ORF70
本發明係關於(載體)疫苗之領域,且尤其係關於新EHV插入位點ORF70。本發明進一步係關於適於表現所關注之基因,尤其抗原編碼序列之相關表現盒及載體。本發明之病毒載體可用於產生免疫原性組合物或疫苗。
馬病原體馬科動物α疱疹病毒1 (馬流產病毒,EHV-1)屬疱疹病毒目(Herpesvirales )疱疹病毒科(Herpesviridae ) α疱疹病毒亞科(Alphaherpesvirinae )水痘病毒屬(Varicellovirus )。其係具有約150,000個鹼基對之雙鏈DNA基因體之大的包膜病毒。水痘病毒亞屬之其他重要成員係人類α疱疹病毒3 (水痘帶狀疱疹病毒)、豬α疱疹病毒1 (偽狂犬病病毒)、牛α疱疹病毒1 (傳染性支氣管炎病毒)及馬科動物α疱疹病毒4 (馬鼻肺炎病毒,EHV-4) (http://www.ictvonline.org/virustaxonomy.asp Virus Taxonomy:2015年發佈EC 47,London, UK,2015年7月;電子郵件批准2016(MSL編號30) EHV-1及EHV-4在全世界地方性流行並侵襲馬。儘管EHV-4引起大部分上呼吸道輕度感染,但依賴於宿主之應變及免疫狀態,EHV-1可引起全身感染自呼吸症狀至流產及致死性腦脊髓病之一系列疾病。目前,在美國及歐洲,有兩種針對EHV-1之經許可之改良活疫苗(MLV):RhinomuneTM (Boehringer Ingelheim)及PrevaccinolTM(MSD)。兩者均含有經典減毒之EHV-1 RacH菌株,其在豬上皮細胞中傳代256次以進行減毒(Ma等人, 2013)。減毒之機制已經在分子層級上進行了研究。Osterrieder等人(1996)顯示RacH缺乏orf67之兩個基因體拷貝且一個拷貝之恢復即足以恢復毒力。另外,RacH攜帶1283個bp的缺失,從而去除編碼免疫抑制病毒蛋白之orf1之編碼序列的90%以上。迄今為止,其他突變亦可能影響減毒,但尚未詳細研究。此皆使RacH成為一種非常安全之疫苗菌株,此乃因藉由在經疫苗接種之動物中傳代而毒力返強係基本不可能的(若可能)。 具有馬科動物α疱疹病毒1 (EHV-1)疫苗菌株RacH之整個基因體之大腸桿菌細菌人工染色體(BAC)的兩種變體pRacH及pRacH-SE稱作用於載體疫苗研發之平臺。BAC pRacH-SE係基於pRacH產生,該pRacH係最初在Klaus Osterrieder, FU Berlin之實驗室中選殖之BAC。pRacH缺失orf71編碼醣蛋白II (gpII;Wellington等人,1996)。在其位置引入BAC載體序列及GFP表現盒。為了自pRacH復活未經修飾之EHV-1 RacH,必須與含有整個orf71加側翼區之質體共轉染,使得在病毒複製過程期間經由同源重組使BAC載體序列部分及GFP表現盒經orf71替代,使初始RacH基因體恢復。pRacH在本發明中經修飾,使得在細胞培養物中轉染後,BAC載體序列/GFP表現盒變得可自我切除(SE) (Tischer等人,2007)。此改良之BAC命名為pRacH-SE。pRacH及pRacH-SE二者皆可用作載體疫苗研發之平臺,唯一區別係pRacH-SE顯著地促進orf71修復之病毒的復活。 已顯示,基於EHV-1 RacH之載體疫苗能夠在包括豬、牛及狗在內之若干哺乳動物物種中引發免疫性(Rosas等人, 2007,Rosas等人 2008,Trapp等人, 2005,Said等人 2013)。編碼病原體之抗原性蛋白之基因可由重組EHV-1 RacH表現。EHV-1-RacH基因體在大腸桿菌中以其BAC形式經操控,並通常藉由插入轉基因表現盒經調整以表現其他蛋白質(Tischer等人,2010)。在培養之允許細胞中轉染pRacH-SE DNA後,EHV-1複製由細胞轉錄因子起始。病毒DNA聚合酶之活性導致缺失所有BAC載體相關序列及EHV-1 RacH基因體恢復至其初始狀態。產生與RacH無法區分之傳染病毒。 當藉由(例如)插入轉基因表現盒在大腸桿菌中操縱pRacH-SE時,在允許的細胞中轉染後重構之病毒將具有修飾形式並將表現其他基因。重組EHV-1 RacH可用作載體疫苗。 野生型EHV-1菌株在其基因體之長獨特區段(序列坐標1298-3614;圖1)之一端具有三個開放閱讀框(orf),稱為orf1、orf2及orf3。Orf1及orf3連續佈置於DNA之一條鏈上,而orf 2由互補鏈編碼。疫苗菌株RacH在影響orfs 1及2之該區域中具有1283個bp缺失,指示該等基因對於病毒複製係非必需的。因此,該位點用作轉基因插入位點。此插入位點稱為ORF1/3。 然而,可插入至ORF1/3插入位點中之轉基因的大小及數量通常係有限的。因此,為了增強EHV-1載體之能力,對於自EHV-1載體,尤其重組EHV-1 RacH載體插入並表現轉基因之新穎之替代方法存在未滿足的需求。
為了增強EHV-1載體之能力,本發明提供自EHV-1載體主鏈插入及表現轉基因之新穎替代性方式。 本發明係關於可用於自EHV-1載體,尤其重組EHV-1 RacH插入轉基因序列及表現轉基因蛋白之新穎替代性轉基因插入位點ORF70。 EHV-1載體中之新「ORF70插入位點」之特徵在於相對於ORF70之部分缺失、截短、取代、修飾或諸如此類。預計完全ORF70之缺失將對病毒複製及因此疫苗製造及效能係不利的,此乃因ORF70之完全缺失將影響編碼gpII之ORF71的啟動子。新ORF70插入位點及/或插入(表現盒)至ORF70中係以ORF71保持功能或完整之方式在功能上經定義。 在具體態樣中,ORF70插入位點涵蓋RacH之ORF70內約801bp部分(SEQ ID NO.: 20)或其70%、80%、85%、90%、95%、99%同源序列之缺失。RacH基因體序列中之缺失部分顯示為SEQ ID NO.: 20 (由於完全RacH基因體序列未知,無可用核苷酸編號)。在另一具體態樣中,ORF70插入位點涵蓋野生型EHV-1菌株ab4 (基因庫登錄號AY665713.1)之ORF70內之理論801bp缺失。缺失部分位於核苷酸127681與128482之間之野生型ab4 (基因庫登錄號AY665713.1)基因體序列(SEQ ID NO.: 19)中。 在本發明中,「側翼區」將包含所關注之序列或基因,較佳抗原編碼序列之表現盒之重組引導至EHV-1基因體中。該等側翼區天然存在於EHV-1中。Up70側翼區(417 bp,SEQ ID NO.: 13)及Up71側翼區(431 bp,SEQ ID NO.: 14)經選擇用於所有用於orf70位點之轉移載體/質體之經典同源重組。在野生型EHV-1菌株ab4 (基因庫登錄號AY665713.1)中,相應序列位於核苷酸127264 - 127680 (側接orf70上游區域,SEQ ID NO.: 15)及128483 - 128913 (側接orf71上游區域,SEQ ID NO.: 16)。對於RED重組,由於XbaI限制性消化,側翼區經截短。該等經截短之側翼區與上述417 bp 「經典」側翼區(Up70側翼區,SEQ ID NO.: 13)之3’ 283 bp及431 bp 「經典」側翼區(Up71側翼區,SEQ ID NO.: 14)之5’ 144 bp一致。該等經截短之側翼區命名為Up70側翼區(283 bp) (如SEQ ID NO.: 17所包括)及Up71側翼區(144 bp) (如SEQ ID NO.: 18所包括)。該等各個側翼區定義相同ORF70插入位點。側翼區總是成對使用一個「左」側翼區(例如EQ ID NO.: 13、15、17)及一個「右」側翼區(例如SEQ ID NO.: 14、16、18)。 圖3中轉移質體pU-mC70-BGH (SEQ ID NO.: 21)、圖4中轉移載體pU70-p455-71K71 (SEQ ID NO.: 22)及圖5中轉移質體pU70-p455-H3-71K71 (SEQ ID NO.: 23)之質體/載體圖譜係包含包括新ORF70插入位點之表現盒之載體的實例。圖10中轉移載體pU-1-3-p430-BGHKBGH (SEQ ID NO.: 24)及圖11中轉移質體pU1-3-p430-H1av-BGHKBGH (SEQ ID NO.: 25)之質體/載體圖譜係包含包括ORF1/3插入位點之表現盒之載體的實例。 本發明進一步係關於EHV-1載體,其在不偶聯兩個轉基因的情況下在一個啟動子控制下藉由RNA-病毒源功能(2a肽,IRES位點)自一個載體主鏈表現兩個不同轉基因。 本發明進一步係關於馬科動物α疱疹病毒1 (EHV-1)載體,較佳RacH或RacH-SE,其包含插入新穎ORF70插入位點中之所關注之第一序列或基因及插入確立插入位點(例如ORF1/3)中之所關注之第二序列或基因。另外,本發明進一步係關於基於其他疱疹病毒、特定而言α疱疹病毒、特定而言水痘病毒(包括馬科動物α疱疹病毒3 (EHV-3)、馬科動物α疱疹病毒4 (EHV-4)、馬科動物α疱疹病毒8 (EHV-8)、馬科動物α疱疹病毒9 (EHV-9)、牛α疱疹病毒1 (BHV-1)、牛α疱疹病毒5 (BHV-5)、犬α疱疹病毒1及貓α疱疹病毒1)之載體。 本發明進一步係關於包含該等載體之哺乳動物宿主細胞及使用該等宿主細胞生成載體疫苗之方法、以及包含本發明之馬科動物α疱疹病毒1 (EHV-1)載體之免疫原性組合物及疫苗。 因此,上述技術問題之解決方案係藉由申請專利範圍中表徵之說明及實施例實現,且本發明之不同態樣係根據申請專利範圍執行。 該等性質容許產生基於EHV-1 RacH之重組載體疫苗,其自新近闡述之ORF70插入位點表現至少一種抗原或自新近闡述之ORF70插入位點及另一插入位點(如ORF1/3)以類似效率平行表現至少兩種不同抗原。若疫苗靶由兩種不同病原體組成,則與確立插入位點(如ORF1/3)平行之新穎ORF70插入位點之施加可顯著降低商品成本且相對於僅表現一種抗原性組分之載體具有明顯優點。
本申請案含有根據37 C.F.R. 1.821 - 1.825之序列表。伴隨本申請案之序列表之全部內容以引用方式併入本文中。 本發明解決了先前技術中固有之問題並提供了先前技術之顯著進步。 通常,本發明提供包含以下之表現盒: (i) 至少一個所關注之外源核苷酸序列,較佳所關注之基因,更佳抗原編碼序列,其中該所關注之核苷酸序列,較佳所關注之基因,更佳抗原編碼序列可操作連接至啟動子序列,及 (ii) 至少一個選自由以下組成之群之左ORF70側翼區:SEQ ID NO.: 13及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、SEQ ID NO.: 15及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、及SEQ ID NO.: 17及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列,及 (iii) 至少一個選自由以下組成之群之右ORF70側翼區:SEQ ID NO.: 14及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、SEQ ID NO.: 16及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、及SEQ ID NO.: 18及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列。 本發明進一步提供馬科動物疱疹病毒(EHV),具體而言馬科動物α疱疹病毒,例如EHV-1、EHV-3、EHV-4、EHV-8及EHV-9,更具體而言馬科動物α疱疹病毒1 (EHV-1)載體,最具體而言包含本發明之表現盒之菌株RacH。 本發明提供馬科動物α疱疹病毒1 (EHV-1)載體,較佳地包含本發明之表現盒之菌株RacH。 此外,本發明係關於馬科動物疱疹病毒(EHV),具體而言馬科動物α疱疹病毒,例如EHV-1、EHV-3、EHV-4、EHV-8及EHV-9,更具體而言馬科動物α疱疹病毒1 (EHV-1)載體,最具體而言包含以下之菌株RacH: (i) 至少一個所關注之外源核苷酸序列,較佳所關注之基因,更佳抗原編碼序列,其中該所關注之核苷酸序列,較佳所關注之基因,更佳抗原編碼序列可操作連接至啟動子序列,及 (ii) 至少一個選自由以下組成之群之左ORF70側翼區:SEQ ID NO.: 13及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、SEQ ID NO.: 15及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、及SEQ ID NO.: 17及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列,及 (iii) 至少一個選自由以下組成之群之右ORF70側翼區:SEQ ID NO.: 14及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、SEQ ID NO.: 16及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、及SEQ ID NO.: 18及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列。 本發明進一步係關於馬科動物疱疹病毒(EHV),具體而言馬科動物α疱疹病毒,例如EHV-1、EHV-3、EHV-4、EHV-8及EHV-9,更具體而言馬科動物α疱疹病毒1 (EHV-1)載體,最具體而言菌株RacH,其包含插入ORF70中之所關注之核苷酸序列,較佳所關注之基因,更佳抗原編碼序列。 本發明進一步係關於馬科動物疱疹病毒(EHV),具體而言馬科動物α疱疹病毒,例如EHV-1、EHV-3、EHV-4、EHV-8及EHV-9,更具體而言馬科動物α疱疹病毒1 (EHV-1)載體,最具體而言菌株RacH,其包含插入ORF70中之所關注之第一核苷酸序列或基因,較佳抗原編碼序列及插入第二插入位點,較佳ORF1/3中之所關注之第二核苷酸序列或基因,較佳另一抗原編碼序列。在本發明之該EHV-1載體之具體態樣中,至少兩個所關注之基因可操作連接至調節序列,較佳啟動子序列。 在本發明載體之具體態樣中,插入至ORF70中之特徵在於ORF70之部分缺失、截短、取代、修飾或諸如此類,其中ORF71保持功能。 在本發明載體之另一具體態樣中,插入至ORF70中之特徵在於對於RacH之ORF70內約801bp部分(SEQ ID NO.: 20)或其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列之缺失。 在本發明載體之另一具體態樣中,插入至ORF70中之特徵在於RacH之ORF70內約801bp部分(SEQ ID NO.: 20)之缺失,或任何其他菌株中其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列缺失。 在本發明載體之又一具體態樣中,插入至ORF70中之特徵在於野生型EHV-1菌株ab4 (基因庫登錄號AY665713.1)之ORF70內約801bp部分之缺失,其中野生型ab4基因體序列中之缺失部分位於核苷酸127681與128482之間(SEQ ID NO.: 19);或其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列之缺失。 在本發明載體之又一具體態樣中,插入至ORF70中之特徵在於野生型EHV-1菌株ab4 (基因庫登錄號AY665713.1)之ORF70內約801bp部分之缺失,其中野生型ab4基因體序列中之缺失部分位於核苷酸127681與128482之間(SEQ ID NO.: 19);或任何其他菌株中其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列之缺失。 在本發明載體之又一具體態樣中,EHV載體、具體而言EHV-1載體包含至少一個選自由以下組成之群之側翼區:SEQ ID NO.: 13、SEQ ID NO.: 14、SEQ ID NO.: 15、SEQ ID NO.: 16、SEQ ID NO.: 17及SEQ ID NO.: 18以及該等序列中之任一者之70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列。 在本發明載體之另一具體態樣中,EHV載體、具體而言EHV-1載體包含(i) 至少一個選自由以下組成之群之左ORF70側翼區:SEQ ID NO.: 13、SEQ ID NO.: 15及SEQ ID NO.: 17,及(ii) 至少一個之選自由以下組成之群右ORF70側翼區:SEQ ID NO.: 14、SEQ ID NO.: 16及SEQ ID NO.: 18。 在本發明之載體或表現盒之又一具體態樣中,該所關注之核苷酸序列,較佳所關注之基因,更佳抗原編碼序列係非天然及/或重組的。 在本發明之載體或表現盒之另一具體態樣中,該所關注之核苷酸序列係重組的及/或異源及/或外源的。 在本發明之載體或表現盒之另一具體態樣中,該抗原編碼序列涉及感染產食性動物(例如豬及/或牛)之病原體。 a) 在本發明之載體或表現盒之具體態樣中,該抗原編碼序列涉及感染豬之病原體。在又一具體態樣中,該病原體係豬流行性感冒A病毒(IAV)。在又一具體態樣中,該抗原係血球凝集素(HA)抗原,尤其該血球凝集素抗原係源自流行性感冒A病毒。舉例而言,流行性感冒A病毒係流行性感冒A病毒(A/豬/Italy/116114/2010(H1N2))、流行性感冒A病毒(A/豬/Italy/7680/2001(H3N2))、流行性感冒A病毒(A/豬/Gent/132/2005(H1N1))及/或流行性感冒A病毒(A/豬/Italy/4675/2003(H1N2))。在又一具體態樣中,該抗原包含由選自由以下組成之群之SEQ ID NO編碼之序列或由其組成:SEQ ID NO.: 26、27、28及29。在另一具體態樣中,該抗原包含編碼與如SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28及SEQ ID NO:29中所述之胺基酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%一致性之胺基酸序列的序列或由其組成。 在本發明之載體或表現盒之另一具體態樣中,該抗原編碼序列涉及感染牛之病原體。在又一具體態樣中,該病原體係施馬倫貝格病毒(Schmallenberg virus,SBV)。在又一具體態樣中,該抗原係SBV之Gc蛋白(SBV-Gc)。在更具體態樣中,該抗原係截短形式之SBV-Gc,例如SBV-Gc之編碼區之234胺基酸部分。在具體態樣中,SBV-GC之編碼區之該234胺基酸部分係源自SBV醣蛋白Gc之胺基-末端。在又一具體態樣中,SBV-GC之編碼區之該234胺基酸部分經修飾以實現有效轉運至感染細胞之質膜並插入其中(例如藉由將信號肽插入SBV-Gc之序列中及/或藉由將跨膜錨肽插入SBV-Gc之序列中),及/或該234胺基酸部分經密碼子使用最佳化用於在EHV-1中表現,及/或將GS連接體(例如SEQ ID NO.:30)插入Gc部分與信號肽/跨膜錨之間。在又一具體態樣中,該抗原係由與如SEQ ID NO:31中所闡述之核酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或至少100%一致性之序列編碼。在另一具體態樣中,該抗原包含由SEQ ID NO.: 31編碼之序列或由其組成。 在本發明載體之具體態樣中,所關注之基因可操作連接至調節序列,較佳啟動子序列。 在本發明之載體或表現盒之另一具體態樣中,該載體或表現盒進一步包含至少一個其他額外調節序列,例如終止信號或多聚腺苷酸化序列。 在本發明之載體或表現盒之另一具體態樣中,該載體或表現盒進一步包含額外調節序列,例如終止信號及/或多聚腺苷酸化序列。 在本發明之載體或表現盒之另一具體態樣中,該載體或表現盒進一步包含至少一個所關注之其他核苷酸序列,較佳所關注之另一基因,更佳抗原編碼序列。在一個態樣中,經由(例如) IRES /2a肽將至少一個所關注之其他核苷酸序列,較佳所關注之另一基因,更佳抗原編碼序列插入相同插入位點ORF70中。在另一態樣中,將該載體或表現盒包含至少一個所關注之其他核苷酸序列,較佳所關注之另一基因,更佳抗原編碼序列插入另一插入位點中,較佳插入ORF1/3中。 在本發明之載體或表現盒之具體態樣中,至少兩個所關注之基因可操作連接至調節序列,較佳啟動子序列。 在本發明之載體或表現盒之又一態樣中,可操作連接至一個或兩個或更多個所關注之序列或基因的啟動子序列係選自由以下組成之群:SV40大T、HCMV及MCMV立即早期基因1、人類延長因子α啟動子、桿狀病毒多角體蛋白啟動子、4pgG600 (SEQ ID No. 1)之功能片段(較佳地該功能片段係p430 (SEQ ID NO.:3))、4pgG600 (SEQ ID No. 1)之互補核苷酸序列之功能片段、4pMCP600 (SEQ ID No. 2)之功能片段(較佳地該功能片段係p455 (SEQ ID NO.:4))、4pMCP600 (SEQ ID No. 2)之互補核苷酸序列之功能片段。 在本發明之載體或表現盒之另一具體態樣中,可操作連接至至少兩個所關注之基因之啟動子序列係不同的。 在本發明之載體或表現盒之另一具體態樣中,可操作連接至至少一個所關注之基因之啟動子序列係p455 (SEQ ID No. 4)或其功能片段或衍生物或其互補核苷酸序列,且其中可操作連接至另一所關注之基因之啟動子序列係p430 (SEQ ID No. 3)或其功能片段或衍生物或其互補核苷酸序列。 本發明進一步係關於包含用於同源重組或RED介導之重組(參見上文所述之二者)至病毒載體基因體中之特異性靶位點中,較佳重組至EHV載體、具體而言EHV-1、更具體而言RacH載體(例如轉移質體pU-mC70-BGH (SEQ ID NO: 21)、及/或轉移載體pU70-p455-71K71 (SEQ ID NO.: 22)、及/或轉移質體pU70-p455-H3-71K71 (SEQ ID NO.: 23)、及/或轉移載體pU-1-3-p430-BGHKBGH (SEQ ID NO.: 24)、及/或轉移質體pU1-3-p430-H1av-BGHKBGH (SEQ ID NO.: 25))之orf1/3位點中之側翼區的質體。 本發明進一步係關於包含用於同源重組或RED介導之重組(參見上文所述之二者)至病毒載體基因體中之特異性靶位點中,較佳重組至EHV載體、具體而言EHV-1、更具體而言RacH載體之orf70位點中之側翼區的質體。 本發明進一步係關於包含用於同源重組或RED介導之重組(參見上文所述之二者)至病毒載體基因體中之特異性靶位點中,較佳重組至EHV載體、具體而言EHV-1、更具體而言RacH載體及調節性核酸,較佳啟動子,較佳p430 (例如轉移載體pU-1-3-p430-BGHKBGH (SEQ ID NO.: 24)、及/或轉移質體pU1-3-p430-H1av-BGHKBGH (SEQ ID NO.: 25))之orf1/3位點中之側翼區的質體。 本發明進一步係關於包含用於同源重組或RED介導之重組(參見上文所述之二者)至病毒載體基因體中之特異性靶位點中,較佳重組至EHV載體、具體而言EHV-1、更具體而言RacH載體及調節性核酸,較佳啟動子,較佳p455 (例如轉移載體pU70-p455-71K71 (SEQ ID NO.: 22)、及/或轉移質體pU70-p455-H3-71K71 (SEQ ID NO.: 23))之orf70位點中之側翼區的質體。 本發明進一步係關於包含用於同源重組或RED介導之重組(參見上文所述之二者)至病毒載體基因體中之特異性靶位點中,較佳重組至EHV載體、具體而言EHV-1、更具體而言RacH載體及調節性核酸,較佳啟動子,較佳p430 (例如轉移載體pU-1-3-p430-BGHKBGH (SEQ ID NO.: 24)、及/或轉移質體pU1-3-p430-H1av-BGHKBGH (SEQ ID NO.: 25))之orf1/3位點中之側翼區的質體。 本發明進一步係關於包含用於同源重組或RED介導之重組(參見上文所述之二者)至病毒載體基因體中之特異性靶位點中,較佳重組至EHV載體、具體而言EHV-1、更具體而言RacH載體及調節性核酸序列,較佳啟動子,較佳p430及第二調節性核酸,較佳多聚腺苷酸化序列,較佳BGH多聚腺苷酸化序列(例如轉移載體pU-1-3-p430-BGHKBGH (SEQ ID NO.: 24)、及/或轉移質體pU1-3-p430-H1av-BGHKBGH (SEQ ID NO.: 25))之orf1/3位點中之側翼區的質體。 本發明進一步係關於包含用於同源重組或RED介導之重組(參見上文所述之二者)至病毒載體基因體中之特異性靶位點中,較佳重組至EHV載體、具體而言EHV-1、更具體而言RacH載體及調節性核酸序列,較佳啟動子,較佳p455及第二調節性核酸,較佳多聚腺苷酸化序列,較佳71pA多聚腺苷酸化序列(例如轉移載體pU70-p455-71K71 (SEQ ID NO.: 22)、及/或轉移質體pU70-p455-H3-71K71 (SEQ ID NO.: 23))之orf70位點中之側翼區的質體。 本發明進一步係關於產生本發明之載體之方法,其包含: a. 將所關注之第一核苷酸序列,較佳所關注之基因,例如抗原編碼序列插入ORF70中, b. 視情況可操作連接該所關注之第一基因與調節性核酸序列/啟動子序列,較佳p455或p430。 c. 視情況可操作連接該所關注之第一基因與(其他)調節性核酸,例如多聚腺苷酸化序列,較佳71pA或BGHpA。 在具體態樣中,該方法進一步包含 d. 將所關注之核苷酸序列,較佳所關注之第二基因插入第二插入位點,較佳ORF1/3中, e. 視情況可操作連接該所關注之第二基因與調節性核酸序列/啟動子序列,較佳p455或p430。 f. 視情況可操作連接該所關注之第一基因與調節性核酸,例如多聚腺苷酸化序列,較佳71pA或BGHpA。 本發明進一步係關於由本發明之載體、視情況選用之轉染試劑及插頁說明書組成之套組。 本發明亦係關於特徵在於包含本發明之載體之哺乳動物宿主細胞。 本發明進一步係關於製備宿主細胞之方法,其特徵在於以下步驟: a. 用本發明之載體感染本發明之哺乳動物宿主細胞, b. 在適宜條件下培養經感染細胞, c. 視情況收穫該宿主細胞。 本發明進一步係關於馬科動物疱疹病毒(EHV)載體、具體而言馬科動物α疱疹病毒(例如EHV-1、EHV-3、EHV-4、EHV-8及EHV-9)、更具體而言馬科動物α疱疹病毒1 (EHV-1)載體、最具體而言RacH中之ORF70作為該馬科動物疱疹病毒(EHV)載體中之插入位點的用途,其中該插入位點支持/有利於所關注之核苷酸序列,較佳所關注之基因,例如抗原編碼序列之表現,其中包含ORF70之部分缺失、截短、取代、修改或諸如此類之該ORF70插入位點及其中ORF71保持功能。 本發明進一步係關於本發明之載體或本發明之哺乳動物宿主細胞之用途,其用於製造免疫原性組合物或疫苗。 本發明進一步係關於包含以下之免疫原性組合物: a. 本發明之載體,及/或 b. 由本發明之載體(例如病毒、經修飾之活病毒、類病毒顆粒(VLP)或諸如此類)表現之多肽,及 c. 視情況醫藥或獸醫上可接受之載劑或賦形劑,較佳地該載劑適於經口、皮內、肌內或鼻內施加, 較佳地該免疫原性組合物包含病毒。在具體態樣中,該病毒係傳染性病毒。 本發明進一步係關於包含以下之疫苗或醫藥組合物: a. 本發明之載體,及/或 b. 由本發明之載體(例如病毒、經修飾之活病毒、類病毒顆粒(VLP)或諸如此類)表現之多肽,及 c. 醫藥或獸醫上可接受之載劑或賦形劑,較佳地該載劑適於經口、皮內、肌內或鼻內施加, d. 視情況該疫苗進一步包含佐劑。 本發明展現在各種物種,尤其豬及牛中使用本發明之載體或表現盒之成功的疫苗接種。舉例而言,顯示基於在新近闡述之ORF70插入位點中表現經修飾施馬倫貝格病毒(SBV)抗原之EHV-1 RacH的實驗疫苗構築體在牛中有效(參見實例9)。所有經疫苗接種之動物在經有毒力之施馬倫貝格病毒攻擊後皆顯示降低之病毒複製程度,如藉由量化反轉錄PCR (qRT-PCR)所評估。四隻經疫苗接種之動物中之兩隻經完全保護,貫穿整個取樣時段未檢測到病毒複製。在該組中之其他兩隻動物中,藉由qRT-PCR檢測SBV基因體複製,但較攻擊對照組中之程度低。(圖27A)。此外,在未經疫苗接種之對照動物中,在攻擊感染之前藉由血清中和測試未檢測到SBV特異性抗體。自感染後一週或兩週內,所有未經疫苗接種之動物中皆可檢測到中和抗體(圖27B)。與未經疫苗接種之對照組相比,在攻擊感染當天,在經rEHV-SBV-Gc免疫之四頭牛中之兩頭中可檢測到SBV特異性中和抗體。在該組之其餘兩隻動物中,在攻擊感染之前未檢測到SBV特異性中和抗體,但在感染後兩週,存在中和抗體(圖27B)。所有四隻動物中之SBV特異性中和抗體皆低於攻擊對照,指示攻擊後病毒複製強烈減少。 因此,在具體態樣中,該免疫原性組合物或疫苗或醫藥組合物包含本發明之載體或表現盒,其中該抗原編碼序列涉及感染牛之病原體。在又一具體態樣中,該病原體係施馬倫貝格病毒(SBV)。在又一具體態樣中,該抗原係SBV之Gc蛋白(SBV-Gc)。在更具體態樣中,該抗原係截短形式之SBV-Gc,例如SBV-Gc之編碼區之234胺基酸部分。在具體態樣中,SBV-GC之編碼區之該234胺基酸部分係源自SBV醣蛋白Gc之胺基-末端。在又一具體態樣中,SBV-GC之編碼區之該234胺基酸部分經修飾以實現有效轉運至感染細胞之質膜並插入其中(例如藉由將信號肽插入SBV-Gc之序列中及/或藉由將跨膜錨肽插入SBV-Gc之序列中),及/或該234胺基酸部分經密碼子使用最佳化用於在EHV-1中表現,及/或將GS連接體(例如SEQ ID NO.:30)插入Gc部分與信號肽/跨膜錨之間。在又一具體態樣中,該抗原係由與如SEQ ID NO:31中所闡述之核酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或至少100%一致性之序列編碼。在另一具體態樣中,該抗原包含由SEQ ID NO.: 31編碼之序列或由其組成。 此外,在另一具體態樣中,該免疫原性組合物或疫苗或醫藥組合物包含本發明之載體或表現盒,其中該抗原編碼序列涉及感染豬之病原體。在又一具體態樣中,該病原體係豬流行性感冒A病毒(IAV)。在又一具體態樣中,該抗原係血球凝集素(HA)抗原,尤其該血球凝集素抗原係源自流行性感冒A病毒。舉例而言,流行性感冒A病毒係流行性感冒A病毒(A/豬/Italy/116114/2010(H1N2))、流行性感冒A病毒(A/豬/Italy/7680/2001(H3N2))、流行性感冒A病毒(A/豬/Gent/132/2005(H1N1))及/或流行性感冒A病毒(A/豬/Italy/4675/2003(H1N2))。在又一具體態樣中,該抗原包含由選自由以下組成之群之SEQ ID NO編碼之序列或由其組成:SEQ ID NO.: 26、27、28及29。在另一具體態樣中,該抗原包含編碼與如SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28及SEQ ID NO:29中所述之胺基酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%一致性之胺基酸序列的序列或由其組成。 本發明進一步係關於製備用於降低一或多種與感染相關或由感染引起之臨床體徵之發病率或嚴重程度的免疫原性組合物或疫苗之方法,該方法包含以下步驟: a. 用本發明之載體感染本發明之哺乳動物宿主細胞, b. 在適宜條件下培養經感染細胞, c. 收集感染之細胞培養物, d. 視情況純化步驟c)之收集之感染之細胞培養物 e. 視情況混合該收集之感染之細胞培養物與醫藥上可接受之載劑。醫學用途 本發明進一步係關於本發明之免疫原性組合物或疫苗,其用於減輕或預防動物中由病原體感染引起之臨床體徵或疾病之方法中,或用於治療或預防動物病原體感染之方法中,該動物較佳係產食性動物,例如豬或牛,尤其豬。 本發明進一步係關於針對動物(例如產食性動物,包括豬)中由病原體引起之臨床疾病對該動物進行免疫之方法,該方法包含向該動物投與本發明之免疫原性組合物或疫苗之步驟,其中該免疫原性組合物或疫苗不能引起感染之臨床體徵,但能誘導針對該病原體之病原體形式對動物進行免疫之免疫反應。 在本發明上述醫學用途或如上文所述對動物進行免疫之方法的具體態樣中,該抗原編碼序列涉及感染豬之病原體。在又一具體態樣中,該病原體係豬流行性感冒A病毒(IAV)。在又一具體態樣中,該抗原係血球凝集素(HA)抗原,尤其該血球凝集素抗原係源自流行性感冒A病毒。舉例而言,流行性感冒A病毒係流行性感冒A病毒(A/豬/Italy/116114/2010(H1N2))、流行性感冒A病毒(A/豬/Italy/7680/2001(H3N2))、流行性感冒A病毒(A/豬/Gent/132/2005(H1N1))及/或流行性感冒A病毒(A/豬/Italy/4675/2003(H1N2))。在又一具體態樣中,該抗原包含由選自由以下組成之群之SEQ ID NO編碼之序列或由其組成:SEQ ID NO.: 26、27、28及29。在另一具體態樣中,該抗原包含編碼與如SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28及SEQ ID NO:29中所闡述之胺基酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%一致性之胺基酸序列的序列或由其組成。 c) 在本發明上述醫學用途或如上文所述對動物進行免疫之方法的另一具體態樣中,該抗原編碼序列涉及感染牛之病原體。在又一具體態樣中,該病原體係施馬倫貝格病毒(SBV)。在又一具體態樣中,該抗原係SBV之Gc蛋白(SBV-Gc)。在更具體態樣中,該抗原係截短形式之SBV-Gc,例如SBV-Gc之編碼區之234胺基酸部分。在具體態樣中,SBV-GC之編碼區之該234胺基酸部分係源自SBV醣蛋白Gc之胺基-末端。在又一具體態樣中,SBV-GC之編碼區之該234胺基酸部分經修飾以實現有效轉運至感染細胞之質膜並插入其中(例如藉由將信號肽插入SBV-Gc之序列中及/或藉由將跨膜錨肽插入SBV-Gc之序列中),及/或該234胺基酸部分經密碼子使用最佳化用於在EHV-1中表現,及/或將GS連接體(例如SEQ ID NO.:30)插入Gc部分與信號肽/跨膜錨之間。在又一具體態樣中,該抗原係由與如SEQ ID NO:31中所闡述之核酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或至少100%一致性之序列編碼。在另一具體態樣中,該抗原包含由SEQ ID NO.: 31編碼之序列或由其組成。 本發明亦係關於用於針對與病原體相關之疾病對動物(較佳產食性動物,例如豬或牛)疫苗接種及/或降低動物中一或多種與病原體相關或由病原體引起之臨床體徵之發病率或嚴重程度的套組,其包含: a) 能向該動物投與疫苗之分配器;及 b) 本發明之免疫原性組合物或疫苗,及 c) 視情況選用插頁說明書。定義 除非另有定義,否則本文所用之所有技術及科學術語皆具有與歸檔時熟習本發明所屬技術領域者通常所瞭解含義相同之含義。術語之含義及範疇應當明確;然而,在任何潛在的模糊性之情況下,本文提供之定義先於任何辭典或外在定義。此外,除非上下文另外需要,否則單數術語包括複數形式且複數術語包括單數。在本文中,除非另有說明,否則使用「或」意指「及/或」。此外,使用術語「包括(including)」以及其他形式(例如「includes」及「included」)不具有限制性。本文中提及之所有專利及出版物皆以引用方式併入本文中。 除非另外指示,否則本發明實踐將採用熟習此項技術者熟知之病毒學、分子生物學、微生物學、重組DNA技術、蛋白質化學及免疫學之習用技術。該等技術全面闡釋於文獻中。參見(例如) Sambrook、Fritsch及Maniatis、Molecular Cloning: A Laboratory Manual,第I、II及III卷,第2版(1989);DNA Cloning,第I及II卷(D. N. Glover編輯,1985);Oligonucleotide Synthesis (M. J. Gait編輯,1984);Nucleic Acid Hybridization (B. D. Hames及S. J. Higgins編輯, 1984);Animal Cell Culture (R. K. Freshney編輯,1986);Immobilized Cells and Enzymes (IRL press, 1986);Perbal, B., A Practical Guide to Molecular Cloning (1984);the series, Methods In Enzymology (S. Colowick及N. Kaplan編輯,Academic Press, Inc.);Protein purification methods - a practical approach (E.L.V. Harris及S. Angal編輯,IRL Press at Oxford University Press);及Handbook of Experimental Immunology,第I-IV卷(D. M. Weir及C. C. Blackwell編輯,1986, Blackwell Scientific Publications)。 應當理解,在詳細闡述本發明之前,本發明並不限於特定DNA、多肽序列或過程參數,因此,當然可變。亦應理解,本文所用術語僅係出於闡述本發明之特定實施例之目的,而非意欲為限制性。必須注意,除非上下文另外明確說明,否則本說明書及隨附申請專利範圍中所用之單數形式「一(a及an)」及「該(the)」包括複數個指示物。因此,例如,在提及「抗原」時包括兩種或更多種抗原之混合物,在提及「賦形劑」時包括兩種或更多種賦形劑之混合物,及諸如此類。分子生物學定義 如業內已知之術語「載體」係指用於將遺傳物質傳遞至宿主細胞之聚核苷酸構築體,通常為質體或細菌人造染色體。載體可為(例如)細菌、病毒、噬菌體、細菌人造染色體、黏粒或質體。如本文使用之載體可由DNA或RNA組成或含有DNA或RNA。在一些實施例中,載體由DNA組成。在一些實施例中,載體係傳染性病毒。該病毒載體含有以攜帶外源基因之方式經操控之病毒基因體,其在細胞培養物中以及宿主動物中病毒載體之複製中具有功能。根據本發明之具體態樣,載體可用於各種態樣,例如僅傳遞遺傳物質,用於轉染宿主細胞或生物體,用作疫苗(例如DNA疫苗)或用於基因表現目的。基因表現是闡述如由稱為基因之特異性聚核苷酸序列引導之細胞中蛋白質之生物合成的術語。在具體態樣中,載體可為「表現載體」,其係當其存在於適當環境中時能夠引導由載體攜帶之一或多種基因編碼之蛋白質之表現的載體。 載體及製備及/或使用載體(重組體)進行表現之方法可藉由以下中揭示之方法或類似於該等方法來進行:美國專利第4,603,112號、第4,769,330號、第5,174,993號、第5,505,941號、第5,338,683號、第5,494,807號、第4,722,848號、第5,942,235號、第5,364,773號、第5,762,938號、第5,770,212號、第5,942,235號、第382,425號、PCT公開案WO 94/16716、WO 96/39491、WO 95/30018;Paoletti, 「Applications of pox virus vectors to vaccination: An update」,PNAS USA 93: 11349-11353,1996年10月;Moss, 「Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety」,PNAS USA 93: 11341-11348,1996年10月;Smith等人,美國專利第4,745,051號(重組桿狀病毒);Richardson, C. D. (編輯), Methods in Molecular Biology 39, 「Baculovirus Expression Protocols」 (1995 Humana Press Inc.);Smith等人,「Production of Human Beta Interferon in Insect Cells Infected with a Baculovirus Expression Vector」, Molecular and Cellular Biology,1983年12月,第3卷,第12期,第2156-2165頁;Pennock等人,「Strong and Regulated Expression of Escherichia coli B-Galactosidase in Infect Cells with a Baculovirus vector」,Molecular and Cellular Biology,1984年3月,第4卷,第3期,第406頁;EPA0 370 573;於1986年10月16日提出之美國申請案第920,197號;EP專利公開案第265785號;美國專利第4,769,331號(重組疱疹病毒);Roizman, 「The function of herpes simplex virus genes: A primer for genetic engineering of novel vectors」,PNAS USA 93:11307-11312,1996年10月;Andreansky等人,「The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors」,PNAS USA 93: 11313-11318,1996年10月;Robertson等人,「Epstein-Barr virus vectors for gene delivery to B lymphocytes」,PNAS USA 93: 11334-11340,1996年10月;Frolov等人,「Alphavirus-based expression vectors: Strategies and applications」,PNAS USA 93: 11371-11377,1996年10月;Kitson等人,J. Virol. 65, 3068-3075, 1991;美國專利第5,591,439號、第5,552,143號;WO 98/00166;容許之美國申請案第08/675,556號及第08/675,566號,二者皆係於1996年7月3日提出申請(重組腺病毒);Grunhaus等人,1992,「Adenovirus as cloning vectors」,Seminars in Virology (第3卷)第237-52頁,1993;Ballay等人, EMBO Journal,第4卷,第3861-65頁,Graham, Tibtech 8, 85-87,1990年4月;Prevec等人,J. Gen Virol. 70, 42434;PCT WO 91/11525;Felgner等人 (1994), J. Biol. Chem. 269, 2550-2561, Science, 259: 1745-49, 1993;及McClements等人,「Immunization with DNA vaccines encoding glycoprotein D or glycoprotein B, alone or in combination, induces protective immunity in animal models of herpes simplex virus-2 disease」, PNAS USA 93: 11414-11420, 1996年10月;及美國專利第5,591,639號、第5,589,466號及第5,580,859號,以及WO 90/11092、WO93/19183、WO94/21797、WO95/11307、WO95/20660;Tang等人,Nature,及尤其Furth等人,Analytical Biochemistry, relating to DNA expression vectors。亦參見WO 98/33510;Ju等人,Diabetologia, 41: 736-739, 1998 (慢病毒表現系統);Sanford等人,美國專利第4,945,050號;Fischbach等人, (Intracel);WO 90/01543;Robinson等人,Seminars in Immunology第9卷,第271-283頁(1997),(DNA載體系統);Szoka等人,美國專利第4,394,448號(將DNA插入活細胞中之方法);McCormick等人,美國專利第5,677,178號(細胞病變病毒之用途);及美國專利第5,928,913號(用於基因遞送之載體);以及本文中引用之其他文件。 術語「病毒載體」闡述藉由重組DNA技術操縱之經遺傳修飾之病毒,使得其進入宿主細胞產生特異性生物活性,例如由載體攜帶之轉基因的表現。在具體態樣中,轉基因係抗原。病毒載體在靶細胞、組織或生物體中可複製勝任或可不複製勝任。 病毒載體之產生可使用業內熟知之任何適宜基因工程技術來完成,包括但不限於限制內核酸酶消化、連接、轉變、質體純化、DNA測序、細胞培養物轉染之標準技術,例如如以下中所述:Sambrook等人 (Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, N.Y. (1989))或K. Maramorosch及H. Koprowski (Methods in Virology Volume VIII, Academic Press Inc. London, UK (2014))。 病毒載體可納入來自任何已知生物體之基因體的序列。序列可以其天然形式納入或可以任何方式經修飾以獲得期望活性。舉例而言,序列可包含插入、缺失或取代。 病毒載體可包括兩種或更多種所關注之蛋白質的編碼區。舉例而言,病毒載體可包括所關注之第一蛋白質之編碼區及所關注之第二蛋白質之編碼區。所關注之第一蛋白質及所關注之第二蛋白質可相同或不同。在一些實實施例中,病毒載體可包括所關注之第三或第四種蛋白質之編碼區。所關注之第三及第四蛋白質可相同或不同。由一種病毒載體編碼之兩種或更多種所關注之蛋白質的總長度可變。舉例而言,兩種或更多種蛋白質之總長度可為至少約200個胺基酸。至少約250個胺基酸、至少約300個胺基酸、至少約350個胺基酸、至少約400個胺基酸、至少約450個胺基酸、至少約500個胺基酸、至少約550個胺基酸、至少約600個胺基酸、至少約650個胺基酸、至少約700個胺基酸、至少約750個胺基酸、至少約800個胺基酸或更長。 較佳病毒載體包括(例如)源自EHV-1或EHV-4或其他水痘病毒(如PrV (偽狂犬病病毒)或BHV-1 (牛疱疹病毒1))的疱疹病毒載體。 根據本發明之具體態樣,術語「病毒載體」或「病毒構築體」係指源自病毒之重組病毒構築體,其選自疱疹病毒科,例如EHV-1、EHV-4。較佳病毒載體包括(例如)源自EHV-1或EHV-4之疱疹病毒載體。 術語「病毒載體」及「病毒構築體」可互換使用。 如本文所用術語「構築體」係指人工產生之重組核酸,例如質體、BAC或重組病毒。 術語「質體」係指獨立於細菌宿主細胞內之細菌染色體複製的細胞質DNA。在本發明之具體態樣中,術語「質體」及/或「轉移質體」係指用於構築(例如)表現盒用於插入病毒載體中之重組DNA技術的元件。在另一具體態樣中,術語「質體」可用於指定可用於DNA疫苗接種目的之質體。 如本文所用術語「核酸」及「聚核苷酸」可互換使用且係指任何核酸。 如本文所用之術語「核酸」、「核酸序列」、「核苷酸序列」、「聚核苷酸」、「聚核苷酸序列」、「RNA序列」或「DNA序列」係指寡核苷酸、核苷酸或聚核苷酸及其片段及部分,且係指基因體或合成來源之DNA或RNA,其可為單鏈或雙鏈且代表有義鏈或反義鏈。序列可為非編碼序列、編碼序列或二者之混合物。本發明之核酸序列可使用熟習此項技術者熟知之標準技術來製備。 術語「核酸」及「聚核苷酸」亦具體而言包括由除5個生物鹼基(腺嘌呤、鳥嘌呤、胸腺嘧啶、胞嘧啶及尿嘧啶)外之鹼基組成之核酸。 術語「調節性核酸」、「調節元件」及「表現控制元件」可互換使用,且係指可影響特定宿主生物體中可操作連接之編碼序列之表現的核酸分子。該等術語廣泛用於並涵蓋促進或調節轉錄之所有元件,包括啟動子、啟動子序列、RNA聚合酶及轉錄因子之基本相互作用所需之核心元件、上游元件、增強子及反應元件。原核生物中之實例性調節元件包括啟動子、操縱子序列及核糖體結合位點。真核細胞中使用之調節元件可包括但不限於轉錄及轉譯控制序列,例如啟動子、增強子、剪接信號、多聚腺苷酸化信號、終止子、蛋白質降解信號、內部核糖體進入位點(IRES)、小核糖核酸病毒2A序列及諸如此類,其提供及/或調節宿主細胞中編碼序列之表現及/或編碼多肽之產生。 「內部核糖體進入位點」或「IRES」闡述獨立於IRES之基因5´在功能上促進轉譯起始並容許兩個順反子(開放閱讀框)自動物細胞中之單個轉錄物轉譯的序列。IRES提供獨立之核糖體進入位點用於在其下游立即轉譯開放閱讀框。不同於可係多順反子、即編碼自mRNA順序轉譯之幾種不同多肽的細菌mRNA,動物細胞之大部分mRNA係單順反子,且編碼僅一種多肽之合成。在真核細胞中具有多順反子轉錄物,轉譯將自最5´轉譯起始位點起始,終止於第一終止密碼子,且轉錄物將自核糖體釋放,導致僅轉譯mRNA中之第一編碼多肽。在真核細胞中,具有可操作連接至轉錄物中之第二或後續開放閱讀框之IRES的多順反子轉錄物容許該下游開放閱讀框之順序轉譯以產生由相同轉錄物編碼之兩種或更多種多肽。IRES可具有不同長度且來自各種來源,例如,腦心肌炎病毒(EMCV)、小核糖核酸病毒(例如口蹄疫病毒、FMDV或脊髓灰白質炎病毒(PV))或C型肝炎病毒(HCV)。各種IRES序列及其在載體構築中之用途已經闡述且為業內所熟知。下游編碼序列可在不負面地影響下游基因之表現的任何距離可操作連接至IRES之3'端。IRES與下游基因開始之間之最佳或允許的距離可以容易地藉由改變距離及測量隨距離變化之表現來測定。 術語「2a」或「2a肽」係指闡述為2a及「2a樣」之短寡肽序列,其用作能夠藉由定義為核糖體跳躍之過程介導蛋白質之間之共轉譯裂解的連接體。可使用該等2a及「2a樣」序列(來自小核糖核酸病毒科及其他病毒或細胞序列)將多個基因序列濃縮成單個基因,確保其在相同細胞內共表現(參見Luke及Ryan,2013)。 如本文所用術語「啟動子」或「啟動子序列」係指允許RNA聚合酶結合並引導基因轉錄之核苷酸序列。通常,啟動子位於基因之5'非編碼區中,靠近基因之轉錄起始位點。在起始轉錄中起作用之啟動子內的序列元件通常以共有核苷酸序列表徵。啟動子之實例包括(但不限於)來自細菌、酵母、植物、病毒及動物(例如哺乳動物(包括馬、豬、牛及人類))、鳥或昆蟲之啟動子。啟動子可以係誘導型的、抑制型的及/或組成型的。誘導型啟動子因應於培養條件之一些變化(例如溫度變化),在其控制下起始增加之自DNA之轉錄程度(Ptashne, 2014)。熟習此項技術者熟知之啟動子之實例係(例如) SV40大T、HCMV及MCMV立即早期基因1、人類延長因子α啟動子、桿狀病毒多角體蛋白啟動子。 如本文在本發明上下文中所使用之術語啟動子尤其係指功能片段,例如,截短4pgG600 (SEQ ID No. 1)或其互補核苷酸序列,較佳地序列一致性在整個長度上係(至少係)72% (或更高)。此外,如本文在本發明之上下文中所使用之術語啟動子尤其係指功能片段,例如,截短4pMCP600 (SEQ ID No. 2)或其互補核苷酸序列,較佳地序列一致性在整個長度上係(至少係)78% (或更高)。最佳地,「啟動子」係指p430 (SEQ ID NO.:3)或p455 (SEQ ID NO.: 4)。如本文中在本發明上下文中進一步使用之術語啟動子尤其係指p430 (SEQ ID NO.:3)或p455 (SEQ ID NO.: 4)或4pgG600 (SEQ ID No. 1)或4pMCP600 (SEQ ID No. 2)之功能衍生物,其具有(例如)小的取代、突變或倒位,使得序列一致性為70%、80%、85%、90%、95%、99%一致或同源。 術語「p430」、「gG 430」及「430」在整個說明書、圖、序列表等中同義且可互換使用。術語「p455」、「MCP455」及「455」在整個說明書、圖、序列表等中同義且可互換使用。 術語「增強子」表示在順式位置中作用於啟動子之活性且因此刺激與該啟動子功能連接之基因或編碼序列的轉錄的聚核苷酸序列。不同於啟動子,增強子之效應與位置及取向無關,且因此其可以位於轉錄單元之前面或後面,在內含子內,或甚至在編碼區內。增強子可位於轉錄單位之鄰近區域並且距離啟動子相當遠。亦可與啟動子具有物理及功能重疊。熟習此項技術者將明瞭來自各種來源的多種增強子(並且保藏於諸如基因庫等數據庫中,例如SV40增強子、CMV增強子、多瘤增強子、腺病毒增強子),其用作獨立元件或選殖於聚核苷酸序列內之元件(例如,保藏於ATCC或來自商業及個人來源)。多種啟動子序列亦含有增強子序列,例如經常使用之CMV啟動子。人類CMV增強子係迄今鑑別之最強的增強子之一。可誘導型增強子之一個實例係金屬硫蛋白增強子,其可由糖皮質激素或重金屬刺激。 術語「互補核苷酸序列」闡述聚核苷酸之兩條配對鏈之一條鏈,例如DNA或RNA。互補鏈之核苷酸序列反映其配對鏈之核苷酸序列,使得對於每一腺苷,其含有胸腺激素(或對於RNA為尿嘧啶),對於每一鳥嘌呤為胞嘧啶,且反之亦然。例如,5’-GCATAC-3’之互補核苷酸序列係3’-CGTATG-5’或對於RNA為3’-CGUAUG-5’。 如本文所用術語「基因」、「所關注之基因」具有相同含義且係指編碼所關注之產物之任何長度的聚核苷酸序列。基因可進一步包含編碼序列之前之調控序列(5'非編碼或非轉譯序列)及隨後之調控序列(3'非編碼或非轉譯序列)。選擇之序列可係全長或截短的、融合或標記之基因,且可為cDNA、基因體DNA或DNA片段。通常理解,編碼多肽或RNA之基因體DNA可包括自成熟信使RNA (mRNA)剪接之非編碼區(即內含子)且因此不存在於編碼相同多肽或RNA之cDNA中。其可以係天然序列,即天然形式,或可經突變,或包含源自不同來源之序列或視需要進行其他修飾。該等修飾包括密碼子最佳化,以最佳化所選宿主細胞中之密碼子使用或標記。此外,其可包括去除或添加順式作用位點,例如(隱藏)剪接供體、受體位點及分支點、多聚腺苷酸化信號、TATA-盒、chi位點、核糖體進入位點、重複序列、二級結構(例如莖環)、轉錄因子或其他調節因子之結合位點、限制性內切酶位點等,僅給出幾個但並非限制性實例。選擇之序列可編碼分泌之、細胞質、核、膜結合之或細胞表面多肽。 如本文所用之術語「所關注之核苷酸序列」係比所關注之基因更通用之術語,此乃因其不一定包含基因,但可包含基因之元件或部分或其他遺傳資訊(例ori (複製起點))。所關注之核苷酸序列可為任何DNA或RNA序列,與其是否包含編碼序列無關。 「開放閱讀框」或「ORF」係指包含轉譯起始信號或起始密碼子(例如ATG或AUG)及終止密碼子之一段長度的核酸序列(DNA或RNA),且可潛在轉譯成多肽序列。 術語「轉錄」闡述細胞中mRNA之該生物合成。 如本文所用之術語「表現」係指宿主細胞內核酸序列之轉錄及/或轉譯。根據本發明之具體態樣,術語「表現」係指宿主細胞內異源及/或外源核酸序列之轉錄及/或轉譯。在宿主細胞中期望產物之表現程度可基於存在於細胞中之相應RNA或mRNA的量或由所選序列編碼之期望多肽的量來測定。舉例而言,自所選序列轉錄之mRNA可藉由北方墨點雜交、核糖核酸酶RNA保護、與細胞RNA原位雜交或藉由RTqPCR (反轉錄,之後量化PCR)來量化。自所選序列表現之蛋白質可藉由各種方法量化,例如藉由ELISA、西方墨點法、藉由放射免疫分析、藉由免疫沈澱、藉由分析蛋白質之生物活性或藉由蛋白質之免疫染色、之後FACS分析。 術語「表現盒」或「轉錄單元」或「表現單元」定義含有一或多個欲轉錄基因之載體、構築體或聚核苷酸序列內的區,其中編碼轉錄基因之核苷酸序列以及含有包含於表現盒內之調節元件的聚核苷酸序列彼此可操作地連接。其係自啟動子轉錄,且轉錄係由至少一個聚腺苷酸化信號終止。在一個具體態樣中,其係一個單一啟動子轉錄。因此,不同基因至少經轉錄連接。可自每一轉錄單元(多順反子轉錄單元)轉錄及表現一種以上蛋白質或產物。每一轉錄單元將包含轉錄及轉譯包含於單位內之任何所選序列所需之調節元件。且每一轉錄單元可含有相同或不同調節元件。舉例而言,每一轉錄單元可含有相同終止子,IRES元件或內含子可用於轉錄單元內基因之功能性連接。載體或聚核苷酸序列可含有一個以上轉錄單元。 術語「增加之表現」、「增加之效價或生產力」或「改良之表現或生產力」意指藉由與適宜對照相比(例如由cDNA編碼之蛋白質相對於由含內含子之基因編碼之蛋白質),例如編碼治療性蛋白質之基因之引入宿主細胞中之異源及/或外源序列之表現、合成或分泌增加。若本發明之細胞係根據本文闡述之本發明方法培養,且若此細胞具有至少1.2倍、1.5倍、2倍、3倍、4倍或5倍之比生產力或效價增加,則效價或生產力增加。若本發明之細胞係根據本文闡述之本發明方法培養,且若此細胞具有至少1.2倍或至少1.5倍或至少2倍或至少3倍之比生產力或效價增加,則效價或生產力亦增加。若本發明之細胞係根據本文闡述之本發明方法培養,且若此細胞具有至少1.2倍至5倍,較佳1.5倍至5倍,更佳2倍至5倍之比生產力或效價增加,則特定而言效價或生產力亦增加。「增加之表現」亦可能意味著更多細胞實際上表現所關注之基因/序列。舉例而言,增加之表現可能意味著本發明之新穎啟動子相對於其他啟動子在病毒複製週期期間更長時間段有活性。 增加之表現、效價或生產力可藉由使用本發明之異源載體獲得。此可與諸如FACS輔助選擇重組宿主細胞等其他方法組合,該重組宿主細胞含有作為額外可選標記物之一或多種螢光蛋白(例如GFP)或細胞表面標誌物。亦可使用獲得增加之表現之其他方法及不同方法之組合,其係(例如)基於使用順式活性元件來操縱染色質結構(例如LCR、UCOE、EASE、隔離件、S/MAR、STAR元件)、使用(人工)轉錄因子、用天然或合成試劑處理細胞以上調內源或異源及/或外源基因表現、改良mRNA或蛋白質之穩定性(半衰期)、改良mRNA轉譯之起始、藉由使用游離型質體(基於使用病毒序列作為複製起點,例如SV40、多瘤、腺病毒、EBV或BPV)增加基因劑量、使用擴增促進序列或基於DNA多聯體之活體外擴增系統。 用以量測「增加之表現」之分析係基於LC-MS/MS之蛋白質量測,例如多反應監測(MRM);基於抗體之檢測方法,例如西方墨點法、斑點墨點法或免疫擴散及流式細胞術;及藉由血球凝集分析量測生物活性。 藉由對各別啟動子控制下轉錄之mRNA進行量化間接量測「啟動子活性」。藉由RTqPCR相對於內源標準量化mRNA。 術語「病毒效價」係每體積之病毒製劑之感染單位的量度。病毒效價係生物程序中之終點並定義為平行實施之一定比例之測試顯示效應的稀釋度(Reed及Muench,1938)。具體而言,每毫升組織培養物感染劑量50 (TCID50/ml)給出病毒製劑之稀釋度,其中感染與該稀釋度平行接種之50%數量之細胞培養物。 「轉錄調節元件」通常包含欲表現之基因序列上游之啟動子、轉錄起始及終止位點及多聚腺苷酸化信號。 術語「轉錄起始位點」係指構築體中對應於納入一級轉錄物(即mRNA前體)中之第一核酸的核酸。轉錄起始位點可能與啟動子序列重疊。 「終止信號」或「終止子」或「多聚腺苷酸化信號」或「多A」或「轉錄終止位點」或「轉錄終止元件」係引起在真核mRNA之3'端之特異性位點裂解及在裂解之3'端轉錄後納入約100 - 200個腺嘌呤核苷酸之序列(多A尾),且因此引起RNA聚合酶終止轉錄。多聚腺苷酸化信號包含在裂解位點上游約10-30個核苷酸之序列AATAAA及位於下游之序列。已知各種多聚腺苷酸化元件,例如tk多A、SV40晚期及早期多A、BGH多A (闡述於例如美國專利第5,122,458號中)或倉鼠生長激素多A (WO2010010107)。 「轉譯調節元件」包含欲表現之每一個別多肽之轉譯起始位點(AUG)、終止密碼子及多A信號。一些構築體中可包括內部核糖體進入位點(IRES)。為了最佳化表現,可能建議去除、添加或改變欲表現之核酸序列之5'及/或3'非轉譯區,以消除任何潛在之額外不適當的替代性轉譯起始密碼子或可能在轉錄或轉譯程度上干擾或降低表現之其他序列。可緊接起始密碼子之上游插入共有核糖體結合位點(Kozak序列),以增強轉譯並由此表現。此核糖體結合位點附近增加之A/U含量促進更有效之核糖體結合。 根據定義,插入宿主細胞中之每個聚核苷酸序列或每個基因以及由此編碼之個別蛋白質或RNA當其來自不同(病毒)物種時,被稱為相對於宿主細胞之「外源」、「外源序列」、「外源基因」、「外源編碼序列」。因此,鑒於EHV-1病毒載體,本發明之基於EHV-4之啟動子係外源的。如本文關於所關注之序列或基因(例如抗原)所使用之術語「外源」意指該所關注之序列或基因、具體而言該抗原在其天然物質之背景外表現。因此,來自豬IAV之H3抗原相對於EHV-1載體係外源抗原之一個實例(參見實例3)。因此,所關注之任何非馬科動物序列或基因,例如非馬科動物抗原係所關注之外源序列或基因或根據本發明之具體態樣之抗原。 根據定義,插入宿主細胞中之每個聚核苷酸序列或每個基因以及由此編碼之各別蛋白質或RNA被稱為相對於宿主細胞之「異源」、「異源序列」、「異源基因」、「異源編碼序列」、「轉基因」或「異源蛋白質」。即使欲引入之序列或欲引入之基因與宿主細胞之內源序列或內源基因一致,此亦適用。舉例而言,根據定義,相對於EHV-4野生型病毒中於不同位點或以經修飾形式引入EHV-4病毒載體中的EHV-4啟動子序列係異源序列。如本文關於所關注之序列或基因(例如抗原)所使用之術語「異源」意指該所關注之序列或基因、具體而言該抗原在其天然亞物質之背景外表現。因此,因此,所關注之任何非EHV-1特異性序列或基因,例如抗原,例如除EHV-1外之任何馬科動物α疱疹病毒之抗原(例如EHV-3、EHV-8)係所關注之異源序列或基因或根據本發明之具體態樣之抗原。 術語「非天然」意指在此背景下天然存在之所關注之任何序列或基因(例如抗原),例如雜交序列或來自不同物種之所關注之序列或基因(例如抗原)、或由於人造突變、插入、缺失或諸如此類而並非自然產物的所關注之序列或基因(例如抗原)。 在本發明之整個說明書中,術語「重組」可與術語「非天然」、「異源」及「外源」互換使用。因此,「重組」蛋白係自異源或外源聚核苷酸序列表現之蛋白質。關於病毒使用之術語重組意指藉由人工操縱病毒基因體產生之病毒。包含異源或外源序列(例如外源抗原編碼序列)之病毒係重組病毒。術語重組病毒與術語非天然病毒可互換使用。 因此,術語「異源載體」意指包含異源或外源聚核苷酸序列之載體。術語「重組載體」意指包含異源或重組聚核苷酸序列之載體。 如本文所用術語「可操作連接」用於闡述調節元件與基因或其編碼區之間之連接。通常,將基因表現置於一或多種調控元件(例如但不限於組成型或誘導型啟動子、組織特異性調節元件及增強子)之控制下。基因或編碼區與調節元件稱為「可操作連接」(「operably linked to」或「operatively linked to」)或「可操作相聯」時,表示該基因或編碼區受調節元件控制或影響。舉例而言,若啟動子影響編碼序列之轉錄或表現,則該啟動子係可操作連接至編碼序列。 此外,在本說明書之範疇內,術語「功能連接」(「functional linking」或「functionally linked」)或「可操作連接」意指兩個或更多個核酸序列或序列元件之定位方式將允許其等以其預期方式發揮功能。舉例而言,若啟動子/增強子或終止子能夠依順式位置控制或調節所連接基因序列的轉錄時,則該啟動子/增強子或終止子係功能連接該編碼基因序列。通常(但並非必需),功能連接之DNA序列係鄰接,且若需要接合兩個多肽編碼區或在分泌信號肽之情形下係鄰接並在閱讀框中。然而,儘管可操作連接之啟動子通常位於上游,或者可操作連接之終止子通常位於編碼序列下游,但不一定與之鄰接。增強子不一定鄰接,只要其可增加編碼序列之轉錄即可。為此,其等可位於編碼序列之上游或下游,且甚至位於一定距離處。若多聚腺苷酸化位點位於編碼序列之3'端,則該多聚腺苷酸化位點係可操作連接至編碼序列, 因此得以透過編碼序列轉錄成聚腺苷酸化信號。可藉由業內已知之重組方法來完成連接,例如藉由在適當限制性位點或鈍端連接或藉由使用融合PCR方法。若沒有適宜限制位點時,則可按照習用操作法,使用合成的寡核苷酸連接體或銜接子。 因此,術語啟動子序列之「功能片段」或「功能衍生物」意指片段或衍生物仍然影響啟動子活性。如何評估啟動子活性之功能分析法為係熟習此項技術者所熟知(Bustin 2000,Nolan等人 2006)。該功能分析法之例示性實施例包括(例如)啟動子動力學實驗。將經過攜帶表現盒之載體病毒感染之細胞培育不同時間,其中啟動子或其片段引導報導子轉基因之轉錄。從感染後不同時間點所收集之試樣製備總RNA。藉由DNAse I消化而破壞污染之DNA後,RNA進行逆轉錄。一個重複試樣在添加反轉錄酶(RT)下進行處理,第二重複在不添加RT下進行處理,以展現自RNA製備成功去除污染DNA。純化所得cDNA並在習用PCR中用作模板。僅在添加RT下處理之試樣產生PCR產物。隨後可將該等cDNA用於使用報導子轉基因之引子及平行使用病毒載體之必需基因(內標準基因)之qPCR中,其轉錄為感染及複製效率提供內標準。使用內標準基因之qPCR值在不同構築體及感染後時間之間正規化報導子之qPCR值。此可解釋不同啟動子及其片段之啟動子活性。 如本文所用之「序列同源性」係指測定兩個序列之相關性的方法。為了測定序列同源性,將兩個或更多個序列係優化比對,且若需要,引入間隙。然而,與「序列一致性」相反,當測定序列同源性時,將保守胺基酸取代計數為匹配。 換言之,為了獲得與參照序列具有95%序列同源性之可比較之多肽或聚核苷酸,參照序列中之85%,較佳90%、91%、92%、93%、94%、甚至更佳95%、96%、97%、98%、99%、99.9%之胺基酸殘基或核苷酸必須與另一胺基酸或核苷酸匹配或包含經另一胺基酸或核苷酸之保守取代。或者,可向參照序列中插入佔參照序列中總胺基酸殘基或核苷酸(不包括保守取代)多達15%,較佳多達10%、9%、8%、7%、6%、甚至更佳多達5%、4%、3%、2%、1%、0.1%之數目的胺基酸或核苷酸。較佳地,同系物序列至少包含50個、甚至更佳100個、甚至更佳250個、甚至更佳500個核苷酸之段。 術語「序列一致性」已為業內所習知且係指兩個或更多個多肽序列或兩個或更多個聚核苷酸序列、亦即參照序列與欲與參照序列進行比較之給定序列之間之關係。藉由在將序列最佳地比對以產生最高序列相似性程度之後比較給定序列與參照序列來測定序列一致性,如藉由該等序列串之間之匹配所測定。在該比對後,基於逐個位置來確定序列一致性,例如,若核苷酸或胺基酸殘基在一個位置一致,則該等序列在該位置「一致」。然後將該等位置一致性之總數除以參照序列中之核苷酸或殘基之總數以得到序列一致性%。序列一致性可藉由已知方法容易地計算,該等方法包括但不限於以下中所述之彼等:Computational Molecular Biology, Lesk, A. N.編輯,Oxford University Press, New York (1988), Biocomputing: Informatics and Genome Projects, Smith, D.W.編輯,Academic Press, New York (1993);Computer Analysis of Sequence Data, Part I, Griffin, A.M.及Griffin, H. G.編輯,Humana Press, New Jersey (1994);Sequence Analysis in Molecular Biology, von Heinge, G., Academic Press (1987);Sequence Analysis Primer, Gribskov, M.及Devereux, J.編輯,M. Stockton Press, New York (1991);及Carillo, H.及Lipman, D., SIAM J. Applied Math., 48: 1073 (1988),其教示以引用方式併入本文中。設計用於測定序列一致性之較佳方法以得到所測試序列之間之最大匹配。將用以測定序列一致性之方法編成測定給定序列間之序列一致性之公開獲得之電腦程式。該等程式之實例包括(但不限於) GCG程式包(Devereux, J.,等人,Nucleic Acids Research, 12(1):387 (1984))、BLASTP、BLASTN及FASTA (Altschul, S. F.等人,J. Molec. Biol., 215:403-410 (1990)。BLASTX程式可自NCBI及其他來源公開獲得(BLAST Manual, Altschul, S.等人,NCVI NLM NIH Bethesda, MD 20894, Altschul, S. F.等人,J. Molec. Biol., 215:403-410 (1990),其教示以引用方式併入本文中)。該等程式使用默認空位權重最佳地比對序列以在給定序列與參照序列之間產生最高序列一致性程度。作為闡釋,對於聚核苷酸具有與參照核苷酸序列具有至少(例如) 85%,較佳90%、91%、92%、93%、94%、甚至更佳95%、96%、97%、98%、99%、99.9%「序列一致性」之核苷酸序列而言,預計給定聚核苷酸之核苷酸序列與參照序列一致,只是給定聚核苷酸序列可包括多達15個,較佳多達10個、甚至更佳多個5個點突變/參照核苷酸序列之100個核苷酸。換言之,在具有相對於參照核苷酸序列具有至少85%,較佳90%、91%、92%、93%、94%、甚至更佳95%、96%、97%、98%、99%、99.9%一致性之核苷酸序列之聚核苷酸中,參照序列中高達15%,較佳10%、9%、8%、7%、6%、甚至更佳5%、4%、3%、2%、1%、0.1%之核苷酸可缺失或經另一核苷酸取代,或可向參照序列插入佔參照序列中總核苷酸之高達15%,較佳10%、9%、8%、7%、6%、甚至更佳5%、4%、3%、2%、1%、0.1%之數目的核苷酸。參照序列之該等突變可發生在參照核苷酸序列之5’或3’末端位置或在彼等末端位置之間之任何位置,其係個別地散佈在參照序列中之各核苷酸之間或在參照序列內呈一或多個鄰接基團形式。類似地,對於多肽具有與參照胺基酸序列具有至少(例如) 85%,較佳90%、91%、92%、93%、94%、甚至更佳95%、96%、97%、98%、99%序列一致性之給定胺基酸序列而言,預計多肽之給定胺基酸序列與參照序列一致,只是給定多肽序列可包括高達15個,較佳高達10、9、8、7、6個、甚至更佳高達5、4、3、2、1個胺基酸改變/參照胺基酸序列之100個胺基酸。換言之,為了獲得與參照胺基酸序列具有至少85%,較佳90%、91%、92%、93%、94%、甚至更佳95%、96%、97%、98%、99%序列一致性之給定多肽序列,參照序列中高達15%,較佳高達10%、9%、8%、7%、甚至更佳高達5%、4%、3%、2%、1%之胺基酸殘基可缺失或經另一胺基酸取代,或可向參照序列中插入佔參照序列中胺基酸殘基之總數之高達15%,較佳高達10%、9%、8%、7%、甚至更佳高達5%、4%、3%、2%、1%之數目的胺基酸。參照序列之該等改變可發生在參照胺基酸序列之胺基或羧基末端位置或在彼等末端位置之間之任何位置,其係個別地散佈在參照序列中之各殘基之間或在參照序列內呈一或多個鄰接基團形式。較佳地,不同殘基位置因保守胺基酸取代而不同。然而,在測定序列一致性時,並不包括保守取代作為匹配。 術語「序列一致性」或「一致性%」在本文中可互換使用。出於本發明目的,此處定義為了測定兩個胺基酸序列或兩個核酸序列之一致性%,將序列進行比對以達到最佳比較目的(例如,可在第一胺基酸或核酸之序列中引入間隙,用於與第二胺基酸或核酸序列進行最佳比對)。然後比較相應胺基酸或核苷酸位置之胺基酸或核苷酸殘基。當第一序列中之位置由與第二序列中之相應位置相同之胺基酸或核苷酸殘基佔據時,則分子在該位置一致。兩個序列之間之一致性%隨該等序列所共用之一致位置數變化(即,一致性% =一致位置數/總位置(即重疊位置)數× 100)。較佳地,兩個序列之長度相同。 序列比較可在比較之兩個序列之整個長度上實施,或在兩個序列之片段上實施。通常,比較將在所比較之兩個序列之整個長度上實施。然而,序列一致性可在(例如) 20、50、100或更多個鄰接胺基酸殘基之區上實施。 熟習此項技術者將明瞭以下事實:若干不同電腦程式可用於測定兩個序列之間之同源性。兩條序列之間之序列比較及同源性%之測定可使用數學算法來完成。舉例而言,可使用數學算法來實現兩個序列之間之序列比較及一致性%之測定。在較佳實施例中,使用Needleman及Wunsch (J. Mol. Biol. (48): 444-453 (1970))算法測定兩個胺基酸或核酸序列之間之一致性%,該算法納入Accelrys GCG軟體包(可在http://www.accelrys.com/products/gcg/獲得)中之GAP程式中,使用Blosum 62矩陣或PAM250矩陣、及16、14、12、10、8、6或4之空位權重及1、2、3、4、5或6之長度權重。熟習此項技術者應瞭解,所有該等不同參數將產生略微不同之結果,但在使用不同算法時,兩個序列之總體一致性%並不顯著改變。 可使用本發明之蛋白質序列或核酸序列作為「詢問序列」來實施針對公共數據庫之檢索,以例如鑑別其他家族成員或相關序列。該等搜索可使用Altschul等人,(1990) J. Mol. Biol. 215:403-10之BLASTN及BLASTP程式(2.0版)來實施。BLAST蛋白搜索可利用BLASTP程式、評分=50、字長=3來實施,以獲得與本發明之蛋白質分子同源之胺基酸序列。為了獲得用於比較目的之空位化比對,可如以下中所述利用空位化BLAST:Altschul等人(1997) Nucleic Acids Res.25(17): 3389-3402。在利用BLAST及空位化BLAST程式時,可使用各別程式(例如,BLASTP及BLASTN)之默認參數。參見國家生物技術資訊中心(National Center for Biotechnology Information)主頁http://www.ncbi.nlm.nih.gov/。EHV-1 EHV-4/ 重組載體技術定義 術語「馬科動物」或「馬」(「equine」或「equin」)意指或屬馬科動物科,其包括馬、驢及斑馬,較佳地馬。另外,術語「馬科動物」或「馬」(「equine」或「equin」)亦涵蓋馬科動物科之成員之雜種(例如騾子、駃騠等)。 「疱疹病毒」或「疱疹病毒載體」係指疱疹病毒目疱疹病毒科中之物種。 術語「馬科動物疱疹病毒載體」或「馬科動物疱疹病毒」或「EHV」意指影響馬之疱疹病毒科之成員。迄今為止,已經鑑別了八種不同物種之馬科動物疱疹病毒,其中五種屬亞科α疱疹病毒亞科(EHV-1、EHV-3、EHV-4、EHV-8及EHV-9)且三種屬丙型疱疹病毒亞科。(http://www.ictvonline.org/virustaxonomy.asp Virus Taxonomy: 2015年發佈EC 47, London, UK,2015年7月;電子郵件批准2016 (MSL編號30) 術語「EHV-1」意指馬科動物α疱疹病毒1,即疱疹病毒科α疱疹病毒亞科屬亞屬水痘病毒屬之成員。EHV-1之非限制性參照序列將為(例如)野生型EHV-1菌株ab4 (基因庫登錄號AY665713.1)或RacH (Hübert 1996)。 術語EHV-4意指馬科動物α疱疹病毒4,即疱疹病毒科α疱疹病毒亞科屬亞屬水痘病毒屬之成員。 術語「插入ORF70中」意指在編碼馬科動物α疱疹病毒1開放閱讀框70之位置將DNA片段插入基因體DNA中。在本發明之具體態樣中,所提及之插入導致缺失ORF70之801個5'鹼基對,使得3'端之423個bp完整,但消除了orf70基因產物醣蛋白G之表現。顯示包括EHV-1在內之若干α疱疹病毒之醣蛋白G可自經感染細胞分泌並藉由結合促發炎細胞介素用作免疫調節蛋白。與具有完整醣蛋白G表現之野生型EHV-1相比,消除其在病毒載體中之表現應增加病毒感染之免疫原性。 術語「插入ORF1/3中」意指在疫苗菌株EHV-1 RacH之減毒程序期間藉由傳代意外缺失,包含90% ORF1及整個ORF2之1283 bp片段丟失的位置將DNA片段插入病毒基因體中。選擇此插入位點,此乃因自此位置之轉基因之表現可能干擾病毒複製的可能性預計將非常低。疫苗定義 「免疫原性或免疫組合物」係指包含至少一種抗原或其免疫原性部分之物質的組合物,其引發宿主中細胞或抗體介導之對組合物之免疫反應的免疫反應。 本文使用之術語「抗原」在業內係眾所周知的,且包括具有免疫原性之物質(即免疫原),以及誘導免疫不反應性或無反應性(即身體之防禦機制對外來物質無反應)的物質。如本文所用術語「抗原」欲指含有或包含表位之全長蛋白質以及其肽片段。 術語「產食性動物」意指用於人類消費之動物,例如豬、牛、家禽、魚及諸如此類,較佳地產食性動物意指豬及牛,最佳地豬。 如本文所用之「免疫原性組合物」可以指多肽或蛋白質,例如引發如本文所述之免疫反應之病毒表面蛋白。術語「免疫原性片段」或「免疫原性部分」係指蛋白質或多肽之片段或截短及/或取代形式,其包括一或多個表位且由此引發本文所述之免疫反應。一般而言,該等截短及/或取代之形式或片段將包含來自全長蛋白質之至少六個鄰接胺基酸。該等片段可使用任一數目之業內熟知之表位定位技術來鑑別。參見(例如) Epitope Mapping Protocols in Methods in Molecular Biology, 第66卷(Glenn E. Morris編輯,1996) Humana Press, Totowa, New Jersey。舉例而言,線性表位可藉由在固體載體上同時合成大量肽(該等肽對應於蛋白質分子之部分)、及使肽與抗體反應同時肽仍附接至載體來測定。該等技術係業內已知及經闡述的,參見例如美國專利第4,708,871號;Geysen等人 (1984) Proc. Natl. Acad. Sci. USA 81:3998-4002;及Geysen等人 (1986) Molec. Immunol. 23:709-715。類似地,例如藉由例如x射線結晶學及二維核磁共振,藉由測定胺基酸之空間構形來容易地鑑別構形表位。參見Epitope Mapping Protocols,上文文獻。該定義內亦包括合成抗原,例如多表位、側翼表位及其他重組或合成衍生之抗原。參見(例如) Bergmann等人 (1993) Eur. J. Immunol. 23:2777-2781;Bergmann等人 (1996), J. Immunol. 157:3242-3249;Suhrbier, A. (1997), Immunol. and Cell Biol. 75:402-408;及Gardner等人,(1998) 12th World AIDS Conference, Geneva, Switzerland, 1998年6月28日至7月3日。(其教示及內容全部以引用方式併入本文中。) 如本文所用術語「疫苗」係指包含至少一種在動物中誘導免疫反應之免疫活性組分且可能但不一定包含一或多種增強活性組分之免疫活性之額外組分的醫藥組合物。疫苗可另外包含醫藥組合物典型之其他組分。藉由區別,疫苗之免疫活性組分可包含呈其初始形式之完整病毒顆粒或所謂經修飾活疫苗(MLV)中之減毒顆粒或藉由適當方法在所謂殺死之疫苗(KV)中不活化之顆粒。在另一形式中,疫苗之免疫活性組分可包含生物體之適當元件(亞單位疫苗),其中該等元件係藉由以下方式生成:藉由破壞整個顆粒或含有該等顆粒之生長培養物及視情況隨後之純化步驟從而產生期望結構,或藉由合成方法,包括利用基於例如細菌、昆蟲、哺乳動物或其他物種之適宜系統的適當操縱加上視情況隨後之分離及純化程序,或藉由使用適宜醫藥組合物直接納入遺傳物質來誘導需要疫苗之動物中的合成過程(聚核苷酸疫苗接種)。疫苗可包含上述元件中之一種或同時一種以上。如在本發明之具體態樣中所用,「疫苗」係指活疫苗或活病毒,亦稱為重組疫苗。在本發明之另一具體態樣中,「疫苗」係指包括類病毒顆粒(VLP)在內之不活化或殺死之病毒。因此,疫苗可為亞單位疫苗或殺死(KV)或不活化之疫苗。 術語「感染複數(M.O.I.)」闡述多少感染單位,例如,每個細胞使用病毒製劑之TCID50以感染培養之細胞。舉例而言,0.01之M.O.I.意指對於培養容器中之每100個細胞,接種一個感染單位。 術語「DNA疫苗接種」或「聚核苷酸疫苗接種」意指使用適宜醫藥組合物直接接種遺傳物質。 不活化之各種物理及化學方法為業內已知。術語「不活化」係指先前有毒力或無毒力之病毒或細菌經輻照(紫外線(UV)、X射線、電子束或γ輻射)、加熱或化學處理以不活化或殺死該病毒或細菌,同時保留其免疫原性。適宜不活化劑包括β-丙內酯、二元或β-或乙醯基-次乙亞胺、戊二醛、臭氧及福馬林(formalin) (甲醛)。 對於由福馬林或甲醛不活化,通常將甲醛與水及甲醇混合以產生福馬林。添加甲醇可防止不活化過程中之降解或交叉反應。一個實施例使用約0.1%至1%之37%甲醛溶液來不活化病毒或細菌。至關重要的是,調節福馬林之量以確保材料不活化,但不會多至發生高劑量之副作用。 更特定而言,術語「不活化」在病毒之上下文中意指該病毒不能在活體內或活體外複製,且分別,術語「不活化」在細菌之上下文中意指細菌不能在活體內或活體外複製。舉例而言,術語「不活化」可以指已經在活體外繁殖且然後使用化學或物理方式使其不活化以使其不再能夠複製的病毒。在另一實例中,術語「不活化」可以指已經繁殖且然後使用化學或物理方式使其不活化之細菌,從而產生細菌、細菌之片段或組分之懸浮液,例如產生可用作疫苗之組份之菌苗。 如本文所用術語「不活化」、「殺死」或「KV」可互換使用。 術語「活疫苗」係指包含活生物體或複製勝任病毒或病毒載體之疫苗。 「醫藥組合物」基本上由一或多種能夠改變其所投與之生物體或生物體中或上面存活之生物體之生理(例如免疫)功能的成分組成。該術語包括(但不限於)抗生素或抗寄生蟲劑、以及通常用於實現某些其他目的(例如但不限於加工性狀、不孕性、穩定性、經腸或非經腸途徑(例如經口、鼻內、靜脈內、肌內、皮下、皮內或其他適宜途徑)投與組合物之可行性、投與後耐受性或控制釋放性質)之其他成分。該醫藥組合物之一個非限制性實例僅僅係用於展現目的給出,可如下製備:將感染之細胞培養物之細胞培養物上清液與穩定劑(例如亞精胺及/或牛血清白蛋白(BSA))混合且隨後將混合物藉由其他方法進行凍乾或去水。在疫苗接種之前,隨後將混合物在水溶液(例如,鹽水、磷酸鹽緩衝鹽水(PBS))或非水溶液(例如,油乳液、基於鋁之佐劑)中再水化。 如本文所用之「醫藥上或獸醫上可接受之載劑」包括任何及全部溶劑、分散介質、塗佈劑、佐劑、穩定劑、稀釋劑、防腐劑、抗細菌及抗真菌劑、等滲劑、吸附延遲劑及諸如此類。在一些較佳實施例且尤其包括凍乾之免疫原性組合物之彼等中,用於本發明之穩定劑包括用於凍乾或冷凍乾燥之穩定劑。 在一些實施例中,本發明之免疫原性組合物含有佐劑。如本文所用之「佐劑」可包括氫氧化鋁及磷酸鋁、皂素,例如Quil A、QS-21 (Cambridge Biotech Inc., Cambridge MA)、GPI-0100 (Galenica Pharmaceuticals, Inc., Birmingham, AL)、油包水乳液、水包油乳液、水包油包水乳液。特定而言,乳液可基於輕質液體石蠟油(歐洲藥典型);類異戊二烯油,例如角鯊烷或角鯊烯;由烯烴(特定而言異丁烯或癸烯)寡聚產生之油;酸或含有直鏈烷基之醇之酯,更特定而言植物油、油酸乙酯、丙二醇二-(辛酸酯/癸酸酯)、三-(辛酸甘油酯/癸酸甘油酯)或丙二醇二油酸酯;具支鏈脂肪酸或醇之酯,特定而言異硬脂酸酯。油與乳化劑組合使用以形成乳液。乳化劑較佳係非離子表面活性劑,特定而言以下之酯:山梨醇酐、二縮甘露醇(例如,無水甘露醇油酸酯)、二醇、聚甘油、丙二醇及油酸、異硬脂酸、蓖麻油酸或羥基硬脂酸(其視情況經乙氧基化),及聚氧丙烯-聚氧乙烯共聚物嵌段,特定而言Pluronic產品,尤其L121。參見Hunter等人,The Theory and Practical Application of Adjuvants (Stewart-Tull編輯, D. E. S.), JohnWiley and Sons, NY, 第51-94頁(1995)及Todd等人,Vaccine 15:564-570 (1997)。實例性佐劑係由M. Powell及M. Newman編輯之「Vaccine Design, The Subunit and Adjuvant Approach」,Plenum Press, 1995之第147頁上闡述之SPT乳液、及同一本書第183頁上闡述之乳液MF59。 佐劑之另一實例係選自丙烯酸或甲基丙烯酸之聚合物及馬來酸酐與烯基衍生物之共聚物的化合物。有利的佐劑化合物係丙烯酸或甲基丙烯酸尤其與糖或多元醇之聚烯基醚交聯的聚合物。該等化合物以術語卡波姆(carbomer)為人所知(Phameuropa,第8卷,第2期,1996年6月)。熟習此項技術者亦可參照美國專利第2,909,462號,其闡述了與具有至少3個,較佳不超過8個羥基之多羥基化化合物交聯的該等丙烯酸聚合物,至少三個羥基之氫原子由具有至少2個碳原子之不飽和脂肪族基團替代。較佳基團係含有2至4個碳原子之基團,例如乙烯基、烯丙基及其他烯系不飽和基團。不飽和基團本身可含有其他取代基,例如甲基。以名稱CARBOPOL®; (BF Goodrich, Ohio, USA)銷售之產品特別適合。其與烯丙基蔗糖或烯丙基新戊四醇交聯。其中,可以提及Carbopol 974P、934P及971P。最佳使用CARBOPOL® 971P。在馬來酸酐與烯基衍生物之共聚物中,尤其係共聚物EMA (Monsanto),其係馬來酸酐與乙烯之共聚物。該等聚合物在水中之溶解產生酸溶液,其將被中和,較佳至生理pH,以產生將引入免疫原性、免疫或疫苗組合物本身之佐劑溶液。 其他適宜佐劑包括(但不限於)尤其RIBI佐劑系統(Ribi Inc.)、嵌段共聚物(CytRx, Atlanta GA)、SAF-M (Chiron, Emeryville CA)、單磷醯脂質A、阿夫立定(Avridine)脂質-胺佐劑、來自大腸桿菌(重組或其他)之熱不穩定腸毒素、霍亂毒素、IMS 1314或胞壁醯二肽、或其天然或重組細胞介素或其類似物或內源細胞介素釋放之刺激劑等。 預計佐劑可以每劑量約100 μg至約10 mg之量,較佳以每劑量約100 μg至約10 mg之量,更佳以每劑量約500 μg至約5 mg之量、甚至更佳以每劑量約750 µg至約2.5 mg之劑量、且最佳以每劑量約1 mg之量添加。或者,以最終產物之體積計,佐劑可為約0.01%至50%之濃度,較佳約2%至30%之濃度,更佳為約5%至25%之濃度,仍更佳為約7%至22%之濃度,且最佳為10%至20%之濃度。 「稀釋劑」可包括水、生理鹽水、右旋糖、乙醇、甘油及諸如此類。等滲劑可尤其包括氯化鈉、右旋糖、甘露醇、山梨醇及乳糖。穩定劑尤其包括白蛋白及乙二胺四乙酸之鹼金屬鹽。 「分離」意指自其天然狀態「由人手」改變,即若其在自然界中存在,則其已經改變或自其初始環境中移出,或兩者兼而有之。舉例而言,天然存在於活生物體中之聚核苷酸或多肽並非「分離的」,但自其天然狀態之共存物質分離之相同聚核苷酸或多肽係「分離的」,如本文中使用之術語。 「減毒」意指降低病原體之毒力。在本發明中,「減毒」與「無毒力」同義。在本發明中,減毒病毒係毒力已降低,從而不會引起感染之臨床體徵,但能夠在目標哺乳動物中誘導免疫反應者,但亦可意指與感染非減毒病毒或病原體且未接受減毒病毒之動物之「對照組」相比,已降低該感染減毒病毒,尤指所主張之EHV-1 RacH病毒載體之動物中臨床體徵之發生率或嚴重程度。在此上下文中,術語「降低(reduce/reduced)」意指與如上文所定義之對照組相比,降低至少10%,較佳25%、甚至更佳50%、仍更佳60%、甚至更佳70%、仍更佳80%、甚至更佳90%且最佳100%。因此,減毒之無毒力病原體(例如所主張之減毒之病毒載體,尤指所主張之EHV-1 (較佳指RacH)病毒載體)適於產生經修飾之活疫苗(MLV)或經修飾之活的免疫原性組合物。 在本文中,「有效劑量」意指(但不限於)在接受投與抗原之動物中引起或能夠引發免疫反應,以減少臨床症狀時之量。 如本文所用術語「有效量」在組合物之上下文中意指能夠在動物中誘發免疫反應,以減少感染之發生率或降低感染嚴重性或疾病之發生率時的免疫原性組合物之量。特定而言,有效量係指每劑量之菌落形成單位(CFU)。或者,在療法之上下文中,術語「有效量」係指足以減輕或改善疾病或病症或其一或多種症狀之嚴重程度或持續時間、防止疾病或病症演進、引起疾病或病症消退、防止與疾病或病症相關之一或多種症狀之復發、發展、發作或演進、或增強或改良另一療法之預防或治療的療法時之量。 「免疫反應」("「immune response」或「immunological response」)意指(但不限於)對所關注之(免疫原性)組合物或疫苗發生細胞及/或抗體介導之免疫反應。通常,免疫(immune或immunological)反應包括(但不限於)以下效應中之一或多者:產生或活化特異性針對所關注組合物中所包括之一或多種抗原的抗體、B細胞、輔助性T細胞、阻抑性T細胞及/或細胞毒性T細胞。較佳地,宿主將展示治療性或保護性免疫(記憶)反應,使得對新感染之抗性將增強及/或疾病之臨床嚴重程度降低。該保護將藉由症狀數量之減少、症狀嚴重程度之降低、或無與病原體感染相關之一或多種症狀、病毒血症發作之延遲、病毒持久性降低、整體病毒負荷之降低及/或病毒排泄之降低來展現。 「保護抵抗疾病」、「保護免疫性」、「功能免疫性」、「臨床症狀之減少」、「中和抗體之誘導/產生及/或血清轉化」及類似片語意指藉由投與本發明之一或多種治療性組合物或其組合而產生之針對疾病或病況之部分或完全反應,其導致比已暴露於疾病或感染之未經免疫個體所預計較不有害的效應。亦即,在經疫苗接種之個體中,感染之有害效應的嚴重程度減輕。在經疫苗接種之個體中,感染可經減輕、減緩或可能完全預防。在本文中,若意指完全預防感染,則對其進行具體說明。若未說明完全預防,則該術語包括部分預防。 在本文中,「臨床體徵之發生率及/或嚴重程度之降低」或「臨床症狀之減少」意指(但不限於)與野生型感染相比,減少組中感染個體之數量、減少或消除展現感染之臨床體徵之個體之數量、或降低一或多個個體中存在之任何臨床體徵之嚴重程度。舉例而言,其應該指病原體負荷之任何減少、病原體脫落、病原體傳播減少或瘧疾之症狀之任何臨床體徵減少。較佳地,與未接受組合物且被感染之個體相比,接受本發明之治療性組合物之一或多個個體之該等臨床體徵減少至少10%。更佳地,接受本發明組合物之個體之臨床體徵減少至少20%,較佳至少30%,更佳至少40%且甚至更佳至少50%。 術語「增加之保護」在本文中意指(但不限於)相對於未經疫苗接種之個體對照組,經疫苗接種之個體組之一或多種與由傳染原感染相關之臨床症狀在統計學上顯著減輕。術語「臨床症狀之統計學顯著減輕」意指(但不限於)經疫苗接種之個體組之至少一種臨床症狀的發病頻率比在攻擊傳染原後未經疫苗接種之對照組中低至少10%,較佳20%,更佳30%、甚至更佳50%且甚至更佳70%。 「持久保護」將指持續至少3週、但更佳至少3個月、仍更佳至少6個月之「改良之效能」。在牲畜之情形下,最佳地,持久保護應持續直至動物出售用於肉類之平均年齡。 術語由病毒誘導之「病毒血症之減輕」意指(但不限於)進入動物血流之病毒減少,其中與未接受本發明組合物且可被感染之動物相比,接受該組合物之動物之血清中的病毒血症程度、即每毫升血清之病毒DNA或RNA拷貝數或每公合血清之噬菌斑形成菌落數減少至少50%。更佳地,接受本發明組合物之動物之病毒血症程度降低至少90%,較佳至少99.9%,更佳至少99.99%、且甚至更佳至少99.999%。 如本文所用術語「病毒血症」特定而言應理解為病毒顆粒在動物、特定而言哺乳動物、鳥或昆蟲之血流中複製及/或循環之病況。 「安全性」係指在疫苗接種後,在經疫苗接種之動物中不存在不良後果,包括但不限於:基於病毒之疫苗潛在地逆轉成有毒力、臨床上顯著之副作用,例如持久性、全身性疾病或在疫苗投與位點不可接受之發炎。 如本文所用術語「疫苗接種」(「vaccination」或「vaccinating」)或其變化形式意指(但不限於)包括投與本發明之免疫原性組合物之過程,在投與動物時,其引發或能夠引發(直接或間接)該動物之免疫反應。 在本發明上下文中,「死亡率」係指由感染引起之死亡,且包括感染如此嚴重以致於將動物安樂死以防止痛苦並為其生命提供人道結局的情況。調配物 投與組合物之個體較佳係動物,包括(但不限於)牛、馬、綿羊、豬、家禽(例如雞)、山羊、貓、狗、倉鼠、小鼠及大鼠,最佳哺乳動物係豬。 本發明之調配物包含有效免疫量之一或多種免疫原性組合物及生理上可接受之媒劑。疫苗包含有效免疫量之一或多種免疫原性組合物及生理上可接受之媒劑。調配物應適合於投與方式。 免疫原性組合物(若需要)亦可含有極少量之潤濕劑或乳化劑或pH緩衝劑。免疫原性組合物可為液體溶液、懸浮液、乳液、錠劑、丸劑、膠囊、持續釋放調配物或粉末。經口調配物可包括標準載劑,例如醫藥級甘露醇、乳糖、澱粉、硬脂酸鎂、糖精鈉、纖維素、碳酸鎂等。 治療方法 較佳投與途徑包括(但不限於)鼻內、經口、皮內及肌內。期望在飲用水中、最佳以單一劑量投與。熟習此項技術者將認識到,本發明組合物亦可以一個、兩個或更多個劑量藉由其他投與途徑來投與。舉例而言,該等其他途徑包括皮下、腹膜內、皮內,且根據治療之期望持續時間及有效性,本發明組合物可以例如每日計一次或若干次、亦間歇地以不同劑量(例如約103 至108 TCID50 (參見上述病毒效價))投與若干天、若干週或若干月。在本發明之具體態樣中,劑量係約103 至108 TCID50,尤其對於活病毒/活疫苗。 若期望,組合物可提供於可包含含有活性成分之一或多種單位劑型的包裝或分配器裝置中。包裝可(例如)包含金屬或塑膠箔,例如泡罩包。包裝或分配器裝置可伴隨有投與說明書,較佳投與哺乳動物(尤其豬)之說明書。該(等)容器可附帶有監管醫藥物或生物產品之製造、使用或銷售之政府機構所規定形式之公告,該公告顯示政府機構已批准用於人類投與之製造、使用或銷售。序列概述 以下序列詳細闡述並揭示於本發明中: 啟動子: SEQ ID NO: 1 EHV-4 600bp去氧核糖核酸序列4pgG600 SEQ ID NO: 2 EHV-4 600bp去氧核糖核酸序列4pMCP600 SEQ ID NO: 3 EHV-4 430bp去氧核糖核酸序列pG430 SEQ ID NO: 4 EHV-4 449bp去氧核糖核酸序列p455 SEQ ID NO: 5 對orf72具有特異性之引子編號1130 SEQ ID NO: 6 對orf72具有特異性之引子編號1131 SEQ ID NO: 7 對mCherry具有特異性之引子編號1079 SEQ ID NO: 8 對mCherry具有特異性之引子編號1080 插入位點: SEQ ID NO: 9 orf70插入區之人工序列核酸PCR引子1017 SEQ ID NO: 10 orf70插入區之人工序列核酸PCR引子1018 SEQ ID NO: 11 orf1/3插入區之人工序列核酸PCR引子1007 SEQ ID NO: 12 orf1/3插入區之人工序列核酸PCR引子1008 SEQ ID NO: 13 左(Up70)側翼區(417 bp) SEQ ID NO: 14 右(Up71)側翼區(431 bp) SEQ ID NO: 15 野生型EHV-1菌株ab4 (基因庫登錄號AY665713.1)中位於核苷酸127264 - 127680之左側翼區(上orf70) SEQ ID NO: 16 野生型EHV-1菌株ab4 (基因庫登錄號AY665713.1)中位於核苷酸128484 - 128913之右側翼區(上orf71) SEQ ID NO: 17 RED系統中之截短之側翼區:左(Up70)側翼區(283 bp) = 與417 bp 「經典」側翼區之3’ 283 bp一致 SEQ ID NO: 18 RED系統中之截短之側翼區:右(Up71)側翼區(144 bp) = 與431 bp 「經典」側翼區之5’ 144 bp一致 SEQ ID NO: 19 野生型ab4 (基因庫登錄號AY665713.1)基因體序列中之缺失部分,nt 127681 - 128482 SEQ ID NO: 20 RacH基因體序列中之缺失部分(不可獲得nt編號,此乃因完全基因體序列未知) 質體/載體序列: SEQ ID NO: 21 轉移質體pU-mC70-BGH之核苷酸序列 SEQ ID NO.: 22 轉移載體pU70-p455-71K71之核苷酸序列 SEQ ID NO.: 23 轉移質體pU70-p455-H3-71K71之核苷酸序列 SEQ ID NO.: 24 轉移載體pU-1-3-p430-BGHKBGH之核苷酸序列 SEQ ID NO.: 25 轉移質體pU1-3-p430-H1av-BGHKBGH之核苷酸序列 血球凝集素序列 SEQ ID NO: 26 血球凝集素[流行性感冒A病毒(A/豬/Italy/116114/2010(H1N2))] 基因庫:ADR01746.1 H1pdm SEQ ID NO: 27 血球凝集素[流行性感冒A病毒(A/豬/Italy/7680/2001(H3N2))] 基因庫:ABS50302.2 H3: SEQ ID NO: 28 血球凝集素[流行性感冒A病毒(A/豬/Gent/132/2005(H1N1))] 基因庫:AFR76623.1 H1av: SEQ ID NO: 29 血球凝集素[流行性感冒A病毒(A/豬/Italy/4675/2003(H1N2))] 基因庫:ADK98476.1* H1hu *請注意,胺基酸531 (X終止密碼子由本發明者變為I): SBV構築體序列 SEQ ID NO: 30 GS連接體序列 SEQ ID NO: 31 包括用於次選殖之限制位點之合成DNA序列 SEQ ID NO: 32 用於RED重組以生成pRacH-SE-70-455-SBVGc之DNA片段 SEQ ID NO: 33 up70 F引子 SEQ ID NO: 34 up71 R引子 SEQ ID NO: 35 seq455-F1引子 SEQ ID NO: 36 SBV Gc F1引子 SEQ ID NO: 37 SBV Gc R1引子 實例 本發明包括以下實例以展現本發明之較佳實施例。彼等熟習此項技術者應瞭解,下列實例中揭示之技術代表本發明者發現在實踐本發明中運行良好之技術,且因此可認為構成其實踐之較佳方式。然而,彼等熟習此項技術者借助於本揭示內容應瞭解,可對所揭示具體實施例作出多種改變且仍獲得相同或類似結果,此並不背離本發明之精神及範疇。 實例1:新穎插入位點 ORF70 之確立 為了增強EHV-1載體之能力,本發明者試圖發現自一個載體主鏈表現兩種不同轉基因而不需要在一個啟動子控制下藉由RNA病毒衍生之功能偶聯的方式。本發明者假設疱疹病毒基因體可耐受平行使用兩個獨立之轉基因插入位點。為了確定EHV-1 ORF70是否係適宜轉基因插入位點,藉由經典同源重組用編碼自身螢光性mCherry蛋白之表現盒替代orf70 (1236 bp)之5'端之801個鹼基對(Shaner等人, 2004) (圖2)。質體pU-mC70-BGH之圖譜在圖3 (SEQUENCE ID NO.21)中。用XbaI自pU-mC70-BGH切除用於同源重組之DNA片段。將凝膠純化之片段與EHV-1 RacH之病毒基因體DNA共轉染至RK13細胞中。藉由活螢光及病毒滴定(未顯示)顯示重組載體病毒之有效復活及培養細胞中之有效複製。缺失三分之二orf70具有額外益處,即消除由orf70編碼之醣蛋白G之表現。顯示EHV-1之醣蛋白G係抵抗宿主之免疫反應之非結構、分泌之趨化介素結合蛋白(Drummer等人,1998;Bryant等人,2003)。由於載體疫苗旨在刺激接種者之免疫反應,故去除病毒載體之此特定免疫抑制功能可能另外改良病毒載體平臺EHV-1 RacH-SE之性能。 實例2:在重組 EHV-1 載體疫苗中新穎 ORF70 插入位點與 p455 啟動子之使用及重組病毒之構築 p455啟動子: 對於第一動物實驗,使用來自豬源流行性感冒A病毒(A/豬/Italy/7680/2001(H3N2),基因庫登錄號:ABS50302.2)之流行性感冒血球凝集素亞型H3。合成其編碼序列並將其次選殖於轉移載體pU70-p455-71K71 (圖4,SEQ ID NO. 22)中,從而生成轉移質體pU70-p455-H3-71K71,將H3置於新穎p455啟動子及新穎71pA多聚腺苷酸化信號控制下並使該盒與用於插入orf70中之重組區(圖5,SEQ ID NO. 23)同框。 藉由使用RED重組系統之進行中誘變(Tischer等人,2006),將表現盒p455-H3-71插入pRacH-SE之orf70中以生成pRacH-SE70-p455-H3 (圖6)。 用pRacH-SE70-p455-H3轉染PK/WRL細胞,使重組病毒rEHV-1 RacH-SE70-p455-H3復活並進行斑塊純化兩次。藉由對插入區之高保真度PCR產物之測序驗證表現盒的正確插入。藉由間接免疫螢光分析(IFA,圖7)分析轉基因在感染細胞中之表現。 使用單株抗體Ai2G7 (由BI擁有),藉由IFA (未顯示)及西方墨點法(圖8)確認編碼EHV-1 gpII之orf71的恢復。藉由使用雞紅血球(未顯示)之血細胞吸附測試分析感染細胞之質膜上之H3之三聚體的外觀。在PK/WRL細胞中以TCID50 /ml測定之峰值效價與親代病毒rEHV-1 RacH-SE之效價在相同範圍內,指示該轉基因表現對病毒複製沒有有害效應(未顯示)。此係藉由使rEHV-1 RacH-SE70-p455-H3在PK/WRL細胞中傳代直至復活後第20代(P20)來確認。於P5、P10、P15及P20,藉由滴定、測序及西方墨點法(圖8)表徵病毒,於P10及P20,另外藉由IFA表徵病毒,且確認HA編碼插入物以及啟動子及多A序列之HA表現及遺傳穩定性。 圖8中所示之兩個墨點係與具體而言檢測EHV-1醣蛋白II (gpII)之單株抗體Ai2G7 (左)或與抵抗流行性感冒血球凝集素亞型H3之兔(PA5-34930)之商業多株抗體(右)一起培育的複製物。如所預計,在經重組EHV-1感染之所有細胞培養物中皆檢測到gpII。如所預計,在所有感染rEHV-1 RacH-SE-70-p455-H3之不同傳代之細胞中皆檢測到全長H3。H3-抗血清之特異性示於相同西方墨點中,參見泳道gG430mC。如所預計,此處僅gpII細胞產生反應,而抗H3抗體在各別複製泳道中不結合。 藉由使用單株抗H3抗體及馬抗EHV抗血清之經P20感染之細胞中的病毒斑塊之雙重免疫螢光分析(dIFA),確認實際上所有EHV-1誘導之斑塊亦表現H3 (未顯示)。所有測試皆確認重組EHV-1 RacH-SE-70-p455-H3之穩定性。 實例3:使用新穎 ORF70 插入位點之概念驗證動物研究 (POC I) 及血清學反應之評估 測試動物:納入準則及實驗設計: 將10隻天生流行性感冒A之仔豬(首次實驗之母豬)之五組包括於POC-I研究中,如表2中所概述。 表2 將1×107 TCID50之感染劑量之rEHV-1 RacH-70-p455-H3 (EHV-1)在5週齡施加一次或在2週齡及5週齡施加兩次。為了比較,將市售不活化之疫苗在2週齡及5週齡施加兩次。為了 消除不活化之疫苗(不活化)之效應,所有仔豬皆不含母體來源之抗體。兩組未經疫苗接種,但接受生理氯化鈉溶液(NaCl)之注射,分別用作攻擊對照或嚴格陰性對照。第二次疫苗接種後21天,除了嚴格陰性對照組之外之所有組皆經1×107 TCID50 之異源流行性感冒A (IVA)菌株(來自豬R452-14之H3N2流行性感冒A病毒,由BI擁有之攻擊分離物)攻擊。儘管在未經疫苗接種之攻擊對照組(Chall ctrl)中,所有豬在攻擊感染後1天及3天皆在其肺中具有高流行性感冒病毒效價,但嚴格陰性對照組(neg ctrl)及經rEHV-1 RacH-SE-70-p455-H3進行兩次疫苗接種(EHV 2×)之組中的所有豬在此兩天中皆對IVA呈陰性。在經不活化之對照疫苗(Inact 2×)進行兩次疫苗接種之組中,五隻動物中之一隻在攻擊後第3天具有低的IVA效價。在攻擊之前21天經rEHV-1 RacH-SE-70-p455-H3進行一次疫苗接種(EHV 1×)之組中,五隻動物中之兩隻在攻擊感染後1天且五隻中之一隻在攻擊後3天在其肺中具有低的IVA效價。(圖9). 經1× 107 TCID50之rEHV-1 RacH-SE-70-p455-H3之兩次疫苗接種完全保護豬免於異源IVA、亞型H3N2之攻擊感染。 展現EHV-1載體RacH-SE適於豬之疫苗接種,且新穎啟動子p455在驅動疫苗接種之豬中之IVA血球凝集素的免疫原性表現中起作用。 實例4:重組 EHV-1 載體疫苗中新穎 p430 啟動子之使用及重組病毒之構築 p430啟動子: 使用新近鑑別之p430啟動子以驅動來自H1N1病毒((A/豬/Gent/132/2005(H1N1),基因庫登錄號:AFR76623.1)之另一流行性感冒血球凝集素的表現。由於此病毒分離株中之血球凝集素源自禽類IAV,故其將稱為H1av。合成H1av並將其次選殖至轉移載體中用於orf1/3插入區(圖10,SEQ ID NO. 24)中,以生成pU1/3-p430-H1av-BGH_K_BGH (圖11,SEQ ID NO. 25)。將H1av之表現置於p430啟動子及牛生長激素(BGH)多A信號控制下。 藉由使用RED重組系統之進行中誘變(Tischer等人,2006),將表現盒p430-H1av-BGH插入pRacH-SE之orf1/3中以生成pRacH-SE1/3-p430-H1av (圖12)。 用pRacH-SE1/3-p430-H1av轉染PK/WRL細胞,使重組病毒rEHV-1 RacH-SE1/3-p430-H1av復活並進行斑塊純化兩次。藉由對插入區之高保真度PCR產物之測序驗證表現盒的正確插入。藉由間接免疫螢光分析(IFA)及西方墨點法使用市售單株及多株抗體分析轉基因在感染細胞中之表現(圖13)。 使用單株抗體Ai2G7 (由BI擁有),藉由IFA及西方墨點法確認編碼EHV-1 gpII之orf71的恢復(未顯示)。藉由使用雞紅血球(未顯示)之血細胞吸附測試分析H1av之正確處理及轉運及感染細胞之質膜中之定位。在PK/WRL細胞中以TCID50 /ml測定之峰值效價與親代病毒RacH-SE之效價在相同範圍內,指示該轉基因表現對病毒複製沒有有害效應(未顯示)。 藉由抗體PA-34929在75 kDa遷移之寬帶之特異性檢測與自其序列預測之重組HA醣蛋白的預計外觀一致。經單株抗體C102之細胞膜表觀染色符合如所預計之亞細胞定位(圖13)。 為了測試表現之重組血球凝集素是否如預計經處理及轉運,將VERO細胞用rEHV-1 RacH-SE-1/3-p430-H1av、rEHV-1 RacH-SE-70-p455-H3、rEHV-1 RacH-SE (親代)以0.01之m.o.i.感染,或未經感染。24 h p.i.活的經感染及未經感染之細胞與雞紅血球於PBS中之懸浮液一起培育,用PBS洗滌並用螢光Hoechst 33342核染色劑染色。由於禽類紅血球含有細胞核,故可經Hoechst33342染色且藉由螢光顯微鏡術顯示為微小藍斑,與不表現血球凝集素之rEHV-1 RacH-SE感染之細胞相比,在rEHV-1 RacH-SE-1/3-p430-H1av或rEHV-1 RacH-SE-70-p455-H3感染之細胞上,雞紅血球之吸附顯著增加(未顯示)。由此可推斷出,將血球凝集素以如同其係藉由真正的流行性感冒病毒感染所產生一樣之方式轉譯、處理並轉運至載體病毒感染細胞之質膜上。 感染細胞之血細胞吸附之清晰表型支持西方墨點法及免疫螢光分析之發現,顯示轉基因蛋白之有效表現並表明在EHV-1載體感染細胞之細胞表面上形成功能性HA三聚體。 實例5:重組 EHV-1 載體疫苗中新穎 ORF70 插入位點及 ORF1/3 插入位點之平行使用 為了顯示兩種新穎啟動子可平行使用,生成表現兩種不同流行性感冒A病毒亞型之兩種不同血球凝集素的重組EHV-1 RacH。 藉由經單次插入病毒rEHV-1 RacH-SE-70-p455-H3及rEHV-1 RacH-SE-1/3-p430-H1av感染之感染細胞的西方墨點驗證多株商業抗體對H3 (PA5-34930)及H1 (PA5-34929)之特異性及無交叉反應性(未顯示)。 合成編碼流行性感冒A病毒(A/豬/Gent/132/2005(H1N1))之血球凝集素之開放閱讀框並將其選殖至轉移載體pU1-3-p430-BGHKBGH (圖10)中,從而產生pU1-3-p430-H1av-BGHKBGH (圖11)。以重組BAC pRacH-SE-70-p455-H3開始,藉由兩步RED重組將組裝於pU1/3-p430-H1av-BGHKBGH (圖11,SEQ ID NO. 25)中之表現盒p430-H1av-BGH插入orf1/3插入位點中以生成pRacH-SE-1/3-p430-H1av-70-p455-H3。用pRacH-SE1/3-p430-H1av-70-p455-H3轉染PK/WRL細胞,並使重組病毒rEHV-1 RacH-SE1/3-p430-H1av-70-p455-H3復活並進行斑塊純化兩次(圖12)。 此重組病毒之簡稱為rEHV-1 RacH-SE_B。藉由對插入區之高保真PCR產物與側翼序列一起測序來驗證表現盒之正確插入。藉由間接免疫螢光分析(IFA,未顯示)及西方墨點法使用市售單株及多株抗體(圖13)分析轉基因在感染細胞中之表現。使用單株抗體Ai2G7 (由BI擁有),藉由IFA (未顯示)及西方墨點法(圖13)確認編碼EHV-1 gpII之orf71的恢復。 如圖13中所示,兩種轉基因H3及H1av在經雙重插入重組rEHV-1 RacH-SE-1/3-p430-H1av-70-p455-H3 (B )感染之細胞培養物中平行表現。轉基因表現係穩定的且不損害在PK/WRL細胞中直到第11代測試之病毒效價(未顯示)。 顯示兩種新穎啟動子p430及p455在細胞培養物中rEHV1-RacH複製之上下文中具有功能。病毒複製循環期間之活性程度似乎與自活體外啟動子動力學實驗所推斷非常相似。該等性質容許基於以類似效率平行表現兩種不同抗原之EHV-1 RacH或其他載體平臺來產生重組載體疫苗。若疫苗靶由兩種不同病原體組成,則與兩個多聚腺苷酸化序列組合之兩個插入位點中之兩個新穎啟動子的應用可顯著降低商品之成本且較僅表現一種抗原性組分之載體具有明顯優勢。 實例6:用於豬之單價 EHV-1 載體流行性感冒 A 病毒疫苗 (H3 疫苗 ) 之生成、活體外表徵及活體內測試 選擇血清型H3之豬IAV流行性感冒病毒血球凝集素(SEQ ID NO 27) (A/豬/Italy/7680/2001(H3N2),基因庫登錄號:ABS50302.2)作為欲測試之抗原用於豬中之疫苗接種研究。此針對豬IAV之新穎疫苗提供DIVA特徵,例如藉由在由豬IAV野生菌株感染之動物中、而非僅經本文所述疫苗接種之動物中檢測到針對豬IAV蛋白NP或NA之抗體,此乃因其僅表現一種豬IAV HA蛋白。合成並次選殖其編碼序列,從而生成轉移載體pU70-p455-H3-71K71,將H3置於新穎p455啟動子及新穎71pA多聚腺苷酸化信號控制下並使該盒與用於插入orf70中之重組區同框(圖2)。 藉由使用RED重組系統之進行中誘變,將表現盒p455-H3-71插入pRacH-SE之orf70中以生成pRacH-SE70-p455-H3 (圖6)。 用pRacH-SE70-p455-H3轉染PK/WRL細胞,使重組病毒rEHV-1 RacH-SE70-p455-H3復活並進行斑塊純化兩次。 藉由對插入區之高保真度PCR產物之測序驗證表現盒的正確插入。藉由間接免疫螢光分析(IFA,圖7)及西方墨點法(圖8)使用市售單株及多株抗體分析轉基因在感染細胞中之表現。 使用單株抗體Ai2G7 (由BI擁有),藉由IFA (未顯示)及西方墨點法(圖8)確認編碼EHV-1 gpII之orf71的恢復。藉由使用雞紅血球(未顯示)之血細胞吸附測試分析感染之質膜上之H3之三聚體的外觀。在PK/WRL細胞中以TCID50 /ml測定之峰值效價與親代病毒RacH-SE之效價在相同範圍內,指示該轉基因表現對病毒複製沒有有害效應(未顯示)。此係藉由使rEHV-1 RacH-SE70-p455-H3在PK/WRL細胞中傳代直至復活後第20代(P20)來確認。於P5、P10、P15及P20,藉由滴定、測序及西方墨點法(圖8)表徵病毒,於P10及P20,另外藉由IFA表徵病毒,且確認HA編碼插入物以及啟動子及多A序列之HA表現及遺傳穩定性。 圖9中所示之兩個墨點係與具體而言檢測EHV-1醣蛋白II (gpII)之單株抗體Ai2G7 (左)或與抵抗流行性感冒血球凝集素亞型H3之兔(PA5-34930)之商業多株抗體(右)一起培育的複製物。如所預計,在經重組EHV-1感染之所有細胞培養物中皆檢測到gpII。如所預計,在所有感染rEHV-1 RacH-SE-70-p455-H3之不同傳代之細胞中均檢測到全長H3。亦藉由經表現H1亞型病毒之流行性感冒血球凝集素之其他重組EHV-1 RacH-SE感染的細胞之西方墨點顯示H3-抗血清之特異性,參見下文圖15。 藉由使用單株抗H3抗體及馬抗EHV抗血清之經P20感染之細胞中的病毒斑塊之雙重免疫螢光分析(dIFA),確認實際上所有EHV-1誘導之斑塊亦表現H3 (未顯示)。所有測試皆確認重組EHV-1 RacH-SE-70-p455-H3之穩定性。 為了研究rEHV-1 RacH-SE-70-p455-H3在年輕仔豬中作為載體疫苗的性質,在疫苗接種-攻擊研究中對其進行測試。詳細地,在2及5週齡時(雙注射疫苗接種,2× EHV-1)或僅在5週齡時(單注射疫苗接種,1× EHV-1)用含有1×10^7 TCID50之劑量之RacH-SE-70-p455-H3之細胞培養上清液對針對豬IAV無母體來源之免疫性(非母源性抗體)的仔豬進行兩次肌內疫苗接種。未經疫苗接種之組用作陰性對照且在2及5週齡時根據製造商之說明書(除了疫苗接種之時間點)經市售不活化之豬IAV疫苗接種之一組動物用作陽性對照(殺死)。在8週齡時,藉由1×10^7 TCID50之氣管內施加劑量之H3N2豬IAV攻擊菌株(歐洲野生病毒分離株R452-14,其之H3與RacH-SE-70-p455-H3中所用之H3疫苗抗原異源)攻擊除陰性對照外之所有動物。未經疫苗接種且未經攻擊之動物用作陰性對照,而未經疫苗接種但經攻擊之動物用作攻擊對照。在疫苗接種時及之後及在攻擊之前及之後,量測體溫並在不同時間點獲取血樣。在攻擊後一天,每組之一半動物被殺死且針對係豬IAV感染典型之病灶對肺進行評分,每隻動物分別獲取每個左肺及右肺之三個肺試樣,以測定肺勻漿物中之感染性豬IAV效價,且對支氣管肺泡灌洗液(BALF)進行取樣。在攻擊後3天,對每組之其餘一半動物實施相同程序。 在研究豬IAV攻擊病毒施加後之體溫升高時,未經疫苗接種之動物顯示在攻擊後1天約1℃之體溫升高。對於經RacH-SE-70-p455-H3疫苗進行兩次疫苗接種之組,防止攻擊後1天之此體溫增加(圖16)。 來自豬IAV攻擊病毒施加後1或3天殺死之動物之肺評分的評估揭示,陰性對照不顯示係豬IAV感染典型之肺病灶,攻擊對照顯示在6-7%之平均範圍內之肺病灶,且關於組平均值,對於經RacH-SE-70-p455-H3疫苗進行兩次疫苗接種之組,肺病灶評分強烈降低至1%至小於4% (圖17)。 來自豬IAV攻擊病毒施加後1或3天殺死之動物之平均豬IAV肺效價顯示陰性對照在肺試樣中不顯示豬IAV,而攻擊對照顯示每g肺組織之病毒效價在超過5 log (第3天)至超過7 log (第1天)範圍內。形成鮮明對比的是,對於經RacH-SE-70-p455-H3疫苗進行一次疫苗接種之組,組平均值強烈降低至約2 log或更少,並且對於經RacH-SE-70-p455-H3疫苗進行兩次疫苗接種之組降低至不可檢測之含量(圖9)。 在測試疫苗接種後豬IAV中和抗體之誘導時,在首次疫苗接種後3週,經RacH-SE-70-p455-H3疫苗進行一次疫苗接種之動物之血清顯示在約160範圍內之中和效價的倒數,且在第2次疫苗接種後3週,經RacH-SE-70-p455-H3疫苗進行兩次疫苗接種之動物之血清顯示約2560之中和效價,而未經疫苗接種之組之血清具有不可檢測之豬IAV中和抗體含量(圖18)。 在豬IAV攻擊後1或3天測定來自動物之BALF中促發炎細胞介素IL-1β的量時,在第1天測試之四隻動物之三隻中可檢測到超過100 pg/ml至高達900 pg/ml之IL-1β含量,而對於經RacH-SE-70-p455-H3疫苗進行一次疫苗接種之動物之BALF,該等含量降低至100-300 pg/ml IL-1β,且對於經RacH-SE-70-p455-H3疫苗進行兩次疫苗接種之所有動物,甚至進一步降低至0 pg/ml至小於100 pg/ml IL-1β之含量(圖19)。此顯示豬IAV感染後,經RacH-SE-70-p455-H3疫苗進行疫苗接種有效防止促發炎細胞介素IL-1β之誘導。 在測試在研究第28天取樣並使用不同刺激之外周血單核細胞(PBMC)之再刺激時,未經疫苗接種之動物之PBMC之刺激在IFNγ-ELISpot中顯示小於75/1×10^6計數,而與所用刺激無關(圖20 A)。已接受兩次不活化之疫苗(殺死)之動物之PBMC在經重組豬IAV核蛋白NP再刺激時顯示約150/1×10^6計數,且在經豬IAV H3N2攻擊菌株R452-14再刺激時在IFNγ-ELISpot中顯示約3000/1×10^6計數,但在使用重組豬IAV HA或EHV-1病毒時不顯示PBMC之再刺激(含量為75/1×10^6計數或更低) (圖20 B)。相比之下,經RacH-SE-70-p455-H3疫苗進行一次或兩次疫苗接種之動物在經豬IAV H3N2攻擊菌株R452-14再刺激時亦在IFNγ-ELISpot中顯示約200 (1× EHV-1)至300 (2× EHV-1)/1×10^6計數,但在使用重組豬IAV NP時不顯示PBMC之再刺激(含量為75/1×10^6計數或更低) (圖20 C及D)。分別地,在使用EHV-1病毒進行再刺激時,經RacH-SE-70-p455-H3疫苗進行一次或兩次疫苗接種之動物在經空的EHV-1疫苗RacH-SE再刺激時在IFNγ-ELISpot中顯示約300/1×10^6計數,且在使用表現豬IAV H3之RacH-SE-70-p455-H3疫苗時,此值進一步增加至超過400/1×10^6計數(圖20 C及D)。因此,在使用重組豬IAV HA進行再刺激時,僅經RacH-SE-70-p455-H3疫苗進行一次或兩次疫苗接種之動物在IFNγ-ELISpot中顯示約100-150 (1×EHV-1)至150-200 (2× EHV-1)/1×10^6計數(圖20 C及D)。 實例7用於豬之四價 EHV-1 載體流行性感冒 A 病毒疫苗之生成、活體外表徵及活體內測試 如下文所述,在所述發明中,源自H1N2、H3N2、H1N1禽類及H1N1大流行豬IAV亞型/血清型之四種上述豬IAV血球凝集素(HA)抗原由兩種重組EHV-1載體病毒表現。此針對豬IAV之新穎四價疫苗提供DIVA特徵,例如藉由在由豬IAV野生菌株感染之動物中、而非僅經本文所述疫苗接種之動物中檢測到針對豬IAV蛋白NP或NA之抗體,此乃因其僅表現豬IAV HA蛋白。 在活體外表徵新穎四價豬IAV疫苗且在活體內測試其針對豬IAV之效能。 使用新近鑑別之p430啟動子以驅動豬IAV H1N1 ((A/豬/Gent/132/2005(H1N1),基因庫登錄號:AFR76623.1)之表現。由於此病毒分離株中之血球凝集素源自禽類IAV,故其將稱為H1av。合成H1av並將其次選殖至轉移載體中用於orf1/3插入區以生成pU1/3-p430-H1av-BGH_K_BGH。將H1av之表現置於p430啟動子及牛生長激素(BGH)多A信號控制下並與用於插入orf1/3中之重組區(圖11,SEQ ID NO. 25)同框。 藉由使用RED重組系統之進行中誘變,將表現盒p430-H1av-BGH插入pRacH-SE之orf1/3中以生成pRacH-SE1/3-p430-H1av (圖12)。用pRacH-SE1/3-p430-H1av轉染PK/WRL細胞,使重組病毒rEHV-1 RacH-SE1/3-p430-H1av復活並進行斑塊純化兩次。藉由對插入區之高保真度PCR產物之測序驗證表現盒的正確插入。藉由間接免疫螢光分析(IFA)及西方墨點法使用市售單株及多株抗體分析轉基因在感染細胞中之表現(圖13)。使用單株抗體Ai2G7 (由BI擁有),藉由IFA及西方墨點法確認編碼EHV-1 gpII之orf71的恢復(未顯示)。藉由使用雞紅血球(未顯示)之血細胞吸附測試分析H1av之正確處理及轉運及感染細胞之質膜中之定位。在PK/WRL細胞中以TCID50 /ml測定之峰值效價與親代病毒RacH-SE之效價在相同範圍內,指示該轉基因表現對病毒複製沒有有害效應(未顯示)。 藉由抗體PA-34929在75 kDa遷移之寬帶之特異性檢測與自其序列預測之重組HA醣蛋白的預計外觀一致。經單株抗體C102之細胞膜表觀染色符合如所預計之亞細胞定位。 為了測試表現之重組血球凝集素是否如預計經處理及轉運,將VERO細胞用rEHV-1 RacH-SE-1/3-p430-H1av、rEHV-1 RacH-SE-70-p455-H3、rEHV-1 RacH-SE (親代)以0.01之m.o.i.感染,或未經感染。24 h p.i.活的經感染及未經感染之細胞與雞紅血球於PBS中之懸浮液一起培育,用PBS洗滌並用螢光Hoechst 33342核染色劑染色。由於禽類紅血球含有細胞核,故可經Hoechst33342染色且藉由螢光顯微鏡術顯示為微小藍斑,與不表現血球凝集素之rEHV-1 RacH-SE感染之細胞相比,在rEHV-1 RacH-SE-1/3-p430-H1av或rEHV-1 RacH-SE-70-p455-H3感染之細胞上,雞紅血球之吸附顯著增加(未顯示)。由此可推斷出,將血球凝集素以如同其係藉由真正的流行性感冒病毒複製所產生一樣之方式轉譯、處理並轉運至載體病毒感染細胞之質膜上。 感染細胞之血細胞吸附之表型支持西方墨點法及免疫螢光分析(對於H1av,圖13)之發現,顯示轉基因蛋白之有效表現並表明在EHV-1載體感染細胞之細胞表面上形成功能性HA三聚體。 藉由經單次插入病毒rEHV-1 RacH-SE-70-p455-H3及rEHV-1 RacH-SE-1/3-p430-H1av感染之感染細胞的西方墨點驗證多株商業抗體對H3 (PA5-34930)及H1 (PA5-34929)之特異性及無交叉反應性(未顯示)。 接下來,生成表現兩種不同流行性感冒A病毒亞型/血清型之兩種不同血球凝集素的重組EHV-1 RacH-SE。 以重組BAC pRacH-SE-70-p455-H3開始,藉由兩步RED重組將組裝於轉移載體pU1/3-p430-H1av-BGH_K_BGH (圖12)中之表現盒p430-H1av-BGH插入orf1/3插入位點中以生成pRacH-SE-1/3-p430-H1av-70-p455-H3。用pRacH-SE1/3-p430-H1av-70-p455-H3轉染PK/WRL細胞,並使重組病毒rEHV-1 RacH-SE1/3-p430-H1av-70-p455-H3復活並進行斑塊純化兩次。此重組病毒之簡稱為rEHV-1 RacH-SE_B (圖14)。藉由對插入區之高保真PCR產物與側翼序列一起測序來驗證表現盒之正確插入。 藉由間接免疫螢光分析(IFA,未顯示)及西方墨點法使用市售單株及多株抗體(圖15)分析轉基因在感染細胞中之表現。使用單株抗體Ai2G7 (由BI擁有),藉由IFA (未顯示)及西方墨點法(圖15)確認編碼EHV-1 gpII之orf71的恢復。 兩種轉基因H3及H1av在經雙重插入重組rEHV-1 RacH-SE_B感染之細胞培養物中平行表現。轉基因表現係穩定的且不損害在PK/WRL細胞中直到第11代測試之病毒效價。 顯示具有兩個插入位點及兩個新穎啟動子之增強之EHV-1載體平行表現兩種流行性感冒病毒血球凝集素。如藉由IFA測定之亞細胞定位及如藉由西方墨點法測定之SDS-PAGE中之遷移率對應於自文獻已知之流行性感冒A病毒感染細胞中表現之真正的血球凝集素。 接下來,生成表現血球凝集素H1hu (SEQ ID NO:29,A/豬/Italy/4675/2003(H1N2);基因庫登錄號ADK98476.1))及H1pdm (SEQ ID NO:26,A/豬/Italy/116114/2010(H1N2);基因庫登錄號ADR01746.1)之第二雙重插入rEHV-1 RacH。 合成H1hu之編碼序列並次選殖至轉移載體中用於orf1/3插入區以生成pU1/3-p430-H1hu-BGHKBGH。將H1hu之表現置於p430啟動子及牛生長激素(BGH)多A信號控制下並與用於插入orf1/3中之重組區同框(圖21)。 合成並次選殖H1pdm之編碼序列,從而生成轉移載體pU70-p455-H1pdm-71K71,將H1pdm置於新穎p455啟動子及新穎71pA多聚腺苷酸化信號控制下並使該盒與用於插入orf70中之重組區同框(圖22)。 隨後,藉由使用RED重組系統之進行中誘變將表現盒p430-H1av-BGH及p455-H1pdm-71插入pRacH-SE中,從而首先生成pRacH-SE-1/3-p430-H1hu。使用此經修飾之BAC作為靶標,藉由使用RED重組系統之進行中誘變插入p455-H1pdm-71,從而生成pRacH-SE-1/3-p430-H1hu-70-p455-H1pdm。在PK/WRL細胞中轉染pRacH-SE-1/3-p430-H1hu-70-p455-H1pdm並使rEHV-1 RacH-SE-1/3-p430-H1hu-70-p455-H1pdm復活並進行斑塊純化三次。新穎重組載體病毒之簡稱為rEHV-1 RacH-SE_D (圖23)。 藉由間接免疫螢光分析(IFA,未顯示)及西方墨點法使用市售單株及多株抗體(圖24)分析轉基因在感染細胞中之表現。使用單株抗體Ai2G7 (由BI擁有),藉由IFA (未顯示)及西方墨點法(圖24)確認編碼EHV-1 gpII之orf71的恢復。 藉由在細胞培養物中傳代、每5代測定病毒效價來顯示重組rEHV-1之遺傳及表型穩定性。每10代確認插入區之序列,以及藉由西方墨點法(未顯示)確認轉基因表現。藉由在覆蓋下斑塊之雙重IFA、對經抗EHV-抗體及轉基因特異性抗體染色之斑塊進行計數來評估表現保真度(未顯示)。 為研究由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價豬IAV疫苗在年輕仔豬中作為載體疫苗之性質,在疫苗接種-攻擊研究中對其進行測試。詳細地,在1及4週齡時(雙注射疫苗接種,2× EHV-1)或在僅4週齡時(單注射疫苗接種,1× EHV-1)用每個疫苗菌株1×10^7 TCID50之劑量之rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D對針對豬IAV具有母體來源之免疫性(對母源性抗體呈陽性)之仔豬進行兩次肌內疫苗接種。未經疫苗接種之組用作陰性對照。在11週齡時,藉由1×10^6 TCID50之氣管內施加劑量之H3N2豬IAV攻擊菌株(歐洲野生病毒分離株R452-14,其之H3與rEHV-1 RacH-SE_B中所用之H3疫苗抗原異源)攻擊除陰性對照外之所有動物。未經疫苗接種且未經攻擊之動物用作陰性對照,而未經疫苗接種但經攻擊之動物用作攻擊對照。在疫苗接種時及之後及在攻擊之前及之後,量測體溫並在不同時間點獲取血樣。在攻擊後一天,每組之一半動物被殺死且針對係豬IAV感染典型之病灶對肺進行評分,每隻動物分別獲取每個左肺及右肺之三個肺試樣,以測定肺勻漿物中之感染性豬IAV效價,且對支氣管肺泡灌洗液(BALF)進行取樣。在攻擊後3天,對每組之其餘一半動物實施相同程序。分析試樣物質及收集之數據以尤其測定攻擊後之體溫變化、豬IAV感染後之臨床體徵、肺評分、豬IAV肺效價、肺組織之組織學變化、豬IAV血清中和效價、BALF中之細胞介素含量、如藉由IFNγ-ELISpot量測之PBMCS之再刺激以及B細胞活化。 實例8 經二價rEHV-1 RacH載體疫苗進行疫苗接種之小鼠中針對兩種抗原之中和抗體反應的誘導 使用rEHV-1 RacH SE B (rEHV-1 RacH-SE-1/3-p430-H1av-7-p455-H3,參見圖14)來免疫Balb/c小鼠,以展現表現之轉基因在除豬外之另一物種中具有免疫原性且藉由鼻內施加針對兩種抗原中之一者誘導中和抗體。 詳細地,在研究第0及21天向三組3-5週齡之Balb/c小鼠(每組5隻)分別鼻內接種40 µl rEHV-1 RacH SE B (rEHV-1 RacH-SE-1/3-430-H1av-7-455-H3,組1)、或40 µl空的載體(rEHV-1 RacH-SE,組2,載體對照)、或40 µl組織培養基(組3,陰性對照)。對於組1及組2,感染性重組EHV-1劑量分別為1× 10^5 TCID50/40 µl。在研究第0天(在首次接種之前)、第7、14、21天(在第2次接種之前)、第28天及第35天將小鼠放血。自血樣製備血清並於-80℃下冷凍儲存。用於檢測針對載體病毒之抗體之免疫螢光分析 將AI-ST細胞以0.001之感染複數(MOI)用rEHV-1 RacH-SE1212 (一種自空的載體BAC pRacH-SE1.2復活之病毒)感染。觀察24小時p.i.獨立斑塊,且對細胞進行處理用於間接免疫螢光分析(IFA)。測試在PBS中1:50稀釋之所有三組最終出血(第二次疫苗接種14天後獲得)的血清。作為陽性對照,EHV-1疫苗接種之馬之血清係以1:500之稀釋度使用。二級抗體對於小鼠血清係市售FITC偶聯之兔抗小鼠IgG且對於馬血清係Cy5偶聯之山羊-抗馬IgG且係以1:200稀釋度使用。藉由螢光顯微鏡術評估抗體結合。所有經疫苗接種之小鼠皆在IFA中利用rEHV-1 RacH-SE感染之細胞發生抗體反應性。未經感染之細胞不由任何測試血清結合。來自小鼠之陰性對照組之血清不顯示與感染細胞或未經感染之細胞之任何特異性結合。數據概述於下表中。 表3. 抗EHV-1抗體之IFA之螢光顯微鏡術結果 由此可推斷出,將rEHV-1接種至小鼠之鼻孔中導致感染及病毒複製,從而刺激小鼠免疫系統以產生抗EHV-1抗體。病毒中和測試 (VNT) 為了顯示針對源自流行性感冒A病毒(IAV) (A/豬/Italy/7680/2001(H3N2))或(A/豬/Gent/132/2005(H1N1))之表現之轉基因的保護性免疫性的誘導,測試小鼠血清針對各別病毒之中和活性(Allwinn等人 2010;Trombetta等人 2014)。用於中和測試之IAV係來自2014年德國之豬之分離株,具體而言係A/豬/Germany/AR452/2014 (H3N2)及A/豬/Germany/AR1181/2014 (H1N1)。由於該等分離株與疫苗靶源自之菌株異源,故該等病毒由小鼠血清之任何中和將指示藉由rEHV-1疫苗接種廣泛且有效地誘導保護性免疫。 作為陰性對照血清,使用已顯示對流行性感冒病毒抗體呈陰性之豬的血清。流行性感冒 A 病毒中和測試: 在使用前,將用於病毒中和以及反滴定之MDCK細胞在96孔板中於37℃/5%CO2 下培育2天。將各別IAV原液H3N2及H1avN1在冰上解凍並稀釋於含有慶大黴素(Gentamycin)及雙倍濃度之胰蛋白酶(MEM/Genta/2x胰蛋白酶)之MEM中。 測試之血清係來自組1 (rEHV-1 RacH SE B)、組2(空的載體)、陽性對照(經不活化之多價IAV疫苗接種之豬之血清)及陰性對照之最終出血。 將血清熱不活化,且分別在兩個及三個獨立試驗中1:2連續稀釋,以1:16開始直至1:4096。將IAV稀釋至約100 TCID50/中和反應。將中和反應物於37℃、5% CO2 下培育2小時。所用病毒之反滴定係一式四份進行的。移除生長培養基,且然後用含有慶大黴素及胰蛋白酶之培養基洗滌MDCK細胞,之後添加中和反應物或反滴定之病毒稀釋物。在分別向MDCK-細胞添加中和反應物或病毒稀釋物後,將VNT及滴定板於37℃ /5% CO2下培育1 h。其後,移出接種物並用含有慶大黴素及胰蛋白酶之新鮮培養基覆蓋細胞。監測5天 p.i. CPE並記載。測試中實際使用之病毒效價根據Reed及Münch計算為TCID50/ml,且報導測試血清防止流行性感冒病毒-典型CPE之誘導的稀釋度參見下表。 表4:流行性感冒H1avN1 VNT之結果 表5:流行性感冒H3N2 VNT之結果 為了比較獨立測試之結果,藉由使血清稀釋度之倒數與藉由其中和之各別效價相乘來計算中和能力。然後將三個測試之平均值除以100,以反映100 TCID50之中和(表3、4及5)。數據概述且以圖解方式示於圖25中。 所有經rEHV-1 RacH SEB 疫苗接種之小鼠皆針對各別IAV (即亞型H3N2及H1avN1之異源菌株)產生中和抗體。因此,在p455啟動子(H3)控制下自orf70插入位點及在p430啟動子(H1av)控制下自orf1/3插入位點平行表現IAV之血球凝集素之rEHV-1 RacH-SE的兩倍鼻內施加成功地刺激BALB/c小鼠中之保護性免疫反應。 可推斷出,載體rEHV-1 RacH-SE可用於兩種不同轉基因之平行表現,以刺激鼻內疫苗接種後之免疫反應。 實例9牛之 EHV-1 載體施馬倫貝格 (SBV) 病毒疫苗之生成、活體外表徵及活體內測試 新出現之布尼亞病毒( bunyavirus)之一係施馬倫貝格病毒(SBV),首個歐洲西姆布血清群病毒(Simbu serogroup virus) (正布尼亞病毒屬),在懷孕動物在妊娠之關鍵階段被感染時,其可引起流產、死產及嚴重胎兒畸形,且其到如今愈來愈多地用作研究正布尼亞病毒之模型病毒(Bilk等人,2012)。由於西姆布病毒係由昆蟲載體傳播且治療選擇不可用,故疫苗接種係疾病控制之主要組成部分。針對SBV及其他西姆布病毒(例如赤羽根病毒(Akabane virus,AKAV)或愛野病毒(Aino virus))不活化之全病毒疫苗可用,且已研發針對SBV之減毒活疫苗(Anonymous, 2013, 2015;Kraatz等人,2015;Wernike等人,2013b),然而,該等疫苗皆不容許野外感染與疫苗接種之動物之間之分化(DIVA原理)。僅在最近,在致死之小動物攻擊模型及牛中測試基於SBV醣蛋白Gc之胺基末端的234個胺基酸(aa)之DIVA相容性亞單位疫苗(Wernike等人,2017)。當作為表現質體遞送或在哺乳動物細胞培養系統中表現時,Gc結構域在高達66%之動物中賦予保護,而用與相關AKAV之相應結構域連接之SBV的Gc結構域免疫之所有動物被完全保護(Wernike等人,2017)。為了研究rEHV-1 RacH-SE作為載體疫苗在牛中之應用,將SBV-Gc之234個胺基末端aa插入orf70(US4)插入位點中並在新穎p455啟動子及71pA多A信號控制下表現並在牛之疫苗接種攻擊試驗中進行測試。表現源自施馬倫貝格病毒 (SBV) 醣蛋白 c (Gc) 之抗原的重組 EHV-1 之生成 施馬倫貝格病毒(SBV)醣蛋白c (Gc)之編碼區之234個胺基酸部分經密碼子使用最佳化用於在EHV-1中表現並另外經修飾以實現有效轉運至感染細胞之質膜並插入其中。為此,源自流行性感冒A病毒(IAV)血球凝集素(HA)亞型H1N2 (A/豬/Italy/116114/2010 (H1N2),基因庫登錄號ADR01746.1)之信號肽編碼序列以及來自該HA之跨膜錨(TM)及細胞質C末端分別連接至5'及3'端。另外,在Gc部分與HA-TM-結構域之間插入GS連接體HMGGSGGGGSGGGGSGGGT (SEQ ID NO:30)。合成DNA (SEQ ID NO:31)並將其次選殖於pU70-455-71K71之NotI/KpnI位點中,pU70-455-71K71係用於藉由RED介導之BAC pRacH-SE之重組將轉基因表現盒插入EHV-1之orf70 (US4)中之轉移載體。用XbaI切割所得質體pU70-455-SBVGc_71K71 (圖26)以釋放3056 bp DNA片段(SEQ ID NO:32),將其轉變至攜帶pRacH-SE之大腸桿菌K12 GS1783中。 SEQ ID NO:31:包括用於次選殖之限制位點之合成DNA序列GCGGCCGC ATGAAGGCGATCCTGGTTGTGCTGCTGTACACCTTTGCCACCGCCAACGCCGATACGCTGATCAACTGCAAGAACATCCAGAGCACCCAGCTGACAATCGAGCACCTGAGCAAGTGCATGGCCTTCTACCAGAACAAGACCAGCAGCCCCGTCGTGATCAACGAGATCATCTCCGACGCCAGCGTGGACGAACAGGAACTGATTAAGTCTCTGAACCTGAACTGCAACGTGATCGACCGGTTCATCAGCGAGTCCAGCGTGATCGAGACACAGGTGTACTACGAGTATATCAAGAGCCAGCTGTGTCCACTGCAAGTGCACGATATCTTCACCATCAACAGCGCCAGCAACATCCAGTGGAAGGCCCTGGCCCGCAGCTTTACCCTGGGCGTGTGCAACACCAACCCCCACAAGCACATCTGCCGGTGCCTGGAATCCATGCAGATGTGTACCAGCACCAAGACCGACCACGCCAGAGAGATGAGCATCTACTACGACGGCCACCCCGACAGATTCGAGCACGACATGAAGATTATCCTGAATATCATGCGGTACATCGTGCCCGGCCTGGGCAGAGTGCTGCTGGACCAGATCAAGCAGACCAAGGACTACCAGGCCCTGAGACACATCCAGGGCAAGCTGAGCCCCAAGTCCCAGAGCAACCTGCAGCTGAAGGGCTTCCTGGAATTCGTGGACTTCATCCTGGGCGCCAACGTGACCATTGAGAAAACCCCCCAGACCCTGACCACCCTGAGCCTGATTCATATGGGAGGTTCCGGAGGTGGAGGTTCCGGAGGTGGAGGTTCCGGAGGTGGCACCATACTGGCCATTTACAGCACAGTTGCGAGCAGCCTGGTCCTGATCGTGAGCCTGGGTGCTATATCATTCTGGATGTGCAGCAACGGCTCTCTCCAGTGCCGCATCTGTATCTGAGGTACC SEQ ID NO:32:用於RED重組以生成pRacH-SE-70-455-SBVGc之DNA片段 限制酶裂解位置由星號(*)指示T*CTAGA CTCGAGCGCAAGCCCTACACGCGCTACCCCTGCTTTCAACGCGTCAACCTGCACATTGACGGGGAGTTTCTGGTTCACAAGATGCTAGCGTTCAATGCCGCGATGCGCCCATCGGCCGAGGAGCTGCTGTCATACCCAATGTTTGCTCAACTTTAGGATGACTAACCTGTTTCTGGGAGGAGACAGCGTGGGCGACGGTGTATAAAGTTGGTCTGCTTTCAAGCCCTGCCACTGCGCTACAGTGCCACCAACTGTAAAGCGGTAGTAAGCTGCAGTGGTCGACTGGTGGTAGCATATACTACCTTATTTATACGCTCCGAGCTGTTTTTCAGCATGCTAGCACCCAACGCCGAGCGAGAGTATATAACTCCCATCATTGCCCACAAGCTTATGCCACTTATTAGCGTCCGCTCTGCCGTTTGCTTAGTCATAATATCTACCGCCGTTTACGCAGCAGACGCTATCTGCGACACAATTGGATTTGCGATACCGCGCATGTGGATGTGTATTTTAATGAGATCAACCTCCATGAAGCGTAACTAGGGGGCCTCCCACTGAGGCACTACCGGCTTAGCAGCTGACTAACACAGTATAAAACGTGAGAAGAAATCAGTCTCATGCGCCATTAGCGCTAGGCTAGTTAGCGTGGAGGACCGGAGCGCTACCGCCAGCAGTTTCATCCGCCTGGTTACGGGTTTGTTAACACCTACCGGTGTTTTACCGCTACCATAGGATCCGATCCATGGGCGGCCGCATGAAGGCGATCCTGGTTGTGCTGCTGTACACCTTTGCCACCGCCAACGCCGATACGCTGATCAACTGCAAGAACATCCAGAGCACCCAGCTGACAATCGAGCACCTGAGCAAGTGCATGGCCTTCTACCAGAACAAGACCAGCAGCCCCGTCGTGATCAACGAGATCATCTCCGACGCCAGCGTGGACGAACAGGAACTGATTAAGTCTCTGAACCTGAACTGCAACGTGATCGACCGGTTCATCAGCGAGTCCAGCGTGATCGAGACACAGGTGTACTACGAGTATATCAAGAGCCAGCTGTGTCCACTGCAAGTGCACGATATCTTCACCATCAACAGCGCCAGCAACATCCAGTGGAAGGCCCTGGCCCGCAGCTTTACCCTGGGCGTGTGCAACACCAACCCCCACAAGCACATCTGCCGGTGCCTGGAATCCATGCAGATGTGTACCAGCACCAAGACCGACCACGCCAGAGAGATGAGCATCTACTACGACGGCCACCCCGACAGATTCGAGCACGACATGAAGATTATCCTGAATATCATGCGGTACATCGTGCCCGGCCTGGGCAGAGTGCTGCTGGACCAGATCAAGCAGACCAAGGACTACCAGGCCCTGAGACACATCCAGGGCAAGCTGAGCCCCAAGTCCCAGAGCAACCTGCAGCTGAAGGGCTTCCTGGAATTCGTGGACTTCATCCTGGGCGCCAACGTGACCATTGAGAAAACCCCCCAGACCCTGACCACCCTGAGCCTGATTCATATGGGAGGTTCCGGAGGTGGAGGTTCCGGAGGTGGAGGTTCCGGAGGTGGCACCATACTGGCCATTTACAGCACAGTTGCGAGCAGCCTGGTCCTGATCGTGAGCCTGGGTGCTATATCATTCTGGATGTGCAGCAACGGCTCTCTCCAGTGCCGCATCTGTATCTGAGGTACCAATAAACGCGGTATGTCTACCTTCAAGCCTATGATGAACGGATGTTTGGTGTTTGCGGCTATTATAACGCTCTTGAGTTTTATGCTATCTCTGGGAACATGCGAAAATTACAGGCGTGTGGTTCGGGATCCTAGGGATAACAGGGTAATCGATTTATTCAACAAAGCCACGTTGTGTCTCAAAATCTCTGATGTTACATTGCACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTTGCTCGAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAAAATAAACGCGGTATGTCTACCTTCAAGCCTATGATGAACGGATGTTTGGTGTTTGCGGCTATTATAACGCTCTTGAGTTTTATGCTATCTCTGGGAACATGCGAAAATTACAGGCGTGTGGTTCGGGATCCGACCCTGTTGGTGGGTGCGGTTGGACTCAGAATCTTGGCGCAGGCATGGAAGTTTGTCGGTGACGAAACATACGACACCATCCGCGCAGAAGCAAAGAATTTAGAGACCCACGTACCCTCAAGTGCTGCAGAGTCGT*CTAGA 製備重組pRacH-SE-70-455-SBVGc DNA並藉由使用HerculaseTM 之高保真度PCR及PCR產物之Sanger測序確認表現盒之正確插入及序列一致性。所用引子參見表6,SEQ ID NO: 33至SEQ ID NO:37。 表6:用於PCR及測序之引子 重組 EHV-1 RacH-SE-70-455-SBVGc 之復活及表徵 自四種不同之pRacH-SE-70-455-SBVGc純系製備BAC DNA。將AI-ST細胞(Boehringer-Ingelheim專有豬睪丸細胞系)以105 個細胞/孔之密度接種於含有10% FBS (Sigma-Aldrich Chemie GmbH, Munich, Germany, SAFC, Cat 12003C-1000ml)之MEM (Sigma-Aldrich Chemie GmbH, Munich, Germany, SAFC62892-1000M3056)中的6孔板(Corning Incorporated - Life Sciences, One Becton Circle, Durham, NC 27712, USA;REF 353046)中。在細胞係60-70%融合時,通常第二天,根據供應商之說明書,使用MirusTM mRNA轉染套組(Mirus Bio LLC, 545 Science Drive, Madison, WI 53711 USA)用2 μg BAC DNA轉染細胞。簡言之,將200 μl OptimemTM (Thermo Fisher Scientific)培養基添加至5 ml聚苯乙烯管中。添加並混合DNA。接下來,添加3 μl加強試劑並藉由渦漩混合,之後添加相同體積之轉染試劑並再次藉由渦漩混合。將混合物於室溫下培育3分鐘且隨後直接逐滴添加至細胞培養物中。將細胞於37℃/5%CO2 下培育5天。將細胞沖洗至培養基中並收集儲存於-80℃下。在MEM中製備復活病毒之連續1:10稀釋物並將其平鋪於6孔板中之融合AI-ST細胞單層上。於37℃/5%CO2 下吸附1 h後,移出接種物,並用含有0.5% Methocel (甲基纖維素Ph.Eur., Fluka 64632-500G)及5%FBS之半固體培養基(MEM-Methocel)覆蓋。於37℃/5%CO2 下培育2至5天(第1代)後,吸出10 μl之體積之儘可能位於遠離相鄰斑塊之個別斑塊並接種於6孔板中之新AI-ST細胞培養物中。將感染細胞培育2至3天,直至觀察到大量CPE (第2代)為止。將細胞沖洗至培養基中並收集儲存於-80℃下。將此斑塊純化程序重複兩次。對經斑塊純化病毒感染三次之AI-ST細胞進行處理以分別用於間接免疫螢光分析(IFA)或西方墨點法。 自感染細胞製備之病毒DNA用作使用HerculaseTM 之高保真度PCR的模板。藉由Sanger測序分析獲得之PCR產物並確認具有理論序列及BAC之相應PCR產物之序列之插入區之一致性。間接免疫螢光分析 將24孔板(Corning Incorporated - Life Sciences, One Becton Circle, Durham, NC 27712, USA;REF 353047)中之AI-ST細胞用連續稀釋於MEM中之斑塊純化之病毒感染三次。自細胞中吸出生長培養基並用250 μL稀釋之病毒(稀釋度10-2 至10-7 )覆蓋細胞。將細胞於37℃/5%CO2 下培育1 h以吸附病毒,然後移出接種物,並用1000 μL MEM-Methocel/孔覆蓋細胞並在37℃/5%CO2 下培育2天。在顯微鏡下觀察到斑塊形成時,處理細胞用於IFA。吸出培養基並用1ml PBS (Gibco Life Technologies, Paisley PA49RF, UK, DPBS (1×) REF 14190-136)/孔洗滌細胞一次。移出PBS並藉由添加1ml/孔之-20℃冷乙醇(Carl Roth GmbH, Schoemperlenstr. 3-5, D-76185 Karlsruhe, Art. Nr. 5054.1)固定細胞並在RT下培育30 min。吸出乙醇並將細胞風乾。於RT下將細胞用1ml /孔之PBS再水合10 min後,添加稀釋於PBS中之一級抗體(150 μl/孔)並於RT下培育1h。移出一級抗體並將細胞用1ml PBS/孔洗滌三次並保持2 min,之後添加二次抗體稀釋物(150 μl/孔)。於RT下避光培育1 h後,移出二級抗體稀釋物並將細胞用1ml PBS/孔洗滌三次並保持2 min且最後用500 μl PBS/孔覆蓋用於藉由螢光顯微鏡術進行檢查。所用抗體列示於表7中。 表7 西方墨點法 1. 感染:藉由向生長培養基中分別直接添加50μl及10μ解凍之病毒原液將6孔板中之AI-ST細胞之每一融合單層的三個孔以約1之M.O.I.用rEHV-1 RacH-SE-455-SBVGc之兩種不同斑塊分離株(編號121.131 P6及編號121.232 P6)及rEHV-1 RacH-SE1212 P9之斑塊分離株(自親代空的BAC pRacH-SE1.2復活)感染。三個孔未經感染。將感染及未經感染之細胞培育2天且然後經處理用於西方墨點法。 2. 溶解物之製備:如下製備補充有蛋白酶抑制劑混合劑(RIPA+PI)之RIPA緩衝液:將0.7ml 10× RIPA溶解緩衝液(Millipore目錄號20-188)添加至6.3ml H2 O (Fisher Scientific目錄號BP2470-1)中,並將1個錠劑Complete TM Mini蛋白酶抑制劑混合劑(Roche目錄號11 836 153 001)溶解於7 ml 1×RIPA緩衝液中。將未經感染之對照刮到培養基中,並將來自三個重複孔之懸浮液彙集於15ml離心管中並置於冰上。在培養基中沖洗掉感染之細胞,並將來自三個重複孔之懸浮液彙集於15ml離心管中並置於冰上。藉由以1000xg 4℃離心5 min使細胞沉降。小心地吸出上清液,並將細胞糰粒重新懸浮於RIPA + PI中(300 μl未經感染之細胞,150 μl經感染之細胞)。將懸浮液在冰上培育30 min並每10 min渦旋。將懸浮液轉移至1.5 ml微量離心管中並在微量離心機中以15000 rpm、4℃離心10 min以使未溶解之物質沉降。將澄清之上清液轉移至新的1.5 ml微量離心管並儲存於-80℃下直至使用。 3. SDS-PAGE及耐綸膜上之轉移:材料 BioRad Criterion TGX Stain Free Precast Gels,4-20%,26孔目錄號_567-8095;Bio Rad Precision加上雙重顏色標記物,目錄號161-0374;Bio Rad Precision加上全藍色標記物,目錄號161-0373;Bio Rad Trans Blot Turbo轉移套組,Midi模式目錄號170-4159;Bio Rad 4x Laemmli試樣緩衝液(目錄號161-0747) (Bio Rad Laboratories GmbH, Heidemannstrasse 164, D-80939 München);TGS運行緩衝液(Sambrook等人),阻斷溶液1:PBST中之5% FBS (Sambrook等人);PBST。製備試樣而不添加還原劑。將試樣在冰上解凍並與1體積之4× Lämmli緩衝液混合,於96℃下煮沸6 min,並保持於RT下直至凝膠加載。將凝膠於230 mA下運行30 min,且然後使用BioRad Trans Blot Turbo系統裝配進行電轉移。將轉移設定為2,5 A 25 V 10 min。將膜在無菌蒸餾水H2 O沖洗並於4℃下與PBST中之25 mL阻斷溶液5% FBS一起培育30 min。抗體培育及檢測 材料:Immun-Star WesternC Chemiluminecent套組(Bio Rad Laboratories GmbH, Heidemannstrasse 164, D-80939 München)目錄號170-5070一級抗體: A:SBV-Gc蛋白特異性單株抗體(Wernike等人,2015a) 1:20 B:針對EHV-1 gpII之小鼠單株抗體Ai2G7 (Boehringer Ingelheim專有) 二級抗體: 過氧化酶偶聯之山羊抗小鼠,(Jackson Immune Research 編號115-035-146) 1:5000 所有培育皆係在恆定攪拌下以足夠體積進行。將抗體稀釋於5%FBS/TBST中。將一級抗體於4℃下培育過夜。移出抗體溶液並將墨點用TBST洗滌三次並保持5-10 mi。於RT下將稀釋之二級抗體與墨點一起培育1 h,移出並將墨點用TBST洗滌三次並保持5-10 min。將墨點置於透明塑膠片保護器上。將過氧化物及魯米諾(Lumino)/增強子溶液以1ml +1ml混合(對於每個墨點總共2ml),移液至墨點上並3 min至5 min。其後,將膜置於ChemiDocXRS成像系統(Bio Rad Laboratories GmbH, Heidemannstrasse 164, D-80939 München)中並使用Image Lab軟體記錄信號。病毒滴定 在感染前一天,將AI-ST細胞以2×104 個細胞/孔接種於補充有10% FBS之MEM中之96孔板(Corning Incorporated - Life Sciences, One Becton Circle, Durham, NC 27712, USA;REF 353072)中。將病毒原液快速解凍並置於冰上。在MEM中製備10個連續1:10稀釋物,每個稀釋物體積為1.2 ml。向細胞中添加100 μl/孔之病毒稀釋物,每個稀釋物8個呈垂直一列之孔。每一板之垂直列11及12藉由添加100 μl/孔MEM用作培養基對照。一式三份進行滴定,並將細胞於37℃/5%CO2 下培育5天。在顯微鏡下檢查細胞培養物,並記錄觀察到EHV-1 RacH典型CPE的孔。根據Reed及Muench (1938)之方法將效價計算為TCID50/ml。 用於疫苗接種之重組EHV-1之表徵 藉由西方墨點法及雙重免疫螢光分析(DIFA)針對rEHV-1 RacH-SE-70-455-SBVGc 121.232之斑塊分離株顯示經修飾之SBV Gc234在感染細胞中之表現。利用多株馬-抗EHV-抗血清及單株抗SBV抗體之DIFA確認轉基因在似乎100% rEHV-1感染細胞中表現。在實施經rEHV-1 RacH-SE-70-455-SBVGc_121.232感染之細胞之DIFA時,經馬抗EHV抗血清(紫色)染色之EHV-1抗原陽性細胞亦結合針對SBV Gc之單株抗體。在非還原條件運行之西方墨點法確認經修飾之SBVGc234在經重組EHV-1 RacH-SE-70-455-SBVGc感染之細胞中表現。實施利用針對SBV Gc之單株抗體或針對EHV-1 gpII之單株抗體探測之經感染或未經感染細胞之溶解物的西方墨點法。儘管EHV-1 gpII在所有感染細胞中皆表現,但SBV Gc僅在經rEHV-1RacH-SE-70-455-SBVGc感染之細胞中表現,在經空的載體rEHV-1 RacH-SE1212感染之彼等細胞中不表現。在模擬感染細胞之溶解物中皆未檢測到病毒蛋白。平行墨點與針對EHV-1之gpII之單株抗體一起培育確認在轉染後重組病毒復活期間藉由自我切除程序之orf71 (US5)之恢復。自三次斑塊純化之分離株rEHV-1 RacH-SE-70-455-SBVGc_121.232產生之P7病毒原液在AI-ST細胞中複製至1.85×109 TCID50/ml之極高效價,指示轉基因之表現在此細胞系中不會損壞EHV-複製。rEHV-1RacH-SE-70-455-SBVGc_121.232之六次滴定之平均值(以TCID50/ml表示)產生1.85×109 TCID50/ml且標準偏差為1.28 ×109 TCID50/ml。動物及實驗設計 將德國國內品種之4頭牛用108 TCID50 rEHV-SBV-Gc進行兩次疫苗接種,間隔3週;將額外4頭牛保持為未經疫苗接種之對照。第二次免疫後3週,向所有動物皮下接種2 × 0.5 ml僅在牛中傳代之SBV野生菌株(Wernike等人,2012)。在整個研究期間中,每日測量直腸體溫並由獸醫師檢查動物之臨床體徵。以每週間隔獲取血清,並藉由市售基於N之ELISA (ID Screen® Schmallenberg virus Competition, ID vet, France)及藉由如前所述(Wernike等人,2013a)針對SBV分離株BH80/11之微中和測試進行分析。藉由評估3天後之細胞病變效應進行評估;所有試樣一式四份測試並根據Behrens及Kaerber將抗體效價計算為ND50 。藉由針對EHV菌株RacH (組rEHV-SBV-Gc及未經疫苗接種之對照動物)之微中和測試另外分析分別在免疫、攻擊感染當天及在研究結束時獲取之血清。 在攻擊感染後前10天期間,另外每日收集血樣。使用King Fisher 96 Flex (Thermo Scientific, Braunschweig, Germany)與MagAttract Virus Mini M48 Kit (Qiagen, Hilden, Germany)之組合根據製造商之說明書自該等試樣萃取病毒RNA,且藉由基於S-區段之即時RT-PCR進行測試(Bilk等人,2012)。 實驗方案已經由負責之國家道德委員會審查並經主管機關(State Office for Agriculture, Food Safety and Fisheries of Mecklenburg-Vorpommern, Rostock, Germany,參照LALLF M-VTSD/7221.3-1.1-004/12)批准。臨床觀察及病毒 RNA 檢測 在整個研究期間,所有動物皆不顯示出任何相關SBV特異性臨床體徵,且在經直腸量測時,所有動物之體溫皆保持在正常範圍內。 自攻擊感染後第1天或第2天開始,在每一未經疫苗接種之對照動物之血清試樣中可檢測病毒RNA達連續四天。在整個取樣時段中,藉由量化RT- PCR (圖27A),rEHV-SBV-Gc組之所有疫苗接種之動物皆顯示降低之病毒RNA濃度。在整個取樣時段中,藉由量化RT- PCR (圖27A),rEHV-SBV-Gc組之兩隻動物經測試呈完全陰性。在經rEHV-SBV-Gc免疫之兩隻動物中,分別檢測到降低含量之SBV基因體達3天或5天。抗體反應 在未經疫苗接種之對照動物中,在攻擊感染之前藉由血清中和測試未檢測到SBV特異性抗體。自感染後向前1或2週,所有未經疫苗接種之動物中皆檢測到高效價之中和抗體(圖27B)。 與未經疫苗接種之對照組相比,在攻擊感染當天,在經rEHV-SBV-Gc免疫之四頭牛中之兩頭中可檢測到SBV特異性中和抗體。在此組之其餘兩隻動物中,在攻擊感染之前未檢測到SBV特異性中和抗體,但在感染後2週,存在中和抗體(圖27B)。所有四隻疫苗接種之動物中SBV特異性中和抗體之效價皆低於攻擊對照,指示攻擊病毒之病毒複製效率較低,且因此支持量化RT-PCR數據。EHV 中和測試 在MEM中以1:5開始製備血清之兩倍稀釋物。將50μl含有100 TCID50 SBV之MEM及50 μl稀釋血清在96孔細胞培養板中培育2小時。此後,添加100 μl新鮮製備之BHK-細胞之懸浮液(於含有10%胎牛血清之MEM中)並將培養板於37℃/5%CO2 下培育3-4天。藉由光學顯微術評估細胞病變效應。一式兩份地測試所有血清,且根據如由Behrens (個人通訊)修改之Kaerber(1931)將抗體效價計算為ND50。如圖28中所示之結果指示,用rEHV-1 RacH-SE-70-455-SBVGc對牛進行疫苗接種引起載體病毒之複製效率足以誘導特異性免疫反應。在四個動物EHV-1之一中,在初次疫苗接種後3週可檢測到極低效價之中和抗體(1:4)。在兩次疫苗接種後,第二次施加後3週,所有四頭牛皆產生1:128之效價之中和抗體。自此結果可推斷出,EHV-1 RacH可能亦在牛中作為疫苗載體起作用。 實例10仔豬中針對豬 IAV H3N2 攻擊之由 rEHV-1 RacH-SE_B rEHV-1 RacH-SE_D 組成之四價豬 IAV 疫苗的效能 為了研究由rEHV-1 RacH-SE_B (rEHV-1 RacH-SE-1/3-p430-H1av-70-p455-H3,參見圖14)及rEHV-1 RacH-SE_D (rEHV-1 RacH-SE-1/3-p430-H1hu-70-p455-H1pdm,參見圖23)組成之四價豬IAV疫苗在年輕仔豬中作為載體疫苗之性質,在第二疫苗接種-攻擊研究中對其進行測試。 在此第二研究中,將來自未經疫苗接種之母豬及在首次疫苗接種時藉由使用H3特異性ELISA (圖32)及藉由病毒中和測試(數據未顯示)經血清學測試對於豬IAV特異性抗體呈陰性的仔豬用由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價疫苗進行兩次疫苗接種。在動物的生命之第一週(研究第0天,SD0)進行首次疫苗接種且在其生命之第4週(研究第21天,SD21)進行第二次疫苗接種,分別係肌內接種及然後肌內接種(2× IM)、或首次鼻內接種及然後肌內接種(IN+IM)、或兩次鼻內接種(2× IN),每個疫苗菌株、每隻動物及每次疫苗接種分別以2 ml劑量接種1×10^7 TCID50劑量。未經疫苗接種之組用作陰性對照且另一未經疫苗接種之組用作攻擊對照,在生命之第7週(研究第69或70天,SD42/43),藉由2×10^7 TCID50之氣管內施加劑量之H3N2豬IAV攻擊菌株(歐洲野生病毒分離株R452-14,其之H3與rEHV-1 RacH-SE_B中所用之H3疫苗抗原異源)攻擊除陰性對照外之所有動物。未經疫苗接種且未經攻擊之動物用作陰性對照(neg. ctrl.),而未經疫苗接種但經攻擊之動物用作攻擊對照(chall. ctrl.)。在疫苗接種時及之後及攻擊之前,在不同時間點獲取血樣。 攻擊後1天,每組之一半動物被殺死,且每隻動物分別取每個左肺及每個右肺之三個肺試樣。隨後,以每隻動物左肺及右肺之平均值測定每隻動物每克肺勻漿物之感染性豬IAV效價,該等左肺及右肺效價各自係自每個左肺或右肺之彙集之三個試樣之勻漿物獲得且分別針對左肺或右肺之該三個試樣之總重量正規化。在攻擊後3天,對每組之其餘一半動物實施相同程序。對於所有疫苗接種之組,與攻擊對照組相比,對於在攻擊後第1天(CH+1)獲取之試樣,自組中之個別動物獲得之感染性豬IAV之效價的中值在統計上顯著降低,而來自陰性對照組之所有動物在其肺勻漿物中皆不顯示感染性豬IAV病毒效價(圖29)。此外,對於所有疫苗接種之組,與攻擊對照組相比,對於在攻擊後第3天(CH+3)獲取之試樣,自組中之個別動物獲得之感染性豬IAV之效價的中值在統計上顯著降低,而來自陰性對照組之所有動物在其肺勻漿物中皆不顯示感染性豬IAV病毒效價(圖30)。因此,分別在仔豬中經異源豬IAV H3N2菌株攻擊後1天及3天,用由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價豬IAV疫苗進行疫苗接種在統計上顯著降低豬IAV肺負荷。因此,本文所述之疫苗針對豬中之豬IAV有效。 此外,藉由針對與由疫苗菌株rEHV-1 RacH-SE_B表現之H3同源之重組表現之豬IAV H3抗原的豬免疫球蛋白G (IgG)特異性酶聯免疫吸附分析(ELISA)分析在研究第0天(SD0,在首次疫苗接種之前)、在研究第21天(SD21,在第二次疫苗接種之前)、及在研究第42或43天(SD42/43,在施加攻擊材料之前)自研究動物獲取之血清。儘管來自陰性對照組之血清之平均OD值於所有量測之時間點僅給出極低之值,但在兩次肌內施加(2× IM;SD21及SD42/43)後、首次鼻內施加及隨後肌內施加(IN+IM;SD42/43)後,及兩次鼻內施加(2× IN;SD42/43)後,來自疫苗接種之組之血清展現OD值強烈增加;圖32。因此,用由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價豬IAV疫苗進行疫苗接種分別引發仔豬中針對由疫苗菌株rEHV-1 RacH-SE_B表現之豬IAV血球凝集素H3的血清學免疫反應。 另外,自研究第28天(SD28)自研究動物獲取之血液純化外周血單核細胞(PBMC)。然後將PBMC用H3N2豬IAV攻擊菌株R452-14以1之感染複數(H3N2 MOI 1)再刺激,或用與由疫苗菌株rEHV-1 RacH-SE_B表現之H3同源之重組表現之豬IAV H3抗原以1µg/ml (rH3 1µg/ml)之濃度再刺激。。使用再刺激之PBMC,實施干擾素γ特異性酶聯免疫吸附斑點分析(IFNγ ELISpot),且將獲得之值分別正規化至10^ 6個細胞並計算為每組之平均值(圖34)。儘管來自攻擊對照組之再刺激之PBMC (用作此測試之陰性對照,動物未經疫苗接種)顯示在任一再刺激後,每組之平均斑點低於45,但在任一再刺激後,分別地,兩次肌內施加後來自疫苗接種之動物之再刺激之PBMC顯示每組之平均斑點高於85,首次鼻內施加及隨後肌內施加(IN+IM)後超過100個斑點,且兩次鼻內施加(2× IN)後超過150個斑點(圖34)。。因此,用由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價豬IAV疫苗進行疫苗接種在仔豬中分別針對由疫苗菌株rEHV-1 RacH-SE_B表現之豬IAV血球凝集素H3及針對用於異源攻擊病毒感染之豬IAV H3N2 R452-14引發細胞免疫反應。 因此,用由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價豬IAV疫苗對仔豬進行疫苗接種在仔豬中誘導可檢測之血清學及細胞免疫反應,且藉由在統計上顯著降低在異源豬IAV攻擊後1天及3天之肺勻漿物中之豬IAV負荷展現疫苗效能。 實例11具有母體來源之抗體之仔豬中針對豬 IAV H3N2 攻擊之由 rEHV-1 RacH-SE_B rEHV-1 RacH-SE_D 組成之四價豬 IAV 疫苗的效能 為研究由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價豬IAV疫苗在年輕仔豬中作為載體疫苗之性質,在第三疫苗接種-攻擊研究中對其進行測試。 在此第三研究中,使用由母豬生產並由母豬初乳及乳液餵養之仔豬,其在懷孕期間用針對豬IAV之市售不活化之疫苗進行兩次疫苗接種。在首次疫苗接種時,藉由使用H3特異性ELISA (圖33)及藉由使用市售豬IAV特異性抗體ELISA (IDEXX Influenza A (Virus Antibody Test) ® ; IDEXX, Westbrook, Maine 04092, USA)遵循製造商之測試建議(數據未顯示),仔豬經血清學測試對於豬IAV特異性抗體呈陰性,將其用由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價疫苗進行兩次疫苗接種。在動物的生命之第一週(研究第0天,SD0)進行首次疫苗接種且在其生命之第4週(研究第21天,SD21)進行第二次疫苗接種,分別係肌內接種及然後肌內接種(2× IM)、或首次鼻內接種及然後肌內接種(IN+IM)、或兩次鼻內接種(2× IN),每個疫苗菌株、每隻動物及每次疫苗接種分別以2 ml劑量接種1×10^7 TCID50劑量。未經疫苗接種之組用作陰性對照且另一經疫苗接種之組用作攻擊對照。在生命之第11週(研究第69或70天,SD69/70),藉由2×10^7 TCID50之氣管內施加劑量之H3N2豬IAV攻擊菌株(歐洲野生病毒分離株R452-14,其之H3與rEHV-1 RacH-SE_B中所用之H3疫苗抗原異源)攻擊除陰性對照外之所有動物。未經疫苗接種且未經攻擊之動物用作陰性對照(neg. ctrl.),而未經疫苗接種但經攻擊之動物用作攻擊對照(chall. ctrl.)。在疫苗接種時及之後及攻擊之前,在不同時間點獲取血樣。 攻擊後5天,殺死動物,且每隻動物分別取每個左肺及每個右肺之三個肺試樣。隨後,以每隻動物左肺及右肺之平均值測定每隻動物每克肺勻漿物之感染性豬IAV效價,該等左肺及右肺效價各自係自每個左肺或右肺之彙集之三個試樣之勻漿物獲得且分別針對左肺或右肺之該三個試樣之總重量正規化。對於所有疫苗接種之組,與攻擊對照組相比,對於在攻擊後第5天(CH+5)獲取之試樣,自組中之個別動物獲得之感染性豬IAV之效價的中值在統計上顯著降低,而來自陰性對照組之所有動物在其肺勻漿物中皆不顯示感染性豬IAV病毒效價(圖31)。因此,分別在仔豬中經異源豬IAV H3N2菌株攻擊後5天,用由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價豬IAV疫苗進行疫苗接種在統計上顯著降低豬IAV肺負荷。因此,本文所述之疫苗針對豬中之豬IAV有效。 此外,藉由針對與由疫苗菌株rEHV-1 RacH-SE_B表現之H3同源之重組表現之豬IAV H3抗原的豬免疫球蛋白G (IgG)特異性酶聯免疫吸附分析(ELISA)分析在研究第0天(SD0,在首次疫苗接種之前)、在研究第21天(SD21,在第二次疫苗接種之前)、及在研究第35天(SD35,在第二次疫苗接種後2週)自研究動物獲取之血清。儘管來自陰性對照組之血清之平均OD值對於SD21及SD35僅給出極低之值,但在兩次肌內施加(2× IM;SD35)後、首次鼻內施加及隨後肌內施加(IN+IM;SD35)後,及兩次鼻內施加(2× IN;SD35)後,來自疫苗接種之組之血清展現OD值強烈增加;圖33。因此,用由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價豬IAV疫苗進行疫苗接種分別引發仔豬中針對由疫苗菌株rEHV-1 RacH-SE_B表現之豬IAV血球凝集素H3的血清學免疫反應。 另外,自研究第28天(SD28)自研究動物獲取之血液純化外周血單核細胞(PBMC)。然後將PBMC用H3N2豬IAV攻擊菌株R452-14以1之感染複數(H3N2 MOI 1)再刺激,或用與由疫苗菌株rEHV-1 RacH-SE_B表現之H3同源之重組表現之豬IAV H3抗原以1µg/ml (rH3 1µg/ml)之濃度再刺激。。使用再刺激之PBMC,實施干擾素γ特異性酶聯免疫吸附斑點分析(IFNγ ELISpot),且將獲得之值分別正規化至10^ 6個細胞並計算為每組之平均值(圖35)。儘管來自攻擊對照組之再刺激之PBMC (用作此測試之陰性對照,動物未經疫苗接種)顯示在任一再刺激後,每組之平均斑點低於15,但在任一再刺激後,分別地,兩次肌內施加後來自疫苗接種之動物之再刺激之PBMC顯示每組之平均斑點高於30,首次鼻內施加及隨後肌內施加(IN+IM)後超過55個斑點,且兩次鼻內施加(2× IN)後超過65個斑點(圖35)。。因此,用由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價豬IAV疫苗進行疫苗接種在仔豬中分別針對由疫苗菌株rEHV-1 RacH-SE_B表現之豬IAV血球凝集素H3及針對用於異源攻擊病毒感染之豬IAV H3N2 R452-14引發細胞免疫反應。 因此,用由rEHV-1 RacH-SE_B及rEHV-1 RacH-SE_D組成之四價豬IAV疫苗對仔豬進行疫苗接種在仔豬中誘導可檢測之血清學及細胞免疫反應,且藉由在統計上顯著降低在異源豬IAV攻擊後5天之肺勻漿物中之豬IAV負荷展現疫苗效能。 根據本發明,本文中所揭示及所主張之所有組合物及方法皆可在無需過度實驗之情形下進行及執行。儘管本發明之組合物及方法已根據較佳實施例予以闡述,但熟習此項技術者應明瞭,可改變該等組合物及方法及本文所述方法之步驟或步驟之順序,此並不背離本發明之概念、精神及範疇。更具體而言,應明瞭,某些在化學及生理上均相關之試劑可替代本文所述試劑且同時可達成相同或類似結果。熟習此項技術者顯而易見之所有該等類似替代物及修改皆被視為涵蓋於由隨附申請專利範圍所界定的本發明精神、範疇及概念內。 參考文獻 以下參考文獻在其提供對本文所闡述之彼等補充之實例性程序或其他詳情的程度上以引用方式具體併入本文中。 1.Allwinn R, Geiler J, Berger A, Cinatl J, Doerr HW .2010 . Determination of serum antibodies against swine-origin influenza A virus H1N1/09 by immunofluorescence, haemagglutination inhibition, and by neutralization tests: how is the prevalence rate of protecting antibodies in humans? Med Microbiol Immunol. 199(2):117-21. doi: 10.1007/s00430-010-0143-4. Epub 2010 Feb 17。 2. Anonymous (2013). VMD authorizes SBV vaccine for use in the UK. The Veterinary record172, 543 3.Anonymous (2015). Schmallenberg virus vaccine. The Veterinary record177, 321 4.Bilk S、Schulze C、Fischer M、Beer M、Hlinak A、Hoffmann B (2012). Organ distribution of Schmallenberg virus RNA in malformed newborns. Veterinary microbiology159, 236-238 5. Boshart M、Weber F、Jahn G、Dorsch-Häsler K、Fleckenstein B、Schaffner W.1985 . A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41(2):521-30。 6. Bryant, N. A.、Davis-Poynter, N.、Vanderplasschen, A.及Alcami, A.2003. Glycoprotein G isoforms from some alphaherpesviruses function as broad-spectrum chemokine binding proteins. The EMBO Journal Vol. 22 ( 4): 833-846。 7. Bustin, S.2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology25 (2): 169-193。 8. Charoensawan, V.、Wilson, D.、Teichmann, S.A.2010 . Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Res. 38(21):7364-77 9. Colle, C.F. 3rd, O'Callaghan, D.J.1995 . Transcriptional analyses of the unique short segment of EHV-1 strain Kentucky A. Virus Genes;9(3):257-68。 10. Dorsch-Häsler, K.、Keil, G.M.、Weber, F.、Jasin, M. Schaffner, W.及Koszinowski, U.H. 1985. A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. PNAS 第82卷: 8325-8329。 11. Drummer, H.E.、Studdert, M.J.、Crabb, B.S.1998 . Equine herpesvirus-4 glycoprotein G is secreted as a disulphide-linked homodimer and is present as two homodimeric species in the virion. J. Gen. Virol. 79: 1205-1213 12.von Einem J、Smith PM、Van de Walle GR、O'Callaghan DJ、Osterrieder N (2007). In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral chemokine-binding glycoprotein G (gG). Virology 362, (1) 151-162 13. Goodwin, E.C.及Rottman, F.M.1992 . The 3’flanking sequence of the bovine growth hormone gene contains novel elements required for efficient and accurate polyadenylation. J.Biol.Chem. 267: 16330-16334。 14. Hübert, P. H.、Birkenmaier, S.、Rziha, H.-J.及Osterrieder, N.1996 , Alterations in the Equine Herpesvirus Type-1 (EHV-1) Strain RacH During Attenuation. Journal of Veterinary Medicine, Series B, 43: 1-14. doi:10.1111/j.1439-0450.1996.tb00282.x 15.Kärber , G (1931) Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Archiv f experiment Pathol u Pharmakol.;162:480-483 16.Kraatz F、Wernike K、Hechinger S、König P、Granzow H、Reimann I、Beer、M (2015). Deletion mutants of Schmallenberg virus are avirulent and protect from virus challenge. J Virol89, 1825-1837 17. Luke, GA及Ryan, MD.2013 . The protein coexpression problem in biotechnology and biomedicine: virus 2A and 2A-like sequences provide a solution.Future Virology,第8卷,第10期,第983-996頁。 18. Ma, G.、Eschbaumer, M.、Said, A.、Hoffmann, B.、Beer, M.、Osterrieder, N.2012. An equine herpesvirus type 1 (EHV-1) expressing VP2 and VP5 of serotype 8 bluetongue virus (BTV-8) induces protection in a murine infection model. PLoS One. 2012;7(4):e34425. doi: 10.1371/journal.pone.0034425. Epub 2012年4月12日。 19. Ma, G.、Azab, W.、Osterrieder, N.2013. Equine herpesviruses type 1 (EHV-1) and 4 (EHV-4)--masters of co-evolution and a constant threat to equids and beyond. Vet Microbiol. 167(1-2):123-34。 20. Nolan, T. Rebecca E Hands, R.E.及BustinS.A.2006 . Quantification of mRNA using real-time RT-PCR Nature Protocols 1: 1559-1582 21. Osterrieder, N.、Neubauer, A.、Brandmüller,C.、Kaaden, O.R.及O’Callaghan, D.J.1996 . The equine herpesvirus 1 IR6 protein influences virus growth at elevated temperature and is a major determinant of virulence. Virology 226:243-251。 22. Ptashne, M.2014 .The Chemistry of Regulation of Genes and Other Things The Journal of Biological Chemistry Vol. 289, (9) 5417-5435. Reed, L.J.及Muench, H.1938 . A simple method of estimating fifty percent endpoints. Am. J. Hyg. (27) 3; 493-497。 23.Reed LJ及Muench H (1938). A simple method estimating fifty percent endpoints. The American Journal of Hygiene 27(3) 493-497 24. Rosas, C.T.、Konig, P.、Beer, M.、Dubovi, E.J.、Tischer, B.K.、Osterrieder, N.,2007a . Evaluation of the vaccine potential of an equine herpesvirus type 1 vector expressing bovine viral diarrhea virus structural proteins. J. Gen. Virol. 88 (3), 748-757。 25. Rosas, C.T.、B.K. Tischer、G.A. Perkins、B. Wagner、L.B. Goodman、N. Osterrieder.2007b . Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV) Virus Research, 125,第69-78頁。 26. Rosas, C.T.、Van de Walle, G.R.、Metzger, S.M.、Loelzer, K.、Dubovi, E.J.、Kim, S.G.、Parrish, C.R.、Osterrieder, N.,2008 . Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza. Vaccine 26 (19), 2335-3234。 27. Said, A.、Elke Lange, E.、Beer, M. Damiani, A.、Osterrieder, N.2013 . Recombinant equine herpesvirus 1 (EHV-1) vaccine protects pigs against challenge with influenza A(H1N1)pmd09 Virus Research 173: 371- 376 28.Sambrook J及Russell DW (2001). Molecular Cloning, 第3版. Cold Spring harbor Laboratory Press, Cold Spring Harbor, New York; ISBN 978-087969-577-4 29. Shaner, N.C.、Campbell, R.E.、Steinbach, P.A.、Giepmans, B.N.、Palmer, A.E.、Tsien, R,Y.2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. Dec;22(12):1567-72. Epub 2004年11月21日。 30. Tischer, B.K.、von Einem, J.、Kaufer, B.、Osterrieder, N.,2006 . Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechnol. Tech. 40, 191-197。 31. Tischer, B.K.、Kaufer, B.B.、Sommer, M.、Wussow, F.、Arvin, A.及Osterrieder, N. A Self-Excisable Infectious Bacterial Artificial Chromosome Clone of Varicella-Zoster Virus Allows Analysis of the Essential Tegument Protein Encoded byORF9. J. Virol.81 (23),2007 , 13200-13208。 32. Tischer, B.K、Smith, G.A.及Osterrieder, N.,於以下中:Jeff Braman (編輯),In Vitro Mutagenesis Protocols: Third Edition , Methods in Molecular Biology, 第634卷,DOI 10.1007/978-1-60761-652-8_30, © Springer Science+Business Media, LLC2010 , 第30章:En Passant Mutagenesis: A Two Step Markerless Red Recombination System。 33. Thompson, S.R.2012. Tricks an IRES uses to enslave ribosomes. Trends Microbiol. Nov;20(11):558-66。 34. Trapp, S.、von Einem, J.、Hofmann, H.、Kostler, J.、Wild, J.、Wagner, R.、Beer, M.、Osterrieder, N.,2005 . Potential of equine herpesvirus 1 as a vector for immunization. J. Virol. 79, 5445-5454。 35. Trombetta CM、Perini D、Mather S、Temperton N、Montomoli E.2014 . Overview of Serological Techniques for Influenza Vaccine Evaluation: Past, Present and Future. Vaccines (Basel) 13;2(4):707-34. doi: 10.3390/vaccines2040707。 36. Wellington, J.E.、Allen, G.P.、Gooley, A.A.、Love, D.N.、Packer, N.H.、Yan, J.X.、Whalley, J.M.1996. The highly O-glycosylated glycoprotein gp2 of equine herpesvirus 1 is encoded by gene 71. J Virol. 70(11):8195-8。 37.Wernike K、Aebischer A、Roman-Sosa G、Beer M, (2017). The N-terminal domain of Schmallenberg virus envelope protein Gc is highly immunogenic and can provide protection from infection. Scientific reports.2017年2月13日;7:42500。 38.Wernike K、Eschbaumer M、Breithaupt A、Hoffmann B、Beer M (2012). Schmallenberg virus challenge models in cattle: infectious serum or culture-grown virus? Veterinary research43, 84 39.Wernike K、Eschbaumer M、Schirrmeier H、Blohm U、Breithaupt A、Hoffmann B、Beer M, (2013a). Oral exposure, reinfection and cellular immunity to Schmallenberg virus in cattle. Veterinary microbiology165, 155-159 40.Wernike K、Nikolin VM、Hechinger S、Hoffmann B、Beer M (2013b). Inactivated Schmallenberg virus prototype vaccines. Vaccine31, 3558-3563。
下圖形成本說明書之一部分並包括用以進一步展現本發明之某些態樣。藉由參照該等圖中之一或多者結合本文提供之具體實施例之詳細說明可更好地理解本發明。 圖1. 比較野生型(wt) EHV-1菌株ab4及減毒疫苗菌株EHV-1 RacH之orf1/3區的示意圖。 圖2. orf70插入位點之示意圖 UL = 長的獨特區段 US = 短的獨特區段 IR = 內部反向重複序列 TR = 末端反向重複序列 gG = 醣蛋白G gpII = 醣蛋白II orf = 開放閱讀框 bp = 鹼基對 圖3. 轉移質體pU-mC70-BGH之質體圖譜及核苷酸序列 圖4. 轉移載體pU70-p455-71K71之質體圖譜及核苷酸序列 圖5. 用於將表現盒p455-H3-71插入EHV-1 RacH之orf70中之轉移質體的質體圖譜及核苷酸序列。 H3 = 編碼流行性感冒A病毒血球凝集素H3之開放閱讀框 71pA = 如發明EM P2016-022中所述之新多A序列 I-SceI = 限制內核酸酶I-SceI之裂解位點 啟動子aph = 原核康黴素(Kanamycin)抗性基因啟動子 Kana = 康黴素抗性基因 3’端ORF70 = 插入位點下游之重組區 ORI = 質體之複製起點 APr = 質體之胺苄青黴素(ampicillin)抗性基因 上游orf70 = 插入位點上游之重組區 p455 = 新穎啟動子p455 bp = 鹼基對 圖6. orf70插入區放大之rEHV-1 RacH-SE-70-p455-H3之基因體之示意圖。orf69:orf70中插入位點上游之開放閱讀框編號69;p455:本文中所述之新穎啟動子,參見(例如)實例1;H3:轉基因流行性感冒病毒血球凝集素;71pA:新多聚腺苷酸化序列;Δorf70:含有orf71之啟動子之orf70之其餘部分,其編碼結構病毒醣蛋白II (gpII)。 圖7. 間接免疫螢光分析:經rEHV-1 RacH-SE-70-p455-H3感染之VERO-細胞之間接免疫螢光分析 24 h p.i.細胞用乙醇固定並風乾。使用針對H3之市售單株抗體作為第一抗體及FITC偶聯之兔抗小鼠IgG作為二次抗體,藉由螢光顯微鏡術在經重組EHV-1 RacHSE-70-p455-H3感染之細胞中顯示H3。 圖8. 西方墨點法:經不同代之rEHV-1 RacH-SE-70-p455-H3或對照rEHV-1 RacH-SE感染或模擬感染之細胞之西方墨點法。將左側之墨點與針對EHV-1之gpII之單株抗體Ai2G7一起培育。將右側之重複墨點與針對流行性感冒A血球凝集素H3之市售兔超免疫血清(PA5-34930)一起培育。 圖9. 病毒效價:顯示攻擊後經疫苗接種或未經疫苗接種之豬之肺試樣之病毒負荷的圖 不活化= 市售不活化之疫苗 EHV= rEHV-1 RacH-SE-70-p455-H3 圖10. 轉移載體pU-1-3-p430-BGHKBGH之質體圖譜及核苷酸序列 圖11. 用於將表現盒p430-H1av-BGH插入EHV-1 RacH之orf1/3中之轉移質體的質體圖譜及核苷酸序列。 H1av = 編碼流行性感冒A病毒血球凝集素H1之開放閱讀框 BGHpA = 牛生長激素多A序列 啟動子aph = 原核康黴素抗性基因啟動子 Kana = 康黴素抗性基因 側翼B = 插入位點下游之重組區 側翼A = 插入位點上游之重組區 p430 = 新穎啟動子p430 bp = 鹼基對 圖12. orf1/3插入區放大之rEHV-1 RacH-SE-1/3-p430-H1av之基因體之示意圖。 Δorf1:插入位點上游之開放閱讀框1之其餘部分;p430:本文中闡述新穎啟動子,參見(例如)實例1;H1av:轉基因流行性感冒病毒血球凝集素;BGHpA:牛生長激素多聚腺苷酸化序列;orf3:插入位點下游之開放閱讀框3。 圖13. 經顯示轉基因之表現之rEHV-1 RacH-SE-1/3-p430-H1av感染之細胞的西方墨點及免疫螢光。 H1av = rEHV-1 RacH-SE1/3-p430-H1av SE = rEHV-RacH-SE (對照) 模擬 = 未經感染細胞(對照) 圖14. 兩個插入區放大之rEHV-1 RacH-SE-1/3-p430-H1av-70-p455-H3 (rEHV-1-RacH-SEB )之基因體之示意圖。 Δorf1:插入位點上游之開放閱讀框1之其餘部分;p430:新穎啟動子;H1av:轉基因流行性感冒病毒血球凝集素;BGHpA:牛生長激素多聚腺苷酸化序列;orf3:插入位點下游之開放閱讀框3。 orf69:orf70中插入位點上游之開放閱讀框69;p455:新穎啟動子;H3:轉基因流行性感冒病毒血球凝集素;71pA:新多聚腺苷酸化序列;Δorf70:含有orf71之啟動子之orf70之其餘部分,其編碼結構病毒醣蛋白II (gpII)。 圖15. 西方墨點法:經rEHV-1 RacH-SE-1/3-p430-H1av-70-p455-H3 (B)、空的載體rEHV-1 RacH-SE (SE)感染或模擬感染(對照)之細胞之西方墨點法。將重複墨點與針對H3 (H3)之市售兔超免疫血清、針對H1 (H1)之市售兔超免疫血清(PA 34929)、或針對EHV-1 gpII (gpII)之單株抗體Ai2G7一起培育。 圖16.攻擊之前及之後1、2及3天之組的平均體溫。誤差槓,標準偏差。每個研究日自左至右:陰性對照組(neg. ctrl.)、攻擊對照組(chall. ctrl.)、經RacH-SE-70-p455-H3進行一次疫苗接種(1× EHV-1)、經RacH-SE-70-p455-H3進行兩次疫苗接種(2× EHV-1)、或經不活化之豬IAV疫苗進行兩次疫苗接種(2×殺死)之動物。 圖17. 攻擊後1天及3天之組之平均肺評分。誤差槓,標準偏差。陰性對照組(neg. ctrl.)、攻擊對照組(chall. ctrl.)、經RacH-SE-70-p455-H3進行一次疫苗接種(1× EHV-1)、經RacH-SE-70-p455-H3進行兩次疫苗接種(2× EHV-1)、或經不活化之豬IAV疫苗進行兩次疫苗接種(2×殺死)之動物。 圖18. 在攻擊當天收集之針對豬IAV H3攻擊菌株R452-14之動物血清的血清中和(SN)效價的倒數。20,檢測限值。陰性對照組(neg. ctrl.)、攻擊對照組(chall. ctrl.)、經RacH-SE-70-p455-H3進行一次疫苗接種(1× EHV-1)、經RacH-SE-70-p455-H3進行兩次疫苗接種(2× EHV-1)、或經不活化之豬IAV疫苗進行兩次疫苗接種(2×殺死)之動物。 圖19. 來自豬IAV攻擊施加後1天或2天獲取之BALF之IL-1β的結果。每個點代表每一個動物測定之值。陰性對照組(Neg. Ctr.)、攻擊對照組(chall. ctrl.)、經RacH-SE-70-p455-H3進行一次疫苗接種(1× EHV-1)、經RacH-SE-70-p455-H3進行兩次疫苗接種(2× EHV-1)、或經不活化之豬IAV疫苗進行兩次疫苗接種(2×殺死)之動物。 圖20.在第二次疫苗接種後7天再刺激之PBMC之IFNγ-ELISpot的結果。(A) 未經疫苗接種之對照組;(B) 經不活化之豬IAV疫苗進行兩次疫苗接種;(C) 經rEHV-1 RacH-SE-70-p455-H3進行一次疫苗接種;(D) 經rEHV-1 RacH-SE-70-p455-H3進行兩次疫苗接種。對於僅經rEHV-1 RacH-SE-70-p455-H3進行一次疫苗接種之動物,再刺激對應於第一次疫苗接種後7天。每個點代表給定時間點及用特定刺激再刺激後每一個動物測定之值。對於再刺激而言,使用對應於rEHV-1 RacH-SE-70-p455-H3中之H3疫苗抗原之重組表現之豬IAV HA (HA_V)、對應於攻擊菌株R452-14之H3之重組表現之豬IAV HA (HA_CH)、用以稀釋HA_V及HA_CH之培養基(RPMI)、空EHV-1載體RacH-SE (空的EHV-1)、疫苗RacH-SE-70-p455-H3 (EHV-1-H3)、豬IAV H3N2攻擊菌株R452-14 (H3N2)、用於生長R452-14 (MDCK)之未經感染細胞之細胞上清液、或重組表現之豬IAV核蛋白(NP)。 圖21:移質體pU1/3-p430-H1hu-BGHKBGH之示意性圖譜 圖22:轉移質體pU70-p455-H1pdm-71K71之示意性圖譜 圖23:orf1/3及orf70插入區放大之rEHV-1 RacH-SE-1/3-p430-H1hu-70-p455-H1pdm (rEHV-1 RacH-SE_D)之線性雙鏈DNA基因體 圖24:經rEHV-1 RacH-SE_B、RacH-SE_D、RacH-SE感染或未經感染(對照)之細胞之西方墨點法。將重複墨點與針對H3之多株兔超免疫血清(PA5-34930)、針對H1之多株兔超免疫血清(PA5-34929)、或針對EHV-1醣蛋白II (gpII)之單株抗體(Ai2G7)一起培育。所有抗體皆產生預計型式,確認期望抗原H3及H1之表現以及不同病毒之可比複製效率,如所有感染之細胞試樣中EHV-1 gpII之非常相似的染色所判斷。 圖25:小鼠血清之流行性感冒A病毒中和測試的結果。*誤差杠指示標準偏差。 圖26:轉移質體pU70-455-SBVGc_71K71之圖譜 圖27:A) 用於檢測SBV之病毒基因體之未經疫苗接種之對照牛(上圖)及經rEHV-SBV-Gc進行兩次疫苗接種之動物(下圖)之量化RT-PCR的結果。針對未經疫苗接種及經疫苗接種之動物之每一組分別藉由不同類型之線及符號鑑別個別動物。動物1繪示為具有黑色填充圓圈之黑線(對應於圖27B中之黑色杠)。動物2繪示為具有灰色填充三角形之灰色折線(對應於圖27B中之淺灰色杠)。動物3繪示為具有未填充正方形之黑色折線(對應於圖27B中之白色杠)。動物4繪示為具有灰色填充菱形之灰色折線(對應於圖27B中之深灰色杠)。B) 未經疫苗接種之對照牛(上圖)及經rEHV-SBV-Gc進行兩次疫苗接種之動物(下圖)之血清中和測試的結果。針對未經疫苗接種及經疫苗接種之動物之每一組分別藉由不同杠顏色/填充(自黑色經淺灰色及深灰色至白色)鑑別個別動物。動物1繪示為黑色杠(對應於圖27A中具有黑色填充圓圈之黑線)。動物2繪示為淺灰色杠(對應於圖27A中具有灰色填充三角形之灰色折線)。動物3繪示為白色杠(對應於圖27A中未填充正方形之黑色折線)。動物4繪示為深灰色杠(對應於圖27A中具有灰色填充菱形之灰色折線)。 圖28:EHV中和測試。自各別組中之相同動物之試樣獲得之所有結果皆以相同灰色色調顯示:一個動物係由黑色填充杠表示,另一動物係由淺灰色填充杠表示,第三個動物係由白色杠表示,且第四個動物係由深灰色杠表示。 圖29:針對攻擊後一天殺死之動物之豬IAV肺效價,測定為TCID50/g肺組織。neg. ctrl.,陰性對照組;chall. ctrl.,攻擊對照組;2× IM,進行兩次肌內疫苗接種之組;IN+IM,首次鼻內疫苗接種及其次肌內疫苗接種之組;2× IN,進行兩次鼻內疫苗接種之組。數據點指示針對個別動物獲得之平均值。中間水平線分別指示組平均值。用於成對統計比較各組之p值係於下文給出且分別係藉由使用Mann-Whitney測試及Windows軟體7.02用GraphPad Prism® (GraphPad Software, Inc.,La Jolla, CA 92037, USA)的t測試使用標準軟體設置來計算。 圖30:針對攻擊後三天殺死之動物之豬IAV肺效價,測定為TCID50/g肺組織。neg. ctrl.,陰性對照組;chall. ctrl.,攻擊對照組;2× IM,進行兩次肌內疫苗接種之組;IN+IM,首次鼻內疫苗接種及其次肌內疫苗接種之組;2× IN,進行兩次鼻內疫苗接種之組。數據點指示針對個別動物獲得之平均值。中間水平線分別指示組平均值。用於成對統計比較各組之p值係於下文給出且分別係藉由使用Mann-Whitney測試及Windows軟體7.02用GraphPad Prism® (GraphPad Software, Inc.,La Jolla, CA 92037, USA)的t測試使用標準軟體設置來計算。 圖31:針對攻擊後五天殺死之動物之豬IAV肺效價,測定為TCID50/g肺組織。neg. ctrl.,陰性對照組;chall. ctrl.,攻擊對照組;2× IM,進行兩次肌內疫苗接種之組;IN+IM,首次鼻內疫苗接種及其次肌內疫苗接種之組;2× IN,進行兩次鼻內疫苗接種之組。數據點指示針對個別動物獲得之平均值。中間水平線分別指示組平均值。用於成對統計比較各組之p值係於下文給出且分別係藉由使用Mann-Whitney測試及Windows軟體7.02用GraphPad Prism® (GraphPad Software, Inc.,La Jolla, CA 92037, USA)的t測試使用標準軟體設置來計算。 圖32:針對與由疫苗菌株rEHV-1 RacH-SE_B表現之H3同源之重組表現之豬IAV血球凝集素H3抗原的豬免疫球蛋白G (IgG)特異性酶聯免疫吸附分析(ELISA)的結果。對於測試,將每一孔用100 ng重組表現之H3塗佈。分別地,成對量測試樣,試樣平均值係自成對量測計算,且組值係自試樣平均值計算。chall. ctrl.,攻擊對照組(用作陰性對照);2× IM,進行兩次肌內疫苗接種之組;IN+IM,首次鼻內疫苗接種且其次肌內疫苗接種之組;2× IN,進行兩次鼻內疫苗接種之組。誤差杠指示標准偏差。在圖右側之圖例中指示研究天(SD)。 圖33:針對與由疫苗菌株rEHV-1 RacH-SE_B表現之H3同源之重組表現之豬IAV血球凝集素H3抗原的豬免疫球蛋白G (IgG)特異性酶聯免疫吸附分析(ELISA)的結果。對於測試,將每一孔用100 ng重組表現之H3塗佈。分別地,成對量測試樣,試樣平均值係自成對量測計算,且組值係自試樣平均值計算。chall. ctrl.,攻擊對照組(用作陰性對照);2× IM,進行兩次肌內疫苗接種之組;IN+IM,首次鼻內疫苗接種且其次肌內疫苗接種之組;2× IN,進行兩次鼻內疫苗接種之組。誤差杠指示標准偏差。在圖右側之圖例中指示研究天(SD)。 圖34:干擾素γ特異性酶聯免疫吸附斑點分析(IFNγ ELISpot)之結果。在研究第28天(SD28),自取自研究動物之血液純化外周血單核細胞(PBMC)。然後將PBMC用H3N2豬IAV攻擊菌株R452-14以1之感染複數(H3N2 MOI 1)再刺激,或用與由疫苗菌株rEHV-1 RacH-SE_B表現之H3同源之重組表現之豬IAV H3抗原以1µg/ml (rH3 1µg/ml)之濃度再刺激。使用再刺激之PBMC,實施干擾素γ特異性酶聯免疫吸附斑點分析(IFNγ ELISpot),並將獲得之值正規化為10^ 6個細胞並分別計算為每組平均值。chall. ctrl.,攻擊對照組(用作陰性對照);2× IM,進行兩次肌內疫苗接種之組;IN+IM,首次鼻內疫苗接種且其次肌內疫苗接種之組;2× IN,進行兩次鼻內疫苗接種之組。誤差杠指示標准偏差。 圖35:干擾素γ特異性酶聯免疫吸附斑點分析(IFNγ ELISpot)之結果。在研究第28天(SD28),自取自研究動物之血液純化外周血單核細胞(PBMC)。然後將PBMC用H3N2豬IAV攻擊菌株R452-14以1之感染複數(H3N2 MOI 1)再刺激,或用與由疫苗菌株rEHV-1 RacH-SE_B表現之H3同源之重組表現之豬IAV H3抗原以1µg/ml之濃度(rH3 1µg/ml)再刺激。使用再刺激之PBMC,實施干擾素γ特異性酶聯免疫吸附斑點分析(IFNγ ELISpot),並將獲得之值正規化為10^ 6個細胞並分別計算為每組平均值。chall. ctrl.,攻擊對照組(用作陰性對照);2× IM,進行兩次肌內疫苗接種之組;IN+IM,首次鼻內疫苗接種且其次肌內疫苗接種之組;2× IN,進行兩次鼻內疫苗接種之組。誤差杠指示標准偏差。

Claims (33)

  1. 一種表現盒,其包含 (i) 至少一個所關注之外源核苷酸序列,較佳為所關注之基因,更佳為抗原編碼序列,其中該所關注之核苷酸序列,較佳為所關注之基因,更佳為抗原編碼序列係可操作連接至啟動子序列,及 (ii) 至少一個選自由以下組成之群之左ORF70側翼區:SEQ ID NO.: 13及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、SEQ ID NO.: 15及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、及SEQ ID NO.: 17及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列,及 (iii) 至少一個選自由以下組成之群之右ORF70側翼區:SEQ ID NO.: 14及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、SEQ ID NO.: 16及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、及SEQ ID NO.: 18及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列。
  2. 如請求項1之表現盒,其中該所關注之核苷酸序列,較佳為所關注之基因,更佳為抗原編碼序列係非天然及/或重組體。
  3. 如請求項1或2之表現盒,其中該所關注之核苷酸序列係重組及/或異源及/或外源性。
  4. 如請求項1或2之表現盒,其中該抗原編碼序列係有關感染諸如豬或牛等產食性動物之病原體。
  5. 如請求項1或2之表現盒,其進一步包含額外調節序列,例如終止信號或多聚腺苷酸化序列。
  6. 如請求項1或2之表現盒,其中可操作連接至該一個或兩個或更多個所關注之序列或基因之該(等)啟動子序列係選自由以下組成之群:SV40大T、HCMV及MCMV立即早期基因1、人類延長因子α啟動子、桿狀病毒多角體蛋白啟動子、4pgG600 (SEQ ID No. 1)之功能片段(較佳地該功能片段係p430 (SEQ ID NO.:3))、4pgG600 (SEQ ID No. 1)之互補核苷酸序列之功能片段、4pMCP600 (SEQ ID No. 2)之功能片段(較佳地該功能片段係p455 (SEQ ID NO.:4))、4pMCP600 (SEQ ID No. 2)之互補核苷酸序列之功能片段。
  7. 一種馬科動物α疱疹病毒1 (EHV-1)載體,較佳指菌株RacH,其包含如請求項1至6中任一項之表現盒。
  8. 一種馬科動物α疱疹病毒1 (EHV-1)載體,較佳指菌株RacH,其包含 (i) 至少一個所關注之外源核苷酸序列,較佳為所關注之基因,更佳抗原編碼序列,其中該所關注之核苷酸序列,較佳為所關注之基因,更佳為抗原編碼序列係可操作連接至啟動子序列,及 (ii) 至少一個選自由以下組成之群之左ORF70側翼區:SEQ ID NO.: 13及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、SEQ ID NO.: 15及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、及SEQ ID NO.: 17及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列,及 (iii) 至少一個選自由以下組成之群之右ORF70側翼區:SEQ ID NO.: 14及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、SEQ ID NO.: 16及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列、及SEQ ID NO.: 18及其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列。
  9. 一種馬科動物α疱疹病毒1 (EHV-1)載體,較佳指菌株RacH,其包含插入ORF70中之所關注之核苷酸序列,較佳為所關注之基因,更佳為抗原編碼序列。
  10. 一種馬科動物α疱疹病毒1 (EHV-1)載體,較佳指菌株RacH,其包含插入ORF70中之所關注之第一核苷酸序列或基因,較佳為抗原編碼序列,及插入第二插入位點,較佳為ORF1/3中之所關注之第二核苷酸序列或基因,較佳為另一抗原編碼序列。
  11. 如請求項7至10中任一項之EHV-1載體,其中該插入至ORF70中之特徵在於ORF70之部分缺失、截短、取代、修飾或諸如此類,其中ORF71保持功能。
  12. 如請求項7至10中任一項之EHV-1載體,其中該插入至ORF70中之特徵在於RacH之ORF70內缺失約801bp部分(SEQ ID NO.: 20)或其70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列。
  13. 如請求項7至10中任一項之EHV-1載體,其中該EHV-1載體包含至少一個選自由以下組成之群之側翼區:SEQ ID NO.: 13、SEQ ID NO.: 14、SEQ ID NO.: 15、SEQ ID NO.: 16、SEQ ID NO.: 17、及SEQ ID NO.: 18及該等序列中之任一者之70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%同源及/或一致序列。
  14. 如請求項7至10中任一項之EHV-1載體,其中該EHV-1載體包含(i) 至少一個選自由以下組成之群之左ORF70側翼區:SEQ ID NO.: 13、SEQ ID NO.: 15及SEQ ID NO.: 17,及(ii) 至少一個選自由以下組成之群之右ORF70側翼區:SEQ ID NO.: 14、SEQ ID NO.: 16及SEQ ID NO.: 18。
  15. 如請求項8至10中任一項之EHV-1載體,其中該所關注之核苷酸序列,較佳為所關注之基因,更佳為抗原編碼序列係非天然及/或重組體。
  16. 如請求項8至10中任一項之EHV-1載體,其中該所關注之核苷酸序列係重組及/或異源及/或外源性。
  17. 如請求項8至10中任一項之EHV-1載體,其中該抗原編碼序列係有關感染諸如豬或牛等產食性動物之病原體。
  18. 如請求項8至10中任一項之EHV-1載體,其進一步包含額外調節序列,例如終止信號或多聚腺苷酸化序列。
  19. 如請求項7至10中任一項之EHV-1載體,其另外包含視情況插入另一插入位點,例如ORF1/3中之至少另一個所關注之核苷酸序列,較佳為另一個所關注之基因,更佳為抗原編碼序列。
  20. 如請求項9之EHV-1載體,其中該所關注之基因係可操作連接至如請求項5至14之調節序列,較佳為啟動子序列或EHV-1載體,其中該至少兩個所關注之基因係可操作連接至調節序列,較佳為啟動子序列。
  21. 如請求項10之EHV-1載體,其中該所關注之基因係可操作連接至如請求項5至14之調節序列,較佳為啟動子序列或EHV-1載體,其中該至少兩個所關注之基因係可操作連接至調節序列,較佳為啟動子序列。
  22. 20及21中任一項之EHV-1載體,其中可操作連接至該一個或兩個或更多個所關注之序列或基因之該(等)啟動子序列係選自由以下組成之群:SV40大T、HCMV及MCMV立即早期基因1、人類延長因子α啟動子、桿狀病毒多角體蛋白啟動子、4pgG600 (SEQ ID No. 1)之功能片段(較佳地該功能片段係p430 (SEQ ID NO.:3))、4pgG600 (SEQ ID No. 1)之互補核苷酸序列之功能片段、4pMCP600 (SEQ ID No. 2)之功能片段(較佳地該功能片段係p455 (SEQ ID NO.:4))、4pMCP600 (SEQ ID No. 2)之互補核苷酸序列之功能片段。
  23. 如請求項21之EHV-1載體,其中可操作連接至該至少兩個所關注之基因之該等啟動子序列係不同的。
  24. 8、20、21及22中任一項之EHV-1載體,其中可操作連接至至少一個所關注之基因之該啟動子序列係p455 (SEQ ID NO. 4)或其功能片段或其互補核苷酸序列且其中可操作連接至所關注之另一基因之該啟動子序列係p430 (SEQ ID NO. 3)或其功能片段或其互補核苷酸序列。
  25. 一種哺乳動物宿主細胞,其特徵在於其包含如請求項7至24中任一項之載體。
  26. 一種如請求項7至24中任一項之載體或如請求項25之哺乳動物宿主細胞之用途,其用於製造免疫原性組合物或疫苗。
  27. 一種免疫原性醫藥組合物,其包含 a. 如請求項7至24中任一項之載體,及/或 b. 由如請求項7至23中任一項之載體(例如病毒、經修飾之活病毒、類病毒顆粒(VLP)或諸如此類)表現之多肽,及 c. 視情況選用醫藥或獸醫上可接受之載劑或賦形劑,較佳地該載劑適於經口、皮內、肌內或鼻內施加, 較佳地該免疫原性組合物包含病毒,例如傳染性病毒。
  28. 如請求項27之組合物,其用於減輕或預防動物中由病原體感染引起之臨床體徵或疾病之方法中,或用於治療或預防動物病原體感染之方法中,該動物較佳係產食性動物,例如豬。
  29. 一種疫苗,其包含 a. 如請求項7至24中任一項之載體,及/或 b. 由如請求項7至23中任一項之載體表現之多肽,例如經修飾之活病毒、類病毒顆粒(VLP)或諸如此類,及 c. 醫藥或獸醫上可接受之載劑或賦形劑,較佳地該載劑適於經口、皮內、肌內或鼻內施加, d. 視情況該疫苗進一步包含佐劑。
  30. 如請求項29之疫苗,其用於減輕或預防動物中由病原體感染引起之臨床體徵或疾病之方法中,或用於治療或預防動物病原體感染之方法中,該動物較佳係產食性動物,例如豬。
  31. 一種製備用於降低一或多種與感染相關或由感染引起之臨床體徵之發病率或嚴重程度的免疫原性組合物或疫苗之方法,該方法包含以下步驟: a. 用如請求項7至24中任一項之載體感染如請求項25之哺乳動物宿主細胞, b. 在適宜條件下培養該等經感染細胞, c. 收集感染之細胞培養物, d. 視情況純化步驟c)所收集之感染細胞培養物 e. 視情況混合所收集之感染細胞培養物與醫藥上可接受之載劑。
  32. 一種如請求項27之組合物或如請求項29之疫苗之用途,其用於製造用於對動物(例如產食性動物,包括豬)進行免疫以抵抗該動物中由病原體引起之臨床疾病的藥劑,其中該藥劑不會引起感染之臨床體徵,但能誘發免疫反應,使動物針對該病原體之病原體形式產生免疫。
  33. 一種為動物(較佳產食性動物,例如豬或牛)接種疫苗的套組,供對抗動物中與病原體相關之疾病及/或降低一或多種與病原體相關或由病原體引起之臨床體徵之發病率或嚴重程度,其包含: a) 能夠向該動物投與疫苗之分配器;及 b) 如請求項27之組合物或如請求項29之疫苗,及 c) 視情況選用插頁說明書。
TW106131993A 2016-09-20 2017-09-18 新穎ehv插入位點orf70 TWI817933B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16189776.4 2016-09-20
EP16189776 2016-09-20

Publications (2)

Publication Number Publication Date
TW201823458A true TW201823458A (zh) 2018-07-01
TWI817933B TWI817933B (zh) 2023-10-11

Family

ID=57083093

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106131993A TWI817933B (zh) 2016-09-20 2017-09-18 新穎ehv插入位點orf70

Country Status (18)

Country Link
US (1) US10619169B2 (zh)
EP (1) EP3515481A1 (zh)
JP (2) JP6952112B2 (zh)
KR (1) KR102618843B1 (zh)
CN (1) CN109715204B (zh)
AR (1) AR109539A1 (zh)
AU (1) AU2017329669A1 (zh)
BR (1) BR112019005516A2 (zh)
CA (1) CA3036291A1 (zh)
CL (1) CL2019000655A1 (zh)
EA (1) EA201990711A1 (zh)
MX (1) MX2019003161A (zh)
NZ (1) NZ751014A (zh)
PH (1) PH12019500557A1 (zh)
SA (1) SA519401350B1 (zh)
TW (1) TWI817933B (zh)
UY (1) UY37406A (zh)
WO (1) WO2018054837A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017329672B2 (en) 2016-09-20 2023-07-27 Boehringer Ingelheim Vetmedica Gmbh New promoters
CA3036386A1 (en) 2016-09-20 2018-03-29 Boehringer Ingelheim Vetmedica Gmbh Canine adenovirus vectors
JP6951429B2 (ja) 2016-09-20 2021-10-20 ベーリンガー インゲルハイム フェトメディカ ゲーエムベーハーBoehringer Ingelheim Vetmedica GmbH 新規のブタインフルエンザワクチン
CN109715204B (zh) 2016-09-20 2023-08-22 勃林格殷格翰动物保健有限公司 新的ehv插入位点orf70
EP4243866A1 (en) 2020-11-13 2023-09-20 Boehringer Ingelheim Vetmedica GmbH New feline herpes virus vaccine

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US382425A (en) 1888-05-08 Brandt
US2909462A (en) 1955-12-08 1959-10-20 Bristol Myers Co Acrylic acid polymer laxative compositions
US3857423A (en) 1971-12-27 1974-12-31 W Ronca Topical medicament kit with interlocking components
US4394448A (en) 1978-02-24 1983-07-19 Szoka Jr Francis C Method of inserting DNA into living cells
US4769331A (en) 1981-09-16 1988-09-06 University Patents, Inc. Recombinant methods and materials
US4769330A (en) 1981-12-24 1988-09-06 Health Research, Incorporated Modified vaccinia virus and methods for making and using the same
US5505941A (en) 1981-12-24 1996-04-09 Health Research, Inc. Recombinant avipox virus and method to induce an immune response
US4603112A (en) 1981-12-24 1986-07-29 Health Research, Incorporated Modified vaccinia virus
US5174993A (en) 1981-12-24 1992-12-29 Health Research Inc. Recombinant avipox virus and immunological use thereof
US4722848A (en) 1982-12-08 1988-02-02 Health Research, Incorporated Method for immunizing animals with synthetically modified vaccinia virus
US5833975A (en) 1989-03-08 1998-11-10 Virogenetics Corporation Canarypox virus expressing cytokine and/or tumor-associated antigen DNA sequence
US5338683A (en) 1981-12-24 1994-08-16 Health Research Incorporated Vaccinia virus containing DNA sequences encoding herpesvirus glycoproteins
US5364773A (en) 1991-03-07 1994-11-15 Virogenetics Corporation Genetically engineered vaccine strain
US4708871A (en) 1983-03-08 1987-11-24 Commonwealth Serum Laboratories Commission Antigenically active amino acid sequences
US4745051A (en) 1983-05-27 1988-05-17 The Texas A&M University System Method for producing a recombinant baculovirus expression vector
DE3584341D1 (de) 1984-08-24 1991-11-14 Upjohn Co Rekombinante dna-verbindungen und expression von polypeptiden wie tpa.
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
IL84154A0 (en) 1986-10-16 1988-03-31 Microgenesys Inc Polypeptides derived from the envelope gene of human immunodeficiency virus in recombinant baculovirus infected insect cells and vaccines against acquired immune deficiency syndrome containing the same
GB8717430D0 (en) 1987-07-23 1987-08-26 Celltech Ltd Recombinant dna product
EP0386185A1 (fr) 1988-07-29 1990-09-12 IntraCel Corporation Procede d'expression genetique de proteines heterologues par des cellules transfectees in vivo
CA2003300A1 (en) 1988-11-21 1990-05-21 Franklin Volvovitz Skin test and test kit for aids
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
DK0465529T3 (da) 1989-03-21 1998-10-05 Vical Inc Ekspression af exogene polynukleotidsekvenser i et hvirveldyr
US5591439A (en) 1989-03-24 1997-01-07 The Wistar Institute Of Anatomy And Biology Recombinant cytomegalovirus vaccine
US5552143A (en) 1989-03-24 1996-09-03 The Wistar Institute Of Anatomy & Biology Recombinant cytomegalovirus vaccine
US5616326A (en) 1990-01-25 1997-04-01 The University Court Of The University Of Glasgow Recombinant canine adenovirus 2 (CAV-2)
GB9001766D0 (en) 1990-01-25 1990-03-28 Univ Court Of The University O Vaccines
WO1992015672A1 (en) 1991-03-07 1992-09-17 Virogenetics Corporation Genetically engineered vaccine strain
US5997878A (en) 1991-03-07 1999-12-07 Connaught Laboratories Recombinant poxvirus-cytomegalovirus, compositions and uses
US5643578A (en) 1992-03-23 1997-07-01 University Of Massachusetts Medical Center Immunization by inoculation of DNA transcription unit
US6193983B1 (en) * 1992-06-01 2001-02-27 The University Of Melbourne Equine herpesvirus glycoproteins
US5741696A (en) 1992-08-07 1998-04-21 Syntro Corporation Recombinant equine herpesviruses
US6225111B1 (en) * 1992-08-07 2001-05-01 Schering Plough Veterinary Corp. Recombinant equine herpesviruses
US5846945A (en) 1993-02-16 1998-12-08 Onyx Pharmaceuticals, Inc. Cytopathic viruses for therapy and prophylaxis of neoplasia
IL108915A0 (en) 1993-03-18 1994-06-24 Merck & Co Inc Polynucleotide vaccine against influenza virus
FR2705361B1 (fr) 1993-05-18 1995-08-04 Centre Nat Rech Scient Vecteurs viraux et utilisation en thérapie génique.
DE69435108D1 (de) 1993-07-13 2008-08-14 Centelion Defekte adenovirus-vektoren und deren verwendung in der gentherapie
FR2711670B1 (fr) 1993-10-22 1996-01-12 Pasteur Institut Vecteur nucléotidique, composition le contenant et vaccin pour l'immunisation à l'encontre d'une hépatite.
US5820868A (en) 1993-12-09 1998-10-13 Veterinary Infectious Disease Organization Recombinant protein production in bovine adenovirus expression vector system
DE69536091D1 (de) 1994-01-27 2010-09-09 Univ Massachusetts Medical Immunisierung durch Impfung von DNS Transkriptionseinheit
EP0758397B1 (en) 1994-04-29 2005-06-22 Baxter Healthcare S.A. Recombinant poxviruses with foreign polynucleotides in essential regions
FR2725726B1 (fr) 1994-10-17 1997-01-03 Centre Nat Rech Scient Vecteurs viraux et utilisation en therapie genique
FR2727689A1 (fr) 1994-12-01 1996-06-07 Transgene Sa Nouveau procede de preparation d'un vecteur viral
IL116816A (en) 1995-01-20 2003-05-29 Rhone Poulenc Rorer Sa Cell for the production of a defective recombinant adenovirus or an adeno-associated virus and the various uses thereof
FR2730504B1 (fr) 1995-02-13 1997-03-28 Rhone Poulenc Rorer Sa Procede de preparation de genomes d'adenovirus recombinants
FR2731710B1 (fr) 1995-03-14 1997-04-30 Rhone Poulenc Rorer Sa Virus recombinants exprimant la lecithine cholesterol acyltransferase et utilisations en therapie genique
JPH11502222A (ja) 1995-03-23 1999-02-23 キャンタブ ファーマシューティカルズ リサーチ リミティド 遺伝子供給用ベクター
FR2732357B1 (fr) 1995-03-31 1997-04-30 Rhone Poulenc Rorer Sa Vecteurs viraux et utilisation pour le traitement des desordres hyperproliferatifs, notamment de la restenose
FR2735789B1 (fr) 1995-06-23 1997-07-25 Centre Nat Rech Scient Adenovirus recombinants, leur utilisation pour preparer des aav, lignee cellulaire complementaire et compositions pharmaceutiques les contenant
US6090393A (en) 1996-07-03 2000-07-18 Merial Recombinant canine adenoviruses, method for making and uses thereof
US6156567A (en) 1996-07-03 2000-12-05 Merial Truncated transcriptionally active cytomegalovirus promoters
WO1998000166A1 (en) 1996-07-03 1998-01-08 Merial, Inc. Recombinant canine adenovirus (cav) containing exogenous dna
GB9626029D0 (en) * 1996-12-14 1997-01-29 Univ Leeds EVH-1 vectors
US6183752B1 (en) 1997-02-05 2001-02-06 Pasteur Merieux Serums Et Vaccins Restenosis/atherosclerosis diagnosis, prophylaxis and therapy
DE19830141A1 (de) 1998-07-06 2000-01-13 Regine Heilbronn Rekombinante Herpesviren für die Erzeugung rekombinanter Adeno-Assoziierter-Viren
US7060282B1 (en) * 1998-07-31 2006-06-13 Akzo Nobel N.V. Attenuated equine herpesvirus
AU4077100A (en) 1999-04-08 2000-11-14 Chiron Corporation Enhancement of the immune response for vaccine and gene therapy applications
CA2394099A1 (en) 1999-12-07 2001-06-14 Genethon Iii Adenovirus vectors for the transfer of genes in targeted cells
EP1118670A1 (en) 1999-12-07 2001-07-25 Genethon III Canine adenovirus vectors for the transfer of genes in targeted cells
AU2066301A (en) 1999-12-09 2001-06-18 Human Genome Sciences, Inc. Il-6 like polynucleotide
DE10116594A1 (de) * 2001-04-03 2002-10-10 Boehringer Ingelheim Vetmed Künstliche Chromosomen, die EHV-Sequenzen umfassen
AU2002342415B2 (en) * 2001-11-26 2007-11-08 Replikun Biotech Pty Ltd Flavivirus vaccine delivery system
AR040601A1 (es) * 2002-07-19 2005-04-13 Boehringer Ingelheim Vetmed Mutantes ehv negativos de gm sin elementos heterologos
FR2845395B1 (fr) 2002-10-08 2008-05-30 Agronomique Inst Nat Rech Vecteurs adenoviraux recombinants et leurs applications
WO2007081336A1 (en) 2006-01-13 2007-07-19 Five Prime Therapeutics, Inc. Mammalian vectors for high-level expression of recombinant proteins
US7455844B2 (en) * 2006-03-29 2008-11-25 Merial Limited Vaccine against streptococci
JPWO2008032796A1 (ja) 2006-09-13 2010-01-28 日本全薬工業株式会社 新規イヌ用ワクチン
US20110110892A1 (en) 2008-03-24 2011-05-12 President And Fellows Of Harvard College Vectors for delivering disease neutralizing agents
TW201011104A (en) 2008-07-23 2010-03-16 Boehringer Ingelheim Pharma Novel regulatory elements
US20130197612A1 (en) 2010-02-26 2013-08-01 Jack W. Lasersohn Electromagnetic Radiation Therapy
CA3036386A1 (en) 2016-09-20 2018-03-29 Boehringer Ingelheim Vetmedica Gmbh Canine adenovirus vectors
CN109715204B (zh) 2016-09-20 2023-08-22 勃林格殷格翰动物保健有限公司 新的ehv插入位点orf70
AU2017329672B2 (en) 2016-09-20 2023-07-27 Boehringer Ingelheim Vetmedica Gmbh New promoters
JP6951429B2 (ja) 2016-09-20 2021-10-20 ベーリンガー インゲルハイム フェトメディカ ゲーエムベーハーBoehringer Ingelheim Vetmedica GmbH 新規のブタインフルエンザワクチン

Also Published As

Publication number Publication date
KR102618843B1 (ko) 2024-01-02
WO2018054837A1 (en) 2018-03-29
CL2019000655A1 (es) 2019-05-31
UY37406A (es) 2018-03-23
BR112019005516A2 (pt) 2019-06-18
KR20190053927A (ko) 2019-05-20
EP3515481A1 (en) 2019-07-31
EA201990711A1 (ru) 2019-09-30
NZ751014A (en) 2023-03-31
US20180080043A1 (en) 2018-03-22
JP2019533437A (ja) 2019-11-21
CN109715204B (zh) 2023-08-22
SA519401350B1 (ar) 2022-06-22
JP2021176307A (ja) 2021-11-11
AR109539A1 (es) 2018-12-19
US10619169B2 (en) 2020-04-14
JP6952112B2 (ja) 2021-10-20
AU2017329669A1 (en) 2019-03-21
CN109715204A (zh) 2019-05-03
TWI817933B (zh) 2023-10-11
MX2019003161A (es) 2019-05-27
CA3036291A1 (en) 2018-03-29
PH12019500557A1 (en) 2019-11-11

Similar Documents

Publication Publication Date Title
TWI817933B (zh) 新穎ehv插入位點orf70
US10626414B2 (en) Swine influenza vaccine
TWI780070B (zh) 新穎之啟動子
JP2023012474A (ja) 不活性化ul18および/またはul8を有する新しいehv
US11596681B2 (en) EHV insertion site UL43
EA046215B1 (ru) Новый ehv сайт инсерции orf70
EA044935B1 (ru) Новая вакцина против гриппа свиней