WO2023092699A1 - 一种玻璃纤维漏嘴结构、漏板和生产装置 - Google Patents

一种玻璃纤维漏嘴结构、漏板和生产装置 Download PDF

Info

Publication number
WO2023092699A1
WO2023092699A1 PCT/CN2021/137163 CN2021137163W WO2023092699A1 WO 2023092699 A1 WO2023092699 A1 WO 2023092699A1 CN 2021137163 W CN2021137163 W CN 2021137163W WO 2023092699 A1 WO2023092699 A1 WO 2023092699A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
hole
upper hole
lower hole
hole portion
Prior art date
Application number
PCT/CN2021/137163
Other languages
English (en)
French (fr)
Inventor
曹国荣
马伟荣
朱张彬
朱琦鑫
沈旭明
王海兴
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to JP2022552645A priority Critical patent/JP2024501396A/ja
Priority to US17/760,334 priority patent/US20230250008A1/en
Publication of WO2023092699A1 publication Critical patent/WO2023092699A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/08Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
    • C03B37/083Nozzles; Bushing nozzle plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/20Contacting the fibres with applicators, e.g. rolls

Definitions

  • the application relates to the technical field of winding equipment, in particular to a glass fiber nozzle structure, a nozzle plate and a production device.
  • the production process of continuous glass fiber is as follows: the raw material flows to one or more leaking plates after being smelted in a pool kiln, and there is a leaking nozzle on the bottom plate of the draining plate, and the glass passes through the leaking nozzle and is drawn by a wire drawing machine to form continuous glass fiber.
  • flat cross-section glass fiber is also a kind of continuous glass fiber. Because its surface area is larger than that of round cross-section glass fiber, it is more conducive to improving the interface adhesion with resin. In recent years, it has been widely used in the field of composite materials. There are differences in the equipment and production process for the production of flat cross-section glass fiber in the industry.
  • the present application aims to solve the problems described above. It is an object of the present application to provide a fiberglass nozzle structure, bushing and production device that solve any of the above problems.
  • a glass fiber spout structure including a spout body and a leak hole provided on the spout body, wherein,
  • the leakage hole includes an upper hole part and a lower hole part connected with the upper hole part and located below the upper hole part.
  • the cross section of the lower hole part is elongated.
  • the projection of the lower hole is located within the projection of the upper hole, and the ratio of the length to the width of the lower hole is 5-12.
  • the cross section of the upper hole is elongated, and the extending direction of the cross section of the upper hole is the same as the extending direction of the cross section of the lower hole.
  • the ratio of the length to the width of the cross section of the upper hole is 5-8.
  • the cross-sectional area of the upper hole is tapered.
  • the volume of the upper hole is 2 to 5 times the volume of the lower hole.
  • the lower hole part includes an inlet and an outlet, the inlet is communicated with the upper hole part, and the outlet is used for the molten glass to flow out, wherein,
  • the length of the outlet is between 6 mm and 8 mm, and the width of the outlet is between 0.6 mm and 1.2 mm.
  • the nozzle body includes a connected first body and a second body, the second body protrudes from the lower surface of the first body, and the upper hole is arranged in the first body, so The lower hole is at least partially located in the second body.
  • the height of is 0.8mm ⁇ 1.4mm; and/or,
  • the height of the lower hole portion is 0.8mm ⁇ 1.6mm.
  • the wall thickness of the hole wall of the lower hole formed by the second body gradually decreases.
  • the lower hole is a straight hole, and the cross-sectional outer contour of the second body gradually decreases from top to bottom.
  • the second aspect of the present application provides a glass fiber breakout plate, comprising a plate body and the leak nozzle structure according to the first aspect arranged on the plate body.
  • the nozzle structure is integrally formed with the board body.
  • the third aspect of the present application provides a glass fiber production device, including a pool kiln, the bushing plate as described in the second aspect, an oiling tank, a cluster wheel and a wire drawing machine;
  • the tank kiln is provided with a liquid outlet
  • the leakage plate is arranged on the liquid outlet, and the thickened upper hole of the leakage nozzle on the leakage plate is arranged opposite to the liquid outlet;
  • the oiling groove, the cluster wheel and the wire drawing machine are sequentially arranged below the bushing plate at intervals.
  • process air ducts are also included, a plurality of said process air ducts are arranged symmetrically on both sides of said bushing plate, and the air outlets of said process air ducts are located between said bushing plate and said oiling groove.
  • Fig. 1 exemplarily shows a schematic structural view of the glass fiber nozzle of the present application.
  • Fig. 2 is a sectional view along A-A direction in Fig. 1 .
  • Fig. 3 is a sectional view along B-B direction in Fig. 1 .
  • Fig. 4 exemplarily shows a schematic structural view of the glass fiber nozzle of the present application.
  • Fig. 5 exemplarily shows a schematic structural view of the glass fiber bushing of the present application.
  • Fig. 6 exemplarily shows a schematic structural view of the glass fiber production device of the present application.
  • FIG. 7 exemplarily shows a scanning electron micrograph of flat glass fibers produced by the glass fiber production device of the present application.
  • FIG. 8 exemplarily shows a scanning electron microscope image of flat glass fibers produced by the glass fiber production device of the present application.
  • FIG. 9 exemplarily shows a scanning electron micrograph of flat glass fibers produced by the glass fiber production device of the present application.
  • each groove has a V-shaped, U-shaped or semicircular cross-sectional shape, and multiple pairs of intervals are arranged on each groove.
  • Each pair of nozzles is adjacent to each other and symmetrically arranged relative to the central axis of the groove. The molten glass flows out from the ports of the pair of nozzles and is drawn into glass strands.
  • the above-mentioned production device has the following problems: when the distance between the two nozzles in a pair of nozzles is small, the two glass filaments are easy to be drawn into one glass filament, and the cross-sectional shape of the glass filament is similar to a circle; When the distance between the two nozzles in the nozzle is large, it is difficult for the two glass filaments to abut against each other during the drawing process, resulting in the formation of two glass filaments with a circular cross section, which is not conducive to the formation of flat glass fibers. At the same time, the leak nozzle in the production device also has the problems of complex structure, unfavorable processing and short service life.
  • the molten glass extends near the protruding edges, and is quenched and hardened in a direction perpendicular to the line connecting the protruding edges and the center of the nozzle, so as to Produce special-shaped cross-section glass fibers with oval or cocoon-shaped cross-sections.
  • the protruding edge of this kind of nozzle is easy to be damaged, resulting in frequent replacement of the nozzle.
  • gaps are symmetrically arranged on both sides of the long axis of the leak nozzle, and then the molten glass on both sides is cooled by a cooling medium.
  • the shape of the leak hole in an existing leak nozzle for producing glass fiber is rectangular, and the leak hole is divided into an upper part and a lower part, wherein the length of the upper part is the same as that of the lower part, and the width of the lower part is greater than that of the upper part.
  • the nozzle is usually integrated with the bushing plate, this structural form with a small top and a large bottom is very difficult to process, and the size controllability of the produced glass fibers is poor.
  • a leakage hole is provided on the nozzle body, and the leakage hole includes an upper hole part and a lower hole part connected in sequence, wherein, in the projection on a plane perpendicular to the axis line of the lower hole part, the lower hole The projection of the upper part is located in the projection of the upper hole.
  • this way of large up and down is more conducive to the processing of the leak nozzle structure, which ensures the processing accuracy and improves the processing efficiency.
  • the glass in the molten state is increased through the upper hole.
  • the viscosity of the liquid, and the aspect ratio of the lower hole is 5 to 12, so that the aspect ratio of the glass fiber produced by the leak nozzle structure is kept between 2.7 and 4.2, and the smaller hole is more conducive to glass Fiber size control, thereby effectively improving the performance of flat glass fibers.
  • Fig. 1 exemplarily shows a structural schematic view of the glass fiber nozzle structure of the present application.
  • a glass fiber nozzle structure 100 provided in this embodiment includes a nozzle body 1 and a leakage hole 2 , and the leakage hole 2 is disposed on the nozzle body 1 .
  • the leakage hole 2 includes an upper hole portion 21 and a lower hole portion 22 .
  • the lower hole portion 22 communicates with the upper hole portion 21 , and the lower hole portion 22 is located below the upper hole portion 21 .
  • the molten glass in the molten state enters the leakage hole 2 from the top surface of the upper hole portion 21, and then flows out from the lower hole portion 22.
  • the elongated structure is set, and the ratio of the length to the width of the lower hole portion 22 is set to 5-12. It should be noted that the elongated shape refers to a structure whose size in one direction is larger than that in other directions.
  • the projection of the lower hole portion 22 is located within the projection of the upper hole portion 21, so that the volume of the upper hole portion 21 is larger than that of the lower hole portion 22. volume.
  • the projection is a circle, and at this time, the projection of the lower hole portion 22 is located in the circle.
  • the projection is a ring, and the projection of the lower hole portion 22 is located in the ring.
  • Such design makes the flow rate of the molten glass entering the upper hole 21 greater than the flow rate of the molten glass flowing out from the lower hole 22, and the molten glass is initially cooled in the upper hole 21 to increase the viscosity of the molten glass, and then flows through the lower hole part 22, thereby facilitating the subsequent formation of flat glass fibers.
  • a leakage hole 2 is provided on the nozzle body 1, and the leakage hole 2 includes an upper hole portion 21 and a lower hole portion 22 connected in sequence, wherein, on a plane perpendicular to the axis of the lower hole portion 22 In the projection of , the projection of the lower hole 22 is located in the projection of the upper hole 21.
  • this way of large top and small bottom is more conducive to the processing of the leaky nozzle structure, which ensures the processing accuracy and improves the processing efficiency.
  • the upper hole 21 increases the viscosity of the molten glass, and the aspect ratio of the lower hole 22 is 5-12, so that the aspect ratio of the glass fiber produced through the nozzle structure 100 is kept between 2.7-4.2 , the lower hole portion 22 with a smaller size is more conducive to the size control of the glass fiber, thereby effectively improving the performance of the flat glass fiber.
  • only one lower hole 22 for discharge is provided in one spout structure 2.
  • the glass fiber It is easy to process and ensure the performance of the produced glass fiber.
  • the nozzle body 1 includes a first body 11 and a second body 12 connected. Wherein, the second body 12 protrudes from the lower surface of the first body 11 .
  • the materials of the first body 11 and the second body 12 may be the same or different.
  • the first body 11 and the second body 12 are made of the same material and integrally formed to reduce the manufacturing cost of the leaky nozzle body 1 and improve the production efficiency of the leaky nozzle body 1 .
  • the upper hole portion 21 and the lower hole portion 22 are arranged in the upper position and the lower position, that is, the molten glass flows from the upper hole Part 21 enters the leakage hole 2 and flows out from the lower hole part 22.
  • the upper hole portion 21 is disposed in the first body 11
  • the lower hole portion 22 is at least partially disposed in the second body 12 .
  • the second body 12 has a predetermined wall thickness.
  • the predetermined wall thickness of the second body 12 has a thickness ranging from 0.8 mm to 1.4 mm.
  • the wall thickness of the second body 12 is relatively thin, such as less than 0.8mm, the second body 12 is easily damaged during the glass fiber drawing process; and when the wall thickness of the second body 12 is thicker, For example, when it is larger than 1.4mm, it is not conducive to the heat dissipation of glass fibers during the drawing process, and it is also not conducive to forming flat glass fibers that meet the requirements of use.
  • the preset wall thickness of the second body 12 is designed to be between 0.8 mm and 1.4 mm, which can not only ensure that the second body 12 is not damaged during the continuous drawing process of the glass fiber, but also facilitate Processing and manufacturing is beneficial to the heat dissipation of glass fibers, thereby ensuring the flatness of glass fibers and improving the performance of glass fibers.
  • a lower hole portion 22 is formed inside the second body 12 , and the wall thickness of the hole wall of the lower hole portion 22 formed by the second body 12 gradually increases from top to bottom. decrease.
  • the cross-sectional shape of the second body 12 may include a long shape or an oblong shape, which is convenient for subsequent cooling of the produced glass fibers and can also reduce the production cost of the spout body 100 .
  • the cross-sectional area of the second body 12 is a tapered structure.
  • the first direction can be understood as the extending direction from the end of the second body 12 connected with the first body 11 to the end of the second body 12 away from the first body 11, as shown in the X direction in FIG. 1
  • the first The direction can also be understood as the extending direction from top to bottom.
  • the cross-sectional area of the second body 12 is designed to be a tapered structure, so that when the molten glass passing through the nozzle structure flows out from the leakage hole 2, along the first direction, the cooling medium passing through the nozzle structure, such as cooling liquid The cooling process that can increase the cooling effect on the molten glass, and then the molten glass is cooled rapidly, avoiding the impact of the high-temperature molten glass on the service life of the nozzle structure.
  • the lower hole portion 22 is a straight hole, and the cross-sectional shape of the second body 12 gradually decreases from top to bottom, thereby realizing the first embodiment in the above-mentioned embodiments.
  • the wall thickness of the hole wall of the lower hole portion 22 formed in the second body 12 is gradually reduced, thereby cooling the glass fiber while improving the reliability of the structure and ensuring the molding quality of the glass fiber.
  • the cross section of the upper hole portion 21 is elongated, and the extension direction of the cross section of the upper hole portion 21 is the same as that of the lower hole portion 22 disposed in the second body 12 .
  • Designing the upper hole portion 21 as a long shape, such as a rectangle, can increase the arrangement density of the nozzle structure on the bushing formed subsequently, thereby improving production efficiency.
  • the lower hole 22 in the second body 12 is opposite to the upper hole 21 in the first body 11, that is, the axis of the upper hole 21 and the axis of the lower hole 22
  • the coincidence of axis lines facilitates the manufacture of the leak nozzle structure 100 on the one hand, and on the other hand, makes the molten glass flow through the leak hole 2 more smoothly.
  • the ratio of the length to the width of the cross section of the upper hole portion 21 is 5-8.
  • the setting of the aspect ratio of the upper hole 21 can effectively ensure the production requirements of the flatness of the produced glass fiber on the one hand, and also ensure the volume of the upper hole 21 so that the glass fibers flowing through the upper hole
  • the molten glass at 21 is preliminarily cooled in the upper hole portion 21 to increase the viscosity of the molten glass to facilitate subsequent production of flat glass fibers.
  • the cross-sectional area of the upper hole portion 21 is tapered. Since the viscosity of the molten glass increases gradually during the flow from top to bottom, it is designed so that the upper hole 21 forms a shape similar to a funnel, and the upper hole 21 of this structure facilitates the downward flow of the molten glass, and from Stable outflow from the lower hole portion 22 prevents bubbles and the like from appearing inside the molten glass during the flow process, thus ensuring the use requirements of the glass fiber.
  • the inner wall surface of the upper hole 21 includes two opposite elongated slopes and tapered surfaces respectively connecting the two ends of the two elongated slopes.
  • the elongated slopes are inclined from top to bottom toward the central axis of the upper hole 21.
  • the radius of the surface gradually decreases from top to bottom.
  • the height of the upper hole 21 is 0.8 mm to 1.4 mm, and the upper hole 21 within this height range is easy to process and can effectively ensure the leakage nozzle structure 100 and subsequent The service life of the formed bushing reduces the replacement frequency of the bushing.
  • the cross-sectional shape of the upper hole portion 21 may include a long shape or an oblong shape.
  • the upper hole 21 with a long or oblong cross-sectional shape can increase the volume of the upper hole 21 to ensure that there is a suitable capacity of molten glass stored in the upper hole 21, thereby ensuring the continuous production of subsequent flat glass fibers .
  • the lower hole portion 22 is disposed in the second body 12 .
  • the lower hole portion 22 communicates with the upper hole portion 21 , and the lower hole portion 22 is located below the upper hole portion 21 .
  • molten glass in a molten state enters the leakage hole 2 from the top surface of the upper hole portion 21, and then flows out from the lower hole portion 22.
  • the cross section is set to be an elongated structure, and at the same time, the ratio of the length to the width of the lower hole portion 22 is set to 5-12.
  • the cross-sectional shape of the lower hole portion 22 may also include an oblong shape, which is convenient for processing and manufacturing, and according to the setting of the aspect ratio of the lower hole portion 22, it is convenient to form a flat glass fiber.
  • the lower hole portion 22 includes an inlet and an outlet. Wherein, the inlet is communicated with the upper hole, and the outlet is used for the molten glass to flow out.
  • the length of the outlet of the lower hole portion 22 is between 6 mm and 8 mm, and the width of the outlet is between 0.6 mm and 1.2 mm. Designed in this way, when the size of the outlet of the lower hole portion 22 is in the above range, the length of the cross section of the produced glass fiber is 21 ⁇ m to 40.5 ⁇ m, and the width of the cross section of the glass fiber is 5 ⁇ m to 15 ⁇ m. Therefore, the glass fiber The aspect ratio of the cross-section is kept between 2.7 and 4.2, thereby meeting the requirements for the use of flat glass fibers in subsequent composite materials.
  • the ratio of the length to the width of the cross section of the lower hole portion 22 is 6-10, so as to facilitate the continuous production of flat glass fibers. Since the cross-sectional area of the upper hole 21 is greater than that of the lower hole 22, the molten glass flows more smoothly from top to bottom, avoiding frequent broken wires caused by insufficient supply of molten glass.
  • the height of the lower hole portion 22 is 0.8 mm ⁇ 1.6 mm.
  • the lower hole portion 22 in this height range can keep the thickness of the follow-up bushing within a predetermined range, effectively reduce the processing difficulty of the bushing structure 100 and the bushing, ensure the service life of the bushing structure 100, and facilitate the connection of flat glass fibers Permanent production, reducing the replacement frequency of the bushing.
  • the volume of the upper hole 21 is 2 to 5 times that of the lower hole 22 .
  • the ratio of the volume of the upper hole 21 to the volume of the lower hole 22 is less than 2
  • the difference between the speed of the molten glass flowing through the upper hole 21 and the speed of flowing through the lower hole 22 is small, so that the glass The liquid is prone to broken wires during the drawing process, which reduces the continuity of the glass fiber.
  • the volume of the upper hole 21 is designed to be 2 to 5 times the volume of the lower hole 22 to effectively ensure the continuous production of flat glass fibers and increase the service life of the spout structure.
  • the volume of the upper hole 21 is 2.4 to 4.5 times the volume of the lower hole 22.
  • the cross-sectional shape of the lower hole 22 is elongated or oblong, and the lower hole
  • the ratio of the length to width of the cross-section of the portion 22 is 6-10, it can effectively improve the smoothness of the flat glass fiber in the wire drawing process and the continuity of the production of the flat glass fiber, and can also effectively ensure and prolong the spout structure by 100 life cycle.
  • the aspect ratio of the cross-section of the flat glass fiber produced by the spout structure 100 in this embodiment is 3-5, and the flat glass fiber has good specific surface area, tensile strength and bending strength, It can meet the use requirements of the composite materials produced later.
  • a glass fiber bushing 200 provided in this embodiment includes a board body 3 and a nozzle structure 100 .
  • the plate body 3 and the nozzle structure 100 are integrally structured, which is convenient for processing and manufacturing.
  • the shape of the board body 3 may be a rectangle or a square.
  • a plurality of spout structures 100 are provided on the board body 3 .
  • a plurality of nozzle structures 100 are arranged in an array on the board body 3 .
  • the second direction can be understood as a direction extending along the length of the board body 3 , such as the Y direction in FIG. 5 .
  • leaky nozzle structures 100 can also be arranged on the board body 3 in other ways, for example, the adjacent leaky nozzle structures 100 in the upper and lower rows are alternately arranged in sequence, etc., as long as the leaky nozzle structures 100 are evenly arranged on the board body 3 Can.
  • the plurality of nozzle structures 100 on the board body 3 can be arranged in a manner of (50-100) rows X (5-30) columns, so that the total number of nozzle structures 100 on the board body 3 can be kept at Between 250 and 3000, it can meet the production demand of flat glass fiber.
  • the multiple nozzle structures 100 on the board body 3 are arranged in (60-80) rows X (10-20) columns, so that the total number of nozzle structures 100 on the board body 3 is kept at Between 600 and 1600, it meets the production demand of flat glass fiber, and at the same time, facilitates the processing and manufacturing of the bushing 200 and reduces the processing and manufacturing cost of the bushing 200 .
  • the spout structure 100 may be embedded on the board body 3 .
  • the end surface of the outlet of the leak nozzle structure 100 is 0.6 mm to 1.2 mm higher than the bottom surface of the plate body 3, which is convenient for the glass liquid to flow out from the leak plate 200 and flow through the leak nozzle.
  • the lower end of the structure 100 forms a root, which improves the molding quality and production efficiency of the flat glass fiber.
  • cooling channels 4 are provided on the plate body 3 .
  • a plurality of cooling passages 4 are arranged at intervals.
  • a cooling passage 4 is arranged between two adjacent rows of nozzle structures 100 , and the axis of the cooling passage 4 is arranged parallel to the long axis direction of the nozzle structure 100 .
  • the cooling medium is passed into the cooling passage 4, and the cooling medium is convenient for cooling the long axis direction of the nozzle structure 100, so that the heat radiated by the filiform glass liquid can be evenly cooled, so that the glass liquid flows through the leakage hole. 2 cooling and crystallization on both sides of the long axis to facilitate the formation of flat glass fibers.
  • the nozzle structure 100 arranged in an array is arranged on the plate body 3, and the cooling channel 4 is provided between two adjacent rows of the nozzle structure 100, so as to meet the production demand of flat glass fiber and improve the Forming quality and production efficiency of flat glass fibers.
  • the bushing plate 200 of this embodiment has a long service life and is easy to manufacture.
  • the glass fiber production device includes a tank kiln 10 , a drain plate 200 , an oiling tank 20 , a cluster wheel 30 and a wire drawing machine 40 .
  • a liquid outlet for the molten glass to flow out is provided on the tank kiln 10 .
  • the leakage plate 200 is disposed on the liquid outlet, wherein the top surface of the upper hole portion 21 of the nozzle structure 100 on the leakage plate 200 is disposed opposite to the liquid outlet.
  • the oiling groove 20 , the cluster wheel 30 and the wire drawing machine 40 are sequentially arranged below the bushing plate 200 at intervals.
  • the glass fiber production device further includes a process air duct 50 .
  • a plurality of process air pipes 50 are arranged symmetrically on both sides of the leak plate 200, and the air outlets of the process air pipes 50 are located between the leak plate 200 and the oiling groove 20, for the two sides of the leak nozzle structure 100 and the outflow from the leak hole 2
  • the glass fiber strands are cooled in the form of spray to facilitate the formation of flat glass fibers, thereby improving the production efficiency of flat glass fibers.
  • the mineral powder 110 is transported into the tank kiln 10 to form molten glass, and then flows out through the flat nozzle structure 100 on the drain plate 200 to form filaments, and then form glass fibers 60, glass fibers 60
  • the sizing agent is coated through the oiling tank 20, then bundled by the bundle wheel 30, and then winded by the wire drawing head 401 on the wire drawing machine 40 to form a yarn cluster.
  • the process air duct 50 is used to air the drawn glass fiber 60 Cold, thereby effectively improving the flat rate and production efficiency of glass fibers.
  • Fig. 7 to Fig. 9 show the scanning electron micrographs of the structure of the nozzle, the nozzle plate and the flat glass fiber produced by the corresponding production equipment shown in some embodiments.
  • Fig. 7 is a scanning electron micrograph of flat glass fibers produced by using the nozzle structure and the bushing plate of Example 1.
  • Fig. 8 is a scanning electron microscope image of the flat glass fiber produced by using the nozzle structure and the bushing plate of Example 3.
  • Fig. 9 is a scanning electron microscope image of the flat glass fiber produced by using the nozzle structure and the bushing plate of Example 9.
  • the bushing structure of the present application has the advantages of simple structure, easy manufacture, and long service life; the manufacturing cost of the bushing is low, and it is easy to popularize and apply; as can be seen from Fig. 7 to Fig. 9 and Table 1, the glass fiber of the present application
  • the quality of the glass fiber produced by the production device is stable, and the cross-sectional aspect ratio is easy to control.
  • the cross-sectional aspect ratio of the flat glass fiber produced by it is between 2.7 and 4.2, which can meet the performance requirements of the subsequent composite material production for flat glass fiber .
  • a leakage hole is provided on the nozzle body, and the leakage hole includes an upper hole part and a lower hole part connected in sequence, wherein, in the projection on a plane perpendicular to the axis line of the lower hole part, The projection of the lower hole is located in the projection of the upper hole.
  • this method of large top and small bottom is more conducive to the processing of the leak nozzle structure, which ensures the processing accuracy and improves the processing efficiency.
  • the melting state is increased through the upper hole.
  • Viscosity of the molten glass, and the aspect ratio of the lower hole is 5 to 12, so that the aspect ratio of the glass fiber produced by the leak nozzle structure is kept between 2.7 and 4.2, and the smaller hole is more It is beneficial to the size control of the glass fiber, thereby effectively improving the performance of the flat glass fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

一种玻璃纤维漏嘴结构(100)、漏板(200)和生产装置,其中,包括漏嘴本体(1)以及设在漏嘴本体(1)上的漏孔(2),其中,漏孔(2)包括上孔部(21)以及与上孔部(21)相连通,且位于上孔部(21)下方的下孔部(22),下孔部(22)的横截面呈长形,在与下孔部(22)的轴心线垂直的平面上的投影中,下孔部(22)的投影位于上孔部(21)的投影之内,下孔部(22)的长度和宽度之比为5~12。所述玻璃纤维漏嘴结构(100)简单,使用周期长,通过该漏嘴结构(100)所生产的扁平玻璃纤维的长宽比保持在2.7~4.2之间,从而有效提高扁平玻璃纤维的性能。

Description

一种玻璃纤维漏嘴结构、漏板和生产装置
本申请要求在2021年11月29日提交中国国家知识产权局、申请号为202111441759.X、发明名称为“一种玻璃纤维漏嘴结构、漏板和生产装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及络纱设备技术领域,尤其涉及一种玻璃纤维漏嘴结构、漏板和生产装置。
背景技术
目前,连续玻璃纤维的生产过程为:原料通过池窑熔炼后流向一块或多块漏板,在漏板底板上有漏嘴,玻璃经过漏嘴后在拉丝机的牵引下形成连续玻璃纤维。其中,扁平截面玻璃纤维也是连续玻璃纤维的一种,由于其表面积大于圆形截面的玻璃纤维,更加有利于提高与树脂的界面粘合力,近年来已在复合材料领域广泛推广应用。行业内对于扁平截面玻璃纤维生产的设备、生产工艺各有区别。
而在现有技术中,生产扁平的玻璃纤维过程中所使用的漏嘴的结构较为复杂,存在有加工困难,易于损坏的问题,进而导致漏嘴以及漏板的使用周期较短,不利于扁平玻璃纤维的连续性生产。
发明内容
本申请旨在解决上面描述的问题。本申请的一个目的是提供一种解决以上问题中的任何一个的玻璃纤维漏嘴结构、漏板和生产装置。
为了实现以上目的,本申请通过以下技术方案实现:
根据本申请的第一个方面,提供了一种玻璃纤维漏嘴结构,包括漏嘴本体以及设在所述漏嘴本体上的漏孔,其中,
所述漏孔包括上孔部以及与所述上孔部相连通,且位于所述上孔部下方的下孔部,所 述下孔部的横截面呈长形,在与所述下孔部的轴心线垂直的平面上的投影中,所述下孔部的投影位于所述上孔部的投影之内,所述下孔部的长度和宽度之比为5~12。
其中,所述上孔部的横截面呈长形,且所述上孔部的横截面的延伸方向与所述下孔部的横截面的延伸方向相同。
其中,所述上孔部和所述下孔部的轴心线重合。
其中,所述上孔部的横截面的长度和宽度之比为5~8。
其中,由上到下,所述上孔部的横截面面积渐缩。
其中,所述上孔部的容积为所述下孔部的容积的2~5倍。
其中,所述下孔部包括进口和出口,所述进口与上孔部连通,所述出口用于熔融状态的玻璃液流出,其中,
所述出口的长度介于6mm~8mm之间,所述出口的宽度介于0.6mm~1.2mm之间。
其中,所述漏嘴本体包括相连的第一本体和第二本体,所述第二本体凸出于所述第一本体的下表面设置,所述上孔部设在所述第一本体内,所述下孔部至少部分位于所述第二本体内。
其中,的高度为0.8mm~1.4mm;和/或,
所述下孔部的高度为0.8mm~1.6mm。
其中,由上到下,所述第二本体形成的所述下孔部的孔壁的壁厚逐渐减小。
其中,所述下孔部为直孔,由上到下,所述第二本体的横截面外轮廓形状逐渐减小。
本申请的第二方面提供了一种玻璃纤维漏板,包括板本体以及设置于所述板本体上的如第一方面所述的漏嘴结构。
其中,所述漏嘴结构与所述板本体一体成型。
本申请的第三方面提供了一种玻璃纤维生产装置,包括池窑、如第二方面所述的漏板、涂油槽、集束轮和拉丝机;
所述池窑设有出液口;
所述漏板设置在所述出液口上,且所述漏板上的漏嘴的增粘上孔部与所述出液口相对设置;
所述涂油槽、所述集束轮和所述拉丝机依次间隔设置在所述漏板的下方。
其中,还包括工艺风管,多个所述工艺风管对称设在所述漏板的两侧,所述工艺风管的出风口位于所述漏板和所述涂油槽之间。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本申请的实施例,并且与描述一起用于解释本申请的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本申请的一些实施例,而不是全部实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1示例性地示出了本申请的玻璃纤维漏嘴的结构示意图。
图2为图1中A-A方向的剖视图。
图3为图1中B-B方向的剖视图。
图4示例性地示出了本申请的玻璃纤维漏嘴的结构示意图。
图5示例性地示出了本申请的玻璃纤维漏板的结构示意图。
图6示例性地示出了本申请的玻璃纤维生产装置的结构示意图。
图7示例性地示出了本申请的玻璃纤维生产装置所生产的扁平的玻璃纤维的一种扫描电镜图。
图8示例性地示出了本申请的玻璃纤维生产装置所生产的扁平的玻璃纤维的一种扫描电镜图。
图9示例性地示出了本申请的玻璃纤维生产装置所生产的扁平的玻璃纤维的一种扫描电镜图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在扁平截面玻璃纤维生产过程中,行业内对于扁平截面玻璃纤维生产的设备、生产工 艺各有区别。其中,在一种生产装置中,漏板的下表面设置多个凹槽,每个凹槽的截面形状为V型、U型或半圆形,在每个凹槽上设有多对间隔设置的喷嘴,每对喷嘴彼此紧邻,且相对于凹槽的中轴线对称排布,熔融状态的玻璃液从一对喷嘴的端口流出抽成玻璃丝。但上述生产装置存在如下问题:当一对喷嘴中的两个喷嘴之间的间距较小时,两根玻璃丝容易于被拉丝成为一根玻璃丝,而该玻璃丝的横截面形状类似于圆形;当一对喷嘴中的两个喷嘴之间的间距较大时,则两根玻璃丝在拉丝过程中难以相互抵接,导致形成具有圆形横截面的两根玻璃丝,不利于形成扁平的玻璃纤维。同时,该生产装置中的漏嘴还存在有结构复杂、不利于加工且使用周期较短的问题。
在另一种生产装置中,通过在漏嘴的下部对称设置多个突出边缘,熔融状态的玻璃液在突出边缘附近延展,在垂直于突出边缘与漏嘴中心连线的方向被骤冷和硬化,以生产横截面形状为椭圆形或蚕茧形的异形截面玻璃纤维。但这种漏嘴在生产椭圆形或蚕茧型截面玻璃纤维的过程中,突出边缘易于损坏,导致漏板需要频繁更换。
在又一种生产装置中,通过在漏嘴的长轴方向两侧对称的设置缺口,然后通过冷却介质,冷却两侧的玻璃液,如此设计,虽然可以让两侧的玻璃液迅速冷却结晶,有利于形成扁平截面的玻璃纤维,但依然存在漏嘴容易损坏的问题,大大降低了漏板的使用寿命。
又或者,在现有的一种生产玻璃纤维的漏嘴中的漏孔形状为长方形,漏孔又分为上部和下部,其中,上部的长度和下部的长度相同,下部的宽度大于上部的宽度。然而,由于漏嘴通常与漏板为一体结构,这种上小下大的结构形式非常难以加工,且生产出的玻璃纤维的尺寸可控性差。
本申请的玻璃纤维漏嘴,在漏嘴本体上设置漏孔,漏孔包括顺序连通的上孔部和下孔部,其中,在与下孔部的轴心线垂直的平面上的投影中,下孔部的投影位于上孔部的投影中,一方面,这种上大下小的方式更利于漏嘴结构的加工,保证加工精度,提高加工效率,另一方面,通过上孔部增加熔融状态的玻璃液的粘性,并利用下孔部的长宽比为5~12,从而使得经漏嘴结构所生产的玻璃纤维的长宽比保持在2.7~4.2之间,尺寸较小的下孔部更利于玻璃纤维的尺寸控制,进而有效提高扁平玻璃纤维的性能。
下面结合附图,对根据本申请所提供的玻璃纤维漏嘴结构进行详细描述。
图1示例性地示出了本申请的玻璃纤维漏嘴结构的结构示意图。
根据一个示例性地实施例,如图1至图4所示,本实施例提供的玻璃纤维漏嘴结构100,包括漏嘴本体1和漏孔2,漏孔2设置在漏嘴本体1上。
示例性地,漏孔2包括上孔部21和下孔部22。下孔部22与上孔部21相连通,下孔部22位于上孔部21的下方。熔融状态的玻璃液自上孔部21的顶面进入漏孔2中,而后从下孔部22中流出,为了使玻璃液形成符合使用要求的扁平的玻璃纤维,将下孔部22的横截面设定为长形的结构,同时,将下孔部22的长度和宽度之比设定为5~12。需要说明的是,长形指的是在一个方向上的尺寸大于其他方向尺寸的结构。
其中,在与下孔部22的轴心线垂直的平面上的投影中,下孔部22的投影位于上孔部21的投影之内,从而使得上孔部21的容积大于下孔部22的容积。比如,当上孔部21为直孔,则投影为一个圆,此时,下孔部22的投影位于这个圆内。再比如,当上孔部21为锥形孔时,则投影是一个环形,下孔部22的投影位于这个环形内。如此设计,使得进入上孔部21的玻璃液的流量大于从下孔部22流出的玻璃液的流量,玻璃液先在上孔部21内进行初步冷却,增加玻璃液的粘性,而后从下孔部22中流出,从而便于后续形成扁平的玻璃纤维。
本申请的玻璃纤维漏嘴,在漏嘴本体1上设置漏孔2,漏孔2包括顺序连通的上孔部21和下孔部22,其中,在与下孔部22的轴心线垂直的平面上的投影中,下孔部22的投影位于上孔部21的投影中,一方面,这种上大下小的方式更利于漏嘴结构的加工,保证加工精度,提高加工效率,另一方面,通过上孔部21增加熔融状态的玻璃液的粘性,并利用下孔部22的长宽比为5~12,从而使得经漏嘴结构100所生产的玻璃纤维的长宽比保持在2.7~4.2之间,尺寸较小的下孔部22更利于玻璃纤维的尺寸控制,进而有效提高扁平玻璃纤维的性能。
另外,在本申请中,一个漏嘴结构2中只设置一个用于出料的下孔部22,通过控制下孔部22的长宽比,并配合尺寸较大的上孔部21,实现玻璃纤维的出料,既便于加工,又能够保证生产出的玻璃纤维的性能。
示例性地,参照图2和图3所示,漏嘴本体1包括相连的第一本体11和第二本体12。其中,第二本体12凸出于第一本体11的下表面设置。第一本体11和第二本体12的材料可以相同,也可以不相同。在一些实施例中,第一本体11和第二本体12的材料选用同一种材料,并一体成型,以降低漏嘴本体1的制作成本,提高漏嘴本体1的生产效率。
示例性地,参照图1至图4所示,在漏孔2的使用状态下,上孔部21和下孔部22按上方位和下方位排布设置,即熔融状态的玻璃液自上孔部21进入漏孔2中,并由下孔部22流出。其中,上孔部21设在第一本体11内,下孔部22至少部分设在第二本体12内。
其中,第二本体12具有预设壁厚,在一些实施例中,第二本体12的预设壁厚的厚度范围为0.8mm~1.4mm。在玻璃纤维的实际生产过程中,当第二本体12的壁厚较薄,比如小于0.8mm时,玻璃纤维拉丝过程中第二本体12易于损坏;而当第二本体12的壁厚较厚,比如大于1.4mm时,在拉丝过程中不利于对玻璃纤维的散热,并且也不利于形成符合使用要求的扁平的玻璃纤维。因此,在本实施例中,将第二本体12的预设壁厚设计为0.8mm~1.4mm之间,既能保证玻璃纤维在连续拉丝过程中第二本体12不被损坏,同时,也便于加工制作,有利于玻璃纤维的散热,从而保证玻璃纤维的扁平率,提高玻璃纤维的使用性能。
在一些实施例中,如图1至图4所示,第二本体12的内部形成有下孔部22,由上到下,第二本体12形成的下孔部22的孔壁的壁厚逐渐减小。需要说明的是,第二本体12的横截面形状可以包括长形或者长圆形,便于后续对所生产的玻璃纤维进行冷却,同时也能降低漏嘴本体100的生产成本。
即,以平行于第一本体11顶面的平面为横截面,沿第一方向,第二本体12的横截面面积为渐缩式结构。其中,第一方向可以理解为自第二本体12与第一本体11连接的一端至第二本体12的远离第一本体11的一端的延伸方向,如图1中所示的X方向,第一方向还可以理解为由上到下的延伸方向。需要说明的是,将第二本体12的横截面面积设计为渐缩式结构,使得经过漏嘴结构的玻璃液从漏孔2中流出时,沿第一方向,途经漏嘴结构的冷却介质如冷却液等能够对玻璃液进行冷却效果递增的冷却过程,进而使玻璃液被快速冷却,避免因高温的玻璃液对漏嘴结构的使用周期造成影响。
在一些实施例中,参照图2至图4所示,下孔部22为直孔,由上到下,第二本体12的横截面外轮廓形状逐渐减小,从而实现上述实施例中的第二本体12内形成的下孔部22的孔壁的壁厚逐渐减小,进而在实现对玻璃纤维降温冷却的同时,提高结构的可靠性,保证玻璃纤维的成型质量。
在一些实施例中,上孔部21的横截面呈长形,上孔部21的横截面的延伸方向与设在第二本体12内的下孔部22的横截面的延伸方向相同。将上孔部21设计成长形,比如长方形等,能提高后续所形成的漏板上的漏嘴结构的排布密度,进而提高生产效率。
在一个具体实施例中,第二本体12内的下孔部22与设在第一本体11内的上孔部21相对设置,即,该上孔部21的轴心线与下孔部22的轴心线重合,一方面便于漏嘴结构100的加工制作,另一方面,使熔融状态的玻璃液在流经漏孔2时更加顺畅。
在另一具体实施例中,上孔部21的横截面的长度和宽度之比为5~8。其中,上孔部 21的长宽比的设定,一方面能有效保证所生产的玻璃纤维的扁平度的生产要求,另一方面也能保证上孔部21的容积,使得流经上孔部21的玻璃液在上孔部21中进行初步冷却,增加玻璃液的粘性,以便于后续扁平玻璃纤维的生产。
如图1和图2所示,在一些实施例中,以平行于第一本体11顶面的平面为横截面,上孔部21横截面面积渐缩。由于玻璃液在由上至下流动的过程中粘性是逐渐增大的,如此设计,使得上孔部21形成类似于漏斗的形状,该结构的上孔部21便于玻璃液向下流动,并从下孔部22中稳定的流出,避免玻璃液在流动过程中其内部出现气泡等现象,从而保证玻璃纤维的使用要求。
作为示例,上孔部21的内壁面包括相对的两个长形斜面以及分别连接两个长形斜面的两端的锥面,长形斜面由上至下向上孔部21的中轴线方向倾斜,锥面的半径由上至下逐渐减小,如此设计,使得玻璃纤维的流动更加顺畅,进一步提高玻璃纤维的产品质量。
参照图1至图4所示,在一些实施例中,上孔部21的高度为0.8mm~1.4mm,该高度范围内的上孔部21便于加工制作,且能有效保证漏嘴结构100及后续所形成的漏板的使用周期,降低了漏板的更换频率。需要说明的是,在本实施例中,上孔部21的横截面形状可以包括长形或长圆形。横截面形状为长形或长圆形的上孔部21可以增大上孔部21的容积,保证上孔部21内储存有合适容量的玻璃液,继而保证后续扁平的玻璃纤维的连续性生产。
如图1至图4所示,至少部分下孔部22设在第二本体12内。下孔部22与上孔部21相连通,且下孔部22位于上孔部21的下方。其中,熔融状态的玻璃液自上孔部21的顶面进入漏孔2中,而后从下孔部22中流出,为了使玻璃液形成符合使用要求的扁平的玻璃纤维,将下孔部22的横截面设定为长形的结构,同时,将下孔部22的长度和宽度之比设定为5~12。需要说明的是,在另一些实施例中,下孔部22的横截面形状还可以包括长圆形,便于加工制造,以及根据下孔部22的长宽比的设定,便于形成扁平的玻璃纤维。
参照图2和图3所示,在一些实施例中,下孔部22包括进口和出口。其中,进口与上孔部连通,出口用于熔融状态的玻璃液流出。其中,在一个实施例中,下孔部22的出口的长度介于6mm~8mm之间,出口的宽度介于0.6mm~1.2mm之间。如此设计,当下孔部22的出口的尺寸在上述范围时,所生产的玻璃纤维的横截面的长度为21μm~40.5μm,玻璃纤维的横截面的宽度为5μm~15μm,因此,该玻璃纤维的横截面的长宽比保持在2.7~4.2之间,从而满足了后续复合材料对扁平玻璃纤维的使用要求。
需要说明的是,在一些具体实施例中,下孔部22的横截面的长度和宽度的比值为6~ 10,以便于扁平玻璃纤维的连续性生产。由于上孔部21的横截面面积大于下孔部22横截面面积,因此,玻璃液从上到下的流动过程更加顺畅,避免了因玻璃液供应不足而造成的频繁断丝的现象。
在一些实施例中,下孔部22的高度为0.8mm~1.6mm。该高度范围的下孔部22能够使后续的漏板的厚度保持预定的范围内,能有效降低漏嘴结构100以及漏板的加工难度,保证漏嘴结构100的使用周期,便于扁平玻璃纤维的连线性生产,降低了漏板的更换频率。
如图1至图3所示,在一些实施例中,上孔部21的容积为下孔部22的容积的2~5倍。其中,当上孔部21的容积与下孔部22的容积的比值小于2时,玻璃液在流经上孔部21的速率与与其流经下孔部22的速率之差较小,使得玻璃液在拉丝过程中容易出现断丝现象,降低了玻璃纤维的连续性。而当上孔部21的容积与下孔部22的容积的比值大于5时,玻璃液在流经上孔部21的速率与其流经下孔部22的速率之差较大,使得玻璃液对下孔部22的冲击效果增大,再者,由于熔融状态的玻璃液为高温状态,若玻璃液在上孔部21中储存过多,高温高压会使上孔部21与下孔部22之间的连接位置遭到破坏,从而导致下孔部22的使用周期明显降低。因此,将上孔部21的容积设计为下孔部22的容积的2~5倍,以有效保证扁平的玻璃纤维的连续性生产,并提高漏嘴结构的使用周期。
在一些具体实施例中,上孔部21的容积为下孔部22的容积的2.4~4.5倍,在该实施例中,下孔部22的横截面形状为长形或长圆形,下孔部22的横截面的长度与宽度之比为6~10时,能有效提高扁平玻璃纤维在拉丝过程中的顺畅性,以及扁平玻璃纤维生产的连续性,同时也能有效保证并延长漏嘴结构100的使用周期。需要说明的是,经过本实施例中的漏嘴结构100所生产的扁平玻璃纤维的横截面的长宽比为3~5,该扁平玻璃纤维具有良好的比表面积、抗拉强度和抗弯强度,能满足后续所生产的复合材料的使用要求。
根据一个示例性地实施例,如图5所示,本实施例提供的玻璃纤维漏板200包括板本体3和漏嘴结构100。
在一个实施例中,板本体3和漏嘴结构100为一体结构,便于加工制作。
示例性地,板本体3的形状可以是长方形或者正方形。
参照图5所示,在板本体3上设有多个漏嘴结构100。其中,沿第二方向,多个漏嘴结构100阵列排布于板本体3上。其中,第二方向可以理解为沿板本体3的长度延伸方向,如图5中的Y方向。通过将漏嘴结构100阵列排布于板本体3上,使得经过漏嘴结构100所形成的丝状的玻璃液所辐射出的热量均匀散热,提高生产的扁平玻璃纤维的丝束的性能。
需要说明的是,漏嘴结构100还可以是其他方式布置于板本体3上,比如上下两行中 的相邻的漏嘴结构100依次交错设置等,只要将漏嘴结构100均匀布置于板本体3上均可。
在一些实施例中,板本体3上的多个漏嘴结构100可以按照(50~100)排X(5~30)列的方式进行排布,使板本体3上的漏嘴结构100的总数保持在250~3000之间,满足扁平玻璃纤维的生产需求。
在一些具体实施例中,板本体3上的多个漏嘴结构100按照(60~80)排X(10~20)列的方式进行排布,使板本体3上的漏嘴结构100的总数保持在600~1600之间,满足扁平玻璃纤维的生产需求,同时,便于漏板200的加工制作,降低漏板200的加工制作成本。
如图5所示,在一些实施例中,漏嘴结构100可以是嵌设于板本体3上。自板本体3的顶面至板本体3的底面的延伸方向,漏嘴结构100的出口的端面高出板本体3的底面0.6mm~1.2mm,便于玻璃液自漏板200中流出后,在漏嘴结构100的下端形成丝根,提高扁平玻璃纤维的成型质量和生产效率。
如图5所示,在一些实施例中,在板本体3上设有冷却通道4。沿Y方向,多个冷却通道4间隔设置。其中,相邻两排的漏嘴结构100之间设置有一个冷却通道4,该冷却通道4的轴线与漏嘴结构100的长轴方向平行设置。需要说明的是,在冷却通道4内通入冷却介质,冷却介质便于对漏嘴结构100的长轴方向进行冷却,使得丝状的玻璃液所辐射出的热量得到均匀冷却,让玻璃液在漏孔2的长轴两侧冷却结晶,便于形成扁平的玻璃纤维。
上述实施例中,通过在板本体3上设置阵列排布的漏嘴结构100,并在相邻两排的漏嘴结构100之间设置冷却通道4,从而在满足扁平玻璃纤维的生产需求的同时,提高扁平玻璃纤维的成型质量和生产效率。另一方面,本实施例的漏板200的使用周期长,便于加工制作。
根据一个示例性地实施例,如图6所示,本实施例提供的玻璃纤维生产装置,包括池窑10、漏板200、涂油槽20、集束轮30和拉丝机40。
示例性地,在池窑10上设有供熔融状态的玻璃液流出的出液口。漏板200设置在出液口上,其中,漏板200上漏嘴结构100的上孔部21的顶面与出液口相对设置。涂油槽20、集束轮30和拉丝机40依次间隔设置在漏板200的下方。
在一些实施例中,如图6所示,玻璃纤维生产装置还包括工艺风管50。多个工艺风管50对称设在漏板200的两侧,工艺风管50的出风口位于漏板200和涂油槽20之间,用于对漏嘴结构100的两侧和从漏孔2中流出的玻璃纤维丝束通过喷雾的形式进行冷却,便于形成扁平的玻璃纤维,进而提高扁平玻璃纤维的生产效率。
在本实施例中,矿物粉料110输送至池窑10内形成熔融状态的玻璃液,而后通过漏 板200上扁平状的漏嘴结构100流出,形成丝根,然后形成玻璃纤维60,玻璃纤维60通过涂油槽20出进行浸润剂涂覆,然后通过集束轮30集束,再通过拉丝机40上的拉丝机头401卷绕形成纱团,工艺风管50用于对拉丝成型的玻璃纤维60进行风冷,从而有效提高玻璃纤维的扁平率和生产效率。
现通过如下表1,对本申请的漏嘴结构、漏板以及相应的生产装置所生产的扁平的玻璃纤维(即异形截面的玻璃纤维)的参数进行统计。
表1玻璃纤维漏嘴结构、漏板及工艺相关参数及产品测试数据
Figure PCTCN2021137163-appb-000001
Figure PCTCN2021137163-appb-000002
续表1玻璃纤维漏嘴结构、漏板及工艺相关参数及产品测试数据
Figure PCTCN2021137163-appb-000003
Figure PCTCN2021137163-appb-000004
图7至图9示出部分实施例所示的漏嘴结构和漏板及相应生产装置生产的扁平的玻璃纤维的扫描电镜图。图7是采用实施例1的漏嘴结构和漏板所生产的扁平玻璃纤维的扫描电镜图。图8是采用实施例3的漏嘴结构和漏板所生产的扁平玻璃纤维的扫描电镜图。图9是采用实施例9的漏嘴结构和漏板所生产的扁平玻璃纤维的扫描电镜图。
本申请的漏板结构,具有结构简单,便于制作,且使用寿命长的优点;漏板的制作成本低,易于推广应用;从图7至图9和表1可以看出,由本申请的玻璃纤维生产装置所生产的玻璃纤维质量稳定,横截面长短径比易于控制,其生产的扁平玻璃纤维的横截面长宽比在2.7~4.2之间,能满足后续复合材料生产对于扁平玻璃纤维的性能要求。
上面描述的内容可以单独地或者以各种方式组合起来实施,而这些变型方式都在本申请的保护范围之内。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
工业实用性
本申请的玻璃纤维漏嘴结构中,在漏嘴本体上设置漏孔,漏孔包括顺序连通的上孔部和下孔部,其中,在与下孔部的轴心线垂直的平面上的投影中,下孔部的投影位于上孔部的投影中,一方面,这种上大下小的方式更利于漏嘴结构的加工,保证加工精度,提高加工效率,另一方面,通过上孔部增加熔融状态的玻璃液的粘性,并利用下孔部的长宽比为5~12,从而使得经漏嘴结构所生产的玻璃纤维的长宽比保持在2.7~4.2之间,尺寸较小的下孔部更利于玻璃纤维的尺寸控制,进而有效提高扁平玻璃纤维的性能。

Claims (15)

  1. 一种玻璃纤维漏嘴结构,其特征在于,包括漏嘴本体以及设在所述漏嘴本体上的漏孔,其中,
    所述漏孔包括上孔部以及与所述上孔部相连通,且位于所述上孔部下方的下孔部,所述下孔部的横截面呈长形,在与所述下孔部的轴心线垂直的平面上的投影中,所述下孔部的投影位于所述上孔部的投影之内,所述下孔部的长度和宽度之比为5~12。
  2. 根据权利要求1所述的玻璃纤维漏嘴结构,其特征在于,所述上孔部的横截面呈长形,且所述上孔部的横截面的延伸方向与所述下孔部的横截面的延伸方向相同。
  3. 根据权利要求2所述的玻璃纤维漏嘴结构,其特征在于,所述上孔部和所述下孔部的轴心线重合。
  4. 根据权利要求2所述的玻璃纤维漏嘴结构,其特征在于,所述上孔部的横截面的长度和宽度之比为5~8。
  5. 根据权利要求1所述的玻璃纤维漏嘴结构,其特征在于,由上到下,所述上孔部的横截面面积渐缩。
  6. 根据权利要求1至5任一项所述的玻璃纤维漏嘴结构,其特征在于,所述上孔部的容积为所述下孔部的容积的2~5倍。
  7. 根据权利要求1至5任一项所述的玻璃纤维漏嘴结构,其特征在于,所述下孔部包括进口和出口,所述进口与上孔部连通,所述出口用于熔融状态的玻璃液流出,其中,
    所述出口的长度介于6mm~8mm之间,所述出口的宽度介于0.6mm~1.2mm之间。
  8. 根据权利要求1至5任一项所述的玻璃纤维漏嘴结构,其特征在于,所述漏嘴本体包括相连的第一本体和第二本体,所述第二本体凸出于所述第一本体的下表面设置,所述上孔部设在所述第一本体内,所述下孔部至少部分位于所述第二本体内。
  9. 根据权利要求8所述的玻璃纤维漏嘴结构,其特征在于,所述上孔部的高度为0.8mm~1.4mm;和/或,
    所述下孔部的高度为0.8mm~1.6mm。
  10. 根据权利要求8所述的玻璃纤维漏嘴结构,其特征在于,由上到下,所述第二本 体形成的所述下孔部的孔壁的壁厚逐渐减小。
  11. 根据权利要求10所述的玻璃纤维漏嘴结构,其特征在于,所述下孔部为直孔,由上到下,所述第二本体的横截面外轮廓形状逐渐减小。
  12. 一种玻璃纤维漏板,其特征在于,包括板本体以及设置于所述板本体上的如权利要求1-11任一项所述的漏嘴结构。
  13. 根据权利要求12所述的玻璃纤维漏板,其特征在于,所述漏嘴结构与所述板本体一体成型。
  14. 一种玻璃纤维生产装置,其特征在于,包括池窑、如权利要求12或13所述的漏板、涂油槽、集束轮和拉丝机;
    所述池窑设有出液口;
    所述漏板设置在所述出液口上,且所述漏板上的漏嘴的增粘上孔部与所述出液口相对设置;
    所述涂油槽、所述集束轮和所述拉丝机依次间隔设置在所述漏板的下方。
  15. 根据权利要求14所述的玻璃纤维生产装置,其特征在于,还包括工艺风管,多个所述工艺风管对称设在所述漏板的两侧,所述工艺风管的出风口位于所述漏板和所述涂油槽之间。
PCT/CN2021/137163 2021-11-29 2021-12-10 一种玻璃纤维漏嘴结构、漏板和生产装置 WO2023092699A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022552645A JP2024501396A (ja) 2021-11-29 2021-12-10 ガラス繊維ノズル構造、ブッシング及び生産装置
US17/760,334 US20230250008A1 (en) 2021-11-29 2021-12-10 Glass Fiber Nozzle Structure, Bushing and Production Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111441759.X 2021-11-29
CN202111441759.XA CN113979632A (zh) 2021-11-29 2021-11-29 一种玻璃纤维漏嘴结构、漏板和生产装置

Publications (1)

Publication Number Publication Date
WO2023092699A1 true WO2023092699A1 (zh) 2023-06-01

Family

ID=79732653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137163 WO2023092699A1 (zh) 2021-11-29 2021-12-10 一种玻璃纤维漏嘴结构、漏板和生产装置

Country Status (4)

Country Link
US (1) US20230250008A1 (zh)
JP (1) JP2024501396A (zh)
CN (1) CN113979632A (zh)
WO (1) WO2023092699A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103635A (ja) * 1998-09-30 2000-04-11 Nitto Boseki Co Ltd 偏平ガラス繊維製造用ノズルチップ及びガラス繊維
JP2003048740A (ja) * 2001-08-06 2003-02-21 Nitto Boseki Co Ltd ノズルチップ製造方法及びブッシング製造方法
JP2003267746A (ja) * 2002-03-15 2003-09-25 Paramount Glass Kogyo Kk ガラス繊維製造方法および同製造装置
CN201990594U (zh) * 2010-11-29 2011-09-28 重庆国际复合材料有限公司 一种玻璃纤维拉丝用漏板
CN103193384A (zh) * 2013-04-18 2013-07-10 重庆国际复合材料有限公司 扁平玻璃纤维拉丝用漏板及其漏嘴和扁平玻璃纤维丝束
CN106242266A (zh) * 2016-08-25 2016-12-21 巨石集团有限公司 用于短切玻璃纤维生产的漏板及短切玻璃纤维生产方法
CN110337422A (zh) * 2017-02-28 2019-10-15 中央硝子株式会社 用于制造玻璃纤维的嘴头和玻璃纤维的制造方法
CN210140530U (zh) * 2019-06-22 2020-03-13 山东九鼎新材料有限公司 一种玻璃纤维铂金漏板漏嘴的保护装置
CN211497394U (zh) * 2019-11-28 2020-09-15 内江华原电子材料有限公司 一种玻璃纤维漏板装置
CN111925114A (zh) * 2020-07-15 2020-11-13 巨石集团有限公司 一种用于大定重纱筒的四分拉生产装置及工艺
CN213680405U (zh) * 2020-11-02 2021-07-13 河南光远新材料股份有限公司 一种低介电高温玻璃纤维拉丝用漏板
KR102300520B1 (ko) * 2020-05-28 2021-09-09 (주)탑아이엔디 탄소섬유 프리폼의 wcm용 금형장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87202590U (zh) * 1987-03-08 1987-12-31 国家建筑材料工业局南京玻璃纤维研究设计院 生产玻璃纤维用高强度铂合金漏板
JP4370633B2 (ja) * 1999-05-28 2009-11-25 日東紡績株式会社 扁平ガラス繊維紡糸用ノズルチップ及び製造装置
JP2009007252A (ja) * 2008-10-09 2009-01-15 Nitto Boseki Co Ltd 偏平ガラス繊維製造用ノズルチップ及びガラス繊維の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103635A (ja) * 1998-09-30 2000-04-11 Nitto Boseki Co Ltd 偏平ガラス繊維製造用ノズルチップ及びガラス繊維
JP2003048740A (ja) * 2001-08-06 2003-02-21 Nitto Boseki Co Ltd ノズルチップ製造方法及びブッシング製造方法
JP2003267746A (ja) * 2002-03-15 2003-09-25 Paramount Glass Kogyo Kk ガラス繊維製造方法および同製造装置
CN201990594U (zh) * 2010-11-29 2011-09-28 重庆国际复合材料有限公司 一种玻璃纤维拉丝用漏板
CN103193384A (zh) * 2013-04-18 2013-07-10 重庆国际复合材料有限公司 扁平玻璃纤维拉丝用漏板及其漏嘴和扁平玻璃纤维丝束
CN106242266A (zh) * 2016-08-25 2016-12-21 巨石集团有限公司 用于短切玻璃纤维生产的漏板及短切玻璃纤维生产方法
CN110337422A (zh) * 2017-02-28 2019-10-15 中央硝子株式会社 用于制造玻璃纤维的嘴头和玻璃纤维的制造方法
CN210140530U (zh) * 2019-06-22 2020-03-13 山东九鼎新材料有限公司 一种玻璃纤维铂金漏板漏嘴的保护装置
CN211497394U (zh) * 2019-11-28 2020-09-15 内江华原电子材料有限公司 一种玻璃纤维漏板装置
KR102300520B1 (ko) * 2020-05-28 2021-09-09 (주)탑아이엔디 탄소섬유 프리폼의 wcm용 금형장치
CN111925114A (zh) * 2020-07-15 2020-11-13 巨石集团有限公司 一种用于大定重纱筒的四分拉生产装置及工艺
CN213680405U (zh) * 2020-11-02 2021-07-13 河南光远新材料股份有限公司 一种低介电高温玻璃纤维拉丝用漏板

Also Published As

Publication number Publication date
US20230250008A1 (en) 2023-08-10
CN113979632A (zh) 2022-01-28
JP2024501396A (ja) 2024-01-12

Similar Documents

Publication Publication Date Title
CN102153277B (zh) 一种制备电子级细纱的漏板及电子级细纱制备方法
CN212128351U (zh) 一种生产熔喷布用熔喷喷丝板
CN111850713A (zh) 一种制备超细纤维的分体式双槽熔喷模头
CN113373593A (zh) 一种双排孔喷头的熔喷布模具
WO2023092699A1 (zh) 一种玻璃纤维漏嘴结构、漏板和生产装置
CN202318887U (zh) 塑料管材定径套
CN209257506U (zh) 楔形导光板生产设备
CN102503117A (zh) 一种制备电子级细纱的漏板及电子级细纱制备方法
JP2000335932A (ja) 扁平ガラス繊維紡糸用ノズルチップ及び製造装置
CN102515505B (zh) 一种扁平纤维拉丝设备及拉丝工艺
CN115652452A (zh) 一种高强聚乙烯纤维熔融纺丝节能生产方法及装置
CN211165235U (zh) 一种免调挤压式模具
CN207586487U (zh) 加强微型气吹光纤单元
CN112174514A (zh) 一种扁平玻纤成型用铂金漏板
JPH06234540A (ja) オリフィスプレート及び非円形断面ガラス繊維
TW202204134A (zh) 一種纖維複合材料的製造設備
JP2003048742A (ja) ノズルチップ及びブッシング
CN107399068B (zh) 一种自承式空中配线引入光纤带光缆成型模具
JP5537278B2 (ja) ガラス板、プレス成形用素材、光学素子、薄板ガラスそれぞれの製造方法
CN102153278B (zh) 一种制备工业级细纱的漏板及工业级细纱制备方法
US5979192A (en) Fin blade assembly
WO2021256143A1 (ja) 異形断面ガラス繊維用ノズル、及び、異形断面ガラス繊維の製造方法
JP2000344541A (ja) 異形断面ガラス繊維紡糸用ノズルチップ
CN213147119U (zh) 一种玻璃纤维生产用风冷器
WO2022264607A1 (ja) ブッシング、ガラス繊維製造装置、及びガラス繊維製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022552645

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022021414

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022021414

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221021

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923625

Country of ref document: EP

Kind code of ref document: A1