WO2023092585A1 - 一种光固化3d打印件及其在发泡材料中的应用 - Google Patents

一种光固化3d打印件及其在发泡材料中的应用 Download PDF

Info

Publication number
WO2023092585A1
WO2023092585A1 PCT/CN2021/134097 CN2021134097W WO2023092585A1 WO 2023092585 A1 WO2023092585 A1 WO 2023092585A1 CN 2021134097 W CN2021134097 W CN 2021134097W WO 2023092585 A1 WO2023092585 A1 WO 2023092585A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam material
porous foam
printed part
pressure
scale porous
Prior art date
Application number
PCT/CN2021/134097
Other languages
English (en)
French (fr)
Inventor
彭枢强
吴立新
翁子骧
郑龙辉
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Priority to PCT/CN2021/134097 priority Critical patent/WO2023092585A1/zh
Publication of WO2023092585A1 publication Critical patent/WO2023092585A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent

Definitions

  • the invention relates to the field of polymer materials, in particular to a light-cured 3D printed part and its application in foaming materials.
  • Multiscale porous materials have been developed rapidly in different fields due to their light weight, high load-bearing strength to mass ratio, low thermal conductivity, large impact energy dissipation, and good resilience.
  • Such multiscale porous materials are widely used in cushioning pads, membranes in separation processes, bioscaffolds, electromagnetic wave management, catalysis, and porous electrodes in the electronics and microelectronics industries.
  • porous materials prepared based on high-pressure fluid physical foaming technology have many advantages such as small cell size, high cell density, environmental protection, and controllable expansion ratio, and are an important method for preparing microporous polymers.
  • 3D printing can quickly realize the construction of different complex structures, and obtain materials with controllable shape and adjustable properties. This technology has the characteristics of high automation, high efficiency and personalized customization.
  • Current patent documents CN106493968A and CN110193931A disclose the combination of nozzle-based fused deposition 3D printing technology (FDM-3D) and high-pressure fluid technology to produce foamed products.
  • FDM-3D printing technology uses thermoplastic polymer filaments as raw materials, melts and extrudes through heating nozzles, and deposits molten filaments layer by layer to construct three-dimensional structural objects. This layer-by-layer deposition and solidification method does not form chemical crosslinks between layers, resulting in weak interlayer bonding and poor interlayer mechanical properties of foamed products, which limits practical applications.
  • light-curing 3D printing technology is also a widely popular 3D printing technology at present.
  • This technology has the advantages of short manufacturing cycle and high molding accuracy.
  • the light is exposed on the surface of the photosensitive resin according to the information of each layered section of the part, and the thin layer of the resin in the irradiated area undergoes photopolymerization and solidifies to form a thin layer.
  • the workbench moves a certain distance of layer thickness, and new liquid resin is replenished into the gap for exposure and curing of the next layer.
  • the resin of the new cured layer reacts with the resin of the previous layer during curing to form a chemical cross-linked network, which is firmly bonded to the previous layer, and so on until The whole part is manufactured. Therefore, the mechanical properties between the layers of the light-curing 3D printing process are far superior to the FDM-3D processing technology, and secondly, the printing resolution and surface fineness of the light-curing 3D printing process are higher than those of the FDM-3D printing.
  • light-curable 3D printing materials are mostly unsaturated resins. Under the irradiation of light of a certain wavelength, the photoinitiator absorbs light energy to form active free radicals or cations, triggering the formation of polyfunctional groups (mainly double bonds, epoxy groups). Group) of resin polymerized to form a three-dimensional network of polymers.
  • polyfunctional groups mainly double bonds, epoxy groups.
  • Group of resin polymerized to form a three-dimensional network of polymers.
  • the high-pressure fluid used for foam molding it is difficult for the high-pressure fluid used for foam molding to dissolve into the polymer material to form a foam material, so It is difficult to use photocurable 3D printing materials in the production of foam materials.
  • the present invention provides a light-cured 3D printed part, which is an elastomer obtained by light-cured 3D printing, has a low crosslinking density, and a glass transition temperature lower than 30°C.
  • the present invention also provides a method for preparing a multi-scale porous foamed material by using the photocured 3D printed part, and the multi-scale porous foamed material obtained by the preparation method, the foamed material has good tensile strength Performance, foamability, resilience and surface smoothness.
  • the invention provides a light-cured 3D printed part, which is an elastomer obtained by light-cured 3D printing, with a cross-linking density of 0.001-10 mmol/cm 3 and a glass transition temperature lower than 30°C.
  • the photocurable 3D printed part of the present invention can be obtained from a photosensitive resin composition, specifically, obtained by curing and molding the photosensitive resin composition using a photocurable 3D printing device.
  • the photosensitive resin composition comprises a high molecular weight oligomer, a monomer, and a photoinitiator, wherein the number average molecular weight of the high molecular weight oligomer is 3500-100000 g/mol.
  • a reversible covalent bond can optionally be introduced into the molecular segment of the high-molecular-weight oligomer, and the reversible covalent bond is broken during the subsequent high-temperature and high-pressure foaming process for preparing the foaming material , so that the polymer network forms a thermoplastic network, which can better dissolve the high-pressure fluid into the polymer network, so that the foaming effect is better.
  • the reversible covalent bond may be a reversible disulfide bond, hindered hydrogen bond, boron-oxygen bond, imine bond, Diels-Alder bond, dynamic acylhydrazone bond, oxime-urethane bond, etc. covalent bond.
  • the reversible covalent bond may be introduced into the high molecular weight oligomer by reacting a compound having the above reversible covalent bond and having an amino group or a hydroxyl group on a molecular end group with isocyanate.
  • the number average molecular weight of the high molecular weight oligomer is preferably 6000-80000 g/mol, more preferably 8000-60000 g/mol.
  • the number average molecular weight is measured using gel permeation chromatography (GPC).
  • the high molecular weight oligomer can be selected from polyurethane (meth)acrylate oligomers, polyurea (meth)acrylate oligomers, polyurea polyurethane (meth)acrylate , one or more of vinyl-terminated polydimethylsiloxanes.
  • the polyurethane (meth)acrylate oligomer can be reacted with polyol and isocyanate first, then add the chain extender of polyol, and then connect acrylic group or methyl group on the end group Acrylate based.
  • the urethane (meth)acrylate oligomer can be obtained by first reacting polyol and isocyanate, and then attaching an acrylic group or a methacrylate group to the end group.
  • the polyurethane (meth)acrylate oligomer can be obtained by reacting high molecular weight polyol with isocyanoethyl methacrylate.
  • the polyurea (meth)acrylate can be first reacted by polyether amine and isocyanic acid, and then a polyamine chain extender is added, and then an acrylic acid group or formaldehyde is connected on the end group. derived from acrylate groups.
  • the polyurea (meth)acrylate can be obtained by first reacting polyetheramine with isocyanic acid, and then attaching an acrylic group or a methacrylate group to the end group.
  • the polyurea (meth)acrylate oligomer can be obtained by reacting high molecular weight polyetheramine with isocyanoethyl methacrylate.
  • the polyurea polyurethane (meth)acrylate oligomer refers to the oligomer containing polyurethane structure and polyurea structure.
  • the isocyanate can be selected from diphenylmethane diisocyanate, isocyanoethyl methacrylate, toluene diisocyanate, hydrogenated phenylmethane diisocyanate, isophorone diisocyanate, hexamethylene At least one of diisocyanate, p-phenylene diisocyanate, trimethyl-1,6-hexamethylene diisocyanate, and naphthalene diisocyanate.
  • the soft segment polyol may be at least one selected from polyether polyol, polyester polyol, polyolefin polyol, and polydimethylsiloxane polyol.
  • the polyether polyol may be selected from the group consisting of polytetrahydrofuran diol, polypropylene glycol, polytetrahydrofuran and propylene oxide and/or ethylene oxide to form dibasic or tribasic copolymerized polyether diols , At least one of polytrimethylene ether glycol.
  • the polyester polyol may be at least one selected from polycaprolactone diol and polyethylene adipate diol.
  • the chain extender may be selected from polyols, diamines, alcohol amines and the like.
  • the polyol chain extender may be selected from 1,4-butanediol, trimethylolpropane, glycerol, ethylene glycol, propylene glycol, diethylene glycol, At least one of neopentyl glycol, 1,4-cyclohexanediol, and hydrogenated bisphenol A.
  • the diamine chain extender may be selected from 3,5-dimethylthiotoluenediamine, 2,4-diamino-3,5-dimethylthiochlorobenzene at least one of .
  • the monomer may be a monofunctional monomer, or a low-viscosity multifunctional monomer, specifically, it may be selected from cyclotrimethylolpropane formal acrylate, ethyl Oxyethoxyethyl Acrylate, Acryloyl Morpholine, Butyl Acrylate, Isobornyl Acrylate, Isobornyl Methacrylate, 2-(tert-Butylamino) Ethyl Methacrylate, Tetrahydrofuran Acrylate, Acrylic Acid Hydroxyethyl Ester, Hydroxyethyl Methacrylate, Lauryl Acrylate, Isooctyl Acrylate, Tripropylene Glycol Diacrylate, 3-Ethoxylated Trimethylolpropane Triacrylate, Trimethylolpropane Triethoxy Acrylate At least one of ester, ethoxylated pentaerythritol tetraacrylate, 1,6
  • the monomer may also include a polyfunctional mercapto compound, which is not particularly limited and may be selected from, for example, trimethylolpropane tris(3-mercaptopropionate), tetrakis(3-mercaptopropionate), One or more of pentaerythritol mercaptopropionate, (mercapto)propylmethylsiloxane, and pentaerythritol tetrakis(3-mercaptobutyrate).
  • a polyfunctional mercapto compound which is not particularly limited and may be selected from, for example, trimethylolpropane tris(3-mercaptopropionate), tetrakis(3-mercaptopropionate), One or more of pentaerythritol mercaptopropionate, (mercapto)propylmethylsiloxane, and pentaerythritol tetrakis(3-mercaptobutyrate).
  • the photoinitiator is a free radical initiator, which can be selected from 1-hydroxycyclohexyl phenyl ketone, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide , 2,4,6-trimethylbenzoyl-ethoxy-phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6- Ethyl trimethylbenzoylphosphonate, 2,2-dimethoxy-1,2-diphenylethanone, 2-ethyloctyl-4-dimethylaminobenzoate, 4- Dimethylamino-ethyl benzoate, 2-hydroxy-2-methyl-1-phenyl-1-propanone, 2-methyl-1-(4-methylthiophenyl)-2-morpholinyl- At least one of 1-acetone, ethyl 2,4,6-trimethylbenzoylphenylphosphonate, camphorquinone,
  • the parts by weight of the components in the photosensitive resin composition are: 1-98 parts of high molecular weight oligomer, 1-98 parts of monomer, and 0.3-15 parts of photoinitiator.
  • the photosensitive resin composition may further include a matting agent.
  • the matting agent may be at least one selected from Sudan Red I, Sudan Red III, BASF Oliver Orange, and optical brightener OB.
  • the photosensitive resin composition may further include a leveling agent.
  • the parts by weight of the components in the photosensitive resin composition are: 1-95 parts of high molecular weight oligomers, 1-98 parts of monomers, 0.3-15 parts of photoinitiators, and 0.02 parts of matting agents. ⁇ 0.5 parts, leveling agent 0.02 ⁇ 3 parts.
  • the photosensitive resin composition is used in photocuring 3D printing, specifically, the photosensitive resin composition is used in photocuring stereolithography (SLA), digital projection processing (DLP) Printing, desktop liquid crystal (LCD) printing, continuous liquid interface (CLIP) printing, two-photon 3D printer, multi-material 3D printing.
  • SLA photocuring stereolithography
  • DLP digital projection processing
  • LCD desktop liquid crystal
  • CLIP continuous liquid interface
  • photocuring 3D printing can be carried out under the following conditions: put the photosensitive resin composition into a photocuring 3D printer, perform 3D printing under optional heating conditions, and then perform post-curing treatment to obtain Light-cured 3D prints.
  • heating can be carried out during the photocuring 3D printing process, and the heating can reduce the viscosity of the resin composition so that the printing can be carried out more smoothly.
  • the heating temperature may be 25°C to 80°C.
  • the post-curing treatment may be performed under an ultraviolet lamp.
  • the crosslink density of the photocurable 3D printed part of the present invention is 0.001-10 mmol/cm 3 , preferably 0.002-6 mmol/cm 3 , more preferably 0.004-2 mmol/cm 3 .
  • the crosslink density of the photocured 3D printed part of the present invention By limiting the crosslink density of the photocured 3D printed part of the present invention to the above-mentioned range, in the subsequent process of preparing the foam material by placing it in a high-pressure container and injecting a high-pressure fluid, due to the use of photocured 3D printing to obtain
  • the cross-linking density of the elastomer is low, so that the high-pressure fluid can fully diffuse and dissolve in the elastomer material, thereby forming a homogeneous system of polymer/gas; then a supersaturated system is obtained with rapid pressure drop or rapid temperature rise as the driving force , triggering the nucleation of the homogeneous system; under the action of the driving force, the nuclei grow, and with the disappearance of the driving force and the decrease of the temperature of the polymer matrix, a multi-scale porous material is obtained.
  • the crosslink density is measured by the equilibrium swelling method.
  • the glass transition temperature of the photocurable 3D printed part of the present invention is lower than 30°C, preferably lower than 10°C, more preferably lower than 0°C.
  • glass transition temperature is according to GB/T 19466.2-2004 standard, adopts differential scanning calorimetry (DSC) to measure.
  • the Shore hardness of the light-cured 3D printed part of the present invention is 20A-50D, preferably 30A-80A, more preferably 40A-70A.
  • the Shore hardness is measured according to the American Society for Experimental Materials standard ASTM D1415 method.
  • the tensile strength of the light-cured 3D printed part of the present invention is 0.5-30 MPa, preferably 2-20 MPa, more preferably 2.5-10 MPa.
  • the elongation at break of the light-cured 3D printed part of the present invention is 100%-1200%, preferably 200%-1000%.
  • the tensile strength and elongation at break of the light-cured 3D printed part before foaming are measured according to the method of the American Society for Experimental Materials standard ASTM D412.
  • the resilience of the light-cured 3D printed part of the present invention is 20%-80%, preferably 30%-70%.
  • resilience is measured according to the method of American Society for Experimental Materials standard ASTM D2632-2015.
  • the present invention also provides a method for preparing a multi-scale porous foam material by using the photo-cured 3D printed part, which includes the following steps: putting the photo-cured 3D printed part into a high-pressure container, injecting gas for high-pressure impregnation , and then quickly release the pressure to normal pressure to obtain a multi-scale porous foam material.
  • rapidly pressure relief means that the pressure on the object is released from high pressure to normal pressure or ambient pressure in a short period of time, and the average pressure relief rate of rapid pressure relief is greater than 2.5MPa/s, such as greater than 5MPa/s, Greater than 8MPa/s, greater than 9MPa/s.
  • multi-scale porous refers to the printing parts obtained by the photocuring 3D printing process, after high-pressure fluid impregnation and foaming, the micron is formed in the porous structure of the printed parts itself. Scale microporous structure.
  • the light-cured 3D printed part is placed in a high-pressure container, and gas is injected.
  • the gas is fully diffused in the printed part as a fluid under high pressure to form a homogeneous system. After a period of high-pressure impregnation, it quickly Release the pressure to normal pressure and take out the product to obtain a product with a multi-scale porous structure.
  • the preparation of the article takes place without moulds.
  • the high-pressure impregnation can be performed under heating, and the heating temperature is 10-180°C higher than the glass transition temperature of the photocurable 3D printed part, preferably 50-150°C higher.
  • the high-pressure impregnation can also be carried out without heating. After the light-cured 3D printed part is quickly depressurized, it is immediately taken out and put into In hot water at 20-200°C. In this way, the 3D printed part can be softened, making it easier for the gas to foam during the diffusion process.
  • the photocured 3D printed part when the high-pressure impregnation is carried out without heating, can also be quickly depressurized, taken out immediately, and heated in a microwave oven. In this way, after rapid heating in a microwave oven, the 3D printed part softens and can form larger cells.
  • the gas may be at least one of carbon dioxide, nitrogen, methane, butane, methanol, ethanol, and water (steam).
  • the pressure of the high-pressure impregnation may be 1 MPa-40 MPa, preferably 2 MPa-30 MPa, more preferably 3 MPa-25 MPa.
  • the time of the high-pressure impregnation can be appropriately selected according to needs, and can be 0.5-36 hours, preferably 1-24 hours, more preferably 2-12 hours.
  • the present invention also provides a multi-scale porous foam material obtained by the preparation method of the multi-scale porous foam material.
  • the tensile strength of the multi-scale porous foam material of the present invention is 0.2-25 MPa, preferably 1-15 MPa, more preferably 2-10 MPa.
  • the elongation at break of the multi-scale porous foam material of the present invention is 250%-1500%, preferably 300%-1000%.
  • the tensile properties of the foamed samples are measured according to the method of GB/T6344-96.
  • the foaming density of the multi-scale porous foam material of the present invention is 0.11-0.95 g/cm 3 , preferably 0.15-0.75 g/cm 3 , more preferably 0.2-0.5 g/cm 3 .
  • the foaming density ⁇ f is measured according to the American Society for Experimental Materials standard ASTM D792-2008.
  • W1 is the mass of the foamed sample in the air
  • W2 is the weight of the metal ball that immerses the foamed sample in water
  • W3 is the mass of the foamed sample in water.
  • the expansion ratio of the multi-scale porous foam material of the present invention is 1.3-10, preferably 1.5-5.
  • n represents the foaming ratio of the printed sample
  • ⁇ p represents the density of the sample before foaming
  • ⁇ f represents the density of the sample after foaming.
  • the multi-scale porous foam material of the present invention has good resilience. Specifically, the resilience of the multi-scale porous foamed material of the present invention is 25% to 80%, preferably 30% to 70%.
  • the photosensitive resin composition comprising high-molecular-weight oligomers provided by the present invention forms polymers with low crosslink density during the photocuring 3D printing process, which provides enough free volume space in the structure, so that the high-pressure fluid can fully Diffusion in the printed polymer, and then rapidly decompressed to form a cellular structure.
  • the invention overcomes the problem that traditional light-cured 3D printing materials cannot be foamed, and can realize the design and control of the hierarchical structure of foamed materials.
  • the present invention utilizes light-curing 3D printing technology, there is covalent chemical cross-linking between layers, and the bonding force between layers is strong.
  • the mechanical properties between layers of products foamed by high-pressure fluid are much better than those of FDM- 3D printing thermoplastic materials.
  • Light-curing 3D printing has high precision and good surface quality.
  • the product foamed by high-pressure fluid only forms a cell structure inside, and the surface of the product can maintain high-precision details and smoothness.
  • the present invention provides high-molecular-weight oligomers including polyurethane (meth)acrylate, polyurea (meth)acrylate, etc., which form elastomer materials after printing, and form multi-scale porous products under the action of high-pressure fluid. It has the characteristics of low density and high rebound rate.
  • the foaming device of the present invention is simple, and only needs a closed container. After the light-cured 3D printing part is put into the container with or without heating the container, the gas can be injected into the container to allow the gas to penetrate into the container. After immersing the printed part for a certain period of time, take out the sample to obtain a product with a multi-scale porous structure.
  • the equipment is simple, the operation is easy, no additional chemical foaming agent is required, and it is environmentally friendly.
  • the foaming is carried out in the foaming device, the shape of the finished product does not need to be defined by a mold, thereby greatly reducing the production cost.
  • FIG. 1 is a schematic flow diagram of the method involved in Embodiment 1 of the present invention.
  • Fig. 2 is the physical photo before and after foaming of the printed part prepared in Example 1 of the present invention
  • Fig. 3 is a scanning electron microscope image of the section of the foamed printed part prepared in Example 1 of the present invention.
  • Fig. 4 is a scanning electron micrograph of the section after foaming of the printed part prepared in Example 4 of the present invention.
  • Fig. 5 is the glass transition temperature measurement curve of the DLP print of Example 1 of the present invention.
  • Fig. 6 is a photograph of the actual object after foaming of the FDM printed product in Comparative Example 2 of the present invention.
  • Photocuring 3D printing high molecular weight polyurea acrylate oligomer 1 (60g), 4-acryloylmorpholine (40g), 2,4,6-trimethylbenzoyl-ethoxy-phenyl oxide Phosphine (2.5 g) was stirred evenly at 60° C., and stirred with a planetary mixer for 10 minutes to obtain a clear liquid. Put the obtained liquid into a digital light processing (DLP) 3D printer, perform 3D printing at a temperature of 25°C, print out a printed part with a frame structure, and then perform post-curing treatment under an ultraviolet lamp to obtain a light-cured 3D printed part 1. Its performance data are shown in Table 1.
  • DLP digital light processing
  • Foam molding put the above-mentioned light-cured 3D printed part 1 into the autoclave, inject CO 2 gas at a temperature of 60°C, adjust the pressure to 10MPa, let the CO 2 gas completely immerse the printed part for 1 hour, and then quickly release the pressure.
  • the average pressure release rate was 10MPa/s, and the product was taken out to obtain a multi-scale porous foam material 1, whose performance data are shown in Table 1.
  • Photocuring 3D printing high molecular weight urethane acrylate oligomer 2 (50g), lauryl acrylate (50g), 2,4,6-trimethylbenzoylphenylphosphonic acid ethyl ester (3g) at 60°C After stirring evenly, stir with a planetary mixer for 5 minutes to obtain a clear liquid. Put the obtained liquid into a digital light processing (DLP) 3D printer for 3D printing, print out a printed part with a frame structure, and then perform post-curing treatment in an ultraviolet lamp to obtain a light-cured 3D printed part 2, and its performance data are shown in Table 1 shown.
  • DLP digital light processing
  • Foam molding Put the above-mentioned light-cured 3D printed part 2 into the autoclave, inject CO 2 gas at a temperature of 50°C, adjust the pressure to 5MPa, let the CO 2 gas completely immerse the printed part for 0.5h, and then quickly release the pressure , the average pressure release rate was 9.5MPa/s, the product was taken out, and the multi-scale porous foam material 2 was obtained, and its performance data are shown in Table 1.
  • Photocuring 3D printing high molecular weight polyurethane acrylate oligomer 3 (80g), acryloylmorpholine (40g), 2,4,6-trimethylbenzoylphenylphosphonic acid ethyl ester (3g) at 80 After stirring evenly at °C, stir with a planetary mixer for 5 minutes to obtain a clear liquid. Put the obtained liquid into a stereolithography (SLA) 3D printer, 3D print at a temperature of 60°C, print out a printed part with a frame structure, and then perform post-curing treatment under an ultraviolet lamp, and then heat and anneal to obtain The performance data of photocuring 3D printed part 3 are shown in Table 1.
  • SLA stereolithography
  • Foam molding put the above-mentioned light-cured 3D printed part 3 into the autoclave, inject CO 2 gas at a temperature of 110°C, adjust the pressure to 15MPa, let the CO 2 gas completely immerse the printed part for 3 hours, and then quickly release the pressure.
  • the average pressure release rate was 12MPa/s, and the product was taken out to obtain a multi-scale porous foam material 3, whose performance data are shown in Table 1.
  • Photocuring 3D printing High molecular weight polyurethane acrylate oligomer 4 (80g), acryloylmorpholine (40g), isobornyl acrylate (10g), 2,4,6-trimethylbenzoylphenylphosphine Acetate ethyl ester (3g), after stirring at 80°C, stir with planetary mixer for 5min to obtain a clear liquid. Put the obtained liquid into a digital light processing (DLP) 3D printer, perform 3D printing at a temperature of 45°C, print out a printed part with a frame structure, and then perform post-curing treatment under an ultraviolet lamp to obtain a light-cured 3D printed part 4. Its performance data are shown in Table 1.
  • DLP digital light processing
  • Foam molding put the above-mentioned light-cured 3D printed part 4 into the autoclave, inject CO 2 gas at a temperature of 100°C, adjust the pressure to 20MPa, let the CO 2 gas completely immerse the printed part for 3 hours, and then quickly release the pressure, The average pressure release rate was 12MPa/s, and the product was taken out to obtain a multi-scale porous foam material 4, whose performance data are shown in Table 1.
  • Vinyl-terminated polydimethylsiloxane (CAS number: 68083-19-2, purchased from Sigma-Aldrich Company) with a molecular weight of 25000 g/mol was selected as the high molecular weight oligomer.
  • Photocuring 3D printing Vinyl-terminated polydimethylsiloxane (100g), (mercapto)propylmethylsiloxane (20g), trimethylolpropane tris(3-mercaptopropionate) ( 15g), 2,4,6-trimethylbenzoylphenyl phosphonic acid ethyl ester (3g), after stirring at 50°C, stir with a planetary mixer for 5min to obtain a clear liquid.
  • Foam molding put the above-mentioned light-cured 3D printed part 5 into the autoclave, inject N2 gas at a temperature of 50 ° C, adjust the pressure to 15 MPa, let the N2 gas completely immerse the printed part for 5 hours, and then quickly release the pressure.
  • the average pressure release rate was 9MPa/s, and the product was taken out to obtain a multi-scale porous foam material 5, whose performance data are shown in Table 1.
  • Light-curing 3D printing high molecular weight polyurethane polyurea acrylate oligomer 6 (80g), butyl acrylate (40g), 2,4,6-trimethylbenzoylphenyl phosphonic acid ethyl ester (3g) in After stirring evenly at 80°C, stir with a planetary mixer for 5 minutes to obtain a clear liquid. Put the obtained liquid into a DLP-3D printer, and perform 3D printing at a temperature of 30°C to print a printed part with a frame structure, and then perform post-irradiation treatment under an ultraviolet lamp to obtain a light-cured 3D printed part 6. Its performance The data are shown in Table 1.
  • Foam molding put the above-mentioned light-cured 3D printed part 6 into the autoclave, inject CO2 gas, adjust the pressure to 12MPa, let the CO2 gas completely immerse the printed part for 4 hours, and then quickly release the pressure, with an average pressure release rate of 10MPa /s, take out the product, put it into hot water at 100°C for foaming, and obtain multi-scale porous foamed material 6, and its performance data are shown in Table 1.
  • Photocuring 3D printing bisphenol A glycerol dimethacrylate (80g) (number average molecular weight is 512g/mol), isobornyl acrylate (17g), 2,4,6-trimethylbenzoyl Ethyl phenylphosphonate (3 g) was stirred evenly at 80° C., then stirred with a planetary mixer for 5 min to obtain a clear liquid. Put the obtained liquid into a digital light processing (DLP) 3D printer, and perform 3D printing at a temperature of 60°C to print out a printed part with a frame structure, and then perform post-curing treatment under an ultraviolet lamp to obtain a comparative light-cured 3D print Part 1, its performance data are shown in Table 1.
  • DLP digital light processing
  • Foam molding put the above comparative light-cured 3D printed part 1 into the autoclave, inject CO 2 gas at a temperature of 120°C, adjust the pressure to 15MPa, let the CO 2 gas completely immerse the printed part for 3 hours, and then quickly vent Pressure, the average pressure release rate is 12MPa/s, take out the product, due to the high cross-linking density, CO2 is difficult to impregnate into the molecule, can not foam, keep the original shape, its performance data are shown in Table 1.
  • FDM-3D printing choose thermoplastic polyurethane wire TPU, 85A, purchased from Shenzhen Guanghua Weiye Co., Ltd., use FDM printer, print with nozzle temperature at 250°C, printing speed at 60mm/s, and filling rate at 50%. FDM-3D print 1.
  • Foam molding Put the above FDM-3D printed part 1 into the autoclave, inject CO2 gas at a temperature of 80 °C, adjust the pressure to 12MPa, let the CO2 gas completely immerse the printed part for 2 hours, and then quickly release the pressure , the average pressure relief rate is 12MPa/s, the product is taken out, and the comparison foam material is obtained. Due to the use of thermoplastic materials for printing, the layers are physically bonded during the printing process, and the bonding force between layers is weak. , easy to produce cracks, resulting in mechanical decline, and its performance data are shown in Table 1.
  • Cross-link density The cross-link density was tested by the equilibrium swelling method.
  • Tensile strength/elongation at break of the sample after foaming measure the tensile properties and elongation at break of the sample according to the method of GB/T6344-96.
  • Foaming density ⁇ f The foaming density ⁇ f of the test sample according to the American Society for Experimental Materials standard ASTM D792-2008.
  • W1 is the mass of the foamed sample in the air
  • W2 is the weight of the metal ball that immerses the foamed sample in water
  • W3 is the mass of the foamed sample in water.
  • n the foaming ratio of the printed sample
  • ⁇ p the density of the sample before foaming
  • ⁇ f the density of the sample after foaming.
  • Example 1 Compared Example 1 with Example 4, it can be seen that the introduction of reversible covalent bonds into the high molecular weight oligomer can make the light-cured 3D printed part form a thermoplastic material, and the gas is easier to foam. It can be seen from the electron microscope photos that larger spherical foaming pores are formed (comparison of Figure 4 and Figure 3), thereby increasing the foaming ratio and resilience.
  • the photosensitive resin composition used in Comparative Example 1 contained high-molecular-weight oligomers whose molecular weight did not fall within the scope of the present invention, so that the glass transition of the photocured 3D printed parts prepared from the photosensitive resin composition The temperature is high and the cross-linking density is high, so it cannot be foamed.
  • Comparative example 2 adopts the FDM-3D printing process. It can be seen from Figure 6 that there are obvious cracks between the layers of the material after foaming. Weak, resulting in a significant decline in the mechanical properties of the foamed material. In contrast, since the foaming material of the present invention adopts the light-curing 3D printing process, there are covalent bond crosslinks between the layers, and the layers will not expand and break during the foaming process. Therefore, the obtained printed The mechanical properties of the parts and their foaming materials are far superior to the FDM-3D printing process, and the surface fineness is also significantly higher than that of the FDM-3D printing process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种光固化3D打印件及其在发泡材料中的应用。本发明的光固化3D打印件是通过光固化3D打印得到的弹性体,该光固化3D打印件的交联密度为0.001~10mmol/cm3,且玻璃化转变温度低于30℃。

Description

一种光固化3D打印件及其在发泡材料中的应用 技术领域
本发明涉及高分子材料领域,具体而言涉及一种光固化3D打印件及其在发泡材料中的应用。
背景技术
多尺度多孔材料由于其质量轻、承载强度与质量比高、导热系数低、冲击能量耗散大、回弹性好等优点,在不同领域得到了迅猛发展。这种多尺度多孔材料被广泛应用在缓冲垫、分离过程中的膜、生物支架、电磁波管理、催化以及电子和微电子工业的多孔电极等方面。近年来,基于高压流体物理发泡技术制备的多孔材料,具有泡孔尺寸小、泡孔密度高、绿色环保、发泡倍率可控等诸多优点,是制备微孔聚合物的重要方法。为了使这些聚合物发泡材料具有宏观的三维结构,通常需要借助模具,所需开模费用高,开发周期长,其受限于开模和加工工艺的限制,很难实现复杂多孔结构的构建。
3D打印可快速实现不同复杂结构的构建,得到形状可控、性能可调的材料,该技术具有自动化程度高、效率高和个性化定制等特性。目前专利文献CN106493968A和CN110193931A等公开了基于喷嘴式的熔融沉积3D打印技术(FDM-3D)与高压流体技术相结合生产发泡产品。FDM-3D打印技术是以热塑性聚合物丝材为原料,通过加热喷头熔化挤出,并逐层沉积熔融态的丝材来构建三维结构物体的加工方式。这种逐层沉积凝固的方式,层与层之间没有形成化学交联,造成层间结合力弱,发泡制品的层间力学性能差,限制了实际的应用。
除FDM-3D打印技术外,光固化3D打印技术也是目前广泛流行的3D打印技 术,该技术具有制造周期短,成型精度高的优势。光按照零件的各分层截面信息在光敏树脂表面曝光,被照射区域的树脂薄层产生光聚合反应而固化,形成一个薄层。工作台移动一定层厚的距离,新的液态树脂补充到空隙中,进行下一层的曝光固化。由于前一层表面含有未反应完全的单体,新固化层的树脂在固化时又与前一层的树脂进行反应,形成化学交联网络,牢固地粘结在前一层上,如此反复直到整个零件制造完成。因此,光固化3D打印工艺的层间的力学性能远优于FDM-3D的加工工艺,其次光固化3D打印工艺的打印分辨率和表面精细度都高于FDM-3D打印。
一般而言,光固化3D打印材料多为不饱和树脂,在一定波长的光照射下,光引发剂吸收光能,形成活性自由基或阳离子,引发含多官能团(主要为双键,环氧基团)的树脂发生聚合而形成三维网状的聚合物。然而,由于所形成的聚合物的交联密度大,玻璃化转变温度高,结构的自由体积空间小,用于发泡成型的高压流体很难溶进聚合物材料中来形成发泡材料,因此难以将光固化3D打印材料用于发泡材料的制作中。
发明内容
为改善上述技术问题,本发明提供一种光固化3D打印件,其是通过光固化3D打印得到的弹性体,其交联密度低,玻璃转变温度低于30℃。此外,本发明还提供一种使用所述光固化3D打印件来制备多尺度多孔发泡材料的方法、以及利用该制备方法得到的多尺度多孔发泡材料,该发泡材料具有良好的拉伸性能、发泡性、回弹性和表面平滑性。
本发明提供一种光固化3D打印件,其是通过光固化3D打印得到的弹性体,其交联密度为0.001~10mmol/cm 3,且玻璃化转变温度低于30℃。
根据本发明的实施方案,本发明的光固化3D打印件可以由光敏树脂组合物得到,具体而言,通过利用光固化3D打印设备对光敏树脂组合物进行固化成型而获得。所述光敏树脂组合物包含高分子量低聚物、单体、和光引发剂,其中, 所述高分子量低聚物的数均分子量为3500~100000g/mol。
根据本发明的实施方案,所述高分子量低聚物的分子链段中可以任选地引入可逆共价键,在后续制备发泡材料的高温高压的发泡过程中,该可逆共价键断裂,使得聚合物网络形成类热塑性网络,能够让高压流体更好地溶进聚合物网络,从而发泡的效果更好。
根据本发明的实施方案,所述可逆共价键可以为双硫键、受阻氨键、硼氧键、亚胺键、Diels-Alder键、动态酰腙键、肟-氨基甲酸酯键等可逆共价键。
根据本发明的实施方案,所述可逆共价键可以通过使具有上述可逆共价键且在分子端基上具有氨基或者羟基的化合物与异氰酸酯反应而引入到所述高分子量低聚物中。
根据本发明的实施方案,所述高分子量低聚物的数均分子量优选为6000~80000g/mol,更优选为8000~60000g/mol。
需要说明的是,在本发明中,数均分子量是使用凝胶渗透色谱法(GPC)测定的。
根据本发明的技术方案,所述高分子量低聚物可以为选自聚氨酯(甲基)丙烯酸酯低聚物、聚脲(甲基)丙烯酸酯低聚物、聚脲聚氨酯(甲基)丙烯酸酯、乙烯基封端的聚二甲基硅氧烷中的一种或更多种。
根据本发明的技术方案,所述聚氨酯(甲基)丙烯酸酯低聚物可以由多元醇与异氰酸酯先反应,之后加入多元醇的扩链剂,然后在端基上接上丙烯酸基团或甲基丙烯酸酯基而得。或者所述聚氨酯(甲基)丙烯酸酯低聚物可以由多元醇与异氰酸酯先反应,然后在端基上接上丙烯酸基团或甲基丙烯酸酯基而得。亦或者,所述聚氨酯(甲基)丙烯酸酯低聚物可以由高分子量多元醇与甲基丙烯酸异氰基乙酯反应而得。
根据本发明的技术方案,所述聚脲(甲基)丙烯酸酯可以由聚醚胺与异氰酸先反应,之后加入多元胺的扩链剂,然后在端基上接上丙烯酸基团或甲基丙烯酸酯基而得。或者,所述聚脲(甲基)丙烯酸酯可以由聚醚胺与异氰酸先反 应,然后在端基上接上丙烯酸基团或甲基丙烯酸酯基而得。或者,所述聚脲(甲基)丙烯酸酯低聚物可以由高分子量聚醚胺与甲基丙烯酸异氰基乙酯反应而得。
根据本发明的技术方案,所述聚脲聚氨酯(甲基)丙烯酸酯低聚物,是指低聚物中含有聚氨酯的结构和聚脲的结构。通过选择软段多元醇和聚醚胺的至少一种,然后与异氰酸酯反应,之后加入多元醇或者多元胺类扩链剂的至少一种,然后在端基上接上丙烯酸基团或甲基丙烯酸酯基而得。
根据本发明的技术方案,所述异氰酸酯可以为选自二苯甲烷二异氰酸酯、甲基丙烯酸异氰基乙酯、甲苯二异氰酸酯、氢化苯基甲烷二异氰酸酯、异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、对苯二异氰酸酯、三甲基-1,6-己二异氰酸酯、萘二异氰酸酯中的至少一种。
根据本发明的实施方案,所述软段多元醇可以为选自聚醚多元醇、聚酯多元醇、聚烯烃多元醇、聚二甲基硅氧烷多元醇中的至少一种。
根据本发明的实施方案,所述聚醚多元醇可以为选自聚四氢呋喃二醇、聚丙二醇、聚四氢呋喃与环氧丙烷和/或环氧乙烷形成的二元或三元共聚聚醚二醇、聚三亚甲基醚二醇中的至少一种。
根据本发明的实施方案,所述聚酯多元醇可以为选自聚己内酯二醇、聚己二酸乙二醇酯二元醇中的至少一种。
根据本发明的实施方案,所述扩链剂可以选自多元醇类、二元胺类、醇胺类等。
根据本发明的实施方案,所述多元醇类扩链剂可以为选自1,4-丁二醇、三羟甲基丙烷、丙三醇、乙二醇、丙二醇、一缩二乙二醇、新戊二醇、1,4-环己二醇、氢化双酚A中的至少一种。
根据本发明的实施方案,所述二元胺类扩链剂可以为选自3,5-二甲硫基甲苯二胺、2,4-二氨基-3,5-二甲硫基氯苯中的至少一种。
根据本发明的实施方案,所述单体可以为单官能团单体,也可以是低粘度的多官能团单体,具体而言,可以为选自环三羟甲基丙烷甲缩醛丙烯酸酯、乙 氧基乙氧基乙基丙烯酸酯、丙烯酰吗啉、丙烯酸丁酯、丙烯酸异冰片酯、甲基丙烯酸异冰片酯、2-(叔丁基氨基)甲基丙烯酸乙酯、四氢呋喃丙烯酸酯、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、丙烯酸月桂酯、丙烯酸异辛酯,三丙二醇二丙烯酸酯、3-乙氧化三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷基三乙氧基丙烯酸酯、乙氧化季戊四醇四丙烯酸酯、1,6-己二醇二丙烯酸酯、丙氧化新戊二醇二丙烯酸酯、双酚A二丙烯酸酯、聚乙二醇二丙烯酸酯中的至少一种。
根据本发明的实施方案,所述单体还可以包括多官能团的巯基化合物,没有特别的限定,可以为选自例如,三羟甲基丙烷三(3-巯基丙酸酯)、四(3-巯基丙酸)季戊四醇酯、(巯基)丙基甲基硅氧烷、四(3-巯基丁酸)季戊四醇酯中的一种或更多种。
根据本发明的实施方案,所述光引发剂为自由基引发剂,可以为选自1-羟基环己基苯基甲酮、2,4,6-三甲基苯甲酰基-二苯基氧化膦、2,4,6-三甲基苯甲酰基-乙氧基-苯基氧化膦、双(2,4,6-三甲基苯甲酰基)-苯基氧化膦、2,4,6-三甲基苯甲酰基膦酸乙酯、2,2-二甲氧基-1,2-二苯基乙酮、2-乙基辛基-4-二甲胺基苯甲酸酯、4-二甲氨基-苯甲酸乙酯、2-羟基-2-甲基-1-苯基-1-丙酮、2-甲基-1-(4-甲硫基苯基)-2-吗啉基-1-丙酮、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、樟脑醌、4-二甲氨基苯甲酸乙酯中的至少一种。
根据本发明的实施方案,所述光敏树脂组合物中各组分的重量份为:高分子量低聚物1~98份,单体1~98份,光引发剂0.3~15份。
根据本发明的实施方案,所述光敏树脂组合物还可以包含消光剂。
根据本发明的实施方案,所述消光剂可以为选自苏丹红Ⅰ、苏丹红Ⅲ、巴斯夫奥丽素橙、荧光增白剂OB中的至少一种。
根据本发明的实施方案,所述光敏树脂组合物还可以包含流平剂。
根据本发明的实施方案,所述光敏树脂组合物中各组分的重量份为:高分子量低聚物1~95份,单体1~98份,光引发剂0.3~15份,消光剂0.02~0.5份,流平剂0.02~3份。
根据本发明的实施方案,所述光敏树脂组合物被用于光固化3D打印中,具体而言,所述光敏树脂组合物被用于光固化立体光刻(SLA)、数字投影处理(DLP)打印、桌面级液晶(LCD)打印、连续液态界面(CLIP)打印、双光子3D打印机、多材料3D打印中。
根据本发明的实施方案,光固化3D打印可以在如下的条件下进行:将光敏树脂组合物放入光固化3D打印机中,在任选加热的条件下进行3D打印,然后进行后固化处理,得到光固化3D打印件。
根据本发明的实施方案,在光固化3D打印过程中可以进行加热,加热能够降低树脂组合物的粘度以使打印更加顺利地进行。所述加热温度可以为25℃~80℃。
根据本发明的实施方案,在光固化3D打印过程中,所述后固化处理可以在紫外灯下进行。
根据本发明的实施方案,本发明的光固化3D打印件的交联密度为0.001~10mmol/cm 3,优选为0.002~6mmol/cm 3,更优选为0.004~2mmol/cm 3。通过将本发明的光固化3D打印件的交联密度限定为上述范围,从而在随后的通过放置在高压容器中并注入高压流体来制备发泡材料的过程中,由于利用光固化3D打印而得到的弹性体的交联密度低,使得高压流体能够充分地在弹性体材料中扩散和溶解,从而形成高分子/气体的均相体系;然后以快速降压或急速升温作为驱动力得到过饱和体系,引发均相体系成核;在驱动力作用下泡核生长,并随着驱动力的消失和高分子基体温度的下降而得到多尺度多孔材料。
需要说明的是,在本发明中,交联密度是采用平衡溶胀法进行测量。
根据本发明的实施方案,本发明的光固化3D打印件的玻璃化转变温度低于30℃,优选为低于10℃,更优选为低于0℃。
需要说明的是,在本发明中,玻璃化转变温度是根据GB/T 19466.2-2004标准,采用差示扫描量热分析(DSC)进行测量。
此外,根据本发明的实施方案,本发明的光固化3D打印件的邵氏硬度为 20A~50D,优选为30A~80A,更优选为40A~70A。
需要说明的是,在本发明中,邵氏硬度是按照美国实验材料学会标准ASTM D1415方法进行测量。
此外,根据本发明的实施方案,本发明的光固化3D打印件的拉伸强度为0.5~30MPa,优选为2~20MPa,更优选为2.5~10MPa。
此外,根据本发明的实施方案,本发明的光固化3D打印件的断裂伸长率为100%~1200%,优选为200%~1000%。
需要说明的是,在本发明中,发泡前的光固化3D打印件的拉伸强度和断裂伸长率均是按照美国实验材料学会标准ASTM D412的方法进行测量。
此外,根据本发明的实施方案,本发明的光固化3D打印件的回弹性为20%~80%,优选为30%~70%。
需要说明的是,在本发明中,回弹性是按照美国实验材料学会标准ASTM D2632-2015的方法进行测量。
本发明还提供一种使用所述光固化3D打印件来制备多尺度多孔发泡材料的方法,其包括以下步骤:将所述光固化3D打印件放入高压容器中,注入气体进行高压浸渗,然后快速泄压至常压,从而得到多尺度多孔发泡材料。
根据本发明,“快速泄压”是指使对象承受的压力在短时间内从高压泄压至常压或环境压力,快速泄压的平均泄压速率大于2.5MPa/s,例如大于5MPa/s,大于8MPa/s,大于9MPa/s。
需要说明的是,在本发明中,“多尺度多孔”是指对于利用光固化3D打印工艺得到的打印件,经过高压流体浸渗发泡后,在打印件本身具备的多孔结构中又形成微米尺度的微孔结构。
根据本发明的实施方案,将光固化3D打印件放到高压的容器中,注入气体,该气体在高压下作为流体充分地在打印件中扩散,形成均相体系,高压浸渗一段时间后快速泄压至常压,取出制品,即可得到多尺度多孔结构的制品。在优选的实施方案中,制品的制备在没有模具的情况下进行。
根据本发明的实施方案,所述高压浸渗可以在加热的情况下进行,加热温度比光固化3D打印件的玻璃化转变温度高10~180℃,优选为高50~150℃。
根据本发明的实施方案,所述高压浸渗也可以在不加热的情况下进行,将光固化3D打印件快速泄压后,立即取出,放入比光固化3D打印件的玻璃化转变温度高20~200℃的热水中。如此地,能够软化3D打印件,使得气体在扩散过程中更容易发泡。
根据本发明的实施方案,在所述高压浸渗在不加热的情况下进行时,还可以将光固化3D打印件快速泄压后,立即取出,放入微波炉加热。如此地,经过微波炉的快速加热后,3D打印件软化,能够形成更大泡孔。
根据本发明的实施方案,所述气体可以为二氧化碳、氮气、甲烷、丁烷、甲醇、乙醇和水(蒸气)中的至少一种。
根据本发明的实施方案,在高压容器中注入气体后,所述高压浸渗的压力可以为1MPa~40MPa,优选2MPa~30MPa,更优选为3MPa~25MPa。
根据本发明的实施方案,在高压容器中注入气体后,所述高压浸渗的时间可以根据需要进行合适选择,可以为0.5~36h,优选为1~24h,更优选为2~12h。
本发明还提供一种由所述多尺度多孔发泡材料的制备方法得到的多尺度多孔发泡材料。
根据本发明的实施方案,本发明的多尺度多孔发泡材料的拉伸强度为0.2~25MPa,优选为1~15MPa,更优选为2~10MPa。
根据本发明的实施方案,本发明的多尺度多孔发泡材料的断裂伸长率为250%~1500%,优选为300%~1000%。
需要说明的是,在本发明中,发泡后的样品的拉伸性能是按照GB/T6344-96的方法进行测量。
根据本发明的实施方案,本发明的多尺度多孔发泡材料的发泡密度为0.11~0.95g/cm 3,优选为0.15~0.75g/cm 3,更优选为0.2~0.5g/cm 3
需要说明的是,在本发明中,发泡密度ρ f是根据美国实验材料学会标准ASTM D792-2008进行测量。发泡密度计算公式为:ρ f=W1/(W1+W2-W3)
其中,W1为发泡样品在空气中的质量,W2是使发泡样品浸渍在水中的金属坠球的重量,W3发泡样品在水中的质量。
根据本发明的实施方案,本发明的多尺度多孔发泡材料的发泡倍率为1.3~10,优选为1.5~5。
需要说明的是,在本发明中,发泡倍率是按照以下计算公式进行计算:n=ρ pf。其中,n表示打印样品发泡倍率,ρ p表示发泡前样品的密度,ρ f表示发泡后样品的密度。
此外,根据本发明的实施方案,本发明的多尺度多孔发泡材料具有良好的回弹性。具体而言,本发明的多尺度多孔发泡材料的回弹性为25%~80%,优选为30%~70%。
有益效果
(1)本发明提供的包含高分子量低聚物的光敏树脂组合物在光固化3D打印过程中形成低交联密度的聚合物,在结构上提供了足够的自由体积空间,使得高压流体能充分地在打印得到的聚合物中扩散,然后快速降压下,形成泡孔结构。本发明克服了传统光固化3D打印材料无法发泡的问题,可以实现发泡材料分级结构的设计和控制。
(2)本发明利用光固化3D打印技术,层与层之间有共价的化学交联,层间结合力强,经过高压流体发泡的制品,其层间的力学性能远优于FDM-3D打印热塑性材料。光固化3D打印精度高,表面质量好,高压流体发泡的制品只在内部形成泡孔结构,制品表面能保持高精度的细节、以及光滑度。
(3)本发明提供高分子量低聚物包括聚氨酯(甲基)丙烯酸酯,聚脲(甲基)丙烯酸酯等,打印后形成弹性体材料,在高压流体的作用下形成多尺度多孔的制品,具有密度低、回弹率高的特性。
(4)本发明的发泡装置简单,只需要一个密闭容器,可以在将容器加热或不加热的情况下,把光固化3D打印件放入容器中后,将气体注入容器中,让气体渗浸打印件一定时间后,取出样品,得到多尺度多孔结构的制品,设备简单,操作容易,不需要额外的化学发泡剂,绿色环保。
(5)尽管在发泡装置中进行发泡,但是制品成品的外形并不需要采用模具来限定,由此大幅降低了生产成本。
附图说明
图1为本发明实施例1所涉及的方法的流程示意图;
图2是本发明实施例1制备的打印件的发泡前与发泡后的实物照片;
图3是本发明实施例1制备的打印件发泡后截面的扫描电镜图;
图4是本发明实施例4制备的打印件发泡后截面的扫描电镜图;
图5是本发明实施例1的DLP打印件的玻璃化转变温度测定曲线;
图6是本发明对比例2中采用FDM打印制品发泡后的实物照片。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
实施例1
多尺度多孔发泡材料1的制备
高分子量聚脲丙烯酸酯低聚物1制备的具体步骤如下:
将300g聚醚胺(分子量为4000g/mol)、15g六亚甲基二异氰酸酯和10ml四氢呋喃混合,加入0.03g二月桂酸二丁基锡,而后升温至70℃反应5h,再加入3g的扩链剂3,5-二甲硫基甲苯二胺,继续反应1h后,然后取出少量的低聚物,用HG/T2409-1992规定的方法来测量异氰酸酯基含量,待达到理论值时,加入丙烯酸羟丙酯以反应掉所有的异氰酸酯基,继续在70℃反应3h,用红外测试低聚物中的-NCO是否完全反应,如果在波数为2260的-NCO的特征峰消失,则说明六亚甲基二异氰酸酯已经完全反应,减压蒸馏除去溶剂四氢呋喃,得到高分子量聚脲丙烯酸酯低聚物1,其数均分子量为35230g/mol。
光固化3D打印:将高分子量聚脲丙烯酸酯低聚物1(60g),4-丙烯酰吗啉(40g),2,4,6-三甲基苯甲酰基-乙氧基-苯基氧化膦(2.5g)在60℃搅拌均匀后,用行星搅拌机搅拌10min得到澄清的液体。将所得的液体放入数字光处理(DLP)3D打印机,在25℃的温度下进行3D打印,打印出具有框架结构的打印件,然后在紫外灯下进行后固化处理,得到光固化3D打印件1,其性能数据如表1所示。
发泡成型:将上述光固化3D打印件1放入高压釜内,在60℃的温度,注入CO 2气体,将压力调至10MPa,让CO 2气体完全浸没打印件1h,然后快速泄压,平均泄压速率为10MPa/s,取出制品,得到多尺度多孔发泡材料1,其性能数据如表1所示。
实施例2
多尺度多孔发泡材料2的制备
高分子量聚氨酯丙烯酸酯低聚物2制备的具体步骤如下:
将200g聚己内酯二醇(分子量为2000g/mol)、33.3g异佛尔酮二异氰酸酯和20ml四氢呋喃混合,加入0.05g二月桂酸二丁基锡,而后升温至50℃反应5h,再加入2g的扩链剂丙三醇,继续反应1h后,然后取出少量的低聚物,用HG/T2409-1992规定的方法来测量异氰酸酯基含量,待达到理论值时,加入丙烯 酸羟丙酯以反应掉所有的异氰酸酯基,继续在70℃反应3h,用红外测试低聚物中的-NCO是否完全反应,如果在波数为2260的-NCO的特征峰消失,则说明异佛尔酮二异氰酸酯已经完全反应,减压蒸馏除去溶剂四氢呋喃,得到高分子量聚氨酯丙烯酸酯低聚物2,数均分子量为41870g/mol。
光固化3D打印:将高分子量聚氨酯丙烯酸酯低聚物2(50g),丙烯酸月桂酯(50g),2,4,6-三甲基苯甲酰基苯基膦酸乙酯(3g)在60℃搅拌均匀后,用行星搅拌机搅拌5min得到澄清的液体。将所得的液体放入数字光处理(DLP)3D打印机进行3D打印,打印出具有框架结构的打印件,然后在紫外灯进行后固化处理,得到光固化3D打印件2,其性能数据如表1所示。
发泡成型:将上述光固化3D打印件2放入高压釜内,在50℃的温度,注入CO 2气体,将压力调至5MPa,让CO 2气体完全浸没打印件0.5h,然后快速泄压,平均泄压速率为9.5MPa/s,取出制品,得到多尺度多孔发泡材料2,其性能数据如表1所示。
实施例3
多尺度多孔发泡材料3的制备
高分子量聚氨酯丙烯酸酯低聚物3制备的具体步骤如下:
将200g聚三亚甲基醚二醇(分子量为4000g/mol)、22.2g异佛尔酮二异氰酸酯和50ml四氢呋喃混合,加入0.15g二月桂酸二丁基锡,而后升温至50℃反应5h,再加入4g的扩链剂丙三醇,继续反应1h后,然后取出少量的低聚物,用HG/T2409-1992规定的方法来测量异氰酸酯基含量,待达到理论值时,加入丙烯酸羟乙酯以反应掉所有的异氰酸酯基,继续在70℃反应3h,用红外测试低聚物中的-NCO是否完全反应,如果在波数为2260的-NCO的特征峰消失,则说明异佛尔酮二异氰酸酯已经完全反应,减压蒸馏除去溶剂四氢呋喃,得到高分子量聚氨酯丙烯酸酯低聚物3,其数均分子量为57440g/mol。
光固化3D打印:将高分子量聚氨酯丙烯酸酯低聚物3(80g),丙烯酰吗啉(40g),2,4,6-三甲基苯甲酰基苯基膦酸乙酯(3g)在80℃搅拌均匀后,用行 星搅拌机搅拌5min得到澄清的液体。将所得的液体放入立体光刻(SLA)3D打印机,在60℃的温度下进行3D打印,打印出具有框架结构的打印件,然后在紫外灯下进行后固化处理,再进行加热退火,得到光固化3D打印件3,其性能数据如表1所示。
发泡成型:将上述光固化3D打印件3放入高压釜内,在110℃的温度,注入CO 2气体,将压力调至15MPa,让CO 2气体完全浸没打印件3h,然后快速泄压,平均泄压速率为12MPa/s,取出制品,得到多尺度多孔发泡材料3,其性能数据如表1所示。
实施例4
多尺度多孔发泡材料4的制备
高分子量聚氨酯丙烯酸酯低聚物4制备的具体步骤如下:
将300g聚丙二醇(分子量为3000g/mol)、24g对苯二异氰酸酯和50ml四氢呋喃混合,加入0.05g二月桂酸二丁基锡,而后升温至50℃反应5h,再加入3.6g的2-羟乙基二硫化物,然后取出少量的低聚物,用HG/T2409-1992规定的方法来测量异氰酸酯基含量,待达到理论值时,加入2-(叔丁基氨基)甲基丙烯酸乙酯以反应掉所有的异氰酸酯基,继续在70℃反应3h,用红外测试低聚物中的-NCO是否完全反应,如果在波数为2260的-NCO的特征峰消失,则说明对苯二异氰酸酯已经完全反应,减压蒸馏除去溶剂四氢呋喃,得到含有受阻氨、双硫键这两种可逆键的高分子量聚氨酯丙烯酸酯低聚物4,其数均分子量为6700g/mol。
光固化3D打印:将高分子量聚氨酯丙烯酸酯低聚物4(80g),丙烯酰吗啉(40g),丙烯酸异冰片酯(10g),2,4,6-三甲基苯甲酰基苯基膦酸乙酯(3g),在80℃搅拌均匀后,用行星搅拌机搅拌5min得到澄清的液体。将所得的液体放入数字光处理(DLP)3D打印机,在45℃的温度下进行3D打印,打印出具有框架结构的打印件,然后在紫外灯下进行后固化处理,得到光固化3D打印件4,其性能数据如表1所示。
发泡成型:将上述光固化3D打印件4放入高压釜内,在100℃的温度,注入 CO 2气体,将压力调至20MPa,让CO 2气体完全浸没打印件3h,然后快速泄压,平均泄压速率为12MPa/s,取出制品,得到多尺度多孔发泡材料4,其性能数据如表1所示。
实施例5
多尺度多孔发泡材料5的制备
选用分子量为25000g/mol的乙烯基封端的聚二甲基硅氧烷(CAS号:68083-19-2,购自Sigma-Aldrich公司),作为高分子量低聚物。
光固化3D打印:将乙烯基封端的聚二甲基硅氧烷(100g),(巯基)丙基甲基硅氧烷(20g),三羟甲基丙烷三(3-巯基丙酸酯)(15g),2,4,6-三甲基苯甲酰基苯基膦酸乙酯(3g),在50℃搅拌均匀后,用行星搅拌机搅拌5min得到澄清的液体。将所得的液体放入数字光处理(DLP)3D打印机,在60℃的温度下进行3D打印,打印出具有框架结构的打印件,然后在紫外灯的条件下进行后固化处理,得到光固化3D打印件5,其性能数据如表1所示。
发泡成型:将上述光固化3D打印件5放入高压釜内,在50℃的温度,注入N 2气体,将压力调至15MPa,让N 2气体完全浸没打印件5h,然后快速泄压,平均泄压速率为9MPa/s,取出制品,得到多尺度多孔发泡材料5,其性能数据如表1所示。
实施例6
多尺度多孔发泡材料6的制备
高分子量聚氨酯聚脲丙烯酸酯低聚物6制备的具体步骤如下:
将100g聚四氢呋喃二醇(分子量为2000g/mol)、22.2g异佛尔酮二异氰酸酯和50ml四氢呋喃混合,加入0.05g二月桂酸二丁基锡,而后升温至70℃反应5h,再加入2.32g的丁二酮肟,继续反应1h后,然后取出少量的低聚物,用HG/T2409-1992规定的方法来测量异氰酸酯基含量,待达到理论值时,加入2-(叔丁基氨基)甲基丙烯酸乙酯以反应掉所有的异氰酸酯基,继续在70℃反应3h,用红外测试低聚物中的-NCO是否完全反应,如果在波数为2260的-NCO的特征峰消 失,则说明异佛尔酮二异氰酸酯已经完全反应,减压蒸馏除去溶剂四氢呋喃,得到含有肟-氨基甲酸酯键,受阻氨这两种可逆键的高分子量聚氨酯聚脲丙烯酸酯低聚物6,其数均分子量为32150g/mol。
光固化3D打印:将高分子量聚氨酯聚脲丙烯酸酯低聚物6(80g),丙烯酸丁酯(40g),2,4,6-三甲基苯甲酰基苯基膦酸乙酯(3g)在80℃搅拌均匀后,用行星搅拌机搅拌5min得到澄清的液体。将所得的液体放入DLP-3D打印机,在30℃的温度下进行3D打印,打印出具有框架结构的打印件,然后在紫外灯下进行后照射处理,得到光固化3D打印件6,其性能数据如表1所示。
发泡成型:将上述光固化3D打印件6放入高压釜内,注入CO 2气体,将压力调至12MPa,让CO 2气体完全浸没打印件4h,然后快速泄压,平均泄压速率为10MPa/s,取出制品,放到100℃的热水中发泡,得到多尺度多孔发泡材料6,其性能数据如表1所示。
对比例1
光固化3D打印:将双酚A丙三醇双甲基丙烯酸酯(80g)(数均分子量为512g/mol),丙烯酸异冰片酯(17g),2,4,6-三甲基苯甲酰基苯基膦酸乙酯(3g),在80℃搅拌均匀后,用行星搅拌机搅拌5min得到澄清的液体。将所得的液体放入数字光处理(DLP)3D打印机,在60℃的温度下进行3D打印,打印出具有框架结构的打印件,然后在紫外灯下进行后固化处理,得到对比光固化3D打印件1,其性能数据如表1所示。
发泡成型:将上述对比光固化3D打印件1放入高压釜内,在120℃的温度,注入CO 2气体,将压力调至15MPa,让CO 2气体完全浸没打印件3小时,然后快速泄压,平均泄压速率为12MPa/s,取出制品,由于交联密度高,CO 2很难浸渗到分子内部,不能发泡,保持原来形状,其性能数据如表1所示。
对比例2
FDM-3D打印:选用热塑性聚氨酯线材TPU,85A,购自深圳光华伟业股份有限公司,采用FDM打印机,以喷嘴温度为250℃,打印速度为60mm/s,填充率 为50%的条件打印,得到FDM-3D打印件1。
发泡成型:将上述FDM-3D打印件1放入高压釜内,在80℃的温度,注入CO 2气体,将压力调至12MPa,让CO 2气体完全浸没打印件2小时,然后快速泄压,平均泄压速率为12MPa/s,取出制品,得到对比发泡材料,由于采用热塑性材料打印,其打印过程中层与层之间是物理粘结,层间结合力弱,在发泡膨胀过程中,容易产出裂缝,造成力学下降,其性能数据如表1所示。
本发明的性能测试如以下所示:
玻璃化转变温度:根据GB/T 19466.2-2004标准,采用差示扫描量热分析(DSC)测试样品的玻璃化转变温度。
交联密度:采用平衡溶胀法测试交联密度。
发泡前的样品的拉伸强度/断裂伸长率:按照美国实验材料学会标准ASTM D412,测试样品的拉伸性能和断裂伸长率。
发泡后的样品的拉伸强度/断裂伸长率:按照GB/T6344-96的方法,测量样品的拉伸性能和断裂伸长率。
发泡密度ρ f:根据美国实验材料学会标准ASTM D792-2008测试样品的发泡密度ρ f。发泡密度计算公式为:ρ f=W1/(W1+W2-W3)
其中,W1为发泡样品在空气中的质量,W2是使发泡样品浸渍在水中的金属坠球的重量,W3发泡样品在水中的质量。
发泡倍率:利用计算公式:n=ρ pf测试。其中,n表示打印样品发泡倍率,ρ p表示发泡前样品的密度,ρ f表示发泡后样品的密度。其中,发泡倍率大于1时,表示能够发泡,且数值越大表示发泡性能越好;而发泡倍率为1时,则表示不能发泡。
回弹性:按照美国实验材料学会标准ASTM D2632-2015的方法进行测量。
表面光滑性:对发泡制品的外观进行肉眼观察,样品表面基本观察不到2mm的裂纹的发泡制品评价为○,有2mm的裂纹的发泡制品评价为×。
表1
Figure PCTCN2021134097-appb-000001
由上述表1的结果可以看出,实施例1~6中的光固化3D打印弹性体的交联密度和玻璃化转变温度落入本发明的范围内,从而将光固化3D打印件进行发泡后得到的发泡材料的拉伸性能、发泡性、回弹性和表面光滑性均优异。
进一步地,将实施例1与实施例4进行对比可知,在高分子量低聚物中引入可逆共价键能够使得光固化3D打印件形成类热塑性材料,气体更容易发泡。从电镜照片可以看出,形成了更大的球形发泡孔(图4与图3对比),从而发泡倍率提高,回弹性提高。
与此相对,对比例1所使用的光敏树脂组合物中包含分子量未落入本发明限定范围内的高分子量低聚物,从而由该光敏树脂组合物制备的光固化3D打印件的玻璃化转变温度高、且交联密度高,不能发泡。
对比例2采用了FDM-3D打印工艺。从图6可以看出,发泡后的材料的层与层之间有明显裂纹,这是因为:在FDM-3D打印工艺中,层与层之间没有形成化学交联,造成层间结合力弱,导致发泡后的材料的力学性能大幅度下降。与此相对,本发明的发泡材料由于采用光固化3D打印工艺,层与层之间有共价键交联,在发泡过程中层与层之间不会胀开断裂,因此,得到的打印件及其发泡材料的力学性能远优于FDM-3D打印工艺,并且表面精细度也明显高于FDM-3D打印工艺。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种光固化3D打印件,其是通过光固化3D打印得到的弹性体,该光固化3D打印件的交联密度为0.001~10mmol/cm 3,且玻璃化转变温度低于30℃,
    所述光固化3D打印件的拉伸强度为0.5~30MPa,断裂伸长率为100%~1200%,回弹性为20%~80%,
    其中,所述光固化3D打印件通过将光敏树脂组合物进行光固化3D打印而得到,
    所述光敏树脂组合物以重量份计包含高分子量低聚物1~98份、单体1~98份、光引发剂0.3~15份,其中,所述高分子量低聚物的数均分子量为3500~100000g/mol,
    所述高分子量低聚物选自聚氨酯(甲基)丙烯酸酯低聚物、聚脲(甲基)丙烯酸酯低聚物、聚脲聚氨酯(甲基)丙烯酸酯、乙烯基封端的聚二甲基硅氧烷中的至少一种,
    所述高分子量低聚物的分子链段中任选引入有可逆共价键,所述可逆共价键选自双硫键、受阻氨键、硼氧键、亚胺键、Diels-Alder键、动态酰腙键、肟-氨基甲酸酯键中的至少一种。
  2. 根据权利要求1所述的光固化3D打印件,其特征在于,所述光引发剂选自1-羟基环己基苯基甲酮、2,4,6-三甲基苯甲酰基-二苯基氧化膦、2,4,6-三甲基苯甲酰基-乙氧基-苯基氧化膦、双(2,4,6-三甲基苯甲酰基)-苯基氧化膦、2,4,6-三甲基苯甲酰基膦酸乙酯、2,2-二甲氧基-1,2-二苯基乙酮、2-乙基辛基-4-二甲胺基苯甲酸酯、4-二甲氨基-苯甲酸乙酯、2-羟基-2-甲基-1-苯基-1-丙酮、2-甲基-1-(4-甲硫基苯基)-2-吗啉基-1-丙酮、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、樟脑醌、4-二甲氨基苯甲酸乙酯中的至少一种。
  3. 一种使用权利要求1或2所述的光固化3D打印件来制备多尺度多孔发 泡材料的方法,其包括以下步骤:
    将所述光固化3D打印件放入高压容器中,注入气体,在气压为1MPa~40MPa的高压下进行浸渗,浸渗的时间为0.5~36h,然后快速泄压至常压,从而得到多尺度多孔发泡材料,
    其中,所述高压浸渗在对高压容器加热或不加热的情况下进行,
    在加热的情况下,加热温度比光固化3D打印件的玻璃化转变温度高10~180℃;
    在不加热的情况下,将光固化3D打印件快速泄压后,立即取出,放入比光固化3D打印件的玻璃化转变温度高20~200℃的热水中或者放入微波炉中加热。
  4. 根据权利要求3所述的制备多尺度多孔发泡材料的方法,其特征在于,所述气体选自二氧化碳、氮气、甲烷、丁烷、甲醇、乙醇和水(蒸气)中的至少一种。
  5. 根据权利要求3或4所述的制备多尺度多孔发泡材料的方法,其特征在于,所述快速泄压的平均泄压速率大于2.5MPa/s。
  6. 一种由权利要求3~5中任一项所述的制备多尺度多孔发泡材料的方法得到的多尺度多孔发泡材料。
  7. 根据权利要求6所述的多尺度多孔发泡材料,其特征在于,所述多尺度多孔发泡材料的拉伸强度为0.2~25MPa,断裂伸长率为250%~1500%。
  8. 根据权利要求6或7所述的多尺度多孔发泡材料,其特征在于,所述多尺度多孔发泡材料的发泡密度为0.11~0.95g/cm 3
    发泡密度的计算公式为:ρ f=W1/(W1+W2-W3),
    其中,ρ f表示发泡密度,W1为发泡样品在空气中的质量,W2是使发泡样品浸渍在水中的金属坠球的重量,W3发泡样品在水中的质量。
  9. 根据权利要求6~8中任一项所述的多尺度多孔发泡材料,其特征在于,所述多尺度多孔发泡材料的发泡倍率为1.3~10,
    发泡倍率的计算公式为:n=ρ pf
    其中,n表示发泡倍率,ρ p表示发泡前样品的密度,ρ f表示发泡后样品的密度。
  10. 根据权利要求6~9中任一项所述的多尺度多孔发泡材料,其特征在于,所述多尺度多孔发泡材料的回弹性为25%~80%。
PCT/CN2021/134097 2021-11-29 2021-11-29 一种光固化3d打印件及其在发泡材料中的应用 WO2023092585A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134097 WO2023092585A1 (zh) 2021-11-29 2021-11-29 一种光固化3d打印件及其在发泡材料中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134097 WO2023092585A1 (zh) 2021-11-29 2021-11-29 一种光固化3d打印件及其在发泡材料中的应用

Publications (1)

Publication Number Publication Date
WO2023092585A1 true WO2023092585A1 (zh) 2023-06-01

Family

ID=86538786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134097 WO2023092585A1 (zh) 2021-11-29 2021-11-29 一种光固化3d打印件及其在发泡材料中的应用

Country Status (1)

Country Link
WO (1) WO2023092585A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103380170A (zh) * 2011-02-17 2013-10-30 日东电工株式会社 树脂发泡体及其制造方法
CN106493968A (zh) * 2016-12-15 2017-03-15 北京化工大学 一种与3d打印相结合生产发泡制品的方法及装置
US20170197342A1 (en) * 2014-05-23 2017-07-13 Zotefoams Plc Method for producing three dimensional foam articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103380170A (zh) * 2011-02-17 2013-10-30 日东电工株式会社 树脂发泡体及其制造方法
US20170197342A1 (en) * 2014-05-23 2017-07-13 Zotefoams Plc Method for producing three dimensional foam articles
CN106493968A (zh) * 2016-12-15 2017-03-15 北京化工大学 一种与3d打印相结合生产发泡制品的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN HUADUAN, GENGMIN LV, JUEWEN PU, ALE HONG, YING HUANG, MINGYI SHANG, YANQING ZHENG, YOUSI ZOU: "The Effect of Cross-Linking Agent on the Preparation of the Thermally Expandable Microspheres", GAOFENZI-CAILIAO-KEXUE-YU-GONGCHENG = POLYMER MATERIALS SCIENCE AND ENGINEERING, CHENGDU KEJI DAXUE GAOFENZI YANJIUSUO, CN, vol. 28, no. 6, 30 June 2012 (2012-06-30), CN , pages 65 - 68, XP093068585, ISSN: 1000-7555, DOI: 10.16865/j.cnki.1000-7555.2012.06.017 *

Similar Documents

Publication Publication Date Title
CN110358020B (zh) 一种光敏树脂及一种3d打印聚脲的方法
Rossegger et al. Digital light processing 3D printing with thiol–acrylate vitrimers
JP6991224B2 (ja) 多孔質ポリウレタン研磨パッドおよびその作製方法
JP6902063B2 (ja) 多孔質研磨パッドおよびその製造方法
JP6779334B2 (ja) 多孔質ポリウレタン研磨パッドおよびその製造方法
JP7090590B2 (ja) 研磨パッド用組成物、研磨パッドおよびその製造方法
US8945683B2 (en) Prepreg for fiber reinforced plastic and production process thereof
CN114989779B (zh) 一种用于制作纳米压印模板的紫外光固化胶水及制备方法
WO2020131675A1 (en) Energy absorbing dual cure polyurethane elastomers for additive manufacturing
KR20190135449A (ko) 다공성 연마 패드 및 이의 제조방법
JP2004051783A (ja) 多孔質形成性光硬化型樹脂組成物および多孔質樹脂硬化物
KR20210002429A (ko) 연마패드용 조성물, 연마패드 및 이의 제조방법
JP5253200B2 (ja) 型内被覆組成物及び型内被覆成形体
CN114375311A (zh) 用于增材制造的可固化基于聚氨酯的树脂
JP2020161806A (ja) 欠陥発生を最小化する研磨パッドおよびその製造方法
CN113388075A (zh) 一种3d打印用组合物、3d打印方法、装置
WO2023092585A1 (zh) 一种光固化3d打印件及其在发泡材料中的应用
CN104937000B (zh) 活性能量射线固化性树脂组合物及其固化物
US11633908B2 (en) Latent cure resins and related methods
KR102197481B1 (ko) 연마패드 및 이의 제조방법
CN116178633A (zh) 一种光固化3d打印件及其在发泡材料中的应用
JP5209225B2 (ja) ポリウレタン発泡体
JP4892992B2 (ja) 相互侵入高分子網目構造体および研磨パッドならびに相互侵入高分子網目構造体および研磨パッドの製造方法
KR101730055B1 (ko) 폴리우레탄 수지 조성물 및 폴리우레탄 지지 패드
JP2004261816A (ja) 樹脂模型の一体成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965314

Country of ref document: EP

Kind code of ref document: A1