WO2023092548A1 - 可完全生物降解的一次性输液软管的制备方法 - Google Patents

可完全生物降解的一次性输液软管的制备方法 Download PDF

Info

Publication number
WO2023092548A1
WO2023092548A1 PCT/CN2021/133975 CN2021133975W WO2023092548A1 WO 2023092548 A1 WO2023092548 A1 WO 2023092548A1 CN 2021133975 W CN2021133975 W CN 2021133975W WO 2023092548 A1 WO2023092548 A1 WO 2023092548A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
section
preparation
twin
screw extruder
Prior art date
Application number
PCT/CN2021/133975
Other languages
English (en)
French (fr)
Inventor
邢维启
Original Assignee
安徽江南医疗器械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽江南医疗器械股份有限公司 filed Critical 安徽江南医疗器械股份有限公司
Publication of WO2023092548A1 publication Critical patent/WO2023092548A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the invention relates to the technical field of medical consumables, in particular to a method for preparing a completely biodegradable disposable infusion tube.
  • Disposable infusion set is a common medical consumable. After aseptic treatment, a channel between vein and medicinal liquid is established for intravenous infusion. Generally, it is composed of eight parts such as intravenous needle or injection needle, needle cap, infusion hose, liquid medicine filter, flow rate regulator, drip pot, cork puncturer, air filter, etc. Some infusion sets also have injection parts , dosing port, etc.
  • PVC infusion sets are used clinically for infusions such as paclitaxel, ciprofloxacin, cefoperazone sodium, fluconazole, metronidazole hydrochloride, cimetidine, and fat emulsions
  • lipophilic drugs the properties of these drugs can enhance the dissolution of DEHP, the plasticizer will migrate out, and enter the human body with the liquid, causing harm to the human body; secondly, due to the poor thermal stability of PVC, it needs to be processed during processing.
  • Heat stabilizers, and heat stabilizers containing elements such as Ca, Zn, and Ba may also enter the human body during infusion; moreover, there is a very small amount of vinyl chloride monomer remaining in PVC resin, and this compound has been confirmed It is a carcinogen; in addition, PVC materials are not biodegradable plastics, and there is a problem of difficult degradation after being discarded. These defects have affected the application of PVC materials in the preparation of disposable infusion sets.
  • the technical problem to be solved by the present invention is to provide a method for preparing a fully biodegradable disposable infusion hose, specifically using 1,1,1-trimethyl-N-2-propenylaminosilane as the monomer to polymer Lactic acid is grafted and modified, and polybutylene succinate is used to blend and modify polylactic acid, which can not only greatly improve the mechanical properties of polylactic acid, but also ensure the biodegradability of the material.
  • the invention provides a method for preparing a fully biodegradable disposable infusion tube, which comprises the following preparation steps:
  • step (2) Add the compound I obtained in step (1) into a twin-screw extruder, extrude and granulate, and obtain modified polylactic acid I;
  • step (3) Add the compound II obtained in step (3) into a twin-screw extruder, extrude and granulate, and obtain modified polylactic acid II;
  • step (4) Add the modified polylactic acid II prepared in step (4) into a twin-screw extruder and extrude to obtain a disposable infusion tube.
  • the number average molecular weight of the polylactic acid is 50000-200000 g/mol, and the molecular weight distribution is 1.5-5.0.
  • the mass ratio of the polylactic acid and 1,1,1-trimethyl-N-2-acrylpropylaminosilane is (92-95):(5-8).
  • the initiator is an organic peroxide initiator.
  • the temperature of each section of the twin-screw extruder in the step (2) is: feeding section 165-170°C, compression section 180-185°C, metering section 185-190°C, die head 185-190°C; 400r/min.
  • the mass ratio of the modified polylactic acid I and polybutylene succinate is (80-90): (10-20).
  • the temperature of each section of the twin-screw extruder in the step (4) is: feeding section 155-160°C, compression section 170-175°C, metering section 175-180°C, die head 175-180°C; 400r/min.
  • the temperature of each section of the twin-screw extruder in the step (5) is: feeding section 155-160°C, compression section 175-180°C, metering section 185-190°C, die head 185-190°C; 400r/min.
  • Polylactic acid is a kind of biodegradable polymer prepared by chemical synthesis with renewable plant resources as raw material. It can be processed in various molding processes like ordinary polymers, such as extrusion, injection molding, blow molding, casting film, etc. , and has good biocompatibility and biodegradability. Polylactic acid has high strength and rigidity, but poor toughness and impact resistance. It is a hard and brittle material at room temperature. Therefore, polylactic acid must be toughened and modified.
  • the blending modification method is a relatively economical method for toughening and modifying polylactic acid, which can effectively improve the toughness of polylactic acid, but there is a problem of poor compatibility between blending components, resulting in a significant decline in the mechanical properties of the blended system , and even affect the biodegradability of the material.
  • Polybutylene succinate is a polymer with good biodegradability and excellent mechanical properties. Adding polybutylene succinate to the polylactic acid system can retain the original properties of polylactic acid while toughening it. However, the compatibility of polylactic acid and polybutylene succinate is poor, and the mechanical properties of the blended system cannot reach the ideal effect.
  • the present invention adopts 1,1,1-trimethyl-N-2-acrylpropylaminosilane to carry out graft modification on polylactic acid, on the one hand, it can play a toughening effect on polylactic acid, on the other hand, the prepared grafted
  • the modified polylactic acid has good compatibility with polybutylene succinate, and no additional compatibilizer is needed when polybutylene succinate is used to modify polylactic acid by blending.
  • the present invention also provides another method for preparing a completely biodegradable disposable infusion tube, which includes the following preparation steps:
  • step (2) adding the mixture obtained in step (1) into a twin-screw extruder, extruding and granulating to obtain modified polylactic acid;
  • step (3) Add the modified polylactic acid prepared in step (2) into a twin-screw extruder, and extrude to obtain a disposable infusion tube.
  • the number average molecular weight of the polylactic acid is 50000-200000 g/mol, and the molecular weight distribution is 1.5-5.0.
  • the mass ratio of described polylactic acid, polybutylene succinate, 1,6-hexanediol diglycidyl ether is (80-90): (10-20): (1-5), hexamethylenediamine
  • the dosage is subject to the complete reaction of epoxy groups contained in 1,6-hexanediol diglycidyl ether.
  • the temperature of each section of the twin-screw extruder in the step (2) is: feeding section 155-160°C, compression section 170-175°C, metering section 175-180°C, die head 175-180°C; 400r/min.
  • the temperature of each section of the twin-screw extruder in the step (3) is: feeding section 155-160°C, compression section 175-180°C, metering section 185-190°C, die head 185-190°C; 400r/min.
  • the present invention adopts the polymer of 1,6-hexanediol diglycidyl ether and hexamethylenediamine (condensation reaction of epoxy group and amino group) as a compatibilizer, which can effectively improve the compatibility between polylactic acid and polybutylene succinate. Blending compatibility to prevent adverse effects on the mechanical properties of the system after blending modification.
  • the present invention has adopted two kinds of toughening modification means to polylactic acid, and one is to adopt poly(1,1,1-trimethyl-N-2-acrylpropylaminosilane) to carry out polylactic acid as monomer Grafting modification, the other is to use polybutylene succinate to modify polylactic acid by blending.
  • the combination of these two toughening modification methods can significantly improve the toughening effect and substantially improve the quality of polylactic acid. mechanical properties.
  • the disposable infusion hose prepared by the present invention has high safety in use, will not cause harm to the human body, and has the characteristics of complete biodegradability, which effectively solves the environmental pollution caused by the discarded conventional disposable infusion hose question.
  • Polylactic acid was purchased from Zhejiang Hisun Biomaterials Co., Ltd. REVODE110.
  • Polybutylene succinate was purchased from BASF C1200, Germany.
  • step (2) Add the compound I obtained in step (1) into the twin-screw extruder, the feeding section is 165°C, the compression section is 180°C, the metering section is 190°C, the die head is 190°C, and the rotating speed is 300r/min. Granules to obtain modified polylactic acid I.
  • step (2) 15 parts of dry polybutylene succinate and 85 parts of modified polylactic acid I prepared in step (2) were uniformly mixed in a high-speed mixer to obtain compound II.
  • step (3) Add the compound II obtained in step (3) into the twin-screw extruder, the feeding section is 160°C, the compression section is 170°C, the metering section is 175°C, the die head is 180°C, and the rotating speed is 300r/min. Granules to obtain modified polylactic acid II.
  • step (4) Add the modified polylactic acid II prepared in step (4) into the twin-screw extruder, the feeding section is 160°C, the compression section is 175°C, the metering section is 185°C, the die head is 185°C, and the rotating speed is 200r/min. Out of molding, get a disposable infusion hose.
  • step (2) Add the compound I obtained in step (1) into the twin-screw extruder, the feeding section is 170°C, the compression section is 180°C, the metering section is 185°C, the die head is 190°C, and the rotating speed is 200r/min. Granules to obtain modified polylactic acid I.
  • step (2) 10 parts of dry polybutylene succinate and 90 parts of modified polylactic acid I prepared in step (2) were uniformly mixed in a high-speed mixer to obtain compound II.
  • step (3) Add the compound II obtained in step (3) into the twin-screw extruder, the feeding section is 155°C, the compression section is 170°C, the metering section is 175°C, the die head is 175°C, and the rotating speed is 200r/min. Granules to obtain modified polylactic acid II.
  • step (4) Add the modified polylactic acid II prepared in step (4) into the twin-screw extruder, the feeding section is 155°C, the compression section is 175°C, the metering section is 190°C, the die head is 190°C, and the rotating speed is 200r/min. Out of molding, get a disposable infusion hose.
  • step (2) Add the compound I obtained in step (1) into the twin-screw extruder, the feeding section is 165°C, the compression section is 185°C, the metering section is 190°C, the die head is 190°C, and the rotating speed is 300r/min. Granules to obtain modified polylactic acid I.
  • step (2) 20 parts of dry polybutylene succinate and 80 parts of modified polylactic acid I prepared in step (2) were uniformly mixed in a high-speed mixer to obtain compound II.
  • step (3) Add the compound II obtained in step (3) into the twin-screw extruder, the feeding section is 160°C, the compression section is 175°C, the metering section is 180°C, the die head is 180°C, and the rotating speed is 200r/min. Granules to obtain modified polylactic acid II.
  • step (4) Add the modified polylactic acid II prepared in step (4) into the twin-screw extruder, the feeding section is 160°C, the compression section is 175°C, the metering section is 185°C, the die head is 185°C, and the rotating speed is 200r/min. Out of molding, get a disposable infusion hose.
  • step (2) Put the mixture obtained in step (1) into the twin-screw extruder, the feeding section is 160°C, the compression section is 175°C, the metering section is 180°C, the die head is 180°C, the speed is 200r/min, and extruded to granulate , to obtain modified polylactic acid.
  • step (3) Add the modified polylactic acid prepared in step (2) into the twin-screw extruder, the feeding section is 155°C, the compression section is 175°C, the metering section is 185°C, the die head is 190°C, the speed is 200r/min, and extruded Molded to obtain a disposable infusion tube.
  • step (2) Add the mixture obtained in step (1) into the twin-screw extruder, the feeding section is 155°C, the compression section is 170°C, the metering section is 175°C, the die head is 180°C, the speed is 300r/min, and extruded to granulate , to obtain modified polylactic acid.
  • step (3) Add the modified polylactic acid prepared in step (2) into the twin-screw extruder, the feeding section is 160°C, the compression section is 180°C, the metering section is 185°C, the die head is 185°C, the speed is 200r/min, and extruded Molded to obtain a disposable infusion tube.
  • Comparative Example 1 The only difference between Comparative Example 1 and Example 1 is that 1,1,1-trimethyl-N-2-propenylaminosilane is replaced by an equal amount of glycidyl methacrylate.
  • Comparative Example 2 The only difference between Comparative Example 2 and Example 1 is that an equal amount of maleic anhydride was used instead of 1,1,1-trimethyl-N-2-propenylaminosilane.
  • Comparative Example 3 The only difference between Comparative Example 3 and Example 4 is that hexanediol diglycidyl ether and hexamethylenediamine are replaced by an equivalent amount of maleic anhydride grafted polylactic acid.
  • the impact performance is tested according to the standard GB/T 1043-1993, using the Charpy unnotched impact method.
  • the present invention adopts 1,1,1-trimethyl-N-2-acrylpropylaminosilane to carry out graft modification to polylactic acid, which can substantially improve the mechanical properties of the prepared material, and the present invention Using the polymer prepared by the reaction of 1,6-hexanediol diglycidyl ether and hexamethylenediamine as a compatibilizer can also achieve the technical effect of improving the mechanical properties of the prepared material.

Abstract

一种可完全生物降解的一次性输液软管的制备方法,涉及医疗耗材技术领域,该方法对聚乳酸采用了两种增韧改性手段,一种是采用聚(1,1,1-三甲基-N-2-丙烯丙胺基硅烷)作为单体对聚乳酸进行接枝改性,另一种是采用聚丁二酸丁二醇酯对聚乳酸进行共混改性,这两种增韧改性方法的组合使用能够显著提高增韧效果,实质性改善聚乳酸的力学性能;由改性聚乳酸制备的一次性输液软管使用安全性高,而且具有可完全生物降解的特性。

Description

可完全生物降解的一次性输液软管的制备方法 技术领域:
本发明涉及医疗耗材技术领域,具体涉及一种可完全生物降解的一次性输液软管的制备方法。
背景技术:
一次性输液器是一种常见的医疗耗材,经过无菌处理,建立静脉与药液之间通道,用于静脉输液。一般由静脉针或注射针、针头护帽、输液软管、药液过滤器、流速调节器、滴壶、瓶塞穿刺器、空气过滤器等八个部分连接组成,部分输液器还有注射件,加药口等。
传统输液器多采用DEHP增塑的PVC材料制成,但在临床上使用PVC输液器输注如紫杉醇、环丙沙星、头孢哌酮钠、氟康唑、盐酸甲硝唑、西咪替丁、脂肪乳剂等亲脂性药物时,这些药物的性质对DEHP的溶出有增强作用,增塑剂会迁移出来,随着药液进入人体,对人体造成危害;其次,由于PVC的热稳定性差,在加工时需要加入热稳定剂,而含有Ca、Zn、Ba等元素的热稳定剂在输液过程中也可能会进入人体;再者,PVC树脂中残留有极少量的氯乙烯单体,而该化合物已被证实是致癌物质;此外,PVC材料不属于可生物降解塑料,废弃后存在降解困难的问题,这些缺陷都影响了PVC材料在制备一次性输液器中的应用。
明内容:
本发明所要解决的技术问题在于提供一种可完全生物降解的一次性输液软管的制备方法,具体采用1,1,1-三甲基-N-2-丙烯丙胺基硅烷作为单体对聚乳酸进行接枝改性,采用聚丁二酸丁二醇酯对聚乳酸进行共混改性,不仅能够大幅度提高聚乳酸的力学性能,同时保证材料的生物降解性能。
本发明所要解决的技术问题采用以下的技术方案来实现:
本发明提供了一种可完全生物降解的一次性输液软管的制备方法,包括以下制备步骤:
(1)将干燥的聚乳酸、1,1,1-三甲基-N-2-丙烯丙胺基硅烷、引发剂在高速混合机中混合均匀,得到混合料I;
(2)将步骤(1)得到的混合料I加入双螺杆挤出机中,挤出造粒,得到改性聚乳酸I;
(3)将干燥的聚丁二酸丁二醇酯与步骤(2)制备的改性聚乳酸I在高速混合机中混合均匀,得到混合料II;
(4)将步骤(3)得到的混合料II加入双螺杆挤出机中,挤出造粒,得到改性聚乳酸II;
(5)将步骤(4)制备的改性聚乳酸II加入双螺杆挤出机中,挤出成型,得到一次性输液软管。
所述聚乳酸的数均分子量为50000-200000g/mol,分子量分布为1.5-5.0。
所述聚乳酸、1,1,1-三甲基-N-2-丙烯丙胺基硅烷的质量比为(92-95):(5-8)。
所述引发剂为有机过氧化物引发剂。
所述步骤(2)中双螺杆挤出机的各段温度为:加料段165-170℃,压缩段180-185℃,计量段185-190℃,模头185-190℃;转速为100-400r/min。
所述改性聚乳酸I、聚丁二酸丁二醇酯的质量比为(80-90):(10-20)。
所述步骤(4)中双螺杆挤出机的各段温度为:加料段155-160℃,压缩段170-175℃,计量段175-180℃,模头175-180℃;转速为100-400r/min。
所述步骤(5)中双螺杆挤出机的各段温度为:加料段155-160℃,压缩段175-180℃,计量段185-190℃,模头185-190℃;转速为100-400r/min。
聚乳酸是一种以可再生的植物资源为原料,经过化学合成制备的生物降解高分子,能够同普通高分子一样进行各种成型加工,如挤出、注塑、吹塑、流延成膜等,并具有良好的生物相容性和生物降解性。聚乳酸的强度和刚性高,但韧性和抗冲击性差,常温下是一种硬而脆的材料,因此必须对聚乳酸进行增韧改性。共混改性法是一种较为经济的聚乳酸增韧改性方法,可以有效提高聚乳酸的韧性,但存在共混组分间相容性差的问题,致使共混后体系的力学性能明显下降,甚至影响材料的生物降解性能。
聚丁二酸丁二醇酯是一种具有良好可生物降解性能的聚合物,力学性能优异,向聚乳酸体系中添加聚丁二酸丁二醇酯能够在增韧的同时保留聚乳酸原有的生物降解特性,但聚乳酸与聚丁二酸丁二醇酯的相容性较差,共混后体系的力学性能达不到理想的效果。
本发明采用1,1,1-三甲基-N-2-丙烯丙胺基硅烷对聚乳酸进行接枝改性,一方面可以对聚乳酸起到增韧的作用,另一方面制备的接枝改性聚乳酸与聚丁二酸丁二醇酯的相容性好,无需在采用聚丁二酸丁二醇酯对聚乳酸进行共混改性时额外添加相容剂。
研究发现,1,1,1-三甲基-N-2-丙烯丙胺基硅烷可以替换本领域已被公开的甲基丙烯酸缩水甘油酯、马来酸酐对聚乳酸起到更好的改性效果。
本发明还提供了另外一种可完全生物降解的一次性输液软管的制备方法,包括以下制备步骤:
(1)将干燥的聚乳酸、聚丁二酸丁二醇酯、1,6-己二醇二缩水甘油醚和己二胺在高速混合机中混合均匀,得到混合料;
(2)将步骤(1)得到的混合料加入双螺杆挤出机中,挤出造粒,得到改性聚乳酸;
(3)将步骤(2)制备的改性聚乳酸加入双螺杆挤出机中,挤出成型,得到一次性输液软管。
所述聚乳酸的数均分子量为50000-200000g/mol,分子量分布为1.5-5.0。
所述聚乳酸、聚丁二酸丁二醇酯、1,6-己二醇二缩水甘油醚的质量比为(80-90):(10-20):(1-5),己二胺的用量以1,6-己二醇二缩水甘油醚所含环氧基全部反应完为准。
所述步骤(2)中双螺杆挤出机的各段温度为:加料段155-160℃,压缩段170-175℃,计量段175-180℃,模头175-180℃;转速为100-400r/min。
所述步骤(3)中双螺杆挤出机的各段温度为:加料段155-160℃,压缩段175-180℃,计量段185-190℃,模头185-190℃;转速为100-400r/min。
本发明采用1,6-己二醇二缩水甘油醚和己二胺的聚合物(环氧基与氨基发生缩聚反应)作为相容剂,能够有效改善聚乳酸与聚丁二酸丁二醇酯的共混相容性,防止共混改性后对体系的力学性能产生不利影响。
本发明的有益效果是:
(1)本发明对聚乳酸采用了两种增韧改性手段,一种是采用聚(1,1,1-三甲基-N-2-丙烯丙胺基硅烷)作为单体对聚乳酸进行接枝改性,另一种是采用聚丁二酸丁二醇酯对聚乳酸进行共混改性,这两种增韧改性方法的组合使用能够显著提高增韧效果,实质性改善聚乳酸的力学性能。
(2)本发明制备的一次性输液软管使用安全性高,不会对人体产生危害,而且具有可完全生物降解的特性,有效解决了常规一次性输液软管废弃后所带来的环境污染问题。
具体实施方式:
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
聚乳酸购自浙江海正生物材料有限公司REVODE110。
聚丁二酸丁二醇酯购自德国巴斯夫C1200。
实施例1
(1)将干燥的95份聚乳酸、5份1,1,1-三甲基-N-2-丙烯丙胺基硅烷、1份过氧化二异丙苯在高速混合机中混合均匀,得到混合料I。
(2)将步骤(1)得到的混合料I加入双螺杆挤出机中,加料段165℃,压缩段180℃,计量段190℃,模头190℃,转速为300r/min,挤出造粒,得到改性聚乳酸I。
(3)将干燥的15份聚丁二酸丁二醇酯与85份步骤(2)制备的改性聚乳酸I在高速混合机中混合均匀,得到混合料II。
(4)将步骤(3)得到的混合料II加入双螺杆挤出机中,加料段160℃,压缩段170℃,计量段175℃,模头180℃,转速为300r/min,挤出造粒,得到改性聚乳酸II。
(5)将步骤(4)制备的改性聚乳酸II加入双螺杆挤出机中,加料段160℃,压缩段175℃,计量段185℃,模头185℃,转速为200r/min,挤出成型,得到一次性输液软管。
实施例2
(1)将干燥的92份聚乳酸、8份1,1,1-三甲基-N-2-丙烯丙胺基硅烷、1份过氧化苯甲酸叔丁酯在高速混合机中混合均匀,得到混合料I。
(2)将步骤(1)得到的混合料I加入双螺杆挤出机中,加料段170℃,压缩段180℃,计量段185℃,模头190℃,转速为200r/min,挤出造粒,得到改性聚乳酸I。
(3)将干燥的10份聚丁二酸丁二醇酯与90份步骤(2)制备的改性聚乳酸I在高速混合机中混合均匀,得到混合料II。
(4)将步骤(3)得到的混合料II加入双螺杆挤出机中,加料段155℃,压缩段170℃,计量段175℃,模头175℃,转速为200r/min,挤出造粒,得到改性聚乳酸II。
(5)将步骤(4)制备的改性聚乳酸II加入双螺杆挤出机中,加料段155℃,压缩段175℃,计量段190℃,模头190℃,转速为200r/min,挤出成型,得到一次性输液软管。
实施例3
(1)将干燥的93份聚乳酸、7份1,1,1-三甲基-N-2-丙烯丙胺基硅烷、1份过氧化苯甲酸叔丁酯在高速混合机中混合均匀,得到混合料I。
(2)将步骤(1)得到的混合料I加入双螺杆挤出机中,加料段165℃,压缩段185℃,计量段190℃,模头190℃,转速为300r/min,挤出造粒,得到改性聚乳酸I。
(3)将干燥的20份聚丁二酸丁二醇酯与80份步骤(2)制备的改性聚乳酸I在高速混合机中混合均匀,得到混合料II。
(4)将步骤(3)得到的混合料II加入双螺杆挤出机中,加料段160℃,压缩段175℃,计量段180℃,模头180℃,转速为200r/min,挤出造粒,得到改性聚乳酸II。
(5)将步骤(4)制备的改性聚乳酸II加入双螺杆挤出机中,加料段160℃,压缩段175℃,计量段185℃,模头185℃,转速为200r/min,挤出成型,得到一次性输液软管。
实施例4
(1)将干燥的80份聚乳酸、20份聚丁二酸丁二醇酯、5份1,6-己二醇二缩水 甘油醚和己二胺(己二胺的用量以1,6-己二醇二缩水甘油醚所含环氧基全部反应完为准)在高速混合机中混合均匀,得到混合料。
(2)将步骤(1)得到的混合料加入双螺杆挤出机中,加料段160℃,压缩段175℃,计量段180℃,模头180℃,转速为200r/min,挤出造粒,得到改性聚乳酸。
(3)将步骤(2)制备的改性聚乳酸加入双螺杆挤出机中,加料段155℃,压缩段175℃,计量段185℃,模头190℃,转速为200r/min,挤出成型,得到一次性输液软管。
实施例5
(1)将干燥的90份聚乳酸、10份聚丁二酸丁二醇酯、3份1,6-己二醇二缩水甘油醚和己二胺(己二胺的用量以1,6-己二醇二缩水甘油醚所含环氧基全部反应完为准)在高速混合机中混合均匀,得到混合料。
(2)将步骤(1)得到的混合料加入双螺杆挤出机中,加料段155℃,压缩段170℃,计量段175℃,模头180℃,转速为300r/min,挤出造粒,得到改性聚乳酸。
(3)将步骤(2)制备的改性聚乳酸加入双螺杆挤出机中,加料段160℃,压缩段180℃,计量段185℃,模头185℃,转速为200r/min,挤出成型,得到一次性输液软管。
对比例1
对比例1与实施例1的不同之处只在于以等量的甲基丙烯酸缩水甘油酯替代1,1,1-三甲基-N-2-丙烯丙胺基硅烷。
对比例2
对比例2与实施例1的不同之处只在于以等量的马来酸酐替代1,1,1-三甲基-N-2-丙烯丙胺基硅烷。
对比例3
对比例3与实施例4的不同之处只在于以等量的马来酸酐接枝聚乳酸替代己二醇二缩水甘油醚和己二胺。
按照标准GB/T 1040.1-2018测试拉伸性能,拉伸速率为5mm/min。
按照标准GB/T 1043-1993测试冲击性能,采用简支梁无缺口式样冲击法。
测试结果见表1。
表1
  拉伸强度(MPa) 冲击强度(KJ/m 2)
实施例1 39.8 24.2
实施例2 37.5 22.6
实施例3 42.7 25.3
实施例4 31.2 16.7
实施例5 27.4 15.1
对比例1 35.6 18.5
对比例2 32.3 17.2
对比例3 26.5 14.3
从表1可以得知,本发明采用1,1,1-三甲基-N-2-丙烯丙胺基硅烷对聚乳酸进行接枝改性能够实质性改进所制材料的力学性能,并且本发明采用1,6-己二醇二缩水甘油醚和己二胺反应制备的聚合物作为相容剂也可以取得改善所制材料的力学性能的技术效果。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

  1. 可完全生物降解的一次性输液软管的制备方法,其特征在于,包括以下制备步骤:
    (1)将干燥的聚乳酸、1,1,1-三甲基-N-2-丙烯丙胺基硅烷、引发剂在高速混合机中混合均匀,得到混合料I;
    (2)将步骤(1)得到的混合料I加入双螺杆挤出机中,挤出造粒,得到改性聚乳酸I;
    (3)将干燥的聚丁二酸丁二醇酯与步骤(2)制备的改性聚乳酸I在高速混合机中混合均匀,得到混合料II;
    (4)将步骤(3)得到的混合料II加入双螺杆挤出机中,挤出造粒,得到改性聚乳酸II;
    (5)将步骤(4)制备的改性聚乳酸II加入双螺杆挤出机中,挤出成型,得到一次性输液软管。
  2. 根据权利要求1所述的制备方法,其特征在于:所述聚乳酸的数均分子量为50000-200000g/mol,分子量分布为1.5-5.0。
  3. 根据权利要求1所述的制备方法,其特征在于:所述聚乳酸、1,1,1-三甲基-N-2-丙烯丙胺基硅烷的质量比为(93-95):(5-7)。
  4. 根据权利要求1所述的制备方法,其特征在于:所述引发剂为有机过氧化物引发剂。
  5. 根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中双螺杆挤出机的各段温度为:加料段165-170℃,压缩段180-185℃,计量段185-190℃,模头185-190℃;转速为100-400r/min。
  6. 根据权利要求1所述的制备方法,其特征在于:所述改性聚乳酸I、聚丁二酸丁二醇酯的质量比为(80-90):(10-20)。
  7. 根据权利要求1所述的制备方法,其特征在于:所述步骤(4)中双螺杆挤出机的各段温度为:加料段155-160℃,压缩段170-175℃,计量段175-180℃,模头175-180℃;转速为100-400r/min。
  8. 根据权利要求1所述的制备方法,其特征在于:所述步骤(5)中双螺杆挤出机的各段温度为:加料段155-160℃,压缩段175-180℃,计量段185-190℃, 模头185-190℃;转速为100-400r/min。
PCT/CN2021/133975 2021-11-26 2021-11-29 可完全生物降解的一次性输液软管的制备方法 WO2023092548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111422620.0A CN114085483B (zh) 2021-11-26 2021-11-26 可完全生物降解的一次性输液软管的制备方法
CN202111422620.0 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023092548A1 true WO2023092548A1 (zh) 2023-06-01

Family

ID=80305047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133975 WO2023092548A1 (zh) 2021-11-26 2021-11-29 可完全生物降解的一次性输液软管的制备方法

Country Status (2)

Country Link
CN (1) CN114085483B (zh)
WO (1) WO2023092548A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824211A (zh) * 2010-04-15 2010-09-08 中国科学院宁波材料技术与工程研究所 一种全生物降解高韧性耐热型聚乳酸树脂及其制备方法
CN102603994A (zh) * 2012-03-09 2012-07-25 中国科学院宁波材料技术与工程研究所 甲基丙烯酸缩水甘油酯接枝聚乳酸共聚物材料及其制备方法和应用
CN104629281A (zh) * 2015-02-11 2015-05-20 北京工商大学 一种可生物降解聚乳酸导热复合材料及其制备方法
CN105860468A (zh) * 2016-04-28 2016-08-17 青岛科技大学 一种生物可降解超韧聚乳酸共混物材料及其制备方法
CN106832260A (zh) * 2016-12-22 2017-06-13 苏州度博迈医疗科技有限公司 一种可降解抗菌聚氨基酸及其制备方法
CN107087906A (zh) * 2017-04-20 2017-08-25 浙江工贸职业技术学院 一种带图书防尘杀菌功能的书架
CN109096650A (zh) * 2018-08-17 2018-12-28 江西洪达医疗器械集团有限公司 一种留置针输液软管的制备方法
CN111040400A (zh) * 2019-12-27 2020-04-21 周锐 一种全生物降解片材及其制备方法
JP6763619B1 (ja) * 2019-05-09 2020-09-30 ヴァス ネットワークス (エイチケー) リミテッドVasu Networks (Hk) Ltd. 高度生分解性材料の調製方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110245420A1 (en) * 2008-11-13 2011-10-06 Rasal Rahul M Copolymer including polylactic acid, acrylic acid and polyethylene glycol and processes for making the same
CN105602211A (zh) * 2014-11-21 2016-05-25 合肥杰事杰新材料股份有限公司 一种改性纳米二氧化硅增强增韧聚乳酸复合材料及其制备方法
CN105623217A (zh) * 2016-02-27 2016-06-01 江苏金扬子包装科技有限公司 一种一次性注射器聚乳酸生物基专用料
CN108727788A (zh) * 2017-04-21 2018-11-02 武汉金发科技有限公司 一种高粘度聚丁二酸丁二醇酯/聚乳酸复合材料的制备方法
CN107805375A (zh) * 2017-11-06 2018-03-16 丽水市莲都区君正模具厂 医疗用聚乳酸复合材料及制备的一次性注射器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824211A (zh) * 2010-04-15 2010-09-08 中国科学院宁波材料技术与工程研究所 一种全生物降解高韧性耐热型聚乳酸树脂及其制备方法
CN102603994A (zh) * 2012-03-09 2012-07-25 中国科学院宁波材料技术与工程研究所 甲基丙烯酸缩水甘油酯接枝聚乳酸共聚物材料及其制备方法和应用
CN104629281A (zh) * 2015-02-11 2015-05-20 北京工商大学 一种可生物降解聚乳酸导热复合材料及其制备方法
CN105860468A (zh) * 2016-04-28 2016-08-17 青岛科技大学 一种生物可降解超韧聚乳酸共混物材料及其制备方法
CN106832260A (zh) * 2016-12-22 2017-06-13 苏州度博迈医疗科技有限公司 一种可降解抗菌聚氨基酸及其制备方法
CN107087906A (zh) * 2017-04-20 2017-08-25 浙江工贸职业技术学院 一种带图书防尘杀菌功能的书架
CN109096650A (zh) * 2018-08-17 2018-12-28 江西洪达医疗器械集团有限公司 一种留置针输液软管的制备方法
JP6763619B1 (ja) * 2019-05-09 2020-09-30 ヴァス ネットワークス (エイチケー) リミテッドVasu Networks (Hk) Ltd. 高度生分解性材料の調製方法
CN111040400A (zh) * 2019-12-27 2020-04-21 周锐 一种全生物降解片材及其制备方法

Also Published As

Publication number Publication date
CN114085483A (zh) 2022-02-25
CN114085483B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN105670239B (zh) 一种以pla/pbat为基料的全降解育苗盘及其制备方法
TWI595040B (zh) 烯烴-順丁烯二酐共聚物組成物及其用途
CN104822764B (zh) 耐热老化乙烯乙酸乙烯酯共聚物组合物及其制备方法
CN108659421B (zh) 氯化聚氯乙烯组合物及管材制备方法
CN101397394B (zh) 耐水解柔性聚乳酸取向制品及生产方法
CN101068667A (zh) 长纤维增强热塑性浓缩物及其制备方法
CN108047530B (zh) 一种复合pe-ppr增韧管及其制备方法
JP7240805B2 (ja) ポリアミド樹脂組成物およびその成形体
CN108276662A (zh) 一种永久型抗静电聚丙烯复合材料及其制备方法
CN110746701A (zh) 一种聚丙烯组合物及其制备方法
CN104327347A (zh) 一种用于非pvc医用输液袋的高分子粘合树脂及其制备方法
CN104592622B (zh) 一种提高熔接线力学性能的聚丙烯复合材料及其制备方法
CN110872418A (zh) 一种聚丙烯组合物及其制备方法
CN105086134A (zh) 医用高分子材料及其制备方法
CN109679332A (zh) 一种耐低温高冲击高柔韧pa6及其制备方法
CN101831132B (zh) 一种树脂组合物
CN101921450A (zh) 一种血液净化循环回路用热塑性弹性体改性料
WO2023092548A1 (zh) 可完全生物降解的一次性输液软管的制备方法
KR102192841B1 (ko) 전도성 폴리아미드 수지 조성물, 이의 제조방법 및 성형품
CN113999535B (zh) 热塑性弹性体材料及热塑性弹性体管路
JP2909206B2 (ja) 合成樹脂部品特に管の製造方法およびその方法を実施するための成形配合物
CN101402786B (zh) 一种增韧聚乙烯-聚乳酸组合物
CN105694344A (zh) 一种洗衣机盖板用塑料合金及其制备方法
CN111286164B (zh) 一种生物降解塑料及其制备方法
CN110066472A (zh) 一种挤出级耐候阻燃acs材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965280

Country of ref document: EP

Kind code of ref document: A1