WO2023090721A1 - 그람음성균에 우수한 항균활성을 가지는 9량체 펩타이드 및 이의 거울상 이성질체 - Google Patents

그람음성균에 우수한 항균활성을 가지는 9량체 펩타이드 및 이의 거울상 이성질체 Download PDF

Info

Publication number
WO2023090721A1
WO2023090721A1 PCT/KR2022/017267 KR2022017267W WO2023090721A1 WO 2023090721 A1 WO2023090721 A1 WO 2023090721A1 KR 2022017267 W KR2022017267 W KR 2022017267W WO 2023090721 A1 WO2023090721 A1 WO 2023090721A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
gram
pro9
negative
composition
Prior art date
Application number
PCT/KR2022/017267
Other languages
English (en)
French (fr)
Inventor
김양미
최준혁
이혜주
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Publication of WO2023090721A1 publication Critical patent/WO2023090721A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/46N-acyl derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a 9-mer peptide and its enantiomeric peptide having excellent antibacterial activity against Gram-negative bacteria, and more particularly, to the 9-mer antimicrobial peptide represented by the amino acid sequence of SEQ ID NO: 1 or its enantiomeric antibacterial peptide, the antimicrobial peptide It relates to an antibacterial composition, an anti-inflammatory composition, and a pharmaceutical composition for preventing or treating gram-negative bacterial infection, sepsis or septic shock, comprising as an active ingredient.
  • LPS lipopolysaccharide
  • the six pathogens identified by the World Health Organization (WHO) as highly resistant to antibiotics (ESKAPE) are Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species.
  • WHO World Health Organization
  • Gram-negative A. baumannii is an important opportunistic infection pathogen with high mortality in hospitals, infects about 1 million people annually, and 44% of clinical isolates are multidrug-resistant (MDR) A. baumannii .
  • MDR multidrug-resistant
  • the most common resistance mechanisms in these isolates include penicillin-binding protein mutation, porin loss, aminoglyco-side-modifying enzyme mutation, and efflux pump overexpression. there is.
  • First-line treatments for A. baumannii include ⁇ -lactams such as doripenem, imipenem, and meropenem, or carbapenem antibiotics.
  • ⁇ -lactams such as doripenem, imipenem, and meropenem
  • carbapenem antibiotics such as imipenem, and meropenem
  • carbapenem antibiotics such as imipenem, and meropenem
  • carbapenem antibiotics such as ⁇ -lactams such as ⁇ -lactams such as ⁇ -lactams such as imipenem, and meropenem, or carbapenem antibiotics.
  • CRAB carbapenem-resistant A. baumannii
  • the mechanism of resistance to colistin and/or tigecycline in CRAB bacteria is the expression of genes encoding lipoxygenase and polymyxin resistance-related response regulators (pmr)-A/B. It is related to structural alteration of LPS through mutation.
  • antibiotic resistance can lead to biofilm formation in which secreted substances such as extracellular matrix polysaccharides, proteins and DNA adhere to biological or abiotic surfaces, increasing the toxicity and antibiotic resistance of CRAB isolates in immunocompromised patients.
  • development of treatments for CRAB infection is very limited.
  • SIRS systemic inflammatory response syndrome
  • Sepsis is a multifaceted syndrome caused by an abnormal immune response to a bacterial infection, resulting in excessive inflammation, organ dysfunction, and, in severe cases, even death (Van Der Poll T. et al. , Nat. Rev. Immunol ., 17:407-420, 2017; Rudd KE et al. , Crit. Care, 22:1-11, 2018).
  • LPS lipopolysaccharide
  • AMPs Antimicrobial peptides
  • AMPs are part of the first line of defense in all living host species and have emerged as a new class of antibiotics for the treatment of infections.
  • AMPs form a component of innate immune defense
  • AMPs show broad-spectrum potential as small molecule antibiotics, and more than 40 years of peptide research have highlighted AMPs as alternatives to naturally occurring antibiotics.
  • AMPs have a wide range of antibacterial activities and various structures and modes of action, the development of new AMPs is being studied as a promising strategy to combat multidrug-resistant bacteria (Wimley WC et al. , J. Membr. Boil. , 239:27-34, 2011; Narayana JL et al. , Peptides, 72:88-94, 2015; Hollmann A. et al. , Front. Chem., 6:204, 2018).
  • AMPs Although more than 3,000 AMPs have been identified to date, there are not many FDA-approved AMPs, including colistin, gramicidin D, daptomycin, vancomycin, oritavancin ( oritavancin), dalbavancin and telavancin, which are currently on the market or in clinical development (Steckbeck JD et al. , Boil. Ther., 14:11-14, 2013; Wang G. , Li X. et al. , Nucleic Acids Res., 44:D1087-D1093, 2015). Although they have different structures and sequence motifs, they share a broad range of antimicrobial actions, and although the detailed mechanism of the antibacterial activity of AMPs is not fully understood, they have been identified to be related to bacterial cell membrane penetration or intracellular killing.
  • AMPs possess broad-spectrum bactericidal activity, such as resistance potential, immunomodulatory capacity, and anti-inflammatory, anti-biofilm and antiviral effects uncommon in standard antibiotics.
  • Many peptidomimetics including D-amino acids, unnatural amino acids, peptide backbone modifications, cyclization, triazole modifications, and secondary structure-inducing templates, are being developed to counteract the sensitivity of AMPs to proteolysis. .
  • Protaetiamycin is an insect defensin composed of 43 amino acids and has strong antibacterial activity against both Gram-negative and Gram-positive bacteria, but it is a 43-mer and has a long residue sequence, making it difficult to commercialize due to low economic feasibility.
  • the inventors of the present invention have designed a 9-mer peptide (Ala22 to Gly30) from insect defensin, proteatiamycin, in a previous study.
  • An object of the present invention is a 9-mer antibacterial peptide represented by the amino acid sequence of SEQ ID NO: 1 or an enantiomeric antimicrobial peptide thereof, antibacterial, anti-inflammatory and gram-negative bacterial infectious disease prevention of the antimicrobial peptide, prevention or treatment of sepsis or septic shock to serve a purpose.
  • the present invention provides a 9-mer peptide represented by the amino acid sequence of SEQ ID NO: 1 or an enantiomeric peptide thereof.
  • the 9-mer peptide or its enantiomeric peptide may be characterized in that it is an antibacterial peptide.
  • the enantiomeric peptide may be characterized in that all of the amino acid sequences of SEQ ID NO: 1 are substituted with D-type amino acids.
  • the bacteria may be characterized as Gram-negative bacteria.
  • the gram-negative bacteria may be multidrug-resistant (MDR) gram-negative bacteria.
  • MDR multidrug-resistant
  • the gram-negative bacteria may include one or more selected from the group consisting of Escherichia coli, Acinetobacter baumannii , Pseudomonas aeruginosa and Klebsiella pneumonia .
  • the MDR (multidrug-resistant) gram-negative bacteria may be characterized in that they are carbapenem-resistant.
  • the 9-mer peptide or its enantiomer peptide may be characterized by having low hemolytic activity and low toxicity to mammalian cells.
  • the 9-mer peptide or its enantiomer peptide may be characterized in that it damages the cell membrane by increasing the permeability to the bacterial cell membrane.
  • the 9-mer peptide or its enantiomer peptide binds to lipopolysaccharide (LPS), which acts as an endotoxin as a component of the outer membrane of Gram-negative bacteria, and inhibits the activity of lipopolysaccharide (LPS).
  • LPS lipopolysaccharide
  • the 9-mer peptide or its enantiomer peptide may be characterized in that it inhibits bacterial biofilm formation.
  • the enantiomeric peptide may be characterized in that it has proteolytic stability with protease resistance.
  • the 9-mer peptide or its enantiomer peptide may be characterized in that it inhibits inflammation caused by LPS.
  • the 9-mer peptide or its enantiomer peptide may be characterized in that it is for treatment of Gram-negative sepsis or septic shock.
  • the present invention also provides an antimicrobial composition comprising the peptide as an active ingredient.
  • the present invention also provides an anti-inflammatory composition comprising the peptide as an active ingredient.
  • the present invention also provides a pharmaceutical composition for preventing or treating a gram-negative bacterial infection disease comprising the peptide as an active ingredient.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock.
  • the present invention also provides a quasi-drug composition for preventing or ameliorating gram-negative bacterial infectious diseases comprising the peptide as an active ingredient.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock.
  • the present invention also provides a food composition for preventing or improving gram-negative bacterial infectious diseases comprising the peptide as an active ingredient.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock.
  • the present invention also provides a method for preventing or treating a gram-negative bacterial infection, comprising administering a pharmaceutical composition containing the peptide as an active ingredient to a patient suffering from a gram-negative bacterial infection.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock.
  • the present invention also provides a use of the peptide for preventing or treating a gram-negative bacterial infection disease.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock.
  • the present invention also provides the use of the peptide for the preparation of a drug for preventing or treating a gram-negative bacterial infection disease.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock.
  • the 9-mer peptide represented by the amino acid sequence of SEQ ID NO: 1 or its enantiomer peptide of the present invention has lower cytotoxicity and excellent proteolytic stability than the 9-mer peptide represented by the amino acid sequence of SEQ ID NO: 3 or its enantiomeric peptide. , It effectively penetrates bacterial cell membranes, exhibits excellent antibacterial activity, and effectively kills biofilms.
  • the 9-mer peptide represented by the amino acid sequence of SEQ ID NO: 1 or its enantiomer can strongly bind to lipopolysaccharide (LPS), which acts as an endotoxin as a main component of the outer membrane of Gram-negative bacteria, and inhibits LPS activity.
  • LPS lipopolysaccharide
  • the 9-mer peptide represented by the amino acid sequence of SEQ ID NO: 1 or its enantiomeric peptide shows a remarkable anti-inflammatory effect and can be used as a new peptide antibiotic for treating infectious diseases caused by antibiotic-resistant gram-negative bacteria. there is.
  • the 9-mer peptide represented by the amino acid sequence of SEQ ID NO: 1 or its enantiomeric peptide improves inflammatory insults in a septic mouse model and exhibits a protective effect against organ dysfunction in septic mice, resulting in sepsis or septic It can be usefully applied as a new peptide antibiotic for effective treatment of shock.
  • FIG. 1 shows the helix of Pro9-3 (Fig. 1A) and R-Pro9-3 (Fig. 1B) analyzed using the HeliQuest program (http://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py) It is about helical wheel projection. Positively charged amino acid residues are shown in blue, negatively charged residues in red, hydrophobic residues in yellow, and alanine in gray, confirming that the peptides show amphiphilicity. Arrows, N and C indicate the helical hydrophobic moment, N-terminal region and C-terminal region, respectively.
  • Figure 2 relates to the antibacterial mechanism of the peptide.
  • Figure 2A is a displacement assay using BODIPY-TR-cadaverine fluorescent dye showing the LPS binding affinity of the peptide
  • Figure 2B is a LAL assay showing the LPS neutralization ability of the peptide and LL-37 control (Figure 2B)
  • Figure 2C is intact Concentration-dependent depolarization ability by peptides is shown using intact CRAB bacteria.
  • Statistical analysis was performed using two-way ANOVA with Dunnett's comparison test. Each value is presented as the mean ⁇ SEM of three independent experiments and is statistically significant at *P ⁇ 0.05, **P ⁇ 0.01, ***P ⁇ 0.001. ns indicates not significant.
  • FIG. 3 relates to biofilm inhibitory properties of peptides.
  • the anti-biofilm activity of peptides (0-32 ⁇ M, 16 hours) against A. baumannii (FIG. 3A) or CRAB 12006 (FIG. 3B) was measured using crystal violet staining. Melittin, merpenem and imipenem were used as controls.
  • Statistical analysis was performed using two-way ANOVA with Dunnett's comparison test. Each value is expressed as the mean ⁇ SEM of 3 independent experiments, *P ⁇ 0.05, **P ⁇ 0.01; ***Statistically significant at P ⁇ 0.001. ns indicates not significant.
  • Figure 4 is a diagram showing circular dichroism spectra of 100 ⁇ M peptides in (A) aqueous solution and (B) 50 mM dodecylphosphocholine (DPC) micelles scanned 10 times. Double negative maxima at 205 and 220 nm in FIG. 4 are characteristic of the alpha helical structure.
  • a dose-response curve shows the hemolytic activity of the peptide on sheep red blood cells (sRBC) (FIG. 5A). Concentration-dependent (0-100 ⁇ M) toxic effects induced by the peptides on (B) RAW 264.7 murine macrophage cells and (C) human kidney (HK)-2 cells for 24 hours. . Melittin was used as a control. Statistical analysis was performed using two-way ANOVA with Dunnett's comparison test. Each value is expressed as the mean ⁇ SEM of 3 independent experiments, *P ⁇ 0.05, **P ⁇ 0.01; ***Statistically significant at P ⁇ 0.001. ns indicates not significant.
  • Figure 6 relates to the inhibitory effect of the inflammatory response in RAW264.7 cells stimulated with LPS of the peptide.
  • Peptides (0 to 50 ⁇ M) for (A) production of nitrite and production of inflammatory cytokines (B) TNF- ⁇ and (C) IL-6 in RAW264.7 cells stimulated with LPS (20 ng/mL) for 16 hours ) shows a concentration-dependent inhibitory effect. Data were performed in triplicate and presented as mean ⁇ SEM.
  • Figure 7 relates to the non-toxic effect in vivo necessary for R-Pro9-3D to be used as a treatment for Gram-negative bacterial infections or sepsis.
  • A AST
  • B ALT
  • C BUN levels of mice treated with R-Pro9-3D (1mg/kg and 5mg/Kg) for 24 hours were confirmed, and control mice were intraperitoneally injected only with PBS solution. . Data were performed in triplicate and presented as mean ⁇ SEM.
  • FIGS. 8a and 8b show the effect of mitigating septic shock in mice infected with E. coli K1 by R-Pro9-3D.
  • A inhibition of bacterial growth by R-Pro9-3D in lung, liver and kidney tissues of septic mice
  • B effect of reducing circulating endotoxin (LPS) levels in serum of septic mice by R-Pro9-3D, R -Pro9-3D reduced
  • C AST
  • D ALT and
  • E BUN concentrations in serum of septic mice
  • F TNF- ⁇ and (F) TNF- ⁇ and
  • G IL-6 level reduction effect
  • H TNF- ⁇ and (I) IL-6 level reduction effect by R-Pro9-3D in lung tissue were confirmed.
  • Graphs are presented as mean ⁇ SEM (5 mice/group).
  • J confirmed the sepsis treatment effect by inhibiting lung damage of lung tissue of septic mice infected with E. coli K1.
  • antibiotic-resistant Gram-negative bacteria e.g., carbapenem-resistant
  • Gram-negative bacteria e.g., carbapenem-resistant A. baumannii (CRAB)
  • CRAB carbapenem-resistant A. baumannii
  • AMPs antimicrobial peptides
  • D-amino acids have resistance to proteolysis in vivo, thus ensuring maximum bioavailability and therapeutic efficacy.
  • Pro9-3 and Pro9-3D enantiomeric peptide
  • the two 9-mer peptide sequences designed in previous studies were reversely used, and D-amino acids were introduced to increase the stability of the peptides to design R-Pro9-3 and R-Pro9-3D. It was confirmed that one peptide penetrates the bacterial membrane and exhibits better antibacterial activity against gram-negative bacteria, particularly carbapenem-resistant gram-negative bacteria, and exhibits excellent proteolytic stability and low cytotoxicity. In addition, the present invention was completed by confirming that it had excellent anti-inflammatory activity and exhibited an inhibitory effect on sepsis.
  • the present invention provides a 9-mer peptide represented by the amino acid sequence of SEQ ID NO: 1 or an enantiomeric peptide thereof.
  • the 9-mer peptide or its enantiomeric peptide may be characterized in that it is an antibacterial peptide.
  • the 9-mer peptide or its enantiomeric peptide has the sequence of the 9-mer peptide represented by the amino acid sequence of SEQ ID NO: 3 or its enantiomer reversed.
  • antibacterial means the ability to reduce, prevent, inhibit or eliminate the growth or survival of microorganisms at a certain concentration, preferably “antibacterial or antibacterial (anti-bacterial) bacterial)".
  • the enantiomer is characterized in that all amino acid sequences of SEQ ID NO: 1 are substituted with D-type amino acids.
  • the inventors of the present invention have designed four 9-meric peptides (Ala22 to Gly30) from protaetiamycin, a 43-mer insect defensin, in a previous study.
  • Pro9-3 RLWLAIWRR-NH2, SEQ ID NO: 3
  • the enantiomeric peptide Pro9-3D showed strong antibacterial and anti-inflammatory activities, they also exhibited high cytotoxicity against mammalian cells.
  • a reverse 9-meric peptide was prepared by using the amino acid sequence of Pro9-3 in reverse. -3".
  • R-Pro9-3D was additionally synthesized by substituting the amino acid of R-Pro9-3 with a D-type amino acid (Table 1).
  • helical-wheel diagram analysis was performed on the parent peptides Pro9-3 and R-Pro9-3.
  • the helical-wheel diagrams of the parent peptides Pro9-3 and R-Pro9-3 show that the lower hydrophobic side is much larger than the upper hydrophilic side, but is amphiphilic.
  • the bacteria may be characterized as Gram-negative bacteria, but is not limited thereto.
  • the gram-negative bacteria may be multidrug-resistant (MDR) gram-negative bacteria, but are not limited thereto.
  • MDR multidrug-resistant
  • the gram-negative bacteria may include one or more selected from the group consisting of Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumonia, but is not limited thereto.
  • the MDR (multidrug-resistant) gram-negative bacteria may be characterized in that they are carbapenem-resistant, but are not limited thereto.
  • the antibacterial activity of R-Pro9-3 and R-Pro9-3D was measured.
  • all peptides were It showed antibacterial activity similar to that of melittin, which is known as a strong peptide antibiotic.
  • R-Pro9-3D shows an excellent killing effect on all standard gram-negative bacteria and all gram-negative MDR bacteria when compared to other 9-mer peptides (Pro9-3, Pro9-3D, R-Pro9-3) Confirmed.
  • R-Pro9-3D showed a higher relative selective index for Gram-negative bacteria than other peptides
  • Pro9-3D, R-Pro9-3, and Pro9-3 (34.6, 26.5, respectively) , 8.0 and 6.3), respectively, the relative selection index was found to be high. Therefore, it was confirmed that R-Pro9-3D showed better bacterial selectivity than other peptides.
  • MDR multidrug-resistant Gram-negative bacteria
  • resistant bacteria refers to any disease and its complications or any bacterial disorder and its complications as a result of continuous use of drugs to treat or prevent, antibiotics. refers to bacteria that are resistant to Examples of such antibiotics include vancomycin, cephalosporins, quinolones and fluoroquinolones, penicillins, beta-lactamase inhibitors, carbepenems, monobactams, macrolides and lincosamines, glycopeptides, rifampins, oxazolidinones, tetracyclines, There are aminoglycosides, streptogramin, and sulfonamides, and antibiotic-resistant bacteria show resistance even when treated with the above-listed antibiotics, so that the disease is continuously maintained in the subject.
  • the 9-mer peptide or its enantiomer peptide may be characterized by having low hemolytic activity and low toxicity to mammalian cells infected with Gram-negative bacteria, but is not limited thereto.
  • the cell may be a eukaryotic cell, and the mammalian cell may preferably be an animal or human cell.
  • the R-Pro9-3, R-Pro9-3D, Pro9-3 and Pro9-3D peptides are in sRBC 100 ⁇ M of melittin induced 1 to 5% hemolysis, whereas melittin showed 100% hemolysis at a concentration of 25 ⁇ M.
  • both R-Pro9-3 and Pro9-3 compared to melittin even at a concentration of up to 100 ⁇ M It has not been shown to be toxic, but has low antibacterial activity.
  • Pro9-3D showed toxicity of 44.5% and 22.9% in RAW 264.7 and human kidney (HK)-2 cells, respectively, at a concentration of 100 ⁇ M, and R-Pro9-3D showed toxicity twice as low at 20.3% and 9.6%. . That is, although Pro9-3D showed high antibacterial activity against MDR gram-negative bacteria, it was confirmed that it could not be used as an effective peptide antibiotic because of its very high toxicity to mammalian cells.
  • the 9-mer peptide or its enantiomeric peptide can exhibit antibacterial activity by increasing the permeability to the bacterial cell membrane and damaging the cell membrane.
  • the 9-mer peptide or its enantiomeric peptide has high cationicity, so it can maintain high antibacterial activity similar to melittin, and can effectively interact with bacterial cell membranes to give fatal damage to bacteria to improve antibacterial activity.
  • the 9-mer peptide or its enantiomeric peptide may have endotoxin neutralizing ability or endotoxin removal ability in vitro and/or in vivo.
  • the 9-mer peptide or its enantiomer peptide may be characterized in that it inhibits the activity of lipopolysaccharide (LPS) by binding to lipopolysaccharide (LPS) acting as an endotoxin.
  • LPS lipopolysaccharide
  • LPS is an outer membrane component of Gram-negative bacteria that attaches to innate immune receptors (eg Toll-like receptors (TLRs)) and critically influences their pro-inflammatory activity.
  • TLRs Toll-like receptors
  • R-Pro9-3D an amphiphilic peptide, can more effectively target LPS, which is a component of the outer membrane of Gram-negative bacteria and has amphiphilic and anionic properties, through electrostatic interaction.
  • the 9-mer peptide or its enantiomer peptide may be characterized in that it inhibits bacterial biofilm formation.
  • the enantiomeric peptide may be characterized in that it has proteolytic stability with protease resistance.
  • R-Pro9-3D is completely intact under various digestion conditions and exhibits significant antibacterial activity against gram-negative bacteria like Pro9-3D, and that R-Pro9-3D is more resistant to A. baumannii than Pro9-3D. It was found that it exhibited effective antibacterial activity and improved proteolytic stability.
  • the 9-mer peptide or its enantiomer may inhibit inflammation caused by LPS, but is not limited thereto.
  • the 9-mer peptide or its enantiomer peptide may be characterized in that it is for treatment of Gram-negative sepsis or septic shock.
  • the septic shock is also referred to as septic shock, and is a case in which hypotension is accompanied by sepsis.
  • the present invention relates to an antimicrobial composition
  • an antimicrobial composition comprising the peptide as an active ingredient.
  • the present invention relates to an anti-inflammatory composition
  • an anti-inflammatory composition comprising the peptide as an active ingredient.
  • inflammation may be characterized as LPS-induced inflammation.
  • LPS released from pathogens stimulates host immune cells, such as macrophages and fibroblasts, to produce cytokines that can lead to sepsis-related diseases.
  • R-Pro9-3D had excellent antibacterial activity, and it was confirmed that resistance to proteolytic enzymes, endotoxin neutralization/removal, biofilm formation inhibition efficacy, and anti-inflammatory activity were excellent.
  • the present invention relates to a composition for preventing or treating gram-negative bacterial infectious diseases, comprising the peptide as an active ingredient.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock.
  • R-Pro9-3D is excellent in preventing or treating sepsis/septic shock, and can improve the function of organs damaged by endotoxin.
  • R-Pro9-3D As a result of examining the safety of R-Pro9-3D in mice to confirm the efficacy of R-Pro9-3D for treating gram-negative bacterial infections or sepsis, as shown in FIG. 7, R-Pro9 -When low and high doses of 3D (1mg/kg and 5mg/Kg) were administered, clinical significance of AST, ALT and BUN in the treated mice was not observed, suggesting that R-Pro9-3D is safe even at high doses in the present invention. confirmed that
  • the efficacy of R-Pro9-3D as a peptide antibiotic was confirmed in a septic shock mouse model established using E. coli K1. As shown in Fig. 8A, it was confirmed that R-Pro9-3D reduced the number of bacteria in the mouse lung, liver and kidney. This indicates that R-Pro9-3D effectively inhibits bacterial growth in the intestinal organs of mice infected with E. coli K1.
  • R-Pro9-3D peptide can act as a novel peptide antibiotic to prevent sepsis-related inflammation in mice infected with E. coli K1, R-Pro9-3D of the present invention is It can be usefully applied as a novel peptide antibiotic for the effective treatment of septic shock.
  • the present invention relates to a quasi-drug composition for preventing or ameliorating gram-negative bacterial infectious diseases comprising the peptide as an active ingredient.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock, but is not limited thereto.
  • the present invention relates to a food composition for preventing or improving gram-negative bacterial infectious diseases comprising the peptide as an active ingredient.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock, but is not limited thereto.
  • the present invention relates to a method for preventing or treating a gram-negative bacterial infection, comprising administering a pharmaceutical composition containing the peptide as an active ingredient to a patient suffering from a gram-negative bacterial infection will be.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock.
  • the present invention provides a use of the peptide for preventing or treating a gram-negative bacterial infection disease.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock, but is not limited thereto.
  • the present invention provides the use of the peptide for the preparation of a drug for preventing or treating a gram-negative bacterial infection disease.
  • the gram-negative bacterial infectious disease may be gram-negative sepsis or septic shock, but is not limited thereto.
  • peptide refers to a linear molecule formed by binding amino acid residues to each other by a peptide bond.
  • the peptides of the present invention may be prepared according to chemical synthesis methods known in the art, particularly solid-phase synthesis techniques (Merrifield, J. Amer. Chem. Soc. 85:2149-54 (1963)). ;
  • peptides of the present invention can be prepared by standard synthetic methods, recombinant expression systems, or any other art method.
  • peptides according to the present invention can be synthesized in a number of ways, including, for example, methods comprising:
  • a method of obtaining a peptide fragment by any combination of (a), (b) and (c), then linking the fragments to obtain a peptide, and recovering the peptide.
  • prevention refers to all activities that inhibit or delay the occurrence, spread, and recurrence of gram-negative bacterial infectious diseases by administration of the protein or fragment thereof according to the present invention, or a composition containing the same.
  • treatment refers to any activity that improves or beneficially changes the symptoms of a gram-negative bacterial infectious disease and its complications by administration of a protein or a fragment thereof according to the present invention, or a composition containing the same. .
  • Those of ordinary skill in the art to which the present invention pertains will be able to determine the degree of improvement, enhancement and treatment by knowing the exact criteria of the disease for which the composition of the present application is effective by referring to the data presented by the Korean Medical Association, etc. will be.
  • a therapeutically effective amount of the composition of the present invention may vary depending on several factors, such as the method of administration, the target site, and the condition of the patient. Therefore, when used in the human body, the dosage should be determined in an appropriate amount in consideration of both safety and efficiency. It is also possible to estimate the amount to be used in humans from the effective amount determined through animal experiments. These considerations in determining an effective amount can be found, for example, in Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed. (2001), Pergamon Press; and E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed. (1990), Mack Publishing Co.
  • the pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount that is sufficient to treat a disease with a reasonable benefit / risk ratio applicable to medical treatment and does not cause side effects
  • the effective dose level is the patient's Health condition, type and severity of disease, activity of drug, sensitivity to drug, method of administration, time of administration, route of administration and excretion rate, duration of treatment, factors including drugs used in combination or concurrently, and other factors well known in the medical field can be determined according to
  • the composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or in multiple doses. Considering all of the above factors, it is important to administer the amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
  • the pharmaceutical composition of the present invention may include a carrier, diluent, excipient, or a combination of two or more commonly used in biological preparations.
  • pharmaceutically acceptable means exhibiting non-toxic properties to cells or humans exposed to the composition.
  • the carrier is not particularly limited as long as it is suitable for in vivo delivery of the composition, and for example, Merck Index, 13thed., Merck & Co. Inc. , saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these components may be mixed and used. Customary additives may be added.
  • diluents, dispersants, surfactants, binders, and lubricants may be additionally added to formulate formulations for injection, such as aqueous solutions, suspensions, and emulsions, pills, capsules, granules, or tablets.
  • formulations for injection such as aqueous solutions, suspensions, and emulsions, pills, capsules, granules, or tablets.
  • it can be preferably formulated according to each disease or component by using an appropriate method in the art or by using a method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA, 18th, 1990).
  • the pharmaceutical composition may be one or more formulations selected from the group consisting of oral formulations, external preparations, suppositories, sterile injection solutions, and sprays.
  • composition of the present invention may also include a carrier, diluent, excipient or a combination of two or more commonly used in biological preparations.
  • the pharmaceutically acceptable carrier is not particularly limited as long as it is suitable for in vivo delivery of the composition, for example, Merck Index, 13th ed., Merck & Co. Inc. , saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these components may be mixed and used. Customary additives may be added.
  • diluents, dispersants, surfactants, binders, and lubricants may be additionally added to formulate formulations for injection such as aqueous solutions, suspensions, and emulsions, pills, capsules, granules, or tablets.
  • formulations for injection such as aqueous solutions, suspensions, and emulsions, pills, capsules, granules, or tablets.
  • it can be preferably formulated according to each disease or component by using an appropriate method in the art or by using a method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA, 18th, 1990).
  • composition of the present invention includes 0.0001 to 10% by weight of the protein, preferably 0.001 to 1% by weight, based on the total weight of the composition.
  • the pharmaceutical composition of the present invention may further include pharmaceutically acceptable additives, wherein the pharmaceutically acceptable additives include starch, gelatinized starch, microcrystalline cellulose, lactose, povidone, colloidal silicon dioxide, calcium hydrogen phosphate, Lactose, Mannitol, Taffy, Gum Arabic, Pregelatinized Starch, Corn Starch, Powdered Cellulose, Hydroxypropyl Cellulose, Opadry, Sodium Starch Glycolate, Carnauba Lead, Synthetic Aluminum Silicate, Stearic Acid, Magnesium Stearate, Aluminum Stearate, Stearic Acid Calcium, white sugar, dextrose, sorbitol, and talc may be used.
  • the pharmaceutically acceptable additive according to the present invention is preferably included in an amount of 0.1 part by weight to 90 parts by weight based on the composition, but is not limited thereto.
  • composition of the present invention may be parenterally administered (for example, intravenously, subcutaneously, intraperitoneally, or topically applied) or orally, depending on the desired method, and the dosage may vary depending on the patient's weight, age, sex, health condition, The range varies according to diet, administration time, administration method, excretion rate, and severity of disease.
  • the daily dosage of the composition according to the present invention is 0.0001 to 10 mg/ml, preferably 0.0001 to 5 mg/ml, and it is more preferable to divide the administration once or several times a day.
  • Liquid formulations for oral administration of the composition of the present invention include suspensions, internal solutions, emulsions, syrups, etc., and various excipients such as wetting agents, sweeteners, aromatics, and preservatives in addition to water and liquid paraffin, which are commonly used simple diluents etc. may be included.
  • Formulations for parenteral administration include sterilized aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried formulations, suppositories, and the like.
  • the quasi-drug composition of the present invention refers to items that are less active than pharmaceuticals among items used for the purpose of diagnosing, treating, improving, mitigating, treating or preventing human or animal diseases.
  • quasi-drugs are pharmaceuticals This includes products used for the treatment or prevention of human or animal diseases, and products with minor or no direct action on the human body.
  • the quasi-drug composition of the present invention may be a transdermal dosage form such as lotion, ointment, gel, cream, patch or spray.
  • the quasi-drug composition may arbitrarily select and blend other ingredients according to the formulation or purpose of use of other quasi-drugs.
  • the mixing amount of the active ingredient can be suitably determined depending on the purpose of use (suppression or alleviation).
  • conventional adjuvants such as thickeners, stabilizers, solubilizers, vitamins, pigments and flavors, and carriers may be included.
  • other ingredients other than the above essential ingredients can be appropriately selected and blended without difficulty by those skilled in the art according to the dosage form or purpose of use.
  • the food composition of the present invention may be a composition obtained by mixing the compound of the present invention or a pharmaceutically acceptable salt thereof itself, or a food pharmaceutically acceptable carrier. At this time, the content of the compound of the present invention or a pharmaceutically acceptable salt thereof may be appropriately adjusted according to a conventional method based on the content and dosage in the pharmaceutical composition.
  • the most preferred aspect of the food composition of the present invention may be a health functional food composition, but is not limited thereto, and other aspects include processed meat products, fish products, tofu, jelly, porridge, noodles such as ramen or noodles, soy sauce, soybean paste, and gochujang , seasonings such as mixed soy sauce, sauces, snacks, milk products such as fermented milk or cheese, pickled foods such as kimchi or pickles, fruits, vegetables, soy milk, and beverages such as fermented beverages are also possible.
  • the food composition of the present invention may be a food additive.
  • the pharmaceutically acceptable carrier may also be used.
  • Escherichia coli KCTC 1682 was obtained from the Korean Collection for Type Cultures (KCTC) (Jeongeup-si, Korea), and Acinetobacter baumannii KCCM 40203 and Pseudomonas aeruginosa KCCM 11328 were obtained from the Korean Culture Center. of Microorganisms, KCCM) (Seoul, Korea), and Klebsiella pneumonia NCCP 16054 was obtained from the National Culture Collection for Pathogens (NCCP) (Osong, Korea).
  • carbapenem-resistant E. coli NCCP 16044 and carbapenem-resistant Klebsiella pneumonia NCCP 15782 are from NCCP, and three carbapenem-resistant A.
  • baumanii CCARM 12004-6 are from the Culture Collection of Antimicrobial Resistance Microbes. , CCARM) (Cheongju, Korea).
  • the E.coli K1 (ATCC 700973) strain used in animal experiments was obtained from ATCC (American Type Culture Collection) (Rock Valley, USA).
  • Pro9-3 designed and synthesized Pro9-3 from the active site of protaetiamycin, a natural antibiotic peptide having 43 amino acid residues, as an insect defensin in a previous study.
  • Pro9-3 and its enantiomeric peptide Pro9-3D show severe cytotoxicity against mammalian cells (Table 1).
  • R-Pro9-3 and R-Pro9-3D were designed by inverting the peptide sequences of Pro9-3 and Pro9-3D and having two sequential Arg residues at the N-terminus to increase the cationicity of the N-terminus ( Table 1).
  • the mirror image of R-Pro9-3D was designed by replacing L-amino acids in R-Pro9-3 with D-amino acids.
  • helix wheel protrusions of all peptides exhibited high cationic amphiphilicity (Fig. 1), indicating that these peptides formed amphiphilic alpha-helical structures in bacterial membranes and could effectively penetrate bacterial cell membranes.
  • the antibacterial activity of the peptide was measured through minimal inhibitory concentration (MIC) analysis. MIC was determined using the broth dilution method. All bacterial strains were grown overnight at 37 °C with Muller-Hinton (MH) medium. Peptides (Pro9-3, Pro9-3D, R-Pro9-3, R-Pro9-3D) with conventional antibiotics (imipenem, meropenem) and melittin as a control were used as a bacterial suspension (2 x 10 5 CFU/mL, MH medium) After incubation for 16 hours, bacterial growth was read at 600 nm using a SpectraMAX microplate reader (Molecular Devices, San Jose, USA).
  • MIC minimal inhibitory concentration
  • Standard gram-negative bacteria of Pro9-3, Pro9-3D, R-Pro9-3, R-Pro9-3D and controls (imipenem, meropenem, melittin) and carbapenem-resistant E. coli ( CREC), A. baumannii (CRAB) and K. pneumoniae (CRKP) antibacterial activity was investigated.
  • R-Pro9-3 composed of L-type amino acids showed a bactericidal effect similar to that of the parent peptide Pro9-3.
  • their enantiomeric peptides, R-Pro9-3D and Pro9-3D showed much better antibacterial activity against Gram-negative strains than the L-type peptides. (Table 2).
  • R-Pro9-3D showed the strongest activity in order of the geometric mean (GM) values of antibacterial activity against all Gram-negative bacteria, including standard bacteria and resistant bacteria (Table 2): R-Pro9-3D (5.8) ⁇ Pro9-3D (7.6) ⁇ Melittin (12.4) ⁇ R-Pro9-3 (24.9) ⁇ Pro9-3 (32.0).
  • R-Pro9-3D (34.6) had the highest relative selective index, followed by Pro9-3D (26.5) and Pro9-3D (8.0), followed by Pro9-3 (6.3) in order. was low.
  • the control, melittin (0.25) had excellent antibacterial activity, but had a very low relative selectivity index value due to its high hemolytic activity. Since CREC, CRAB and CRKP strains are already resistant to carbapenem antibiotics such as imipenem and meropenem, these antibiotics did not show antibacterial activity against carbapenem-resistant strains.
  • GM Geometric means
  • MIC mean minimum inhibitory concentrations
  • c Relative selective index is the minimum peptide concentration that causes 10% hemolysis. If no detectable hemolysis was observed at 100 ⁇ M, the value of 200 ⁇ M was used to calculate the selection index, calculated as the GM formula of HC10/MIC ( ⁇ M). A higher value means greater cell selectivity for bacteria, NA indicates none.
  • LPS is a major component of the outer membrane of Gram-negative bacteria and induces TLR4-mediated inflammatory signaling.
  • TLR4-mediated inflammatory signaling There is increasing interest in the treatment of Gram-negative infections with respect to peptides with excellent anti-endotoxin activity that can eliminate bacterial LPS.
  • the binding ability of LPS and peptides was examined by BODIPY-TR cadaverine (BC, Thermo Fisher Scientific, MA, USA) displacement assay (Fig. 2A).
  • the probe complex was prepared by mixing 5 ⁇ g/mL BC and 5 ⁇ g/mL LPS ( E. coli O111:B4, Sigma-Aldrich, St. Louis, MO, USA) in 50 mM Tris buffer (pH 7.4) for 6 hours at room temperature. .
  • Peptides including polymyxin B (PMB) control (1-64 ⁇ M) known to have high LPS binding ability were allowed to interact with the LPS-BC mixture in a black 96-well plate for 30 minutes. Relative fluorescence intensities were recorded at an excitation wavelength of 580 nm and an emission wavelength of 620 nm using a fluorescence microplate reader (Molecular Devices, San Jose, USA).
  • Pro9-3, Pro9-3D, R-Pro9-3 and R-Pro9-3D 4 ⁇ M all had BC displacements of 42.0, 51.2, and 40.6, respectively. and showed excellent LPS binding ability while increasing by 51.3% (FIG. 2A).
  • LPS-neutralizing activity was determined using the Limulus Amebocyte Lysate (LAL) Chromogenic Endotoxin Quantification Kit (GenScript, New Jersey, USA). 3.1, 6.3, 10, 12.5, 25 and 50 ⁇ M of each peptide were reacted to interact with LPS (2 ng/mL) at 37 °C for 10 minutes. LL-37, known to have high LPS-neutralizing ability, was used as a control. After adding LAL enzyme (10 ⁇ L) to the peptide-LPS complex and reacting for 10 minutes, a chromogenic substrate was added. Endotoxin levels were determined by three replicate measurements of absorbance at 545 nm and expressed as endotoxin units (EU) per milliliter.
  • EU endotoxin units
  • Depolarization ability by the peptide was measured using the membrane potential-sensitive dye 3,3'-dipropylthiadicarbocyanine iodide (diSC 3 -5) using intact CRAB bacteria.
  • CRAB cells were washed using wash buffer (5 mM HEPES, 20 mM glucose, pH 7.4). Cells were resuspended in dilution buffer (5 mM HEPES, 20 mM glucose, 0.1 M KCl, pH 7.4) and then incubated with diSC 3-5 dye (1 hour).
  • Biofilm formation of carbapenem-resistant gram-negative bacteria increases antibiotic resistance as a self-defense mechanism to survive in adverse environments. Microbial interactions with surface materials mediate primary adhesion and development as a biofilm structure surrounded by a matrix.
  • a cytstal -violet-based assay was used to investigate the biofilm inhibition ability of R-Pro9-3D against A.baumanni standard bacteria and CRAB 12006.
  • Bacterial cells (2 x 10 5 CFU/mL in MH medium containing 0.2% (w/v) glucose) were cultured at 37 °C for 16 h at various concentrations (0-32 ⁇ M) of peptides, melittin, imipenem and meropenem. exposed to Bacterial cells were then fixed with methanol (100%, 15 min) and then stained with crystal violet (0.1% (w/v) in 0.25% (v/v) acetic acid for 1 hour). Plates were washed with distilled H 2 O, dried and dissolved in ethanol (100% v/v). Color development representing the degree of biofilm was measured at 595 nm and expressed as a percentage of biofilm formation.
  • Pro9-3 and R-Pro9-3 did not affect the survival of bacterial strains ( E.coli, A.baumannii ) even at 64 ⁇ M, whereas enantiomers Pro9-3D and R-Pro9-3D did not affect the MIC. It was found to effectively maintain the bactericidal effect without affecting (Table 3). This means that proteolytic stability by D-amino acid substitution is higher.
  • CD circular dichroism
  • R-Pro9-3 and R-Pro9-3D were investigated in comparison with Pro9-3 and Pro9-3D (FIG. 5).
  • Peptide-induced toxicity was determined by hemolysis of sheep red blood cells (sRBC). Fresh sRBCs were washed at least three times with phosphate buffered saline (PBS) and debris was removed by centrifugation (1000x g, 5 min, 4 °C).
  • PBS phosphate buffered saline
  • peptides including melittin control (0.2-100 ⁇ M) and positive control (1% (v/v) triton X-100) were incubated with 4% (v/v) sRBC for 1 hour at 37 °C, then Centrifuged at 1000 x g for 5 minutes. Supernatants were measured at 405 nm using a microplate reader.
  • R-Pro9-3, R-Pro9-3D, Pro9-3 and Pro9-3D induced very little hemolytic activity (3.4, 1.2, 2.5, 1.9%, respectively) even at 100 ⁇ M in sheep red blood cells (sRBC), whereas , Melittin, a well-known AMP with broad antibacterial activity and high cytotoxicity, showed 100% hemolysis at 25 ⁇ M (Fig. 5A).
  • R-Pro9-3D had the highest relative selection index (34.6) for Gram-negative bacteria tested, and the relative selection indexes of Pro9-3D, Pro9-3, and R-Pro9-3 were 26.5, 6.3, and 8.0, respectively (Table 2).
  • RAW 264.7 mouse macrophages and human kidney (HK)-2 cells were obtained from the Korean Cell Line Bank (Seoul, Korea), and the cells were incubated at 37 ⁇ C in a humidified 5% CO 2 incubator for 10 days. It was maintained in DMEM culture medium (Thermo Fischer Scientific Inc., MA, USA) supplemented with % fetal bovine serum and 1% penicillin/streptomycin. The cytotoxicity of the peptide was analyzed using the WST-8 cell proliferation assay (Biomax Co, Ltd, Seoul, Korea), and the experiment was performed according to the kit protocol.
  • Cells (1x10 4 ) were seeded in a 96-well plate, and peptide treatment (0-100 ⁇ M) was started at 80% confluency and cultured for 24 hours. After incubation, WST-8 reagent was added and the change in absorbance at 450 nm was read for the reagent blank, and the value was expressed as percent cell viability.
  • Nitric oxide (NO) overproduction is known to be associated with acute and/or chronic inflammation in response to bacterial lipopolysaccharide (LPS).
  • LPS bacterial lipopolysaccharide
  • R-Pro9-3D could modulate LPS-induced inflammatory signals because it interacts effectively with LPS and exhibits antibacterial activity.
  • the inhibitory effect on nitrite production by the peptide was evaluated through Griess analysis.
  • RAW264.7 cells (1 ⁇ 10 5 ) were pretreated with various concentrations of peptides (1, 5, 25, 50 ⁇ M) for 1 hour and then stimulated with 20 ng/mL LPS for 16 hours. After incubation, supernatant and Griess reagent were added at the same ratio. Color change was measured at 540 nm.
  • the concentration of nitrite content was evaluated using a standard curve of sodium nitrite.
  • the production of inflammatory cytokines, including TNF- ⁇ and IL-6, in the culture medium was quantified using an enzyme-linked immunosorbent assay kit (ELISA; R&D Systems, Minneapolis, MN, USA), according to the kit protocol. analyzed. All analyzes were performed three times, and the concentrations of TNF- ⁇ and IL-6 were measured by measuring absorbance at 450 nm using a microplate reader.
  • R-Pro9-3D at a concentration of 25 ⁇ M inhibited TNF- ⁇ by 52.1% and IL-6 by 47.2%, whereas Pro9-3, Pro9-3D and R-Pro9-3 inhibited TNF- ⁇ and IL-6 relatively less inhibited. That is, the peptide
  • the excellent anti-inflammatory effect of R-Pro9-3D of the present invention was confirmed by confirming the ability to inhibit nitrite and inflammatory cytokines.
  • R-Pro9-3D of the present invention has much better antibacterial activity, LPS binding ability, antibiofilm, and proteolysis resistance and strong anti-inflammatory effect compared to other peptides.
  • mice Female ICR mice were purchased from Orient (Daejeon, Korea) and housed in a specific pathogen free (SPF) and humidity-controlled environment. All procedures were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of Konkuk University, Korea (IACUC number: KU20192, 2021.04.05.).
  • IACUC Institutional Animal Care and Use Committee
  • AST aspartate aminotransferase
  • ALT alanine aminotransferase
  • BUN blood urea nitrogen
  • mice 20 ICR mice were randomly divided into 4 groups (5 mice per group), and mice injected intraperitoneally (ip) with PBS were used as normal controls.
  • Peptide control mice were injected intraperitoneally (ip) R-Pro0-3D (1 mg/kg).
  • Bacterial control was injected with E. coli K1 (5 ⁇ 10 6 CFU/mouse).
  • Mice injected with E. coli K1 and R-Pro9-3D were injected with R-Pro9-3D 1 hour before CRAB CO injection, and 16 hours later, the mice were euthanized and the lungs, liver and kidneys were aseptically removed. Homogenize using ice-cold PBS. To evaluate the relative abundance of E.
  • coli K1 all homogenates (1:1000, PBS) were plated on Luria-Bertani agar and bacterial colonies were counted. Levels of inflammatory cytokines (TNF- ⁇ and IL-6) were measured in serum and lung lysates using ELISA kits (R&D Systems, Minneapolis, MN, USA). The contents of AST, ALT, and BUN were measured using a standard kit from Asan Pharmaceutical.
  • mice injected with E. coli K1 showed increased bacterial loads in vital organs such as lungs, livers, and kidneys, resulting in severe organ damage (FIG. 8A).
  • E. coli K1 rapidly released excessive levels of endotoxin into the circulation (Fig. 8B) and increased serum levels of organ damage markers (AST, ALT and BUN) and inflammatory cytokine production (Fig. 8 CI).
  • pretreatment with 1 mg/kg of R-Pro9-3D significantly inhibited bacterial growth, and it was confirmed that bacterial growth was also effectively inhibited in lysates of vital organs (FIG. 8A).
  • R-Pro9-3D pretreatment reduced endotoxin levels by 55.4% in mice injected with E. coli K1 (Fig. 8B), and AST, ALT and BUN levels were reduced by 29.3%, 25.9% and 25.9%, respectively, compared to the bacterial control group. 19.8% (Fig. 8 CE).
  • Fig. 8 CE we investigated the ability of R-Pro9-3D to modulate the cytokine storm and found that it downregulated TNF- ⁇ and IL-6 levels in serum and lung specimens compared to E. coli K1 infected specimens. confirmed (Fig. 8 FI).
  • R-Pro9-3D of the present invention is a highly effective peptide antibiotic for treating carbapenem-resistant sepsis infection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Agronomy & Crop Science (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명에서 서열번호 1의 아미노산 서열로 표시되는 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 세포독성이 낮고, 단백질 분해 안정성, 항균활성 및 항염증 활성이 우수하며, 그람음성균 감염 질환, 패혈증 또는 패혈성 쇼크 치료 효과가 현저하다는 특징이 있다. 따라서, 상기 펩타이드를 포함하는 항균 조성물, 항염증용 조성물 및 그람음성균 감염 질환, 패혈증(sepsis) 또는 패혈성 쇼크(Septic shock)의 예방 또는 치료용 약학적 조성물로 활용할 수 있다는 장점이 있다.

Description

그람음성균에 우수한 항균활성을 가지는 9량체 펩타이드 및 이의 거울상 이성질체
본 발명은 그람음성균에 우수한 항균활성을 가지는 9량체 펩타이드 및 이의 거울상 이성질체 펩타이드에 관한 것으로, 더 상세하게는 서열번호 1의 아미노산 서열로 표시되는 9량체 항균 펩타이드 또는 이의 거울상 이성질체 항균 펩타이드, 상기 항균 펩타이드를 유효성분으로 포함하는 항균 조성물, 항염증 조성물 및 그람음성균 감염 질환, 패혈증(sepsis) 또는 패혈성 쇼크(Septic shock)의 예방 또는 치료용 약학적 조성물에 관한 것이다.
한편, 본 출원은 하기 국가연구개발사업에 의해 지원받았다.
[이 발명을 지원한 국가연구개발사업]
[과제고유번호] 1711107062
[과제번호] 2020R1A2C2005338
[시행부처] 과학기술정보통신부
[연구관리전문기관] 한국연구재단
[사업명] 기초연구사업(중견연구자-핵심연구)
[과제명] 카바페넴 내성 아시네토박터균의 특이적 지방산합성 단백질의 구조-기능연구를 통한 병독성 기전 이해와 저해 항생물질의 발굴
[주관기관] 건국대학교
[연구기간] 2021.03.01 ~ 2022.02.28
그람음성 감염은 박테리아의 외막에서 생성되고 내독소로 작용하는 지질다당류(LPS)가 면역 세포를 활성화시켜 조절되지 않는 면역 반응을 통해 심각한 염증, 장기 부전, 심지어 사망까지 초래한다.
세계보건기구(WHO)가 확인한 항생제 내성이 높은 6개의 병원체(ESKAPE)는 Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa Enterobacter 종이다. 그 중 그람 음성 A. baumannii는 병원에서 사망률이 높은 중요한 기회감염(opportunistic infection) 병원체이고, 매년 약 100만 명이 감염되며, 임상 분리주의 44%가 다제 내성(multidrug-resistant, MDR) A. baumannii이다. 이들 분리주에서 가장 흔한 내성 기전으로는 페니실린 결합 단백질 돌연변이(penicillin-binding protein mutation), porin loss, 아미노글리코사이드 변형 효소 돌연변이(aminoglyco-side-modifying enzyme mutation), 유출 펌프 과발현(efflux pump overexpression) 등이 있다.
A. baumannii에 대한 1차 치료제에는 도리페넴(doripenem), 이미페넴(imipenem) 및 메로페넴(meropenem)과 같은 β-락탐 또는 카르바페넴(carbapenem) 항생제가 있다. 그러나, β-lactamase 가수분해 및 carbapenemase 과잉 생산에 의하여 카르바페넴 항생제에 내성을 갖는 A. baumannii(carbapenem-resistant A. baumannii, CRAB) 박테리아의 출현 때문에 감염에 대한 치료가 더 어려워졌다. CRAB 박테리아에서 콜리스틴(colistin) 및/또는 티게사이클린(tigecycline)에 대한 내성 메커니즘은 리폭시게나제(lipoxygenase) 및 폴리믹신(polymyxin) 내성 관련 반응 조절인자(pmr)-A/B를 코딩하는 유전자의 돌연변이를 통한 LPS의 구조적 변경과 관련이 있다. 또한, 항생제 내성은 세포외 기질 다당류, 단백질 및 DNA와 같은 분비 물질이 생물학적 또는 비생물적 표면에 부착되어 면역 저하 환자에서 CRAB 분리주의 독성 및 항생제 내성을 증가시키는 바이오필름 형성을 유발할 수 있다. 현재 CRAB 감염 치료제의 개발은 매우 제한적이다.
병원성 자극(pathogenic stimuli)은 전신 염증 반응 증후군(systemic inflammatory response syndrome; SIRS)에 대한 숙주 면역 반응의 진행으로 이어질 수 있으며, 감염의 중증도를 증가시키고 궁극적으로는 패혈증의 병리학적 과정을 유도할 수 있다.
패혈증은 세균 감염에 대한 면역 반응의 이상으로 인해 발생하는 다각적인 증후군으로, 과도한 염증, 장기 기능 장애 등이 발생하며 심할 경우 사망에까지 이르게 된다 (Van Der Poll T. et al., Nat. Rev. Immunol., 17:407-420, 2017; Rudd K.E. et al., Crit. Care, 22:1-11, 2018).
전국 코호트 연구에 따르면 한국에서 패혈증 발병률이 증가하여, 10만명당 약 233.6명이 발명되었으며, 2016년 22.6%의 사망률을 기록하였다. 특히, 그람음성균에 의한 감염은 세균의 외부 세포막이 지질다당류(LPS)로 구성되어 있어 염증 반응의 비정상적인 단계를 유발할 뿐만 아니라, 내성 감염에 대한 새로운 항생제 개발을 방해하기 때문에 시급한 해결책이 요구되고 있다 (Delcour A.H., Biophys. Acta (BBA) Proteins Proteom, 1794:808-816, 2009; Tucureanu M.M. et al., Int. J. Nanomed, 13:63-76, 2017).
종래의 연구에 따르면, 병원균 또는 LPS, Pam2CSK4 또는 Pam3CSK와 같은 병원성 분자 침범에 의한 TLR(toll-like receptor)의 불균형적인 활성화가 패혈증 발병에 중요한 역할을 한다는 사실이 밝혀졌다 (Cohen J, Nature, 420:885-891, 2002). 패혈증 병태 생리학 및 치료절차의 극적인 발전에도 불구하고 그람음성 패혈증에 대한 치료제는 현재까지 승인된 바 없다. 따라서 패혈증과 관련된 증상을 극복할 수 있는 새로운 종류의 항생제에 대한 연구가 요구되고 있다.
항균 펩타이드(antimicrobial peptides, AMPs)는 모든 살아있는 숙주 종에서 첫 번째 방어선의 일부이며 감염 치료를 위한 새로운 종류의 항생제로 부상하였다. AMP는 타고난 면역 방어의 구성 요소를 형성하며, AMP는 저분자 항생제로서 광범위한 스펙트럼 잠재력을 보여주며, 40년이 넘은 펩타이드 연구를 통해 AMP는 자연적으로 발생하는 항생제의 대체 물질로 부각되고 있다. 또한, AMP는 광범위한 항균활동과 함께 다양한 구조와 작용 모드를 가지고 있기 때문에 새로운 AMP의 개발은 다중 약물 내성 박테리아를 퇴치하기 위한 유망한 전략으로 연구되고 있다 (Wimley W.C. et al., J. Membr. Boil., 239:27-34, 2011; Narayana J.L. et al., Peptides, 72:88-94, 2015; Hollmann A. et al., Front. Chem., 6:204, 2018).
현재까지 약 3000개 이상의 AMP가 확인되었지만 FDA 승인된 AMP는 많지 않으며, 여기에는 콜리스틴(colistin), 그래미시딘 D(gramicidin D), 답토마이신(daptomycin), 반코마이신(vancomycin), 오리타반신(oritavancin), 달바반신(dalbavancin) 및 텔라반신(telavancin)이 포함되어 있으며, 이들은 현재 시판 중이거나 임상 개발 중이다 (Steckbeck J.D. et al., Boil. Ther., 14:11-14, 2013; Wang G., Li X. et al., Nucleic Acids Res., 44:D1087-D1093, 2015). 이들은 다른 구조와 서열 모티프를 가지고 있지만 광범위한 항생제 작용을 공유하며, AMP의 항균 활성에 대한 자세한 메커니즘은 완전히 이해되지 않았지만 박테리아 세포막 투과 또는 세포 내 살해와 관련된 것으로 확인되었다.
많은 AMPs는 잠재적 내성, 면역 조절 능력 및 표준 항생제에서 흔하지 않은 항염증, 항바이오필름 및 항바이러스 효과와 같은 광범위한 살균 활성을 가지고 있다. 단백질 분해에 대한 AMPs의 민감도를 상쇄하기 위해 D-아미노산, 비천연 아미노산, 펩타이드 골격 변형, 고리화, 트리아졸(triazole) 변형 및 이차 구조 유도 템플릿을 포함하는 많은 펩티도미메틱스가 개발되고 있는 실정이다.
그러나 선택성 제어, 안정성 개선 및 세포 독성 매개 부작용을 줄이는 것이 강력한 AMP의 개발에 요구되고 있으며, 항균 활성이 높은 천연 AMP를 기반으로 설계된 짧은 펩타이드 유사체는 생산 비용을 줄일 수 있으며 낮은 면역원성을 유발할 수 있으므로, 치료 응용 분야를 위한 신규 후보로 개발할 수 있다. 프로테티아마이신(Protaetiamycine)은 43개 아미노산으로 이루어진 곤충 디펜신(defensin)으로 그람음성균과 그람양성균 모두에 대해 강력한 항균 활성을 갖지만 43량체로 잔기서열이 길어서 경제성이 낮아 실용화가 힘든 AMP다. 본 발명의 발명자들은 이전의 연구에서 곤충 디펜신인 프로태티아마이신으로 부터 9량체 펩타이드(Ala22 ~ Gly30)를 설계한 바 있다. 이로부터 개발된 9량체 펩타이드인 Pro9-3 및 Pro9-3D(거울상 이성질체 펩타이드)는 우수한 항균활성을 가지나 높은 세포 독성을 나타냈다. (Shin S. et al., J. Pept. Sci., 15:559-568, 2009; Lee, E. et al., J. Pept. Sci., 17, 675-682, 2011; 대한민국등록특허 제10-1193398호; 대한민국등록특허 제10-1247350호; 대한민국등록특허 제10-1420849호; 대한민국등록특허 제10-1599587호).
이에, 본 발명에서 그람음성 박테리아 감염을 치료하기 위해 높은 선택성과 낮은 세포 독성을 가진 강력하고 짧은 펩타이드를 개발하고자 예의노력한 결과, 이전 연구에서 설계한 두개의 펩타이드인 Pro9-3 및 Pro9-3D의 펩타이드 서열을 역전시키고, N-말단에 2개의 순차적 Arg 잔기를 가지게 되어 N-말단의 양이온성을 증가시켰고, D-아미노산을 도입하여 새로운 펩타이드(R-Pro9-3 및 R-Pro9-3D)를 설계하였다. 설계한 펩타이드가 박테리아 세포막 투과성을 증가시켜 그람 음성 박테리아, 특히 카바페넴 내성 그람 음성 박테리아에 대한 빠르고 효과적인 항균활성을 보이며, 단백질 분해 안정성 및 세포독성 측면에서 우수하다는 점을 확인하였다. 또한 이들 펩타이드들의 항염증 활성을 평가하였으며, R-Pro9-3D 가 그람음성균 감염으로 인한 패혈증에 대한 우수한 치료효과를 확인하고 펩타이드 항생제로 적용할 수 있음을 확인하여, 본 발명을 완성하였다.
본 발명의 목적은 서열번호 1의 아미노산 서열로 표시되는 9량체 항균 펩타이드 또는 이의 거울상 이성질체 항균 펩타이드, 상기 항균 펩타이드의 항균, 항염증 및 그람 음성 박테리아 감염 질환 예방, 패혈증 또는 패혈성 쇼크의 예방 또는 치료 용도를 제공하는 데 있다.
상기 목적을 달성하기 위해서, 본 발명은 서열번호 1의 아미노산 서열로 표시되는 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드를 제공한다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 항균 펩타이드인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 거울상 이성질체 펩타이드는 서열번호 1의 아미노산 서열이 모두 D형 아미노산으로 치환된 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 균은 그람 음성 박테리아인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 그람 음성 박테리아는 MDR(multidrug-resistant) 그람 음성 박테리아인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 그람 음성 박테리아는 Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosaKlebsiella pneumonia으로 구성된 군에서 선택되는 하나 이상을 포함할 수 있다.
본 발명에 있어서, 상기 MDR(multidrug-resistant) 그람 음성 박테리아는 카르바페넴(carbapenem) 내성인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 낮은 용혈활성과 포유류 세포에 대하여 낮은 독성을 갖는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 박테리아 세포막에 대한 투과성을 증가시켜 세포막을 손상시키는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 그람음성균의 외막 구성성분으로 내독소로 작용하는 지질다당류(LPS)와 결합하여 지질다당류(LPS) 활성을 억제하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 박테리아의 바이오필름 형성을 억제하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 거울상 이상질체 펩타이드는 프로테아제에 대한 내성으로 단백질 분해 안정성을 가지는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 LPS에 의한 염증을 억제하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 그람음성 패혈증 또는 패혈성 쇼크 치료용인 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 펩타이드를 유효성분으로 포함하는 항균용 조성물을 제공한다.
본 발명은 또한, 상기 펩타이드를 유효성분으로 포함하는 항염증용 조성물을 제공한다.
본 발명은 또한, 상기 펩타이드를 유효성분으로 포함하는 그람음성 박테리아 감염 질환 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 펩타이드를 유효성분으로 포함하는 그람음성 박테리아 감염 질환 예방 또는 개선용 의약외품 조성물을 제공한다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 펩타이드를 유효성분으로 포함하는 그람음성 박테리아 감염 질환 예방 또는 개선용 식품 조성물을 제공한다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 펩타이드를 유효성분으로 포함하는 약학적 조성물을 그람음성 박테리아 감염 질환을 가지고 있는 환자에게 투여하는 단계;를 포함하는, 그람음성 박테리아 감염 질환의 예방 또는 치료 방법을 제공한다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 펩타이드의 그람음성 박테리아 감염 질환 예방 또는 치료를 위한 용도를 제공한다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있다.
본 발명은 또한, 그람음성 박테리아 감염 질환 예방 또는 치료를 위한 약물의 제조를 위한 상기 펩타이드의 용도를 제공한다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있다.
본 발명의 서열번호 1의 아미노산 서열로 표시되는 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 서열번호 3의 아미노산 서열로 표시되는 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드보다 세포독성이 낮고, 단백질 분해 안정성이 우수하며, 박테리아 세포막을 효과적으로 투과하여 우수한 항균활성을 나타내고, 바이오필름을 효과적으로 사멸시킨다.
또한, 서열번호 1의 아미노산 서열로 표시되는 9량체 펩타이드 또는 이의 거울상 이성질체는 그람음성균 외막의 주성분으로 내독소로 작용하는 지질다당류(LPS)에 강하게 결합하여 LPS 활성을 억제할 수 있다.
따라서, 서열번호 1의 아미노산 서열로 표시되는 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 현저한 항염증 효과를 보이며, 항생제 내성 그람 음성 박테리아에 의한 감염 질환을 치료하기 위한 새로운 펩타이드 항생제로 활용될 수 있다는 장점이 있다.
나아가, 서열번호 1의 아미노산 서열로 표시되는 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 패혈증 마우스 모델에서의 염증성 상태(inflammatory insult)를 개선하고 패혈증 마우스의 장기 기능 장애에 대한 보호 효과를 나타내어 패혈증 또는 패혈성 쇼크의 효과적인 치료를 위한 새로운 펩타이드 항생제로 유용하게 적용할 수 있다.
도 1은 HeliQuest 프로그램 (http://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py)을 사용하여 분석한 Pro9-3(도 1A) 및 R-Pro9-3(도 1B)의 나선형 휠 투사도(helical wheel projection)에 관한 것이다. 양전하를 띤 아미노산 잔기는 파란색으로, 음전하를 띤 잔기는 빨간색으로, 소수성 잔기는 노란색으로, 알라닌은 회색으로 표시하였고 펩타이드가 양친매성을 보이는 것을 확인하였다. 화살표, N 및 C는 각각 나선형 소수성 모멘트, N-말단 영역 및 C-말단 영역을 나타낸다.
도 2는 펩타이드의 항균 메커니즘에 관한 것이다. 도 2A는 펩타이드의 LPS 결합 친화성을 보여주는 BODIPY-TR-cadaverine 형광 염료를 사용한 변위 분석, 도 2B는 펩타이드 및 LL-37 대조군의 LPS 중화능을 보여주는 LAL 분석(도 2B), 도 2C는 손상되지 않은 intact CRAB균을 사용하여 펩타이드에 의한 농도 의존적 탈분극 능력을 나타낸다. 통계 분석은 Dunnett의 비교 테스트와 함께 양방향 ANOVA를 사용하여 수행하였다. 각 값은 3개의 독립적인 실험의 평균 ± SEM으로 표시되며, *P < 0.05, **P < 0.01, ***P < 0.001에서 통계적으로 유의하다. ns는 유의하지 않음을 나타낸다.
도 3은 펩타이드의 바이오필름 억제 특성에 관한 것이다. A. baumannii(도 3A) 또는 CRAB 12006(도 3B)에 대한 펩타이드(0-32μM, 16시간)의 항바이오필름 활성을 크리스탈 바이올렛 염색을 사용하여 측정하였다. 멜리틴, 메로페넴(merpenem) 및 이미페넴(imipenem)을 대조군으로 사용하였다. 통계 분석은 Dunnett의 비교 테스트와 함께 양방향 ANOVA를 사용하여 수행하였다. 각 값은 3개의 독립적인 실험의 평균 ± SEM으로 표시되며, *P < 0.05, **P < 0.01; ***P < 0.001에서 통계적으로 유의하다. ns는 유의하지 않음을 나타낸다.
도 4는 (A) 수용액 및 (B) 50mM 도데실포스포콜린(DPC) 미셀에서 100 μM 농도의 펩타이드들에 대한 원형이색성 스펙트럼을 10 회 스캔한 도면이다. 도 4에서 205 및 220 nm에서 이중 음의 최대값(Double negative maxima)은 알파 나선형 구조의 특징이다.
도 5는 펩타이드의 시험관내 세포독성에 관한 것이다. 용량-반응 곡선은 양 적혈구(sRBC)에 대한 펩타이드의 용혈 활성을 나타낸다(도 5A). 24시간 동안 (B) RAW 264.7 뮤린 대식세포(murine macrophage cell) 및 (C) 인간 신장(human kidney, HK)-2 세포에 대한 펩타이드에 의해 유도된 농도 의존적(0-100 μM) 독성 효과를 나타낸다. 멜리틴을 대조군으로 사용하였다. 통계 분석은 Dunnett의 비교 테스트와 함께 양방향 ANOVA를 사용하여 수행하였다. 각 값은 3개의 독립적인 실험의 평균 ± SEM으로 표시되며, *P < 0.05, **P < 0.01; ***P < 0.001에서 통계적으로 유의하다. ns는 유의하지 않음을 나타낸다.
도 6는 펩타이드의 LPS로 자극된 RAW264.7 세포에서 염증 반응 억제 효과에 관한 것이다. LPS(20 ng/mL)로 16시간 동안 자극된 RAW264.7 세포에서 (A) 아질산 생성 및 염증성 사이토카인인 (B) TNF-α 및 (C) IL-6 생성에 대한 펩타이드(0 ~ 50 μM)의 농도 의존적 억제 효과를 나타낸다. 데이터는 3회 반복 수행하여 평균 ± SEM로 나타내었다.
도 7은 R-Pro9-3D가 그람음성균 감염증 치료제 또는 패혈증 치료제로 활용되기 위해 필수적인 생체내에서 무독성 효과에 관한 것이다. R-Pro9-3D (1mg/kg 및 5mg/Kg)로 24시간 동안 처리한 마우스의 (A) AST, (B) ALT 및 (C) BUN 수준을 확인하였으며, 대조군 마우스는 PBS 용액만 복강주사하였다. 데이터는 3회 반복 수행하여 평균 ± SEM로 나타내었다.
도 8a 및 8b는 R-Pro9-3D에 의해 E. coli K1에 감염된 마우스에서 패혈증성 쇼크 완화 효과에 관한 것이다. (A) 패혈증 마우스의 폐, 간 및 신장 조직에서 R-Pro9-3D에 의한 세균 성장 억제, (B) R-Pro9-3D에 의한 패혈증 마우스의 혈청에서 순환 내독소(LPS) 수준 감소 효과, R-Pro9-3D에 의한 패혈증 마우스의 혈청 속 (C) AST, (D) ALT 및 (E) BUN 농도 감소 효과, 패혈증 마우스의 혈청 조직에서 R-Pro9-3D에 의한 (F) TNF-α 및 (G) IL-6 수준 감소 효과 및 폐 조직에서 R-Pro9-3D에 의한 (H) TNF-α 및 (I)IL-6 수준 감소 효과를 확인하였다. 그래프는 평균 ± SEM(5 마리 마우스/그룹)으로 나타내었다. (J)는 E. coli K1에 감염된 패혈증 마우스의 폐조직의 폐손상을 억제하여 패혈증 치료효과를 확인하였다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 명세서 전반을 통하여, 천연적으로 존재하는 아미노산에 대한 통상의 1문자 및 3문자 코드가 사용될 뿐만 아니라 Aib(α-아미노이소부티르산), Sar(N-methylglycine) 등과 같은 다른 아미노산에 대해 일반적으로 허용되는 3문자 코드가 사용된다. 또한 본 발명에서 약어로 언급된 아미노산은 하기와 같이 IUPACIUB 명명법에 따라 기재되었다:
알라닌: A, 아르기닌: R, 아스파라긴: N, 아스파르트산: D, 시스테인: C, 글루탐산: E, 글루타민: Q, 글리신: G, 히스티딘: H, 이소류신: I, 류신:L, 리신: K, 메티오닌: M, 페닐알라닌: F, 프롤린: P, 세린: S, 트레오닌: T, 트립토판: W, 티로신: Y 및 발린: V.
항생제 내성(예컨대, 카르바페넴 내성) 그람음성 박테리아의 출현이 증가하고 있으며, 그람 음성 박테리아(예컨대, carbapenem-resistant A. baumannii(CRAB))는 치료할 수 없는 항생제 내성 감염을 유발하여 전 세계적으로 문제가 되고 있다. 현재 CRAB 감염을 치료하기 위해 현재 개발 중이거나 임상 시험 중인 새로운 약물이나 기술은 매우 제한적이다.
따라서, 본 발명에서는 항생제 내성 A. baumannii 감염의 확산을 막기 위한 새로운 치료적 접근으로써, 광범위한 살균 및 면역 조절 특성을 가진 항균 펩타이드(antimicrobial peptides, AMPs)를 기존 항생제의 잠재적인 대체물로 제안한다. AMPs의 임상적 적용은 효소에 의한 단백질 분해 경향에 의해 제한적이지만, D-아미노산이 치환된 펩타이드는 생체 내에서 단백질 분해에 대한 내성을 가지므로 최대 생체 이용률과 치료 효능이 보장된다.
이전 연구에서 곤충의 defensin의 구조-활성 관계를 기반으로 Pro9-3 및 Pro9-3D(거울상 이성질체 펩타이드)라는 두 개의 9량체 펩타이드를 설계했지만 포유류 세포에서 높은 세포 독성을 나타냈다.
이에, 본 발명에서 이전 연구에서 설계한 두 개의 9량체 펩타이드 서열을 역으로 사용하고, 펩타이드의 안정성을 높이기 위해 D-아미노산을 도입하여 R-Pro9-3 및 R-Pro9-3D를 설계하였고, 설계한 펩타이드가 세균 막을 투과시켜 그람 음성 박테리아, 특히 카바페넴 내성 그람음성 박테리아에 대하여 더 우수한 항균활성을 발휘하며, 우수한 단백질 분해 안정성 및 낮은 세포독성을 나타냄을 확인하였다. 또한 우수한 항염증 활성을 가지며 패혈증 억제 효과를 나타냄을 확인함으로써 본 발명을 완성하였다.
본 발명은 일관점에서, 서열번호 1의 아미노산 서열로 표시되는 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드를 제공한다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 항균 펩타이드인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 9량체 펩타이드는 또는 이의 거울상 이성질체 펩타이드는 서열번호 3의 아미노산 서열로 표시되는 9량체 펩타이드 또는 이의 거울상 이성질체의 서열을 역전시켰다.
본 발명에서 사용된 용어, "항균(antimicrobial)"의 의미는 어떤 농도에서 미생물의 성장 또는 생존을 감소, 방지, 억제 또는 제거하는 능력을 의미하며, 바람직하게는 "항박테리아 또는 항세균(anti-bacterial)"을 의미할 수 있다.
본 발명에 있어서, 상기 거울상 이성질체는 서열번호 1의 아미노산 서열이 모두 D형 아미노산으로 치환된 것을 특징으로 한다.
본 발명의 발명자들은 이전의 연구에서 43-mer의 곤충 디펜신인 프로태티아마이신(protaetiamycine)으로부터 4개의 9 량체(meric) 펩타이드(Ala22 ~ Gly30)를 설계한 바 있다. 4개의 펩타이드 중 세 번째 유사체인 Pro9-3(RLWLAIWRR-NH2, 서열번호 3)과 거울상 이성질체 펩타이드인 Pro9-3D가 강력한 항균 활성과 항염증 활성을 보였지만, 이들은 포유류 세포에 대해서도 높은 세포 독성을 나타내었다 (Shin S. et al., J. Pept. Sci., 15:559-568, 2009; Lee E. et al., J.Pept. Sci., 17:675-682, 2011).
본 발명에서는 그람 음성 박테리아에 대한 항균 활성을 높이고 박테리아 세포 선택성을 개선하기 위해 Pro9-3의 아미노산 서열을 역으로 사용하여 Reverse 9량체 펩타이드(reverse 9-meric peptide)를 제작하였으며, 이를 "R-Pro9-3"로 명명하였다. 또한, 펩타이드의 안정성을 높이기 위해 R-Pro9-3의 아미노산을 D형 아미노산으로 치환한 "R-Pro9-3D"를 추가로 합성하였다 (표 1).
본 발명의 구체적인 일구현예에서, 모펩타이드인 Pro9-3와 R-Pro9-3에 대한 헬리컬-휠 다이어그램(Helical-wheel diagram) 분석을 수행하였다. 도 1에 나타난 바와 같이, 모펩타이드인 Pro9-3 및 R-Pro9-3의 헬리컬-휠 다이어그램(Helical-wheel diagram)은 아래쪽의 소수성면이 위쪽의 친수성면에 비해 훨씬 더 크지만 양친매성을 보이고, 동일하게 양이온성이 높고 같은 소수성(0.776)을 갖는 것을 확인하여, 음전하를 띄며 양친매성을 가지는 그람음성균의 세포막을 효과적으로 투과할 수 있도록 설계되었음을 확인하였다.
본 발명에 있어서, 상기 균은 그람 음성 박테리아인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명에 있어서, 상기 그람 음성 박테리아는 MDR(multidrug-resistant) 그람 음성 박테리아인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명에 있어서, 상기 그람 음성 박테리아는 Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa 및 Klebsiella pneumonia으로 구성된 군에서 선택되는 하나 이상을 포함할 수 있으나, 이에 제한되지 않는다.
본 발명에 있어서, 상기 MDR(multidrug-resistant) 그람 음성 박테리아는 카르바페넴(carbapenem) 내성인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명의 구체적인 일구현예에서는 R-Pro9-3 및 R-Pro9-3D의 항균 활성을 측정하였다. 대표적인 그람 음성 박테리아 표준균 및 MDR 그람 음성 박테리아 균주에 대한 Pro9-3, Pro9-3D, R-Pro9-3 및 R-Pro9-3D의 항균 활성을 측정한 결과, 표 2에 나타난 바와 같이, 모든 펩타이드는 강력한 펩타이드 항생제로 알려진 멜리틴(melittin)과 유사한 항균 활성을 나타내었다. 특히, R-Pro9-3D는 다른 9량체 펩타이드(Pro9-3, Pro9-3D, R-Pro9-3)와 비교하였을때, 모든 표준 그람 음성 박테리아 및 모든 그람 음성 MDR 박테리아에 우수한 사멸 효과를 보이는 것을 확인하였다. 또한, R-Pro9-3D는 다른 펩타이드들에 비해 그람 음성 박테리아에 대해 더 높은 상대 선택 지수(Relative selective index)를 보였으며, Pro9-3D, R-Pro9-3 및 Pro9-3(각각 34.6, 26.5, 8.0 및 6.3)순으로 상대 선택 지수가 높은 것으로 확인되었다. 따라서 R-Pro9-3D는 다른 펩타이드들 보다 더 우수한 박테리아 선택성을 보이는 것을 확인하였다.
본 발명에서 사용된 용어, MDR(multidrug-resistant) 그람 음성 박테리아 (또는 내성균)는 임의의 질환 및 이의 합병증 또는 임의의 박테리아성 장애 및 이의 합병증을 치료 또는 예방하기 위하여 약물을 지속적으로 사용한 결과, 항생제에 대한 저항성을 나타내는 세균을 의미한다. 상기 항생제의 예로는 반코마이신, 세팔로스포린, 퀴놀론 및 플루오로퀴놀론, 페니실린, 베타 락타마제 억제제, 카르베페넴, 모노박탐, 마크롤리드 및 린코사민, 글리코펩타이드, 리팜핀, 옥사졸리디논, 테트라사이클린, 아미노글리코시드, 스트렙토그라민 및 술폰아미드 등이 있으며, 항생제 내성균은 상기 열거된 항생제를 처리하는 경우에도 저항성을 나타내어 개체에서 지속적으로 질환이 유지된다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 그람 음성 박테리아에 감염된 낮은 용혈활성과 포유류 세포에 대하여 낮은 독성을 갖는 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명에 있어서, 상기 세포는 진핵세포일 수 있으며, 포유류 세포는 바람직하게 동물 또는 사람 세포일 수 있다.
본 발명의 구체적인 일구현예에서, 펩타이드가 세포 독성 효과를 유도하는지를 확인한 결과, 도 5A에 나타난 바와 같이, R-Pro9-3, R-Pro9-3D, Pro9-3 및 Pro9-3D 펩타이드는 sRBC에 대해 100μM에서도 1 ~ 5% 용혈을 유도한 반면, 멜리틴은 25 μM 농도에서 100% 용혈을 나타내었다.
또한, RAW264.7(murine macrophage cell line)에 대한 펩타이드들의 세포 독성을 확인한결과, 도 5B 및 5C에 나타난 바와 같이, R-Pro9-3이나 Pro9-3 모두 멜리틴과 비교하여 최대 100μM의 농도에서도 독성을 나타내지 않은 것으로 나타났으나 낮은 항균활성을 가진다. 반면, Pro9-3D는 100μM의 농도에서 RAW 264.7과 인간 신장(HK)-2 세포에서 각각 44.5%와 22.9%의 독성을 보였고, R-Pro9-3D는 20.3%와 9.6%에서 두배 낮은 독성을 나타냈다. 즉, Pro9-3D는 MDR 그람 음성 박테리아에 대해 높은 항균 활성을 보였지만 포유류 세포에 대한 독성이 매우 높으므로, 효과적인 펩타이드 항생제로 사용할 수 없는 것을 확인하였다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 박테리아 세포막에 대한 투과성을 증가시켜 세포막을 손상시킴으로서 항균 활성을 나타낼 수 있다.
본 발명의 구체적인 일구현예에서, CD 스펙트럼을 분석하여 수용액과 막과 같은 환경에서 펩타이드의 2차 구조를 분석한 결과, 도 4에 나타난 바와 같이 모든 펩타이드는 수용액에서 정렬되지 않은 구조를 보였지만 도데실포스포콜린(dodecylphosphocholine, DPC) 미셀에서 알파 나선형 구조로 변화를 가짐을 보였고, 양친매성 알파 나선형 구조를 가짐으로서 효과적으로 박테리아 세포막을 투과할 것임을 확인하였다.
즉, 상기 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 양이온성이 높아 멜리틴과 유사한 높은 항균 활성을 유지할 수 있으며, 박테리아 세포막과 효과적으로 상호작용하여 박테리아에 치명적인 손상을 주어 항균 활성을 향상 시킬 수 있다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 생체 외(in vitro) 및/또는 생체 내(in vivo)에서 내독소 중화능 또는 내독소 제거능을 가질 수 있다.
즉, 상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 내독소로 작용하는 지질다당류(LPS)와 결합하여 지질다당류(LPS) 활성을 억제하는 것을 특징으로 할 수 있다.
발명의 구체적인 일구현예에서 막 투과성 실험을 사용하여 펩타이드의 항균 메커니즘을 조사하였다. LPS는 선천성 면역 수용체(예: Toll-like 수용체(TLR))에 부착하여 전염증 활성에 결정적으로 영향을 미치는 그람 음성 박테리아의 외막 구성요소이다. 예컨대, 양친매성 펩타이드인 R-Pro9-3D는 정전기적 상호작용을 통해 그람음성 박테리아의 외막의 구성성분이며 양친매성 및 음이온성 특성을 가지는 LPS를 보다 효과적으로 표적화할 수 있다.
발명의 구체적인 일구현예에서, LPS와의 결합력 및 LPS를 중화하는 펩타이드의 능력을 확인한 결과, 도 2에 나타난 바와 같이, 모든 펩타이드들은 농도 의존적으로 LPS와 크게 상호작용하는 것을 확인하였다. 도 2A에 나타난 바와 같이 양성 대조군인 매우 우수한 LPS와의 결합력을 가진다고 알려진 폴리믹신 B와 비슷하게 높은 결합력으로 Pro9-3, Pro9-3D, R-Pro9-3 및 R-Pro9-3D 펩타이드가 LPS와 결합하는 것을 확인하였다. 도 2B에 나타난 바와 같이 양성 대조군인 매우 우수한 LPS중화능을 가진다고 알려진 LL-37보다는 약하나 우수한 LPS중화능을 보이는 것을 확인하였다. 도 2C 에 나타난 바와 같이 intact CRAB균에 대해서 Pro9-3, Pro9-3D, R-Pro9-3 및 R-Pro9-3D 펩타이드는 우수한 탈분극 능력을 나타내 박테리아의 세포막을 타겟으로 하는 항균기전을 확인하였다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 박테리아의 바이오필름 형성을 억제하는 것을 특징으로 할 수 있다.
발명의 구체적인 일구현예에서, Pro9-3, R-Pro9-3 및 R-Pro9-3D의 바이오필름(biofilm) 억제 효과를 확인한 결과, 도 3에 나타난 바와 같이, 모든 펩타이드는 농도 의존적으로 바이오필름 형성을 억제하는 것을 확인하였다. 특히, R-Pro9-3D는 멜리틴을 포함한 다른 펩타이드에 비해 A. baumannii 및 CRAB 균주에 의한 바이오필름 형성을 가장 효과적으로 억제하였다.
본 발명에 있어서, 상기 거울상 이상질체 펩타이드는 프로테아제에 대한 내성으로 단백질 분해 안정성을 가지는 것을 특징으로 할 수 있다.
본 발명의 구체적인 일구현에서, R-Pro9-3 및 R-Pro9-3D의 내인성 프로테아제에 대한 안정성을 확인한 결과, 표 3에 나타난 바와 같이, 프로테아제의 존재하에 Pro9-3 및 R-Pro9-3는 박테리아 성장을 억제시키지 못한 반면, 거울상 이성질체인 Pro9-3D 및 R-Pro9-3D는 프로테아제의 존재와는 상관 없이 항균 활성을 유지하였으며, 프로테아제가 없는 경우와 유사하게 E. coliA. baumannii의 성장을 억제시켰다. 상기 결과는, R-Pro9-3D가 트립신과 키모트립신에 대해 실질적인 프로테아제 저항성을 나타냄을 의미한다.
MDR 박테리아에 의한 바이오필름 형성의 주요 원인은 항생제 내성과 단백질 분해 절단에 대한 박테리아 감수성이다. 본 발명에서 R-Pro9-3D가 다양한 소화 조건에서 완전히 손상되지 않고 Pro9-3D와 마찬가지로 그람 음성 박테리아에 대해 상당한 항균 활성을 발휘한다는 것과 R-Pro9-3D가 Pro9-3D보다 A. baumannii에 대해 더 효과적인 항균 활성을 발휘하고 단백질 분해 안정성이 향상되었음을 발견하였다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이성질체는 LPS에 의한 염증을 억제할 수 있으나, 이에 제한되지 않는다.
본 발명에 있어서, 상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 그람음성 패혈증 또는 패혈성 쇼크 치료용인 것을 특징으로 할 수 있다.
상기 패혈성 쇼크(Septic shock)는 패혈증성 쇼크라고도 하며, 패혈증에 저혈압이 동반된 경우이다.
본 발명은 또다른 관점에서, 상기 펩타이드를 유효성분으로 포함하는 항균용 조성물에 관한 것이다.
본 발명은 또다른 관점에서, 상기 펩타이드를 유효성분으로 포함하는 항염증용 조성물에 관한 것이다.
본 발명에서 염증은 LPS에 의한 염증인 것을 특징으로 할 수 있다.
병원체에서 방출된 LPS는 대식세포 및 섬유 아세포와 같은 숙주 면역 세포를 자극하여, 패혈증 관련 질병을 유발할 수 있는 사이토카인을 생성한다.
본 발명의 구체적인 일구현예에서, LPS로 자극된 RAW264.7 세포에서 펩타이드에 의한 항염증 효능을 확인한 결과, 도 6에 나타난 바와 같이, 펩타이드를 처리한 경우 효과적으로 (A) NO, (B) TNF-α 및 (C) IL-6 수준이 감소하는 것을 확인하였다. 또한, Pro9-3와 R-Pro9-3 보다 그 이성질체들인 Pro9-3D와 R-Pro9-3D가 효과적으로 NO, TNF-α 및 IL-6 생성을 억제하는 것으로 확인되었다. 이는 R-Pro9-3D가 LPS 유도 사이토카인 수준을 효율적으로 하향 조절할 수 있음을 의미한다.
본 발명에서는 R-Pro9-3D가 우수한 항균 활성을 가지고 있는 것을 확인하였으며, 단백질 분해 효소에 대한 내성, 내독소 중화/제거 및 바이오필름 형성 억제 효능과 항염증 활성이 우수한 것을 확인하였다.
본 발명은 또다른 관점에서, 상기 펩타이드를 유효성분으로 포함하는, 그람음성 박테리아 감염 질환 예방 또는 치료용 조성물에 관한 것이다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있다.
본 발명에 있어서, 특히 R-Pro9-3D는 패혈증/패혈증성 쇼크의 예방 또는 치료 효과가 우수하며, 내독소에 의해 손상된 기관의 기능을 개선할 수 있다.
본 발명의 구체적인 일구현예에서, R-Pro9-3D가 그람음성균 감염증 치료제 또는 패혈증 치료 효능을 확인하기 위해 마우스에서 R-Pro9-3D의 안전성을 조사한 결과, 도 7에 나타난 바와 같이, R-Pro9-3D의 저용량과 고용량(1mg/kg 및 5mg/Kg)을 투여한 경우 처리한 마우스의 AST, ALT 및 BUN 임상적 중요성이 관찰되지 않았으므로, 본 발명에서는 R-Pro9-3D가 고용량에서도 안전하다는 것을 확인하였다.
본 발명의 구체적인 일구현예에서, E. coli K1을 사용하여 확립된 패혈증성 쇼크 마우스 모델에서 펩타이드 항생제로서 R-Pro9-3D의 효능을 확인하였다. 도 8A에 나타난 바와 같이, R-Pro9-3D는 마우스 폐, 간 및 신장의 박테리아 수를 감소시킨 것을 확인되었다. 이는 R-Pro9-3D가 E. coli K1에 감염된 마우스의 내장 기관에서 세균 성장을 효과적으로 억제하는 것을 나타낸다.
또한, 도 8B에 나타난 바와 같이, 혈청내 독소 측정을 수행한 결과, R-Pro9-3D로 전처리한 경우, 내독소 수준이 효과적으로 감소한 것을 확인하였다.
또한, 도 8C-E에 나타난 바와 같이, R-Pro9-3D를 전처리한 경우 E. coli K1에 감염된 마우스의 AST, ALT 및 BUN 수준을 현저히 낮춤을 확인하였다.
또한, 도 8F-I에 나타난 바와 같이, R-Pro9-3D를 전처리한 경우 E. coli K1에 감염된 마우스의 혈청과 또는 폐에서 TNF-α 및 IL-6 싸이토카인의 수준이 현저히 감소한 것을 확인하였다.
또한, 도 8J에 나타난 바와 같이 E. coli K1에 감염된 폐조직의 조직학적 패턴은 폐에 침윤된 PMN과 함께 심각한 부종, 폐 울혈 및 폐포 출혈이 관찰되었다. 이러한 미세 해부학적 특징은 증가된 PMN이 폐손상과 관련되어 E. coli K1 감염시 패혈증 중증도를 유발한다는 것을 의미한다. 반면, R-Pro9-3D 전처리된 패혈증 마우스의 폐 조직을 확인한 결과, R-Pro9-3D에 의해 E. coli K1에 의해 유발된 병리학적 변화가 효과적으로 완화된 것을 확인하여 패혈증 치료효과를 확인하였다.
즉, 본 발명에서는 R-Pro9-3D 펩타이드가 E. coli K1에 감염된 마우스에서 패혈증 관련 염증을 예방하는 새로운 펩타이드 항생제 역할을 수행할 수 있는 것을 확인하였으므로, 본 발명의 R-Pro9-3D은 패혈증 또는 패혈증성 쇼크의 효과적인 치료를 위한 새로운 펩타이드 항생제로 유용하게 적용할 수 있다.
본 발명은 또다른 관점에서, 상기 펩타이드를 유효성분으로 포함하는 그람음성 박테리아 감염 질환 예방 또는 개선용 의약외품 조성물에 관한 것이다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명은 또다른 관점에서, 상기 펩타이드를 유효성분으로 포함하는 그람음성 박테리아 감염 질환 예방 또는 개선용 식품 조성물에 관한 것이다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명은 또다른 관점에서, 상기 펩타이드를 유효성분으로 포함하는 약학적 조성물을 그람음성 박테리아 감염 질환을 가지고 있는 환자에게 투여하는 단계;를 포함하는, 그람음성 박테리아 감염 질환의 예방 또는 치료 방법에 관한 것이다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있다.
본 발명은 또다른 관점에서, 상기 펩타이드의 그람음성 박테리아 감염 질환 예방 또는 치료를 위한 용도를 제공한다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명은 또다른 관점에서, 그람음성 박테리아 감염 질환 예방 또는 치료를 위한 약물의 제조를 위한 상기 펩타이드의 용도를 제공한다.
본 발명에 있어서, 상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 할 수 있으나, 이에 제한되지 않는다.
본 발명에서 사용되는 용어 "펩타이드"는 펩타이드 결합에 의해 아미노산 잔기들이 서로 결합되어 형성된 선형의 분자를 의미한다. 본 발명의 펩타이드는 당업계에 공지된 화학적 합성 방법, 특히 고상 합성 기술 (solid-phase synthesis techniques)에 따라 제조될 수 있으며 (Merrifield, J. Amer. Chem. Soc. 85:2149-54(1963); Stewart, et al., Solid Phase Peptide Synthesis, 2nd.ed., Pierce Chem. Co.: Rockford, 111(1984)), 유전자 조작 기술에 의하여 생산할 수도 있다.
구체적으로, 본 발명의 펩타이드는 표준 합성 방법, 재조합 발현 시스템, 또는 임의의 다른 당해 분야의 방법에 의해 제조될 수 있다. 따라서, 본 발명에 따른 펩타이드들은, 예를 들어 하기를 포함하는 방법을 포함하는 다수의 방법으로 합성될 수 있다:
(a) 펩타이드를 고체상 또는 액체상 방법의 수단으로 단계적으로 또는 단편 조립에 의해 합성하고, 최종 펩타이드 생성물을 분리 및 정제하는 방법;또는
(b) 펩타이드를 인코딩하는 핵산 작제물을 숙주세포 내에서 발현시
키고, 발현 생성물을 숙주 세포 배양물로부터 회수하는 방법; 또는
(c) 펩타이드를 인코딩하는 핵산 작제물의 무세포 시험관 내 발현을 수행하고, 발현 생성물을 회수하는 방법; 또는
(a), (b) 및 (c)의 임의의 조합으로 펩타이드의 단편을 수득하고, 이어서 단편을 연결시켜 펩타이드를 수득하고, 당해 펩타이드를 회수하는 방법.
본 발명에서, 용어 "예방"이란 본 발명에 따른 단백질 또는 이의 단편, 또는 이를 포함하는 조성물의 투여에 의해 그람 음성 박테리아 감염 질환의 발생, 확산 및 재발을 억제 또는 지연시키는 모든 행위를 의미한다.
본 발명에서 사용된 용어 "치료"란 본 발명에 따른 단백질 또는 이의 단편, 또는 이를 포함하는 조성물의 투여로 그람 음성 박테리아 감염 질환 및 이로 인한 합병증의 증세를 호전시키거나 이롭게 변경하는 모든 행위를 의미한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 대한의학협회 등에서 제시된 자료를 참조하여 본원의 조성물이 효과가 있는 질환의 정확한 기준을 알고, 개선, 향상 및 치료된 정도를 판단할 수 있을 것이다.
본 발명의 조성물의 치료적으로 유효한 양은 여러 요소, 예를 들면 투여방법, 목적부위, 환자의 상태 등에 따라 달라질 수 있다. 따라서, 인체에 사용시 투여량은 안전성 및 효율성을 함께 고려하여 적정량으로 결정되어야 한다. 동물실험을 통해 결정한 유효량으로부터 인간에 사용되는 양을 추정하는 것도 가능하다. 유효한 양의 결정시 고려할 이러한 사항은, 예를 들면 Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed.(2001), Pergamon Press; 및 E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed.(1990), Mack Publishing Co.에 기술되어있다.
본 발명의 약학조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에서 사용되는 용어, "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미하며, 유효용량 수준은 환자의 건강상태, 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여, 부작용없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
본 발명의 약학조성물은 생물학적 제제에 통상적으로 사용되는 담체, 희석제, 부형제 또는 둘 이상의 이들의 조합을 포함할 수 있다. 본 발명에서 사용되는 용어, "약학적으로 허용가능한"이란 상기 조성물에 노출되는 세포나 인간에게 독성이 없는 특성을 나타내는 것을 의미한다. 상기 담체는 조성물을 생체 내 전달에 적합한 것이면 특별히 제한되지 않으며, 예를 들면, Merck Index, 13thed., Merck & Co. Inc. 에 기재된 화합물, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 이용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주이용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(Mack Publishing Company, Easton PA, 18th, 1990)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.
일 구현예에서, 상기 약학 조성물은 경구형 제형, 외용제, 좌제, 멸균 주사용액 및 분무제를 포함하는 군으로부터 선택되는 하나 이상의 제형일 수 있다.
본 발명의 조성물은 또한 생물학적 제제에 통상적으로 사용되는 담체, 희석제, 부형제 또는 둘 이상의 이들의 조합을 포함할 수 있다. 약학적으로 허용 가능한 담체는 조성물을 생체 내 전달에 적합한 것이면 특별히 제한되지 않으며, 예를 들면, Merck Index, 13th ed., Merck & Co. Inc. 에 기재된 화합물, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 이용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다.
또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주이용 제형, 환약, 캡슐, 과립 또는 정제로 제제화 할 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(Mack Publishing Company, Easton PA, 18th, 1990)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.
본 발명의 조성물에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다. 본 발명의 조성물은, 조성물 총 중량에 대하여 상기 단백질을 0.0001 내지 10 중량 %로, 바람직하게는 0.001 내지 1 중량 %를 포함한다.
본 발명의 약학조성물은 약제학적으로 허용 가능한 첨가제를 더 포함할 수 있으며, 이때 약제학적으로 허용 가능한 첨가제로는 전분, 젤라틴화 전분, 미결정셀룰로오스, 유당, 포비돈, 콜로이달실리콘디옥사이드, 인산수소칼슘, 락토스, 만니톨, 엿, 아라비아고무, 전호화전분, 옥수수전분, 분말셀룰로오스, 히드록시프로필셀룰로오스, 오파드라이, 전분글리콜산나트륨, 카르나우바 납, 합성규산알루미늄, 스테아린산, 스테아린산마그네슘, 스테아린산알루미늄, 스테아린산칼슘, 백당, 덱스트로스, 소르비톨 및 탈크 등이 사용될 수 있다. 본 발명에 따른 약제학적으로 허용 가능한 첨가제는 상기 조성물에 대해 0.1 중량부 내지 90 중량부 포함되는 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명의 조성물은 목적하는 방법에 따라 비 경구 투여(예를 들어 정맥 내, 피하, 복강 내 또는 국소에 적용)하거나 경구 투여할 수 있으며, 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 다양하다. 본 발명에 따른 조성물의 일일 투여량은 0.0001 ~ 10 ㎎/㎖이며, 바람직하게는 0.0001 ~ 5 ㎎/㎖이며, 하루 일 회 내지 수회에 나누어 투여하는 것이 더욱 바람직하다.
본 발명의 조성물의 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 통상적으로 사용되는 단순 희석제인 물, 액체 파라핀 이외에 다양한 부형제, 예컨대 습윤제, 감미제, 방향제, 보존제 등이 함께 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성 용제, 현탁제, 유제, 동결건조 제제, 좌제 등이 포함된다.
본 발명의 의약외품 조성물은 인간이나 동물의 질병을 진단, 치료, 개선, 경감, 처치 또는 예방할 목적으로 사용되는 물품들 중 의약품보다 작용이 경미한 물품들을 의미하는 것으로, 예를 들어 약사법에 따르면 의약외품이란 의약품의 용도로 사용되는 물품을 제외한 것으로, 인간이나 동물의 질병 치료나 예방에 쓰이는 제품, 인체에 대한 작용이 경미하거나 직접 작용하지 않는 제품 등이 포함된다.
본 발명의 의약외품 조성물은 로션, 연고, 겔, 크림, 패취 또는 분무제와 같은 경피투여형 제형일 수 있다. 각 제형에 있어서 의약외품 조성물은 다른 성분들을 기타 의약외품의 제형 또는 사용목적 등에 따라 임의로 선정하여 배합할 수 있다. 유효 성분의 혼합양은 사용 목적(억제 또는 완화)에 따라 적합하게 결정될 수 있다. 예를 들어, 점증제, 안정화제, 용해화제, 비타민, 안료 및 향료와 같은 통상적인 보조제, 및 담체 등을 포함할 수 있다. 또한, 각 제형의 의약외품 조성물에 있어서, 상기한 필수 성분 이외의 다른 성분들은 제형 또는 사용목적 등에 따라 당업자가 어려움 없이 적의 선정하여 배합할 수 있다.
본 발명의 식품 조성물은 본 발명의 화합물 또는 이의 약학적으로 허용가능한 염 그 자체, 또는 식품학적으로 허용된 담체와 혼합한 조성물일 수 있다. 이때 본 발명의 화합물 또는 이의 약학적으로 허용가능한 염의 함량은 상기 약학 조성물 중의 함량 및 투여량을 기준으로 통상적인 방법에 따라 적절히 조절될 수 있다.
본 발명 식품 조성물의 가장 바람직한 양태는 건강기능식품 조성물일 수 있으나, 이에 한정되지는 않으며, 다른 양태로서 식육가공품, 어육제품, 두부, 묵, 죽, 라면이나 국수 등의 면류, 간장, 된장, 고추장, 혼합장 등의 조미식품, 소스, 과자, 발효유나 치즈 등의 유가공품, 김치나 장아찌 등의 절임식품, 과실, 채소, 두유, 발효음료 등의 음료수의 일반적인 식품 형태도 가능하다. 또 다른 양태로서, 본 발명의 식품 조성물은 식품 첨가제일 수 있다.
한편, 식품학적으로 허용된 담체는 상기 약학적으로 허용된 담체도 사용할 수 있을 것이다.
통계 분석
모든 데이터는 Kaplan-Meier 로그 순위법(log rank test), 단반향 ANOVA 및 양방향 ANOVA으로 분석 후 GraphPad Prism(GraphPad Software Inc., La Jolla, CA, USA)을 사용한 Dunnett's test로 통계분석을 진행하였다. 모든 실험 데이터는 3회 이상 반복값의 평균 ± SEM으로 표시되었다. 값은 * P < 0.05, ** P < 0.01 및 *** P < 0.001에서 통계적으로 유의함을 나타내며, ns는 유의하지 않은 값을 나타낸다.
이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
[실시예 1] 실험에 사용된 박테리아 균주
실험에 사용된 박테리아 균주 중 Escherichia coli KCTC 1682는 생물자원센터(Korean Collection for Type Cultures, KCTC)(한국 정읍시)에서 입수하였고, Acinetobacter baumannii KCCM 40203 및 Pseudomonas aeruginosa KCCM 11328는 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM) (한국 서울)에서 입수하였으며, Klebsiella pneumonia NCCP 16054는 국가병원체자원은행 (National Culture Collection for Pathogens, NCCP)(한국 오송)에서 입수하였다. 또한, 카르바페넴 내성 E. coli NCCP 16044 및 카르바페넴 내성 Klebsiella pneumonia NCCP 15782는 NCCP에서, 3종의 카르바페넴 내성 A. baumanii CCARM 12004-6은 항생제내성균주은행(Culture Collection of Antimicrobial Resistance Microbes, CCARM)(한국 청주시)에서 입수하였다. 동물실험에 사용한 E.coli K1 (ATCC 700973)균주는 ATCC(American Type Culture Collection) (미국 록밸리)에서 입수하였다.
[실시예 2] 펩타이드 설계 및 합성
본 발명의 발명자들은 이전의 연구에서 곤충용 디펜신(insect defensin)으로서 43개 아미노산 잔기를 가진 천연 항생 펩타이드, 프로테티아마이신(protaetiamycine)의 활성 부위으로부터 Pro9-3을 설계하고 합성하였다. 그러나, 강력한 항균 활성에도 불구하고 Pro9-3 및 이의 거울상 이성질체 펩타이드 Pro9-3D는 포유동물 세포에 대해 심각한 세포독성을 나타낸다(표 1).
본 발명에서, 본 발명자들은 Pro9-3 및 이의 거울상 이성질체 펩타이드 Pro9-3D와 동일한 양이온성, 소수성 및 항균 활성을 보장하기 위해 9개의 아미노산의 짧은 길이를 유지하되, Pro9-3 및 Pro9-3D의 심각한 세포독성을 완화시키기 위한 펩타이드 서열을 설계하였다. Pro9-3 및 Pro9-3D의 펩타이드 서열을 역전시키고, N-말단에 2개의 순차적 Arg 잔기를 가지게 되어 N-말단의 양이온성을 증가시킨 R-Pro9-3 및 R-Pro9-3D를 설계하였다 (표 1). 또한, R-Pro9-3의 L-아미노산을 D-아미노산으로 대체하여 거울상인 R-Pro9-3D를 설계하였다. 모든 펩타이드의 나선 바퀴 돌출부는 양이온성이 높은 양친매성을 나타내며(도 1), 이는 이 펩타이드가 박테리아 막에서 양친매성 알파 나선 구조를 형성하고, 박테리아 세포막을 효과적으로 투과할 수 있음을 나타낸다.
합성된 펩타이드 및 이의 물리화학적 특성
Peptides Sequencea Length Molecular weight Charge Hydrophobic moment
<μH>b
Hydropho-
bicity <H>b
서열번호
R-Pro9-3 RRWIALWLR-NH2 9 1269 +3 0.692 0.776 1
R-Pro9-3D rrwialwlr-NH2 9 1269 +3 0.692 0.776 2
Pro9-3 RLWLAIWRR-NH2 9 1269 +3 0.692 0.776 3
Pro9-3D rlwlaiwrr-NH2 9 1269 +3 0.692 0.776 4
a표 1에서 서열에서 소문자는 D-아미노산을 나타낸다. b표1에서 소수성 모멘트 <μH> 및 소수성 <H>는 http://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py에 의해 계산하였다.
모든 펩타이드는 N-(9-플루오레닐) 메톡시카르보닐 아미노산(N-(9-fluorenyl)methoxycarbonyl amino acids)을 사용하여 고체상 합성방법으로 합성하였고, 매트릭스-보조 레이저탈착이온화 비행시간형(MALDI-TOF) 질량분석기로 펩타이드의 분자량을 확인하였다.
[실시예 3] 펩타이드의 항균 활성 측정
펩타이드의 항균 활성은 최소억제농도(Minimal inhibitory concentration, MIC) 분석을 통해 측정하였다. MIC는 브로쓰(broth) 희석 방법을 사용하여 결정하였다. 모든 박테리아 균주는 Muller-Hinton(MH) 배지에 의해 37°C에서 밤새 성장하였다. 기존 항생제(imipenem, meropenem) 및 melittin을 대조군으로 하여 펩타이드(Pro9-3, Pro9-3D, R-Pro9-3, R-Pro9-3D)를 세균 현탁액(2 x 105 CFU/mL, MH 배지)에 첨가하여 16시간 배양 후, SpectraMAX 마이크로플레이트 리더(Molecular Devices, San Jose, USA)를 사용하여 600nm에서 박테리아 성장을 판독하였다.
Pro9-3, Pro9-3D, R-Pro9-3, R-Pro9-3D 및 대조군(imipenem, meropenem, melittin)의 표준 그람음성 박테리아와 카르바페넴(carbapenem) 내성 E. coli(CREC), A. baumannii(CRAB) 및 K. pneumoniae(CRKP)에 대한 항균 활성을 조사하였다. 멜리틴 대조군 및 기존 항생제와 비교하여 L-형 아미노산으로 이루어진 R-Pro9-3는 모체펩타이드인 Pro9-3와 유사한 살균 효과를 나타냈다. 반면에 이들의 거울이상질체 펩타이드들인 R-Pro9-3D와 Pro9-3D는 L-형 펩타이드들보다 그람 음성 균주에 대해 훨씬 더 우수한 항균 활성을 보였다. (표 2).
다음으로 카르바페넴 내성 균주에 대한 펩타이드(Pro9-3, Pro9-3D, R-Pro9-3, R-Pro9-3D)의 효과를 평가했다. CREC, CRAB, CRKP 카르바페넴 내성 균주에 대해 R-Pro9-3D 가 멜리틴을 포함하여 모든 펩타이드중에 가장 강력한 활성을 나타낸다는 것을 확인하였다. R-Pro9-3D는 특히 CRAB에 대해 가장 강력한 활성을 가졌다. 또한 표준균과 내성균을 포함하는 모든 그람음성균들에 대한 항균활성의 기하 평균(GM) 값의 순서로 R-Pro9-3D 가 가장 강력한 활성을 나타낸다는 것을 확인하였다(표 2): R-Pro9-3D(5.8) < Pro9-3D(7.6) < 멜리틴(12.4) < R-Pro9-3(24.9) < Pro9-3(32.0). 또한, 상대 선택 지수 (relative selective index)도 R-Pro9-3D(34.6)가 가장 높았고, Pro9-3D(26.5), Pro9-3D (8.0)의 뒤를 이어 Pro9-3(6.3) 순서로 상대 선택 지수가 낮았다. 대조군인 멜리틴 (0.25)은 항균활성이 우수한 반면에 용혈활성이 높아 상대 선택 지수 값이 매우 낮았다. CREC, CRAB 및 CRKP 균주는 이미 imipenem 및 meropenem과 같은 carbapenem 항생제에 대해 내성을 갖고 있기 때문에, 이러한 항생제는 carbapenem 내성 균주에 대한 항균 활성을 나타내지 않았다.
표준 그람음성 박테리아 (Standard gram-negative bacteria) 및 카르바페넴 내성 그람음성 박테리아 (Carbapenem-resistant gram-negative bacteria)에 대한 펩타이드 및 대조군의 항균 활성 비교
Microorganisms Minimal inhibitory concentration (MIC) in μM
Pro9-3 Pro9-3D R-Pro9-3 R-Pro9-3D Melittin Imipenem Meropenem
표준 그람음성 박테리아
E. coli 16 8 16 8 8 0.5 0.25
A. baumannii 16 4 16 4 4 1 0.5
P. aeruginosa 64 8 64 8 16 1 1
K. pneumonia 64 8 32 8 32 <0.25 <0.25
카르바페넴 내성 그람음성 박테리아
CREC 16044 16 8 16 4 8 8 8
CRAB 12004 16 8 32 4 4 64 128
CRAB 12005 16 8 16 4 4 64 128
CRAB 12006 16 8 16 4 4 64 128
CRKP 15782 64 8 16 8 32 >128 >128
aGM 32 7.6 24.9 5.8 12.4 NA NA
bHC10 200 200 200 200 3.1 NA NA
cRelative selective index 6.3 26.5 8.0 34.6 0.25 NA NA
a기하 평균(geometric means, GM)은 모든 박테리아 균주의 평균 최소 억제 농도(mean minimum inhibitory concentrations, MIC) 값이다. bHC10은 시험관 내에서 헤파린 처리된 양 적혈구의 10% 용혈을 유도하는 펩타이드 농도를 나타낸다.
c상대 선택 지수(Relative selective index)는 10% 용혈을 일으키는 최소 펩타이드 농도이다. 100μM에서 검출 가능한 용혈이 관찰되지 않은 경우, 200μM의 값을 선택 지수를 계산하는 데 사용하였고, HC10/MIC(μM)의 GM 식으로 계산하였다. 더 큰 값은 박테리아에 대한 세포 선택성이 더 큰 것을 의미하며, NA는 해당 사항 없음을 나타낸다.
[실시예 4] 펩타이드의 항균 활성 메커니즘
본 발명에서는 펩타이드의 항균 메커니즘을 조사하였다. LPS는 그람 음성 박테리아의 외막의 주요 구성 요소이며 TLR4 매개 염증 신호를 유도한다. 박테리아 LPS를 제거할 수 있는 우수한 항내독소 활성을 갖는 펩타이드와 관련하여 그람 음성 감염 치료에 대해 관심이 증가하고 있다.
LPS와 펩타이드의 결합 능력은 BODIPY-TR cadaverine(BC, Thermo Fisher Scientific, MA, USA) 변위 분석(displacement assay)에 의해 조사하였다(도 2A). 프로브 복합체는 실온에서 6시간동안 50mM Tris 완충액(pH 7.4)에서 5μg/mL BC와 5μg/mL LPS(E. coli O111:B4, Sigma-Aldrich, St. Louis, MO, USA)를 혼합하여 준비하였다. 높은 LPS 결합 능력을 가진다고 알려진 폴리믹신 B(PMB) 대조군(1-64μM)을 포함하는 펩타이드는 30분 동안 black 96웰 플레이트에서 LPS-BC 혼합물과 상호 작용하도록 하였다. 형광 마이크로플레이트 리더(Molecular Devices, San Jose, USA)를 사용하여 580 nm의 여기 파장(excitation wavelength) 및 620 nm의 방출 파장(emission wavelength)에서 상대적인 형광 강도를 기록하였다.
그 결과, 잘 알려진 LPS 결합 펩타이드 PMB(76.6%)와 비교하여, Pro9-3, Pro9-3D, R-Pro9-3 및 R-Pro9-3D(4μM)는 모두 BC 변위를 각각 42.0, 51.2, 40.6 및 51.3% 증가시키면서 우수한 LPS 결합 능력을 나타냈다(도 2A).
펩타이드 매개 LPS-중화 활성은 Limulus Amebocyte Lysate(LAL) 발색성 내독소 정량 키트 (GenScript, New Jersey, USA)을 사용하여 결정하였다. 각 펩타이드 3.1, 6.3, 10, 12.5, 25 및 50μM을 37°C에서 10분 동안 LPS(2ng/mL)와 상호작용하도록 반응시켰다. 높은 LPS-중화 능력을 가진다고 알려진 LL-37을 대조군으로 사용하였다. 펩타이드-LPS 복합체에 LAL 효소(10μL)를 첨가하고 10분동안 반응시킨 후, 발색 기질(chromogenic substrate)을 첨가하였다. 내독소 수준은 545 nm에서 흡광도를 3번 반복 측정하여 나타냈고, 밀리리터당 내독소 단위(endotoxin units, EU)로 표시하였다.
그 결과, 모든 펩타이드는 농도 의존적으로 LPS를 중화시켰다: R-Pro9-3D, 51.6%; Pro9-3D, 27.9%; Pro9-3, 11.3%; R-Pro9-3, 17.3%; LL-37, 76.5% (도 2B). 따라서, R-Pro9-3D가 Pro9-3 및 Pro9-3D보다 LPS 중화 능력이 우수하다는 것을 확인하였다.
펩타이드에 의한 탈분극 능력은 손상되지 않은 CRAB균을 사용하여 막 전위 민감성 염료 3,3'-dipropylthiadicarbocyanine iodide(diSC3-5)를 사용하여 측정하였다. CRAB 세포를 세척 완충액(5mM HEPES, 20mM 포도당, pH 7.4)을 사용하여 세척하였다. 세포를 희석 완충액(5mM HEPES, 20mM 포도당, 0.1M KCl, pH 7.4)에 재현탁시킨 다음, diSC3-5 염료(1시간)로 배양하였다. 마지막으로, 다양한 농도의 펩타이드를 처리한 세포, 음성 대조군(염료가 있는 세포) 및 양성 대조군(1% triton X-100)의 형광 변화를 형광 분광 광도계를 사용하여 기록하였고, 결과를 탈분극 퍼센트로 표시하였다.
그 결과, 모든 펩타이드는 멜리틴와 유사한 범위에서 농도 의존적으로 diSC3-5 형광을 증가시켰다(도 2C). 특히, 4μM의 Pro9-3, Pro9-3D, R-Pro9-3, R-Pro9-3D 및 melittin은 탈분극을 각각 66.3, 68.4, 66.7, 67.8, 75.6% 증가시켜 이들 펩타이드가 CRAB 막을 표적으로 삼는다는 것을 나타나낸다.
이에, 상기 결과들은 이들 펩타이드의 항균 메커니즘이 박테리아 세포막에서 펩타이드와 LPS의 강한 상호작용 및 세포막 투과성과 관련이 있음 시사한다.
[실시예 5] 바이오필름 억제에 대한 펩타이드 효과
카르바페넴(carbapenem) 내성 그람음성 박테리아의 바이오필름(biofilm) 형성은 불리한 환경에서 생존하기 위해 자기방어 기작으로 항생제 내성을 증가시킨다. 표면 물질과의 미생물 상호 작용은 매트릭스(matrix)로 둘러싸인 바이오필름 구조로서 1차 접착 및 발달을 매개한다.
A.baumanni 표준균과 CRAB 12006주에 대한 R-Pro9-3D의 바이오필름 억제 능력을 조사하기 위해 크리스탈 바이올렛(cytstal-violet) 기반 분석을 사용하였다. 박테리아 세포(0.2%(w/v) 포도당을 함유하는 MH 배지에서 2 x 105 CFU/mL)를 37°C에서 16시간 동안 펩타이드, 멜리틴, 이미페넴 및 메로페넴의 다양한 농도(0-32μM)로 노출시켰다. 이후, 박테리아 세포를 메탄올(100%, 15분)로 고정한 다음 크리스탈 바이올렛(0.25%(v/v) 아세트산에서 1시간 동안 0.1%(w/v))으로 염색시켰다. 플레이트를 증류된 H2O로 세척하고, 건조시키고, 에탄올(100% v/v)에 용해시켰다. 바이오필름의 정도를 나타내는 발색은 595 nm에서 측정되었으며 바이오필름 형성 백분율로 표시하였다.
그 결과, 모든 Pro9-3 펩타이드 및 멜리틴을 포함한 대조군 항생제로 처리하면 16시간 동안 바이오필름을 형성하는 A. baumannii와 CRAB 12006이 사멸되었다(도 3). 특히, 펩타이드 R-Pro9-3D는 다른 펩타이드와 비교했을 때 MIC에서 96.1% 급격히 감소된 크리스탈 바이올렛 흡광도에서 입증된 바와 같이 바이오필름을 형성하는 CRAB 12006을 사멸시키는데 우수하였다. 이미페넴과 메로페넴은 후천적 내성으로 인해 A. baumanni표준균주에 대한 바이오필름 형성 억제능에 비해서 CRAB 12006의 바이오필름 형성에 대한 억제능이 현저히 낮아졌다. 이로써, 특히 R-Pro9-3D가 강력한 막 투과성으로 인해 미리 형성된 바이오필름을 제거하고 바이오필름 매트릭스를 전위시켜 CRAB 바이오필름를 억제하는 데 효과적임을 확인하였다.
[실시예 6] 프로테아제에 대한 펩타이드의 내성
혈청 내 펩타이드의 단백질 분해는 생물학적 이용 가능성 (bioavailability)과 반감기 감소로 인해 임상적 사용이 제한된다. 따라서 트립신 및 키모트립신 프로테아제에 사전 노출된 모든 펩타이드의 안정성을 조사하고, E.coli, A.baumannii의 상대적 성장 억제를 측정하였다(표 3). MIC의 모든 펩타이드는 37°C에서 6시간 동안 트립신 및 α-키모트립신(10,000:1; 펩타이드:효소 비율)과 같은 단백질 분해 효소와 함께 사전 배양하였다. 이후, 100 μL의 펩타이드-프로테아제 혼합제를 100 μL 세균 현탁액(E. coli, A. baumannii, 2 x 105 CFU/mL)에 첨가하고 37°C에서 16시간 동안 추가로 배양하였다. 펩타이드와 프로테아제가 없는 세균 현탁액은 음성 대조군으로 하였다. 분석은 독립적인 실험을 통해 3회 반복하였으며, 마이크로플레이트 리더를 이용하여 600 nm에서 세균 증식 정도를 측정하였다.
그 결과, Pro9-3 및 R-Pro9-3은 64μM에서도 박테리아 균주(E.coli, A.baumannii)의 생존에 영향을 미치지 않는 반면, 거울상 이성질체인 Pro9-3D 및 R-Pro9-3D는 MIC에 영향을 미치지 않으면서 살균 효과를 효과적으로 유지하는 것으로 나타났다(표 3). 이는 D-아미노산 치환에 의한 단백질 분해 안정성이 더 높음을 의미한다.
E. coli 또는 A. baumannii에 대한 트립신 또는 키모트립신에 의한 분석
Microorganisms Minimal inhibitory concentration (MIC) in μM
Pro9-3 Pro9-3D R-Pro9-3 R-Pro9-3D
E. coli + Trypsin >64 8 >64 8
E. coli + α-Chymotrypsin >64 8 64 8
A. baumannii + Trypsin >64 4 >64 4
A. baumannii + α-Chymotrypsin >64 4 >64 4
[실시예 7] 펩타이드의 2차 구조 비교
펩타이드의 2차 구조적 변화를 조사하기 위해 원형 이색성(Circular Dichroism; CD) 실험을 진행하였다. 펩티드에 대한 모든 CD 실험은 25℃에서 1mm 경로 길이 세포가 있는 J-810 분광편광계(Jasco, Tokyo, Japan)를 사용하여 수행하였다. 펩타이드의 CD 스펙트럼은 100 μM에서 190에서 250 nm까지 0.1 nm 간격으로 기록하였다. CD 실험은 수용액 또는 50mM DPC 미셀(막 유사 환경)에서 수행하였다. 10회 스캔을 통해 얻은 CD 스펙트럼 데이터의 평균값을 도출하고, J-810을 사용하여 평활화(smooth) 하였다. CD 데이터는 deg cm2 dmol -1 단위의 mean residue ellipticity(θ)로 표시하였다.
그 결과, 모든 펩타이드가 수성 환경에서 무작위 코일 구조를 나타내었지만(도 4A), 도데실포스포콜린(dodecylphosphocholine, DPC) 미셀이 있는 상태에서 완전한 나선 구조를 나타냈다(도 4B). 특히, DPC 미셀에서 모든 펩타이드의 CD 스펙트럼은 205 nm 및 220 nm에서 이중 음의 최대값 또는 최소값이 명확하게 나타났다(도 4B). 205 nm 및 220 nm에서 이중 음의 최대값(Double negative maxima)은 알파(α) 나선형 구조의 특징이다. Pro9-3D는 L-펩티드와 반대 모양을 가지며, 이는 다른 아미노산 구조에서도 흔히 발생한다. Pro9-3D와 그 역서열(R-Pro9-3D)은 동일한 카이랄성(chirality)을 나타내므로 이들의 CD 스펙트럼은 모 펩타이드(Pro9-3 및 R-Pro9-3)의 거울상을 나타낸다. 또한, DPC 미셀에서 R-Pro9-3D는 Pro9-3D에 비해 알파 나선 구조의 함량이 높다(도 4B). 이는, 세포막에서 R-Pro9-3D는 Pro9-3D는 알파 나선 구조를 나타낸다는 것을 의미한다.
[실시예 8] 펩타이드의 세포독성 분석
다른 포유류 세포에 대한 R-Pro9-3 및 R-Pro9-3D의 독성 효과를 Pro9-3 및 Pro9-3D와 비교하여 조사하였다(도 5). 펩타이드 유도 독성은 양 적혈구(sRBC)에 대한 용혈에 의해 결정하였다. 신선한 sRBC를 인산염 완충 식염수(phosphate buffered saline, PBS)로 3회 이상 세척하고 원심분리(1000x g, 5분, 4°C)에 의해 잔해를 제거하였다. 멜리틴 대조군(0.2-100μM) 및 양성 대조군(1%(v/v) triton X-100)을 포함한 모든 펩타이드를 37°C에서 1시간 동안 4%(v/v) sRBC와 함께 배양한 다음, 5분 동안 1000×g에서 원심분리하였다. 마이크로플레이트 리더를 사용하여 405 nm에서 상청액을 측정하였다.
그 결과, 양 적혈구(sRBC)에서 R-Pro9-3, R-Pro9-3D, Pro9-3 및 Pro9-3D는 100μM에서도 매우 적은 용혈 활성(각각 3.4, 1.2, 2.5, 1.9%)을 유도함에 반해, 광범위한 항균 활성과 높은 세포독성을 가지고 잘 알려진 AMP인 멜리틴은 25μM에서 100% 용혈을 나타내었다(도 5A). R-Pro9-3D는 검사한 그람음성 박테리아에 대한 상대 선택 지수(34.6)가 가장 높았고, Pro9-3D, Pro9-3, R-Pro9-3의 상대 선택 지수는 각각 26.5, 6.3, 8.0이었다(표 2).
추가적으로 세포 기반 독성 분석을 위해, RAW 264.7 마우스 대식세포 및 인간 신장(HK)-2 세포는 한국 세포주 은행(서울, 한국)에서 입수하였고, 세포는 가습된 5% CO2 인큐베이터에서 37˚C로 10% 소 태아 혈청 및 1% 페니실린/스트렙토마이신이 보충된 DMEM 배양 배지(Thermo Fischer Scientific Inc., MA, USA)에서 유지되었다. 펩타이드의 세포독성은 WST-8 세포 증식 분석법(Biomax Co, Ltd, 서울, 한국)을 이용하여 분석하였으며, 실험은 kit protocol에 따라 수행하였다. 세포(1x104)를 96웰 플레이트에 시딩(seed)하고 펩타이드 처리(0-100μM)를 80% confluency에서 시작한 다음 24시간동안 배양하였다. 배양 후, WST-8 시약을 첨가하고 시약 blank에 대해 450nm에서 흡광도의 변화를 판독하고 값은 퍼센트 세포 생존으로 표시하였다.
세포 독성 분석 결과 R-Pro9-3이나 Pro9-3 모두 멜리틴과 비교하여 최대 100μM의 농도에서도 독성을 나타내지 않은 것으로 나타났다(도 5B 및 5C). 반면, Pro9-3D는 100μM의 농도에서 RAW 264.7과 인간 신장(HK)-2 세포에서 각각 44.5%와 22.9%의 독성을 보였고, R-Pro9-3D는 20.3%와 9.6%에서 낮은 독성을 나타냈다. 이로써, 특히 R-Pro9-3D가 다른 펩타이드보다 더 큰 박테리아 세포 선택성과 더 적은 세포 독성을 나타냄을 확인하였다.
[실시예 9] 펩타이드의 항염증 활성 확인
산화질소(NO) 과잉 생산은 세균성 LPS(Lipopolysaccharide)에 대한 급성 및/또는 만성 염증과 관련이 있는 것으로 알려져 있다. R-Pro9-3D가 LPS와 효과적으로 상호작용하고 항균 활성을 나타내므로 LPS 유도 염증 신호를 조절할 수 있다고 가정하였다. Griess 분석을 통해 펩타이드에 의한 아질산염 생성 억제 효과를 평가하였다. RAW264.7 세포(1×105)를 1시간 동안 다양한 농도의 펩타이드(1, 5, 25, 50μM)로 전처리한 다음 16시간 동안 20ng/mL의 LPS로 자극하였다. 배양 후 상등액과 Griess 시약을 동일한 비율로 첨가하였다. 색 변화는 540 nm에서 측정하였다. 아질산염 함량의 농도는 아질산나트륨의 표준 곡선을 사용하여 평가하였다. 또한, 배양 배지에서 TNF-α 및 IL-6을 포함한 염증성 사이토카인 생성은 효소결합면역흡착 분석 키트(ELISA; R&D Systems, Minneapolis, MN, USA)를 사용하여 정량화하고, 키트 프로토콜(protocol)에 따라 분석하였다. 모든 분석은 3회 실시하였으며, 마이크로플레이트 리더(microplate reader)를 이용하여 450 nm에서 흡광도를 측정하여 TNF-α와 IL-6의 농도를 측정하였다.
그 결과, 모든 펩타이드는 멜리틴과 비교하여 용량 의존적으로 NO 분비를 유의하게 억제하였다(도 6). 특히, R-Pro9-3D는 R-Pro9-3, Pro9-3D 및 Pro9-3에 비해 가장 큰 억제 효과를 나타냈다(25μM에서 47% 및 50μM에서 81%). TNF-α(tumor necrosis factor-α) 및 IL-6(interleukin-6) 수준에 대한 ELISA 기반 분석을 통해 LPS-RAW 264.7 세포에서 사이토카인 방출이 유의하게 증가한 것을 확인하였다(도 6B 및 6C). 25μM 농도의 R-Pro9-3D는 TNF-α를 52.1%, IL-6을 47.2% 억제한 반면, Pro9-3, Pro9-3D 및 R-Pro9-3은 TNF-α 및 IL-6를 상대적으로 덜 억제하였다. 즉, 펩타이드의 아질산염 및 염증성 사이토카인 억제능을 확인함으로써 본 발명의 R-Pro9-3D의 우수한 항염증 효과를 확인하였다.
상기 결과들을 통해, 본 발명의 R-Pro9-3D는 다른 펩타이드에 비해 항균성, LPS 결합성, 항생물막, 단백질 분해 저항성이 훨씬 우수하고 항염증 효과가 강력하다는 것을 확인하였다.
[실시예 10] 패혈증 동물 모델에서 펩타이드의 항균 활성 확인
LPS-RAW 264.7 세포에서의 항균, 항생물막 및 항염증 효과를 기반으로 E. coli K1으로 유도된 패혈성 쇼크의 마우스 모델에서 R-Pro10-1D의 항균 효과를 추가적으로 분석하였다.
암컷 ICR 마우스는 Orient(대전, 한국)에서 구입하여 SPF (specific pathogen free) 및 습도가 조절된 환경에서 수용하였다. 모든 절차는 한국 건국대학교의 기관 동물 관리 및 사용 위원회(IACUC)의 검토 및 승인을 받았다(IACUC 번호: KU20192, 2021.04.05.).
In vivo 독성 측정을 위해 ICR 마우스(그룹당 n = 5)에 R-Pro9-3D(PBS에서 1mg 및 5mg/kg/일)를 복강 내(i.p.) 주사하고, 아산약품의 표준키트를 사용하여 간에서 AST(aspartate aminotransferase) 및 ALT(alanine aminotransferase), 신장에서 BUN(blood urea nitrogen)의 혈청 수준을 측정하였다. R-Pro9-3D는 상기 효소 수준을 증가시키지 않았으며(도 7), 더 높은 용량의 R-Pro9-3D의 경우에도 무독성임을 확인하였다.
20마리의 ICR 마우스를 무작위로 4개의 군으로 나누고(그룹당 5마리의 마우스), PBS를 복강내(i.p.) 주사한 마우스를 정상 대조군으로 사용하였다. 펩티드 대조군 마우스는 복강내(i.p.) R-Pro0-3D(1 mg/kg)를 주입하였다. 박테리아 대조군은 E. coli K1(5×106 CFU/마우스)를 주입하였다. E. coli K1 및 R-Pro9-3D를 주사한 마우스는 CRAB CO를 주입하기 1시간 전에 R-Pro9-3D를 주사하였고, 16시간 후 마우스를 안락사시키고 폐, 간 및 신장을 무균적으로 제거한 다음 얼음처럼 차가운 PBS를 사용하여 균질화하였다. E. coli K1의 상대 존재비(relative abundance)을 평가하기 위해 모든 균질물(1:1000, PBS)을 Luria-Bertani 한천에 도말하고 박테리아 군(bacteria colonies)의 수를 측정하였다. ELISA 키트(R&D Systems, Minneapolis, MN, USA)를 사용하여 혈청 및 폐 용해물에서 염증성 사이토카인(TNF-α 및 IL-6)의 수준을 측정하였다. AST, ALT, BUN의 함량은 아산약품의 표준 키트를 사용하여 측정하였다.
그 결과, 패혈증 모델에서 E. coli K1(5×106 CFU/마우스)를 주사한 마우스는 폐, 간 및 신장과 같은 중요한 기관에서 박테리아 부하가 증가하여 기관이 심각하게 손상되었다(도 8A). 또한, E. coli K1는 순환계로 과도한 수준의 내독소를 빠르게 방출하고(도 8B) 장기 손상 마커(AST, ALT 및 BUN)의 혈청 수준과 염증성 사이토카인 생성을 증가시켰다(도8 C-I). 그에 반해, 1 mg/kg의 R-Pro9-3D로 전처리한 경우 박테리아 성장이 유의하게 억제되었고, 중요한 기관의 용해물에서도 박테리아 성장이 효과적으로 억제된 것을 확인하였다(도 8A). 또한, R-Pro9-3D 전처리는 E. coli K1를 주사한 마우스에서 내독소 수준을  55.4% 감소시켰고(도 8B), 박테리아 대조군과 비교하여 AST, ALT 및 BUN 수준을 각각 29.3%, 25.9%  및 19.8%로 감소시켰다(도 8 C-E). 나아가, 사이토카인 폭풍(cytokine storm)을 조절하는 R-Pro9-3D의 능력을 조사하였으며, E. coli K1 감염된 표본과 비교하여 혈청 및 폐 표본에서 TNF-α 및 IL-6 수준을 하향 조절함을 확인하였다(도 8 F-I).
또한, 다형-호중구 침윤의 미세해부학적 특징을 결정하기 위해 파라핀 차단 폐에서 5μm 두께의 섹션을 준비하고 hematoxy 및 eosin(H&E) 염색을 위해 순차적으로 처리하고 광학 현미경을 사용하여 실험하였다. E. coli K1에 감염된 폐조직의 조직학적 패턴은 폐에 침윤된 PMN과 함께 심각한 부종, 폐 울혈 및 폐포 출혈이 관찰되었다. R-Pro9-3D 전처리는 호중구 침윤을 유의하게 방지하는 것과 같이 E. coli K1에 의해 유도된 병리학적 특징을 효율적으로 복구하였다(도 8J).
상기와 같은 결과들을 통해 본 발명의 R-Pro9-3D가 카르바페넴 내성 패혈증 감염을 치료효과가 매우 우수한 펩타이드 항생제임을 입증하였다.
R-Pro9-3 peptide
서열번호 1
Arg Arg Trp Ile Ala Leu Trp Leu Arg
R-Pro9-3D peptide
서열번호 2
Arg Arg Trp Ile Ala Leu Trp Leu Arg
Pro9-3 peptide
서열번호 3
Arg Leu Trp Leu Ala Ile Trp Arg Arg
Pro9-3D peptide
서열번호 4
Arg Leu Trp Leu Ala Ile Trp Arg Arg

Claims (28)

  1. 서열번호 1의 아미노산 서열로 표시되는 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드.
  2. 제1항에 있어서,
    상기 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 항균 펩타이드인 것을 특징으로 하는, 펩타이드.
  3. 제1항에 있어서,
    상기 거울상 이성질체 펩타이드는 서열번호 1의 아미노산 서열이 모두 D형 아미노산으로 치환된 것을 특징으로 하는, 펩타이드.
  4. 제2항에 있어서,
    상기 균은 그람 음성 박테리아인 것을 특징으로 하는, 펩타이드.
  5. 제4항에 있어서,
    상기 그람 음성 박테리아는 MDR(multidrug-resistant) 그람 음성 박테리아인 것을 특징으로 하는, 펩타이드.
  6. 제4항에 있어서,
    상기 그람 음성 박테리아는 Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosaKlebsiella pneumonia으로 구성된 군에서 선택되는 하나 이상을 포함하는, 펩타이드.
  7. 제4항에 있어서,
    상기 MDR(multidrug-resistant) 그람 음성 박테리아는 카르바페넴(carbapenem) 내성인 것을 특징으로 하는, 펩타이드
  8. 제 1항에 있어서,
    상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 낮은 용혈활성과 포유류 세포에 대하여 낮은 독성을 갖는 것을 특징으로 하는, 펩타이드.
  9. 제1항에 있어서,
    상기 9량체 펩타이드 또는 이의 거울상 이성질체 펩타이드는 박테리아 세포막에 대한 투과성을 증가시켜 세포막을 손상시키는 것을 특징으로 하는, 펩타이드.
  10. 제 1항에 있어서,
    상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 그람음성균의 외막 구성성분으로 내독소로 작용하는 지질다당류(LPS)와 결합하여 지질다당류(LPS) 활성을 억제하는 것을 특징으로 하는, 펩타이드.
  11. 제 1항에 있어서,
    상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 박테리아의 바이오필름 형성을 억제하는 것을 특징으로 하는, 펩타이드.
  12. 제 1항에 있어서,
    상기 거울상 이상질체 펩타이드는 프로테아제에 대한 내성으로 단백질 분해 안정성을 가지는 것을 특징으로 하는, 펩타이드.
  13. 제 1항에 있어서,
    상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 LPS에 의한 염증을 억제하는 것을 특징으로 하는, 펩타이드.
  14. 제 1항에 있어서,
    상기 9량체 펩타이드 또는 이의 거울상 이상질체 펩타이드는 그람음성 패혈증 또는 패혈성 쇼크 치료용인 것을 특징으로 하는, 펩타이드.
  15. 청구항 제1항 내지 제14항의 펩타이드를 유효성분으로 포함하는, 항균용 조성물.
  16. 청구항 제1항 내지 제14항의 펩타이드를 유효성분으로 포함하는, 항염증용 조성물.
  17. 청구항 제1항 내지 제14항의 펩타이드를 유효성분으로 포함하는, 그람음성 박테리아 감염 질환 예방 또는 치료용 조성물.
  18. 제 17항에 있어서,
    상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 하는, 조성물.
  19. 청구항 제1항 내지 제14항의 펩타이드를 유효성분으로 포함하는, 포함하는 그람음성 박테리아 감염 질환 예방 또는 개선용 의약외품 조성물.
  20. 제19항에 있어서,
    상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 하는, 조성물.
  21. 청구항 제1항 내지 제14항의 펩타이드를 유효성분으로 포함하는, 포함하는 그람음성 박테리아 감염 질환 예방 또는 개선용 식품 조성물.
  22. 제21항에 있어서,
    상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 하는, 조성물.
  23. 청구항 제1항 내지 제14항의 펩타이드를 유효성분으로 포함하는 약학적 조성물을 그람음성 박테리아 감염 질환을 가지고 있는 환자에게 투여하는 단계;를 포함하는, 그람음성 박테리아 감염 질환의 예방 또는 치료 방법.
  24. 제23항에 있어서,
    상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 하는, 방법.
  25. 청구항 제1항 내지 제14항의 펩타이드의 그람음성 박테리아 감염 질환 예방 또는 치료를 위한 용도.
  26. 제25항에 있어서,
    상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 하는, 용도.
  27. 그람음성 박테리아 감염 질환 예방 또는 치료를 위한 약물의 제조를 위한 청구항 제1항 내지 제14항의 펩타이드의 용도.
  28. 제27항에 있어서,
    상기 그람 음성 박테리아 감염 질환은 그람음성 패혈증 또는 패혈성 쇼크인 것을 특징으로 하는, 용도.
PCT/KR2022/017267 2021-11-19 2022-11-04 그람음성균에 우수한 항균활성을 가지는 9량체 펩타이드 및 이의 거울상 이성질체 WO2023090721A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210160777 2021-11-19
KR10-2021-0160777 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090721A1 true WO2023090721A1 (ko) 2023-05-25

Family

ID=86397432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017267 WO2023090721A1 (ko) 2021-11-19 2022-11-04 그람음성균에 우수한 항균활성을 가지는 9량체 펩타이드 및 이의 거울상 이성질체

Country Status (2)

Country Link
KR (1) KR20230073943A (ko)
WO (1) WO2023090721A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052872A (ko) * 2008-11-11 2010-05-20 건국대학교 산학협력단 프로태티아마이신 항생펩타이드로부터 설계된 높은 박테리아 선택성을 가지는 항생펩타이드 유도체
KR20110139938A (ko) * 2010-06-24 2011-12-30 건국대학교 산학협력단 프로태티아마이신 항생펩타이드 유도체로부터 설계된 신규한 항균, 항진균 펩타이드 유도체 및 그 용도
KR20150040595A (ko) * 2013-10-07 2015-04-15 건국대학교 산학협력단 여드름균에 대한 저해 활성과 항염증 활성에 대한 프로태티아마이신 항생펩타이드 유도체의 거울상 이성질체 아미노산 잔기 및 그 용도
KR20190005064A (ko) * 2017-07-05 2019-01-15 바이오센서연구소 주식회사 여드름 치료제를 포함하는 이온토포레시스 약물 전달에 장착되는 장치, 그를 포함하는 이온토포레시스 약물 전달 장치 및 키트

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052872A (ko) * 2008-11-11 2010-05-20 건국대학교 산학협력단 프로태티아마이신 항생펩타이드로부터 설계된 높은 박테리아 선택성을 가지는 항생펩타이드 유도체
KR20110139938A (ko) * 2010-06-24 2011-12-30 건국대학교 산학협력단 프로태티아마이신 항생펩타이드 유도체로부터 설계된 신규한 항균, 항진균 펩타이드 유도체 및 그 용도
KR20150040595A (ko) * 2013-10-07 2015-04-15 건국대학교 산학협력단 여드름균에 대한 저해 활성과 항염증 활성에 대한 프로태티아마이신 항생펩타이드 유도체의 거울상 이성질체 아미노산 잔기 및 그 용도
KR20190005064A (ko) * 2017-07-05 2019-01-15 바이오센서연구소 주식회사 여드름 치료제를 포함하는 이온토포레시스 약물 전달에 장착되는 장치, 그를 포함하는 이온토포레시스 약물 전달 장치 및 키트

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARDOSO, M. H. ET AL.: "Peptides containing d-amino acids and retro-inverso peptides: General applications and special focus on antimicrobial peptides", PEPTIDE APPLICATIONS IN BIOMEDICINE, BIOTECHNOLOGY AND BIOENGINEERING, 2018, pages 131 - 155, XP009545555 *
KRISHNAN MANIGANDAN, CHOI JOONHYEOK, JANG AHJIN, YOON YOUNG KYUNG, KIM YANGMEE: "Antiseptic 9-Meric Peptide with Potency against Carbapenem-Resistant Acinetobacter baumannii Infection", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 22, no. 22, pages 12520, XP093067312, DOI: 10.3390/ijms222212520 *

Also Published As

Publication number Publication date
KR20230073943A (ko) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2020256387A1 (ko) Romo1 유래 항균 펩타이드 및 그 변이체
WO2018092955A1 (ko) 전복에서 유래한 항균 펩타이드 유사체 및 이를 포함하는 항균용 약학 조성물
US5994306A (en) Fine-tuned protegrins
US8440794B2 (en) Peptide sequences, their branched form and use thereof for antimicrobial applications
KR102224929B1 (ko) 해삼에서 분리한 항균 펩타이드로부터 유래한 신규 항균 펩타이드 및 이의 용도
WO2017048028A1 (ko) 마이시니딘 펩타이드로부터 유래한 신규 항균 펩타이드 및 이의 용도
US20200115426A1 (en) Cationic intrinsically disordered antimicrobial peptides
DK3087092T3 (en) ANTIMICROBIAL PEPTID AND APPLICATIONS THEREOF
König et al. Antimicrobial peptides and alytesin are co-secreted from the venom of the Midwife toad, Alytes maurus (Alytidae, Anura): Implications for the evolution of frog skin defensive secretions
WO2021235876A1 (ko) 신규한 폴리펩타이드, 융합 폴리펩타이드, 및 이를 포함하는 그람음성균에 대한 항생제
WO2023090721A1 (ko) 그람음성균에 우수한 항균활성을 가지는 9량체 펩타이드 및 이의 거울상 이성질체
US10723764B2 (en) Anti-microbial peptides and methods of use thereof
WO2024053836A1 (ko) 항생제 내성균에 대한 항균 활성을 가지는 항균 펩타이드 h103b 및 이의 용도
WO2015183002A2 (ko) 비단멍게 유래 항균 펩타이드의 신규한 유사체 및 그 용도
WO2023048411A1 (ko) 신규한 항균 펩타이드 및 이의 용도
WO2022085925A1 (ko) 디펜신 유래 10량체 펩타이드를 유효성분으로 포함하는 패혈증의 예방 또는 치료용 조성물
WO2020013527A1 (ko) 항균 활성, 용혈 안정성 및 혈청 내 안정성이 증진된 항균 펩타이드 유도체
KR20180000837A (ko) 태평양굴에서 유래한 항균 펩타이드 및 이의 용도
KR20140039449A (ko) 다제내성균에 높은 항균 효과를 보이는 프로태티아마이신 항균펩타이드 유도체 및 그 용도
US20060258596A1 (en) Antimicrobial agents
KR101865782B1 (ko) 바실러스 아밀로리퀴파시엔스 k14로부터 단리된 신규 항균 펩타이드 및 그의 용도
KR20220013612A (ko) Ps 펩타이드 유도체를 유효성분으로 포함하는 내독소혈증 또는 패혈증의 예방 또는 치료용 조성물
CN116406282A (zh) 具有针对多药耐药性病原体的抗微生物活性的肽实体
WO2021206397A1 (ko) 신규한 항균 펩타이드 또는 펩타이드 유사체 및 이의 용도
KR20110092501A (ko) 하이브리드 항균 펩타이드 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895928

Country of ref document: EP

Kind code of ref document: A1