WO2021206397A1 - 신규한 항균 펩타이드 또는 펩타이드 유사체 및 이의 용도 - Google Patents

신규한 항균 펩타이드 또는 펩타이드 유사체 및 이의 용도 Download PDF

Info

Publication number
WO2021206397A1
WO2021206397A1 PCT/KR2021/004232 KR2021004232W WO2021206397A1 WO 2021206397 A1 WO2021206397 A1 WO 2021206397A1 KR 2021004232 W KR2021004232 W KR 2021004232W WO 2021206397 A1 WO2021206397 A1 WO 2021206397A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
independently
ala
leu
peptides
Prior art date
Application number
PCT/KR2021/004232
Other languages
English (en)
French (fr)
Inventor
현순실
최윤화
추설아
박태우
유재훈
Original Assignee
(주) 캠프테라퓨틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 캠프테라퓨틱스 filed Critical (주) 캠프테라퓨틱스
Priority to EP21785260.7A priority Critical patent/EP4134092A1/en
Priority to US17/917,283 priority patent/US20230181678A1/en
Priority to CN202180039766.9A priority patent/CN115702160A/zh
Priority to JP2022561680A priority patent/JP2023521797A/ja
Publication of WO2021206397A1 publication Critical patent/WO2021206397A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a novel antibacterial peptide or peptide analog and its use for the treatment of bacterial infection or antibacterial use. Specifically, it has a structure in which an alpha-helical double-sided peptide composed of a hydrophobic amino acid and a hydrophilic amino acid is folded, and a fatty acid is bound to the N-terminus peptides or peptide analogs, to the use for the treatment of bacterial infections, in particular infections caused by gram-negative bacteria.
  • the outer membrane started with the LPS (Lipopolysaccharide) layer has both hydrophilicity and hydrophobicity by the LPS layer, so most low molecular weight drugs cannot freely pass through the membrane. It is known that most of the antibiotics that are good for Gram-positive bacteria but not Gram-negative bacteria do not pass through the outer membrane. Representative drugs include linezolid and cloxacillin.
  • antibacterial peptides can be suggested as a substitute for existing antibacterial agents. These are products of the immune system, and there are various types, and they can kill bacteria by destroying the biofilm. However, due to the membrane-breaking ability of these antibacterial peptides, not only the intended mycelial killing effect but also the toxicity to the host cell appears.
  • a membrane active peptide of KL-L9P (also referred to as “L9P”) consisting of a total of 14 amino acids of “KLLKLLKKPLKLLK” has been previously known (Korean Patent Registration No. 1811437). Since the membrane-breaking ability is proportional to the alpha helix, it was expected that the double-sided peptide having a bent proline structure would reduce its toxicity to the host cell. In fact, it was found that L9P developed in the above Korean patent is a membrane reorganization peptide with low toxicity to host cells and weak efficacy against E. coli.
  • the inventors of the present application have developed a peptide or peptide analog capable of enhancing the sensitization effect while reducing the toxicity of the host cell, and have completed the present invention by confirming the use thereof.
  • An object of the present invention is to provide a peptide or peptide analog having a structure in which an alpha-helical double-sided peptide composed of a hydrophobic amino acid and a hydrophilic amino acid is folded, and a fatty acid can be bound to the N-terminus.
  • the present invention is also intended to treat diseases particularly associated with infection of Gram-negative bacteria by using the peptides or peptide analogs.
  • the present invention provides a peptide or peptide analog represented by the formula (1):
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently a hydrophilic amino acid or a non-proteinogenic amino acid, provided that at least one of them is Ala or Ser can be,
  • X 3, X 4, X 6, X 7, X 11, X 13 or X 14 each independently a hydrophobic amino acid or a mixture thereof,
  • a C 6 to C 16 fatty acid may be bonded at any one position of X 1 to X 15,
  • X 1 is N-terminal and X 15 is C-terminal.
  • the present invention also relates to the peptide or peptide analog; And it provides a pharmaceutical composition for the treatment of bacterial infection or antibacterial comprising a drug.
  • the present invention also provides a conjugate in which a drug is linked to the peptide or peptide analog.
  • the novel peptide of the present invention can loosen the membrane by specifically acting only on the outer membrane of Gram-negative bacteria, thereby exhibiting an excellent sensitization effect to existing antibacterial agents.
  • Existing antibacterial agents did not pass through the membrane due to the rigidity of the outer membrane of Gram-negative bacteria and did not exhibit antibacterial activity against Gram-negative bacteria.
  • the outer membrane can be loosened. It shows antibacterial activity against Gram-negative bacteria by passing through the outer membrane of
  • the peptide of the present invention exhibits an excellent sensitivity effect even at a low concentration compared to the known sensitive antibacterial peptide (AMP), so that the sensitivity of the peptide can be maximized even at a low concentration. There is this.
  • AMP sensitive antibacterial peptide
  • the peptide of the present invention exhibits specific membrane activity of Gram-negative bacteria and has a property of binding to the LPS layer on the surface of the outer membrane of Gram-negative bacteria, so that it only stays in the outer membrane, and the outer or inner membrane of Gram-negative bacteria It shows the effect of not collapsing.
  • the peptide of the present invention can accurately screen whether it passes into the outer membrane of Gram-negative bacteria and acts as an antibacterial agent, it is also possible to search for a novel antibacterial agent using the peptide.
  • Figure 2 shows the amino acid sequence of the peptide and the sensitization effect of fusidic acid on their A. baumannii ATCC 17978.
  • Figure 4 is the amino acid sequence of the peptide; and three antibiotics (Novobiocin, Rifampicin, Fusidic acid) against their A. baumannii ATCC 17978.
  • 5 is a graph comparing the sensitization effect of the peptides of the present invention with L9P (CMP1107) or SPR741 for various types of rearranged antibacterial agents in E. coli ATCC 25922.
  • FIG. 6 shows the experimental results of MIC 50 , MIC 90 when used in combination with Rifampicin, Colistin, Clarithromycin, Tedizolid, Linezolid alone and CMP1401 in A. baumannii clinical strain.
  • FIG. 9 is a graph showing four Gram-negative strains E.c. ATCC 25922, A. b. ATCC 17978, K.p. ATCC 700603, P.a.
  • the indicated numbers mean the reduced MIC values of Rifampicin at a peptide concentration of 4 ug/ml (see table below).
  • FIG. 10 shows three Gram-negative strains E.c. ATCC 25922, P.a. ATCC 27853 and K.p.
  • a graph comparing the sensitization effects of L9P (CMP1107), CMP1401, and CMP1709 to Colistin in KPC (CRE) is shown.
  • the indicated numbers mean the reduced MIC value of Colistin at a peptide concentration of 4 ug/ml (see table below).
  • 11 is E. coli , K. pneumoniae , P. aeruginosa , E. cloacae , C. freundii , S. marcescens
  • MIC 50 When used in combination with Rifampicin alone and CMP1709 in clinical strains, MIC 50 , MIC 90 test results are shown.
  • 12 shows the results of enzyme assay for L9P (CMP1107), CMP1401, and CMP1407.
  • the strain used for the outer membrane was E. coli NDM-1, and CENTA was used as the enzyme substrate.
  • the strain used for the inner membrane was E. coli ATCC 25922, and ONPG was used as the enzyme substrate.
  • FIG. 13 shows the results of a hemolysis assay for hRBCs of the peptides of the present invention.
  • (a) The graphs except for MELITTIN and CMP1407 have very low hemolytic activity, so the graphs are almost overlapped.
  • Each graph shows CMP1203, CMP1401, and CMP1407 from the top based on data of 256 uM.
  • Each graph represents Colistin, CMP1709, CMP1401, and CMP1501 from the top with data of 64 uM as reference.
  • FIG. 15 shows in vivo data in a mouse animal model for CMP1401.
  • (a) and (b) show the effect of co-administration of Rifampicin and CMP1401 peptide in the immunosuppressed mouse A. baumannii 801 pneumonia infection survival model.
  • (c) shows the effect of co-administration of Rifampicin and CMP1401 peptide in the immunosuppressed mouse A. baumannii ATCC 17978 thigh infection model.
  • 17 is an immunosuppressed mouse E. coli. It shows the effect of co-administration of Rifampicin and CMP1709 peptide in the NDM- 1 thigh infection model.
  • Hdf means that five kinds of hydrophobic amino acids Ala, Ile, Leu, Phe, and Val are inserted at the same ratio.
  • the present invention relates to a peptide or peptide analog represented by Formula 1:
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently a hydrophilic amino acid or a non-proteinogenic amino acid, provided that at least one of them is Ala or Ser can be,
  • X 3, X 4, X 6, X 7, X 11, X 13 or X 14 each independently a hydrophobic amino acid or a mixture thereof,
  • a C 6 to C 16 fatty acid may be bonded at any one position of X 1 to X 15,
  • X 1 is N-terminal and X 15 is C-terminal.
  • the C 6 to C 16 fatty acid may be, for example, hexanoic acid, heptanoic acid, octanoic acid, decanoic acid, or lauric acid, but is not limited thereto.
  • the peptide or peptide analog of the present invention has a structure in which an alpha-helical double-sided peptide composed of a hydrophobic amino acid and a hydrophilic amino acid is folded, and a fatty acid can be bound to the N-terminus.
  • folded may be used in the same sense with “folded, bent, bent, or broken” in the specification, and the “folded” structure is a hydrophobic amino acid of an alpha-helical double-sided peptide composed of a hydrophobic amino acid and a hydrophilic amino acid.
  • the structure may be partially substituted, and the alpha-helix may be bent around the amino acid substitution portion in the alpha-helical double-sided peptide.
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently a hydrophilic amino acid, non-proteinogenic amino acids, Ala or Ser.
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently a hydrophilic amino acid selected from Lys, Arg, His, and derivatives thereof or 2,3- diaminopropionic acid (Dap), 2,4-diaminobutanoic acid (Dab), or ornithine (Orn), provided that at least one of these can be Ala or Ser;
  • X 3 , X 4 , X 6 , X 7 , X 11 , X 13 and X 14 are each independently a hydrophobic amino acid or Hdf selected from Leu, Ala, Ile, Phe, Val, Trp, or Tyr, wherein Hdf is It may be a mixture of amino acids comprising Leu, Ala, Val, Ile, and Phe in equal amounts.
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently a hydrophilic amino acid selected from Lys, Arg, His, and derivatives thereof or 2,3- diaminopropionic acid (Dap), 2,4-diaminobutanoic acid (Dab), ornithine (Orn), Ala or Ser;
  • X 3 , X 4 , X 6 , X 7 , X 11 , X 13 and X 14 are each independently a hydrophobic amino acid or Hdf selected from Leu, Ala, Ile, Phe, Val, Trp, or Tyr, wherein Hdf is It may be a mixture of amino acids comprising Leu, Ala, Val, Ile, and Phe in equal amounts.
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently Lys, Ala, Ser, or 2,4-diaminobutanoic acid (Dab)yl can
  • X 3 , X 4 , X 6 , and X 7 can each independently be Leu, Ala, Val, Ile, Phe, or Hdf.
  • X 11 , X 13 , and X 14 can each independently be Leu or Ala.
  • a C 6 to C 12 fatty acid may be bonded at the position of X 1 .
  • Korean Patent Registration No. 1811437 discloses a sensitive peptide that enhances the sensitivity effect of existing drugs against Gram-negative bacteria and the like.
  • the peptide alone disclosed herein is not sufficient for the sensitization effect and the toxicity reduction effect
  • the present inventors tried to provide a novel peptide or peptide analog most optimized in antibacterial agent combination therapy as a strategy to reduce the toxicity of the peptide and enhance the sensitization effect at the same time. .
  • peptide is an amino acid polymer, and may include not only natural amino acids but also non-proteinaceous amino acids as components.
  • the present invention also includes "peptide analogs".
  • the peptide analogs may include analogs substituted with one or more other functional groups relative to the side chain of an amino acid or an alpha-amino acid backbone.
  • side-chain or backbone-modified peptide analogs include, but are not limited to, hydroxyproline in which the pyrrolidine ring is substituted with a hydroxyl group, or an N-methyl glycine “peptoid”. Types of peptide analogs are known in the art.
  • a “peptide” or “peptide analog” is also referred to herein as a “peptide”.
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently Lys, and X 3 , X 4 , X 6 , X 7 , X 11 , X 13 and X 14 may each independently be Leu (Formula 1b).
  • a representative peptide included in the general formula of the peptide (Formula 1b) may be composed of the amino acid sequence of SEQ ID NO: 1. Compared with the known KL-L9P peptide, the degree of interaction of these peptides with the phospholipid layer of Gram-negative bacteria of various spectrums, including E. coli, is enhanced.
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently Lys or Ala
  • X 3 , X 4 , X 6 , X 7 , X 11 , X 13 and X 14 are each independently Leu, Ala or Val, with the proviso that at least one of X 1 to X 15 except for X 10 may be Ala or Val (Formula 1c) ).
  • Representative peptides included in the general formula (Chemical Formula 1c) of these peptides may consist of the amino acid sequence of any one of SEQ ID NOs: 2 to 17 and 61.
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently Lys, X 3 , X 7 , and X 11 is each independently Leu, Ala, or Val, and X 4 , X 6 , X 13 , and X 14 are Each independently is Leu, and may be one in which a C6 to C12 fatty acid is bonded at the position of X 1 (Formula 1d).
  • Representative peptides included in the general formula (Formula 1d) of these peptides may consist of any one amino acid sequence of SEQ ID NOs: 18 to 26 and 62 to 63.
  • the PK of the peptide can be increased by increasing the binding ability with the protein present in plasma or blood, and the sensitivity can be improved at the same time.
  • localization is possible at several positions, but preferably at the N-terminus.
  • the length of the fatty acid may vary from C6 to C16, but it may preferably be from C6 to C12. In particular, in the case of C6 to C8, the change in sensitization activity is the greatest, and the peptide toxicity according to localization measured by hemolysis is almost does not increase
  • X 1 , X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently Dab
  • X 3 , X 4 , X 6 , and X 7 are each independently Leu, Ala, Ile, Phe, Val, or Hdf
  • at least two of X 3 , X 4 , X 6 , and X 7 are each independently Ala, Ile, Phe, Val, or Hdf
  • X 11 , X 13 , and X 14 are Each independently is Leu, and may be one in which a C8 or C12 fatty acid is bonded at the position of X 1 (Formula 1e).
  • Representative peptides included in the general formula (Formula 1e) of these peptides may consist of any one amino acid sequence of SEQ ID NOs: 27 to 48 and 64 to 66.
  • Formula 1e has diversity in hydrophilic and hydrophobic surfaces.
  • Orn ornithine
  • Dab diaminobutyric acid
  • Dap diaminopropionic acid
  • the membrane reorganization effect can be preserved or enhanced, and in the case of Dab, especially P It can enhance the sensitization effect on aeruginosa.
  • Dab when Dab is included, it is possible to reduce toxicity by reducing hemolytic activity that may occur due to localization.
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently Dab
  • X 3 , X 4 , X 6 , and X 7 are each independently Leu, Ala, Phe, or Val
  • at least three of X 3 , X 4 , X 6 , and X 7 are each independently Ala, Phe, or Val
  • X 11 , X 13 , and X 14 are Each independently is Leu, and may be one in which a C8 fatty acid is bonded at the position of X 1 (Formula 1f).
  • a representative peptide included in the general formula (Formula 1f) of this peptide may be composed of any one of the amino acid sequences of SEQ ID NOs: 49 to 52.
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently Dab or Ser, wherein X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently Ser, X 3 and X 7 are each independently Ala, and X 4 and X 6 are each independently Leu, Phe or Val, and X 11 , X 13 , and X 14 are Each independently is Leu, and may be one in which a C8 fatty acid is bonded at the position of X 1 (Formula 1g).
  • a representative peptide included in the general formula of the peptide (Formula 1g) may consist of any one amino acid sequence of SEQ ID NOs: 53 to 60 and 67.
  • X 1 , X 2 , X 5 , X 8 , X 9 , X 12 , and X 15 are each independently Lys, Ala, Ser, or Dab, and X 3 , X 4 , X 6 , and X 7 are each independently Leu, Ala, Val, Ile, Phe, or Hdf, X 10 is Pro, and X 11 , X 13 , and X 14 are each independently Leu or Ala, and may be one to which a C 6 to C 12 fatty acid may be bonded at the position of X 1 .
  • it may be a peptide or a peptide analog, characterized in that it comprises the amino acid sequence of any one of SEQ ID NOs: 1 to 67.
  • the peptide or peptide analog of the present invention may exhibit any one of the following characteristics.
  • the peptide according to the present invention can be prepared according to a conventionally known method, for example, a solid-phase peptide synthesis method. This manufacturing method further forms an embodiment of the present invention.
  • the peptides or peptide analogs of the present invention can be used for antibacterial applications such as treatment of bacterial infections.
  • the present invention provides a method of preventing, ameliorating or treating a bacterial infection comprising administering to a subject an effective amount of a peptide or peptide analog.
  • a method of preventing, ameliorating or treating a bacterial infection comprising administering to a subject an effective amount of a peptide or peptide analog.
  • the phrase “preventing, ameliorating or treating a bacterial infection” may be used interchangeably with “antimicrobial”.
  • the present invention provides the use of said peptide or peptide analog for the prevention, amelioration or treatment of a bacterial infection.
  • the present invention provides a pharmaceutical composition for preventing, ameliorating or treating a bacterial infection, comprising the peptide or peptide analog.
  • Non-human animals include all vertebrates, such as mammals and non-mammals, such as non-human primates, sheep, dogs, cats, cattle, horses, chickens, amphibians and reptiles, for example, For example, mammals such as non-human primates, sheep, dogs, cats, cattle and horses are preferred. Preferred subjects are humans in need of prevention or treatment of cancer.
  • the bacterial infection may be, preferably, a Gram-negative bacterial infection.
  • the peptide or peptide analog of the present invention can be used to exhibit antibacterial activity against Gram-negative bacteria.
  • the Gram-negative bacteria means pathogenic microorganisms or resistant bacteria, preferably pathogenic microorganisms or resistant bacteria of Gram-negative bacteria.
  • Examples of Gram-negative bacteria include E. coli , Acinetobacter baumannii ), Klebsiella pneumoniae pneumoniae ), Pseudomonas aeruginosa , Enterobacter cloase ( Enterobacter cloacae ), Citrobacter freundii , Serratia marcescens ( Serratia ) marcescens ), etc. including but not limited to.
  • the peptides of the invention are used in combination with another drug.
  • the present invention relates to the peptide or peptide analog; And it provides a pharmaceutical composition or antibacterial pharmaceutical composition for preventing, improving or treating a bacterial infection, including a drug.
  • the peptide or peptide analog; and the drug may be administered simultaneously as one formulation, or may be administered simultaneously or sequentially as separate formulations.
  • the peptides or peptide analogs of the present invention are used together with other drugs, they may be administered separately or applied in the form of a combination product in which a plurality of active ingredients are present in one pharmaceutical formulation.
  • the two agents may be administered sequentially or simultaneously.
  • time lags may be provided, such as in a period of not longer than 12 hours, or administration to the patient within a period of not more than 6 hours.
  • the present invention provides a method of preventing, ameliorating or treating a bacterial infection comprising administering an effective amount of a peptide or peptide analog in combination with a drug.
  • the above embodiment includes administering the peptides together with other drugs in one composition and simultaneously administering them, as well as administering a composition containing each of them separately to a patient in need thereof simultaneously or sequentially.
  • the present invention provides the use of said peptide or peptide analog in combination with a medicament for the prevention, amelioration or treatment of a bacterial infection.
  • the drug may be conventionally used as an antibacterial agent for Gram-positive bacteria, a drug approved for other purposes in the US FDA, etc. but not approved as an antibacterial agent, or a drug used for Gram-negative bacteria.
  • the Gram-positive antibacterial antibiotic may be, for example, Rifampicin, Rifabutin, Rifamixin, Rifapentine, Tedizolid, Linezolid, Clarithromycin, Telithromycin, Radoremulin, Mupirocin, Erythromycin, Fusidic acid, or Novobiocin, but is not limited thereto.
  • the Gram-negative antibiotic may be Colistin, Azetreonam, Azithromycin, Ceftazidime, Ciprofloxacin, Chloramphenicol, Gentamycin, Trimethoprim, Nalidixic acid, or Levofloxacin, but is not limited thereto.
  • the drugs that can be used together with the peptide of the present invention include, for example, erythromycin, novobiocin, fusidic acid, rifampicin, rifamixin. ), Chloroxine, Gatifloxacin, Rodefloxacin, Rifabutin, Rifapentine, Daptomycin, Nisin, Tigecycline , Aztreonam, Ceftazidime, Nitrofuratoin, Chloramphenicol, Fidaxomicin, Radoremulin, Cefepime, Mesilinam (Mecillinam), Meropenem (Meropenem), Vancomycin (Vancomycin), Clarithromycin (Clarithromycin), Fosfomycin (Fosfomycin), Ramoplanin (Ramoplanin), Ciprofloxacin (Ciprofloxacin), Gentamycin (Gentamycin), Tobramycin (Tobramycin), linezolid, teli
  • prevention refers to any action that suppresses or delays the onset of an infectious disease caused by the pathogenic microorganism or resistant bacteria by administration of the composition
  • treatment means any action of inhibiting or delaying the onset of the pathogenic microorganism or resistant bacteria by administration of the composition. It can refer to any action that improves or beneficially changes symptoms caused by an infectious disease.
  • the composition may further include a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier is a liquid or solid filler, diluent, excipient involved in the transport or transport of any subject composition or ingredient from one organ, or part of the body to another organ, or part of the body.
  • pharmaceutically acceptable material, composition or vehicle such as a solvent or encapsulating material
  • the composition of the present invention may further include a pharmaceutically acceptable carrier, excipient or diluent in addition to the active ingredients described above for administration. .
  • the carrier, excipient and diluent include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil.
  • composition of the present invention can be formulated and used in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, or sterile injection solutions, respectively, according to conventional methods.
  • oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, or sterile injection solutions, respectively, according to conventional methods. have.
  • it can be prepared using a diluent or excipient such as a filler, an extender, a binder, a wetting agent, a disintegrant, a surfactant, etc. commonly used when formulating.
  • Solid preparations for oral administration include, but are not limited to, tablets, pills, powders, granules, capsules, and the like.
  • Such a solid preparation may be prepared by mixing at least one or more excipients, for example, starch, calcium carbonate, sucrose, lactose, gelatin, and the like.
  • excipients for example, starch, calcium carbonate, sucrose, lactose, gelatin, and the like.
  • lubricants such as magnesium stearate and talc may also be used.
  • Liquid preparations for oral use include, but are not limited to, suspensions, solutions, emulsions, syrups, etc., and various excipients, such as wetting agents, sweeteners, fragrances, in addition to commonly used simple diluents such as water and liquid paraffin, It may be prepared by adding a preservative or the like.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized formulations and suppositories.
  • Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate.
  • Witepsol, Macrogol, Tween 61, cacao butter, laurin, glycerogelatin, etc. may be used as the base of the suppository.
  • composition according to the present invention may be administered orally or parenterally (eg, intravenously, subcutaneously, intraperitoneally or topically) according to a desired method, and the dosage may vary depending on the condition and weight of the patient, and the degree of disease. , depending on the drug form, administration route and period, but may be appropriately selected by those skilled in the art. It can be administered once or several times a day as needed, and can be used alone or in combination with methods using surgery, hormone therapy, drug treatment and biological response modifiers for prevention or treatment of pathogenic bacteria and resistant bacteria. can
  • the combined administration may be used interchangeably with the concurrent administration, and the combined administration form may include a form in which a peptide or a peptide analog and another compound are administered simultaneously or separately.
  • the combined administration form may include a form in which a peptide or a peptide analog and another compound are administered simultaneously or separately.
  • at least one selected from the group consisting of a hydrophobic compound having a logP (partition coefficient) value of 0.19 or more, a cationically charged compound under physiological pH conditions, and colistin, and the peptide or peptide analog according to the present invention may be administered in combination.
  • the hydrophobic compound having the lopP (partition coefficient) value of 0.19 or more may be, for example, closacillin, linezolid, resveratrol, curcumin, quercetin, simvastatin, lovastatin, mevastatin catekene, or thymol, but is limited thereto. it's not going to be
  • the cationically charged compound at the physiological pH conditions may be, for example, erythromycin, rifampicin, colistin, polymyxin-B, or nicotine, but is not limited thereto.
  • the anionically charged compound under the physiological pH conditions may be, for example, ibuprofen, atorvastatin, fulvastatin, pravastatin, caprofen, trans-ferulic acid, or bromfenac, etc.
  • the present invention is not limited thereto.
  • a synergistic effect e.g., an effect derived from a plurality of peptides or peptide analogs or compounds to be administered in combination, through co-administration with a peptide or peptide analog according to the present invention is administered at a much lower concentration than when simply added.
  • the compound exhibiting an antibacterial effect may be, for example, linezolid, erythromycin, ibuprofen, simvastatin, curcumin, or resveratrol.
  • the present invention relates to a peptide or peptide analog and a conjugate in which a drug is linked to the peptide or peptide analog.
  • the drug may be a hydrophobic compound having a partition coefficient (lopP) value of 0.19 or more, a cationically charged compound under physiological pH conditions, and colistin.
  • lopP partition coefficient
  • the peptide or peptide analog and the drug may be linked, for example, through a non-covalent bond or a covalent bond.
  • the non-covalent bond may be, for example, at least one selected from the group consisting of a hydrogen bond, an electrostatic interaction, a hydrophobic interaction, a van der Waals interaction, a pi-pi interaction, and a cation-pi interaction.
  • the covalent bond may be a degradable or non-degradable bond
  • the degradable bond may be a disulfide bond, an acid-degradable bond, an ester bond, an anhydride bond, a biodegradable bond, or an enzymatically degradable bond
  • the non-cleavable bond is an amide bond or It may be a phosphate bond, but is not limited thereto.
  • Peptides of SEQ ID NOs: 1 to 67 were synthesized using a solid-phase peptide synthesis method.
  • Peptides were separated from the resin using a cleavage cocktail for 2 h at room temperature (using 950 ⁇ L of Trifluoroacetic Acid, 25 ⁇ L of Triisopropylsilane and 25 ⁇ L of water).
  • Table 2 shows the sequences of these peptides and the theoretical and measured values of MALDI TOF Mass.
  • CMP1524 to CMP1543 corresponding to the deconvolution library displayed the mass value as a range.
  • HDf equal amount of five hydrophobic amino acids A, F, I, L and V
  • Acinetobacter baumannii is a gram-negative bacterium classified as an opportunistic bacterium as it has broad-spectrum antimicrobial resistance and can survive for a long time even in a low-humidity environment. Compared with the MIC of each antibiotic when each gram-positive antibiotic was used alone, the fold reduction of MIC of each antibiotic when used together with each peptide was measured.
  • the MIC value was calculated by measuring the absorbance at 600 nm using an EPOCH2 microplate reader (BioTek, Winooski, USA). The MIC value was defined as the concentration of antibiotic or peptide that inhibited bacterial growth lower than 10% growth of the positive control group. Fold reduction was calculated using the following equation.
  • both CMP1203 and CMP1301 to CMP1314 reduced the amount of Erythromycin used by two or more ( FIG. 1B ).
  • leucine was substituted with alanine with a lower hydrophobicity compared to CMP1203 (CMP1303, CMP1304, CMP1307, CMP1310, CMP1312, CMP1313)
  • CMP1303 and CMP1307 showed an 8-fold higher sensitization effect.
  • Example 1 it was attempted to confirm the sensitization effect of each peptide at a concentration of 0.31 uM.
  • CMP1303, CMP1307, CMP1310, CMP1315 and CMP1317 were selected as peptides.
  • the peptides CMP1301 and CMP1307 had excellent sensitivity to Erythromycin and Novobiocin antibacterial agents in A. baumannii ATCC 17978. wanted to check.
  • Example 2 The same MIC assay method as in Example 1 was used except that the peptide concentration was 0.31 ⁇ M. The results are shown in FIG. 2 .
  • the sensitization effect when used together with the three antibacterial agents Novobiocin, Rifampicin, or Fusidic acid was observed by using a peptide in which the N-terminus of the peptide was localized with Hexanoic acid (HexA).
  • Hexanoic acid Hexanoic acid
  • Example 3 While having the same amino acid sequence as the peptide CMP1406, which was confirmed to exhibit an excellent sensitization effect at a low concentration in Example 3, the sensitizing effect on the peptide localized with fatty acids of various lengths at the N-terminus was observed.
  • the same MIC assay method as in Example 3 was used. The results are shown in FIG. 4 .
  • Example 5 Comparison of the sensitizing effect of a known sensitive peptide and CMP1401 or CMP1501 (MIC assay)
  • SPR741 is a previously known polymyxin B (PMB) analog, a sensitive AMP, and it is a drug that has been confirmed to be effective against Gram-negative bacteria when used together with the existing Gram-positive bacteria antibiotics through preclinical experiments.
  • PMB polymyxin B
  • the peptide CMP1401 of the present invention exhibited a very excellent sensitizing effect compared to the conventionally known peptide L9P (FIG. 5a). Furthermore, even compared with SPR741, it was confirmed that the peptide CMP1401 or CMP1501 of the present invention exhibited almost the same or much superior sensitization effect ( FIGS. 5b and 5c ). In particular, it was confirmed that even if the concentration was reduced by half compared to SRP741, the effect was equal to or superior to that of SRP741 (FIG. 5c).
  • the MIC 50 and MIC 90 values were obtained when Rifampicin, Colistin, Clarithromycin, Tedizolid, or Linezolid was used alone and when used in combination with CMP1401 4 ug/ml. 100 clinical strains of A. baumannii were used for each antimicrobial group, and 50 strains each of Carbapenem-resistant strains and susceptible strains were selected.
  • the peptide CMP1401 of the present invention exhibited a sensitization effect of at least 4 times, and at most 128 times, compared to the use of an antibacterial agent alone.
  • Example 7 sensitization effect of peptides of CMP1501, CMP1601 to CMP1604 (MIC assay)
  • CMP1501, CMP1601 to CMP1604 showed excellent sensitization effect even at a low concentration of 0.5 ug/ml.
  • Example 9 Comparison of the sensitizing effect of a known sensitizing peptide and CMP1401 or CMP1709 (MIC assay)
  • the peptide CMP1401 or CMP1709 of the present invention exhibited a very excellent sensitizing effect compared to the conventionally known peptide L9P.
  • Example 10 Sensitization effect of CMP1709 in clinical strains (MIC 50 and MIC 90 )
  • E. coli , K. pneumoniae , P. aeruginosa , E. cloacae , C. freundii , and S. marcescens when Rifampicin or Colistin was used alone or in combination with CMP1709 4 ug/ml MIC 50 and MIC 90 values were obtained.
  • E. coli , K. pneumoniae , E. cloacae , C. freundii , S. marcescens clinical strains were all selected from Carbapenem-resistant strains, and P. aeruginosa
  • 43 strains of Imipenem, Meropenem-resistant strains, and 60 susceptible strains were selected.
  • FIG. 11 The results are shown in FIG. 11 (results not described for Colistin).
  • "Fold reduction of MIC90" in FIG. 11 indicates the value of MIC90 when using CMP1709 compared to MIC90 when using only the antibacterial agent. From this, it can be seen that the peptide CMP1709 of the present invention exhibited a sensitivity effect of at least 2 times or more, 1024 times higher than that of the antibacterial agent alone. Even in the case of using Colistin, E.Coli strains and E.Cloacae strains exhibited a two-fold sensitization effect (results not shown in FIG. 11 ).
  • the activity of ⁇ -lactamases released from the outer membrane was evaluated.
  • New Delhi metallo- ⁇ -lactamase-1 (NDm-1) producing E. coli cells were washed three times with DPBS and suspended in the same buffer. Cells were diluted to an OD600 of 0.2 and treated with a peptide concentration of 0.63 or 1.30 uM at 37 °C for 1 h. After centrifugation, the supernatant was incubated with 200 ⁇ M CENTATM ⁇ -lactamase substrate at 37° C. for 1 hour. The optical density was measured by measuring the absorbance of the enzyme reaction product at 405 nm using a microplate reader (Molecular Devices Co., Menlo Park, CA).
  • the release of the cytoplasmic enzyme ⁇ -galactosidase was evaluated to determine intimal leakage.
  • ONPG O-nitrophenyl- ⁇ -D-galactopyranoside
  • the absorbance of the enzyme reaction product was measured at 420 nm.
  • Other procedures were carried out in the same manner as in the outer membrane destruction experiment.
  • the results are shown in FIG. 12 .
  • the y-axis is the absorbance measured at 405 nm, and the higher the release of ⁇ -lactamases due to the breakdown of the film, the higher the absorbance.
  • hRBC human red blood cells
  • hRBC human red blood cells
  • Hemolytic activity (%) (absorbance of sample - absorbance in PBS) / (absorbance in 100% DW - A405 in PBS) X 100
  • the toxicity of the peptide was confirmed by measuring the viability of the host cell through WST-1 analysis of the host cell HeLa cell or HK-2 cell.
  • HeLa cells were cultured in DMEM and HK-2 in RPMI at 37 °C and 5% CO 2 conditions. After culturing each cell in a cell culture plate, the cells were removed with Trypsin, and 1x10 4 and 7x10 3 cells were seeded per well in a 96-well plate, respectively. After 24 hours, the peptide diluted with 2-fold dilution was added to the media, and incubated for 24 hours at 37 °C, 5% CO 2 condition. 10 uL of WST-1 reagent was added per well and reacted for 30 minutes at 37 °C and 5% CO 2 conditions, and then UV absorbance was measured at 450/700 nm with a 96-well plate reader.
  • Example 14 In vivo efficacy analysis of the combination therapy of Rifampicin and CMP1401 (in vivo test of CMP1401)
  • a mouse model was used to analyze the in vivo efficacy of the peptides CMP1401 and Rifampicin (Rif) alone and in combination therapy.
  • mice To induce neutropenic in 6-week-old female ICR (CD-1) mice weighing 23 to 27 g (Seongnam Orient Bio, Korea), 150 mg/kg and 100 mg/kg and 100 mg/kg, respectively, 4 and 1 days before pneumonia infection, respectively. kg of cyclophosphamide (CP) was treated (subcutaneously).
  • CP cyclophosphamide
  • For the mouse model for survival analysis 1 x 10 8 CFU A.
  • colony counting was 1 x 10 6 CFU A. baumannii infections to 801 intranasally.
  • Rifampicin was used dissolved in a carrier (10% TWEEN80, 5% DMSO and 85% saline). Rifampicin was administered by subcutaneous injection twice daily for 2 days (2.5 mg/kg BID). The sensitive peptide CMP1401 of the present invention was administered by intraperitoneal injection 4 times daily for 2 days (25 mg/kg QID). Six mice were used in each group. The Mantel-Cox test was used to determine the p-value of the combined administration group and the rifampicin single administration group.
  • the survival rate in the Rifampicin 2.5 mg/kg alone treatment group was about 16.7%
  • the survival rate in the group administered with 2.5 mg/kg Rifampicin and 25 mg/kg peptide CMP1401 in combination was 50 %, which was about 33.3% higher than that of the Rifampicin alone group.
  • Peptide CMP1401 alone administration group did not show any antibacterial activity because all mice died.
  • the number of colonies in the group administered with Rifampicin 2.5 mg/kg and the peptide CMP1401 25 mg/kg was about 12 times lower than that of the group administered with Rifampicin 2.5 mg/kg alone.
  • the combined administration group of Rifampicin and CMP1401 showed about 60 times fewer colonies than the untreated group (control).
  • the combined administration group of Rifampicin and CMP1401 showed 30 times fewer colonies than the group administered with Rifampicin and SPR741.
  • mice weighing 23-27 g (Seongnam Orient Bio, Korea), 150 mg/kg and 100 mg/kg and 100 mg/kg, respectively, 5 and 2 days before thigh infection, respectively. kg of cyclophosphamide (CP) was treated (subcutaneously).
  • A. baumannii ATCC 17978 was harvested, washed and suspended in sterile saline. Mice were anesthetized and infected with 1 ⁇ 10 5 CFU A. baumannii ATCC 17978 in the right and left thighs.
  • Rifampicin 20 mg/kg was administered by subcutaneous injection 1 and 5 hours after infection.
  • the sensitive peptide CMP1401 was administered by intraperitoneal injection 1, 3, 5 and 7 hours post infection. Mice were euthanized 9 hours after bacterial injection and both thighs were harvested and suspended in sterile saline. Thighs were homogenized and serially diluted with sterile saline. Homogenized thighs were applied to Trypticsoy agar plates, and incubated overnight at 37°C, and colonies were counted. The two-sided Man Whiteny U- test was used to determine the p value of the combination-administered group and the rifampicin-only group. (*: p ⁇ 0.05)
  • Fig. 15c The results are shown in Fig. 15c.
  • the combination therapy of Rifampicin and the peptide CMP1401 showed excellent therapeutic efficacy.
  • the peptide CMP1401 was administered at 100 mg/kg in the presence of Rifampicin 20 mg/kg, the colony number was reduced 14-fold compared to Rifampicin alone administration.
  • a change in the number of colonies was observed when the dose of the peptide CMP1401 was changed in the co-administered group in the presence of Rifampicin at 20 mg/kg.
  • No change in colony number was observed when the peptide CMP1401 was administered alone at 50 mg/kg, indicating that the peptide CMP1401 enhances the antibacterial ability of Rifampicin rather than its own antibacterial activity.
  • Example 15 In vivo efficacy analysis of Rifampicin or Colistin and CMP1401 combination therapy (in vivo test of CMP1401)
  • immunosuppression Rat A. baumannii The purpose of this study was to confirm the effect of co-administration with Rifampicin or Colistin in the 801 pneumonia infection model.
  • Example 14.1 the colony counting test method was used, but three SD mal Rat were used in each group instead of mice, and after infection with A. baumannii 801, subcutaneous injection of Colistin or Rifampicin and intravenous injection of CMP1401 for 1 hour Administered by infusion. The results are shown in FIG. 16 .
  • Colistin 32 mg/kg is known as the clinical dose used for the treatment of A. baumannii 801. Therefore, the effect confirmed when Colistin 32 mg/kg is used alone can be a criterion for comparing the effectiveness of the combined administration of CMP1401 and antibacterial agents in this example.
  • Example 16 In vivo efficacy analysis of the combination therapy of Rifampicin and CMP1709 (in vivo test of CMP1709)
  • Neutropenic mouse thigh mouse model (immunosuppressive mouse E. coli NDM- 1 thigh infection model) was used to analyze the in vivo efficacy of peptides CMP1401 and Rifampicin (Rif) alone and in combination therapy. The experiment was carried out in the same manner as in Example 14.2.
  • E. coli In a neutropenic mouse thigh model infected with NDM- 1 , the combination therapy of Rifampicin and the peptide CMP1709 showed excellent therapeutic efficacy.
  • the peptide CMP1709 was administered at 75 mg/kg in the presence of Rifampicin 20 mg/kg, the colony number was reduced 8.7-fold compared to Rifampicin alone administration.
  • a change in the number of colonies was observed when the dose of the peptide CMP1709 was changed in the co-administered group in the presence of 20 mg/kg of Rifampicin. No change in colony number was observed when the peptide CMP1709 was administered alone, indicating that the peptide CMP1709 enhances the antibacterial ability of Rifampicin rather than its own antibacterial activity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 신규한 항균 펩타이드 또는 펩타이드 유사체 및 이의 박테리아감염 치료 용도에 관한 것으로, 구체적으로, 소수성 아미노산 및 친수성 아미노산으로 구성된 알파나선형 양면성 펩타이드가 꺾인 구조를 가지고, N-말단에 지방산이 결합된 펩타이드 또는 펩타이드 유사체, 박테리아 감염, 특히 그람-음성균에 의한 감염의 치료 용도에 관한 것이다.

Description

신규한 항균 펩타이드 또는 펩타이드 유사체 및 이의 용도
본 발명은 신규한 항균 펩타이드 또는 펩타이드 유사체 및 이의 박테리아 감염 치료 용도 또는 항균 용도에 관한 것으로, 구체적으로, 소수성 아미노산 및 친수성 아미노산으로 구성된 알파나선형 양면성 펩타이드가 꺾인 구조를 가지고, N-말단에 지방산이 결합된 펩타이드 또는 펩타이드 유사체, 박테리아 감염, 특히 그람-음성균에 의한 감염의 치료 용도에 관한 것이다.
그람-양성균에 대한 치료제는 상당히 다수 존재하는데 반하여, 그람-음성균에 대한 치료제는 없는 상황이다. 이는 항생제의 후보물질이 그람-음성균이 구축한 외막을 통과하지 못하기 때문으로 알려져 있다.
그람-음성균에서 LPS (Lipopolysaccharide) 층으로 시작된 외막은 LPS층에 의해 친수성 및 소수성을 모두 보유하고 있으므로 대부분의 저분자 약물들은 막을 자유자재로 통과할 수 없다. 그람-양성균에 잘 들으면서도 그람-음성균에 듣지 않는 항생제의 대부분이 외막을 통과하지 못하는 것으로 알려져 있다. 대표적인 약물로 리네졸리드 및 클록사실린 등이 있다.
항균 펩타이드 또는 막 활성 펩타이드 존재하에 그람-양성균용 항균제, 또는 기존에 FDA 허가 약물들을 그람-음성균용 항균제로 사용하려는 노력이 시도되어 왔다.
그람-음성균을 치료하려는 많은 시도 중 항균 펩타이드가 기존 항균제의 대용으로 제시될 수 있다. 이들은 면역체계의 산물로서 그 종류도 다양하고 균막을 파괴시킴으로써 균을 사멸시킬 수 있다. 그러나 이러한 항균 펩타이드들의 막 파괴능으로 인해 의도했던 균 사멸 효과뿐 아니라 숙주세포에 대한 독성이 나타나게 되므로, 숙주 세포에 대한 독성을 줄이기 위해서는 막 파괴능을 제거할 필요가 있다.
"KLLKLLKKPLKLLK"의 총 14개의 아미노산으로 이루어진 KL-L9P의 막 활성 펩타이드("L9P"로도 지칭됨)가 종래 공지된 바 있다(한국특허등록번호 제1811437호). 막 파괴능은 알파 나선도에 비례하므로, 꺾인 프롤린 구조를 갖는 양면성 펩타이드는 숙주세포에 대한 독성이 경감될 것이 기대되었다. 실제 위 한국특허에서 개발된 L9P는 숙주 세포에 대한 독성이 낮으면서도 대장균에 대해서는 약한 효능을 가진 막 재편 펩타이드인 것이 밝혀졌다. 즉, 상기 펩타이드 존재시, 종래 그람-음성균의 LPS 층에 머물면서 막 투과가 불가능하여 그람-음성균에 대해 유효한 치료 효과를 나타내지 못하였던 약물, 즉, 소수성 그람-양성균용 항균제 또는 비항균제 약물들을 감응시킴으로써 그람-음성균을 죽일 수 있게 되었다.
다만, 해당 펩타이드를 이용하여 효과적으로 그람-음성균을 죽이기 위해서는 4 ug/ml (2.3 uM) 이상의 고농도가 필요하고, 실제 인체에 투여하기 위해선 600 mg이라는 많은 양이 필요하다. 이는 보통 인체에 투여되는 약물의 용량과 비교하여 5 내지 10배 많은 양이다. 따라서, 이들을 실제 약물로 개발하기 위해서는 투여량 감소 등이 요구된다.
또한, 균을 재편하는 능력을 가지기 위해선 20 ug/mL의 비교적 많은 양의 펩타이드가 필요하며, 이를 사용하여 감응되는 소수성 항균제의 종류도 제한적이다. 또한 그람-음성균 중 E. coliA. baumannii의 균막은 잘 재편하는 반면, K. pneumoniae 또는 P. aeruginosa의 균막은 잘 재편시키지 못하는 경향을 가지고 있다.
이러한 기술적 배경하에서, 본 출원 발명자들은 숙주세포의 독성을 감소시키는 동시에 감응효과를 증진시킬 수 있는 펩타이드 또는 펩타이드 유사체를 개발하였고, 이의 용도를 확인하여 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
한국특허등록번호 제1811437호
본 발명은 소수성 아미노산 및 친수성 아미노산으로 구성된 알파나선형 양면성 펩타이드가 꺾인 구조를 가지고, N-말단에 지방산이 결합될 수 있는 펩타이드 또는 펩타이드 유사체를 제공하고자 한다.
본 발명은 또한 상기 펩타이드 또는 펩타이드 유사체를 사용하여 특히 그람-음성균의 감염과 관련된 질병을 치료하고자 한다.
본 발명은 화학식 1로 표시되는 펩타이드 또는 펩타이드 유사체를 제공한다:
<화학식 1>
X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15
상기식에서,
X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 친수성 아미노산 또는 비단백질성 아미노산(non-proteinogenic amino acids)이고, 단 이들 중 하나 이상은 Ala 또는 Ser일 수 있고,
X3, X4, X6, X7, X11, X13 또는 X14 각각 독립적으로 소수성 아미노산 또는 이들의 혼합물이고,
X10은 Pro이고,
X1 내지 X15 중 어느 하나의 위치에서 C6 내지 C16 지방산이 결합될 수 있고,
X1은 N-말단이고 X15는 C-말단이다.
본 발명은 또한 상기 펩타이드 또는 펩타이드 유사체; 및 약물을 포함하는 박테리아 감염 치료용 또는 항균용 약학 조성물을 제공한다.
본 발명은 또한 상기 펩타이드 또는 펩타이드 유사체에 약물이 연결된 접합체를 제공한다.
본 발명의 신규한 펩타이드는 특이적으로 그람-음성균의 외막에만 작용하여 막을 느슨하게 할 수 있어, 기존 항균제에 대한 우수한 감응 효과를 나타낸다. 기존 항균제는 그람-음성균의 외막의 경직도로 인해 막을 통과하지 못해 그람-음성균에 대해 항균 활성을 나타내지 못하였으나, 본 발명의 펩타이드와 병용 투여시, 외막을 느슨하게 할 수 있어, 기존 항균제들이 그람-음성균의 외막을 통과하여 그람-음성균에 대해 항균활성을 나타낸다. 특히 본 발명의 펩타이드는 기존 알려진 감응성 항균 펩타이드(AMP)에 비해 낮은 농도에서도 우수한 감응 효과를 나타내어, 저농도에서도 펩타이드의 감응 능력이 극대화될 수 있으며, 부작용도 줄일 수 있으면서 내성균의 출현도 늦출 수 있는 장점이 있다.
독성 측면에서도, 본 발명의 펩타이드는 그람-음성균 특이적 막 활성을 나타내고, 그람-음성균 외막의 표면에 있는 LPS 층과 결합할 수 있는 성질을 가져 외막에만 머무를 뿐, 그람-음성균의 외막 또는 내막을 붕괴하지 않는 효과를 나타낸다.
또한 본 발명의 펩타이드를 통해 그람-음성균의 외막 내로 통과하여 항균제로서 작용하는지를 정확하게 스크리닝할 수 있으므로, 이를 사용하여 신규한 항균제의 탐색도 가능하다.
도 1은 펩타이드의 아미노산 서열 및 이들의 A. baumannii ATCC 17978에 대한 항생제(Erythromycin, Novobiocin)의 감응 효과를 나타낸다.
도 2는 펩타이드의 아미노산 서열 및 이들의 A. baumannii ATCC 17978에 대한 fusidic acid의 감응 효과를 나타낸다.
도 3은 펩타이드의 아미노산 서열 및 이들의 A. baumannii ATCC 17978에 대한 3종의 항생제(Novobiocin, Rifampicin, Fusidic acid)의 감응 효과를 나타낸다.
도 4는 펩타이드의 아미노산 서열; 및 이들의 A. baumannii ATCC 17978에 대한 3종의 항생제 (Novobiocin, Rifampicin, Fusidic acid)의 감응 효과를 나타낸다.
도 5는 E. coli ATCC 25922에서 여러 종류의 재배치 항균제들에 대한 L9P(CMP1107) 또는 SPR741과 본 발명의 펩타이드의 감응 효과를 비교한 그래프이다.
도 6은 A. baumannii 임상 균주에서 Rifampicin, Colistin, Clarithromycin, Tedizolid, Linezolid 단독 및 CMP1401과 병용으로 사용했을 때 MIC50, MIC90 실험 결과를 나타낸다.
도 7은 펩타이드의 아미노산 서열 및 이들의 E. Coli. ATCC 25922에서 Rifampicin 또는 Linezolid의 감응 효과를 나타낸다.
도 8은 펩타이드들의 아미노산 서열 및 이들의 4종 그람-음성균 (A.b. ATCC 17978, K.p. ATCC 700603, E.c. ATCC 25922, P.a. ATCC 27853)에 대한 Rifampicin의 감응 효과를 나타낸다.
도 9는 4종 그람-음성균주 E.c. ATCC 25922, A. b. ATCC 17978, K.p. ATCC 700603, P.a. ATCC 27853 및 Carbapenem-resistant Enterobacteriaceae (CRE; 즉, E.c. NDM-1, K.p. NDM-1, K.p. KPC)에서 Rifampicin에 대한 L9P(CMP1107), CMP1401, CMP1709의 감응 효과를 비교한 그래프를 나타낸다. 표시된 숫자는 4 ug/ml의 펩타이드 농도에서 감소된 Rifampicin의 MIC 값을 의미한다(아래 표 참조).
Figure PCTKR2021004232-appb-I000001
도 10은 3종 그람-음성균주 E.c. ATCC 25922, P.a. ATCC 27853 및 K.p. KPC(CRE)에서 Colistin에 대한 L9P(CMP1107), CMP1401, CMP1709의 감응 효과를 비교한 그래프를 나타낸다. 표시된 숫자는 4 ug/ml의 펩타이드 농도에서 감소된 Colistin의 MIC 값을 의미한다(아래 표 참조).
Figure PCTKR2021004232-appb-I000002
도 11은 E. coli , K. pneumoniae , P. aeruginosa , E. cloacae , C. freundii , S. marcescens 임상균주에서 Rifampicin 단독 및 CMP1709와 병용으로 사용했을 때 MIC50, MIC90 실험 결과를 나타낸다. 도 12는 L9P(CMP1107), CMP1401, CMP1407에 대한 Enzyme assay 결과를 나타낸다. Outer membrane에 사용된 균주는 E. coli NDM-1, Enzyme substrate로 CENTA를 사용하였고, Inner membrane에 사용된 균주는 E. coli ATCC 25922, Enzyme substrate로 ONPG를 사용하였다.
도 13은 본 발명의 펩타이드들의 hRBCs에 대한 Hemolysis assay 결과를 나타낸다. (a) : MELITTIN과 CMP1407을 제외한 나머지 그래프들은 hemolytic activity가 매우 낮아서 그래프가 거의 중첩되어 있다. (b) : (a) 그래프에서 hemolytic activity를 0 내지 10% 부분만 확대한 도면. MELITTIN, CMP1407, CMP1406, CMP1409, CMP1203을 제외한 나머지 그래프들은 0에 가깝게 거의 중첩되어 있다.
도 14는 HeLa cell 또는 HK-2 cell에 대한 본 발명의 펩타이드들의 WST-1 assay 결과를 나타낸다. (a): 각 그래프는 256 uM의 데이터를 기준으로 위에서부터 CMP1203, CMP1401, CMP1407을 나타낸다. (b): 각 그래프는 64 uM의 데이터를 기준으로부터 위에서부터 Colistin, CMP1709, CMP1401, CMP1501을 나타낸다.
도 15는 CMP1401에 대한 마우스 동물모델에서 In vivo 데이터를 나타낸다. (a) 및 (b)는 면역억제 마우스 A. baumannii 801 폐렴 감염 생존 모델에서 Rifampicin과 CMP1401 펩타이드의 병용투여 효과를 나타낸다. (c)는 면역억제 마우스 A. baumannii ATCC 17978 허벅지 감염 모델에서 Rifampicin과 CMP1401 펩타이드의 병용투여 효과를 나타낸다.
도 16은 면역억제 Rat A. baumannii 801 폐렴감염 모델에서 CMP1401과 Rifampicin의 병용투여 효과를 나타낸다.
도 17은 면역억제 마우스 E. coli NDM -1 허벅지 감염 모델에서 Rifampicin과 CMP1709 펩타이드의 병용투여 효과를 나타낸다.
도 18은 Hdf가 삽입된 5세대 감응 펩타이드 서열을 나타낸다. Hdf는 5종의 소수성 아미노산 Ala, Ile, Leu, Phe, Val이 같은 비율로 해당 자리에 삽입되어 있음을 의미한다.
펩타이드 또는 펩타이드 유사체
본 발명은 화학식 1로 표시되는 펩타이드 또는 펩타이드 유사체:
<화학식 1>
X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15
상기식에서,
X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 친수성 아미노산 또는 비단백질성 아미노산(non-proteinogenic amino acids)이고, 단 이들 중 하나 이상은 Ala 또는 Ser일 수 있고,
X3, X4, X6, X7, X11, X13 또는 X14 각각 독립적으로 소수성 아미노산 또는 이들의 혼합물이고,
X10은 Pro이고,
X1 내지 X15 중 어느 하나의 위치에서 C6 내지 C16 지방산이 결합될 수 있고,
X1은 N-말단이고 X15는 C-말단이다.
구체적으로, 상기 C6 내지 C16 지방산은 예를 들어 hexanoic acid, heptanoic acid, octanoic acid, decanoic acid 또는 lauric acid일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 펩타이드 또는 펩타이드 유사체는 소수성 아미노산 및 친수성 아미노산으로 구성된 알파나선형 양면성 펩타이드가 꺾인 구조를 가지고, N-말단에 지방산이 결합될 수 있는 구조를 가진다.
본 명세서에서 "꺽인"은 명세서 중 "꺽어진, 굽어진, 휘어진 또는 끊어진"과 병용하여 동일한 의미로 사용될 수 있고, 상기 "꺽인" 구조는 소수성 아미노산 및 친수성 아미노산으로 구성된 알파나선형 양면성 펩타이드의 소수성 아미노산 일부가 치환되어 형성된 구조일 수 있으며, 알파나선형 양면성 펩타이드에서 아미노산 치환 부분을 중심으로 알파나선이 굽은 형태일 수 있다.
일 구체적 실시태양에서, X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 친수성 아미노산, 비단백질성 아미노산(non-proteinogenic amino acids), Ala 또는 Ser일 수 있다.
일 구체적 실시태양에서, X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys, Arg, His, 및 이의 유도체로부터 선택되는 친수성 아미노산 또는 2,3-디아미노프로피온산(Dap), 2,4-디아미노부탄산(Dab), 또는 오르니틴(Orn)이고, 단 이들 중 하나 이상은 Ala 또는 Ser일 수 있고;
X3, X4, X6, X7, X11, X13 및 X14는 각각 독립적으로 Leu, Ala, Ile, Phe, Val, Trp, 또는 Tyr로부터 선택되는 소수성 아미노산 또는 Hdf이고, 여기서 Hdf는 Leu, Ala, Val, Ile, 및 Phe을 동일한 양으로 포함하는 아미노산 혼합물일 수 있다.
또다른 실시태양에서, X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys, Arg, His, 및 이의 유도체로부터 선택되는 친수성 아미노산 또는 2,3-디아미노프로피온산(Dap), 2,4-디아미노부탄산(Dab), 오르니틴(Orn), Ala 또는 Ser이고;
X3, X4, X6, X7, X11, X13 및 X14는 각각 독립적으로 Leu, Ala, Ile, Phe, Val, Trp, 또는 Tyr로부터 선택되는 소수성 아미노산 또는 Hdf이고, 여기서 Hdf는 Leu, Ala, Val, Ile, 및 Phe을 동일한 양으로 포함하는 아미노산 혼합물일 수 있다.
또다른 실시태양에서, X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys, Ala, Ser, 또는 2,4-디아미노부탄산(Dab)일 수 있다.
또다른 실시태양에서, X3, X4, X6, 및 X7은 각각 독립적으로 Leu, Ala, Val, Ile, Phe, 또는 Hdf일 수 있다.
또다른 실시태양에서, X11, X13, 및 X14는 각각 독립적으로 Leu 또는 Ala일 수 있다.
또다른 실시태양에서, X1의 위치에서 C6 내지 C12 지방산이 결합되어 있을 수 있다.
한국특허등록번호 제1811437호에서는 그람-음성균 등에 대한 기존 약물들의 감응 효과를 증진시키는 감응성 펩타이드를 개시하고 있다. 그러나 이에 개시된 펩타이드만으로는 감응 효과와 독성 감소 효과가 충분하지 않으므로, 본 발명자들은 펩타이드의 독성을 줄이고 동시에 감응효과를 증진시키는 전략으로 항균제 병용투여 요법에서 가장 최적화된 신규한 펩타이드 또는 펩타이드 유사체를 제공하고자 하였다.
본원에서 사용된 용어 "펩타이드"는 아미노산 중합체로서, 천연 아미노산 뿐 아니라, 비단백질성 아미노산도 구성요소로 포함할 수 있다.
본 발명은 또한 "펩타이드 유사체"를 포함한다. 상기 펩타이드 유사체는 아미노산의 측쇄 또는 알파-아미노산 백본에 대하여 하나 이상의 다른 기능기로 치환된 유사체를 포함할 수 있다. 측쇄 또는 백본 개질화 펩타이드 유사체의 예로는 피롤리딘 고리가 하이드록시기로 치환된 하이드록시프롤린이나, N-메틸 글리신 "펩토이드"를 들 수 있으나, 이로 제한되지 않는다. 펩타이드 유사체의 종류에 대해서는 당업계에 공지되어 있다.
본원에서는 "펩타이드" 또는 "펩타이드 유사체"를 통칭하여 "펩타이드"로 지칭하기도 한다.
일 구체적 실시태양에서, 본 발명의 펩타이드는 화학식 1에서 X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys이고, X3, X4, X6, X7, X11, X13 및 X14는 각각 독립적으로 Leu일 수 있다(화학식 1b). 이러한 펩타이드 일반식(화학식 1b)에 포함되는 대표적인 펩타이드는 서열번호 1의 아미노산 서열로 이루어지는 것일 수 있다. 이러한 펩타이드는 기존 공지된 KL-L9P 펩타이드와 비교하여, E. coli를 포함한 여러 스펙트럼의 그람-음성균의 인지질 층과 상호작용하는 정도가 증진된다. 나아가 펩타이드의 양전하 개수가 늘어나기 때문에, 더 적은 농도의 펩타이드가 그람-음성균주의 외막에 분포하는 LPS와의 상호작용에 더 유리하게 작용한다. 총 15개의 아미노산 길이를 선택함으로써, 막 활성 펩타이드의 길이가 너무 길어질 경우 길이 증가로 인한 세포막 붕괴를 일으킬 우려를 감소시킬 수 있다.
또다른 구체적 실시태양에서, 본 발명의 펩타이드는 화학식 1에서, X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys 또는 Ala이고, X3, X4, X6, X7, X11, X13 및 X14는 각각 독립적으로 Leu, Ala 또는 Val이고, 단 X10을 제외한 X1 내지 X15 중 하나 이상은 Ala 또는 Val일 수 있다(화학식 1c). 이러한 펩타이드 일반식(화학식 1c)에 포함되는 대표적인 펩타이드는 서열번호 2 내지 17 및 61 중 어느 하나의 아미노산 서열로 이루어지는 것일 수 있다.
화학식 1c의 펩타이드와 같이 Ala 또는 Val을 포함하는 경우, 특히 Ala을 포함하는 경우, 양면성 펩타이드의 전체적인 소수성을 줄어들며, 소수성 곁사슬 잔기의 크기가 작아져서 막 활성 펩타이드의 소수성 면이 그람-음성균 외막의 인지질과 결합하는 방식에 영향을 줄 수 있어 저농도의 펩타이드에서도 더 강한 막 활성을 나타낼 수 있다.
또다른 구체적 실시태양에서, 본 발명의 펩타이드는 화학식 1에서, X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys이고, X3, X7, 및 X11은 각각 독립적으로 Leu, Ala, 또는 Val이고, X4, X6, X13, 및 X14 각각 독립적으로 Leu이고, X1의 위치에서 C6 내지 C12 지방산이 결합되어 있는 것일 수 있다(화학식 1d). 이러한 펩타이드 일반식(화학식 1d)에 포함되는 대표적인 펩타이드는 서열번호 18 내지 26 및 62 내지 63 어느 하나의 아미노산 서열로 이루어지는 것일 수 있다.
화학식 1d의 펩타이드와 같이 사슬을 지방화시키는 경우, 혈장 또는 혈액에 존재하는 단백질과 결합 능력을 높여서 펩타이드의 PK를 늘리는 동시에 감응 능력을 향상시킬 수 있다. 펩타이드에서 지방화를 여러 위치에서 가능하나, 바람직하게는 N-말단에서 지방화될 수 있다. 지방산의 길이는 C6 내지 C16까지 다양할 수 있으나, 바람직하게는 C6 내지 C12일 수 있으며, 특히 C6 내지 C8인 경우 감응활성의 변화가 가장 크게 나타나며, 용혈현상으로 측정된 지방화에 따른 펩타이드 독성은 거의 증가하지 않는다.
또다른 구체적 실시태양에서, 본 발명의 펩타이드는 화학식 1에서, X1, X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Dab이고, X3, X4, X6, 및 X7은 각각 독립적으로 Leu, Ala, Ile, Phe, Val, 또는 Hdf이고, 이 때 X3, X4, X6, 및 X7 중 둘 이상은 각각 독립적으로 Ala, Ile, Phe, Val, 또는 Hdf이고, X11, X13, 및 X14 각각 독립적으로 Leu이고, X1의 위치에서 C8 또는 C12 지방산이 결합되어 있는 것일 수 있다(화학식 1e). 이러한 펩타이드 일반식(화학식 1e)에 포함되는 대표적인 펩타이드는 서열번호 27 내지 48 및 64 내지 66어느 하나의 아미노산 서열로 이루어지는 것일 수 있다.
화학식 1e는 친수면과 소수면에 다양성을 띄고 있다. 우선 친수면에서 비자연적 일차 아민 잔기를 가진 오르니틴 (Orn), diaminobutyric acid (Dab), diaminopropionic acid (Dap) 등을 포함하는 경우, 막 재편 효과를 보존 또는 증진시킬 수 있으며, Dab의 경우 특히 P. aeruginosa에 대한 감응 효과를 증진시킬 수 있다. 특히 Dab를 포함하는 경우, 지방화로 나타날 수 있는 용혈 현상(hemolytic activity)을 감소시켜 독성을 감소시킬 수 있다.
소수면에서 다섯 개의 아미노산 Leu, Ala, Ile, Val, Phe을 한꺼번에 섞어 한 번에 혼합물(Hdf)로 사용하는 경우에, 우수한 막 재편능을 나타낸다.
또다른 구체적 실시태양에서, 본 발명의 펩타이드는 화학식 1에서, X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Dab이고, X3, X4, X6, 및 X7은 각각 독립적으로 Leu, Ala, Phe, 또는 Val이고, 이 때 X3, X4, X6, 및 X7 중 셋 이상은 각각 독립적으로 Ala, Phe, 또는 Val이고, X11, X13, 및 X14 각각 독립적으로 Leu이고, X1의 위치에서 C8 지방산이 결합되어 있는 것일 수 있다(화학식 1f). 이러한 펩타이드 일반식(화학식 1f)에 포함되는 대표적인 펩타이드는 서열번호 49 내지 52 어느 하나의 아미노산 서열로 이루어지는 것일 수 있다.
또다른 구체적 실시태양에서, 본 발명의 펩타이드는 화학식 1에서, X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Dab 또는 Ser이고, 이 때 X1, X2, X5, X8, X9, X12, 및 X15 중 하나 이상은 각각 독립적으로 Ser이고, X3 및 X7은 각각 독립적으로 Ala이고, X4 및 X6은 각각 독립적으로 Leu, Phe 또는 Val이고, X11, X13, 및 X14 각각 독립적으로 Leu이고, X1의 위치에서 C8 지방산이 결합되어 있는 것일 수 있다(화학식 1g). 이러한 펩타이드 일반식(화학식 1g)에 포함되는 대표적인 펩타이드는 서열번호 53 내지 60 및 67어느 하나의 아미노산 서열로 이루어지는 것일 수 있다.
또다른 실시태양에서, 본 발명의 펩타이드는 화학식 1에서 X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys, Ala, Ser, 또는 Dab이고, X3, X4, X6, 및 X7은 각각 독립적으로 Leu, Ala, Val, Ile, Phe, 또는 Hdf이고, X10은 Pro이고, X11, X13, 및 X14는 각각 독립적으로 Leu 또는 Ala이고, X1의 위치에서 C6 내지 C12 지방산이 결합될 수 있는 것일 수 있다.
특정 실시태양에서, 서열번호 1 내지 67 중 어느 하나의 아미노산 서열을 포함하는 것을 특징으로 하는, 펩타이드 또는 펩타이드 유사체일 수 있다.
본 발명의 펩타이드 또는 펩타이드 유사체는 다음의 특성 중 어느 하나를 나타낼 수 있다.
i) 숙주세포에 대한 용혈 활성이나 그람-양성균에 대한 활성이 전혀 없으면서 그람-음성균에 활성을 가짐;
ii) 그람-음성균 외막의 표면에 있는 LPS층과 결합할 수 있는 성질을 가짐;
iii) 그람-음성균 외막의 표면에 있는 LPS 층과 결합할 수 있는 성질을 가지면서 외막에 들어가 외막에만 존재함;
iv) 그람-음성균의 외막을 뚫고 들어가 외막에만 존재하는 성질을 가지면서도 그람-음성균의 외막 또는 내막을 붕괴하는 능력은 없음;
v) Pro에 의해 알파나선이 꺾인 구조를 하고 있어 숙주세포에 대한 독성이 최소화되면서도 그람-음성균의 외막과의 인식이 증가될 수 있을 것;
vi) 펩타이드가 양하전 되어있고 동시에 소수성을 가져, 그람-음성균 외막 (LPS 층)의 음전하와 소수성 인식을 극대화할 수 있을 것; 및
vii) N-말단에 lipidation을 통해 체내 반감기를 늘려 이 부분과 소수성 잔기가 조화롭게 어울릴 수 있을 것.
본 발명에 따른 펩타이드는 종래 공지된 방법, 예컨대 고체상 펩타이드 합성법에 따라 제조될 수 있다. 이러한 제조 방법은 추가적으로 본 발명의 일 실시태양을 형성한다.
항균 용도
본 발명의 펩타이드 또는 펩타이드 유사체는 박테리아 감염 치료 등의 항균 용도로 사용될 수 있다.
이에 따라, 일 실시태양에서, 본 발명은 유효량의 펩타이드 또는 펩타이드 유사체를 대상체에게 투여하는 것을 포함하는, 박테리아 감염의 예방, 개선 또는 치료 방법을 제공한다. 본원에서 어구 "박테리아 감염의 예방, 개선 또는 치료"는 "항균(antimicrobial)"과 서로 치환가능하게 사용될 수 있다.
또다른 실시태양에서, 본 발명은 박테리아 감염의 예방, 개선 또는 치료를 위한 상기 펩타이드 또는 펩타이드 유사체의 용도를 제공한다.
또다른 실시태양에서, 본 발명은 상기 펩타이드 또는 펩타이드 유사체를 포함하는, 박테리아 감염의 예방, 개선 또는 치료용 약학 조성물을 제공한다.
본원에서 사용된 용어 "대상체"는, 인간과 비-인간 동물을 모두 포함하는 의미이다. 비-인간 동물로서는 모든 척추 동물, 예를 들어, 포유동물과 비-포유 동물 예를 들어, 인간 이외의 영장류, 양, 개, 고양이, 소, 말, 닭, 양서류 및 파충류를 포함하나, 예를 들어, 인간 이외의 영장류, 양, 개, 고양이, 소 및 말과 같은 포유동물이 바람직하다. 바람직한 대상체로는 암의 예방 또는 치료가 요구되는 인간이다.
상기 박테리아 감염은, 바람직하게는, 그람-음성균 감염일 수 있다. 이에 따라 본 발명의 펩타이드 또는 펩타이드 유사체는 그람-음성균에 항균 활성을 나타내기 위해 사용될 수 있다. 이 때, 상기 그람-음성균은 병원성 미생물 또는 내성균, 바람직하게 그람-음성균의 병원성 미생물 또는 내성균을 의미한다. 그람-음성균의 예로는 이.콜라이(E. coli), 아시네박토 바우마니(Acinetobacter baumannii), 클렙시엘라 뉴모니아(Klebsiella pneumoniae), 슈도모나스 애루지노사(Pseudomonas aeruginosa), 엔테로박터 클로아세(Enterobacter cloacae), 시트로박터 프룬디(Citrobacter freundii), 세라티아 마르세센스(Serratia marcescens) 등을 포함하나 이로 제한되지 않는다.
바람직한 실시태양에서, 본 발명의 펩타이드는 또다른 약물과 함께 사용된다. 이에 따라 본 발명은 상기 펩타이드 또는 펩타이드 유사체; 및 약물을 포함하는, 박테리아 감염의 예방, 개선 또는 치료용 약학 조성물 또는 항균용 약학 조성물을 제공한다. 이 때 상기 펩타이드 또는 펩타이드 유사체; 및 약물은 하나의 제제로 동시에 투여되거나, 또는 별개의 제제로 동시에 또는 순차적으로 투여될 수 있다. 구체적으로, 본 발명의 펩타이드 또는 펩타이드 유사체가 다른 약물 함께 사용될 때, 이들은 별도 투여하거나 복수의 활성 성분들이 하나의 약학적 제제에 존재하는 조합 제품의 형태로 적용될 수 있다. 이들이 별도의 제제로 투여되는 경우, 두 제제는 순차적으로 또는 동시에 투여될 수 있다. 동시 투여의 경우, 이들은 환자에 함께 제공된다. 순차 투여의 경우, 길지 않은 시간으로 시간차를 투어 제공될 수 있으며, 예컨대 12시간 이하, 또는 6시간 이하의 기간 내로 환자에게 투여될 수 있다.
또다른 실시태양에서, 본 발명은 유효량의 펩타이드 또는 펩타이드 유사체를 약물과 병용하여 투여하는 것을 포함하는, 박테리아 감염의 예방, 개선 또는 치료 방법을 제공한다. 상기 실시태양은 펩타이드를 다른 약물과 하나의 조성물에 함께 포함하여 동시에 투여하는 것은 물론, 이들 각각이 별개로 포함된 조성물을 이를 필요로 하는 환자에게 동시에 또는 순차로 투여하는 것을 포함한다.
또다른 실시태양에서, 본 발명은 박테리아 감염의 예방, 개선 또는 치료를 위해, 약물과 병용하기 위한 상기 펩타이드 또는 펩타이드 유사체의 용도를 제공한다.
상기 약물은 종래 그람-양성균에 대한 항균제로 사용되는 것일 수도 있고, US FDA 등에서 다른 용도로 허가되었으나 항균제로는 허가되지 않은 약물, 또는 그람-음성균에 사용되는 약물일 수도 있다. 상기 그람-양성균 항균 항생제는 예를 들어, Rifampicin, Rifabutin, Rifamixin, Rifapentine, Tedizolid, Linezolid, Clarithromycin, Telithromycin, Retapamulin, Mupirocin, Erythromycin, Fusidic acid, 또는 Novobiocin일 수 있으나, 이에 제한되는 것은 아니다. 상기 그람-음성균 항생제는 Colistin, Azetreonam, Azithromycin, Ceftazidime, Ciprofloxacin, Chloramphenicol, Gentamycin, Trimethoprim, Nalidixic acid, Levofloxacin 일 수 있으나, 이로 제한되는 것은 아니다.
보다 구체적으로, 본 발명의 펩타이드와 함께 사용될 수 있는 약물로는, 예를 들어, 에리트로마이신(Erythromycin), 노보바이오신(Novobiocin), 푸시딘산(Fusidic acid), 리팜피신(Rifampicin), 리파믹신(Rifamixin), 클로록신(Chloroxine), 가티플록사신(Gatifloxacin), 로데플록사신(Lomefloxacin), 리파부틴(Rifabutin), 리파펜틴(Rifapentine), 답토마이신(Daptomycin), 니신(Nisin), 티제사이클린(Tigecycline), 아즈트레오남(aztreonam), 세프타지딤(Ceftazidime), 니트로푸라토인(Nitrofuratoin), 클로람페니콜(Chloramphenicol), 피닥소마이신(Fidaxomicin), 레타파뮬린(Retapamulin), 세페핌(Cefepime), 메실리남(Mecillinam), 메로페넴(Meropenem), 반코마이신(Vancomycin), 클라리트로마이신(Clarithromycin), 포스포마이신(Fosfomycin), 라모플라닌(Ramoplanin), 시프로플록사신(Ciprofloxacin), 젠타마이신(Gentamycin), 토브라마이신(Tobramycin), 리네졸리드(Linezolid), 텔리트로마이신(Telithromycin), 레보플록사신(Levofloxacin), 트리메토프림(Trimethoprim), 클린다마이신(Clindamycin), 날리딕신산(Nalidixic acid), 아지트로마이신(Azithromycin), 무피로신(Mupirocin), 답토마이신(daptomycin), Linezolid(리네졸리드), 니트로푸라토인(Nitrofuratoin), 피닥소마이신(Fidaxomicin), 아즈트레오남(Aztreonam), 렙타파물린(Retapamulin), 토브라마이신(Tobramycin), 테디졸리드(Tedizolid), 알바마이신(Albamycin), 오라노핀(Auranofin), 카피트롤(Capitrol), 트리클로산(Triclosan), 부토코나졸(Butoconazole), 미코나졸(Miconazole), 클리오퀴놀(Clioquinol), 라파티닙(Lapatinib), 소라페닙(Sorafenib), 블레오마이신(Bleomycin), 퀴네스트롤(Quinestrol), 아제트레오난(Azetreonam) 또는 콜리스틴(Colistin)을 포함하나, 이로 제한되지 않는다.
본 발명에서, "예방"이란, 조성물의 투여에 의해 상기 병원성 미생물 또는 내성균에 의한 감염 질환을 억제시키거나 발병을 지연시키는 모든 행위를 의미하며, "치료"란 조성물의 투여에 의해 병원성 미생물 또는 내성균 감염 질환에 의한 증세가 호전되거나 이롭게 변경하는 모든 행위를 의미할 수 있다.
상기 조성물은 약학적으로 허용가능한 담체를 추가적으로 포함할 수 있다. 상기 "약학적으로 허용가능한 담체"는 임의의 대상 조성물 또는 성분을 하나의 기관, 또는 신체의 부분으로부터 다른 기관, 또는 신체의 부분으로의 운반 또는 수송하는 것에 관여하는 액체 또는 고체 충전제, 희석제, 부형제, 용매 또는 캡슐화 물질과 같은 제약상 허용가능한 물질, 조성물 또는 비히클을 지칭하며, 본 발명의 조성물은 투여를 위해서 상기 기재한 유효성분 이외에 약학적으로 허용가능한 담체, 부형제 또는 희석제를 더 포함할 수 있다. 상기 담체, 부형제 및 희석제로는 락토오스, 덱스트로오스, 수크로오스, 소르비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로오스, 메틸 셀룰로오스, 미정질 셀룰로오스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 스테아린산 마그네슘 및 광물유를 들 수 있다.
또한, 본 발명의 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 또는 멸균 주사용액의 형태로 제형화하여 사용할 수 있다. 상세하게는 제형화할 경우 통상 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구투여를 위한 고형제제로는 정제, 환제, 산제, 과립제, 캡슐제 등을 포함하나, 이에 한정되는 것은 아니다. 이러한 고형제제는 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘 카보네이트, 수크로오스, 락토오스, 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 스테아린산 마그네슘, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등을 포함하나, 이에 한정되지 않으며, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등을 첨가하여 조제될 수 있다. 비경구 투여를 위한 제제는 멸균된 수용액, 비수성 용제, 현탁제, 유제, 동결건조 제제 및 좌제를 포함한다. 비수성 용제 및 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 오일, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔, 마크로골, 트윈 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.
본 발명에 따른 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여(예를 들어, 정맥 내, 피하, 복강 내 또는 국소에 적용)할 수 있으며, 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 필요에 따라 일일 1회 내지 수회로 나누어 투여할 수 있으며, 병원성 세균 및 내성균에 대한 예방 또는 치료를 위하여 단독으로, 또는 수술, 호르몬 치료, 약물 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.
본 명세서에서 상기 병용 투여는 병행 투여와 교차하여 사용할 수 있으며, 병용 투여 형태는 펩타이드 또는 펩타이드 유사체와 기타 화합물을 동시 투여하거나, 또는 별도 투여하는 형태를 모두 포함할 수 있다. 이 때, logP (partition coefficient) 값이 0.19 이상인 소수성 화합물, 생리적 pH 조건에서 양이온으로 하전된 화합물 및 콜리스틴으로 구성된 군에서 선택된 하나 이상과 본 발명에 따른 펩타이드 또는 펩타이드 유사체를 병용 투여할 수 있다.
상기 lopP (partition coefficient) 값이 0.19이상인 소수성 화합물은 예를 들어, 클로사실린, 리네졸리드, 레스베라트롤, 컬큐민, 퀄세틴, 심바스타틴, 로바스타틴, 메바스타틴 카테켄, 또는 타이몰일 수 있으나, 이에 제한되는 것은 아니다.
상기 생리적 pH 조건 예를 들어, pH 7.3~7.4에서 양이온으로 하전된 화합물은 예를 들어, 에리트로마이신, 리팜피신, 콜리스틴, 폴리믹신-비, 또는 니코틴일 수 있으나, 이에 제한되는 것은 아니다.
상기 생리적 pH 조건 예를 들어, pH 7.3~7.4에서 음이온으로 하전된 화합물은 예를 들어 이부프로펜, 아토바스타틴, 후루바스타틴, 프라바스타틴, 카프로펜, 트란스-페룰릭산, 또는 브롬페낙 등 일 수 있으나, 이에 제한되는 것은 아니다.
일 실시예에서, 본 발명에 따른 펩타이드 또는 펩타이드 유사체와의 병용 투여를 통해 시너지 효과 예를 들어, 병용 투여 대상 복수의 펩타이드 또는 펩타이드 유사체 또는 화합물로부터 유래된 효과가 단순히 더해진 경우에 비해 훨씬 더 적은 농도에서도 항균 효과가 나타나는 화합물은 예를 들어, 리네졸리드, 에리트로마이신, 이부프로펜, 심바스타틴, 컬큐민, 또는 레스베라트롤일 수 있다.
본 발명은 또 다른 관점에서, 펩타이드, 또는 펩타이드 유사체 및 상기 펩타이드 또는 펩타이드 유사체에 약물이 연결된 접합체에 관한 것이다.
상기 약물은 lopP (partition coefficient) 값이 0.19 이상인 소수성 화합물, 생리적 pH 조건에서 양이온으로 하전된 화합물 및 콜리스틴일 수 있다. 각 구성의 정의는 앞서 언급한 바와 동일하다.
상기 펩타이드 또는 펩타이드 유사체와 약물은 예를 들어, 비공유 결합 또는 공유 결합을 통해 연결될 수 있다. 상기 비공유 결합은 예를 들어, 수소결합, 정전기적 상호작용, 소수성 상호작용, 반데르 발스 상호작용, 파이-파이 상호작용 및 양이온-파이 상호작용으로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 공유 결합은 분해성 또는 비분해성 결합일 수 있으며, 상기 분해성 결합은 이황화 결합, 산분해성 결합, 에스테르 결합, 안하이드라이드 결합, 생분해성 결합 또는 효소 분해성 결합일 수 있고, 비분해성 결합은 아미드 결합 또는 포스페이트 결합일 수 있으나, 이에 제한되는 것은 아니다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
제조예 . 펩타이드 합성
서열번호 1 내지 67의 펩타이드를 고체상 펩타이드 합성법을 이용하여 합성하였다.
구체적으로, 펩타이드 마이크로웨이브 합성기 (CEM)에서 표준 fluorenylmethyloxy carbonyl (Fmoc) 고체상 펩타이드를 사용하여 합성하였다. Discover SPS에서 링크 아미드 MBHA 레진 (0.59 mmole/g 로딩, 50 mg, 29.5μmol)를 사용하였다. 레진은 DMF에서 20 % 피페리딘으로 탈보호기화 시켰다. 커플링 반응은 각 서열의 아미노산, PyBOP 및 N-diisopropylethylamine (DIPEA)을 사용하여 수행되었다. 펩타이드는 cleavage 칵테일을 사용하여 실온에서 2 시간 동안 레진에서 분리되었다(950 μL의 Trifluoroacetic Acid, 25 μL의 Triisopropylsilane 및 25 μL의 물을 사용함). 분리한 펩타이드를 n-헥산 및 디에틸 에테르 (v/v = 1/1)로 침전시키고 역상 크로마토그래피 HPLC로 정제하였다. zorbax C18 컬럼 (3.5μm, 4.6 x 150mm)을 사용한 HPLC (Agilent HPLC 1100 시리즈)를 사용하여 정제하였다.
HPLC 조건: 버퍼 A (0.1 % v/v TFA가 있는 물) 및 버퍼 B (0.1 % v/v TFA가 있는 아세토나이트릴), 유속 1mL/min; 0 분, 0 % B 다음에 60 분에 걸쳐 선형 구배 100 % B가 되도록 함.
각 펩타이드는 표 1과 같이 명명되었다.
서열번호 명칭 서열번호 명칭 서열번호 명칭 서열번호 명칭
1 CMP1203 21 CMP1404 41 CMP1536 61 CMP1316
2 CMP1301 22 CMP1405 42 CMP1537 62 CMP1410
3 CMP1302 23 CMP1406 43 CMP1538 63 CMP1411
4 CMP1303 24 CMP1407 44 CMP1539 64 CMP1516
5 CMP1304 25 CMP1408 45 CMP1540 65 CMP1517
6 CMP1305 26 CMP1409 46 CMP1541 66 CMP1518
7 CMP1306 27 CMP1501 47 CMP1542 67 CMP1708
8 CMP1307 28 CMP1505 48 CMP1543
9 CMP1308 29 CMP1524 49 CMP1601
10 CMP1309 30 CMP1525 50 CMP1602
11 CMP1310 31 CMP1526 51 CMP1603
12 CMP1311 32 CMP1527 52 CMP1604
13 CMP1312 33 CMP1528 53 CMP1701
14 CMP1313 34 CMP1529 54 CMP1702
15 CMP1314 35 CMP1530 55 CMP1703
16 CMP1315 36 CMP1531 56 CMP1704
17 CMP1317 37 CMP1532 57 CMP1705
18 CMP1401 38 CMP1533 58 CMP1706
19 CMP1402 39 CMP1534 59 CMP1707
20 CMP1403 40 CMP1535 60 CMP1709
이들 펩타이드의 서열 및 MALDI TOF Mass 이론값 및 측정값을 표 2에 나타내었다. Deconvolution library에 해당하는 CMP1524 부터 CMP1543은 Mass 값을 범위로 표시하였다. (HDf = equal amount of five hydrophobic amino acids A, F, I, L and V)
Peptide Sequence [M+H]+ (calcd.) [M+H]+ (obsd)
CMP1107 Ac-KLLKLLKKPLKLLK-NH2 1719.23 1718.56
CMP1203 Ac-KKLLKLLKKPLKLLK-NH2 1846.53 1846.92
CMP1301 Ac-AKLLKLLKKPLKLLK-NH2 1788.29 1788.362
CMP1302 Ac-KALLKLLKKPLKLLK-NH2 1788.29 1788.225
CMP1303 Ac-KKALKLLKKPLKLLK-NH2 1803.3 1803.682
CMP1304 Ac-KKLAKLLKKPLKLLK-NH2 1803.3 1803.352
CMP1305 Ac-KKLLALLKKPLKLLK-NH2 1788.29 1788.499
CMP1306 Ac-KKLLKALKKPLKLLK-NH2 1803.3 1803.379
CMP1307 Ac-KKLLKLAKKPLKLLK-NH2 1803.3 1803.558
CMP1308 Ac-KKLLKLLAKPLKLLK-NH2 1788.29 1788.394
CMP1309 Ac-KKLLKLLKAPLKLLK-NH2 1788.29 1788.467
CMP1310 Ac-KKLLKLLKKPAKLLK-NH2 1803.3 1803.502
CMP1311 Ac-KKLLKLLKKPLALLK-NH2 1788.29 1788.275
CMP1312 Ac-KKLLKLLKKPLKALK-NH2 1803.3 1803.245
CMP1313 Ac-KKLLKLLKKPLKLAK-NH2 1803.3 1803.432
CMP1314 Ac-KKLLKLLKKPLKLLA-NH2 1788.29 1789.558
CMP1315 Ac-KKALKLAKKPLKLLK-NH2 1761.25 1761.367
CMP1316 Ac-KKLLKLVKKPLKLLK-NH2 1832.31 1831.357
CMP1317 Ac-KKVLKLVKKPLKLLK-NH2 1817.31 1817.669
CMP1401 OctA-KKALKLAKKPLKLLK-NH2 1846.34 1846.435
CMP1402 HexA-KKLLKLLKKPLKLLK-NH2 1901.41 1901.15
CMP1403 HexA-KKLLKLAKKPLKLLK-NH2 1859.36 1859.587
CMP1404 HexA-KKLLKLVKKPLKLLK-NH2 1887.39 1887.818
CMP1405 HexA-KKVLKLVKKPLKLLK-NH2 1873.37 1873.991
CMP1406 HexA-KKALKLAKKPLKLLK-NH2 1817.31 1817.512
CMP1407 OctA-KKLLKLLKKPLKLLK-NH2 1929.44 1929.424
CMP1408 DecA-KKALKLAKKPLKLLK-NH2 1873.37 1874.074
CMP1409 LauA-KKALKLAKKPLKLLK-NH2 1901.41 1902.53
CMP1410 MyrA-KKALKLAKKPLKLLK-NH2 1929.44 1929.091
CMP1411 PalA-KKALKLAKKPLKLLK-NH2 1957.47 1957.1
CMP1501 OctA-DabDabALDabLADabDabPLDabLLDab-NH2 1649.12 1650.44
CMP1516 HexA-DabDabALDabLADabDabPLDabLLDab-NH2 1620.09 1622.11
CMP1517 DecA-DabDabALDabLADabDabPLDabLLDab-NH2 1676.16 1678.212
CMP1518 LauA-DabDabALDabLADabDabPLDabLLDab-NH2 1704.19 1706.25
CMP1524 OctA-DabDabA(Hdf)Dab(Hdf)(Hdf)DabDabPLDabLLDab-NH2 1565.03 - 1792.12 1590.58 - 1801.13
CMP1525 OctA-DabDabF(Hdf)Dab(Hdf)(Hdf)DabDabPLDabLLDab-NH2 1641.06 - 1869.16 1636.79 - 1877.43
CMP1526 OctA-DabDabI(Hdf)Dab(Hdf)(Hdf)DabDabPLDabLLDab-NH2 1607.08 - 1835.17 1632.86 - 1842.63
CMP1527 OctA-DabDabL(Hdf)Dab(Hdf)(Hdf)DabDabPLDabLLDab-NH2 1593.06 - 1821.16 1617.86 - 1826.71
CMP1528 OctA-DabDabV(Hdf)Dab(Hdf)(Hdf)DabDabPLDabLLDab-NH2 1607.09 - 1835.17 1618.70 - 1845.44
CMP1529 OctA-DabDab(Hdf)ADab(Hdf)(Hdf)DabDabPLDabLLDab-NH2 1565.03 - 1792.12 1591.88 - 1801.86
CMP1530 OctA-DabDab(Hdf)FDab(Hdf)(Hdf)DabDabPLDabLLDab-NH2 1641.06 - 1869.16 1656.30 - 1863.58
CMP1531 OctA-DabDab(Hdf)IDab(Hdf)(Hdf)DabDabPLDabLLDab-NH2 1607.08 - 1835.17 1656.31 - 1863.58
CMP1532 OctA-DabDab(Hdf)LDab(Hdf)(Hdf)DabDabPLDabLLDab-NH2 1593.06 - 1821.16 1555.92 - 1830.25
CMP1533 OctA-DabDab(Hdf)VDab(Hdf)(Hdf)DabDabPLDabLLDab-NH2 1607.09 - 1835.17 1618.56 - 1830.68
CMP1534 OctA-DabDab(Hdf)(Hdf)DabA(Hdf)DabDabPLDabLLDab-NH2 1565.03 - 1792.12 1621.78 - 1811.35
CMP1535 OctA-DabDab(Hdf)(Hdf)DabF(Hdf)DabDabPLDabLLDab-NH2 1641.06 - 1869.16 1673.14 - 1867.79
CMP1536 OctA-DabDab(Hdf)(Hdf)DabI(Hdf)DabDabPLDabLLDab-NH2 1607.08 - 1835.17 1600.98 - 1823.51
CMP1537 OctA-DabDab(Hdf)(Hdf)DabL(Hdf)DabDabPLDabLLDab-NH2 1593.06 - 1821.16 1648.17 - 1823.75
CMP1538 OctA-DabDab(Hdf)(Hdf)DabV(Hdf)DabDabPLDabLLDab-NH2 1607.09 - 1835.17 1643.14 - 1858.92
CMP1539 OctA-DabDab(Hdf)(Hdf)Dab(Hdf)ADabDabPLDabLLDab-NH2 1565.03 - 1792.12 1594.93 - 1803.68
CMP1540 OctA-DabDab(Hdf)(Hdf)Dab(Hdf)FDabDabPLDabLLDab-NH2 1641.06 - 1869.16 1675.67 - 1893.76
CMP1541 OctA-DabDab(Hdf)(Hdf)Dab(Hdf)IDabDabPLDabLLDab-NH2 1607.08 - 1835.17 1635.90 - 1829.84
CMP1542 OctA-DabDab(Hdf)(Hdf)Dab(Hdf)LDabDabPLDabLLDab-NH2 1593.06 - 1821.16 1590.73 - 1832.18
CMP1543 OctA-DabDab(Hdf)(Hdf)Dab(Hdf)VDabDabPLDabLLDab-NH2 1607.09 - 1835.17 1623.07 - 1847.86
CMP1601 OctA-DabDabAFDabLADabDabPLDabLLDab-NH2 1683.11 1682.44
CMP1602 OctA-DabDabAFDabVADabDabPLDabLLDab-NH2 1669.09 1668.53
CMP1603 OctA-DabDabAFDabVVDabDabPLDabLLDab-NH2 1697.12 1696.54
CMP1604 OctA-DabDabVFDabVADabDabPLDabLLDab-NH2 1697.12 1699.56
CMP1701 OctA-SDabALDabLADabDabPLDabLLDab-NH2 1636.09 1638.79
CMP1702 OctA-DabSALDabLADabDabPLDabLLDab-NH2 1636.09 1638.56
CMP1703 OctA-DabDabALSLADabDabPLDabLLDab-NH2 1636.09 1635.86
CMP1704 OctA-DabDabALDabLASDabPLDabLLDab-NH2 1636.09 1635.13
CMP1705 OctA-DabDabALDabLADabSPLDabLLDab-NH2 1636.09 1635.09
CMP1706 OctA-DabDabALDabLADabDabPLSLLDab-NH2 1636.09 1642.02
CMP1707 OctA-DabDabALDabLADabDabPLDabLLS-NH2 1636.09 1636.40
CMP1708 OctA-DabDabALDabLADabDabPLSLLS-NH2 1623.06 1622.85
CMP1709 OctA-DabDabAFDabVADabDabPLSLLDab-NH2 1655.06 1655.98
실시예 1. CMP1203 및 CMP1301 내지 CMP1314 펩타이드의 감응 효과 확인(MIC assay)
본 실시예에서는 CMP1203 및 CMP1301 내지 CMP1314의 감응 효과를 확인하고자 하였다(도 1a : 각 펩타이드가 기재됨).
농도 0.4 uM의 각 펩타이드를 2종의 그람 양성 항생제 Erythromycin, Novobiocin과 함께 사용하여 Acinetobacter baumannii ATCC 17978에 대한 효과를 확인하였다(MIC assay). Acinetobacter baumannii는 광범위 항균제 내성을 갖고 있으며 습기가 적은 환경에서도 오랫동안 살아남을 수 있어 병원내에서 감염될 확률이 높은 인간 감염균으로서, 흔히 기회 감염균으로 분류되는 그람-음성균이다. 각각의 그람 양성 항생제를 단독으로 사용하였을 때의 각 항생제의 MIC와 비교하여, 각 펩타이드와 함께 사용하였을 때의 각 항생제의 MIC 감소 정도(Fold reduction of MIC)를 측정하였다.
모든 MIC assay 실험은 CLSI (Clinical and Laboratory Standards Insitutute) 지침을 사용하여 수행되었다(Clinical & Laboratory Standards Institute: CLSI Guidelines, 2017). 밤새 배양한 박테리아 세포를 Muller Hinton II Broth (양이온 조절) (Difco)에서 McFarland (Kit densicheck plus instrument, Biomerieux)를 사용하여 0.05 McFarland 표준으로 희석시켰다. 세포를 96 웰 플레이트에서 각 웰의 200 μL 용액 당 1.5 x 105 CFU로 접종하였다. 2배 연속 희석된 농도를 사용하여 펩타이드와 항생제를 제조하였다. 불용성 항생제의 경우 2.5 % (v/v) DMSO를 사용하여 박테리아 성장에 영향을 주지 않는 조건에서 실험을 진행하였다. 37℃에서 18 시간 배양한 후 EPOCH2 마이크로 플레이트 리더 (BioTek, Winooski, USA)를 사용하여 600nm에서 흡광도를 측정하여 MIC 값을 계산하였다. MIC 값은 양성 대조군의 10 % 성장보다 낮은 박테리아 성장을 억제하는 항생제 또는 펩타이드의 농도로 정의되었다. Fold reduction은 아래 식을 이용하여 계산하였다.
Fold reduction = 항생제 단독 MIC / 감응 펩타이드 존재 하에 항생제의 MIC
그 결과를 도 1에 나타내었다.
Erythromycin과 함께 사용시, CMP1203 및 CMP1301 내지 CMP1314 모두 Erythromycin의 사용량을 2배 이상 감소시키는 것이 확인되었다(도 1b). 특히 CMP1203과 비교하여 류신을 보다 소수성이 낮은 알라닌으로 치환한 경우(CMP1303, CMP1304, CMP1307, CMP1310, CMP1312, CMP1313), 높은 감응 효과를 나타내어, 약 4배 내지 8배의 MIC 감소 효과를 나타내었고, 특히 CMP1303 및 CMP1307은 8배의 높은 감응 효과를 나타내었다.
Novobiocin의 경우에도, 본 발명의 모든 펩타이드는 Novobiocin 단독 사용시보다 그 사용량을 감소시키는 것이 확인되었다(도 1c). 특히 CMP1203과 비교하여 류신을 알라닌으로 치환한 경우, 특히 CMP1303과 CMP1307에서 약 7배 내지 16배의 높은 감응 효과를 나타내었다.
실시예 2. CMP1303, CMP1307, CMP1310, CMP1315, CMP1317 펩타이드의 감응 효과 확인(MIC assay)
본 실시예에서는 0.31 uM 농도에서의 각 펩타이드의 감응 효과를 확인하고자 하였다. 펩타이드로서 CMP1303, CMP1307, CMP1310, CMP1315, CMP1317을 선택하였다. 특히 실시예 1에서는 펩타이드 CMP1301 및 CMP1307이 A. baumannii ATCC 17978에서 Erythromycin, Novobiocin 항균제에 대한 감응 능력이 우수함이 확인되었기에, 본 실시예에서는 추가적으로 펩타이드 CMP1315 및 CMP1317을 사용하여 이들의 Fusidic acid에서의 감응 효과를 확인하고자 하였다.
펩타이드 농도를 0.31 μM로 한 것을 제외하고는 실시예 1과 동일한 MIC assay 방법을 이용하였다. 그 결과를 도 2에 나타내었다.
본 발명의 펩타이드와 Fusidic acid를 함께 사용한 경우, Fusidic acid를 단독으로 사용한 경우와 비교하여, MIC 농도가 모두 감소하였다.
실시예 3. HexA로 지방화된 펩타이드의 감응 효과 확인(MIC assay)
본 실시예에서는 펩타이드 N-말단을 Hexanoic acid(HexA)로 지방화한 펩타이드를 사용하여 항균제 3종 Novobiocin, Rifampicin, 또는 Fusidic acid과 함께 사용시의 감응 효과를 관찰하였다. 펩타이드 농도를 0.31 μM로 한 것을 제외하고는 실시예 1과 동일한 MIC assay 방법을 이용하였다. 그 결과를 도 3에 나타내었다.
본 발명의 펩타이드와 위 항균제들을 함께 사용한 경우, 항균제 단독으로 사용한 경우와 비교하여, MIC 농도가 모두 감소하였다. 특히 펩타이드 CMP1406의 경우 농도 0.31 μM (0.56 μg/ml)에서 Novobiocin의 경우 8배, Rifampicin의 경우 8배, Fusidic acid의 효과가 32배 더 강한 감응효과가 관찰되었다.
실시예 4. 다양한 지방산으로 지방화된 펩타이드의 감응 효과 확인(MIC assay)
본 실시예에서는 실시예 3에서 저농도에서 우수한 감응 효과를 나타내는 것으로 확인된 펩타이드 CMP1406와 동일한 아미노산 서열을 가지면서, N-말단에 다양한 길이의 지방산으로 지방화된 펩타이드에 대한 감응 효과를 관찰하였다. 실시예 3과 동일한 MIC assay 방법을 이용하였다. 그 결과를 도 4에 나타내었다.
본 발명의 펩타이드와 위 항균제들을 함께 사용한 경우, 항균제 단독으로 사용한 경우와 비교하여, MIC 농도가 모두 감소하였다. 특히 펩타이드 CMP1401의 경우, 항균제 단독으로 사용한 경우에 비해 Novobiocin의 경우 16배, Rifampicin의 경우 64배, Fusidic acid의 효과가 250배의 더 강한 반응이 관찰되었다.
실시예 5. 공지된 감응성 펩타이드와 CMP1401 또는 CMP1501의 감응 효과 비교 (MIC assay)
실시예 1과 동일한 MIC assay 방법을 이용하여, E. coli ATCC 25922에서 기존의 항균제에 대해 기존 감응성 AMP로 공지된 펩타이드 L9P (CMP1107, 1ug/ml)와 CMP1401(1 ug/ml)의 감응 효과를 비교하였다(도 5a).
또한 MIC 스크리닝을 통해 E. coli ATCC 25922에서 기존의 항균제에 대한 경쟁 약물 SPR741과 펩타이드 CMP1401, CMP1501의 감응 효과를 비교하였다(도 5b 및 5c). SPR741은 기존에 공지된 polymyxin B (PMB) 유사체인 감응성 AMP로서, 전임상 실험을 통해 기존 그람-양성균 항생제와 함께 사용시 그람-음성균에 효과가 있음이 확인된 바 있는 약물이다.
그 결과 본 발명의 펩타이드 CMP1401은 기존 공지된 펩타이드 L9P에 비해 매우 우수한 감응 효과를 나타내었다(도 5a). 나아가 SPR741과 비교하더라도 이와 본 발명의 펩타이드 CMP1401 또는 CMP1501은 거의 동등하거나 훨씬 우수한 감응 효과를 나타냄이 확인되었다(도 5b 및 5c). 특히 SRP741에 비해 농도를 절반으로 감소시키더라도 그 효과는 동등하거나 더 우수함이 확인되었다(도 5c).
실시예 6. 임상균주에서의 CMP1401의 감응 효과 (MIC50 및 MIC90)
A. baumannii 임상균주에서 기존의 항균제 Rifampicin, Colistin, Clarithromycin, Tedizolid, 또는 Linezolid를 단독으로 사용하였을 경우와 CMP1401 4 ug/ml와 병용으로 사용했을 때의 MIC50 및 MIC90 값을 구하였다. 각 항균제 그룹 당 100개의 A. baumannii 임상균주가 사용되었으며, Carbapenem 저항성 균주와 감수성 균주를 각각 50균주씩 선별하였다.
그 결과를 도 6에 나타내었다. 도 6에서 "Fold reduction of MIC90"은 항균제 단독 사용하였을 때의 MIC90과 비교한 CMP1401 사용시의 MIC90의 값을 나타낸다.
이로부터 본 발명의 펩타이드 CMP1401은 항균제 단독 사용과 비교하여 최소 4배 이상, 많게는 128배의 감응 효과를 나타냈음을 알 수 있다.
실시예 7. CMP1501, CMP1601 내지 CMP1604의 펩타이드의 감응 효과 (MIC assay)
실시예 1과 동일한 MIC assay 방법을 이용하여, E. coli ATCC 25922에서 Rifampicin 및 Linezolid에 대해 CMP1501, CMP1601 내지 CMP1604의 감응 효과를 확인하였다(도 7).
그 결과 CMP1501, CMP1601 내지 CMP1604는 0.5 ug/ml의 낮은 농도에서도 우수한 감응 효과를 나타내었다.
실시예 8. CMP1701 내지 CMP1709 펩타이드의 감응 효과 (MIC assay)
실시예 1과 동일한 MIC assay 방법을 이용하여, 4종 그람-음성균주 (A.b. ATCC 17978, K.p. ATCC 700603, E.c. ATCC 25922, P.a. ATCC 27853)에서의 Rifampicin에 대한 CMP1701 내지 CMP1709의 감응 효과를 확인하였다(도 8). ATCC 17978, K.p. ATCC 700603, E.c. ATCC 25922, A.b.에 대해 사용된 펩타이드의 농도는 0.5 ug/mL, P.a. ATCC 27853에 대해 사용된 펩타이드의 농도는 1.0 ug/mL이었다.
그 결과 위 펩타이드들은 모두 낮은 농도에서 우수한 감응 효과를 나타냄이 확인되었다. 특히 CMP1709의 경우 4종의 그람-음성균에서 Rifampicin 단독 사용과 비교하여 약 8배 내지 120배 이상의 높은 감응 효과를 나타냈다.
실시예 9. 공지된 감응성 펩타이드와 CMP1401 또는 CMP1709의 감응 효과 비교 (MIC assay)
실시예 1과 동일한 MIC assay 방법을 이용하여, 4종 그람-음성균주 E.c. ATCC 25922, A. b. ATCC 17978, K.p. ATCC 700603, P.a. ATCC 27853 또는 CRE (E.c. NDM-1, K.p. NDM-1, K.p. KPC)에서 Rifampicin 또는 Colistin에 대한 기존 감응성 AMP L9P (CMP1107)와 CMP1401 또는 CMP1709의 감응 효과를 비교하였다(도 9 및 도 10).
그 결과 본 발명의 펩타이드 CMP1401 또는 CMP1709는 기존 공지된 펩타이드 L9P에 비해 매우 우수한 감응 효과를 나타내었다.
실시예 10. 임상균주에서의 CMP1709의 감응 효과 (MIC50 및 MIC90)
E. coli , K. pneumoniae , P. aeruginosa , E. cloacae , C. freundii , S. marcescens 임상균주에서 기존의 항균제 Rifampicin 또는 Colistin을 단독으로 사용하였을 경우와 CMP1709 4 ug/ml와 병용으로 사용했을 때의 MIC50 및 MIC90 값을 구하였다. E. coli , K. pneumoniae , E. cloacae , C. freundii , S. marcescens 임상균주는 모두 Carbapenem 저항성 균주를 선별하였고, P. aeruginosa 임상균주는 Imipenem, Meropenem 저항성 균주 43균주, 감수성 균주 60균주를 선별하였다.
그 결과를 도 11에 나타내었다(Colistin에 대한 결과 미기재). 도 11에서 "Fold reduction of MIC90"은 항균제 단독 사용하였을 때의 MIC90과 비교한 CMP1709 사용시의 MIC90의 값을 나타낸다. 이로부터 본 발명의 펩타이드 CMP1709는 항균제 단독 사용과 비교하여 최소 2배 이상, 많게는 1024배의 감응 효과를 나타냈음을 알 수 있다. Colistin을 사용한 경우에도, E.Coli 균주, E.Cloacae 균주에서 2배의 감응 효과를 나타내었다(도 11에 결과 미기재).
실시예 11. 펩타이드의 막 파괴능 확인(Enzyme assay)
Enzyme assay를 통해 그람-음성균의 외막과 내막을 감응성 펩타이드가 파괴하는지 관찰하였다. 감응성 펩타이드의 존재 하에, Inner membrane에 대해서는 1.5 mM ONPG와 함께 E. coli ATCC 25922로부터의 β-galactosidase 방출을 관찰하였고, Outer membrane에 대해서는 200 μM CENTA와 함께 E. coli NDM-1로부터의 β-lactamase 방출을 관찰하였다.
구체적으로, 외막의 leakage를 결정하기 위해, 외막으로부터 방출된 β-lactamase의 활성을 평가하였다. 뉴델리 메탈로-β-락타메이즈-1 (NDm-1) 생산 대장균 세포를 DPBS로 3회 세척하고 동일한 완충액에 현탁시켰다. 세포를 0.2의 OD600으로 희석하고 37 ℃에서 1 시간 동안 0.63 또는 1.30 uM의 펩타이드 농도로 처리하였다. 원심 분리후, 상층액을 200μM의 CENTATM β-lactamase 기질과 함께 37 ℃에서 1시간 동안 배양하였다. 광학 밀도는 마이크로 플레이트 리더 (Molecular Devices Co., Menlo Park, CA)를 사용하여 405 nm에서 효소반응 산물의 흡광도를 측정하였다.
내막 leakage를 결정하기위해 세포질 효소 β-galactosidase의 방출을 평가하였다. 박테리아를 OD600 = 1로 희석하고 1.5 mM의 ONPG (O-니트로페닐-β-D-갈락토파이라노사이드)를 첨가하였다. 효소 반응 산물의 흡광도는 420 nm에서 측정하였다. 그 외 다른 과정은 외막 파괴 실험과 동일하게 진행하였다.
그 결과를 도 12에 나타내었다. y 축은 405 nm에서 측정된 흡광도로서 막이 파괴되어 β-lactamase의 방출이 높을수록 높은 흡광도를 나타낸다.
박테리아의 Inner membrane과 Outer membrane을 모두 파괴하는 작용기전을 갖는 것으로 알려진 Melittin은 세균의 Inner membrane과 Outer membrane을 모두 파괴하는 것이 관찰되었다. 이에 반해, CMP1407과 CMP1401은 기존 공지된 감응성 펩타이드로서 그람-음성균의 막을 파괴하지 않는 것으로 알려진 L9P(CMP1107)과 비교하여 거의 동등한 수준으로 이들 막을 파괴하지 않는 것이 확인되었다.
실시예 12. 펩타이드의 독성 분석 (Hemolysis assay)
펩타이드의 독성을 확인하기 위해 인간 적혈구(hRBC) 용혈 활성 분석(Hemolysis assay)을 실시하였다.
구체적으로, 인간 적혈구 (hRBC)의 용혈 백분율은 양성 대조군으로서 100% 탈 이온수(DW)에서 배양된 세포와 음성 대조군으로서 펩타이드가 없는 PBS와 비교하여 결정되었다. hRBC를 500g에서 5 분 동안 원심 분리를 사용하여 PBS로 3 회 세척하고 PBS 완충액 (Hyclone)에 5 % (v/v) 헤마토크릿을 현탁시켰다. 펩타이드를 PBS로 2 배 연속 희석을 사용하여 희석하고 2.5 x 108 hRBC를 각 웰에 첨가하였다. 시료를 37 ℃에서 4 시간 동안 배양하였음. 1400rpm에서 5분간 원심 분리한 후 180μL의 상청액을 투명한 평평한 바닥 96 웰 플레이트에 옮겼다. 펩타이드에 의해 방출되는 헤모글로빈의 양을 EPOCH2 마이크로 플레이트 판독기 (BioTek, Winooski, USA)를 사용하여 405 nm에서 흡광도로 측정하여 결정하였다.
용혈 활성 (%) = (시료의 흡광도 - PBS의 흡광도) / (100% DW의 흡광도 - PBS의 A405) X 100
그 결과를 도 13에 나타내었다. 낮은 농도에서부터 hRBC의 용혈 현상이 나타난 Melittin과는 달리, 본 발명의 펩타이드는 CMP1407을 제외하고는 그 용혈의 수준이 매우 미미하였다.
실시예 13. 펩타이드의 독성 분석 (WST-1 assay)
본 실시예에서는 숙주 세포 HeLa cell 또는 HK-2 cell에 대한 WST-1 분석을 통해 숙주 세포의 생존율을 측정하여 펩타이드의 독성을 확인하였다.
구체적으로 HeLa cell을 DMEM에서 HK-2는 RPMI에서 37 ℃, 5% CO2 조건에서 배양하였다. 세포 배양용 플레이트에서 세포를 각각 배양한 뒤 Trypsin으로 떼어내고, 96 well plate에 well 당 각각 1x104, 7x103개의 세포를 시딩하였다. 24시간 뒤 media에 2-fold dilution으로 희석한 펩타이드를 첨가하고 다시 37 ℃, 5% CO2 조건에서 24시간 동안 배양하였다. WST-1 시약을 well 당 10 uL 씩 넣어주고 37 ℃, 5% CO2 조건에서 30분 동안 반응을 시킨 뒤 96-well plate reader기로 UV 흡광도를 450/700 nm에서 측정하였다.
그 결과를 도 14에 나타내었다. 본 발명의 펩타이드는 모두 높은 농도에서도 높은 세포 생존율을 나타내었다.
실시예 14. Rifampicin과 CMP1401의 병용 요법의 생체 내 효능 분석 (CMP1401의 In vivo test)
마우스 모델을 이용하여 펩타이드 CMP1401 및 Rifampicin (Rif) 단독 및 병용 요법의 생체 내 효능을 분석하였다.
14.1 Neutropenic mouse pneumoniae 마우스 모델(면역억제 마우스 A. baumannii 801 폐렴 감염 생존 모델)을 이용한 실험
체중이 23 ~ 27g인 6 주된 암컷 ICR (CD-1) 마우스 (대한민국 성남 오리엔트 바이오)를 면억 억제(neutropenic)를 유도하기 위해, 폐렴 감염 4일 및 1일 전에 각각 150 mg/kg 및 100 mg/kg의 cyclophosphamide (CP)로 처리하였다(피하주사). 생존율 분석을 위한 마우스 모델의 경우 1 x 108 CFU A. baumannii 801를, 콜로니 수 계수를 위한 마우스 모델의 경우 1 x 106 CFU A. baumannii 801를 비강 내로 감염시켰다.
생존율 분석
Neutropenic mouse pneumoniae 마우스 모델에서 Rifampicin, CMP1401 펩타이드의 병용투여 효과를 확인하였다.
Rifampicin를 캐리어 (10% TWEEN80, 5% DMSO 및 85% 식염수)에 용해시켜 사용하였다. Rifampicin을 2일 동안 매일 2회씩 피하 주사로 투여하였다(2.5 mg/kg BID). 본 발명의 감응성 펩타이드 CMP1401을 2일 동안 매일 4회씩 복강 내 주사로 투여하였다(25 mg/kg QID). 각 그룹 당 6마리의 마우스가 사용되었다. 병용투여군과 rifampicin 단독투여군의 p 값을 구하기 위해 Mantel-Cox test가 사용되었다.
그 결과는 도 15a에 나타난 바와 같이, Rifampicin 2.5 mg/kg 단독 처리 군에서의 생존율은 약 16.7%였으며, 2.5 mg/kg의 Rifampicin과 25 mg/kg의 펩타이드 CMP1401을 병용 투여한 군의 생존율은 50%로 Rifampicin 단독 투여군보다 약 33.3% 높았다. 펩타이드 CMP1401 단독 투여군은 모든 마우스가 죽었기 때문에 어떠한 항균 활성도 나타나지 않았다.
콜로니 수 측정
Neutropenic mouse pneumoniae 마우스 모델에서 생존율에 추가로, 마우스 폐에서 A. baumannii 801의 콜로니 수를 측정하였다. 마우스를 안락사시키고 폐를 멸균된 식염수에서 수확하였다. 폐를 균질화하고 멸균된 식염수에 연속 희석하였다. 균질화 된 폐를 Trypticsoy 아가 플레이트에 도포하고 37 ℃에서 밤새 배양하고 콜로니를 계수하였다. 병용투여군과 rifampicin 단독 투여군의 p 값을 구하기 위해 two-sided Man Whiteny U-test가 사용되었다(*: p<0.05, **: p<0.005). 각 그룹 당 6마리의 마우스가 사용되었다.
그 결과는 도 15b에 나타낸 바와 같이, Rifampicin 2.5 mg/kg 및 펩타이드 CMP1401 25 mg/kg 병용 투여군의 콜로니 수는 Rifampicin 2.5 mg/kg을 단독으로 투여한 군보다 약 12배 더 낮았다. 또한, Rifampicin과 CMP1401의 병용 투여군은 비처리 군(control)에 비해 약 60배 적은 콜로니 수를 나타내었다. Rifampicin과 CMP1401의 병용 투여군은 Rifampicin과 SPR741의 병용투여군에 비해서도 30배 더 적은 콜로니 수를 나타내었다.
14.2 Neutropenic mouse thigh 마우스 모델을 이용한 실험
체중이 23 ~ 27g 인 6 주된 암컷 ICR (CD-1) 마우스 (대한민국 성남 오리엔트 바이오)를 면억 억제(neutropenic)를 유도하기 위해, 허벅지 감염 5일 및 2일 전에 각각 150 mg/kg 및 100 mg/kg의 cyclophosphamide (CP)로 처리하였다(피하주사). A. baumannii ATCC 17978을 수확하고, 세척하고 멸균된 식염수에 현탁시켰다. 마우스를 마취시키고 오른쪽 및 왼쪽 허벅지에서 1 x 105 CFU A. baumannii ATCC 17978 로 감염시켰다. Rifampicin 20 mg/kg은 감염 후 1 시간 및 5 시간에 피하 주사로 투여되었다. 감응성 펩타이드 CMP1401은 감염 후 1, 3, 5 및 7 시간에 복강 내 주사로 투여되었다. 마우스를 박테리아 주입 9시간 후 안락사시키고 양쪽 허벅지를 수확하고 멸균된 식염수에 현탁시켰다. 허벅지를 균질화하고 멸균 식염수로 연속 희석하였다. 균질화 된 허벅지를 Trypticsoy 아가 플레이트에 도포한 뒤 37 ℃에서 밤새 배양하고 콜로니를 계수하였다. 병용투여군과 rifampicin 단독 투여군의 p 값을 구하기 위해 two-sided Man Whiteny U-test가 사용되었음. (*: p<0.05)
그 결과를 도 15c에 나타내었다. A. baumannii ATCC 17978로 감염된 Neutropenic mouse thigh 모델에서 Rifampicin과 펩타이드 CMP1401 병용 요법은 우수한 치료 효능을 나타냈다. 펩타이드 CMP1401을 Rifampicin 20 mg/kg의 존재 하에 100 mg/kg으로 투여했을 때, 콜로니 수는 Rifampicin 단독 투여에 비해 14배 감소했다. 또한, 20 mg/kg의 Rifampicin 존재 하에 병용 투여군에서 펩타이드 CMP1401의 용량이 변경되었을 때 콜로니 수의 변화가 관찰되었다. 펩타이드 CMP1401를 50 mg/kg 단독 투여했을 때 콜로니 수의 변화는 관찰되지 않았으며, 이는 펩타이드 CMP1401가 자체 항균 활성보다는 Rifampicin의 항균 능력을 향상시킨다는 것을 나타낸다.
실시예 15. Rifampicin 또는 Colistin과 CMP1401의 병용 요법의 생체 내 효능 분석 (CMP1401의 In vivo test)
본 실시예에서는 면역억제 Rat A. baumannii 801 폐렴감염 모델에서 Rifampicin 또는 Colistin과의 병용 투여 효과를 확인하고자 하였다.
실시예 14.1에서 콜로니 수 계수 실험 방법을 이용하되, 마우스 대신 SD mal Rat를 각 그룹 당 3마리씩 사용하였으며, A. baumannii 801을 기도로 감염시킨 뒤 Colistin 또는 Rifampicin은 피하 주사로 CMP1401은 1시간 정맥주사 infusion으로 투여하였다. 그 결과를 도 16에 나타내었다.
Colistin 32 mg/kg은 A. baumannii 801의 치료를 위해 사용되는 임상 용량으로 알려져 있다. 따라서 Colistin 32 mg/kg을 단독으로 사용하였을 때 확인되는 효과는 본 실시예에서 CMP1401과 항균제 병용 투여의 유효성 여부를 비교하는 기준이 될 수 있다.
도 16의 결과에 따르면, Rifampicin과 CMP1401을 병용 투여한 경우, 특히 Rifampicin 5 mg/kg과 CMP1401 3 mg/kg 또는 6 mg/kg을 병용 투여한 경우, Colistin 32 mg/kg와 필적할 만한 효과를 나타냄이 확인되었다. 이에 따라 본 발명의 펩타이드는 Rifampicin과 함께 사용시 임상적으로 유효한 효과를 나타냄이 확인되었다.
실시예 16. Rifampicin과 CMP1709의 병용 요법의 생체 내 효능 분석 (CMP1709의 In vivo test)
Neutropenic mouse thigh 마우스 모델(면역억제 마우스 E. coli NDM -1 허벅지 감염 모델)을 이용하여 펩타이드 CMP1401 및 Rifampicin (Rif) 단독 및 병용 요법의 생체 내 효능을 분석하였다. 실시예 14.2와 동일한 방법으로 실험하였다.
그 결과를 도 17에 나타내었다. E. coli NDM - 1으로 감염된 Neutropenic mouse thigh 모델에서 Rifampicin과 펩타이드 CMP1709 병용 요법은 우수한 치료 효능을 나타냈다. 펩타이드 CMP1709를 Rifampicin 20 mg/kg의 존재 하에 75 mg/kg으로 투여했을 때, 콜로니 수는 Rifampicin 단독 투여에 비해 8.7배 감소했다. 또한, 20 mg/kg의 Rifampicin 존재 하에 병용 투여군에서 펩타이드 CMP1709의 용량이 변경되었을 때 콜로니 수의 변화가 관찰되었다. 펩타이드 CMP1709를 단독 투여했을 때 콜로니 수의 변화는 관찰되지 않았으며, 이는 펩타이드 CMP1709가 자체 항균 활성보다는 Rifampicin의 항균 능력을 향상시킨다는 것을 나타낸다.

Claims (20)

  1. 하기 화학식 1로 표시되는 펩타이드 또는 펩타이드 유사체:
    <화학식 1>
    X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15
    상기식에서,
    X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 친수성 아미노산 또는 비단백질성 아미노산(non-proteinogenic amino acids)이고, 단 이들 중 하나 이상은 Ala 또는 Ser일 수 있고,
    X3, X4, X6, X7, X11, X13 또는 X14 각각 독립적으로 소수성 아미노산 또는 이들의 혼합물이고,
    X10은 Pro이고,
    X1 내지 X15 중 어느 하나의 위치에서 C6 내지 C16 지방산이 결합될 수 있고,
    X1은 N-말단이고 X15는 C-말단이다.
  2. 제1항에 있어서,
    X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys, Arg, His, 및 이의 유도체로부터 선택되는 친수성 아미노산 또는 2,3-디아미노프로피온산(Dap), 2,4-디아미노부탄산(Dab), 또는 오르니틴(Orn)이고, 단 이들 중 하나 이상은 Ala 또는 Ser일 수 있고;
    X3, X4, X6, X7, X11, X13 및 X14는 각각 독립적으로 Leu, Ala, Ile, Phe, Val, Trp, 또는 Tyr로부터 선택되는 소수성 아미노산 또는 Hdf이고, 여기서 Hdf는 Leu, Ala, Val, Ile, 및 Phe을 동일한 양으로 포함하는 아미노산 혼합물인,
    펩타이드 또는 펩타이드 유사체.
  3. 제2항에 있어서, X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys, Ala, Ser, 또는 2,4-디아미노부탄산(Dab)인, 펩타이드 또는 펩타이드 유사체.
  4. 제2항에 있어서, X3, X4, X6, 및 X7은 각각 독립적으로 Leu, Ala, Val, Ile, Phe, 또는 Hdf인, 펩타이드 또는 펩타이드 유사체.
  5. 제2항에 있어서, X11, X13, 및 X14는 각각 독립적으로 Leu 또는 Ala인, 펩타이드 또는 펩타이드 유사체.
  6. 제2항에 있어서, X1의 위치에서 C6 내지 C12 지방산이 결합되어 있는 것인, 펩타이드 또는 펩타이드 유사체.
  7. 제2항에 있어서,
    X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys이고,
    X3, X4, X6, X7, X11, X13 및 X14는 각각 독립적으로 Leu인,
    펩타이드 또는 펩타이드 유사체.
  8. 제2항에 있어서,
    X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys 또는 Ala이고,
    X3, X4, X6, X7, X11, X13 및 X14는 각각 독립적으로 Leu, Ala 또는 Val이고,
    단 X10을 제외한 X1 내지 X15 중 하나 이상은 Ala 또는 Val인,
    펩타이드 또는 펩타이드 유사체.
  9. 제2항에 있어서,
    X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys이고,
    X3, X7, 및 X11은 각각 독립적으로 Leu, Ala, 또는 Val이고,
    X4, X6, X13, 및 X14 각각 독립적으로 Leu이고,
    X1의 위치에서 C6 내지 C12 지방산이 결합되어 있는 것인,
    펩타이드 또는 펩타이드 유사체.
  10. 제2항에 있어서,
    X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Dab이고,
    X3, X4, X6, 및 X7은 각각 독립적으로 Leu, Ala, Ile, Phe, Val, 또는 Hdf이고, 이 때 X3, X4, X6, 및 X7 중 둘 이상은 각각 독립적으로 Ala, Ile, Phe, Val, 또는 Hdf이고,
    X11, X13, 및 X14 각각 독립적으로 Leu이고,
    X1의 위치에서 C8 또는 C12 지방산이 결합되어 있는 것인,
    펩타이드 또는 펩타이드 유사체.
  11. 제2항에 있어서,
    X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Dab이고,
    X3, X4, X6, 및 X7은 각각 독립적으로 Leu, Ala, Phe, 또는 Val이고, 이 때 X3, X4, X6, 및 X7 중 셋 이상은 각각 독립적으로 Ala, Phe, 또는 Val이고,
    X11, X13, 및 X14 각각 독립적으로 Leu이고,
    X1의 위치에서 C8 지방산이 결합되어 있는 것인,
    펩타이드 또는 펩타이드 유사체.
  12. 제2항에 있어서,
    X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Dab 또는 Ser이고, 이 때 X1, X2, X5, X8, X9, X12, 및 X15 중 하나 이상은 각각 독립적으로 Ser이고,
    X3 및 X7은 각각 독립적으로 Ala이고,
    X4 및 X6은 각각 독립적으로 Leu, Phe 또는 Val이고,
    X11, X13, 및 X14 각각 독립적으로 Leu이고,
    X1의 위치에서 C8 지방산이 결합되어 있는 것인,
    펩타이드 또는 펩타이드 유사체.
  13. 제2항에 있어서,
    X1, X2, X5, X8, X9, X12, 및 X15는 각각 독립적으로 Lys, Ala, Ser, 또는 Dab이고,
    X3, X4, X6, 및 X7은 각각 독립적으로 Leu, Ala, Val, Ile, Phe, 또는 Hdf이고,
    X10은 Pro이고,
    X11, X13, 및 X14는 각각 독립적으로 Leu 또는 Ala이고,
    X1의 위치에서 C6 내지 C12 지방산이 결합될 수 있는 것인,
    펩타이드 또는 펩타이드 유사체.
  14. 서열번호 1 내지 67 중 어느 하나의 아미노산 서열을 포함하는 것을 특징으로 하는, 펩타이드 또는 펩타이드 유사체.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 펩타이드 또는 펩타이드 유사체 및 약물을 포함하는, 항균용 약학 조성물.
  16. 제15항에 있어서, 상기 약학 조성물은 그람-음성균에 대한 항균 활성을 나타내는 것인, 항균용 약학 조성물.
  17. 제16항에 있어서, 상기 그람-음성균은 이.콜라이(E. coli), 아시네박토 바우마니(Acinetobacter baumannii), 클렙시엘라 뉴모니아(Klebsiella pneumoniae), 슈도모나스 애루지노사(Pseudomonas aeruginosa), 엔테로박터 클로아세(Enterobacter cloacae), 시트로박터 프룬디(Citrobacter freundii), 세라티아 마르세센스(Serratia marcescens)로 이루어지는 군에서 선택된 하나 이상인, 항균용 약학 조성물.
  18. 제17항에 있어서, 상기 약물은 에리트로마이신(Erythromycin), 노보바이오신(Novobiocin), 푸시딘산(Fusidic acid), 리팜피신(Rifampicin), 리파믹신(Rifamixin), 클로록신(Chloroxine), 가티플록사신(Gatifloxacin), 로데플록사신(Lomefloxacin), 리파부틴(Rifabutin), 리파펜틴(Rifapentine), 답토마이신(Daptomycin), 니신(Nisin), 티제사이클린(Tigecycline), 아즈트레오남(aztreonam), 세프타지딤(Ceftazidime), 니트로푸라토인(Nitrofuratoin), 클로람페니콜(Chloramphenicol), 피닥소마이신(Fidaxomicin), 레타파뮬린(Retapamulin), 세페핌(Cefepime), 메실리남(Mecillinam), 메로페넴(Meropenem), 반코마이신(Vancomycin), 클라리트로마이신(Clarithromycin), 포스포마이신(Fosfomycin), 라모플라닌(Ramoplanin), 시프로플록사신(Ciprofloxacin), 젠타마이신(Gentamycin), 토브라마이신(Tobramycin), 리네졸리드(Linezolid), 텔리트로마이신(Telithromycin), 레보플록사신(Levofloxacin), 트리메토프림(Trimethoprim), 클린다마이신(Clindamycin), 날리딕신산(Nalidixic acid), 아지트로마이신(Azithromycin), 무피로신(Mupirocin), 답토마이신(daptomycin), Linezolid(리네졸리드), 니트로푸라토인(Nitrofuratoin), 피닥소마이신(Fidaxomicin), 아즈트레오남(Aztreonam), 렙타파물린(Retapamulin), 토브라마이신(Tobramycin), 테디졸리드(Tedizolid), 알바마이신(Albamycin), 오라노핀(Auranofin), 카피트롤(Capitrol), 트리클로산(Triclosan), 부토코나졸(Butoconazole), 미코나졸(Miconazole), 클리오퀴놀(Clioquinol), 라파티닙(Lapatinib), 소라페닙(Sorafenib), 블레오마이신(Bleomycin), 퀴네스트롤(Quinestrol), 아제트레오난(Azetreonam) 또는 콜리스틴(Colistin)인, 항균용 약학 조성물.
  19. 제15항에 있어서, 상기 펩타이드 또는 펩타이드 유사체 및 약물은 하나의 제제로 동시에 투여되거나, 또는 별개의 제제로 동시에 또는 순차적으로 투여되는 것인, 항균용 약학 조성물.
  20. 제1항 내지 제14항 중 어느 한 항에 따른 펩타이드 또는 펩타이드 유사체에 약물이 연결된 접합체.
PCT/KR2021/004232 2020-04-07 2021-04-05 신규한 항균 펩타이드 또는 펩타이드 유사체 및 이의 용도 WO2021206397A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21785260.7A EP4134092A1 (en) 2020-04-07 2021-04-05 Novel antibacterial peptide or peptide analog and use thereof
US17/917,283 US20230181678A1 (en) 2020-04-07 2021-04-05 Novel antibacterial peptide or peptide analog and use thereof
CN202180039766.9A CN115702160A (zh) 2020-04-07 2021-04-05 新型的抗菌肽或肽类似物及其用途
JP2022561680A JP2023521797A (ja) 2020-04-07 2021-04-05 新規の抗菌ペプチドまたはペプチド類似体およびこの用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0042340 2020-04-07
KR20200042340 2020-04-07

Publications (1)

Publication Number Publication Date
WO2021206397A1 true WO2021206397A1 (ko) 2021-10-14

Family

ID=78023603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004232 WO2021206397A1 (ko) 2020-04-07 2021-04-05 신규한 항균 펩타이드 또는 펩타이드 유사체 및 이의 용도

Country Status (6)

Country Link
US (1) US20230181678A1 (ko)
EP (1) EP4134092A1 (ko)
JP (1) JP2023521797A (ko)
KR (2) KR102381481B1 (ko)
CN (1) CN115702160A (ko)
WO (1) WO2021206397A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030061718A (ko) * 2003-05-27 2003-07-22 애니젠 주식회사 α-헬릭스 구조의 모델형 항균 펩타이드
KR20170033790A (ko) * 2015-09-17 2017-03-27 서울대학교산학협력단 그람 음성균에 대한 항균 활성을 나타내는 끊어진 또는 꺾어진 나선 펩타이드 또는 펩타이드 유사체 및 이의 용도
KR20180056226A (ko) * 2016-11-18 2018-05-28 군산대학교산학협력단 전복에서 유래한 항균 펩타이드 유사체 및 이를 포함하는 항균용 약학 조성물
US20190216939A1 (en) * 2016-07-01 2019-07-18 Si Chuan University Antimicrobial peptide derivative and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030061718A (ko) * 2003-05-27 2003-07-22 애니젠 주식회사 α-헬릭스 구조의 모델형 항균 펩타이드
KR20170033790A (ko) * 2015-09-17 2017-03-27 서울대학교산학협력단 그람 음성균에 대한 항균 활성을 나타내는 끊어진 또는 꺾어진 나선 펩타이드 또는 펩타이드 유사체 및 이의 용도
KR101811437B1 (ko) 2015-09-17 2018-01-25 서울대학교산학협력단 그람 음성균에 대한 항균 활성을 나타내는 끊어진 또는 꺾어진 나선 펩타이드 또는 펩타이드 유사체 및 이의 용도
US20190216939A1 (en) * 2016-07-01 2019-07-18 Si Chuan University Antimicrobial peptide derivative and use thereof
KR20180056226A (ko) * 2016-11-18 2018-05-28 군산대학교산학협력단 전복에서 유래한 항균 펩타이드 유사체 및 이를 포함하는 항균용 약학 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI YUNHWA: "Proline hinged amphipathic α-helical peptide enhances synergistic antimicrobial activity with various antibiotics by perturbing outer membrane of gram-negative bacteria.", MASTER'S THESIS, 1 December 2016 (2016-12-01), pages 1 - 45, XP055856625 *

Also Published As

Publication number Publication date
KR20210124923A (ko) 2021-10-15
CN115702160A (zh) 2023-02-14
EP4134092A1 (en) 2023-02-15
JP2023521797A (ja) 2023-05-25
US20230181678A1 (en) 2023-06-15
KR20220044468A (ko) 2022-04-08
KR102381481B1 (ko) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2020256387A1 (ko) Romo1 유래 항균 펩타이드 및 그 변이체
WO2018092955A1 (ko) 전복에서 유래한 항균 펩타이드 유사체 및 이를 포함하는 항균용 약학 조성물
WO2017222335A1 (ko) 그람음성 다제내성균에 대해 항생제와 상승적 항균 효과를 가지는 항생 펩타이드 및 이의 용도
US10201587B2 (en) Methods of inhibiting and treating biofilms using glycopeptide antibiotics
WO2015156649A1 (ko) 섬유증 억제 활성을 가지는 펩티드 및 이를 포함하는 조성물
KR20010085857A (ko) 글리코펩티드 유도체 및 그를 포함하는 약학적 조성물
JP2016527186A (ja) 異なった抗生物質と一緒の組合せ療法におけるポリミキシン誘導体及びその使用
US11046730B2 (en) Antimicrobial compositions
WO2017048028A1 (ko) 마이시니딘 펩타이드로부터 유래한 신규 항균 펩타이드 및 이의 용도
WO2018155997A1 (ko) 에리스로포이에틴 유래 펩티드의 세포손상방지에 효과를 통한 활용
WO2015174747A1 (ko) 신규한 항균성 화합물 및 이의 용도
WO2011149173A1 (en) Novel anticancer agents comprising peptides with cancer-specific toxicity
US7691807B2 (en) Hybrid oligomers, their preparation process and pharmaceutical compositions containing them
WO2021235876A1 (ko) 신규한 폴리펩타이드, 융합 폴리펩타이드, 및 이를 포함하는 그람음성균에 대한 항생제
WO2021206397A1 (ko) 신규한 항균 펩타이드 또는 펩타이드 유사체 및 이의 용도
WO2020197016A1 (ko) P s e u d i n -2 펩타이드로부터 유래한 신규 항균 펩타이드 및 이의 용도
KR101420849B1 (ko) 다제내성균에 높은 항균 효과를 보이는 프로태티아마이신 항균펩타이드 유도체 및 그 용도
WO2016093641A1 (ko) Adk 단백질을 유효성분으로 포함하는 항균용 조성물, 또는 패혈증의 예방 또는 치료용 조성물
WO2023090686A1 (en) Pentapeptide and use thereof
WO2015183002A2 (ko) 비단멍게 유래 항균 펩타이드의 신규한 유사체 및 그 용도
WO2017048092A1 (ko) 그람 음성균에 대한 항균 활성을 나타내는 끊어진 또는 꺾어진 나선 펩타이드 또는 펩타이드 유사체 및 이의 용도
WO2021210868A1 (ko) 신규한 알파나선형 양면성 세포 투과 펩타이드 및 이의 용도
WO2020013527A1 (ko) 항균 활성, 용혈 안정성 및 혈청 내 안정성이 증진된 항균 펩타이드 유도체
WO2022085925A1 (ko) 디펜신 유래 10량체 펩타이드를 유효성분으로 포함하는 패혈증의 예방 또는 치료용 조성물
WO2023090721A1 (ko) 그람음성균에 우수한 항균활성을 가지는 9량체 펩타이드 및 이의 거울상 이성질체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021785260

Country of ref document: EP

Effective date: 20221107