WO2023090364A1 - 係合装置 - Google Patents

係合装置 Download PDF

Info

Publication number
WO2023090364A1
WO2023090364A1 PCT/JP2022/042575 JP2022042575W WO2023090364A1 WO 2023090364 A1 WO2023090364 A1 WO 2023090364A1 JP 2022042575 W JP2022042575 W JP 2022042575W WO 2023090364 A1 WO2023090364 A1 WO 2023090364A1
Authority
WO
WIPO (PCT)
Prior art keywords
frictional engagement
engagement element
axial direction
rotating member
gear
Prior art date
Application number
PCT/JP2022/042575
Other languages
English (en)
French (fr)
Inventor
磯野宏
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Priority to EP22895645.4A priority Critical patent/EP4386226A1/en
Publication of WO2023090364A1 publication Critical patent/WO2023090364A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D28/00Electrically-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/24Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
    • F16D55/26Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
    • F16D55/36Brakes with a plurality of rotating discs all lying side by side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D67/00Combinations of couplings and brakes; Combinations of clutches and brakes
    • F16D67/02Clutch-brake combinations

Definitions

  • the present invention relates to an engagement device having a clutch mechanism and a brake mechanism.
  • Patent Document 1 An example of such an engagement device is disclosed in Patent Document 1 below.
  • reference numerals in Patent Document 1 are quoted in parentheses.
  • An engagement device (3) disclosed in Patent Document 1 includes a clutch mechanism (31) for selectively engaging a first rotating member (33) and a second rotating member (34), and a first rotating member ( 33) to the non-rotating member (35).
  • the clutch mechanism (31) includes a first friction engagement element (31b) connected to rotate integrally with the first rotating member (33), and a second rotating member (34) to rotate integrally. and a second friction engagement element (31a) connected to the
  • the brake mechanism (32) includes a third friction engagement element (32a) connected to rotate integrally with the first rotating member (33) and a fourth friction engagement element (32a) fixed to the non-rotating member (35). a coupling element (32b);
  • the engagement device (3) disclosed in Patent Document 1 moves the first frictional engagement element (31b) and the second frictional engagement element (31a) of the clutch mechanism (31) in the axial direction (see FIG. 2 of Patent Document 1).
  • a first pressing mechanism (72) that presses in the lateral direction
  • a second pressing that presses the third frictional engagement element (32a) and the fourth frictional engagement element (32b) of the brake mechanism (32) in the axial direction.
  • the clutch mechanism (31) and the brake mechanism (32) are arranged side by side in the radial direction (vertical direction in FIG. 2 of Patent Document 1).
  • the first pressing mechanism (72) is arranged on one side in the axial direction (the right side in FIG. 2 of Patent Document 1) with respect to the clutch mechanism (31).
  • the second pressing mechanism (77) is arranged on the other axial side (the right side in FIG. 2 of Patent Document 1) with respect to the brake mechanism (32).
  • an engagement device that can be downsized in a configuration that includes a clutch mechanism and a brake mechanism.
  • the characteristic configuration of the engagement device is a clutch mechanism that selectively engages the first rotating member and the second rotating member; a brake mechanism that selectively engages a target rotating member and a non-rotating member that are either one of the first rotating member and the second rotating member,
  • a pressing mechanism for changing the state of engagement of the clutch mechanism and the brake mechanism A direction along the rotation axis of the first rotating member is defined as an axial direction, one side of the axial direction is defined as a first axial side, and the other side of the axial direction is defined as a second axial side
  • the clutch mechanism includes a first frictional engagement element connected to rotate integrally with the first rotating member, and a second frictional engagement element connected to rotate integrally with the second rotating member.
  • the brake mechanism includes a third frictional engagement element coupled to rotate integrally with the target rotating member, and a fourth frictional engagement element fixed to the non-rotating member, The third frictional engagement element and the fourth frictional engagement element are separated from the first frictional engagement element and the second frictional engagement element on the second side in the axial direction.
  • the pressing mechanism is arranged between the first frictional engagement element and the second frictional engagement element and the third frictional engagement element and the fourth frictional engagement element in the axial direction.
  • a driven portion coupled to the pressing portion so as to interlock with the pressing portion; and a linear motion mechanism for moving the driven portion in the axial direction,
  • the first rotating member, the second rotating member, the first frictional engagement element, the second frictional engagement element, the third frictional engagement element, and the fourth frictional engagement element are arranged coaxially. is, The clutch mechanism and the brake mechanism are selectively engaged according to whether the driven portion is moved to the first side in the axial direction or to the second side in the axial direction by the linear motion mechanism. It is in.
  • the pressing portion that moves in the axial direction via the driven portion by the direct-acting mechanism includes the first frictional engagement element, the second frictional engagement element, and the second side in the axial direction with respect to the first and second frictional engagement elements. It is arranged axially between the third frictional engagement element and the fourth frictional engagement element arranged in the . Then, when the driven portion is moved to the first side in the axial direction by the linear motion mechanism, the first frictional engagement element and the second frictional engagement element are pressed by the pressing portion to bring the clutch mechanism into the engaged state. , the pressing of the third frictional engagement element and the fourth frictional engagement element by the pressing portion is released, and the brake mechanism is released.
  • Sectional view along the axial direction of the engagement device according to the first embodiment Partially enlarged view of a cross-sectional view along the axial direction of the engaging device according to the first embodiment
  • Sectional view along the axial direction of the engagement device according to the second embodiment Partially enlarged view of a cross-sectional view along the axial direction of the engaging device according to the second embodiment
  • 1 is a skeleton diagram of a vehicle drive system according to a first embodiment; 1 is a velocity diagram of a planetary gear mechanism of a vehicle drive system according to the first embodiment; Sectional view along the axial direction of the vehicle drive device according to the second embodiment A skeleton diagram of a vehicle drive system according to a second embodiment. Sectional view along the axial direction of the vehicle drive device according to the third embodiment A skeleton diagram of a vehicle drive system according to a third embodiment. Partially enlarged view of a cross-sectional view along the axial direction of the dual-purpose drive device according to the third embodiment
  • the engagement device 100 includes a clutch mechanism 1 that selectively engages a first rotating member 81 and a second rotating member 82, and any one of the first rotating member 81 and the second rotating member 82.
  • a brake mechanism 2 that selectively engages one of the target rotating member 8T and the non-rotating member NR, and a pressing mechanism 3 that changes the engagement state of the clutch mechanism 1 and the brake mechanism 2. .
  • the first rotating member 81 and the second rotating member 82 are rotatably supported relative to each other.
  • the direction along the rotation axis of the first rotating member 81 is defined as "axial direction L".
  • One side in the axial direction L is referred to as “first axial side L1” and the other side is referred to as “second axial side L2".
  • the direction orthogonal to the rotation axis of the rotation members such as the first rotation member 81 is defined as the "radial direction R" with respect to each rotation axis.
  • radial direction R when it is not necessary to distinguish which rotation axis is used as a reference, or when it is clear which rotation axis is used as a reference, it may simply be described as “radial direction R”.
  • the non-rotating member NR is the case 9 that accommodates the engaging device 100 .
  • the case 9 includes a first peripheral wall portion 91 , a first side wall portion 92 , a support wall portion 93 and a cover portion 94 .
  • the first peripheral wall portion 91 is formed so as to cover the outer sides of the first rotating member 81 and the second rotating member 82 in the radial direction R.
  • the first side wall portion 92 is formed to cover the axial first side L1 of the first rotating member 81 and the second rotating member 82 .
  • the support wall portion 93 is formed so as to cover the second axial side L2 of the first rotating member 81 and the second rotating member 82 .
  • the cover portion 94 is formed to cover the second axial side L2 of the support wall portion 93 .
  • the first peripheral wall portion 91 is formed in a tubular shape having an axis along the axial direction L. An opening of the first peripheral wall portion 91 on the axial first side L ⁇ b>1 is closed by the first side wall portion 92 . Further, the opening of the first peripheral wall portion 91 on the axial second side L ⁇ b>2 is blocked by the support wall portion 93 .
  • the first peripheral wall portion 91 and the first side wall portion 92 are integrally formed to constitute the first case portion 9A. Then, the second case portion 9B provided with the support wall portion 93 is moved from the first side L1 in the axial direction to the first side so that the support wall portion 93 is positioned inside the first peripheral wall portion 91 in the radial direction R. It is fitted in the case portion 9A. Further, the third case portion 9C having the cover portion 94 is joined to the second case portion 9B from the first side L1 in the axial direction.
  • the clutch mechanism 1 includes a first frictional engagement element 11 connected to rotate integrally with a first rotating member 81 and a second frictional engagement element 11 connected to rotate integrally with a second rotating member 82 . a coupling element 12;
  • the first frictional engagement element 11 and the second frictional engagement element 12 are arranged so as to face each other in the axial direction L.
  • the first frictional engagement element 11 and the second frictional engagement element 12 are pressed in the axial direction L to frictionally engage each other.
  • a plurality of first frictional engagement elements 11 and a plurality of second frictional engagement elements 12 are provided and arranged alternately along the axial direction L.
  • One of the first frictional engagement element 11 and the second frictional engagement element 12 can be a friction plate and the other can be a separate plate.
  • the brake mechanism 2 includes a third frictional engagement element 21 connected to rotate integrally with the target rotating member 8T, and a fourth frictional engagement element 22 fixed to the non-rotating member NR. .
  • the first rotating member 81 is the target rotating member 8T.
  • the third frictional engagement element 21 and the fourth frictional engagement element 22 are arranged so as to face each other in the axial direction L.
  • the third frictional engagement element 21 and the fourth frictional engagement element 22 are pressed in the axial direction L to frictionally engage each other.
  • the third frictional engagement element 21 and the fourth frictional engagement element 22 are arranged apart from the first frictional engagement element 11 and the second frictional engagement element 12 on the second side L2 in the axial direction. ing.
  • a plurality of third frictional engagement elements 21 and a plurality of fourth frictional engagement elements 22 are provided and arranged alternately along the axial direction L.
  • One of the third frictional engagement element 21 and the fourth frictional engagement element 22 can be a friction plate and the other can be a separate plate.
  • the first rotating member 81, the second rotating member 82, the first frictional engagement element 11, the second frictional engagement element 12, the third frictional engagement element 21, and the fourth frictional engagement element 22 are arranged along the first axis X1. placed above. That is, the first rotating member 81, the second rotating member 82, the first frictional engagement element 11, the second frictional engagement element 12, the third frictional engagement element 21, and the fourth frictional engagement element 22 are coaxially are placed in
  • the first rotating member 81 has a first connecting portion 8a to which the first frictional engagement element 11 is connected.
  • the second rotating member 82 has a second connecting portion 8b to which the second frictional engagement element 12 is connected.
  • the target rotating member 8T has a third connecting portion 8c to which the third frictional engagement element 21 is connected. That is, in this embodiment, the first rotating member 81 has the third connecting portion 8c.
  • the non-rotating member NR also has a fourth connecting portion 8d to which the fourth frictional engagement element 22 is connected.
  • the first connecting portion 8a is arranged at a position outside the first frictional engagement element 11 in the radial direction R and overlapping the first frictional engagement element 11 when viewed in the radial direction R. there is That is, the first frictional engagement element 11 is supported from the outside in the radial direction R by the first connecting portion 8a.
  • the first frictional engagement element 11 is slidably supported in the axial direction L while its relative rotation is restricted with respect to the first connecting portion 8a.
  • a plurality of spline grooves extending in the axial direction L are formed in the outer peripheral portion of the first frictional engagement element 11 so as to be dispersed in the circumferential direction.
  • spline grooves are also formed in the inner peripheral portion of the first connecting portion 8a so as to be dispersed in the circumferential direction. These spline grooves are engaged with each other.
  • "overlapping in a particular direction view” means that when a virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line, the virtual straight line is two It refers to the existence of at least a part of an area that intersects two elements.
  • the second connecting portion 8b is located inside the second frictional engagement element 12 in the radial direction R and overlaps the second frictional engagement element 12 and the first connecting portion 8a when viewed in the radial direction R. It is placed in a position where That is, the second frictional engagement element 12 is supported from the inside in the radial direction R by the second connecting portion 8b.
  • the second frictional engagement element 12 is slidably supported in the axial direction L while its relative rotation is restricted with respect to the second connecting portion 8b.
  • a plurality of spline grooves extending in the axial direction L are formed in the inner peripheral portion of the second friction engagement element 12 so as to be dispersed in the circumferential direction.
  • similar spline grooves are also formed in the outer peripheral portion of the second connecting portion 8b so as to be dispersed in the circumferential direction. These spline grooves are engaged with each other.
  • the third connecting portion 8c is arranged at a position outside the third frictional engagement element 21 in the radial direction R and overlapping the third frictional engagement element 21 when viewed in the radial direction R. there is That is, the third frictional engagement element 21 is supported from the outside in the radial direction R by the third connecting portion 8c.
  • the third frictional engagement element 21 is slidably supported in the axial direction L while its relative rotation is restricted with respect to the third connecting portion 8c.
  • a plurality of spline grooves extending in the axial direction L are formed in the outer peripheral portion of the third frictional engagement element 21 so as to be dispersed in the circumferential direction.
  • similar spline grooves are formed dispersedly in the circumferential direction on the inner peripheral portion of the third connecting portion 8c. These spline grooves are engaged with each other.
  • the fourth connecting portion 8d is located inside the fourth frictional engagement element 22 in the radial direction R and overlaps the fourth frictional engagement element 22 and the third connecting portion 8c when viewed in the radial direction R. It is placed in a position where That is, the fourth friction engagement element 22 is supported from the inside in the radial direction R by the fourth connecting portion 8d.
  • the fourth friction engagement element 22 is slidably supported in the axial direction L while its relative rotation is restricted with respect to the fourth connecting portion 8d.
  • a plurality of spline grooves extending in the axial direction L are formed in the inner peripheral portion of the fourth frictional engagement element 22 so as to be dispersed in the circumferential direction.
  • similar spline grooves are also formed in the outer peripheral portion of the fourth connecting portion 8d so as to be dispersed in the circumferential direction. These spline grooves are engaged with each other.
  • the first rotating member 81 includes a first outer supporting portion 811 and a first radially extending portion 812. As shown in FIG. 2, in this embodiment, the first rotating member 81 includes a first outer supporting portion 811 and a first radially extending portion 812. As shown in FIG. 2, in this embodiment, the first rotating member 81 includes a first outer supporting portion 811 and a first radially extending portion 812. As shown in FIG. 2, in this embodiment, the first rotating member 81 includes a first outer supporting portion 811 and a first radially extending portion 812. As shown in FIG.
  • the first outer support portion 811 is formed in a tubular shape centered on the first axis X1. In this embodiment, the first outer support portion 811 is provided with the first connecting portion 8a and the third connecting portion 8c.
  • the first radially extending portion 812 is formed to extend along the radial direction R with respect to the first axis X1. In this embodiment, the first radially extending portion 812 is formed to extend inward in the radial direction R from the end portion of the first outer support portion 811 on the first axial side L1. Further, in the present embodiment, the first radially extending portion 812 is rotatably supported by the first side wall portion 92 of the case 9 via the first bearing B1.
  • the first bearing B ⁇ b>1 is a thrust bearing arranged between the first radially extending portion 812 and the first side wall portion 92 in the axial direction L.
  • the second rotating member 82 has a first inner supporting portion 821 .
  • the first inner support portion 821 is arranged inside in the radial direction R with respect to the first outer support portion 811 .
  • the second connecting portion 8b is arranged on the first inner supporting portion 821 .
  • the support wall portion 93 of the case 9 has a second inner support portion 931 .
  • the second inner support portion 931 is arranged inside in the radial direction R with respect to the first outer support portion 811 .
  • the second inner support portion 931 is formed in a tubular shape centered on the first axis X1.
  • the fourth connecting portion 8 d is arranged on the second inner support portion 931 .
  • the pressing mechanism 3 is arranged between the first frictional engagement element 11 and the second frictional engagement element 12 and the third frictional engagement element 21 and the fourth frictional engagement element 22 in the axial direction L.
  • a portion 31 a driven portion 32 connected so as to interlock with the pressing portion 31 , and a linear motion mechanism 33 that moves the driven portion 32 in the axial direction L.
  • the engagement device 100 a clutch mechanism 1 that selectively engages the first rotating member 81 and the second rotating member 82;
  • An engaging device 100 comprising a brake mechanism 2 that selectively engages a target rotating member 8T, which is one of a first rotating member 81 and a second rotating member 82, and a non-rotating member NR, Equipped with a pressing mechanism 3 that changes the state of engagement of the clutch mechanism 1 and the brake mechanism 2,
  • the clutch mechanism 1 includes a first frictional engagement element 11 connected to rotate integrally with a first rotating member 81 and a second frictional engagement element 11 connected to rotate integrally with a second rotating member 82 .
  • the first frictional engagement element 11 and the second frictional engagement element 12 are arranged to face each other in the axial direction L, and are pressed in the axial direction L to frictionally engage with each other,
  • the brake mechanism 2 includes a third frictional engagement element 21 connected to rotate integrally with the target rotating member 8T, and a fourth frictional engagement element 22 fixed to the non-rotating member NR, The third frictional engagement element 21 and the fourth frictional engagement element 22 are spaced apart from the first frictional engagement element 11 and the second frictional engagement element 12 on the second side L2 in the axial direction.
  • the pressing mechanism 3 is arranged between the first frictional engagement element 11 and the second frictional engagement element 12 and the third frictional engagement element 21 and the fourth frictional engagement element 22 in the axial direction L.
  • the first rotating member 81, the second rotating member 82, the first frictional engagement element 11, the second frictional engagement element 12, the third frictional engagement element 21, and the fourth frictional engagement element 22 are coaxially arranged. is,
  • the clutch mechanism 1 and the brake mechanism 2 are selectively engaged according to the movement of the driven portion 32 to the axial first side L1 or to the axial second side L2 by the linear motion mechanism 33 .
  • the pressing portion 31 which is moved in the axial direction L via the driven portion 32 by the linear motion mechanism 33, moves the first frictional engagement element 11 and the second frictional engagement element 12, and It is arranged in the axial direction L between the third frictional engagement element 21 and the fourth frictional engagement element 22 arranged on the axial second side L2. Then, the linear motion mechanism 33 moves the driven portion 32 to the first side L1 in the axial direction, so that the first frictional engagement element 11 and the second frictional engagement element 12 are pressed by the pressing portion 31 and the clutch mechanism 1 are in the engaged state, the pressing of the third frictional engagement element 21 and the fourth frictional engagement element 22 by the pressing portion 31 is released, and the brake mechanism 2 is in the released state.
  • the linear motion mechanism 33 moves the driven portion 32 to the second side L2 in the axial direction, so that the pressing portion 31 presses the third frictional engagement element 21 and the fourth frictional engagement element 22, thereby causing the brake mechanism 2 to move. are in the engaged state, the pressing of the first frictional engagement element 11 and the second frictional engagement element 12 by the pressing portion 31 is released, and the clutch mechanism 1 is in the released state. Thereby, the state of engagement between the clutch mechanism 1 and the brake mechanism 2 can be changed by the common pressing mechanism 3 . Therefore, in the configuration including the clutch mechanism 1 and the brake mechanism 2, the size of the engagement device 100 can be reduced.
  • the linear motion mechanism 33 includes a screw shaft 331 rotatably supported with respect to the non-rotating member NR, and a nut member 332 screwed onto the screw shaft 331 .
  • a screw thread is formed on the outer peripheral portion of the screw shaft 331 .
  • the screw shaft 331 is formed to extend along the axial direction L. As shown in FIG. In this embodiment, the screw shaft 331 is arranged on the first axis X1.
  • a groove that engages with the thread of the screw shaft 331 is formed in the inner peripheral portion of the nut member 332 .
  • the nut member 332 performs linear motion along the axial direction L according to the rotation direction and the direction of the thread of the screw shaft 331 .
  • the nut member 332 is connected to the driven portion 32 so as to move in the axial direction L integrally. Therefore, in the present embodiment, as the screw shaft 331 rotates, the pressing portion 31 moves in the axial direction L via the nut member 332 and the driven portion 32 .
  • the nut member 332 is supported in a state in which it can move relative to the non-rotating member NR in the axial direction L and its relative rotation is restricted.
  • the nut member 332 is arranged inside in the radial direction R with respect to the second inner support portion 931 of the support wall portion 93 in the case 9 .
  • the nut member 332 is axially L with respect to the case 9 by a connecting member 33a disposed between the outer peripheral portion of the nut member 332 and the inner peripheral portion of the second inner support portion 931 in the radial direction R. It is connected to the second inner support portion 931 in a state in which relative movement is possible and relative rotation is restricted.
  • the linear motion mechanism 33 is arranged on the second side L2 in the axial direction with respect to the second connecting portion 8b. Further, the direct-acting mechanism 33 is arranged inside the fourth connecting portion 8d in the radial direction R and at a position overlapping with the fourth connecting portion 8d when viewed in the radial direction R along the radial direction.
  • the screw shaft 331 and the nut member 332 of the linear motion mechanism 33 are arranged on the second side L2 in the axial direction from the first inner support portion 821 of the second rotating member 82 . Furthermore, the screw shaft 331 and the nut member 332 are arranged radially inside the second inner support portion 931 of the support wall portion 93 of the case 9 .
  • the first rotating member 81 includes the first connecting portion 8a to which the first frictional engagement element 11 is connected
  • the second rotating member 82 has a second connecting portion 8b to which the second frictional engagement element 12 is connected
  • the target rotating member 8T includes a third connecting portion 8c to which the third frictional engagement element 21 is connected
  • the non-rotating member NR includes a fourth connecting portion 8d to which the fourth frictional engagement element 22 is connected
  • the first connecting portion 8a is arranged outside the first frictional engagement element 11 in the radial direction R and overlaps the first frictional engagement element 11 when viewed in the radial direction R
  • the third connecting portion 8c is arranged outside the third frictional engagement element 21 in the radial direction R and overlaps the third frictional engagement element 21 when viewed in the radial direction R
  • the second connecting portion 8b is located inside the second frictional engagement element 12 in the radial direction R and overlaps the second frictional engagement element 12 and the first connecting portion 8a when viewed in the radial direction R.
  • the fourth connecting portion 8d is located inside the fourth frictional engagement element 22 in the radial direction R and overlaps the fourth frictional engagement element 22 and the third connecting portion 8c when viewed in the radial direction R. is positioned to
  • the linear motion mechanism 33 is arranged on the second side L2 in the axial direction with respect to the second connecting portion 8b, and radially along the radial direction R inside the fourth connecting portion 8d in the radial direction R. It is arranged at a position that visually overlaps with the fourth connecting portion 8d.
  • the linear motion mechanism 33 is arranged on the second side L2 in the axial direction with respect to the second connecting portion 8b of the second rotating member 82 .
  • the dimension of the engaging device 100 in the radial direction R can be reduced compared to a configuration in which the linear motion mechanism 33 overlaps the second connecting portion 8b when viewed in the radial direction.
  • the linear motion mechanism 33 is located inside the fourth connecting portion 8d in the radial direction R with respect to the fourth connecting portion 8d of the non-rotating member NR, and is positioned between the fourth connecting portion 8d and the fourth connecting portion 8d in a radial view along the radial direction R. placed in overlapping positions.
  • the dimension of the engaging device 100 in the axial direction L can be reduced compared to a configuration in which the linear motion mechanism 33 is displaced in the axial direction L from the fourth connecting portion 8d. Further, since it is easy for the non-rotating member NR to support the linear motion mechanism 33 arranged inside the fourth connecting portion 8d of the non-rotating member NR in the radial direction R, it is possible to support the linear motion mechanism 33. It is easy to simplify the structure.
  • the pressing portion 31 includes a first pressing portion 311 and a second pressing portion 312 .
  • the first pressing portion 311 is configured to press the first frictional engagement element 11 and the second frictional engagement element 12 in the axial direction L.
  • the second pressing portion 312 is configured to press the third frictional engagement element 21 and the fourth frictional engagement element 22 in the axial direction L.
  • the first pressing portion 311 and the second pressing portion 312 are configured by separate members arranged so as to face each other in the axial direction L. As shown in FIG.
  • the first pressing portion 311 and the second pressing portion 312 are rotatably supported relative to each other via a fourth bearing B4. Therefore, in this embodiment, the first pressing portion 311 and the second pressing portion 312 are configured to interlock in the axial direction L in a relatively rotatable state.
  • the fourth bearing B4 is a thrust bearing arranged between the first pressing portion 311 and the second pressing portion 312 in the axial direction L.
  • the first pressing portion 311 is supported so as to be relatively movable in the axial direction L with respect to the first rotating member 81 or the second rotating member 82 and to rotate together.
  • the first pressing portion 311 is supported so as to be relatively movable in the axial direction L and to rotate together with the first outer support portion 811 of the first rotating member 81 .
  • the outer end in the radial direction R of the first pressing portion 311 is connected to the first connecting portion 8a.
  • the second pressing portion 312 is supported in a state in which it can move relative to the non-rotating member NR in the axial direction L and its relative rotation is restricted.
  • the second pressing portion 312 is connected to the driven portion 32 so as to move in the axial direction L integrally.
  • the driven portion 32 is formed so as to extend inward in the radial direction R from the second pressing portion 312 .
  • the nut member 332 is supported so as to be movable relative to the non-rotating member NR in the axial direction L and is restricted from rotating relative to the non-rotating member NR. Therefore, in the present embodiment, the second pressing portion 312 is movable relative to the non-rotating member NR in the axial direction L via the driven portion 32 and the nut member 332, and the relative rotation is restricted. supported by
  • the pressing portion 31 includes the first pressing portion 311 that presses the first frictional engagement element 11 and the second frictional engagement element 12 in the axial direction L, and the third frictional engagement element 21 . and a second pressing portion 312 that presses the fourth frictional engagement element 22 in the axial direction L,
  • the first pressing portion 311 is supported so as to be movable relative to the first rotating member 81 or the second rotating member 82 in the axial direction L and to rotate integrally with the first rotating member 81 or the second rotating member 82
  • the second pressing portion 312 is supported so as to be movable relative to the non-rotating member NR in the axial direction L and with its relative rotation restricted,
  • the first pressing portion 311 and the second pressing portion 312 are configured to interlock in the axial direction L in a relatively rotatable state
  • the driven portion 32 is connected to move in the axial direction L integrally with the second pressing portion 312 .
  • the driven portion 32 that moves in the axial direction L by the linear motion mechanism 33 is integrated with the second pressing portion 312 that is supported in a state in which relative rotation is restricted with respect to the non-rotating member NR. It is connected for movement in the axial direction L.
  • the driven portion 32 is coupled to move in the axial direction L integrally with the first pressing portion 311 supported so as to rotate integrally with the first rotating member 81 or the second rotating member 82 . It is easier to simplify the pressing mechanism 3 as compared with the configuration described above.
  • the screw shaft 331 is arranged on the first axis X1. That is, in this embodiment, the screw shaft 331 is arranged coaxially with the first frictional engagement element 11, the second frictional engagement element 12, the third frictional engagement element 21, and the fourth frictional engagement element 22. ing. In addition, in the present embodiment, the threaded shaft 331 is arranged radially with respect to the first frictional engagement element 11, the second frictional engagement element 12, the third frictional engagement element 21, and the fourth frictional engagement element 22. Located inside R.
  • the linear motion mechanism 33 includes the screw shaft 331 rotatably supported with respect to the non-rotating member NR, and the nut member 332 screwed onto the screw shaft 331.
  • the nut member 332 is connected to the driven portion 32 so as to move in the axial direction L,
  • the screw shaft 331 is coaxial with the first frictional engagement element 11 , the second frictional engagement element 12 , the third frictional engagement element 21 , and the fourth frictional engagement element 22 and extends in the radial direction R. placed inside.
  • the nut member is provided inside the first frictional engagement element 11, the second frictional engagement element 12, the third frictional engagement element 21, and the fourth frictional engagement element 22 in the radial direction R.
  • a screw shaft 331 for moving 332 in the axial direction L is arranged.
  • the driving force for rotationally driving the screw shaft 331 can be easily transmitted to the screw shaft 331 from the outside in the axial direction L with respect to the frictional engagement elements 11 , 12 , 21 , 22 . Therefore, the pressing portion 31 arranged between the first frictional engagement element 11 and the second frictional engagement element 12 and the third frictional engagement element 21 and the fourth frictional engagement element 22 in the axial direction L is replaced by the nut.
  • the threaded shaft 331 of the linear motion mechanism 33 is connected to the first frictional engagement element 11 , the second frictional engagement element 12 , the third frictional engagement element 21 , and the fourth frictional engagement element 22 . in a radial direction view along the radial direction R. As a result, it is possible to suppress an increase in the size of the engagement device 100 in the axial direction L due to the arrangement of the linear motion mechanism 33 .
  • the engagement device 100 includes a drive source 4 for rotating the screw shaft 331 and a transmission mechanism for transmitting power between the drive source 4 and the screw shaft 331. 5 and .
  • the drive source 4 is arranged on the second axis X2 different from the first axis X1. That is, in this embodiment, the drive source 4 is arranged on a separate shaft from the screw shaft 331 .
  • the arrangement area of the drive source 4 in the axial direction L overlaps the arrangement area of the first rotating member 81 in the axial direction L.
  • the transmission mechanism 5 is arranged on the second side L2 in the axial direction with respect to the linear motion mechanism 33 .
  • the first rotating member 81 is connected to rotate integrally with the first shaft member 10 .
  • the first shaft member 10 is arranged to extend from the first rotating member 81 to the first side L1 in the axial direction.
  • the first shaft member 10 is formed in a tubular shape with the first axis X1 as the axis.
  • the first shaft member 10 is formed to extend from the inner end in the radial direction R of the first outer support portion 811 of the first rotating member 81 toward the first side L1 in the axial direction.
  • the first shaft member 10 is formed integrally with the first rotating member 81 .
  • the first shaft member 10 is arranged so as to pass through the first side wall portion 92 of the case 9 in the axial direction L. As shown in FIG. The first shaft member 10 is rotatably supported with respect to the first side wall portion 92 via the second bearing B2.
  • the second bearing B ⁇ b>2 is a radial bearing arranged between the first shaft member 10 and the first side wall portion 92 in the radial direction R.
  • the second rotating member 82 is connected to rotate integrally with the second shaft member 20 .
  • the second shaft member 20 is arranged to extend from the second rotating member 82 to the first side L1 in the axial direction.
  • the second shaft member 20 is formed to extend from the first inner support portion 821 of the second rotating member 82 to the first side L1 in the axial direction.
  • the second shaft member 20 is arranged on the first axis X1.
  • the second shaft member 20 is formed integrally with the second rotating member 82 .
  • the second shaft member 20 is arranged so as to pass through the inner side of the first shaft member 10 in the radial direction R.
  • the second shaft member 20 is rotatably supported relative to the first shaft member 10 via the third bearing B3.
  • the third bearing B3 is a radial bearing arranged between the first shaft member 10 and the second shaft member 20 in the radial direction R.
  • the engagement device 100 is provided, for example, in a vehicle driving device that transmits the driving force of a driving force source such as an internal combustion engine to wheels.
  • a driving force source such as an internal combustion engine
  • one of the first shaft member 10 and the second shaft member 20 is drivingly connected to a driving force source such as an internal combustion engine.
  • the other of the first shaft member 10 and the second shaft member 20 is drivingly connected to the wheel.
  • the drive source 4 for rotationally driving the screw shaft 331 and the transmission mechanism 5 for power transmission between the drive source 4 and the screw shaft 331 are further provided,
  • the drive source 4 is arranged on a shaft different from the screw shaft,
  • the arrangement area of the drive source 4 in the axial direction L overlaps the arrangement area of the first rotating member 81 in the axial direction L
  • the transmission mechanism 5 is arranged on the second side L2 in the axial direction with respect to the linear motion mechanism 33
  • the first shaft member 10 arranged to extend from the first rotating member 81 to the first side L1 in the axial direction is coupled to rotate integrally with the first rotating member 81
  • a second shaft member 20 arranged to extend from the second rotating member 82 to the first side L1 in the axial direction is coupled to the second rotating member 82 so as to rotate integrally therewith.
  • the dimension of the engaging device 100 in the axial direction L is reduced compared to the configuration in which the drive source 4 is coaxial with the first rotating member 81 and arranged at a position shifted in the axial direction L. can be kept small.
  • the transmission mechanism 5 includes a first gear 51, a second gear 52, a third gear 53, a fourth gear 54, and a connecting body 55. .
  • the first gear 51 is connected to the output shaft of the drive source 4 so as to rotate integrally.
  • the first gear 51 is arranged on the second axis X2.
  • the first gear 51 is arranged on the axial second side L ⁇ b>2 with respect to the drive source 4 .
  • the second gear 52 meshes with the first gear 51.
  • the second gear 52 is formed with a larger diameter than the first gear 51 .
  • the third gear 53 is connected to rotate integrally with the second gear 52 .
  • the third gear 53 is formed with a smaller diameter than the second gear 52 .
  • the third gear 53 is arranged on the first side L1 in the axial direction with respect to the second gear 52 .
  • the second gear 52 and the third gear 53 are arranged on the third axis X3 different from the first axis X1 and the second axis X2.
  • the second gear 52 and the third gear 53 are rotatably supported by the first shaft body 56 with respect to the non-rotating member NR.
  • the first shaft 56 is formed to extend along the axial direction L. As shown in FIG. In the present embodiment, the end portion of the first shaft 56 on the first side L1 in the axial direction is rotatably supported by the support wall portion 93 . An end portion of the first shaft body 56 on the axial second side L2 is rotatably supported with respect to the cover portion 94 .
  • the fourth gear 54 meshes with the third gear 53.
  • the fourth gear 54 is formed with a larger diameter than the third gear 53 .
  • the fourth gear 54 is arranged on the first axis X1.
  • the fourth gear 54 is rotatably supported by the second shaft 57 with respect to the non-rotating member NR.
  • the second shaft 57 is formed to extend along the axial direction L. As shown in FIG. In the present embodiment, the end portion of the second shaft 57 on the second side L2 in the axial direction is rotatably supported with respect to the cover portion 94 . On the other hand, the end portion of the second shaft 57 on the first side L1 in the axial direction is connected to the connecting body 55 so as to rotate integrally therewith.
  • the number of teeth of the second gear 52 is greater than the number of teeth of the first gear 51 .
  • the number of teeth of the fourth gear 54 is greater than the number of teeth of the third gear 53 that rotates integrally with the second gear 52 . Therefore, in this embodiment, the rotation transmitted from the drive source 4 to the first gear 51 is decelerated between the first gear 51 and the second gear 52 and transmitted to the third gear 53 .
  • the rotation of the third gear 53 is decelerated between the third gear 53 and the fourth gear 54 and transmitted to the connecting body 55 .
  • the connecting body 55 connects the fourth gear 54 and the screw shaft 331 so that they rotate integrally.
  • the connecting body 55 is formed in a tubular shape with an opening on the second axial side L2.
  • the connecting body 55 and the second shaft 57 are connected so as to rotate integrally.
  • the connecting body 55 , the second shaft body 57 , and the screw shaft 331 are arranged so as to pass through the support wall portion 93 in the axial direction L. As shown in FIG.
  • the connecting body 55 is arranged inside in the radial direction R with respect to the second inner support portion 931 of the support wall portion 93 which is formed in a cylindrical shape.
  • the connecting body 55 is provided with a supported portion 551 formed so as to protrude outward in the radial direction R from the connecting body 55 .
  • the second inner support portion 931 has a bearing support formed so as to protrude inward in the radial direction R from the second inner support portion 931 and face the supported portion 551 from the first side L1 in the axial direction.
  • a portion 932 is provided.
  • the supported portion 551 is rotatably supported with respect to the bearing support portion 932 via the fifth bearing B5.
  • the coupling body 55 is rotatably supported with respect to the non-rotating member NR while being restricted from moving relative to the non-rotating member NR toward the first side L1 in the axial direction.
  • the fifth bearing B5 is a thrust bearing arranged between the supported portion 551 and the bearing support portion 932 in the axial direction L.
  • the annular lid portion 933 is fixed to the support wall portion 93 so as to face the supported portion 551 from the second side L2 in the axial direction.
  • the supported portion 551 is rotatably supported with respect to the lid portion 933 via the sixth bearing B6.
  • the connecting body 55 is rotatably supported with respect to the non-rotating member NR while being restricted from moving relative to the non-rotating member NR toward the second side L2 in the axial direction.
  • the sixth bearing B6 is a thrust bearing arranged between the supported portion 551 and the lid portion 933 in the axial direction L.
  • the pressing force exerted by the pressing portion 31 on the first frictional engagement element 11 and the second frictional engagement element 12 and the pressing force exerted by the pressing portion 31 on the third frictional engagement element 21 and the fourth frictional engagement element 22 are A pressure sensor (not shown) is provided to detect pressure.
  • This pressure sensor is arranged, for example, between the supported portion 551 and the bearing support portion 932 in the axial direction L, or between the supported portion 551 and the lid portion 933 in the axial direction L.
  • the first frictional engagement element 11, the second frictional engagement element 12, the third frictional engagement element 21, and the force that the pressing portion 31 receives from the fourth frictional engagement element 22 can be measured by the pressure sensor.
  • the pressing force of the pressing portion 31 on the first frictional engagement element 11 and the second frictional engagement element 12 the pressing force of the pressing portion 31 on the third frictional engagement element 21 and the fourth frictional engagement element 21, and the fourth frictional engagement element 21 and the fourth frictional engagement element A pressing force on the joining element 22 can be calculated.
  • FIG. 1 differs from the first embodiment in that the second rotating member 82 is the target rotating member 8T. Differences from the first embodiment will be mainly described below. Note that points that are not particularly described are the same as those in the first embodiment.
  • the second rotating member 82 is the target rotating member 8T. Therefore, in this embodiment, the second rotating member 82 includes the third connecting portion 8c to which the third frictional engagement element 21 is connected.
  • the second rotating member 82 further includes a second outer supporting portion 822 and a second radially extending portion 823 in addition to the first inner supporting portion 821. ing.
  • the second outer support portion 822 is formed in a tubular shape centered on the first axis X1.
  • the third connecting portion 8c is arranged on the second outer support portion 822 .
  • the first outer support portion 811 of the first rotating member 81 is not provided with the third connecting portion 8c, but is provided with the first connecting portion 8a.
  • the dimension in the axial direction L of the first outer support portion 811 in this embodiment is smaller than the dimension in the axial direction L of the first outer support portion 811 in the first embodiment.
  • the first outer support portion 811 is arranged on the first side L1 in the axial direction with respect to the second outer support portion 822 .
  • the second radially extending portion 823 is formed to extend along the radial direction R with respect to the first axis X1.
  • the second radially extending portion 823 is formed to extend inward in the radial direction R from the end portion of the second outer supporting portion 822 on the axial first side L1.
  • the second radially extending portion 823 is supported so as to be movable relative to the first inner supporting portion 821 in the axial direction L and to rotate integrally with the first inner supporting portion 821 .
  • the inner end in the radial direction R of the second radially extending portion 823 is connected to the second connecting portion 8b.
  • the second radially extending portion 823 is connected to the first pressing portion 311 so as to rotate integrally therewith.
  • the second radially extending portion 823 is formed integrally with the first pressing portion 311 .
  • the vehicle drive device 1000 includes a rotating electric machine MG including a stator ST and a rotor RT, an input shaft IS that rotates integrally with the rotor RT, and wheels W (see FIG. 6).
  • an output gear OG that is drivingly connected to the output gear OG
  • a driving gear DG that is connected to rotate in conjunction with the output gear OG
  • a transmission TM that includes the planetary gear mechanism PL and the engagement device 100 described above.
  • the vehicle drive device 1000 includes a pair of output members OM each rotating integrally with wheels W different from each other, and a differential gear mechanism DF for distributing the rotation of the output gear OG to the pair of output members OM. and further comprising:
  • the drive gear DG, the planetary gear mechanism PL, and the engagement device 100 are arranged on the first axis X1, which is the rotation axis of the rotor RT. That is, the rotor RT, the planetary gear mechanism PL, the engagement device 100, and the drive gear DG are coaxially arranged.
  • the output gear OG, the pair of output members OM, and the differential gear mechanism DF are arranged on the fourth axis X4 different from the first axis X1.
  • the first axis X1 and the fourth axis X4 are arranged parallel to each other.
  • the side on which the rotating electric machine MG is arranged with respect to the input shaft IS is defined as the first axial side L1
  • the opposite side is defined as the second axial side L2.
  • the rotating electric machine MG functions as a driving force source for the wheels W (see FIG. 6).
  • the rotary electric machine MG has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power.
  • the rotary electric machine MG is electrically connected to a power storage device (not shown) such as a battery or a capacitor. Then, the rotating electric machine MG is powered by the electric power stored in the power storage device to generate a driving force. In addition, the rotary electric machine MG generates power by the driving force transmitted from the wheel W side, and charges the power storage device.
  • the stator ST of the rotating electric machine MG is fixed to the non-rotating member NR.
  • a rotor RT of the rotary electric machine MG is rotatably supported with respect to the stator ST.
  • the non-rotating member NR is the case 9 in this embodiment.
  • Case 9 accommodates rotary electric machine MG, input shaft IS, output gear OG, drive gear DG, transmission TM, output member OM, and differential gear mechanism DF.
  • the case 9 includes, in addition to the first peripheral wall portion 91, the first side wall portion 92, the support wall portion 93, and the cover portion 94, the second peripheral wall portion 91a, the third peripheral wall portion 91b, and the fourth peripheral wall portion 91b. It further includes a peripheral wall portion 91c, a second side wall portion 92a, a third side wall portion 92b, and a fourth side wall portion 92d.
  • the second peripheral wall portion 91a is formed so as to cover the outer side of the rotary electric machine MG in the radial direction R.
  • the third peripheral wall portion 91b is formed so as to cover the outside in the radial direction R of the drive gear DG and the planetary gear mechanism PL.
  • the fourth peripheral wall portion 91c is formed to cover the outer side in the radial direction R of the pair of output members OM and the differential gear mechanism DF.
  • the first peripheral wall portion 91 is formed so as to cover the outer side of the engaging device 100 in the radial direction R. As shown in FIG.
  • the second side wall portion 92a is formed so as to cover the axial first side L1 of the rotary electric machine MG.
  • the third side wall portion 92b is formed so as to separate the rotary electric machine MG, the output gear OG, the drive gear DG, and the differential gear mechanism DF in the axial direction L.
  • the fourth side wall portion 92d is formed to cover the second axial side L2 of the differential gear mechanism DF.
  • the support wall portion 93 is formed so as to cover the second axial side L2 of the engaging device 100 .
  • the cover portion 94 is formed to cover the second axial side L2 of the support wall portion 93 .
  • the first side wall portion 92 is formed so as to separate the planetary gear mechanism PL and the engagement device 100 in the axial direction L.
  • the second peripheral wall portion 91a is formed in a tubular shape having an axial center along the axial direction L.
  • the opening of the second peripheral wall portion 91a on the axial first side L1 is closed by the second side wall portion 92a.
  • the opening of the second peripheral wall portion 91a on the axial second side L2 is closed by the third side wall portion 92b.
  • the second peripheral wall portion 91a and the second side wall portion 92a are integrally formed.
  • the third side wall portion 92b is fitted into the opening of the second peripheral wall portion 91a on the axial first side L1 from the axial second side L2.
  • the third peripheral wall portion 91b is formed in a tubular shape having an axial center along the axial direction L.
  • the first side wall portion 92 closes the opening of the third peripheral wall portion 91 b on the axial second side L ⁇ b>2 .
  • the fourth peripheral wall portion 91c is formed in a tubular shape having an axial center along the axial direction L. As shown in FIG. The opening of the fourth peripheral wall portion 91c on the axial second side L2 is closed by the fourth side wall portion 92d.
  • the third peripheral wall portion 91b, the fourth peripheral wall portion 91c, the first side wall portion 92, and the fourth side wall portion 92d are integrally formed.
  • the axial direction of the third peripheral wall portion 91b and the fourth peripheral wall portion 91c is adjusted so that the opening of the third peripheral wall portion 91b and the fourth peripheral wall portion 91c on the axial first side L1 is closed by the third side wall portion 92b.
  • the end portion on the first side L1 and the end portion on the axial second side L2 of the second peripheral wall portion 91a are joined to each other.
  • the first peripheral wall portion 91 is formed in a tubular shape having an axial center along the axial direction L.
  • the opening of the first peripheral wall portion 91 on the axial second side L2 is closed by the support wall portion 93 .
  • the first peripheral wall portion 91 is integrally formed with the first side wall portion 92 so that the opening of the first peripheral wall portion 91 on the first side L1 in the axial direction is closed by the first side wall portion 92.
  • the support wall portion 93 is fitted into the opening of the first peripheral wall portion 91 on the axial second side L2 from the axial second side L2.
  • a cover portion 94 is joined to the support wall portion 93 from the second axial side L2.
  • the planetary gear mechanism PL includes a first rotating element E1, a second rotating element E2, and a third rotating element E3.
  • the planetary gear mechanism PL is configured such that the rotation speeds of the first rotation element E1, the second rotation element E2, and the third rotation element E3 are arranged in the described order.
  • the order of rotational speed means the order of rotational speed in the rotating state of each rotating element.
  • the rotation speed of each rotating element changes depending on the rotation state of the planetary gear mechanism, but the order of the rotation speed of each rotating element is fixed because it is determined by the structure of the planetary gear mechanism. Note that the order of rotation speed of each rotating element is the same as the order of arrangement in the velocity diagram (see FIG. 7, etc.) of each rotating element.
  • the “arrangement order of each rotating element in the velocity diagram” is the order in which the axes corresponding to each rotating element in the velocity diagram are arranged along the direction perpendicular to the axis.
  • the arrangement direction of the shaft corresponding to each rotating element in the velocity diagram differs depending on how the velocity diagram is drawn, but the order of arrangement is fixed because it is determined by the structure of the planetary gear mechanism.
  • the planetary gear mechanism PL is a single pinion type planetary gear mechanism including a first sun gear S1, a first carrier C1, and a first ring gear R1.
  • the first rotating element E1 is connected to rotate integrally with the input shaft IS.
  • the first rotating element E1 is the first sun gear S1.
  • the second rotating element E2 is connected to rotate integrally with the drive gear DG.
  • the second rotating element E2 is the first carrier C1.
  • the first carrier C1 rotatably supports a first pinion gear P1 that meshes with the first sun gear S1 and the first ring gear R1.
  • the first pinion gear P1 rotates (revolves) around its axis and rotates (revolves) around the first sun gear S1 together with the first carrier C1.
  • a plurality of first pinion gears P1 are provided at intervals along the revolution locus.
  • the third rotating element E3 rotates integrally with the first rotating element E1 or the second rotating element E2 in a first state where it is connected to the non-rotating member NR depending on the state of engagement of the engagement device 100. and a second state which is connected as follows.
  • the third rotating element E3 is the first ring gear R1.
  • the first ring gear R1 is an internal tooth gear arranged radially outside the first sun gear S1 and the first carrier C1.
  • the engagement device 100 includes a clutch mechanism 1, a brake mechanism 2, and a pressing mechanism 3.
  • the clutch mechanism 1 is configured to selectively engage a first rotating member 81 and a second rotating member 82 which are supported so as to be relatively rotatable.
  • the clutch mechanism 1 includes a first frictional engagement element 11 connected to rotate integrally with a first rotating member 81 and a second frictional engagement element 11 connected to rotate integrally with a second rotating member 82 .
  • the first frictional engagement element 11 and the second frictional engagement element 12 are arranged so as to face each other in the axial direction L.
  • the first frictional engagement element 11 and the second frictional engagement element 12 are pressed in the axial direction L to frictionally engage each other.
  • a plurality of first frictional engagement elements 11 and a plurality of second frictional engagement elements 12 are provided and arranged alternately along the axial direction L.
  • One of the first frictional engagement element 11 and the second frictional engagement element 12 can be a friction plate and the other can be a separate plate.
  • the brake mechanism 2 is configured to selectively engage the first rotating member 81 and the non-rotating member NR.
  • the brake mechanism 2 includes a third frictional engagement element 21 connected to rotate integrally with the first rotating member 81, and a fourth frictional engagement element 22 fixed to the non-rotating member NR.
  • the third frictional engagement element 21 and the fourth frictional engagement element 22 are arranged so as to face each other in the axial direction L.
  • the third frictional engagement element 21 and the fourth frictional engagement element 22 are pressed in the axial direction L to frictionally engage each other.
  • the third frictional engagement element 21 and the fourth frictional engagement element 22 are arranged apart from the first frictional engagement element 11 and the second frictional engagement element 12 on the second side L2 in the axial direction. ing.
  • a plurality of third frictional engagement elements 21 and a plurality of fourth frictional engagement elements 22 are provided and arranged alternately along the axial direction L.
  • One of the third frictional engagement element 21 and the fourth frictional engagement element 22 can be a friction plate and the other can be a separate plate.
  • the first rotating member 81 has a first outer supporting portion 811 .
  • the first outer support portion 811 is formed in a tubular shape centered on the first axis X1.
  • the first outer support portion 811 supports the first frictional engagement element 11 and the third frictional engagement element 21 from the outside in the radial direction R.
  • a plurality of spline grooves extending in the axial direction L are formed in the outer peripheral portions of the first frictional engagement element 11 and the third frictional engagement element 21 so as to be dispersed in the circumferential direction.
  • similar spline grooves are also formed in the inner peripheral portion of the first outer support portion 811 so as to be dispersed in the circumferential direction. These spline grooves are engaged with each other.
  • the second rotating member 82 is provided with a first inner supporting portion 821 .
  • the first inner support portion 821 is arranged inside in the radial direction R with respect to the first outer support portion 811 .
  • the first inner support portion 821 supports the second frictional engagement element 12 from the inside in the radial direction R.
  • a plurality of spline grooves extending in the axial direction L are formed in the inner peripheral portion of the second friction engagement element 12 so as to be dispersed in the circumferential direction.
  • similar spline grooves are also formed in the outer peripheral portion of the first inner support portion 821 so as to be dispersed in the circumferential direction. These spline grooves are engaged with each other.
  • the support wall portion 93 of the case 9 is provided with a second inner support portion 931 .
  • the second inner support portion 931 is arranged inside the first outer support portion 811 in the radial direction R and on the second axial side L2 of the first inner support portion 821 .
  • the second inner support portion 931 supports the fourth frictional engagement element 22 from the inside in the radial direction R.
  • a plurality of spline grooves extending in the axial direction L are formed in the inner peripheral portion of the fourth frictional engagement element 22 so as to be dispersed in the circumferential direction.
  • similar spline grooves are also formed in the outer peripheral portion of the second inner support portion 931 so as to be dispersed in the circumferential direction. These spline grooves are engaged with each other.
  • the first rotating member 81 is connected to rotate integrally with the first shaft member 10 .
  • the first shaft member 10 is arranged to extend from the first rotating member 81 to the first side L1 in the axial direction. Further, the first shaft member 10 is arranged so as to pass through the first side wall portion 92 of the case 9 in the axial direction L. As shown in FIG.
  • the first shaft member 10 is connected to the first ring gear R1 of the planetary gear mechanism PL on the first side L1 in the axial direction from the first side wall portion 92 so as to rotate integrally therewith. Also, the first shaft member 10 is rotatably supported with respect to the first side wall portion 92 via the second bearing B2.
  • the second rotating member 82 is arranged inside the first rotating member 81 in the radial direction R. Also, the second rotating member 82 is connected to rotate integrally with the second shaft member 20 .
  • the second shaft member 20 is arranged to extend from the second rotating member 82 to the first side L1 in the axial direction. Further, the second shaft member 20 is arranged inside in the radial direction R with respect to the first shaft member 10 .
  • the second shaft member 20 is rotatably supported relative to the first shaft member 10 via the third bearing B3.
  • the input shaft IS corresponds to the second shaft member 20 .
  • the pressing mechanism 3 is configured to change the engagement state of the clutch mechanism 1 and the brake mechanism 2 .
  • the pressing mechanism 3 includes a first pressing portion 311 that presses the first frictional engagement element 11 and the second frictional engagement element 12, and a third frictional engagement element 21 and a fourth frictional engagement element 22.
  • a second pressing portion 312 that presses, a linear motion mechanism 33 that moves the first pressing portion 311 and the second pressing portion 312 in the axial direction L, and a transmission mechanism that transmits the power of the drive source 4 to the linear motion mechanism 33 5 and .
  • the first pressing portion 311 and the second pressing portion 312 are configured by separate members arranged to face each other in the axial direction L.
  • the first pressing portion 311 and the second pressing portion 312 are rotatably supported relative to each other via a fourth bearing B4. Therefore, in this embodiment, the first pressing portion 311 and the second pressing portion 312 are configured to interlock in the axial direction L in a relatively rotatable state.
  • the fourth bearing B4 is a thrust bearing arranged between the first pressing portion 311 and the second pressing portion 312 in the axial direction L.
  • the linear motion mechanism 33 is configured by a ball screw.
  • a nut member 332 screwed onto a screw shaft 331 of the linear motion mechanism 33 is connected to the second pressing portion 312 so as to move in the axial direction L integrally.
  • the transmission mechanism 5 is composed of a plurality of gears.
  • the rotation from the drive source 4 is decelerated between gears that mesh with each other and transmitted to the linear motion mechanism 33 .
  • the linear motion mechanism 33 moves the first pressing portion 311 and the second pressing portion 312 to the first side L1 in the axial direction, so that the first frictional engagement element 11 and the second frictional engagement element 12 move toward the first pressing portion 311.
  • the clutch mechanism 1 is pressed by the second pressing portion 312 to release the pressure of the third frictional engagement element 21 and the fourth frictional engagement element 22, and the brake mechanism 2 is released.
  • the first rotating member 81 rotates with respect to the non-rotating member NR, and the first rotating member 81 and the second rotating member 82 rotate integrally.
  • the first ring gear R1 connected to the first rotating member 81, the first carrier C1 connected to the drive gear DG, and the first sun gear S1 connected to the input shaft IS and the second rotating member 82 are integrated. rotates. As a result, the rotation of the rotor RT is directly transmitted to the drive gear DG (see symbol G2 in FIG. 7).
  • the linear motion mechanism 33 moves the first pressing portion 311 and the second pressing portion 312 to the second side L2 in the axial direction, thereby causing the third frictional engagement element 21 and the fourth frictional engagement element 22 to perform the second pressing.
  • the brake mechanism 2 is pressed by the portion 312 to be in the engaged state, and the pressing of the first frictional engagement element 11 and the second frictional engagement element 12 by the first pressing portion 311 is released so that the clutch mechanism 1 is in the released state. becomes.
  • the first rotating member 81 is restricted from rotating relative to the non-rotating member NR, and the second rotating member 82 rotates relative to the first rotating member 81 .
  • the first ring gear R1 connected to the first rotating member 81, the first carrier C1 connected to the drive gear DG, and the first sun gear S1 connected to the input shaft IS and the second rotating member 82 are rotate relative to each other.
  • the rotation of the rotor RT is decelerated in the planetary gear mechanism PL and transmitted to the drive gear DG (see symbol G1 in FIG. 7).
  • the drive gear DG is arranged between the rotor RT and the transmission TM in the axial direction L.
  • the rotor RT, the drive gear DG, the planetary gear mechanism PL, and the engagement device 100 are arranged in the stated order from the first axial side L1 toward the second axial side L2. are placed.
  • the input shaft IS is formed to extend in the axial direction L.
  • the input shaft IS is arranged so as to pass through the driving gear DG in the axial direction L.
  • the input shaft IS connects the rotor RT and the first rotating element E1 (here, the first sun gear S1) so as to rotate together.
  • the input shaft IS is rotatably supported relative to the drive gear DG via the fifth bearing B5.
  • the input shaft IS passes through the third side wall portion 92b of the case 9 in the axial direction L.
  • the input shaft IS is rotatably supported by the third side wall portion 92b via the sixth bearing B6.
  • the input shaft IS passes through the planetary gear mechanism PL in the axial direction L and is connected to the second rotating member 82 so as to rotate integrally therewith.
  • the input shaft IS is rotatably supported relative to the first carrier C1 of the planetary gear mechanism PL via the seventh bearing B7.
  • the output gear OG has a larger diameter than the drive gear DG. Therefore, the rotation of the drive gear DG is decelerated between the drive gear DG and the output gear OG.
  • the output gear OG is in direct mesh with the drive gear DG.
  • the output gear OG is arranged so as to overlap with both the rotary electric machine MG and the planetary gear mechanism PL when viewed in the axial direction L.
  • the output gear OG overlaps the stator ST and rotor RT of the rotary electric machine MG when viewed in the axial direction L, and also overlaps the first sun gear S1 and the first carrier C1 of the planetary gear mechanism PL. , and the first ring gear R1.
  • overlapping in a particular direction view means that when a virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line, the virtual straight line is two It refers to the existence of at least a part of an area that intersects two elements.
  • the drive gear DG has a smaller diameter than the first sun gear S1 of the planetary gear mechanism PL. According to this configuration, it is easy to increase the dimensional difference in the radial direction R between the driving gear DG and the output gear OG, thereby ensuring a large reduction ratio between the driving gear DG and the output gear OG. As a result, it is easy to reduce the size of the rotary electric machine MG. Further, in this embodiment, the drive gear DG has a smaller diameter than the first carrier C1 of the planetary gear mechanism PL. In this example, the drive gear DG has a smaller diameter than the revolution locus of the first pinion gear P1 supported by the first carrier C1.
  • a pair of output members OM are arranged side by side in the axial direction L.
  • the output member OM on the first axial side L1 rotates integrally with the wheel W on the first axial side L1 via a first drive shaft DS1 (see FIG. 6) extending in the axial direction L.
  • the output member OM on the second axial side L2 rotates integrally with the wheel W on the second axial side L2 via a second drive shaft DS2 (see FIG. 6) extending in the axial direction L.
  • first output member OM1 the output member OM on the first side L1 in the axial direction
  • second output member OM2 the output member OM on the second side L2 in the axial direction
  • the differential gear mechanism DF is a planetary gear type differential gear mechanism including a second sun gear S2, a second carrier C2, and a second ring gear R2.
  • the differential gear mechanism DF is a double pinion planetary gear mechanism. Therefore, in this embodiment, the second carrier C2 rotatably supports an inner pinion gear P21 meshing with the second sun gear S2 and an outer pinion gear P22 meshing with the second ring gear R2.
  • the second sun gear S2 is connected to rotate integrally with the first output member OM1.
  • the first output member OM1 is arranged to extend from the second sun gear S2 to the first side L1 in the axial direction.
  • the first output member OM1 is rotatably supported relative to the second carrier C2 via an eighth bearing B8.
  • the first output member OM1 is arranged so as to pass through the third side wall portion 92b and the second side wall portion 92a of the case 9 in the axial direction L.
  • the first output member OM1 is rotatably supported with respect to the third side wall portion 92b via a ninth bearing B9, and is rotatably supported with respect to the second side wall portion 92a via a tenth bearing B10. supported by
  • the second carrier C2 is connected to rotate integrally with the second output member OM2.
  • the second output member OM2 is arranged to extend from the second carrier C2 to the second side L2 in the axial direction.
  • the second output member OM2 is rotatably supported relative to the second ring gear R2 via the eleventh bearing B11.
  • the second output member OM2 is arranged so as to pass through the fourth side wall portion 92d of the case 9 in the axial direction L. As shown in FIG.
  • the second output member OM2 is rotatably supported by the fourth side wall portion 92d via the twelfth bearing B12.
  • the second ring gear R2 is connected to rotate integrally with the output gear OG.
  • the second ring gear R2 is arranged inside in the radial direction R with respect to the output gear OG. Further, the second ring gear R2 is arranged so as to overlap with the output gear OG when viewed in the radial direction R.
  • FIG. 7 shows a velocity diagram of the planetary gear mechanism PL according to this embodiment.
  • the vertical lines correspond to the rotation speed of each rotating element of the planetary gear mechanism PL.
  • Each of the plurality of vertical lines arranged in parallel corresponds to each rotating element of the planetary gear mechanism PL.
  • the symbols shown above the plurality of vertical lines are the symbols of the corresponding rotating elements of the planetary gear mechanism PL.
  • the reference numerals shown below the multiple vertical lines are the reference numerals of the elements rotating integrally with the rotating elements corresponding to the upper reference numerals.
  • the black circle on the vertical line corresponding to the third rotating element E3 indicates that the brake mechanism 2 is in the direct engagement state.
  • the "direct engagement state" is an engagement state in which there is no rotational speed difference between the input element and the output element of the friction engagement device.
  • the transmission TM is in the state where the first gear stage G1 is established.
  • the first ring gear R1 connected to the first rotating member 81, the first carrier C1 connected to the driving gear DG, the input shaft IS and the second rotating member 82 are connected.
  • the first sun gear S1 and the first sun gear S1 rotate relative to each other.
  • the rotation of the rotor RT is reduced in the planetary gear mechanism PL at a gear ratio corresponding to the first gear G1 and transmitted to the driving gear DG.
  • the transmission TM is in a state where the second gear stage G2 is formed.
  • the first ring gear R1 connected to the first rotating member 81, the first carrier C1 connected to the driving gear DG, and the first sun gear S1 connected to the input shaft IS and the second rotating member 82 are arranged. rotate together.
  • the gear ratio corresponding to the second gear G2 becomes 1, so that the rotation of the rotor RT is directly transmitted to the driving gear DG.
  • FIG. 10 A vehicle drive system 1000 according to a second embodiment will be described below with reference to FIGS. 8 and 9.
  • the output gear OG does not directly mesh with the drive gear DG, but meshes with the idler gear IG that meshes with the drive gear DG.
  • the device 1000 is different. Differences from the vehicle drive system 1000 according to the first embodiment will be mainly described below. Note that points that are not particularly described are the same as those of the vehicle drive system 1000 according to the first embodiment.
  • the output gear OG meshes with the idler gear IG that meshes with the drive gear DG. That is, the output gear OG and the drive gear DG mesh with the idler gear IG at different positions in the circumferential direction of the idler gear IG.
  • the output gear OG overlaps with the rotary electric machine MG when viewed in the axial direction L, but does not overlap with the planetary gear mechanism PL.
  • the case 9 does not include the second peripheral wall portion 91a and the second side wall portion 92a. Accordingly, in the present embodiment, the tenth bearing B10 that rotatably supports the first output member OM1 with respect to the second side wall portion 92a is not provided.
  • the first output member OM1 is shorter in the axial direction L than in the first embodiment.
  • the third side wall portion 92b is formed integrally with the third peripheral wall portion 91b and the fourth peripheral wall portion 91c. Also, the first side wall portion 92 is formed of a separate member from the third peripheral wall portion 91b.
  • the vehicle drive system 1000 a rotating electrical machine MG having a rotor RT; an input shaft IS that rotates integrally with the rotor RT; an output gear OG drivingly connected to the wheels W;
  • a vehicle drive device 1000 comprising a transmission TM comprising a planetary gear mechanism PL and an engagement device 100,
  • the planetary gear mechanism PL includes a first rotating element E1, a second rotating element E2, and a third rotating element E3.
  • the first rotating element E1 is coupled to rotate integrally with the input shaft IS
  • the second rotating element E2 is coupled to rotate integrally with the drive gear DG
  • the third rotating element E3 rotates integrally with the first rotating element E1 or the second rotating element E2 in a first state where it is connected to the non-rotating member NR depending on the state of engagement of the engagement device 100.
  • the rotor RT, the planetary gear mechanism PL, the engagement device 100, and the drive gear DG are coaxially arranged,
  • the drive gear DG is arranged between the rotor RT and the transmission TM in the axial direction L,
  • the input shaft IS passes through the drive gear DG in the axial direction L and connects the rotor RT and the first rotating element E1 so as to rotate integrally,
  • the output gear OG has a larger diameter than the drive gear DG,
  • the driving gear DG and the output gear OG are meshed, or the idler gear IG meshing with the driving gear DG is meshed with the output gear OG.
  • the drive gear DG connected to rotate integrally with the second rotating element E2 of the planetary gear mechanism PL is directly connected to the output gear OG formed to have a larger diameter than the drive gear DG.
  • they are meshed via an idler gear IG.
  • the rotation of the second rotating element E2 transmitted to the driving gear DG can be decelerated between the driving gear DG and the output gear OG. Therefore, the configuration of the vehicle drive device 1000 can be simplified, for example, compared to a configuration including the planetary gear mechanism PL that decelerates the rotation of the second rotating element E2.
  • the rotor RT, the transmission TM, and the driving gear DG are coaxially arranged, and the driving gear DG is arranged between the rotor RT and the transmission TM in the axial direction L.
  • the dimension in the radial direction R of the vehicle drive device 1000 is reduced. can be kept small.
  • the vehicle drive device 1000 having a small size and a simple configuration can be realized.
  • the vehicle drive device 1000 includes: Further comprising an output member OM that rotates integrally with the wheel W, The output gear OG is arranged coaxially with the output member OM.
  • the output gear OG meshing with the drive gear DG arranged coaxially with the rotor RT and the transmission TM directly or via the idler gear IG is coaxial with the output member OM rotating integrally with the wheels W. placed above.
  • the vehicle drive device 1000 includes: a pair of output members OM each rotating integrally with wheels W different from each other; a planetary differential gear mechanism DF comprising a second sun gear S2, a second carrier C2, and a second ring gear R2, which distributes the rotation of the output gear OG to the pair of output members OM;
  • the output gear OG is arranged outside the ring gear in the radial direction R and overlaps the ring gear when viewed in the radial direction R. As shown in FIG.
  • the differential gear mechanism DF is of the planetary gear type, it is easier to keep the dimension of the vehicle drive device 1000 in the axial direction L smaller than when the differential gear mechanism DF is of the bevel gear type. .
  • the output gear OG is arranged outside in the radial direction R of the second ring gear R2. This makes it easy to increase the diameter of the output gear OG and ensure a large reduction ratio between the drive gear DG and the output gear OG. As a result, it is easy to reduce the size of the rotary electric machine MG.
  • the output gear OG is arranged so as to overlap the second ring gear R2 when viewed in the radial direction R. As a result, compared to a configuration in which the output gear OG is displaced in the axial direction L with respect to the second ring gear R2, the dimension of the vehicle drive device 1000 in the axial direction L can be reduced.
  • the planetary gear mechanism PL is arranged on the rotor RT side in the axial direction L with respect to the engagement device 100 .
  • the vehicle drive device 1000 includes a rotating electric machine MG including a stator ST and a rotor RT, an input member IM to which the rotation of the rotor RT is transmitted, and wheels W (see FIG. 11).
  • a speed reducer RD that decelerates the rotation of the input member IM and transmits it to the output member OM; and a brake mechanism 2 that selectively engages the input member IM and the non-rotating member NR. and have.
  • the vehicle drive system 1000 includes a clutch mechanism 1 that selectively engages the rotor RT and the input member IM, and a drive mechanism that changes the engagement states of both the brake mechanism 2 and the clutch mechanism 1. 7 and a case 9 as a non-rotating member NR.
  • the vehicle drive device 1000 is configured as a drive device for wheels W, which is called an in-wheel motor.
  • the rotor RT, input member IM, output member OM, and brake mechanism 2 are coaxially arranged.
  • the rotor RT, the input member IM, and the brake mechanism 2 are arranged coaxially with the output member OM that rotates integrally with the wheel W, that is, coaxially with the rotation axis of the wheel W.
  • the speed reducer RD and the clutch mechanism 1 are also arranged coaxially therewith.
  • the case 9 accommodates the rotary electric machine MG, the input member IM, the output member OM, the speed reducer RD, the brake mechanism 2, the clutch mechanism 1, and the drive mechanism 7.
  • the case 9 accommodates the output member OM and the drive mechanism 7 in a state in which parts of them are exposed to the outside.
  • the case 9 in the present embodiment includes the fifth side wall portion 95, the sixth side wall portion 96, is further provided.
  • the first peripheral wall portion 91 is formed in a tubular shape with openings on the first axial side L1 and the second axial side L2.
  • the fifth side wall portion 95 and the sixth side wall portion 96 are formed to extend along the radial direction R. As shown in FIG.
  • the fifth side wall portion 95 is arranged to close the opening of the first peripheral wall portion 91 on the first side L1 in the axial direction.
  • the sixth side wall portion 96 is arranged so as to block the opening of the first peripheral wall portion 91 on the second side L2 in the axial direction.
  • the first side wall portion 92 is formed to extend inward in the radial direction R from the first peripheral wall portion 91 .
  • the first side wall portion 92 is arranged between the fifth side wall portion 95 and the sixth side wall portion 96 in the axial direction L.
  • the speed reducer RD is arranged between the first side wall portion 92 and the fifth side wall portion 95 in the axial direction L.
  • the rotary electric machine MG, the brake mechanism 2, and the clutch mechanism 1 are arranged between the first side wall portion 92 and the sixth side wall portion 96 in the axial direction L.
  • the cover portion 94 is formed to cover the axial second side L2 of the sixth side wall portion 96 .
  • the rotation axis of the rotor RT is arranged so that a plurality of vehicle body coupling members C1 for coupling the vehicle drive device 1000 to the vehicle body protrude from the sixth side wall portion 96 toward the second side L2 in the axial direction. They are distributed in the circumferential direction around the center.
  • a cover portion 94 is arranged inside in the radial direction R with respect to the plurality of vehicle body connecting members C1.
  • the rotating electric machine MG functions as a driving force source for the wheels W (see FIG. 11).
  • the rotary electric machine MG has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power.
  • the rotary electric machine MG is electrically connected to a power storage device (not shown) such as a battery or a capacitor. Then, the rotating electric machine MG is powered by the electric power stored in the power storage device to generate a driving force. In addition, the rotary electric machine MG generates power by the driving force transmitted from the wheel W side, and charges the power storage device.
  • the stator ST of the rotating electric machine MG is fixed to the non-rotating member NR.
  • the stator ST is fixed to the first peripheral wall portion 91 of the case 9 .
  • a rotor RT of the rotary electric machine MG is rotatably supported with respect to the stator ST.
  • the rotor RT is arranged radially inside the stator ST.
  • the rotating electrical machine MG further includes a rotor support member 13.
  • the rotor support member 13 is a member that rotatably supports the rotor RT with respect to the case 9 .
  • the rotor support member 13 includes an outer tubular portion 131 , an inner tubular portion 132 and a connecting portion 133 .
  • the outer tubular portion 131 is formed in a tubular shape coaxial with the rotor RT.
  • the outer tubular portion 131 is arranged to support the rotor RT from the inside in the radial direction R.
  • the outer tubular portion 131 corresponds to the first rotating member 81 .
  • the inner tubular portion 132 is formed in a tubular shape coaxial with the outer tubular portion 131 .
  • the inner tubular portion 132 is formed to have a smaller diameter than the outer tubular portion 131 .
  • the inner cylindrical portion 132 is rotatably supported by the first side wall portion 92 of the case 9 via the second bearing B2.
  • the second bearing B ⁇ b>2 is a radial bearing arranged between the inner cylindrical portion 132 and the first side wall portion 92 in the radial direction R.
  • the second bearing B2 is a ball bearing arranged to support the inner tubular portion 132 from the outside in the radial direction R.
  • the inner tubular portion 132 corresponds to the first shaft member 10 .
  • the connecting portion 133 extends along the radial direction R so as to connect the outer tubular portion 131 and the inner tubular portion 132 .
  • the outer end portion of the connecting portion 133 in the radial direction R is connected to the end portion of the outer cylindrical portion 131 on the first side L1 in the axial direction.
  • An inner end portion of the connecting portion 133 in the radial direction R is connected to an end portion of the inner cylindrical portion 132 on the second axial side L2.
  • the outer cylindrical portion 131, the inner cylindrical portion 132, and the connecting portion 133 are integrally formed.
  • the connecting portion 133 is rotatably supported by the first side wall portion 92 of the case 9 via the first bearing B1.
  • the first bearing B1 is a thrust bearing arranged between the connecting portion 133 and the first side wall portion 92 in the axial direction L. As shown in FIG. In the illustrated example, the first bearing B1 is a ball bearing arranged to support the connecting portion 133 from the first axial side L1.
  • the input member IM includes the second rotating member 82 and the second shaft member 20.
  • the second shaft member 20 is arranged so as to pass through the first side wall portion 92 of the case 9 in the axial direction L.
  • the second shaft member 20 is arranged inside in the radial direction R with respect to the inner cylindrical portion 132 of the rotor support member 13 .
  • the second shaft member 20 is rotatably supported relative to the inner tubular portion 132 via the third bearing B3.
  • the third bearing B3 is a radial bearing arranged between the second shaft member 20 and the inner tubular portion 132 in the radial direction R.
  • the brake mechanism 2 and the clutch mechanism 1 are arranged side by side in the axial direction L.
  • the clutch mechanism 1 is arranged on the first side L1 in the axial direction with respect to the brake mechanism 2 .
  • the brake mechanism 2 includes a third frictional engagement element 21, a fourth frictional engagement element 22, a second outer support portion 822, and a second inner support portion 931. , and a second pressing portion 312 .
  • the third frictional engagement element 21 and the fourth frictional engagement element 22 are arranged so as to face each other in the axial direction L.
  • the third frictional engagement element 21 and the fourth frictional engagement element 22 are pressed in the axial direction L to frictionally engage each other.
  • each of the third frictional engagement element 21 and the fourth frictional engagement element 22 is formed in a disk shape coaxial with the rotor RT.
  • a plurality of third frictional engagement elements 21 and a plurality of fourth frictional engagement elements 22 are provided and arranged alternately along the axial direction L.
  • One of the third frictional engagement element 21 and the fourth frictional engagement element 22 can be a friction plate and the other can be a separate plate.
  • the second outer support portion 822 supports the third frictional engagement element 21 so as to be slidable in the axial direction L so as to integrally rotate with the third frictional engagement element 21 .
  • the second outer support portion 822 is formed in a cylindrical shape coaxial with the rotor RT.
  • the second outer support portion 822 supports the third frictional engagement element 21 from the outside in the radial direction R.
  • a plurality of spline teeth extending in the axial direction L are formed in the inner peripheral portion of the second outer support portion 822 so as to be dispersed in the circumferential direction.
  • the outer peripheral portion of the third frictional engagement element 21 is also formed with similar spline teeth dispersed in the circumferential direction. And those spline teeth are engaged with each other.
  • the second inner support portion 931 supports the fourth frictional engagement element 22 so as to be slidable in the axial direction L so as to integrally rotate with the fourth frictional engagement element 22 .
  • the second inner support portion 931 is coaxial with the second outer support portion 822 and formed in a tubular shape with a diameter smaller than that of the second outer support portion 822 .
  • the second inner support portion 931 supports the fourth frictional engagement element 22 from the inside in the radial direction R.
  • a plurality of spline teeth extending in the axial direction L are formed on the outer peripheral portion of the second inner support portion 931 so as to be dispersed in the circumferential direction.
  • similar spline teeth are also formed in the inner peripheral portion of the fourth frictional engagement element 22 so as to be dispersed in the circumferential direction. And those spline teeth are engaged with each other.
  • the second outer support portion 822 is connected to rotate integrally with the input member IM.
  • the second inner support portion 931 is fixed to the non-rotating member NR.
  • the second inner support portion 931 is fixed to the support wall portion 93 of the case 9 as the non-rotating member NR.
  • the support wall portion 93 is formed to extend along the radial direction R. As shown in FIG. In this embodiment, the support wall portion 93 is joined to the portion of the sixth side wall portion 96 covered by the cover portion 94 from the axial first side L1.
  • the second inner support portion 931 is integrally formed with the support wall portion 93 so as to protrude from the support wall portion 93 to the first side L1 in the axial direction.
  • the second pressing portion 312 is configured to press the third frictional engagement element 21 and the fourth frictional engagement element 22 .
  • the second pressing portion 312 is formed to extend along the radial direction R. As shown in FIG.
  • the second pressing portion 312 is arranged to press the third frictional engagement element 21 and the fourth frictional engagement element 22 from the first axial side L1.
  • the clutch mechanism 1 includes a first friction engagement element 11, a second friction engagement element 12, a first outer support portion 811, a first inner support portion 821, and a first pressing portion 311. , is equipped with
  • the first frictional engagement element 11 and the second frictional engagement element 12 are arranged so as to face each other in the axial direction L.
  • the first frictional engagement element 11 and the second frictional engagement element 12 are pressed in the axial direction L to frictionally engage each other.
  • each of the first frictional engagement element 11 and the second frictional engagement element 12 is formed in a disk shape coaxial with the rotor RT.
  • a plurality of the first frictional engagement elements 11 and the second frictional engagement elements 12 are provided and arranged alternately along the axial direction L.
  • One of the first frictional engagement element 11 and the second frictional engagement element 12 can be a friction plate and the other can be a separate plate.
  • the first outer support portion 811 slidably supports the first frictional engagement element 11 in the axial direction L so as to rotate together with the first frictional engagement element 11 .
  • the first outer support portion 811 is formed in a cylindrical shape coaxial with the rotor RT.
  • the first outer support portion 811 supports the first frictional engagement element 11 from the outside in the radial direction R.
  • a plurality of spline teeth extending in the axial direction L are formed in the inner peripheral portion of the first outer support portion 811 so as to be dispersed in the circumferential direction.
  • the outer peripheral portion of the first friction engagement element 11 is also formed with similar spline teeth dispersed in the circumferential direction. And those spline teeth are engaged with each other.
  • the first inner support portion 821 slidably supports the second frictional engagement element 12 in the axial direction L so as to rotate integrally with the second frictional engagement element 12 .
  • the first inner support portion 821 is coaxial with the first outer support portion 811 and formed in a tubular shape with a diameter smaller than that of the first outer support portion 811 .
  • the first inner support portion 821 supports the second frictional engagement element 12 from the inside in the radial direction R.
  • a plurality of spline teeth extending in the axial direction L are formed on the outer peripheral portion of the first inner support portion 821 so as to be dispersed in the circumferential direction.
  • the inner peripheral portion of the second friction engagement element 12 is also formed with similar spline teeth dispersed in the circumferential direction. And those spline teeth are engaged with each other.
  • the first pressing portion 311 is configured to press the first frictional engagement element 11 and the second frictional engagement element 12 .
  • the first pressing portion 311 is formed to extend along the radial direction R.
  • the first pressing portion 311 is arranged to press the first frictional engagement element 11 and the second frictional engagement element 12 from the axial second side L2.
  • the first pressing portion 311 is connected to the second outer supporting portion 822 of the brake mechanism 2 so as to rotate integrally.
  • the first pressing portion 311 and the first pressing portion 311 are connected to each other so that the outer end portion in the radial direction R of the first pressing portion 311 and the end portion of the second outer support portion 822 on the first side L1 in the axial direction are connected.
  • a second outer support portion 822 is integrally formed.
  • the first pressing portion 311 is rotatably supported relative to the second pressing portion 312 via the fourth bearing B4.
  • the fourth bearing B4 is a thrust bearing arranged between the first pressing portion 311 and the second pressing portion 312 in the axial direction L. As shown in FIG. In the illustrated example, the fourth bearing B4 is a ball bearing arranged to support the first pressing portion 311 from the second axial side L2 and to support the second pressing portion 312 from the first axial side L1. is.
  • the first outer support portion 811 is connected to rotate integrally with the rotor RT.
  • the first outer support portion 811 is connected to the outer tubular portion 131 of the rotor support member 13 from the inside in the radial direction R. As shown in FIG. In the illustrated example, the first outer support portion 811 is formed integrally with the outer tubular portion 131 .
  • the first inner support portion 821 is connected to rotate integrally with the input member IM.
  • the first inner support portion 821 is positioned on the second side L2 in the axial direction of the connection portion 133 of the rotor support member 13 in the input member IM (here, the second rotating member 82). , are connected from the outside in the radial direction R.
  • the first inner support portion 821 is formed integrally with the input member IM.
  • the first inner support portion 821 is connected to the second outer support portion 822 of the brake mechanism 2 so as to rotate integrally.
  • the first inner support portion 821 is slidable on the first pressing portion 311 in the axial direction L so as to rotate together with the first pressing portion 311 connected to the second outer support portion 822.
  • spline teeth that engage with the spline teeth formed on the outer peripheral portion of the first inner support portion 821 are formed dispersedly in the circumferential direction. And those spline teeth are engaged with each other.
  • the third friction engagement element 21 of the brake mechanism 2 and the second friction engagement element 12 of the clutch mechanism 1 rotate together.
  • the brake mechanism 2 is arranged inside the rotor RT of the rotary electric machine MG in the radial direction R and overlaps the rotor RT when viewed in the radial direction R.
  • "overlapping in a particular direction view” means that when a virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line, the virtual straight line is two It refers to the existence of at least a part of an area that intersects two elements.
  • the clutch mechanism 1 is also arranged inside the rotor RT in the radial direction R and overlaps the rotor RT when viewed in the radial direction R.
  • the speed reducer RD is provided to decelerate the rotation of the input member IM and transmit it to the output member OM
  • the moment of inertia of the rotor RT is amplified in accordance with the reduction ratio of the speed reducer RD and the output member OM acts on
  • the torque acting on the driving force transmission path becomes excessive. easy to become
  • the strength of the members arranged on the transmission path of the drive force is ensured, the size of those members will be increased.
  • a clutch mechanism 1 is provided for selectively engaging the rotor RT and the input member IM.
  • the clutch mechanism 1 it is possible to prevent the clutch mechanism 1 from slipping when excessive torque acts on the transmission path of the driving force, thereby preventing the driving force transmitted between the rotor RT and the input member IM from becoming excessively large. . Therefore, it is possible to reduce the size of the members arranged on the transmission path of the driving force.
  • the rotor RT can be separated from the input member IM (and thus the wheels W) by disengaging the clutch mechanism 1 .
  • the rotary electric machine MG can be stopped while the vehicle is traveling by inertia or by driving force of another driving source. Therefore, the energy efficiency of the vehicle drive system 1000 can be enhanced.
  • the drive mechanism 7 has a first state in which the brake mechanism 2 is engaged and the clutch mechanism 1 is released, and a second state in which the brake mechanism 2 is released and the clutch mechanism 1 is engaged. , is configured to change state.
  • the drive mechanism 7 is configured to change the state to the third state in which the brake mechanism 2 is released and the clutch mechanism 1 is released.
  • the rotary electric machine MG can be stopped while the vehicle is traveling by inertia or by driving force of another driving source.
  • the drive mechanism 7 includes a direct acting mechanism 33 , a transmission mechanism 5 and a drive source 4 .
  • the linear motion mechanism 33 is configured to move the second pressing portion 312 of the brake mechanism 2 and the first pressing portion 311 of the clutch mechanism 1 in the axial direction L.
  • the second pressing portion 312 and the first pressing portion 311 are the third frictional engagement element 21 and the fourth frictional engagement element 22 and the first frictional engagement element 11 and the second frictional engagement element 12 . and in the axial direction L. Therefore, the linear motion mechanism 33 is configured to easily move both the second pressing portion 312 and the first pressing portion 311 .
  • the linear motion mechanism 33 includes a screw shaft 331 rotatably supported with respect to the non-rotating member NR, and a nut member 332 screwed onto the screw shaft 331. I have.
  • a screw thread is formed on the outer peripheral portion of the screw shaft 331 .
  • the screw shaft 331 is formed to extend along the axial direction L. As shown in FIG. In this embodiment, the screw shaft 331 is arranged coaxially with the brake mechanism 2 and the clutch mechanism 1 . Further, in the present embodiment, the screw shaft 331 is located inside the second inner support portion 931 of the brake mechanism 2 in the radial direction R, and is positioned between the second inner support portion 931 and the second inner support portion 931 when viewed in the radial direction R along the radial direction R. placed in overlapping positions.
  • a groove that engages with the thread of the screw shaft 331 is formed in the inner peripheral portion of the nut member 332 .
  • the nut member 332 performs linear motion along the axial direction L according to the rotation direction and the direction of the thread of the screw shaft 331 .
  • the nut member 332 is connected to the second pressing portion 312 of the brake mechanism 2 so as to move in the axial direction L integrally.
  • the fourth bearing B4 is arranged between the second pressing portion 312 and the first pressing portion 311 in the axial direction L. Therefore, in the present embodiment, when the screw shaft 331 rotates so that the nut member 332 moves to the first side L1 in the axial direction, the second pressing portion 312 moves to the first side L1 in the axial direction via the nut member 332. At the same time, the first pressing portion 311 also moves to the first side L1 in the axial direction via the fourth bearing B4.
  • the first frictional engagement element 11 and the second frictional engagement element 12 are pressed by the first pressing portion 311 to bring the clutch mechanism 1 into the engaged state, and the third frictional engagement by the second pressing portion 312 is achieved.
  • the pressing force of the coupling element 21 and the fourth frictional engagement element 22 is released, and the brake mechanism 2 is released. In this state, power is transmitted between the rotor RT and the input member IM.
  • the second pressing portion 312 moves to the second side L2 in the axial direction via the nut member 332.
  • the third frictional engagement element 21 and the fourth frictional engagement element 22 are pressed by the second pressing portion 312 to bring the brake mechanism 2 into the engaged state, and the first frictional engagement by the first pressing portion 311 is achieved.
  • the pressing of the coupling element 11 and the second frictional engagement element 12 is released, and the clutch mechanism 1 is released. In this state, power transmission between the rotor RT and the input member IM is interrupted.
  • the transmission mechanism 5 is configured to transmit the power of the drive source 4 to the direct acting mechanism 33 .
  • the transmission mechanism 5 includes a first gear 51, a second gear 52, a third gear 53, a fourth gear 54, and a connecting body 55. .
  • the first gear 51 is connected to the output shaft of the drive source 4 so as to rotate integrally.
  • the first gear 51 is arranged coaxially with the screw shaft 331 of the linear motion mechanism 33 .
  • the first gear 51 is arranged on the axial first side L ⁇ b>1 with respect to the drive source 4 .
  • the second gear 52 meshes with the first gear 51.
  • the second gear 52 is formed with a larger diameter than the first gear 51 .
  • the third gear 53 is connected to rotate integrally with the second gear 52 .
  • the third gear 53 is formed with a smaller diameter than the second gear 52 .
  • the third gear 53 is arranged on the first side L1 in the axial direction with respect to the second gear 52 .
  • the second gear 52 and the third gear 53 are rotatably supported with respect to the case 9 by the first shaft body 56 .
  • the first shaft 56 is formed to extend along the axial direction L. As shown in FIG. In the present embodiment, the first shaft 56 is arranged so as to pass through the sixth side wall portion 96 in the axial direction L. As shown in FIG.
  • An end portion of the first shaft 56 on the first side L1 in the axial direction is rotatably supported by the support wall portion 93 . Further, the end portion of the first shaft 56 on the axial second side L2 is rotatably supported with respect to the cover portion 94 .
  • the fourth gear 54 meshes with the third gear 53.
  • the fourth gear 54 is formed with a larger diameter than the third gear 53 .
  • the fourth gear 54 is arranged coaxially with the screw shaft 331 of the linear motion mechanism 33 .
  • the fourth gear 54 is connected to the connecting body 55 via the second shaft 57 so as to rotate integrally therewith.
  • the second shaft 57 is formed to extend along the axial direction L. As shown in FIG. In the present embodiment, the second shaft 57 is arranged so as to pass through the sixth side wall portion 96 and the support wall portion 93 in the axial direction L. As shown in FIG.
  • the number of teeth of the second gear 52 is greater than the number of teeth of the first gear 51 .
  • the number of teeth of the fourth gear 54 is greater than the number of teeth of the third gear 53 that rotates integrally with the second gear 52 . Therefore, in this embodiment, the rotation transmitted from the drive source 4 to the first gear 51 is decelerated between the first gear 51 and the second gear 52 and transmitted to the third gear 53 .
  • the rotation of the third gear 53 is decelerated between the third gear 53 and the fourth gear 54 and transmitted to the connecting body 55 .
  • the connecting body 55 connects the fourth gear 54 and the screw shaft 331 so that they rotate integrally.
  • the connecting body 55 is formed in a tubular shape with an opening on the second axial side L2. With the second shaft 57 arranged inside the connecting body 55 in the radial direction R, the connecting body 55 and the second shaft 57 are connected so as to rotate integrally. Further, in the present embodiment, the connecting body 55 and the screw shaft 331 are connected so as to rotate integrally in a state where the screw shaft 331 is arranged to protrude from the connecting body 55 to the first side L1 in the axial direction. ing.
  • the connecting body 55 is located inside the second inner support portion 931 of the brake mechanism 2 in the radial direction R and overlaps the second inner support portion 931 when viewed in the radial direction R. placed in position.
  • the drive source 4 is a device that generates power for driving the linear motion mechanism 33 .
  • the drive source 4 is supported by the cover portion 94 .
  • the drive source 4 is connected to the cover portion 94 from the axial second side L2.
  • the drive source 4 is an electric motor.
  • the vehicle drive device 1000 further includes the drive mechanism 7 that changes the engagement state of both the brake mechanism 2 and the clutch mechanism 1,
  • the brake mechanism 2 and the clutch mechanism 1 are arranged side by side in the axial direction L,
  • the drive mechanism 7 has a first state in which the brake mechanism 2 is engaged and the clutch mechanism 1 is released, and a second state in which the brake mechanism 2 is released and the clutch mechanism 1 is engaged. , is configured to change state.
  • the states of engagement of both the brake mechanism 2 and the clutch mechanism 1 can be changed by the common drive mechanism 7 . Therefore, compared to a configuration in which the brake mechanism 2 and the clutch mechanism 1 are driven by separate drive mechanisms, it is easier to reduce the size of the vehicle drive device 1000 .
  • the speed reducer RD is a planetary gear mechanism including a sun gear SG, a carrier CR, and a ring gear RG.
  • the speed reducer RD is a single pinion type planetary gear mechanism.
  • the speed reducer RD is arranged at a position not overlapping with the rotary electric machine MG when viewed in the radial direction R. As shown in FIG. In the illustrated example, the speed reducer RD is arranged on the first side L1 in the axial direction with respect to the rotary electric machine MG.
  • the sun gear SG is coupled to the input member IM so as to rotate integrally. That is, in this embodiment, the sun gear SG is an input element of the speed reducer RD. In the illustrated example, the sun gear SG is formed at a portion of the input member IM positioned closer to the first side L1 in the axial direction than the first side wall portion 92 of the case 9 . Further, in the present embodiment, the sun gear SG is arranged inside the rotor RT in the radial direction R. As shown in FIG. In the illustrated example, the sun gear SG includes the third frictional engagement element 21 and the fourth frictional engagement element 22 of the brake mechanism 2, and the first frictional engagement element 11 and the second frictional engagement element 12 of the clutch mechanism 1. is arranged inside in the radial direction R.
  • the carrier CR rotatably supports the pinion gear PG.
  • the pinion gear PG meshes with the sun gear SG and the ring gear RG.
  • the pinion gear PG rotates (revolves) about its axis and rotates (revolves) about the sun gear SG together with the carrier CR.
  • a plurality of pinion gears PG are provided at intervals along the revolution locus.
  • the carrier CR is connected to rotate integrally with the output member OM. That is, in this embodiment, the carrier CR is an output element of the speed reducer RD. Further, in this embodiment, the carrier CR includes the first supported portion CRa rotatably supported with respect to the case 9 via the thirteenth bearing B13, and the first supported portion CRa rotatably supported with respect to the case 9 via the fourteenth bearing B14. and a second supported portion CRb that is supported.
  • the first supported portion CRa is formed in a cylindrical shape coaxial with the sun gear SG.
  • the first supported portion CRa is arranged on the first side L1 in the axial direction with respect to the pinion gear PG so as to pass through the fifth side wall portion 95 of the case 9 in the axial direction L.
  • the thirteenth bearing B ⁇ b>13 is a radial bearing arranged between the first supported portion CRa and the fifth side wall portion 95 in the radial direction R.
  • the thirteenth bearing B13 is arranged to support the first supported portion CRa from the outside in the radial direction R.
  • the thirteenth bearing B13 is an angular contact ball bearing in which an imaginary line (line of action) passing through contact points between the rolling elements of the thirteenth bearing B13 and the bearing ring is inclined with respect to the axial direction L.
  • the second supported portion CRb is formed in a cylindrical shape coaxial with the first supported portion CRa.
  • the second supported portion CRb is arranged on the second side L2 in the axial direction with respect to the pinion gear PG.
  • the fourteenth bearing B ⁇ b>14 is a radial bearing arranged between the second supported portion CRb and the first side wall portion 92 of the case 9 in the radial direction R.
  • the fourteenth bearing B14 is arranged to support the second supported portion CRb from the inside in the radial direction R.
  • the 14th bearing B14 is an angular contact ball bearing in which an imaginary line (line of action) passing through contact points between the rolling elements of the 14th bearing B14 and the bearing ring is inclined with respect to the axial direction L.
  • the thirteenth bearing B13 and the fourteenth bearing B14 are arranged such that their lines of action incline with respect to the axial direction L in opposite directions.
  • the ring gear RG is fixed to the case 9 in this embodiment.
  • the ring gear RG is formed integrally with the first side wall portion 92 of the case 9 .
  • the ring gear RG is arranged so as to overlap the stator ST when viewed in the axial direction along the axial direction L. As shown in FIG.
  • the speed reducer RD is a planetary gear mechanism including the sun gear SG, the carrier CR, and the ring gear RG, and is arranged at a position that does not overlap with the rotary electric machine MG when viewed in the radial direction R.
  • the rotor RT is arranged inside in the radial direction R with respect to the stator ST of the rotary electric machine MG
  • the ring gear RG is arranged so as to overlap the stator ST when viewed in the axial direction L
  • the sun gear SG is arranged radially inside the rotor RT.
  • the speed reducer RD is configured by one planetary gear mechanism. According to this configuration, compared to a configuration in which a parallel shaft gear mechanism and a planetary gear mechanism are aligned in the axial direction L, for example, the dimension of the speed reducer RD in the axial direction L can be reduced.
  • the output member OM is a wheel hub.
  • the output member OM includes a connecting portion OMa and a joint portion OMb.
  • the connecting portion OMa is connected to rotate integrally with the output element of the speed reducer RD.
  • the connecting portion OMa is formed to extend along the axial direction L.
  • the connecting portion OMa is arranged inside the first supported portion CRa of the carrier CR in the radial direction R, and is connected to the first supported portion CRa so as to rotate integrally therewith.
  • the joint portion OMb is configured to be joined to the wheel W.
  • the joint portion OMb is formed to protrude outward in the radial direction R from a portion of the connecting portion OMa located on the axial first side L1 of the first supported portion CRa of the carrier CR.
  • the joint portion OMb is connected to the wheel W while being arranged on the second side L2 in the axial direction with respect to the wheel W by means of a plurality of wheel connecting members C2 distributed in the circumferential direction about the axial center of the joint portion OMb. be done.
  • the output member OM is a wheel hub having a joint portion OMb joined to the wheel W, A reduction gear RD is arranged between the joint portion OMb and the rotary electric machine MG in the axial direction L.
  • the vehicle drive system 1000 a rotating electrical machine MG having a rotor RT; an input member IM to which the rotation of the rotor RT is transmitted; an output member OM that rotates integrally with the wheel W; a reducer RD that reduces the rotation of the input member IM and transmits it to the output member OM;
  • a vehicle drive device 1000 comprising a brake mechanism 2 that selectively engages an input member IM and a non-rotating member NR, The brake mechanism 2 is arranged inside the rotor RT in the radial direction R and overlaps the rotor RT when viewed in the radial direction R, A rotor RT, an input member IM, and a brake mechanism 2 are arranged coaxially with the output member OM.
  • the rotor RT is arranged outside in the radial direction R with respect to the brake mechanism 2 .
  • the brake mechanism 2 is arranged at a position overlapping the rotor RT when viewed in the radial direction R. As shown in FIG. As a result, the dimension of the vehicle drive device 1000 in the axial direction L can be reduced compared to a configuration in which the brake mechanism 2 is arranged on one side in the axial direction L of the rotor RT.
  • the rotor RT, the input member IM, and the brake mechanism 2 are arranged coaxially with the output member OM that rotates integrally with the wheel W.
  • a configuration suitable for a driving device for wheels W such as an in-wheel motor, can be realized.
  • the linear motion mechanism 33 is radially inside the fourth connecting portion 8d of the non-rotating member NR in the radial direction R and is radially viewed along the radial direction R.
  • the configuration in which it is arranged at a position overlapping with the fourth connecting portion 8d has been described as an example. However, without being limited to such a configuration, the linear motion mechanism 33 may be displaced from the fourth connecting portion 8d to the first side L1 in the axial direction or the second side L2 in the axial direction.
  • the driven portion 32 is integrally axially moved with the second pressing portion 312 supported in a state in which relative rotation is restricted with respect to the non-rotating member NR.
  • a configuration that is coupled so as to move to L has been described as an example.
  • the driven portion 32 may be integrated with the first pressing portion 311 supported so as to rotate integrally with respect to the first rotating member 81 or the second rotating member 82 . may be connected so as to move in the axial direction L.
  • the linear motion mechanism 33 includes the screw shaft 331 and the nut member 332 as an example.
  • the linear motion mechanism 33 may include a rail and a slide member that slides along the rail.
  • the screw shaft 331 includes the first frictional engagement element 11, the second frictional engagement element 12, the third frictional engagement element 21, and the fourth frictional engagement element.
  • the configuration in which the element 22 is coaxial with the element 22 and arranged inside in the radial direction R has been described as an example.
  • the threaded shaft 331 may include the first frictional engagement element 11, the second frictional engagement element 12, the third frictional engagement element 21, and the fourth frictional engagement element 22. may be arranged on a separate axis from the .
  • the screw shaft 331 is arranged outside in the radial direction R with respect to the first frictional engagement element 11, the second frictional engagement element 12, the third frictional engagement element 21, and the fourth frictional engagement element 22. It's okay to be there.
  • the drive source 4 is arranged on a separate shaft from the screw shaft 331, and the arrangement region of the drive source 4 in the axial direction L is the shaft of the first rotating member 81.
  • the configuration in which the arrangement area in the direction L overlaps has been described as an example.
  • the drive source 4 may be arranged coaxially with the screw shaft 331 .
  • the drive source 4 may be arranged so as to be shifted from the first rotating member 81 to the first axial side L1 or the second axial side L2.
  • the configuration in which the planetary gear mechanism PL is a single pinion type planetary gear mechanism has been described as an example.
  • the planetary gear mechanism PL may be a double pinion type planetary gear mechanism.
  • the first rotating element E1 may be the first sun gear S1
  • the second rotating element E2 may be the first ring gear R1
  • the third rotating element E3 may be the first carrier C1.
  • the configuration in which the differential gear mechanism DF is a planetary gear type differential gear mechanism has been described as an example.
  • a pair of side gears each connected to a different output member OM to rotate integrally, and a plurality of pinion gears meshing with the pair of side gears are provided.
  • a bevel gear type differential gear mechanism may also be used.
  • the planetary gear mechanism PL is positioned on the rotor RT side (axial first side L1) with respect to the engagement device 100 in the axial direction L.
  • Arranged configurations have been described as examples.
  • the planetary gear mechanism PL is not limited to such a configuration, and the planetary gear mechanism PL is arranged on the opposite side of the engagement device 100 from the rotor RT side in the axial direction L (axial second side L2). Also good.
  • the vehicle drive device 1000 is configured as an in-wheel motor, and the output member OM is provided with the joint portion OMb joined to the wheel W as an example.
  • the configuration may be such that the output member OM is a drive shaft coupled to the wheels W so as to rotate integrally.
  • the configuration including the drive mechanism 7 that changes the engagement state of both the brake mechanism 2 and the clutch mechanism 1 has been described as an example.
  • a drive mechanism that changes the engagement state of the brake mechanism 2 and a drive mechanism that changes the engagement state of the clutch mechanism 1 are provided independently. It is good also as the composition which was carried out.
  • the configuration in which the speed reducer RD is arranged at a position that does not overlap with the rotary electric machine MG when viewed in the radial direction R has been described as an example.
  • the speed reducer RD may be arranged so as to overlap with the rotary electric machine MG when viewed in the radial direction R.
  • the configuration in which the speed reducer RD is a single-pinion planetary gear mechanism has been described as an example.
  • the speed reducer RD may be, for example, a double pinion type planetary gear mechanism.
  • the sun gear SG is connected to rotate integrally with the input member IM
  • the ring gear RG is connected to rotate integrally with the output member OM
  • the carrier CR is fixed to the non-rotating member NR. can be configured.
  • the speed reducer RD is configured by a single planetary gear mechanism.
  • the speed reducer RD may be configured by, for example, a parallel shaft gear mechanism having gears arranged on separate shafts and meshing with each other.
  • the engagement device (100) a clutch mechanism (1) that selectively engages a first rotating member (81) and a second rotating member (82); a brake mechanism (2) that selectively engages a target rotating member (8T), which is one of the first rotating member (81) and the second rotating member (82), and a non-rotating member (NR); an engagement device (100) comprising: A pressing mechanism (3) for changing the state of engagement of the clutch mechanism (1) and the brake mechanism (2), A direction along the rotation axis of the first rotating member (81) is defined as an axial direction (L), one side of the axial direction (L) is defined as an axial direction first side (L1), and the axial direction (L) is defined as a first side (L1).
  • the clutch mechanism (1) includes a first frictional engagement element (11) connected to rotate integrally with the first rotating member (81), and an integral clutch with the second rotating member (82). a second frictional engagement element (12) rotationally coupled;
  • the first frictional engagement element (11) and the second frictional engagement element (12) are arranged so as to face each other in the axial direction (L), and are pressed in the axial direction (L).
  • the brake mechanism (2) includes a third frictional engagement element (21) connected to rotate integrally with the target rotating member (8T), and a fourth frictional engagement element (21) fixed to the non-rotating member (NR).
  • the third frictional engagement element (21) and the fourth frictional engagement element (22) are arranged axially with respect to the first frictional engagement element (11) and the second frictional engagement element (12). arranged to face each other in the axial direction (L) at positions spaced apart on the second side (L2), and frictionally engaged with each other by being pressed in the axial direction (L);
  • the pressing mechanism (3) includes the first frictional engagement element (11) and the second frictional engagement element (12), the third frictional engagement element (21) and the fourth frictional engagement element ( 22), a pressing portion (31) arranged between and in the axial direction (L), a driven portion (32) connected so as to interlock with the pressing portion (31), and the driven portion
  • Said first rotating member (81), said second rotating member (82), said first frictional engagement element (11), said second frictional engagement element (12), said third frictional engagement element (21) , and said fourth frictional engagement element (22) are arranged coaxially,
  • the pressing portion (31) which is moved in the axial direction (L) via the driven portion (32) by the linear motion mechanism (33), moves the first frictional engagement element (11) and the second frictional engagement element (11).
  • the axial direction (L) of the engagement element (12) and the third frictional engagement element (21) and the fourth frictional engagement element (22) arranged on the second axial side (L2) with respect to them; is placed between.
  • the linear motion mechanism (33) moves the driven portion (32) to the first side (L1) in the axial direction, so that the first frictional engagement element (11) and the second frictional engagement element (12)
  • the clutch mechanism (1) is pressed by the pressing portion (31) to be in the engaged state, and the pressing portion (31) presses the third frictional engagement element (21) and the fourth frictional engagement element (22). It is released and the brake mechanism (2) is in the released state.
  • the linear motion mechanism (33) moves the driven portion (32) to the second side (L2) in the axial direction, so that the third frictional engagement element (21) and the fourth frictional engagement element (22) are
  • the brake mechanism (2) is pressed by the pressing portion (31) to be in the engaged state, and the pressing portion (31) presses the first frictional engagement element (11) and the second frictional engagement element (12). It is released and the clutch mechanism (1) is released. Thereby, the state of engagement between the clutch mechanism (1) and the brake mechanism (2) can be changed by the common pressing mechanism (3). Therefore, in the configuration including the clutch mechanism (1) and the brake mechanism (2), it is possible to reduce the size of the engagement device (100).
  • the first rotating member (81) has a first connecting portion (8a) to which the first frictional engagement element (11) is connected
  • the second rotating member (82) has a second connecting portion (8b) to which the second frictional engagement element (12) is connected
  • the target rotating member (8T) includes a third connecting portion (8c) to which the third frictional engagement element (21) is connected
  • the non-rotating member (NR) has a fourth connecting portion (8d) to which the fourth frictional engagement element (22) is connected
  • the first connecting portion (8a) is located outside the first frictional engagement element (11) in the radial direction (R), and is positioned radially along the radial direction (R) and the first frictional engagement portion (8a) arranged in a position overlapping with the engaging element (11),
  • the third connecting portion (8c) is located outside the third frictional engagement element (21) in the radial direction (R), and is located near the third frictional engagement element (21) when viewed in the radial direction.
  • the second connecting portion (8b) is located inside the second frictional engagement element (12) in the radial direction (R) and is located near the second frictional engagement element (12) when viewed in the radial direction. and arranged at a position overlapping with the first connecting portion (8a),
  • the fourth connecting portion (8d) is located inside the fourth frictional engagement element (22) in the radial direction (R) and is located near the fourth frictional engagement element (22) when viewed in the radial direction. and arranged at a position overlapping with the third connecting portion (8c),
  • the linear motion mechanism (33) is arranged on the second side (L2) in the axial direction with respect to the second connecting portion (8b), and is arranged radially with respect to the fourth connecting portion (8d). (R) and is preferably arranged at a position overlapping with the fourth connecting portion (8d) when viewed in the radial direction.
  • the linear motion mechanism (33) is arranged on the second side (L2) in the axial direction with respect to the second connecting portion (8b) of the second rotating member (82).
  • the radial dimension (R) of the engaging device (100) can be reduced compared to a configuration in which the linear motion mechanism (33) overlaps the second connecting portion (8b) when viewed in the radial direction. can be suppressed.
  • the linear motion mechanism (33) is positioned radially inside (R) with respect to the fourth connecting portion (8d) of the non-rotating member (NR) and along the radial direction (R). It is arranged at a position overlapping with the fourth connecting portion (8d) when viewed in the radial direction.
  • the dimension of the engaging device (100) in the axial direction (L) can be reduced compared to the configuration in which the linear motion mechanism (33) is displaced in the axial direction (L) from the fourth connecting portion (8d). can be kept small.
  • the linear motion mechanism (33) arranged radially (R) with respect to the fourth connecting portion (8d) of the non-rotating member (NR) can be easily supported by the non-rotating member (NR). Therefore, it is easy to simplify the support structure of the linear motion mechanism (33).
  • the pressing portion (31) includes a first pressing portion (311) that presses the first frictional engagement element (11) and the second frictional engagement element (12) in the axial direction (L); a second pressing portion (312) that presses the third frictional engagement element (21) and the fourth frictional engagement element (22) in the axial direction (L);
  • the first pressing portion (311) is movable relative to the first rotating member (81) or the second rotating member (82) in the axial direction (L) and rotates integrally.
  • the second pressing portion (312) is movable relative to the non-rotating member (NR) in the axial direction (L) and is supported in a state in which relative rotation is restricted,
  • the first pressing portion (311) and the second pressing portion (312) are configured to interlock in the axial direction (L) in a relatively rotatable state,
  • the driven portion (32) is preferably connected to the second pressing portion (312) so as to move integrally in the axial direction (L).
  • the driven portion (32) that moves in the axial direction (L) by the linear motion mechanism (33) is supported in a state in which relative rotation is restricted with respect to the non-rotating member (NR). 2. It is connected to move in the axial direction (L) integrally with the pressing part (312). As a result, the driven part (32) rotates integrally with the first rotating member (81) or the second rotating member (82) and rotates integrally with the first pressing part (311). It is easier to simplify the pressing mechanism (3) as compared with the configuration in which they are connected so as to move in the direction (L).
  • the linear motion mechanism (33) includes a screw shaft (331) rotatably supported with respect to the non-rotating member (NR), and a nut member (332) screwed onto the screw shaft (331). , and The nut member (332) is connected to the driven part (32) so as to move integrally in the axial direction (L),
  • the screw shaft (331) includes the first frictional engagement element (11), the second frictional engagement element (12), the third frictional engagement element (21), and the fourth frictional engagement element ( 22) on the same axis and radially inwardly (R).
  • a threaded shaft (331) for moving the nut member (332) in the axial direction (L) is arranged inside the direction (R).
  • the driving force for rotating the screw shaft (331) is applied to the friction engagement elements (11, 12, 21, 22) from the outside in the axial direction (L) to the screw shaft (331). Easy to transmit.
  • the engagement device (100) includes a drive source (4) for rotationally driving the screw shaft (331) and a transmission mechanism for transmitting power between the drive source (4) and the screw shaft (331).
  • the drive source (4) is arranged on a separate shaft from the screw shaft (331), The arrangement area of the drive source (4) in the axial direction (L) overlaps the arrangement area of the first rotating member (81) in the axial direction (L),
  • the transmission mechanism (5) is arranged on the axial direction second side (L2) with respect to the direct acting mechanism (33),
  • a first shaft member (10) arranged to extend from the first rotating member (81) to the axial first side (L1) rotates integrally with the first rotating member (81). are concatenated as
  • a second shaft member (20) arranged to extend from the second rotating member (82) to the axial first side (L1) rotates integrally with the second rotating member (82). are preferably connected in such a way that
  • the engagement device (100 ) in the axial direction (L) can be kept small.
  • the technology according to the present disclosure can be used in an engagement device that includes a clutch mechanism and a brake mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Braking Arrangements (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

クラッチ機構(1)は、第1回転部材(81)と一体的に回転する第1摩擦係合要素(11)と、第2回転部材(82)と一体的に回転する第2摩擦係合要素(12)と、を備え、ブレーキ機構(2)は、回転部材(81,82)のいずれか一方である対象回転部材(8T)と一体的に回転する第3摩擦係合要素(21)と、非回転部材(NR)に固定された第4摩擦係合要素(22)と、を備え、押圧機構(3)は、摩擦係合要素(11,12)と摩擦係合要素(21,22)との軸方向(L)の間に配置された押圧部(31)と、当該押圧部(31)と連動するように連結された被駆動部(32)と、当該被駆動部(32)を軸方向(L)に移動させる直動機構(33)と、を備え、直動機構(33)によって被駆動部(32)が軸方向第1側(L1)に移動するか軸方向第2側(L2)に移動するに応じて、クラッチ機構(1)とブレーキ機構(2)とが選択的に係合される。

Description

係合装置
 本発明は、クラッチ機構及びブレーキ機構を備えた係合装置に関する。
 このような係合装置の一例が、下記の特許文献1に開示されている。以下、背景技術の説明では、特許文献1における符号を括弧内に引用する。
 特許文献1に開示された係合装置(3)は、第1回転部材(33)と第2回転部材(34)とを選択的に係合するクラッチ機構(31)と、第1回転部材(33)を非回転部材(35)に対して選択的に係合するブレーキ機構(32)と、を備えている。
 クラッチ機構(31)は、第1回転部材(33)と一体的に回転するように連結された第1摩擦係合要素(31b)と、第2回転部材(34)と一体的に回転するように連結された第2摩擦係合要素(31a)と、を備えている。ブレーキ機構(32)は、第1回転部材(33)と一体的に回転するように連結された第3摩擦係合要素(32a)と、非回転部材(35)に固定された第4摩擦係合要素(32b)と、を備えている。
特開2012-197846号公報
 特許文献1に開示された係合装置(3)は、クラッチ機構(31)の第1摩擦係合要素(31b)及び第2摩擦係合要素(31a)を軸方向(特許文献1の図2における左右方向)に押圧する第1押圧機構(72)と、ブレーキ機構(32)の第3摩擦係合要素(32a)及び第4摩擦係合要素(32b)を軸方向に押圧する第2押圧機構(77)と、を備えている。
 クラッチ機構(31)とブレーキ機構(32)とは、径方向(特許文献1の図2における上下方向)に並んで配置されている。また、第1押圧機構(72)は、クラッチ機構(31)に対して軸方向の一方側(特許文献1の図2における右側)に配置されている。そして、第2押圧機構(77)は、ブレーキ機構(32)に対して軸方向の他方側(特許文献1の図2における右側)に配置されている。このような構成は、係合装置(3)の大型化を招いていた。
 そこで、クラッチ機構及びブレーキ機構を備えた構成において、小型化を図ることができる係合装置の実現が望まれる。
 上記に鑑みた、係合装置の特徴構成は、
 第1回転部材と第2回転部材とを選択的に係合するクラッチ機構と、
 前記第1回転部材及び前記第2回転部材のいずれか一方である対象回転部材と非回転部材とを選択的に係合するブレーキ機構と、を備えた係合装置であって、
 前記クラッチ機構及び前記ブレーキ機構の係合の状態を変化させる押圧機構を備え、
 前記第1回転部材の回転軸心に沿う方向を軸方向とし、前記軸方向の一方側を軸方向第1側とし、前記軸方向の他方側を軸方向第2側として、
 前記クラッチ機構は、前記第1回転部材と一体的に回転するように連結された第1摩擦係合要素と、前記第2回転部材と一体的に回転するように連結された第2摩擦係合要素と、を備え、
 前記第1摩擦係合要素及び前記第2摩擦係合要素は、互いに前記軸方向に対向するように配置され、前記軸方向に押し付けられることで互いに摩擦係合し、
 前記ブレーキ機構は、前記対象回転部材と一体的に回転するように連結された第3摩擦係合要素と、前記非回転部材に固定された第4摩擦係合要素と、を備え、
 前記第3摩擦係合要素及び前記第4摩擦係合要素は、前記第1摩擦係合要素及び前記第2摩擦係合要素に対して前記軸方向第2側に離間した位置で、互いに前記軸方向に対向するように配置され、前記軸方向に押し付けられることで互いに摩擦係合し、
 前記押圧機構は、前記第1摩擦係合要素及び前記第2摩擦係合要素と、前記第3摩擦係合要素及び前記第4摩擦係合要素と、の前記軸方向の間に配置された押圧部と、前記押圧部と連動するように連結された被駆動部と、前記被駆動部を前記軸方向に移動させる直動機構と、を備え、
 前記第1回転部材、前記第2回転部材、前記第1摩擦係合要素、前記第2摩擦係合要素、前記第3摩擦係合要素、及び前記第4摩擦係合要素が、同軸上に配置され、
 前記直動機構によって前記被駆動部が前記軸方向第1側に移動するか前記軸方向第2側に移動するに応じて、前記クラッチ機構と前記ブレーキ機構とが選択的に係合される点にある。
 この特徴構成によれば、直動機構により被駆動部を介して軸方向に移動する押圧部が、第1摩擦係合要素及び第2摩擦係合要素と、それらに対して軸方向第2側に配置された第3摩擦係合要素及び第4摩擦係合要素との軸方向の間に配置されている。そして、直動機構により被駆動部が軸方向第1側に移動することで、第1摩擦係合要素及び第2摩擦係合要素が押圧部により押圧されてクラッチ機構が係合状態となると共に、押圧部による第3摩擦係合要素及び第4摩擦係合要素の押圧が解除されてブレーキ機構が解放状態となる。一方、直動機構により被駆動部が軸方向第2側に移動することで、第3摩擦係合要素及び第4摩擦係合要素が押圧部により押圧されてブレーキ機構が係合状態となると共に、押圧部による第1摩擦係合要素及び第2摩擦係合要素の押圧が解除されてクラッチ機構が解放状態となる。これにより、クラッチ機構とブレーキ機構との係合の状態を、共通の押圧機構により変化させることができる。したがって、クラッチ機構及びブレーキ機構を備えた構成において、係合装置の小型化を図ることができる。
第1の実施形態に係る係合装置の軸方向に沿う断面図 第1の実施形態に係る係合装置の軸方向に沿う断面図の一部拡大図 第2の実施形態に係る係合装置の軸方向に沿う断面図 第2の実施形態に係る係合装置の軸方向に沿う断面図の一部拡大図 第1の実施形態に係る車両用駆動装置の軸方向に沿う断面図 第1の実施形態に係る車両用駆動装置のスケルトン図 第1の実施形態に係る車両用駆動装置の遊星歯車機構の速度線図 第2の実施形態に係る車両用駆動装置の軸方向に沿う断面図 第2の実施形態に係る車両用駆動装置のスケルトン図 第3の実施形態に係る車両用駆動装置の軸方向に沿う断面図 第3の実施形態に係る車両用駆動装置のスケルトン図 第3の実施形態に係る両用駆動装置の軸方向に沿う断面図の一部拡大図
1.第1の実施形態に係る係合装置
 以下では、第1の実施形態に係る係合装置100について、図面を参照して説明する。図1に示すように、係合装置100は、第1回転部材81と第2回転部材82とを選択的に係合するクラッチ機構1と、第1回転部材81及び第2回転部材82のいずれか一方である対象回転部材8Tと非回転部材NRとを選択的に係合するブレーキ機構2と、クラッチ機構1及びブレーキ機構2の係合の状態を変化させる押圧機構3と、を備えている。
 第1回転部材81と第2回転部材82とは、互いに相対回転自在に支持されている。以下の説明では、第1回転部材81の回転軸心に沿う方向を「軸方向L」とする。そして、軸方向Lの一方側を「軸方向第1側L1」とし、他方側を「軸方向第2側L2」とする。また、第1回転部材81等の回転部材の回転軸心に直交する方向を、各回転軸心を基準とした「径方向R」とする。なお、どの回転軸心を基準とするかを区別する必要がない場合やどの回転軸心を基準とするかが明らかである場合には、単に「径方向R」と記す場合がある。
 本実施形態では、非回転部材NRは、係合装置100を収容するケース9である。本実施形態では、ケース9は、第1周壁部91と、第1側壁部92と、支持壁部93と、カバー部94と、を備えている。
 第1周壁部91は、第1回転部材81及び第2回転部材82の径方向Rの外側を覆うように形成されている。第1側壁部92は、第1回転部材81及び第2回転部材82の軸方向第1側L1を覆うように形成されている。支持壁部93は、第1回転部材81及び第2回転部材82の軸方向第2側L2を覆うように形成されている。カバー部94は、支持壁部93の軸方向第2側L2を覆うように形成されている。
 本実施形態では、第1周壁部91は、軸方向Lに沿う軸心を有する筒状に形成されている。そして、第1周壁部91の軸方向第1側L1の開口が、第1側壁部92によって塞がれている。また、第1周壁部91の軸方向第2側L2の開口が、支持壁部93によって塞がれている。本例では、第1周壁部91と第1側壁部92とが一体的に形成され、第1ケース部9Aを構成している。そして、第1周壁部91に対して径方向Rの内側に支持壁部93が位置するように、当該支持壁部93を備えた第2ケース部9Bが、軸方向第1側L1から第1ケース部9Aに嵌め込まれている。また、カバー部94を備えた第3ケース部9Cが、第2ケース部9Bに対して軸方向第1側L1から接合されている。
 クラッチ機構1は、第1回転部材81と一体的に回転するように連結された第1摩擦係合要素11と、第2回転部材82と一体的に回転するように連結された第2摩擦係合要素12と、を備えている。
 第1摩擦係合要素11と第2摩擦係合要素12とは、互いに軸方向Lに対向するように配置されている。そして、第1摩擦係合要素11と第2摩擦係合要素12とは、軸方向Lに押し付けられることで互いに摩擦係合する。本実施形態では、第1摩擦係合要素11及び第2摩擦係合要素12は、複数枚ずつ設けられており、これらが軸方向Lに沿って交互に配置されている。第1摩擦係合要素11及び第2摩擦係合要素12は、いずれか一方をフリクションプレートとし、他方をセパレートプレートとすることができる。
 ブレーキ機構2は、対象回転部材8Tと一体的に回転するように連結された第3摩擦係合要素21と、非回転部材NRに固定された第4摩擦係合要素22と、を備えている。なお、本実施形態では、第1回転部材81が対象回転部材8Tである。
 第3摩擦係合要素21と第4摩擦係合要素22とは、互いに軸方向Lに対向するように配置されている。そして、第3摩擦係合要素21と第4摩擦係合要素22とは、軸方向Lに押し付けられることで互いに摩擦係合する。また、第3摩擦係合要素21と第4摩擦係合要素22とは、第1摩擦係合要素11及び第2摩擦係合要素12に対して軸方向第2側L2に離間して配置されている。本実施形態では、第3摩擦係合要素21及び第4摩擦係合要素22は、複数枚ずつ設けられており、これらが軸方向Lに沿って交互に配置されている。第3摩擦係合要素21及び第4摩擦係合要素22は、いずれか一方をフリクションプレートとし、他方をセパレートプレートとすることができる。
 第1回転部材81、第2回転部材82、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22は、第1軸X1上に配置されている。つまり、第1回転部材81、第2回転部材82、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22は、同軸上に配置されている。
 図2に示すように、本実施形態では、第1回転部材81は、第1摩擦係合要素11が連結された第1連結部8aを備えている。そして、第2回転部材82は、第2摩擦係合要素12が連結された第2連結部8bを備えている。また、対象回転部材8Tは、第3摩擦係合要素21が連結された第3連結部8cを備えている。つまり、本実施形態では、第1回転部材81が第3連結部8cを備えている。また、非回転部材NRは、第4摩擦係合要素22が連結された第4連結部8dを備えている。
 第1連結部8aは、第1摩擦係合要素11に対して径方向Rの外側であって、径方向Rに沿う径方向視で第1摩擦係合要素11と重複する位置に配置されている。つまり、第1摩擦係合要素11は、第1連結部8aによって径方向Rの外側から支持されている。そして、第1摩擦係合要素11は、第1連結部8aに対して相対回転が規制された状態で、軸方向Lに摺動可能に支持されている。本例では、第1摩擦係合要素11の外周部には、軸方向Lに延在する複数のスプライン溝が周方向に分散して形成されている。一方、第1連結部8aの内周部にも、同様のスプライン溝が周方向に分散して形成されている。そして、それらのスプライン溝同士が係合されている。ここで、2つの要素の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線と直交する各方向に移動させた場合に、当該仮想直線が2つの要素の双方に交わる領域が少なくとも一部に存在することを指す。
 第2連結部8bは、第2摩擦係合要素12に対して径方向Rの内側であって、径方向Rに沿う径方向視で第2摩擦係合要素12及び第1連結部8aと重複する位置に配置されている。つまり、第2摩擦係合要素12は、第2連結部8bによって径方向Rの内側から支持されている。そして、第2摩擦係合要素12は、第2連結部8bに対して相対回転が規制された状態で、軸方向Lに摺動可能に支持されている。本例では、第2摩擦係合要素12の内周部には、軸方向Lに延在する複数のスプライン溝が周方向に分散して形成されている。一方、第2連結部8bの外周部にも、同様のスプライン溝が周方向に分散して形成されている。そして、それらのスプライン溝同士が係合されている。
 第3連結部8cは、第3摩擦係合要素21に対して径方向Rの外側であって、径方向Rに沿う径方向視で第3摩擦係合要素21と重複する位置に配置されている。つまり、第3摩擦係合要素21は、第3連結部8cによって径方向Rの外側から支持されている。そして、第3摩擦係合要素21は、第3連結部8cに対して相対回転が規制された状態で、軸方向Lに摺動可能に支持されている。本例では、第3摩擦係合要素21の外周部には、軸方向Lに延在する複数のスプライン溝が周方向に分散して形成されている。一方、第3連結部8cの内周部にも、同様のスプライン溝が周方向に分散して形成されている。そして、それらのスプライン溝同士が係合されている。
 第4連結部8dは、第4摩擦係合要素22に対して径方向Rの内側であって、径方向Rに沿う径方向視で第4摩擦係合要素22及び第3連結部8cと重複する位置に配置されている。つまり、第4摩擦係合要素22は、第4連結部8dによって径方向Rの内側から支持されている。そして、第4摩擦係合要素22は、第4連結部8dに対して相対回転が規制された状態で、軸方向Lに摺動可能に支持されている。本例では、第4摩擦係合要素22の内周部には、軸方向Lに延在する複数のスプライン溝が周方向に分散して形成されている。一方、第4連結部8dの外周部にも、同様のスプライン溝が周方向に分散して形成されている。そして、それらのスプライン溝同士が係合されている。
 図2に示すように、本実施形態では、第1回転部材81は、第1外側支持部811と、第1径方向延在部812と、を備えている。
 第1外側支持部811は、第1軸X1を軸心とする筒状に形成されている。本実施形態では、第1外側支持部811に、第1連結部8a及び第3連結部8cが配置されている。
 第1径方向延在部812は、第1軸X1を基準とする径方向Rに沿って延在するように形成されている。本実施形態では、第1径方向延在部812は、第1外側支持部811における軸方向第1側L1の端部から径方向Rの内側に延在するように形成されている。また、本実施形態では、第1径方向延在部812は、第1軸受B1を介して、ケース9の第1側壁部92に対して回転自在に支持されている。本例では、第1軸受B1は、第1径方向延在部812と第1側壁部92との軸方向Lの間に配置されたスラスト軸受である。
 本実施形態では、第2回転部材82は、第1内側支持部821を備えている。第1内側支持部821は、第1外側支持部811に対して径方向Rの内側に配置されている。本実施形態では、第1内側支持部821に、第2連結部8bが配置されている。
 本実施形態では、ケース9の支持壁部93は、第2内側支持部931を備えている。第2内側支持部931は、第1外側支持部811に対して径方向Rの内側に配置されている。本実施形態では、第2内側支持部931は、第1軸X1を軸心とする筒状に形成されている。本実施形態では、第2内側支持部931に、第4連結部8dが配置されている。
 押圧機構3は、第1摩擦係合要素11及び第2摩擦係合要素12と、第3摩擦係合要素21及び第4摩擦係合要素22と、の軸方向Lの間に配置された押圧部31と、押圧部31と連動するように連結された被駆動部32と、被駆動部32を軸方向Lに移動させる直動機構33と、を備えている。
 直動機構33により被駆動部32が軸方向第1側L1に移動することで、第1摩擦係合要素11及び第2摩擦係合要素12が押圧部31により押圧されてクラッチ機構1が係合状態となると共に、押圧部31による第3摩擦係合要素21及び第4摩擦係合要素22の押圧が解除されてブレーキ機構2が解放状態となる。一方、直動機構33により被駆動部32が軸方向第2側L2に移動することで、第3摩擦係合要素21及び第4摩擦係合要素22が押圧部31により押圧されてブレーキ機構2が係合状態となると共に、押圧部31による第1摩擦係合要素11及び第2摩擦係合要素12の押圧が解除されてクラッチ機構1が解放状態となる。このように、直動機構33によって被駆動部32が軸方向第1側L1に移動するか軸方向第2側L2に移動するに応じて、クラッチ機構1とブレーキ機構2とが選択的に係合される。
 以上のように、係合装置100は、
 第1回転部材81と第2回転部材82とを選択的に係合するクラッチ機構1と、
 第1回転部材81及び第2回転部材82のいずれか一方である対象回転部材8Tと非回転部材NRとを選択的に係合するブレーキ機構2と、を備えた係合装置100であって、
 クラッチ機構1及びブレーキ機構2の係合の状態を変化させる押圧機構3を備え、
 クラッチ機構1は、第1回転部材81と一体的に回転するように連結された第1摩擦係合要素11と、第2回転部材82と一体的に回転するように連結された第2摩擦係合要素12と、を備え、
 第1摩擦係合要素11及び第2摩擦係合要素12は、互いに軸方向Lに対向するように配置され、軸方向Lに押し付けられることで互いに摩擦係合し、
 ブレーキ機構2は、対象回転部材8Tと一体的に回転するように連結された第3摩擦係合要素21と、非回転部材NRに固定された第4摩擦係合要素22と、を備え、
 第3摩擦係合要素21及び第4摩擦係合要素22は、第1摩擦係合要素11及び第2摩擦係合要素12に対して軸方向第2側L2に離間した位置で、互いに軸方向Lに対向するように配置され、軸方向Lに押し付けられることで互いに摩擦係合し、
 押圧機構3は、第1摩擦係合要素11及び第2摩擦係合要素12と、第3摩擦係合要素21及び第4摩擦係合要素22と、の軸方向Lの間に配置された押圧部31と、当該押圧部31と連動するように連結された被駆動部32と、当該被駆動部32を軸方向Lに移動させる直動機構33と、を備え、
 第1回転部材81、第2回転部材82、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22が、同軸上に配置され、
 直動機構33によって被駆動部32が軸方向第1側L1に移動するか軸方向第2側L2に移動するに応じて、クラッチ機構1とブレーキ機構2とが選択的に係合される。
 この構成によれば、直動機構33により被駆動部32を介して軸方向Lに移動する押圧部31が、第1摩擦係合要素11及び第2摩擦係合要素12と、それらに対して軸方向第2側L2に配置された第3摩擦係合要素21及び第4摩擦係合要素22との軸方向Lの間に配置されている。そして、直動機構33により被駆動部32が軸方向第1側L1に移動することで、第1摩擦係合要素11及び第2摩擦係合要素12が押圧部31により押圧されてクラッチ機構1が係合状態となると共に、押圧部31による第3摩擦係合要素21及び第4摩擦係合要素22の押圧が解除されてブレーキ機構2が解放状態となる。一方、直動機構33により被駆動部32が軸方向第2側L2に移動することで、第3摩擦係合要素21及び第4摩擦係合要素22が押圧部31により押圧されてブレーキ機構2が係合状態となると共に、押圧部31による第1摩擦係合要素11及び第2摩擦係合要素12の押圧が解除されてクラッチ機構1が解放状態となる。これにより、クラッチ機構1とブレーキ機構2との係合の状態を、共通の押圧機構3により変化させることができる。したがって、クラッチ機構1及びブレーキ機構2を備えた構成において、係合装置100の小型化を図ることができる。
 本実施形態では、直動機構33は、非回転部材NRに対して回転自在に支持されたねじ軸331と、当該ねじ軸331に螺合するナット部材332と、を備えている。
 ねじ軸331の外周部には、ねじ山が形成されている。ねじ軸331は、軸方向Lに沿って延在するように形成されている。本実施形態では、ねじ軸331は、第1軸X1上に配置されている。
 ナット部材332の内周部には、ねじ軸331のねじ山に係合する溝が形成されている。ナット部材332は、ねじ軸331が回転することにより、当該回転方向とねじ軸331のねじ山の向きとに応じて軸方向Lに沿う直線運動を行う。本実施形態では、ナット部材332は、被駆動部32と一体的に軸方向Lに移動するように連結されている。そのため、本実施形態では、ねじ軸331の回転に伴い、ナット部材332及び被駆動部32を介して、押圧部31が軸方向Lに移動する。
 また、本実施形態では、ナット部材332は、非回転部材NRに対して、軸方向Lに相対移動可能であると共に相対回転が規制された状態で支持されている。本例では、ナット部材332は、ケース9における支持壁部93の第2内側支持部931に対して径方向Rの内側に配置されている。そして、ナット部材332は、当該ナット部材332の外周部と第2内側支持部931の内周部との径方向Rの間に配置された連結部材33aにより、ケース9に対して軸方向Lに相対移動可能であると共に相対回転が規制された状態で、第2内側支持部931に連結されている。
 本実施形態では、直動機構33は、第2連結部8bに対して軸方向第2側L2に配置されている。更に、直動機構33は、第4連結部8dに対して径方向Rの内側であって、径方向Rに沿う径方向視で第4連結部8dと重複する位置に配置されている。本例では、直動機構33のねじ軸331及びナット部材332は、第2回転部材82の第1内側支持部821よりも軸方向第2側L2に配置されている。更に、ねじ軸331及びナット部材332は、ケース9における支持壁部93の第2内側支持部931よりも径方向Rの内側に配置されている。
 このように、本実施形態では、第1回転部材81は、第1摩擦係合要素11が連結された第1連結部8aを備え、
 第2回転部材82は、第2摩擦係合要素12が連結された第2連結部8bを備え、
 対象回転部材8Tは、第3摩擦係合要素21が連結された第3連結部8cを備え、
 非回転部材NRは、第4摩擦係合要素22が連結された第4連結部8dを備え、
 第1連結部8aは、第1摩擦係合要素11に対して径方向Rの外側であって、径方向Rに沿う径方向視で第1摩擦係合要素11と重複する位置に配置され、
 第3連結部8cは、第3摩擦係合要素21に対して径方向Rの外側であって、径方向Rに沿う径方向視で第3摩擦係合要素21と重複する位置に配置され、
 第2連結部8bは、第2摩擦係合要素12に対して径方向Rの内側であって、径方向Rに沿う径方向視で第2摩擦係合要素12及び第1連結部8aと重複する位置に配置され、
 第4連結部8dは、第4摩擦係合要素22に対して径方向Rの内側であって、径方向Rに沿う径方向視で第4摩擦係合要素22及び第3連結部8cと重複する位置に配置され、
 直動機構33は、第2連結部8bに対して軸方向第2側L2に配置されていると共に、第4連結部8dに対して径方向Rの内側であって径方向Rに沿う径方向視で第4連結部8dと重複する位置に配置されている。
 この構成によれば、直動機構33が、第2回転部材82の第2連結部8bに対して軸方向第2側L2に配置されている。これにより、直動機構33が第2連結部8bと径方向視で重複するように配置された構成と比べて、係合装置100の径方向Rの寸法を小さく抑えることができる。
 また、本構成によれば、直動機構33が、非回転部材NRの第4連結部8dに対して径方向Rの内側であって径方向Rに沿う径方向視で第4連結部8dと重複する位置に配置されている。これにより、直動機構33が第4連結部8dよりも軸方向Lにずれて配置された構成と比べて、係合装置100の軸方向Lの寸法を小さく抑えることができる。また、非回転部材NRの第4連結部8dに対して径方向Rの内側に配置された直動機構33を、非回転部材NRによって支持することが容易であるため、直動機構33の支持構造を簡素化し易い。
 本実施形態では、押圧部31は、第1押圧部分311と、第2押圧部分312と、を備えている。
 第1押圧部分311は、第1摩擦係合要素11及び第2摩擦係合要素12を軸方向Lに押圧するように構成されている。第2押圧部分312は、第3摩擦係合要素21及び第4摩擦係合要素22を軸方向Lに押圧するように構成されている。本実施形態では、第1押圧部分311と第2押圧部分312とは、軸方向Lに対向するように配置された別部材により構成されている。そして、第1押圧部分311と第2押圧部分312とは、第4軸受B4を介して、互いに相対回転自在に支持されている。そのため、本実施形態では、第1押圧部分311と第2押圧部分312とは、相対回転可能な状態で、軸方向Lに連動するように構成されている。なお、本例では、第4軸受B4は、第1押圧部分311と第2押圧部分312との軸方向Lの間に配置されたスラスト軸受である。
 第1押圧部分311は、第1回転部材81又は第2回転部材82に対して、軸方向Lに相対移動可能であると共に一体的に回転する状態で支持されている。本実施形態では、第1押圧部分311は、第1回転部材81の第1外側支持部811に対して、軸方向Lに相対移動可能であると共に一体的に回転する状態で支持されている。本例では、第1押圧部分311の径方向Rの外側の端部が、第1連結部8aに連結されている。
 第2押圧部分312は、非回転部材NRに対して、軸方向Lに相対移動可能であると共に相対回転が規制された状態で支持されている。本実施形態では、第2押圧部分312は、被駆動部32と一体的に軸方向Lに移動するように連結されている。本例では、第2押圧部分312から径方向Rの内側に延在するように、被駆動部32が形成されている。また、上述したように、本実施形態では、ナット部材332が、非回転部材NRに対して軸方向Lに相対移動可能であると共に相対回転が規制された状態で支持されている。そのため、本実施形態では、第2押圧部分312は、被駆動部32及びナット部材332を介して、非回転部材NRに対して軸方向Lに相対移動可能であると共に相対回転が規制された状態で支持されている。
 このように、本実施形態では、押圧部31は、第1摩擦係合要素11及び第2摩擦係合要素12を軸方向Lに押圧する第1押圧部分311と、第3摩擦係合要素21及び第4摩擦係合要素22を軸方向Lに押圧する第2押圧部分312と、を備え、
 第1押圧部分311は、第1回転部材81又は第2回転部材82に対して、軸方向Lに相対移動可能であると共に一体的に回転する状態で支持され、
 第2押圧部分312は、非回転部材NRに対して、軸方向Lに相対移動可能であると共に相対回転が規制された状態で支持され、
 第1押圧部分311と第2押圧部分312とは、相対回転可能な状態で、軸方向Lに連動するように構成され、
 被駆動部32は、第2押圧部分312と一体的に軸方向Lに移動するように連結されている。
 この構成によれば、直動機構33により軸方向Lに移動する被駆動部32が、非回転部材NRに対して相対回転が規制された状態で支持された第2押圧部分312と一体的に軸方向Lに移動するように連結されている。これにより、被駆動部32が第1回転部材81又は第2回転部材82に対して一体的に回転する状態で支持された第1押圧部分311と一体的に軸方向Lに移動するように連結された構成と比べて、押圧機構3の簡素化を図り易い。
 上述したように、本実施形態では、ねじ軸331は、第1軸X1上に配置されている。つまり、本実施形態では、ねじ軸331は、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22と同軸上に配置されている。また、本実施形態では、ねじ軸331は、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22に対して、径方向Rの内側に配置されている。
 このように、本実施形態では、直動機構33は、非回転部材NRに対して回転自在に支持されたねじ軸331と、当該ねじ軸331に螺合するナット部材332と、を備え、
 ナット部材332は、被駆動部32と一体的に軸方向Lに移動するように連結され、
 ねじ軸331は、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22に対して、同軸上であって径方向Rの内側に配置されている。
 この構成によれば、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22に対して径方向Rの内側に、ナット部材332を軸方向Lに移動させるためのねじ軸331が配置されている。これにより、ねじ軸331を回転駆動させるための駆動力を、それらの摩擦係合要素11,12,21,22に対して軸方向Lの外側からねじ軸331に伝達し易い。したがって、第1摩擦係合要素11及び第2摩擦係合要素12と第3摩擦係合要素21及び第4摩擦係合要素22との軸方向Lの間に配置された押圧部31を、ナット部材332及び被駆動部32を介して軸方向Lに移動可能な構造を実現することが容易となっている。
 また、本構成によれば、直動機構33のねじ軸331を、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22の少なくとも一部と径方向Rに沿う径方向視で重複するように配置し易い。これにより、直動機構33の配置による、係合装置100の軸方向Lへの大型化を抑制することができる。
 図1に示すように、本実施形態では、係合装置100は、ねじ軸331を回転駆動するための駆動源4と、当該駆動源4とねじ軸331との間の動力伝達を行う伝達機構5と、を更に備えている。
 本実施形態では、駆動源4は、第1軸X1とは異なる第2軸X2上に配置されている。つまり、本実施形態では、駆動源4は、ねじ軸331とは別軸上に配置されている。そして、駆動源4の軸方向Lにおける配置領域が、第1回転部材81の軸方向Lにおける配置領域と重なっている。また、本実施形態では、伝達機構5は、直動機構33に対して軸方向第2側L2に配置されている。
 図2に示すように、本実施形態では、第1回転部材81は、第1軸部材10と一体的に回転するように連結されている。第1軸部材10は、第1回転部材81から軸方向第1側L1に延在するように配置されている。本実施形態では、第1軸部材10は、第1軸X1を軸心とする筒状に形成されている。そして、第1軸部材10は、第1回転部材81の第1外側支持部811における径方向Rの内側の端部から軸方向第1側L1に延在するように形成されている。本例では、第1軸部材10は、第1回転部材81と一体的に形成されている。また、本実施形態では、第1軸部材10は、ケース9の第1側壁部92を軸方向Lに貫通するように配置されている。そして、第1軸部材10は、第2軸受B2を介して、第1側壁部92に対して回転自在に支持されている。本例では、第2軸受B2は、第1軸部材10と第1側壁部92との径方向Rの間に配置されたラジアル軸受である。
 本実施形態では、第2回転部材82は、第2軸部材20と一体的に回転するように連結されている。第2軸部材20は、第2回転部材82から軸方向第1側L1に延在するように配置されている。本実施形態では、第2軸部材20は、第2回転部材82の第1内側支持部821から軸方向第1側L1に延在するように形成されている。そして、第2軸部材20は、第1軸X1上に配置されている。本例では、第2軸部材20は、第2回転部材82と一体的に形成されている。また、本実施形態では、第2軸部材20は、第1軸部材10の径方向Rの内側を通るように配置されている。そして、第2軸部材20は、第3軸受B3を介して、第1軸部材10に対して相対回転自在に支持されている。本例では、第3軸受B3は、第1軸部材10と第2軸部材20との径方向Rの間に配置されたラジアル軸受である。
 なお、係合装置100は、例えば、内燃機関等の駆動力源の駆動力を車輪に伝達する車両用駆動装置に設けられる。この場合、第1軸部材10及び第2軸部材20の一方は、内燃機関等の駆動力源に駆動連結される。そして、第1軸部材10及び第2軸部材20の他方は、車輪に駆動連結される。
 このように、本実施形態では、ねじ軸331を回転駆動するための駆動源4と、当該駆動源4とねじ軸331との間の動力伝達を行う伝達機構5と、を更に備え、
 駆動源4は、ねじ軸とは別軸上に配置され、
 駆動源4の軸方向Lにおける配置領域が、第1回転部材81の軸方向Lにおける配置領域と重なっており、
 伝達機構5は、直動機構33に対して軸方向第2側L2に配置され、
 第1回転部材81から軸方向第1側L1に延在するように配置された第1軸部材10が、第1回転部材81と一体的に回転するように連結され、
 第2回転部材82から軸方向第1側L1に延在するように配置された第2軸部材20が、第2回転部材82と一体的に回転するように連結されている。
 この構成によれば、駆動源4が第1回転部材81に対して同軸上であって軸方向Lにずれた位置に配置された構成と比べて、係合装置100の軸方向Lの寸法を小さく抑えることができる。
 図1に示すように、本実施形態では、伝達機構5は、第1ギヤ51と、第2ギヤ52と、第3ギヤ53と、第4ギヤ54と、連結体55と、を備えている。
 第1ギヤ51は、駆動源4の出力軸と一体的に回転するように連結されている。本実施形態では、第1ギヤ51は、第2軸X2上に配置されている。そして、第1ギヤ51は、駆動源4に対して軸方向第2側L2に配置されている。
 第2ギヤ52は、第1ギヤ51に噛み合っている。本実施形態では、第2ギヤ52は、第1ギヤ51よりも大径に形成されている。第3ギヤ53は、第2ギヤ52と一体的に回転するように連結されている。本実施形態では、第3ギヤ53は、第2ギヤ52よりも小径に形成されている。また、第3ギヤ53は、第2ギヤ52に対して軸方向第1側L1に配置されている。本実施形態では、第2ギヤ52及び第3ギヤ53は、第1軸X1及び第2軸X2とは異なる第3軸X3上に配置されている。また、本実施形態では、第2ギヤ52及び第3ギヤ53は、第1軸体56により非回転部材NRに対して回転自在に支持されている。第1軸体56は、軸方向Lに沿って延在するように形成されている。本実施形態では、第1軸体56の軸方向第1側L1の端部が、支持壁部93に対して回転自在に支持されている。そして、第1軸体56の軸方向第2側L2の端部が、カバー部94に対して回転自在に支持されている。
 第4ギヤ54は、第3ギヤ53に噛み合っている。本実施形態では、第4ギヤ54は、第3ギヤ53よりも大径に形成されている。本実施形態では、第4ギヤ54は、第1軸X1上に配置されている。また、本実施形態では、第4ギヤ54は、第2軸体57により非回転部材NRに対して回転自在に支持されている。第2軸体57は、軸方向Lに沿って延在するように形成されている。本実施形態では、第2軸体57の軸方向第2側L2の端部が、カバー部94に対して回転自在に支持されている。一方、第2軸体57の軸方向第1側L1の端部は、連結体55と一体的に回転するように連結されている。
 本実施形態では、第2ギヤ52の歯数は、第1ギヤ51の歯数よりも多い。そして、第4ギヤ54の歯数は、第2ギヤ52と一体的に回転する第3ギヤ53の歯数よりも多い。そのため、本実施形態では、駆動源4から第1ギヤ51に伝達された回転は、第1ギヤ51と第2ギヤ52との間で減速されて、第3ギヤ53に伝達される。そして、第3ギヤ53の回転は、第3ギヤ53と第4ギヤ54との間で減速されて、連結体55に伝達される。
 連結体55は、第4ギヤ54とねじ軸331とが一体的に回転するように、それらを連結する。本実施形態では、連結体55は、軸方向第2側L2が開口する筒状に形成されている。そして、連結体55に対して径方向Rの内側に第2軸体57が配置された状態で、連結体55と第2軸体57とが一体的に回転するように連結されている。また、本実施形態では、連結体55から軸方向第1側L1にねじ軸331が延在するように配置された状態で、連結体55とねじ軸331とが一体的に回転するように連結されている。本実施形態では、連結体55、第2軸体57、及びねじ軸331は、支持壁部93を軸方向Lに貫通するように配置されている。
 図2に示すように、本実施形態では、連結体55は、筒状に形成された、支持壁部93の第2内側支持部931に対して径方向Rの内側に配置されている。本実施形態では、連結体55には、当該連結体55から径方向Rの外側に突出するように形成された被支持部551が設けられている。そして、第2内側支持部931には、当該第2内側支持部931から径方向Rの内側に突出し、被支持部551に対して軸方向第1側L1から対向するように形成された軸受支持部932が設けられている。被支持部551は、第5軸受B5を介して、軸受支持部932に対して回転自在に支持されている。これにより、連結体55は、非回転部材NRに対して軸方向第1側L1に相対移動することが規制された状態で、非回転部材NRに対して回転自在に支持されている。なお、本例では、第5軸受B5は、被支持部551と軸受支持部932との軸方向Lの間に配置されたスラスト軸受である。
 また、本実施形態では、環状の蓋部933が、被支持部551に対して軸方向第2側L2から対向するように、支持壁部93に固定されている。被支持部551は、第6軸受B6を介して、蓋部933に対して回転自在に支持されている。これにより、連結体55は、非回転部材NRに対して軸方向第2側L2に相対移動することが規制された状態で、非回転部材NRに対して回転自在に支持されている。なお、本例では、第6軸受B6は、被支持部551と蓋部933との軸方向Lの間に配置されたスラスト軸受である。
 本実施形態では、押圧部31による第1摩擦係合要素11及び第2摩擦係合要素12に対する押圧力と、押圧部31による第3摩擦係合要素21及び第4摩擦係合要素22に対する押圧力とを検出する圧力センサ(図示を省略)が設けられている。この圧力センサは、例えば、被支持部551と軸受支持部932との軸方向Lの間、又は、被支持部551と蓋部933との軸方向Lの間に配置される。これにより、被駆動部32、ナット部材332、ねじ軸331を介して連結体55に伝達される、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22から押圧部31が受ける力を、圧力センサにより測定することができる。そして、この測定した力に基づいて、押圧部31による第1摩擦係合要素11及び第2摩擦係合要素12に対する押圧力と、押圧部31による第3摩擦係合要素21及び第4摩擦係合要素22に対する押圧力とを算出することができる。
2.第2の実施形態に係る係合装置
 以下では、第2の実施形態に係る係合装置100について、図3及び図4を参照して説明する。本実施形態では、第2回転部材82が対象回転部材8Tである点で、上記第1の実施形態とは異なっている。以下では、上記第1の実施形態との相違点を中心として説明する。なお、特に説明しない点については、上記第1の実施形態と同様とする。
 図3及び図4に示すように、本実施形態では、第2回転部材82が対象回転部材8Tである。そのため、本実施形態では、第2回転部材82が、第3摩擦係合要素21が連結された第3連結部8cを備えている。
 図4に示すように、本実施形態では、第2回転部材82は、第1内側支持部821に加えて、第2外側支持部822と、第2径方向延在部823と、を更に備えている。
 第2外側支持部822は、第1軸X1を軸心とする筒状に形成されている。本実施形態では、第2外側支持部822に、第3連結部8cが配置されている。一方、本実施形態では、第1回転部材81の第1外側支持部811には、第3連結部8cが配置されておらず、第1連結部8aが配置されている。本実施形態における第1外側支持部811の軸方向Lの寸法は、上記第1の実施形態における第1外側支持部811の軸方向Lの寸法よりも小さい。そして、第1外側支持部811は、第2外側支持部822に対して軸方向第1側L1に配置されている。
 第2径方向延在部823は、第1軸X1を基準とする径方向Rに沿って延在するように形成されている。本実施形態では、第2径方向延在部823は、第2外側支持部822における軸方向第1側L1の端部から径方向Rの内側に延在するように形成されている。そして、第2径方向延在部823は、第1内側支持部821に対して、軸方向Lに相対移動可能であると共に一体的に回転する状態で支持されている。本例では、第2径方向延在部823の径方向Rの内側の端部が、第2連結部8bに連結されている。また、本実施形態では、第2径方向延在部823は、第1押圧部分311と一体的に回転するように連結されている。本例では、第2径方向延在部823は、第1押圧部分311と一体的に形成されている。
3.第1の実施形態に係る車両用駆動装置
 以下では、上記第1の実施形態に係る係合装置100を備えた、第1の実施形態に係る車両用駆動装置1000について、図5から図9を参照して説明する。図5及び図6に示すように、車両用駆動装置1000は、ステータST及びロータRTを備えた回転電機MGと、ロータRTと一体的に回転する入力軸ISと、車輪W(図6参照)に駆動連結される出力ギヤOGと、当該出力ギヤOGに連動して回転するように連結された駆動ギヤDGと、遊星歯車機構PL及び上記の係合装置100を備えた変速機TMと、を備えている。本実施形態では、車両用駆動装置1000は、それぞれが互いに異なる車輪Wと一体的に回転する一対の出力部材OMと、出力ギヤOGの回転を一対の出力部材OMに分配する差動歯車機構DFと、を更に備えている。
 駆動ギヤDG、遊星歯車機構PL、及び係合装置100は、ロータRTの回転軸心である第1軸X1上に配置されている。つまり、ロータRTと遊星歯車機構PLと係合装置100と駆動ギヤDGとが、同軸上に配置されている。本実施形態では、出力ギヤOG、一対の出力部材OM、及び差動歯車機構DFは、第1軸X1とは異なる第4軸X4上に配置されている。本例では、第1軸X1と第4軸X4とは、互いに平行に配置されている。
 本実施形態では、軸方向Lにおいて、入力軸ISに対して回転電機MGが配置される側を軸方向第1側L1とし、その反対側を軸方向第2側L2としている。
 回転電機MGは、車輪W(図6参照)の駆動力源として機能する。回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。具体的には、回転電機MGは、バッテリやキャパシタ等の蓄電装置(図示を省略)と電気的に接続されている。そして、回転電機MGは、蓄電装置に蓄えられた電力により力行して駆動力を発生する。また、回転電機MGは、車輪Wの側から伝達される駆動力により発電を行って蓄電装置を充電する。
 回転電機MGのステータSTは、非回転部材NRに固定されている。回転電機MGのロータRTは、ステータSTに対して回転可能に支持されている。
 図5に示すように、本実施形態では、非回転部材NRは、ケース9である。ケース9は、回転電機MG、入力軸IS、出力ギヤOG、駆動ギヤDG、変速機TM、出力部材OM、及び差動歯車機構DFを収容している。本実施形態では、ケース9は、第1周壁部91、第1側壁部92、支持壁部93、及びカバー部94に加えて、第2周壁部91aと、第3周壁部91bと、第4周壁部91cと、第2側壁部92aと、第3側壁部92bと、第4側壁部92dと、を更に備えている。
 第2周壁部91aは、回転電機MGの径方向Rの外側を覆うように形成されている。第3周壁部91bは、駆動ギヤDG及び遊星歯車機構PLの径方向Rの外側を覆うように形成されている。第4周壁部91cは、一対の出力部材OM及び差動歯車機構DFの径方向Rの外側を覆うように形成されている。本実施形態では、第1周壁部91は、係合装置100の径方向Rの外側を覆うように形成されている。
 第2側壁部92aは、回転電機MGの軸方向第1側L1を覆うように形成されている。第3側壁部92bは、回転電機MGと、出力ギヤOG、駆動ギヤDG、及び差動歯車機構DFとを、軸方向Lに隔てるように形成されている。第4側壁部92dは、差動歯車機構DFの軸方向第2側L2を覆うように形成されている。本実施形態では、支持壁部93は、係合装置100の軸方向第2側L2を覆うように形成されている。そして、カバー部94は、支持壁部93の軸方向第2側L2を覆うように形成されている。また、第1側壁部92は、遊星歯車機構PLと係合装置100とを、軸方向Lに隔てるように形成されている。
 本実施形態では、第2周壁部91aは、軸方向Lに沿う軸心を有する筒状に形成されている。そして、第2周壁部91aの軸方向第1側L1の開口が、第2側壁部92aによって塞がれている。また、第2周壁部91aの軸方向第2側L2の開口が、第3側壁部92bによって塞がれている。本例では、第2周壁部91aと第2側壁部92aとが、一体的に形成されている。そして、第2周壁部91aの軸方向第1側L1の開口に、第3側壁部92bが軸方向第2側L2から嵌め込まれている。
 また、本実施形態では、第3周壁部91bは、軸方向Lに沿う軸心を有する筒状に形成されている。そして、第3周壁部91bの軸方向第2側L2の開口が、第1側壁部92によって塞がれている。また、本実施形態では、第4周壁部91cは、軸方向Lに沿う軸心を有する筒状に形成されている。そして、第4周壁部91cの軸方向第2側L2の開口が、第4側壁部92dによって塞がれている。本例では、第3周壁部91bと第4周壁部91cと第1側壁部92と第4側壁部92dとが、一体的に形成されている。そして、第3周壁部91b及び第4周壁部91cの軸方向第1側L1の開口が、第3側壁部92bにより塞がれるように、第3周壁部91b及び第4周壁部91cの軸方向第1側L1の端部と、第2周壁部91aの軸方向第2側L2の端部とが、互いに接合されている。
 また、本実施形態では、第1周壁部91は、軸方向Lに沿う軸心を有する筒状に形成されている。そして、第1周壁部91の軸方向第2側L2の開口が、支持壁部93によって塞がれている。本例では、第1周壁部91の軸方向第1側L1の開口が、第1側壁部92により塞がれるように、第1周壁部91が第1側壁部92と一体的に形成されている。そして、第1周壁部91の軸方向第2側L2の開口に、支持壁部93が軸方向第2側L2から嵌め込まれている。更に、支持壁部93に、軸方向第2側L2からカバー部94が接合されている。
 遊星歯車機構PLは、第1回転要素E1、第2回転要素E2、及び第3回転要素E3を備えている。そして、遊星歯車機構PLは、第1回転要素E1、第2回転要素E2、及び第3回転要素E3の回転速度の順が記載の順となるように構成されている。ここで、「回転速度の順」とは、各回転要素の回転状態における回転速度の順番のことである。各回転要素の回転速度は、遊星歯車機構の回転状態によって変化するが、各回転要素の回転速度の高低の並び順は、遊星歯車機構の構造によって定まるものであるため一定となる。なお、各回転要素の回転速度の順は、各回転要素の速度線図(図7等参照)における配置順に等しい。ここで、「各回転要素の速度線図における配置順」とは、速度線図における各回転要素に対応する軸が、当該軸に直交する方向に沿って配置される順番のことである。速度線図における各回転要素に対応する軸の配置方向は、速度線図の描き方によって異なるが、その配置順は遊星歯車機構の構造によって定まるものであるため一定となる。
 本実施形態では、遊星歯車機構PLは、第1サンギヤS1、第1キャリヤC1、及び第1リングギヤR1を備えたシングルピニオン型の遊星歯車機構である。
 第1回転要素E1は、入力軸ISと一体的に回転するように連結されている。本実施形態では、第1回転要素E1は、第1サンギヤS1である。
 第2回転要素E2は、駆動ギヤDGと一体的に回転するように連結されている。本実施形態では、第2回転要素E2は、第1キャリヤC1である。第1キャリヤC1は、第1サンギヤS1及び第1リングギヤR1に噛み合う第1ピニオンギヤP1を回転自在に支持している。第1ピニオンギヤP1は、その軸心回りに回転(自転)すると共に、第1キャリヤC1と共に第1サンギヤS1を中心として回転(公転)する。第1ピニオンギヤP1は、その公転軌跡に沿って、互いに間隔を空けて複数設けられている。
 第3回転要素E3は、係合装置100の係合の状態に応じて、非回転部材NRに連結される第1状態と、第1回転要素E1又は第2回転要素E2と一体的に回転するように連結される第2状態とに切り換えられる。本実施形態では、第3回転要素E3は、第1リングギヤR1である。第1リングギヤR1は、第1サンギヤS1及び第1キャリヤC1に対して径方向Rの外側に配置された内歯のギヤである。
 本実施形態では、係合装置100は、クラッチ機構1と、ブレーキ機構2と、押圧機構3と、を備えている。
 クラッチ機構1は、互いに相対回転自在に支持された第1回転部材81と第2回転部材82とを選択的に係合するように構成されている。クラッチ機構1は、第1回転部材81と一体的に回転するように連結された第1摩擦係合要素11と、第2回転部材82と一体的に回転するように連結された第2摩擦係合要素12と、を備えている。
 第1摩擦係合要素11と第2摩擦係合要素12とは、互いに軸方向Lに対向するように配置されている。そして、第1摩擦係合要素11と第2摩擦係合要素12とは、軸方向Lに押し付けられることで互いに摩擦係合する。本実施形態では、第1摩擦係合要素11及び第2摩擦係合要素12は、複数枚ずつ設けられており、これらが軸方向Lに沿って交互に配置されている。第1摩擦係合要素11及び第2摩擦係合要素12は、いずれか一方をフリクションプレートとし、他方をセパレートプレートとすることができる。
 ブレーキ機構2は、第1回転部材81と非回転部材NRとを選択的に係合するように構成されている。ブレーキ機構2は、第1回転部材81と一体的に回転するように連結された第3摩擦係合要素21と、非回転部材NRに固定された第4摩擦係合要素22と、を備えている。
 第3摩擦係合要素21と第4摩擦係合要素22とは、互いに軸方向Lに対向するように配置されている。そして、第3摩擦係合要素21と第4摩擦係合要素22とは、軸方向Lに押し付けられることで互いに摩擦係合する。また、第3摩擦係合要素21と第4摩擦係合要素22とは、第1摩擦係合要素11及び第2摩擦係合要素12に対して軸方向第2側L2に離間して配置されている。本実施形態では、第3摩擦係合要素21及び第4摩擦係合要素22は、複数枚ずつ設けられており、これらが軸方向Lに沿って交互に配置されている。第3摩擦係合要素21及び第4摩擦係合要素22は、いずれか一方をフリクションプレートとし、他方をセパレートプレートとすることができる。
 本実施形態では、第1回転部材81は、第1外側支持部811を備えている。第1外側支持部811は、第1軸X1を軸心とする筒状に形成されている。第1外側支持部811は、第1摩擦係合要素11及び第3摩擦係合要素21を、径方向Rの外側から支持している。本例では、第1摩擦係合要素11及び第3摩擦係合要素21の外周部には、軸方向Lに延在する複数のスプライン溝が周方向に分散して形成されている。一方、第1外側支持部811の内周部にも、同様のスプライン溝が周方向に分散して形成されている。そして、それらのスプライン溝同士が係合されている。
 また、本実施形態では、第2回転部材82は、第1内側支持部821を備えている。第1内側支持部821は、第1外側支持部811に対して径方向Rの内側に配置されている。第1内側支持部821は、第2摩擦係合要素12を、径方向Rの内側から支持している。本例では、第2摩擦係合要素12の内周部には、軸方向Lに延在する複数のスプライン溝が周方向に分散して形成されている。一方、第1内側支持部821の外周部にも、同様のスプライン溝が周方向に分散して形成されている。そして、それらのスプライン溝同士が係合されている。
 また、本実施形態では、ケース9の支持壁部93は、第2内側支持部931を備えている。第2内側支持部931は、第1外側支持部811に対して径方向Rの内側であって、第1内側支持部821に対して軸方向第2側L2に配置されている。第2内側支持部931は、第4摩擦係合要素22を、径方向Rの内側から支持している。本例では、第4摩擦係合要素22の内周部には、軸方向Lに延在する複数のスプライン溝が周方向に分散して形成されている。一方、第2内側支持部931の外周部にも、同様のスプライン溝が周方向に分散して形成されている。そして、それらのスプライン溝同士が係合されている。
 本実施形態では、第1回転部材81は、第1軸部材10と一体的に回転するように連結されている。第1軸部材10は、第1回転部材81から軸方向第1側L1に延在するように配置されている。また、第1軸部材10は、ケース9の第1側壁部92を軸方向Lに貫通するように配置されている。そして、第1軸部材10は、第1側壁部92よりも軸方向第1側L1において、遊星歯車機構PLの第1リングギヤR1と一体的に回転するように連結されている。また、第1軸部材10は、第2軸受B2を介して、第1側壁部92に対して回転自在に支持されている。
 また、本実施形態では、第2回転部材82は、第1回転部材81に対して径方向Rの内側に配置されている。また、第2回転部材82は、第2軸部材20と一体的に回転するように連結されている。第2軸部材20は、第2回転部材82から軸方向第1側L1に延在するように配置されている。また、第2軸部材20は、第1軸部材10に対して径方向Rの内側に配置されている。そして、第2軸部材20は、第3軸受B3を介して、第1軸部材10に対して相対回転自在に支持されている。本実施形態では、入力軸ISが第2軸部材20に対応する。
 押圧機構3は、クラッチ機構1及びブレーキ機構2の係合の状態を変化させるように構成されている。本実施形態では、押圧機構3は、第1摩擦係合要素11及び第2摩擦係合要素12を押圧する第1押圧部分311と、第3摩擦係合要素21及び第4摩擦係合要素22を押圧する第2押圧部分312と、第1押圧部分311及び第2押圧部分312を軸方向Lに移動させる直動機構33と、当該直動機構33に駆動源4の動力を伝達する伝達機構5と、を備えている。
 本実施形態では、第1押圧部分311と第2押圧部分312とは、軸方向Lに対向するように配置された別部材により構成されている。そして、第1押圧部分311と第2押圧部分312とは、第4軸受B4を介して、互いに相対回転自在に支持されている。そのため、本実施形態では、第1押圧部分311と第2押圧部分312とは、相対回転可能な状態で、軸方向Lに連動するように構成されている。なお、本例では、第4軸受B4は、第1押圧部分311と第2押圧部分312との軸方向Lの間に配置されたスラスト軸受である。
 本実施形態では、直動機構33は、ボールねじにより構成されている。本例では、直動機構33のねじ軸331に螺合されたナット部材332が、第2押圧部分312と一体的に軸方向Lに移動するように連結されている。
 本実施形態では、伝達機構5は、複数のギヤにより構成されている。本例では、上記の駆動源4からの回転が、互いに噛み合うギヤの間で減速されて、直動機構33に伝達される。
 直動機構33により第1押圧部分311及び第2押圧部分312が軸方向第1側L1に移動することで、第1摩擦係合要素11及び第2摩擦係合要素12が第1押圧部分311により押圧されてクラッチ機構1が係合状態となると共に、第2押圧部分312による第3摩擦係合要素21及び第4摩擦係合要素22の押圧が解除されてブレーキ機構2が解放状態となる。この状態では、第1回転部材81が非回転部材NRに対して回転すると共に、第1回転部材81と第2回転部材82とが一体的に回転する。そのため、第1回転部材81に連結された第1リングギヤR1と、駆動ギヤDGに連結された第1キャリヤC1と、入力軸IS及び第2回転部材82に連結された第1サンギヤS1とが一体的に回転する。その結果、ロータRTの回転が、そのまま駆動ギヤDGに伝達される(図7の符号G2参照)。
 一方、直動機構33により第1押圧部分311及び第2押圧部分312が軸方向第2側L2に移動することで、第3摩擦係合要素21及び第4摩擦係合要素22が第2押圧部分312により押圧されてブレーキ機構2が係合状態となると共に、第1押圧部分311による第1摩擦係合要素11及び第2摩擦係合要素12の押圧が解除されてクラッチ機構1が解放状態となる。この状態では、第1回転部材81が非回転部材NRに対して相対回転が規制されると共に、第2回転部材82が第1回転部材81に対して相対回転する。そのため、第1回転部材81に連結された第1リングギヤR1と、駆動ギヤDGに連結された第1キャリヤC1と、入力軸IS及び第2回転部材82に連結された第1サンギヤS1とが、互いに相対回転する。その結果、ロータRTの回転が、遊星歯車機構PLにおいて減速されて駆動ギヤDGに伝達される(図7の符号G1参照)。
 駆動ギヤDGは、軸方向LにおけるロータRTと変速機TMとの間に配置されている。本実施形態では、第1軸X1上において、軸方向第1側L1から軸方向第2側L2に向けて、ロータRT、駆動ギヤDG、遊星歯車機構PL、及び係合装置100が記載の順に配置されている。
 入力軸ISは、軸方向Lに延在するように形成されている。入力軸ISは、駆動ギヤDGを軸方向Lに貫通するように配置されている。そして、入力軸ISは、ロータRTと第1回転要素E1(ここでは、第1サンギヤS1)とを一体的に回転するように連結している。本実施形態では、入力軸ISは、第5軸受B5を介して、駆動ギヤDGに対して相対回転自在に支持されている。また、本実施形態では、入力軸ISは、ケース9の第3側壁部92bを軸方向Lに貫通している。そして、入力軸ISは、第6軸受B6を介して、第3側壁部92bに対して回転自在に支持されている。また、本実施形態では、入力軸ISは、遊星歯車機構PLを軸方向Lに貫通し、第2回転部材82と一体的に回転するように連結されている。そして、入力軸ISは、第7軸受B7を介して、遊星歯車機構PLの第1キャリヤC1に対して相対回転自在に支持されている。
 出力ギヤOGは、駆動ギヤDGよりも大径である。そのため、駆動ギヤDGの回転は、当該駆動ギヤDGと出力ギヤOGとの間で減速される。本実施形態では、出力ギヤOGは、駆動ギヤDGに直接噛み合っている。
 本実施形態では、出力ギヤOGは、軸方向Lに沿う軸方向視で、回転電機MG及び遊星歯車機構PLの双方と重複するように配置されている。図5に示す例では、出力ギヤOGは、軸方向Lに沿う軸方向視で、回転電機MGのステータST及びロータRTに重複すると共に、遊星歯車機構PLの第1サンギヤS1、第1キャリヤC1、及び第1リングギヤR1に重複するように配置されている。ここで、2つの要素の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線と直交する各方向に移動させた場合に、当該仮想直線が2つの要素の双方に交わる領域が少なくとも一部に存在することを指す。
 この構成によれば、出力ギヤOGの大径化を図り、駆動ギヤDGと出力ギヤOGとの間の減速比を大きく確保し易い。その結果、回転電機MGの小型化を図り易い。
 また、本構成によれば、駆動ギヤDGと出力ギヤOGとの軸間距離(第1軸X1と第4軸X4との径方向Rの距離)を小さく抑え易い。したがって、車両用駆動装置1000の径方向Rの寸法を小さく抑え易い。
 また、本実施形態では、駆動ギヤDGは、遊星歯車機構PLの第1サンギヤS1よりも小径である。この構成によれば、駆動ギヤDGと出力ギヤOGとの径方向Rの寸法差を大きくして、駆動ギヤDGと出力ギヤOGとの間の減速比を大きく確保し易い。その結果、回転電機MGの小型化を図り易い。また、本実施形態では、駆動ギヤDGは、遊星歯車機構PLの第1キャリヤC1よりも小径である。本例では、駆動ギヤDGは、第1キャリヤC1に支持された第1ピニオンギヤP1の公転軌跡よりも小径である。この構成によれば、遊星歯車機構PLに対して軸方向Lにおける駆動ギヤDGの側(ここでは、軸方向第1側L1)から第1ピニオンギヤP1を組み付ける際に、駆動ギヤDGとの干渉を回避しつつ、容易に第1ピニオンギヤP1を組み付けることができる。
 一対の出力部材OMは、軸方向Lに並んで配置されている。軸方向第1側L1の出力部材OMは、軸方向Lに延在する第1ドライブシャフトDS1(図6参照)を介して、軸方向第1側L1の車輪Wと一体的に回転するように連結されている。また、軸方向第2側L2の出力部材OMは、軸方向Lに延在する第2ドライブシャフトDS2(図6参照)を介して、軸方向第2側L2の車輪Wと一体的に回転するように連結されている。以下の説明では、軸方向第1側L1の出力部材OMを「第1出力部材OM1」とし、軸方向第2側L2の出力部材OMを「第2出力部材OM2」とする。
 差動歯車機構DFは、第2サンギヤS2、第2キャリヤC2、及び第2リングギヤR2を備えた遊星歯車式の差動歯車機構である。本実施形態では、差動歯車機構DFは、ダブルピニオン型の遊星歯車機構である。そのため、本実施形態では、第2キャリヤC2は、第2サンギヤS2に噛み合う内側ピニオンギヤP21と、第2リングギヤR2に噛み合う外側ピニオンギヤP22とを回転自在に支持している。
 第2サンギヤS2は、第1出力部材OM1と一体的に回転するように連結されている。本実施形態では、第2サンギヤS2から軸方向第1側L1に第1出力部材OM1が延在するように配置されている。そして、第1出力部材OM1は、第8軸受B8を介して、第2キャリヤC2に対して相対回転自在に支持されている。また、本実施形態では、第1出力部材OM1は、ケース9の第3側壁部92b及び第2側壁部92aを軸方向Lに貫通するように配置されている。そして、第1出力部材OM1は、第9軸受B9を介して第3側壁部92bに対して回転自在に支持されていると共に、第10軸受B10を介して第2側壁部92aに対して回転自在に支持されている。
 第2キャリヤC2は、第2出力部材OM2と一体的に回転するように連結されている。本実施形態では、第2キャリヤC2から軸方向第2側L2に第2出力部材OM2が延在するように配置されている。そして、第2出力部材OM2は、第11軸受B11を介して、第2リングギヤR2に対して相対回転自在に支持されている。また、本実施形態では、第2出力部材OM2は、ケース9の第4側壁部92dを軸方向Lに貫通するように配置されている。そして、第2出力部材OM2は、第12軸受B12を介して第4側壁部92dに対して回転自在に支持されている。
 第2リングギヤR2は、出力ギヤOGと一体的に回転するように連結されている。本実施形態では、第2リングギヤR2は、出力ギヤOGに対して径方向Rの内側に配置されている。更に、第2リングギヤR2は、径方向Rに沿う径方向視で、出力ギヤOGと重複するように配置されている。
 図7に、本実施形態に係る遊星歯車機構PLの速度線図を示す。図7の速度線図において、縦線は、遊星歯車機構PLの各回転要素の回転速度に対応している。そして、並列配置された複数本の縦線のそれぞれは、遊星歯車機構PLの各回転要素に対応している。また、図7の速度線図において、複数本の縦線の上方に示された符号は、対応する遊星歯車機構PLの回転要素の符号である。そして、複数本の縦線の下方に示された符号は、上方に示された符号に対応する回転要素と一体的に回転する要素の符号である。また、図7の速度線図において、第3回転要素E3に対応する縦線上の黒塗りの円は、ブレーキ機構2が直結係合状態であることを示している。なお、「直結係合状態」とは、摩擦係合装置の入力要素と出力要素との間に回転速度差がない係合状態である。
 ブレーキ機構2が係合状態となり、クラッチ機構1が解放状態となった場合には、変速機TMに第1変速段G1が形成された状態となる。この状態では、図7に示すように、第1回転部材81に連結された第1リングギヤR1と、駆動ギヤDGに連結された第1キャリヤC1と、入力軸IS及び第2回転部材82に連結された第1サンギヤS1とが、互いに相対回転する。その結果、ロータRTの回転が、遊星歯車機構PLにおいて第1変速段G1に応じた変速比で減速されて駆動ギヤDGに伝達される。
 一方、クラッチ機構1が係合状態となり、ブレーキ機構2が解放状態となった場合には、変速機TMに第2変速段G2が形成された状態となる。この状態では、第1回転部材81に連結された第1リングギヤR1と、駆動ギヤDGに連結された第1キャリヤC1と、入力軸IS及び第2回転部材82に連結された第1サンギヤS1とが一体的に回転する。その結果、第2変速段G2に応じた変速比が1となるため、ロータRTの回転が、そのまま駆動ギヤDGに伝達される。
4.第2の実施形態に係る車両用駆動装置
 以下では、第2の実施形態に係る車両用駆動装置1000について、図8及び図9を参照して説明する。本実施形態に係る車両用駆動装置1000は、出力ギヤOGが、駆動ギヤDGに直接噛み合わず、駆動ギヤDGに噛み合うアイドラギヤIGに噛み合っている点で、上記第1の実施形態に係る車両用駆動装置1000とは異なっている。以下では、上記第1の実施形態に係る車両用駆動装置1000との相違点を中心として説明する。なお、特に説明しない点については、上記第1の実施形態に係る車両用駆動装置1000と同様とする。
 図8及び図9に示すように、本実施形態では、上述したように、出力ギヤOGが、駆動ギヤDGに噛み合うアイドラギヤIGに噛み合っている。つまり、出力ギヤOGと駆動ギヤDGとが、アイドラギヤIGの周方向の互いに異なる位置において、アイドラギヤIGに噛み合っている。
 本実施形態では、出力ギヤOGは、軸方向Lに沿う軸方向視で、回転電機MGと重複するが、遊星歯車機構PLとは重複していない。
 また、本実施形態では、ケース9が、第2周壁部91a及び第2側壁部92aを備えていない。これに伴い、本実施形態では、第1出力部材OM1を第2側壁部92aに対して回転自在に支持する第10軸受B10が設けられていない。そして、第1出力部材OM1が、上記第1実施形態のものと比べて、軸方向Lの寸法が短い。
 また、本実施形態では、第3側壁部92bが、第3周壁部91b及び第4周壁部91cと一体的に形成されている。また、第1側壁部92が、第3周壁部91bとは別部材で構成されている。
 以上のように、車両用駆動装置1000は、
 ロータRTを備えた回転電機MGと、
 ロータRTと一体的に回転する入力軸ISと、
 車輪Wに駆動連結される出力ギヤOGと、
 遊星歯車機構PL及び係合装置100を備えた変速機TMと、を備えた車両用駆動装置1000であって、
 遊星歯車機構PLは、第1回転要素E1、第2回転要素E2、及び第3回転要素E3を備え、第1回転要素E1、第2回転要素E2、及び第3回転要素E3の回転速度の順が記載の順となるように構成され、
 第1回転要素E1は、入力軸ISと一体的に回転するように連結され、
 第2回転要素E2は、駆動ギヤDGと一体的に回転するように連結され、
 第3回転要素E3は、係合装置100の係合の状態に応じて、非回転部材NRに連結される第1状態と、第1回転要素E1又は第2回転要素E2と一体的に回転するように連結される第2状態とに切り換えられ、
 ロータRTと遊星歯車機構PLと係合装置100と駆動ギヤDGとが同軸上に配置され、
 駆動ギヤDGは、軸方向LにおけるロータRTと変速機TMとの間に配置され、
 入力軸ISは、駆動ギヤDGを軸方向Lに貫通して、ロータRTと第1回転要素E1とを一体的に回転するように連結し、
 出力ギヤOGは、駆動ギヤDGよりも大径であり、
 駆動ギヤDGと出力ギヤOGとが噛み合い、又は、駆動ギヤDGに噛み合うアイドラギヤIGと出力ギヤOGとが噛み合っている。
 この構成によれば、遊星歯車機構PLの第2回転要素E2と一体的に回転するように連結された駆動ギヤDGが、当該駆動ギヤDGよりも大径に形成された出力ギヤOGに直接、又はアイドラギヤIGを介して噛み合っている。これにより、駆動ギヤDGに伝達された第2回転要素E2の回転を、当該駆動ギヤDGと出力ギヤOGとの間で減速させることができる。そのため、例えば、第2回転要素E2の回転を減速させる遊星歯車機構PLを備えた構成と比べて、車両用駆動装置1000の構成を簡素化することができる。説明を加えると、アイドラギヤIGを備えていない構成では、第3回転要素E3が第2状態の場合、回転電機MGから出力ギヤOGまでの動力伝達経路におけるギヤの噛み合いは駆動ギヤDGと出力ギヤOGとの噛み合いの1箇所のみである。一方、第3回転要素E3が第1状態の場合では、遊星歯車機構PLの内部での噛み合いが増加するのみである。このように、車両用駆動装置1000の全体としてのギヤの噛み合いの数が少ないため、回転電機MGから出力ギヤOGまでの動力伝達経路の伝達効率を高め易い。また、アイドラギヤIGを備えた構成であっても、当該アイドラギヤIGを備えていない構成と比べてギヤの噛み合いが1つ増加するのみであり、同様に回転電機MGから出力ギヤOGまでの動力伝達経路の伝達効率を高め易い。
 また、本構成によれば、ロータRTと変速機TMと駆動ギヤDGとが同軸上に配置され、軸方向LにおけるロータRTと変速機TMとの間に駆動ギヤDGが配置されている。これにより、駆動ギヤDGが径方向Rに沿う径方向視でロータRT及び変速機TMの少なくとも一方と重複するように配置された構成と比べて、車両用駆動装置1000の径方向Rの寸法を小さく抑えることができる。更に、駆動ギヤDGと出力ギヤOGとの径方向Rの寸法差を大きくして、駆動ギヤDGと出力ギヤOGとの間の減速比を大きく確保し易い。その結果、回転電機MGの小型化を図り易い。
 以上のように、本構成によれば、遊星歯車機構PL及び係合装置100を有する変速機TMを備えた構成において、小型で簡素な構成の車両用駆動装置1000を実現できる。
 また、上記第1及び第2実施形態において、車両用駆動装置1000は、
 車輪Wと一体的に回転する出力部材OMを更に備え、
 出力ギヤOGは、出力部材OMと同軸上に配置されている。
 この構成によれば、ロータRT及び変速機TMと同軸上に配置された駆動ギヤDGに直接、又はアイドラギヤIGを介して噛み合う出力ギヤOGが、車輪Wと一体的に回転する出力部材OMと同軸上に配置されている。これにより、車両用駆動装置1000の全体として軸数を少なく抑え易い。したがって、車両用駆動装置1000の径方向Rの寸法を小さく抑えることができる。
 また、上記第1及び第2実施形態において、車両用駆動装置1000は、
 それぞれが互いに異なる車輪Wと一体的に回転する一対の出力部材OMと、
 第2サンギヤS2、第2キャリヤC2、及び第2リングギヤR2を備え、出力ギヤOGの回転を一対の出力部材OMに分配する、遊星歯車式の差動歯車機構DFと、を更に備え、
 出力ギヤOGは、リングギヤよりも径方向Rの外側であって、径方向Rに沿う径方向視でリングギヤと重複する位置に配置されている。
 この構成によれば、差動歯車機構DFが遊星歯車式であるため、差動歯車機構DFが傘歯車式である構成と比べて、車両用駆動装置1000の軸方向Lの寸法を小さく抑え易い。
 また、本構成によれば、出力ギヤOGが第2リングギヤR2よりも径方向Rの外側に配置されている。これにより、出力ギヤOGの大径化を図り、駆動ギヤDGと出力ギヤOGとの間の減速比を大きく確保し易い。その結果、回転電機MGの小型化を図り易い。
 また、本構成によれば、出力ギヤOGが径方向Rに沿う径方向視で第2リングギヤR2と重複するように配置されている。これにより、出力ギヤOGが第2リングギヤR2に対して軸方向Lにずれて配置された構成と比べて、車両用駆動装置1000の軸方向Lの寸法を小さく抑えることができる。
 また、上記第1及び第2実施形態において、遊星歯車機構PLは、係合装置100に対して軸方向LにおけるロータRTの側に配置されている。
 この構成によれば、遊星歯車機構PLの第1回転要素E1とロータRTとの連結構造、及び、遊星歯車機構PLの第2回転要素E2と駆動ギヤDGとの連結構造を簡素化し易い。したがって、車両用駆動装置1000の小型化を図り易い。
5.第3の実施形態に係る車両用駆動装置
 以下では、上記第2の実施形態に係る係合装置100を備えた、第3の実施形態に係る車両用駆動装置1000について、図10から図12を参照して説明する。図10及び図11に示すように、車両用駆動装置1000は、ステータST及びロータRTを備えた回転電機MGと、ロータRTの回転が伝達される入力部材IMと、車輪W(図11参照)と一体的に回転する出力部材OMと、入力部材IMの回転を減速して出力部材OMに伝達する減速機RDと、入力部材IMと非回転部材NRとを選択的に係合するブレーキ機構2と、を備えている。本実施形態では、車両用駆動装置1000は、ロータRTと入力部材IMとを選択的に係合するクラッチ機構1と、ブレーキ機構2及びクラッチ機構1の双方の係合の状態を変化させる駆動機構7と、非回転部材NRとしてのケース9と、を更に備えている。なお、本実施形態では、車両用駆動装置1000は、インホイールモータと称される、車輪Wの駆動装置として構成されている。
 ロータRT、入力部材IM、出力部材OM、及びブレーキ機構2は、同軸上に配置されている。言い換えると、ロータRT、入力部材IM、及びブレーキ機構2が、車輪Wと一体的に回転する出力部材OMと同軸上、つまり、車輪Wの回転軸心と同軸上に配置されている。本実施形態では、減速機RD及びクラッチ機構1も、それらと同軸上に配置されている。
 図10に示すように、ケース9は、回転電機MG、入力部材IM、出力部材OM、減速機RD、ブレーキ機構2、クラッチ機構1、及び駆動機構7を収容している。本実施形態では、ケース9は、出力部材OM及び駆動機構7を、それらの一部が外部に露出した状態で収容している。また、本実施形態では、ケース9は、第1周壁部91、第1側壁部92、支持壁部93、及びカバー部94に加えて、第5側壁部95と、第6側壁部96と、を更に備えている。
 第1周壁部91は、軸方向第1側L1及び軸方向第2側L2が開口する筒状に形成されている。第5側壁部95及び第6側壁部96は、径方向Rに沿って延在するように形成されている。第5側壁部95は、第1周壁部91の軸方向第1側L1の開口を塞ぐように配置されている。第6側壁部96は、第1周壁部91の軸方向第2側L2の開口を塞ぐように配置されている。
 第1側壁部92は、第1周壁部91から径方向Rの内側に向けて延在するように形成されている。第1側壁部92は、第5側壁部95と第6側壁部96との軸方向Lの間に配置されている。本実施形態では、第1側壁部92と第5側壁部95との軸方向Lの間に、減速機RDが配置されている。そして、第1側壁部92と第6側壁部96との軸方向Lの間に、回転電機MG、ブレーキ機構2、及びクラッチ機構1が配置されている。
 カバー部94は、第6側壁部96の軸方向第2側L2を覆うように形成されている。本実施形態では、車両用駆動装置1000を車体に連結するための複数の車体連結部材C1が、第6側壁部96から軸方向第2側L2に突出するように、ロータRTの回転軸心を中心とする周方向に分散配置されている。そして、複数の車体連結部材C1に対して径方向Rの内側に、カバー部94が配置されている。
 回転電機MGは、車輪W(図11参照)の駆動力源として機能する。回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。具体的には、回転電機MGは、バッテリやキャパシタ等の蓄電装置(図示を省略)と電気的に接続されている。そして、回転電機MGは、蓄電装置に蓄えられた電力により力行して駆動力を発生する。また、回転電機MGは、車輪Wの側から伝達される駆動力により発電を行って蓄電装置を充電する。
 回転電機MGのステータSTは、非回転部材NRに固定されている。本実施形態では、ステータSTは、ケース9の第1周壁部91に固定されている。回転電機MGのロータRTは、ステータSTに対して回転可能に支持されている。本実施形態では、ロータRTは、ステータSTに対して径方向Rの内側に配置されている。
 図12に示すように、本実施形態では、回転電機MGは、ロータ支持部材13を更に備えている。ロータ支持部材13は、ロータRTをケース9に対して回転可能に支持する部材である。本実施形態では、ロータ支持部材13は、外側筒状部131と、内側筒状部132と、接続部133と、を備えている。
 外側筒状部131は、ロータRTと同軸の筒状に形成されている。外側筒状部131は、ロータRTを径方向Rの内側から支持するように配置されている。本実施形態では、外側筒状部131が第1回転部材81に対応する。
 内側筒状部132は、外側筒状部131と同軸の筒状に形成されている。内側筒状部132は、外側筒状部131よりも小径に形成されている。本実施形態では、内側筒状部132は、第2軸受B2を介して、ケース9の第1側壁部92に対して回転可能に支持されている。第2軸受B2は、内側筒状部132と第1側壁部92との径方向Rの間に配置されたラジアル軸受である。図示の例では、第2軸受B2は、内側筒状部132を径方向Rの外側から支持するように配置された玉軸受である。本実施形態では、内側筒状部132が第1軸部材10に対応する。
 接続部133は、外側筒状部131と内側筒状部132とを接続するように、径方向Rに沿って延在している。本実施形態では、接続部133の径方向Rの外側の端部が、外側筒状部131の軸方向第1側L1の端部に連結されている。また、接続部133の径方向Rの内側の端部が、内側筒状部132の軸方向第2側L2の端部に連結されている。図示の例では、外側筒状部131と内側筒状部132と接続部133とが一体的に形成されている。
 また、本実施形態では、接続部133は、第1軸受B1を介して、ケース9の第1側壁部92に対して回転可能に支持されている。第1軸受B1は、接続部133と第1側壁部92との軸方向Lの間に配置されたスラスト軸受である。図示の例では、第1軸受B1は、接続部133を軸方向第1側L1から支持するように配置された玉軸受である。
 本実施形態では、入力部材IMは、第2回転部材82と、第2軸部材20とを含む。第2軸部材20は、ケース9の第1側壁部92を軸方向Lに貫通するように配置されている。また、本実施形態では、第2軸部材20は、ロータ支持部材13の内側筒状部132に対して、径方向Rの内側に配置されている。そして、第2軸部材20は、第3軸受B3を介して、内側筒状部132に対して相対回転可能に支持されている。第3軸受B3は、第2軸部材20と内側筒状部132との径方向Rの間に配置されたラジアル軸受である。
 本実施形態では、ブレーキ機構2とクラッチ機構1とは、軸方向Lに並んで配置されている。図示の例では、ブレーキ機構2に対して軸方向第1側L1にクラッチ機構1が配置されている。
 図12に示すように、本実施形態では、ブレーキ機構2は、第3摩擦係合要素21と、第4摩擦係合要素22と、第2外側支持部822と、第2内側支持部931と、第2押圧部分312と、を備えている。
 第3摩擦係合要素21と第4摩擦係合要素22とは、互いに軸方向Lに対向するように配置されている。そして、第3摩擦係合要素21と第4摩擦係合要素22とは、軸方向Lに押し付けられることで互いに摩擦係合する。本実施形態では、第3摩擦係合要素21及び第4摩擦係合要素22のそれぞれは、ロータRTと同軸の円板状に形成されている。そして、第3摩擦係合要素21及び第4摩擦係合要素22は、複数枚ずつ設けられており、これらが軸方向Lに沿って交互に配置されている。第3摩擦係合要素21及び第4摩擦係合要素22は、いずれか一方をフリクションプレートとし、他方をセパレートプレートとすることができる。
 第2外側支持部822は、第3摩擦係合要素21と一体的に回転するように、第3摩擦係合要素21を軸方向Lに摺動可能に支持している。本実施形態では、第2外側支持部822は、ロータRTと同軸の筒状に形成されている。そして、第2外側支持部822は、第3摩擦係合要素21を径方向Rの外側から支持している。本例では、第2外側支持部822の内周部には、軸方向Lに延在する複数のスプライン歯が周方向に分散して形成されている。一方、第3摩擦係合要素21の外周部にも、同様のスプライン歯が周方向に分散して形成されている。そして、それらのスプライン歯同士が係合されている。
 第2内側支持部931は、第4摩擦係合要素22と一体的に回転するように、第4摩擦係合要素22を軸方向Lに摺動可能に支持している。本実施形態では、第2内側支持部931は、第2外側支持部822と同軸であって、第2外側支持部822よりも小径の筒状に形成されている。そして、第2内側支持部931は、第4摩擦係合要素22を径方向Rの内側から支持している。本例では、第2内側支持部931の外周部には、軸方向Lに延在する複数のスプライン歯が周方向に分散して形成されている。一方、第4摩擦係合要素22の内周部にも、同様のスプライン歯が周方向に分散して形成されている。そして、それらのスプライン歯同士が係合されている。
 第2外側支持部822は、入力部材IMと一体的に回転するように連結されている。第2内側支持部931は、非回転部材NRに固定されている。本実施形態では、第2内側支持部931は、非回転部材NRとしてのケース9が備える支持壁部93に固定されている。支持壁部93は、径方向Rに沿って延在するように形成されている。本実施形態では、支持壁部93は、第6側壁部96におけるカバー部94により覆われた部分に対して、軸方向第1側L1から接合されている。図示の例では、第2内側支持部931は、支持壁部93から軸方向第1側L1に突出するように、支持壁部93と一体的に形成されている。
 第2押圧部分312は、第3摩擦係合要素21及び第4摩擦係合要素22を押圧するように構成されている。本実施形態では、第2押圧部分312は、径方向Rに沿って延在するように形成されている。そして、第2押圧部分312は、第3摩擦係合要素21及び第4摩擦係合要素22を軸方向第1側L1から押圧するように配置されている。
 本実施形態では、クラッチ機構1は、第1摩擦係合要素11と、第2摩擦係合要素12と、第1外側支持部811と、第1内側支持部821と、第1押圧部分311と、を備えている。
 第1摩擦係合要素11と第2摩擦係合要素12とは、互いに軸方向Lに対向するように配置されている。そして、第1摩擦係合要素11と第2摩擦係合要素12とは、軸方向Lに押し付けられることで互いに摩擦係合する。本実施形態では、第1摩擦係合要素11及び第2摩擦係合要素12のそれぞれは、ロータRTと同軸の円板状に形成されている。そして、第1摩擦係合要素11及び第2摩擦係合要素12は、複数枚ずつ設けられており、これらが軸方向Lに沿って交互に配置されている。第1摩擦係合要素11及び第2摩擦係合要素12は、いずれか一方をフリクションプレートとし、他方をセパレートプレートとすることができる。
 第1外側支持部811は、第1摩擦係合要素11と一体的に回転するように、第1摩擦係合要素11を軸方向Lに摺動可能に支持している。本実施形態では、第1外側支持部811は、ロータRTと同軸の筒状に形成されている。そして、第1外側支持部811は、第1摩擦係合要素11を径方向Rの外側から支持している。本例では、第1外側支持部811の内周部には、軸方向Lに延在する複数のスプライン歯が周方向に分散して形成されている。一方、第1摩擦係合要素11の外周部にも、同様のスプライン歯が周方向に分散して形成されている。そして、それらのスプライン歯同士が係合されている。
 第1内側支持部821は、第2摩擦係合要素12と一体的に回転するように、第2摩擦係合要素12を軸方向Lに摺動可能に支持している。本実施形態では、第1内側支持部821は、第1外側支持部811と同軸であって、第1外側支持部811よりも小径の筒状に形成されている。そして、第1内側支持部821は、第2摩擦係合要素12を径方向Rの内側から支持している。本例では、第1内側支持部821の外周部には、軸方向Lに延在する複数のスプライン歯が周方向に分散して形成されている。一方、第2摩擦係合要素12の内周部にも、同様のスプライン歯が周方向に分散して形成されている。そして、それらのスプライン歯同士が係合されている。
 第1押圧部分311は、第1摩擦係合要素11及び第2摩擦係合要素12を押圧するように構成されている。本実施形態では、第1押圧部分311は、径方向Rに沿って延在するように形成されている。そして、第1押圧部分311は、第1摩擦係合要素11及び第2摩擦係合要素12を軸方向第2側L2から押圧するように配置されている。また、本実施形態では、第1押圧部分311は、ブレーキ機構2の第2外側支持部822と一体的に回転するように連結されている。図示の例では、第1押圧部分311の径方向Rの外側の端部と、第2外側支持部822の軸方向第1側L1の端部とが連結するように、第1押圧部分311と第2外側支持部822とが一体的に形成されている。
 また、本実施形態では、第1押圧部分311は、第4軸受B4を介して、第2押圧部分312に対して相対回転可能に支持されている。第4軸受B4は、第1押圧部分311と第2押圧部分312との軸方向Lの間に配置されたスラスト軸受である。図示の例では、第4軸受B4は、第1押圧部分311を軸方向第2側L2から支持すると共に、第2押圧部分312を軸方向第1側L1から支持するように配置された玉軸受である。
 第1外側支持部811は、ロータRTと一体的に回転するように連結されている。本実施形態では、第1外側支持部811は、ロータ支持部材13の外側筒状部131に対して、径方向Rの内側から連結されている。図示の例では、第1外側支持部811は、外側筒状部131と一体的に形成されている。
 第1内側支持部821は、入力部材IMと一体的に回転するように連結されている。本実施形態では、第1内側支持部821は、入力部材IMにおけるロータ支持部材13の接続部133よりも軸方向第2側L2に位置する部分(ここでは、第2回転部材82)に対して、径方向Rの外側から連結されている。図示の例では、第1内側支持部821は、入力部材IMと一体的に形成されている。
 また、第1内側支持部821は、ブレーキ機構2の第2外側支持部822と一体的に回転するように連結されている。本実施形態では、第1内側支持部821は、第2外側支持部822に連結された第1押圧部分311と一体的に回転するように、第1押圧部分311を軸方向Lに摺動可能に支持している。本例では、第1押圧部分311の内周部には、第1内側支持部821の外周部に形成されたスプライン歯に係合するスプライン歯が、周方向に分散して形成されている。そして、それらのスプライン歯同士が係合されている。こうして、ブレーキ機構2の第3摩擦係合要素21と、クラッチ機構1の第2摩擦係合要素12とが、一体的に回転する。
 ブレーキ機構2は、回転電機MGのロータRTに対して径方向Rの内側であって、径方向Rに沿う径方向視でロータRTと重複する位置に配置されている。ここで、2つの要素の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線と直交する各方向に移動させた場合に、当該仮想直線が2つの要素の双方に交わる領域が少なくとも一部に存在することを指す。
 本実施形態では、クラッチ機構1も、ロータRTに対して径方向Rの内側であって、径方向Rに沿う径方向視でロータRTと重複する位置に配置されている。
 上記の通り、入力部材IMの回転を減速して出力部材OMに伝達する減速機RDが設けられているため、ロータRTの慣性モーメントが減速機RDの減速比に応じて増幅されて出力部材OMに作用する。その結果、例えば、車輪Wの段差乗り上げ、波状路の走行等に起因して、車輪Wから出力部材OMに大きなトルク変動が伝達された場合等に、駆動力の伝達経路に作用するトルクが過大になり易い。これに対して、駆動力の伝達経路上に配置された部材の強度を大きく確保すると、それらの部材の大型化を招くことになる。
 本構成によれば、ロータRTと入力部材IMとを選択的に係合するクラッチ機構1が設けられている。これにより、駆動力の伝達経路に過大なトルクが作用した場合に、クラッチ機構1がスリップすることで、ロータRTと入力部材IMとの間で伝達される駆動力が過大になることを回避できる。したがって、駆動力の伝達経路上に配置された部材の小型化を図ることができる。
 また、本構成によれば、クラッチ機構1を解放状態とすることで、ロータRTを入力部材IM(延いては車輪W)から切り離すことができる。これにより、車両が慣性で走行している間や他の駆動源の駆動力により走行している間等に、回転電機MGを停止させることができる。したがって、車両用駆動装置1000のエネルギ効率を高めることができる。
 駆動機構7は、ブレーキ機構2を係合状態とすると共にクラッチ機構1を解放状態とする第1状態と、ブレーキ機構2を解放状態とすると共にクラッチ機構1を係合状態とする第2状態と、に状態変化するように構成されている。本実施形態では、駆動機構7は、ブレーキ機構2を解放状態とすると共にクラッチ機構1を解放状態とする第3状態にも状態変化するように構成されている。第3状態において、上述したように、車両が慣性で走行している間や他の駆動源の駆動力により走行している間等に、回転電機MGを停止させることができる。図10に示すように、本実施形態では、駆動機構7は、直動機構33と、伝達機構5と、駆動源4と、を備えている。
 直動機構33は、ブレーキ機構2の第2押圧部分312及びクラッチ機構1の第1押圧部分311を、軸方向Lに移動させるように構成されている。本実施形態では、第2押圧部分312及び第1押圧部分311は、第3摩擦係合要素21及び第4摩擦係合要素22と、第1摩擦係合要素11及び第2摩擦係合要素12との軸方向Lの間に配置されている。そのため、直動機構33が第2押圧部分312及び第1押圧部分311の双方を移動させ易い構成となっている。
 図12に示すように、本実施形態では、直動機構33は、非回転部材NRに対して回転自在に支持されたねじ軸331と、当該ねじ軸331に螺合するナット部材332と、を備えている。
 ねじ軸331の外周部には、ねじ山が形成されている。ねじ軸331は、軸方向Lに沿って延在するように形成されている。本実施形態では、ねじ軸331は、ブレーキ機構2及びクラッチ機構1と同軸上に配置されている。また、本実施形態では、ねじ軸331は、ブレーキ機構2の第2内側支持部931に対して径方向Rの内側であって、径方向Rに沿う径方向視で第2内側支持部931と重複する位置に配置されている。
 ナット部材332の内周部には、ねじ軸331のねじ山に係合する溝が形成されている。ナット部材332は、ねじ軸331が回転することにより、当該回転方向とねじ軸331のねじ山の向きとに応じて軸方向Lに沿う直線運動を行う。
 本実施形態では、ナット部材332は、ブレーキ機構2の第2押圧部分312と一体的に軸方向Lに移動するように連結されている。また、上述したように、本実施形態では、第2押圧部分312と第1押圧部分311との軸方向Lの間に、第4軸受B4が配置されている。そのため、本実施形態では、ナット部材332が軸方向第1側L1に移動するようにねじ軸331が回転すると、ナット部材332を介して第2押圧部分312が軸方向第1側L1に移動すると共に、第4軸受B4を介して第1押圧部分311も軸方向第1側L1に移動する。その結果、第1摩擦係合要素11及び第2摩擦係合要素12が第1押圧部分311によって押圧されて、クラッチ機構1が係合状態となると共に、第2押圧部分312による第3摩擦係合要素21及び第4摩擦係合要素22の押圧が解除されて、ブレーキ機構2が解放状態となる。この状態では、ロータRTと入力部材IMとの間で、動力伝達が行われる。
 一方、本実施形態では、ナット部材332が軸方向第2側L2に移動するようにねじ軸331が回転すると、ナット部材332を介して第2押圧部分312が軸方向第2側L2に移動する。その結果、第3摩擦係合要素21及び第4摩擦係合要素22が第2押圧部分312によって押圧されて、ブレーキ機構2が係合状態となると共に、第1押圧部分311による第1摩擦係合要素11及び第2摩擦係合要素12の押圧が解除されて、クラッチ機構1が解放状態となる。この状態では、ロータRTと入力部材IMとの間での動力伝達が遮断される。
 伝達機構5は、直動機構33に駆動源4の動力を伝達するように構成されている。図10に示すように、本実施形態では、伝達機構5は、第1ギヤ51と、第2ギヤ52と、第3ギヤ53と、第4ギヤ54と、連結体55と、を備えている。
 第1ギヤ51は、駆動源4の出力軸と一体的に回転するように連結されている。本実施形態では、第1ギヤ51は、直動機構33のねじ軸331と同軸上に配置されている。そして、第1ギヤ51は、駆動源4に対して軸方向第1側L1に配置されている。
 第2ギヤ52は、第1ギヤ51に噛み合っている。本実施形態では、第2ギヤ52は、第1ギヤ51よりも大径に形成されている。第3ギヤ53は、第2ギヤ52と一体的に回転するように連結されている。本実施形態では、第3ギヤ53は、第2ギヤ52よりも小径に形成されている。また、第3ギヤ53は、第2ギヤ52に対して軸方向第1側L1に配置されている。本実施形態では、第2ギヤ52及び第3ギヤ53は、第1軸体56によりケース9に対して回転自在に支持されている。第1軸体56は、軸方向Lに沿って延在するように形成されている。本実施形態では、第1軸体56は、第6側壁部96を軸方向Lに貫通するように配置されている。そして、第1軸体56の軸方向第1側L1の端部が、支持壁部93に対して回転自在に支持されている。また、第1軸体56の軸方向第2側L2の端部が、カバー部94に対して回転自在に支持されている。
 第4ギヤ54は、第3ギヤ53に噛み合っている。本実施形態では、第4ギヤ54は、第3ギヤ53よりも大径に形成されている。本実施形態では、第4ギヤ54は、直動機構33のねじ軸331と同軸上に配置されている。また、本実施形態では、第4ギヤ54は、第2軸体57を介して連結体55と一体的に回転するように連結されている。第2軸体57は、軸方向Lに沿って延在するように形成されている。本実施形態では、第2軸体57は、第6側壁部96及び支持壁部93を軸方向Lに貫通するように配置されている。
 本実施形態では、第2ギヤ52の歯数は、第1ギヤ51の歯数よりも多い。そして、第4ギヤ54の歯数は、第2ギヤ52と一体的に回転する第3ギヤ53の歯数よりも多い。そのため、本実施形態では、駆動源4から第1ギヤ51に伝達された回転は、第1ギヤ51と第2ギヤ52との間で減速されて、第3ギヤ53に伝達される。そして、第3ギヤ53の回転は、第3ギヤ53と第4ギヤ54との間で減速されて、連結体55に伝達される。
 図12に示すように、連結体55は、第4ギヤ54とねじ軸331とが一体的に回転するように、それらを連結する。本実施形態では、連結体55は、軸方向第2側L2が開口する筒状に形成されている。そして、連結体55に対して径方向Rの内側に第2軸体57が配置された状態で、連結体55と第2軸体57とが一体的に回転するように連結されている。また、本実施形態では、連結体55から軸方向第1側L1にねじ軸331が突出するように配置された状態で、連結体55とねじ軸331とが一体的に回転するように連結されている。本実施形態では、連結体55は、ブレーキ機構2の第2内側支持部931に対して径方向Rの内側であって、径方向Rに沿う径方向視で第2内側支持部931と重複する位置に配置されている。
 駆動源4は、直動機構33を駆動させるための動力を発生する装置である。本実施形態では、駆動源4は、カバー部94に支持されている。図示の例では、駆動源4は、カバー部94に軸方向第2側L2から連結されている。なお、本例では、駆動源4は、電動モータである。
 上記の通り、本実施形態では、車両用駆動装置1000は、ブレーキ機構2及びクラッチ機構1の双方の係合の状態を変化させる駆動機構7を更に備え、
 ブレーキ機構2とクラッチ機構1とが軸方向Lに並んで配置され、
 駆動機構7は、ブレーキ機構2を係合状態とすると共にクラッチ機構1を解放状態とする第1状態と、ブレーキ機構2を解放状態とすると共にクラッチ機構1を係合状態とする第2状態と、に状態変化するように構成されている。
 この構成によれば、ブレーキ機構2及びクラッチ機構1の双方の係合の状態を、共通の駆動機構7により変化させることができる。したがって、ブレーキ機構2及びクラッチ機構1のそれぞれが別の駆動機構により駆動される構成に比べて、車両用駆動装置1000の小型化を図り易い。
 本実施形態では、減速機RDは、サンギヤSG、キャリヤCR、及びリングギヤRGを備えた遊星歯車機構である。ここでは、減速機RDは、シングルピニオン型の遊星歯車機構である。また、本実施形態では、減速機RDは、径方向Rに沿う径方向視で、回転電機MGと重複しない位置に配置されている。図示の例では、減速機RDは、回転電機MGよりも軸方向第1側L1に配置されている。
 図10に示すように、本実施形態では、サンギヤSGは、入力部材IMと一体的に回転するように連結されている。つまり、本実施形態では、サンギヤSGは、減速機RDの入力要素である。図示の例では、サンギヤSGは、入力部材IMにおけるケース9の第1側壁部92よりも軸方向第1側L1に位置する部分に形成されている。また、本実施形態では、サンギヤSGは、ロータRTよりも径方向Rの内側に配置されている。図示の例では、サンギヤSGは、ブレーキ機構2の第3摩擦係合要素21及び第4摩擦係合要素22、並びに、クラッチ機構1の第1摩擦係合要素11及び第2摩擦係合要素12よりも、径方向Rの内側に配置されている。
 キャリヤCRは、ピニオンギヤPGを回転自在に支持している。ピニオンギヤPGは、サンギヤSG及びリングギヤRGに噛み合っている。ピニオンギヤPGは、その軸心回りに回転(自転)すると共に、キャリヤCRと共にサンギヤSGを中心として回転(公転)する。ピニオンギヤPGは、その公転軌跡に沿って、互いに間隔を空けて複数設けられている。
 本実施形態では、キャリヤCRは、出力部材OMと一体的に回転するように連結されている。つまり、本実施形態では、キャリヤCRは、減速機RDの出力要素である。また、本実施形態では、キャリヤCRは、第13軸受B13を介してケース9に対して回転可能に支持された第1被支持部CRaと、第14軸受B14を介してケース9に対して回転可能に支持された第2被支持部CRbと、を備えている。
 本実施形態では、第1被支持部CRaは、サンギヤSGと同軸の筒状に形成されている。そして、第1被支持部CRaは、ケース9の第5側壁部95を軸方向Lに貫通するように、ピニオンギヤPGに対して軸方向第1側L1に配置されている。第13軸受B13は、第1被支持部CRaと第5側壁部95との径方向Rの間に配置されたラジアル軸受である。図示の例では、第13軸受B13は、第1被支持部CRaを径方向Rの外側から支持するように配置されている。また、第13軸受B13は、当該第13軸受B13の転動体と軌道輪との接触点を通る仮想線(作用線)が軸方向Lに対して傾斜したアンギュラ玉軸受である。
 本実施形態では、第2被支持部CRbは、第1被支持部CRaと同軸の筒状に形成されている。そして、第2被支持部CRbは、ピニオンギヤPGに対して軸方向第2側L2に配置されている。第14軸受B14は、第2被支持部CRbとケース9の第1側壁部92との径方向Rの間に配置されたラジアル軸受である。図示の例では、第14軸受B14は、第2被支持部CRbを径方向Rの内側から支持するように配置されている。また、第14軸受B14は、当該第14軸受B14の転動体と軌道輪との接触点を通る仮想線(作用線)が軸方向Lに対して傾斜したアンギュラ玉軸受である。ここでは、第13軸受B13及び第14軸受B14は、それらの作用線が軸方向Lに対して傾斜する方向が逆向きとなるように配置されている。
 本実施形態では、リングギヤRGは、ケース9に固定されている。図示の例では、リングギヤRGは、ケース9の第1側壁部92と一体的に形成されている。また、本実施形態では、リングギヤRGは、軸方向Lに沿う軸方向視で、ステータSTと重複するように配置されている。
 上記の通り、本実施形態では、減速機RDは、サンギヤSG、キャリヤCR、及びリングギヤRGを備えた遊星歯車機構であり、径方向Rに沿う径方向視で回転電機MGと重複しない位置に配置され、
 ロータRTは、回転電機MGのステータSTに対して径方向Rの内側に配置され、
 リングギヤRGは、軸方向Lに沿う軸方向視でステータSTと重複するように配置され、
 サンギヤSGは、ロータRTよりも径方向Rの内側に配置されている。
 この構成によれば、リングギヤRGとサンギヤSGとの径方向Rの寸法差を大きく確保することができる。これにより、減速機RDの減速比を大きく確保し易い。
 また、本実施形態では、減速機RDは、1つの遊星歯車機構により構成されている。この構成によれば、例えば、平行軸歯車機構と遊星歯車機構とが軸方向Lに並んだ構成に比べて、減速機RDの軸方向Lの寸法を小さく抑えることができる。
 本実施形態では、出力部材OMは、ホイールハブである。本実施形態では、出力部材OMは、連結部OMaと、接合部OMbと、を備えている。
 連結部OMaは、減速機RDの出力要素と一体的に回転するように連結されている。本実施形態では、連結部OMaは、軸方向Lに沿って延在するように形成されている。そして、連結部OMaは、キャリヤCRの第1被支持部CRaに対して径方向Rの内側に配置された状態で、第1被支持部CRaと一体的に回転するように連結されている。
 接合部OMbは、車輪Wに接合されるように構成されている。本実施形態では、接合部OMbは、連結部OMaにおけるキャリヤCRの第1被支持部CRaよりも軸方向第1側L1の部分から、径方向Rの外側に突出するように形成されている。そして、接合部OMbは、その軸心を中心とする周方向に分散配置された複数の車輪連結部材C2により、車輪Wに対して軸方向第2側L2に配置された状態で車輪Wに連結される。
 このように、本実施形態では、出力部材OMは、車輪Wに接合される接合部OMbを備えたホイールハブであり、
 接合部OMbと回転電機MGとの軸方向Lの間に、減速機RDが配置されている。
 この構成によれば、減速機RDが径方向Rに沿う径方向視で回転電機MGと重複するように配置された構成に比べて、回転電機MGの径方向Rの寸法を大きく確保しつつ、車両用駆動装置1000の径方向Rの寸法を小さく抑え易い。
 以上のように、車両用駆動装置1000は、
 ロータRTを備えた回転電機MGと、
 ロータRTの回転が伝達される入力部材IMと、
 車輪Wと一体的に回転する出力部材OMと、
 入力部材IMの回転を減速して出力部材OMに伝達する減速機RDと、
 入力部材IMと非回転部材NRとを選択的に係合するブレーキ機構2と、を備えた車両用駆動装置1000であって、
 ブレーキ機構2は、ロータRTに対して径方向Rの内側であって、径方向Rに沿う径方向視でロータRTと重複する位置に配置され、
 ロータRT、入力部材IM、及びブレーキ機構2が、出力部材OMと同軸上に配置されている。
 この構成によれば、ロータRTがブレーキ機構2に対して径方向Rの外側に配置されている。これにより、回転電機MGがブレーキ機構2よりも径方向Rに大きくなるため、回転電機MGの大径化による出力トルクの増大を図り易い。また、本構成によれば、ブレーキ機構2が径方向Rに沿う径方向視でロータRTと重複する位置に配置されている。これにより、ブレーキ機構2がロータRTよりも軸方向Lの一方側に配置された構成に比べて、車両用駆動装置1000の軸方向Lの寸法を小さく抑えることができる。したがって、本構成によれば、回転電機MGの出力トルクを大きく確保しつつ、軸方向Lの寸法を小さく抑えることができる。
 また、本構成によれば、ロータRT、入力部材IM、及びブレーキ機構2が、車輪Wと一体的に回転する出力部材OMと同軸上に配置されている。これにより、例えばインホイールモータのような車輪Wの駆動装置に適した構成を実現できる。
6.その他の実施形態
(1)上記の実施形態に係る係合装置100では、直動機構33が第2連結部8bに対して軸方向第2側L2に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、直動機構33が第2連結部8bと径方向Rに沿う径方向視で重複するように配置されていても良い。
(2)上記の実施形態に係る係合装置100では、直動機構33が非回転部材NRの第4連結部8dに対して径方向Rの内側であって径方向Rに沿う径方向視で第4連結部8dと重複する位置に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、直動機構33が第4連結部8dに対して軸方向第1側L1又は軸方向第2側L2にずれて配置されていても良い。
(3)上記の実施形態に係る係合装置100では、被駆動部32が、非回転部材NRに対して相対回転が規制された状態で支持された第2押圧部分312と一体的に軸方向Lに移動するように連結された構成を例として説明した。しかし、そのような構成に限定されることなく、被駆動部32が、第1回転部材81又は第2回転部材82に対して一体的に回転する状態で支持された第1押圧部分311と一体的に軸方向Lに移動するように連結されていても良い。
(4)上記の実施形態に係る係合装置100では、直動機構33がねじ軸331とナット部材332とを備えた構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、直動機構33が、レールと、当該レールに沿ってスライド移動するスライド部材と、を備えていても良い。
(5)上記の実施形態に係る係合装置100では、ねじ軸331が、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22に対して、同軸上であって径方向Rの内側に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、ねじ軸331が、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22とは別軸上に配置されていても良い。また、ねじ軸331が、第1摩擦係合要素11、第2摩擦係合要素12、第3摩擦係合要素21、及び第4摩擦係合要素22に対して径方向Rの外側に配置されていても良い。
(6)上記の実施形態に係る係合装置100では、駆動源4がねじ軸331とは別軸上に配置され、駆動源4の軸方向Lにおける配置領域が、第1回転部材81の軸方向Lにおける配置領域と重なっている構成を例として説明した。しかし、そのような構成に限定されることなく、駆動源4がねじ軸331と同軸上に配置されていても良い。また、駆動源4が第1回転部材81に対して軸方向第1側L1又は軸方向第2側L2にずれて配置されていても良い。
(7)上記の実施形態に係る係合装置100では、伝達機構5が駆動源4の回転を減速してねじ軸331に伝達する構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、伝達機構5が駆動源4の回転をそのままねじ軸331に伝達する構成としても良い。
(8)上記第1及び第2の実施形態に係る車両用駆動装置1000では、遊星歯車機構PLがシングルピニオン型の遊星歯車機構である構成を例として説明した。しかし、そのような構成に限定されることなく、遊星歯車機構PLがダブルピニオン型の遊星歯車機構であっても良い。この場合、例えば、第1回転要素E1が第1サンギヤS1であり、第2回転要素E2が第1リングギヤR1であり、第3回転要素E3が第1キャリヤC1である構成とすることができる。
(9)上記第1及び第2の実施形態に係る車両用駆動装置1000では、出力ギヤOGの回転を一対の出力部材OMに分配する差動歯車機構DFを備えた構成を例として説明した。しかし、そのような構成に限定されることなく、差動歯車機構DFを備えず、出力ギヤOGの回転を1つの出力部材OMに伝達する構成としても良い。
(10)上記第1及び第2の実施形態に係る車両用駆動装置1000では、出力ギヤOGが出力部材OMと同軸上に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、出力ギヤOGが出力部材OMとは別軸上に配置されていても良い。
(11)上記第1及び第2の実施形態に係る車両用駆動装置1000では、差動歯車機構DFが遊星歯車式の差動歯車機構である構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、それぞれが異なる出力部材OMと一体的に回転するように連結された一対のサイドギヤと、当該一対のサイドギヤに噛み合う複数のピニオンギヤと、を備えた傘歯車式の差動歯車機構であっても良い。
(12)上記第1及び第2の実施形態に係る車両用駆動装置1000では、遊星歯車機構PLが係合装置100に対して軸方向LにおけるロータRTの側(軸方向第1側L1)に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、遊星歯車機構PLが係合装置100に対して軸方向LにおけるロータRTの側とは反対側(軸方向第2側L2)に配置されていても良い。
(13)上記第3の実施形態に係る車両用駆動装置1000では、車両用駆動装置1000がインホイールモータとして構成され、出力部材OMが車輪Wに接合される接合部OMbを備えた構成を例として説明したが、そのような構成に限定されない。例えば、出力部材OMが車輪Wと一体的に回転するように連結されたドライブシャフトである構成としても良い。
(14)上記第3の実施形態に係る車両用駆動装置1000では、ロータRTと入力部材IMとを選択的に係合するクラッチ機構1を備えた構成を例として説明した。しかし、そのような構成に限定されることなく、クラッチ機構1を備えていない構成としても良い。
(15)上記第3の実施形態に係る車両用駆動装置1000では、ブレーキ機構2及びクラッチ機構1の双方の係合の状態を変化させる駆動機構7を備えた構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、ブレーキ機構2の係合の状態を変化させる駆動機構と、クラッチ機構1の係合の状態を変化させる駆動機構とが、独立して設けられた構成としても良い。
(16)上記第3の実施形態に係る車両用駆動装置1000では、減速機RDが径方向Rに沿う径方向視で回転電機MGと重複しない位置に配置された構成を例として説明した。しかし、そのような構成に限定されることなく、減速機RDが径方向Rに沿う径方向視で回転電機MGと重複するように配置されていても良い。
(17)上記第3の実施形態に係る車両用駆動装置1000では、減速機RDがシングルピニオン型の遊星歯車機構である構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、減速機RDがダブルピニオン型の遊星歯車機構であっても良い。この場合、例えば、サンギヤSGが入力部材IMと一体的に回転するように連結され、リングギヤRGが出力部材OMと一体的に回転するように連結され、キャリヤCRが非回転部材NRに固定された構成とすることができる。
(18)上記第3の実施形態に係る車両用駆動装置1000では、減速機RDが1つの遊星歯車機構により構成された形態を例として説明した。しかし、そのような構成に限定されることなく、例えば、別軸上に配置されて互いに噛み合うギヤを備えた平行軸歯車機構により、減速機RDが構成されていても良い。
(19)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。したがって、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
〔上記実施形態の概要〕
 以下では、上記において説明した係合装置(100)の概要について説明する。
 係合装置(100)は、
 第1回転部材(81)と第2回転部材(82)とを選択的に係合するクラッチ機構(1)と、
 前記第1回転部材(81)及び前記第2回転部材(82)のいずれか一方である対象回転部材(8T)と非回転部材(NR)とを選択的に係合するブレーキ機構(2)と、を備えた係合装置(100)であって、
 前記クラッチ機構(1)及び前記ブレーキ機構(2)の係合の状態を変化させる押圧機構(3)を備え、
 前記第1回転部材(81)の回転軸心に沿う方向を軸方向(L)とし、前記軸方向(L)の一方側を軸方向第1側(L1)とし、前記軸方向(L)の他方側を軸方向第2側(L2)として、
 前記クラッチ機構(1)は、前記第1回転部材(81)と一体的に回転するように連結された第1摩擦係合要素(11)と、前記第2回転部材(82)と一体的に回転するように連結された第2摩擦係合要素(12)と、を備え、
 前記第1摩擦係合要素(11)及び前記第2摩擦係合要素(12)は、互いに前記軸方向(L)に対向するように配置され、前記軸方向(L)に押し付けられることで互いに摩擦係合し、
 前記ブレーキ機構(2)は、前記対象回転部材(8T)と一体的に回転するように連結された第3摩擦係合要素(21)と、前記非回転部材(NR)に固定された第4摩擦係合要素(22)と、を備え、
 前記第3摩擦係合要素(21)及び前記第4摩擦係合要素(22)は、前記第1摩擦係合要素(11)及び前記第2摩擦係合要素(12)に対して前記軸方向第2側(L2)に離間した位置で、互いに前記軸方向(L)に対向するように配置され、前記軸方向(L)に押し付けられることで互いに摩擦係合し、
 前記押圧機構(3)は、前記第1摩擦係合要素(11)及び前記第2摩擦係合要素(12)と、前記第3摩擦係合要素(21)及び前記第4摩擦係合要素(22)と、の前記軸方向(L)の間に配置された押圧部(31)と、前記押圧部(31)と連動するように連結された被駆動部(32)と、前記被駆動部(32)を前記軸方向(L)に移動させる直動機構(33)と、を備え、
 前記第1回転部材(81)、前記第2回転部材(82)、前記第1摩擦係合要素(11)、前記第2摩擦係合要素(12)、前記第3摩擦係合要素(21)、及び前記第4摩擦係合要素(22)が、同軸上に配置され、
 前記直動機構(33)によって前記被駆動部(32)が前記軸方向第1側(L1)に移動するか前記軸方向第2側(L2)に移動するに応じて、前記クラッチ機構(1)と前記ブレーキ機構(2)とが選択的に係合される。
 この構成によれば、直動機構(33)により被駆動部(32)を介して軸方向(L)に移動する押圧部(31)が、第1摩擦係合要素(11)及び第2摩擦係合要素(12)と、それらに対して軸方向第2側(L2)に配置された第3摩擦係合要素(21)及び第4摩擦係合要素(22)との軸方向(L)の間に配置されている。そして、直動機構(33)により被駆動部(32)が軸方向第1側(L1)に移動することで、第1摩擦係合要素(11)及び第2摩擦係合要素(12)が押圧部(31)により押圧されてクラッチ機構(1)が係合状態となると共に、押圧部(31)による第3摩擦係合要素(21)及び第4摩擦係合要素(22)の押圧が解除されてブレーキ機構(2)が解放状態となる。一方、直動機構(33)により被駆動部(32)が軸方向第2側(L2)に移動することで、第3摩擦係合要素(21)及び第4摩擦係合要素(22)が押圧部(31)により押圧されてブレーキ機構(2)が係合状態となると共に、押圧部(31)による第1摩擦係合要素(11)及び第2摩擦係合要素(12)の押圧が解除されてクラッチ機構(1)が解放状態となる。これにより、クラッチ機構(1)とブレーキ機構(2)との係合の状態を、共通の押圧機構(3)により変化させることができる。したがって、クラッチ機構(1)及びブレーキ機構(2)を備えた構成において、係合装置(100)の小型化を図ることができる。
 ここで、前記第1回転部材(81)は、前記第1摩擦係合要素(11)が連結された第1連結部(8a)を備え、
 前記第2回転部材(82)は、前記第2摩擦係合要素(12)が連結された第2連結部(8b)を備え、
 前記対象回転部材(8T)は、前記第3摩擦係合要素(21)が連結された第3連結部(8c)を備え、
 前記非回転部材(NR)は、前記第4摩擦係合要素(22)が連結された第4連結部(8d)を備え、
 前記第1連結部(8a)は、前記第1摩擦係合要素(11)に対して径方向(R)の外側であって、前記径方向(R)に沿う径方向視で前記第1摩擦係合要素(11)と重複する位置に配置され、
 前記第3連結部(8c)は、前記第3摩擦係合要素(21)に対して前記径方向(R)の外側であって、前記径方向視で前記第3摩擦係合要素(21)と重複する位置に配置され、
 前記第2連結部(8b)は、前記第2摩擦係合要素(12)に対して前記径方向(R)の内側であって、前記径方向視で前記第2摩擦係合要素(12)及び前記第1連結部(8a)と重複する位置に配置され、
 前記第4連結部(8d)は、前記第4摩擦係合要素(22)に対して前記径方向(R)の内側であって、前記径方向視で前記第4摩擦係合要素(22)及び前記第3連結部(8c)と重複する位置に配置され、
 前記直動機構(33)は、前記第2連結部(8b)に対して前記軸方向第2側(L2)に配置されていると共に、前記第4連結部(8d)に対して前記径方向(R)の内側であって前記径方向視で前記第4連結部(8d)と重複する位置に配置されていると好適である。
 この構成によれば、直動機構(33)が、第2回転部材(82)の第2連結部(8b)に対して軸方向第2側(L2)に配置されている。これにより、直動機構(33)が第2連結部(8b)と径方向視で重複するように配置された構成と比べて、係合装置(100)の径方向(R)の寸法を小さく抑えることができる。
 また、本構成によれば、直動機構(33)が、非回転部材(NR)の第4連結部(8d)に対して径方向(R)の内側であって径方向(R)に沿う径方向視で第4連結部(8d)と重複する位置に配置されている。これにより、直動機構(33)が第4連結部(8d)よりも軸方向(L)にずれて配置された構成と比べて、係合装置(100)の軸方向(L)の寸法を小さく抑えることができる。また、非回転部材(NR)の第4連結部(8d)に対して径方向(R)の内側に配置された直動機構(33)を、非回転部材(NR)によって支持することが容易であるため、直動機構(33)の支持構造を簡素化し易い。
 また、前記押圧部(31)は、前記第1摩擦係合要素(11)及び前記第2摩擦係合要素(12)を前記軸方向(L)に押圧する第1押圧部分(311)と、前記第3摩擦係合要素(21)及び前記第4摩擦係合要素(22)を前記軸方向(L)に押圧する第2押圧部分(312)と、を備え、
 前記第1押圧部分(311)は、前記第1回転部材(81)又は前記第2回転部材(82)に対して、前記軸方向(L)に相対移動可能であると共に一体的に回転する状態で支持され、
 前記第2押圧部分(312)は、前記非回転部材(NR)に対して、前記軸方向(L)に相対移動可能であると共に相対回転が規制された状態で支持され、
 前記第1押圧部分(311)と前記第2押圧部分(312)とは、相対回転可能な状態で、前記軸方向(L)に連動するように構成され、
 前記被駆動部(32)は、前記第2押圧部分(312)と一体的に前記軸方向(L)に移動するように連結されていると好適である。
 この構成によれば、直動機構(33)により軸方向(L)に移動する被駆動部(32)が、非回転部材(NR)に対して相対回転が規制された状態で支持された第2押圧部分(312)と一体的に軸方向(L)に移動するように連結されている。これにより、被駆動部(32)が第1回転部材(81)又は第2回転部材(82)に対して一体的に回転する状態で支持された第1押圧部分(311)と一体的に軸方向(L)に移動するように連結された構成と比べて、押圧機構(3)の簡素化を図り易い。
 また、前記直動機構(33)は、前記非回転部材(NR)に対して回転自在に支持されたねじ軸(331)と、前記ねじ軸(331)に螺合するナット部材(332)と、を備え、
 前記ナット部材(332)は、前記被駆動部(32)と一体的に前記軸方向(L)に移動するように連結され、
 前記ねじ軸(331)は、前記第1摩擦係合要素(11)、前記第2摩擦係合要素(12)、前記第3摩擦係合要素(21)、及び前記第4摩擦係合要素(22)に対して、同軸上であって径方向(R)の内側に配置されていると好適である。
 この構成によれば、第1摩擦係合要素(11)、第2摩擦係合要素(12)、第3摩擦係合要素(21)、及び第4摩擦係合要素(22)に対して径方向(R)の内側に、ナット部材(332)を軸方向(L)に移動させるためのねじ軸(331)が配置されている。これにより、ねじ軸(331)を回転駆動させるための駆動力を、それらの摩擦係合要素(11,12,21,22)に対して軸方向(L)の外側からねじ軸(331)に伝達し易い。したがって、第1摩擦係合要素(11)及び第2摩擦係合要素(12)と第3摩擦係合要素(21)及び第4摩擦係合要素(22)との軸方向(L)の間に配置された押圧部(31)を、ナット部材(332)及び被駆動部(32)を介して軸方向(L)に移動可能な構造を実現することが容易となっている。
 また、本構成によれば、直動機構(33)のねじ軸(331)を、第1摩擦係合要素(11)、第2摩擦係合要素(12)、第3摩擦係合要素(21)、及び第4摩擦係合要素(22)の少なくとも一部と径方向(R)に沿う径方向視で重複するように配置し易い。これにより、直動機構(33)の配置による、係合装置(100)の軸方向(L)への大型化を抑制することができる。
 前記直動機構(33)が前記ねじ軸(331)と前記ナット部材(332)とを備えた構成において、
 係合装置(100)は、前記ねじ軸(331)を回転駆動するための駆動源(4)と、前記駆動源(4)と前記ねじ軸(331)との間の動力伝達を行う伝達機構(5)と、を更に備え、
 前記駆動源(4)は、前記ねじ軸(331)とは別軸上に配置され、
 前記駆動源(4)の前記軸方向(L)における配置領域が、前記第1回転部材(81)の前記軸方向(L)における配置領域と重なっており、
 前記伝達機構(5)は、前記直動機構(33)に対して前記軸方向第2側(L2)に配置され、
 前記第1回転部材(81)から前記軸方向第1側(L1)に延在するように配置された第1軸部材(10)が、前記第1回転部材(81)と一体的に回転するように連結され、
 前記第2回転部材(82)から前記軸方向第1側(L1)に延在するように配置された第2軸部材(20)が、前記第2回転部材(82)と一体的に回転するように連結されていると好適である。
 この構成によれば、駆動源(4)が第1回転部材(81)に対して同軸上であって軸方向(L)にずれた位置に配置された構成と比べて、係合装置(100)の軸方向(L)の寸法を小さく抑えることができる。
 本開示に係る技術は、クラッチ機構及びブレーキ機構を備えた係合装置に利用することができる。
100:係合装置、1:クラッチ機構、11:第1摩擦係合要素、12:第2摩擦係合要素、2:ブレーキ機構、21:第3摩擦係合要素、22:第4摩擦係合要素、3:押圧機構、31:押圧部、32:被駆動部、33:直動機構、81:第1回転部材、82:第2回転部材、8T:対象回転部材、10:第1軸部材、20:第2軸部材、NR:非回転部材、L:軸方向、L1:軸方向第1側、L2:軸方向第2側

Claims (5)

  1.  第1回転部材と第2回転部材とを選択的に係合するクラッチ機構と、
     前記第1回転部材及び前記第2回転部材のいずれか一方である対象回転部材と非回転部材とを選択的に係合するブレーキ機構と、を備えた係合装置であって、
     前記クラッチ機構及び前記ブレーキ機構の係合の状態を変化させる押圧機構を備え、
     前記第1回転部材の回転軸心に沿う方向を軸方向とし、前記軸方向の一方側を軸方向第1側とし、前記軸方向の他方側を軸方向第2側として、
     前記クラッチ機構は、前記第1回転部材と一体的に回転するように連結された第1摩擦係合要素と、前記第2回転部材と一体的に回転するように連結された第2摩擦係合要素と、を備え、
     前記第1摩擦係合要素及び前記第2摩擦係合要素は、互いに前記軸方向に対向するように配置され、前記軸方向に押し付けられることで互いに摩擦係合し、
     前記ブレーキ機構は、前記対象回転部材と一体的に回転するように連結された第3摩擦係合要素と、前記非回転部材に固定された第4摩擦係合要素と、を備え、
     前記第3摩擦係合要素及び前記第4摩擦係合要素は、前記第1摩擦係合要素及び前記第2摩擦係合要素に対して前記軸方向第2側に離間した位置で、互いに前記軸方向に対向するように配置され、前記軸方向に押し付けられることで互いに摩擦係合し、
     前記押圧機構は、前記第1摩擦係合要素及び前記第2摩擦係合要素と、前記第3摩擦係合要素及び前記第4摩擦係合要素と、の前記軸方向の間に配置された押圧部と、前記押圧部と連動するように連結された被駆動部と、前記被駆動部を前記軸方向に移動させる直動機構と、を備え、
     前記第1回転部材、前記第2回転部材、前記第1摩擦係合要素、前記第2摩擦係合要素、前記第3摩擦係合要素、及び前記第4摩擦係合要素が、同軸上に配置され、
     前記直動機構によって前記被駆動部が前記軸方向第1側に移動するか前記軸方向第2側に移動するに応じて、前記クラッチ機構と前記ブレーキ機構とが選択的に係合される、係合装置。
  2.  前記第1回転部材は、前記第1摩擦係合要素が連結された第1連結部を備え、
     前記第2回転部材は、前記第2摩擦係合要素が連結された第2連結部を備え、
     前記対象回転部材は、前記第3摩擦係合要素が連結された第3連結部を備え、
     前記非回転部材は、前記第4摩擦係合要素が連結された第4連結部を備え、
     前記第1連結部は、前記第1摩擦係合要素に対して径方向の外側であって、前記径方向に沿う径方向視で前記第1摩擦係合要素と重複する位置に配置され、
     前記第3連結部は、前記第3摩擦係合要素に対して前記径方向の外側であって、前記径方向視で前記第3摩擦係合要素と重複する位置に配置され、
     前記第2連結部は、前記第2摩擦係合要素に対して前記径方向の内側であって、前記径方向視で前記第2摩擦係合要素及び前記第1連結部と重複する位置に配置され、
     前記第4連結部は、前記第4摩擦係合要素に対して前記径方向の内側であって、前記径方向視で前記第4摩擦係合要素及び前記第3連結部と重複する位置に配置され、
     前記直動機構は、前記第2連結部に対して前記軸方向第2側に配置されていると共に、前記第4連結部に対して前記径方向の内側であって前記径方向視で前記第4連結部と重複する位置に配置されている、請求項1に記載の係合装置。
  3.  前記押圧部は、前記第1摩擦係合要素及び前記第2摩擦係合要素を前記軸方向に押圧する第1押圧部分と、前記第3摩擦係合要素及び前記第4摩擦係合要素を前記軸方向に押圧する第2押圧部分と、を備え、
     前記第1押圧部分は、前記第1回転部材又は前記第2回転部材に対して、前記軸方向に相対移動可能であると共に一体的に回転する状態で支持され、
     前記第2押圧部分は、前記非回転部材に対して、前記軸方向に相対移動可能であると共に相対回転が規制された状態で支持され、
     前記第1押圧部分と前記第2押圧部分とは、相対回転可能な状態で、前記軸方向に連動するように構成され、
     前記被駆動部は、前記第2押圧部分と一体的に前記軸方向に移動するように連結されている、請求項1又は2に記載の係合装置。
  4.  前記直動機構は、前記非回転部材に対して回転自在に支持されたねじ軸と、前記ねじ軸に螺合するナット部材と、を備え、
     前記ナット部材は、前記被駆動部と一体的に前記軸方向に移動するように連結され、
     前記ねじ軸は、前記第1摩擦係合要素、前記第2摩擦係合要素、前記第3摩擦係合要素、及び前記第4摩擦係合要素に対して、同軸上であって径方向の内側に配置されている、請求項1から3のいずれか一項に記載の係合装置。
  5.  前記ねじ軸を回転駆動するための駆動源と、前記駆動源と前記ねじ軸との間の動力伝達を行う伝達機構と、を更に備え、
     前記駆動源は、前記ねじ軸とは別軸上に配置され、
     前記駆動源の前記軸方向における配置領域が、前記第1回転部材の前記軸方向における配置領域と重なっており、
     前記伝達機構は、前記直動機構に対して前記軸方向第2側に配置され、
     前記第1回転部材から前記軸方向第1側に延在するように配置された第1軸部材が、前記第1回転部材と一体的に回転するように連結され、
     前記第2回転部材から前記軸方向第1側に延在するように配置された第2軸部材が、前記第2回転部材と一体的に回転するように連結されている、請求項4に記載の係合装置。
PCT/JP2022/042575 2021-11-19 2022-11-16 係合装置 WO2023090364A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22895645.4A EP4386226A1 (en) 2021-11-19 2022-11-16 Engagement device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021188939 2021-11-19
JP2021-188940 2021-11-19
JP2021-188939 2021-11-19
JP2021188940 2021-11-19
JP2021211353 2021-12-24
JP2021-211353 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023090364A1 true WO2023090364A1 (ja) 2023-05-25

Family

ID=86397069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042575 WO2023090364A1 (ja) 2021-11-19 2022-11-16 係合装置

Country Status (2)

Country Link
EP (1) EP4386226A1 (ja)
WO (1) WO2023090364A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235045A (en) * 1963-12-18 1966-02-15 Peerless Electric Division Of Clutch-brake device and actuating mechanism
US3278774A (en) * 1962-03-20 1966-10-11 Peerless Electric Division Of Clutch-brake device and actuating mechanism
JPS57200398U (ja) * 1981-06-17 1982-12-20
JP2012197846A (ja) 2011-03-22 2012-10-18 Jatco Ltd 遊星歯車式動力伝達装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278774A (en) * 1962-03-20 1966-10-11 Peerless Electric Division Of Clutch-brake device and actuating mechanism
US3235045A (en) * 1963-12-18 1966-02-15 Peerless Electric Division Of Clutch-brake device and actuating mechanism
JPS57200398U (ja) * 1981-06-17 1982-12-20
JP2012197846A (ja) 2011-03-22 2012-10-18 Jatco Ltd 遊星歯車式動力伝達装置

Also Published As

Publication number Publication date
EP4386226A1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
JP6316515B2 (ja) 電気駆動装置
JP2006207805A (ja) 可変のトルク分配のための伝動装置ユニット
US9534665B1 (en) Electrical all-wheel drive
WO2020105635A1 (ja) 車両用駆動装置
US20140323259A1 (en) Electric drive device for vehicle
WO2021039966A1 (ja) 車両用駆動装置
JP7019280B2 (ja) 動力伝達装置
WO2021039134A1 (ja) 車両用駆動伝達装置
US11624433B2 (en) Differential assembly
WO2021106349A1 (ja) 車両用駆動装置
WO2020105636A1 (ja) 車両用駆動装置
WO2023090364A1 (ja) 係合装置
JP2020175707A (ja) 車両用駆動装置
JPWO2020161996A1 (ja) 動力伝達装置
WO2018181557A1 (ja) 車両用駆動装置
JP2014111409A (ja) トランスファ
JP7435495B2 (ja) 車両用差動装置
CN118265855A (en) Joining device
JP2021162052A (ja) 車両用駆動伝達装置
WO2024070143A1 (ja) 変速機、及びそれを備えた車両用駆動伝達装置
WO2023095821A1 (ja) 車両用駆動装置
WO2023249002A1 (ja) 車両用駆動伝達装置
US11535094B2 (en) Drive unit
WO2024034489A1 (ja) 車両用駆動装置
WO2022027574A1 (zh) 轮毂驱动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022895645

Country of ref document: EP

Effective date: 20240312

ENP Entry into the national phase

Ref document number: 2023562380

Country of ref document: JP

Kind code of ref document: A