WO2023090220A1 - 磁性粉体の製造方法、磁場増幅用磁性材料、および超高周波吸収用磁性材料 - Google Patents

磁性粉体の製造方法、磁場増幅用磁性材料、および超高周波吸収用磁性材料 Download PDF

Info

Publication number
WO2023090220A1
WO2023090220A1 PCT/JP2022/041715 JP2022041715W WO2023090220A1 WO 2023090220 A1 WO2023090220 A1 WO 2023090220A1 JP 2022041715 W JP2022041715 W JP 2022041715W WO 2023090220 A1 WO2023090220 A1 WO 2023090220A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic powder
iron
less
nitrogen
Prior art date
Application number
PCT/JP2022/041715
Other languages
English (en)
French (fr)
Inventor
純 赤松
哲 阿部
将裕 阿部
健太 岩井
智詞 山中
秀一 多田
伸嘉 今岡
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Priority to KR1020247020253A priority Critical patent/KR20240115266A/ko
Priority to EP22895502.7A priority patent/EP4438201A1/en
Priority to JP2023561549A priority patent/JPWO2023090220A1/ja
Priority to CN202280077404.3A priority patent/CN118284483A/zh
Publication of WO2023090220A1 publication Critical patent/WO2023090220A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F2009/165Chemical reaction in an Ionic Liquid [IL]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present disclosure relates to a magnetic powder manufacturing method, a magnetic field amplifying magnetic material, and an ultrahigh frequency absorbing magnetic material.
  • Patent Document 1 is not efficient enough to be applied as a magnetic field amplification material in the above range of 1 MHz to 1 THz, and is an ultra-wide frequency band absorbing material in the ultra-high frequency range. There is a problem that it does not have the high frequency characteristics that meet the needs.
  • the present disclosure provides a magnetic powder with excellent high-frequency characteristics with low iron loss and excellent efficiency even when a high frequency is applied, and a magnetic powder that is less deteriorated by eddy current and has excellent absorption characteristics even when an ultra-high frequency is applied. It is an object of the present invention to provide a method for producing magnetic powder having excellent high-frequency characteristics and a magnetic material for magnetic field amplification having high-frequency magnetic field amplification characteristics.
  • a method for producing a magnetic powder according to an aspect of the present disclosure includes R (where R is a part of rare earth elements and is Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and at least one selected from Sm, and when Sm is included, Sm is less than 50 atomic% with respect to the entire R component) and rare earth containing Fe and N-iron-nitrogen It includes a phosphorus treatment step of adding an inorganic acid to a slurry containing the magnetic powder, water, and a phosphorus-containing material to obtain a phosphorus compound and rare earth-iron-nitrogen magnetic powder.
  • the magnetic field amplifying magnetic material and the ultrahigh frequency absorbing magnetic material include a phosphorus compound and R (where R is Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, At least one selected from Tm, Lu, and Sm, and when Sm is included, Sm is less than 50 atomic% with respect to the entire R component) and a rare earth containing Fe and N-iron - Contains nitrogen-based magnetic powder.
  • a magnetic powder having excellent efficiency in a high frequency region a method for producing a magnetic powder having excellent absorption characteristics in an ultra-high frequency region, a magnetic material for magnetic field amplification having magnetic field amplification characteristics, Also, a magnetic material for absorbing ultrahigh frequencies can be provided.
  • FIG. 1 shows a STEM (Scanning Transmission Electron Microscope) image of a cross section of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder prepared in Example 1.
  • FIG. 4 shows a STEM image of a cross section of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder produced in Example 2.
  • FIG. 2 shows a STEM image of a cross section of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder produced in Comparative Example 1.
  • FIG. The figure on the left shows a TEM (transmission electron microscope) image of the cross section of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder produced in Example 1.
  • the two figures on the right are ED (electron diffraction) diagrams of the tissue contained within the frame indicated by the white rectangle in the figure on the left.
  • the figure on the left shows a TEM image of the cross section of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder produced in Example 2.
  • FIG. The two figures on the right are ED diagrams of the tissue contained within the frame indicated by the white rectangle in the figure on the left. 4 shows the results of line analysis of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder produced in Example 1.
  • FIG. 3 shows the results of line analysis of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder produced in Example 2.
  • FIG. 3 shows the results of line analysis of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder produced in Comparative Example 1.
  • FIG. 4 shows the frequency dependence of the complex relative permeability of the magnetic materials produced in Examples 3 and 4 and Comparative Example 2.
  • FIG. 10 shows the frequency dependence of the complex relative permeability of the magnetic material for absorbing ultrahigh frequencies produced in Example 5.
  • high frequency refers to electromagnetic waves having a high frequency, and unless otherwise specified in this disclosure, particularly refers to electromagnetic waves of 1 MHz or more and less than 1 GHz.
  • excellent efficiency means the ratio of the complex relative permeability ( ⁇ ) of a magnetic material to the imaginary term ( ⁇ '') of the real term ( ⁇ ') at a certain frequency f, that is, the Q value (quality coefficient) takes a large value.
  • a magnetic material having such characteristics can amplify electromagnetic waves of frequency f while reducing loss.
  • Low tan ⁇ is called “good efficiency”
  • high tan ⁇ is called “poor efficiency”
  • increasing is also referred to as “deteriorating tan ⁇ ”.
  • the “magnetic field amplification” characteristic means that the real term ( ⁇ ′) of the complex relative permeability of the magnetic material is greater than 1, which is the real term of the relative permeability of the vacuum, and the space in which the magnetic material is placed It is the property of increasing the magnetic field compared to that of a vacuum (or atmosphere).
  • Good or high field amplification properties refer to high ⁇ ′, and materials with ⁇ ′ greater than 2 at some frequency f are referred to as “field amplification” magnetic materials (at frequency f).
  • the term “relative permeability” simply refers to the absolute value of the real term and the absolute value of the imaginary term of the complex relative permeability. Unless otherwise specified, the term “high relative permeability” means that the real term of the relative permeability is high.
  • the term “ultrahigh frequency absorption” property refers to high frequency properties in an ultrahigh frequency region, and the imaginary term ( ⁇ ′′) of the complex relative permeability of the magnetic material is greater than 0 in the ultrahigh frequency region, and the magnetic It is the characteristic of attenuating the high frequency incident on the space where the material is placed.Good or high ultra-high frequency absorption characteristics at a certain frequency means that ⁇ ” is high at that frequency, and in the ultra-high frequency region A material with ⁇ ′′ exceeding 0 is called a “magnetic material for ultra-high frequency absorption”.
  • the magnetic powder manufacturing method of the present embodiment comprises at least one If the species contains Sm, Sm is less than 50 atomic% with respect to the entire R component) and rare earth-iron-nitrogen magnetic powder containing Fe and N, water, and a phosphorus-containing material and a phosphorus treatment step of adding an inorganic acid to the slurry containing the phosphorus compound and rare earth element-iron-nitrogen based magnetic powder.
  • Phosphorus treatment step In the phosphorus treatment step, an inorganic acid is added to a slurry containing a rare earth element-iron-nitrogen magnetic powder containing R, Fe and N, water, and a phosphorus-containing material to produce a phosphorus compound and a rare earth element-iron-nitrogen system. A magnetic powder is obtained.
  • Phosphorus compounds and rare earth-iron-nitrogen-based magnetic powders are composed of metal components (such as iron and neodymium) contained in the rare-earth-iron-nitrogen-based magnetic powders and phosphorus components (such as phosphoric acid) contained in phosphorus-containing materials.
  • phosphorus compounds eg, iron phosphate, neodymium phosphate, etc.
  • the phosphorus compound and the rare earth-iron-nitrogen magnetic powder are deposited on at least a part of the surface of the rare earth-iron-nitrogen magnetic powder by depositing the phosphorus compound on the surface of the rare earth-iron-nitrogen magnetic powder.
  • a coating is called a “phosphorus compound coating”, and a portion formed by such a coating is called a “phosphorus compound coating portion”.
  • the present embodiment by adding an inorganic acid to adjust the pH of the slurry, it is possible to increase the precipitation amount of the phosphorus compound as compared with the case where the inorganic acid is not added. As a result, a phosphorus compound-coated rare earth-iron-nitrogen magnetic powder having a thick coating (also referred to as film thickness) can be obtained, tan ⁇ is reduced, and magnetic field amplification characteristics are improved.
  • a phosphorus compound such as a phosphate having a smaller particle size is precipitated compared to the case of using an organic solvent, so that a dense phosphorus compound and rare earth- An iron-nitrogen magnetic powder is obtained, and there is a tendency to easily obtain excellent efficiency in the high frequency region and excellent absorption characteristics in the ultrahigh frequency region.
  • the method of preparing the slurry containing the rare earth-iron-nitrogen magnetic powder containing R, Fe, and N, water, and the phosphorus-containing material is not particularly limited, but for example, the rare earth-iron-nitrogen magnetic powder is prepared using water as a solvent. It is obtained by mixing the powder and a phosphorus-containing material solution containing the phosphorus-containing material.
  • the content of the rare earth-iron-nitrogen based magnetic powder in the slurry is preferably 1% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 20% by mass or less from the viewpoint of productivity.
  • the content of the phosphorus-containing material in the slurry is not particularly limited, but when the phosphorus-containing material is phosphoric acid and is composed only of hydrogen and a phosphoric acid component (PO 4 ), the content is in terms of PO 4 , for example, 0.01% by mass or more and 10% by mass or less, preferably 0.05% by mass or more and 5% by mass or less from the viewpoint of reactivity and productivity between the metal component and the phosphoric acid component.
  • PO 4 phosphoric acid component
  • Phosphorus-containing substances include elemental phosphorus and its composition, phosphoric acid compounds such as orthophosphoric acid, heteropolyacid compounds such as phosphotungstic acid and phosphomolybdic acid, and phosphorous-containing acid compounds such as phosphoric acid compounds and heteropolyacid compounds and metal ions. Or salts with ammonium ions, phosphate esters, phosphites, organic phosphorus compounds such as phosphine oxides, iron phosphide, phosphor bronze, Fe-BP-Cu and Fe-Nb-BP alloys, etc. Phosphorus-containing metals and the like can be mentioned.
  • the phosphoric acid aqueous solution is obtained by mixing the phosphoric acid compound and water.
  • phosphoric acid compounds include phosphates such as orthophosphoric acid, sodium dihydrogen phosphate, sodium monohydrogen phosphate, ammonium dihydrogen phosphate, ammonium monohydrogen phosphate, zinc phosphate, calcium phosphate, hypophosphorous Acid-based, hypophosphite-based, pyrophosphate-based, polyphosphoric acid-based inorganic phosphoric acids, and organic phosphoric acids can be mentioned. These may use only 1 type and may use 2 or more types together.
  • oxoacid salts such as molybdate, tungstate, vanadate, and chromate, sodium nitrate, sodium nitrite, etc. and chelating agents such as EDTA can be used as additives.
  • phosphorus-containing substances from the viewpoint of reaction control and coating amount control, inorganic phosphoric acids such as orthophosphoric acid, pyrophosphoric acid, and polyphosphoric acid, and them and Na, Ca, Pb, Zn, Fe, Y, Ce , Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, Sm, ammonium and the like.
  • the concentration of phosphoric acid in the phosphoric acid aqueous solution is preferably 5% by mass or more and 50% by mass or less, and is 10% by mass or more from the viewpoint of the solubility of the phosphoric acid compound, storage stability, and ease of chemical conversion treatment. 30 mass % or less is more preferable.
  • the pH of the phosphoric acid aqueous solution is preferably 1 or more and 4.5 or less, and more preferably 1.5 or more and 4 or less from the viewpoint of easy control of the precipitation rate of the phosphate.
  • the pH can be adjusted with dilute hydrochloric acid, dilute sulfuric acid, or the like.
  • the slurry is acidified by adding an inorganic acid, and the pH is preferably adjusted to 1 or more and 4.5 or less, more preferably 1.6 or more and 3.9 or less. , is more preferably adjusted to 2 or more and 3 or less.
  • the pH is less than 1
  • the rare earth-iron-nitrogen magnetic powder aggregates with each other starting from a large amount of locally precipitated phosphorus compounds, resulting in a deterioration of tan ⁇ in the high frequency region and a decrease in ⁇ ′′ in the ultra-high frequency region.
  • Inorganic acids to be added include hydrochloric acid, nitric acid, sulfuric acid, boric acid, and hydrofluoric acid.
  • An inorganic acid is used from the viewpoint of waste liquid treatment, but an organic acid can be used in combination depending on the purpose.
  • Organic acids include acetic acid, formic acid, tartaric acid and the like.
  • the phosphorus treatment step can also be carried out so that the phosphorus content in the resulting magnetic powder is 0.02% by mass or more.
  • the phosphorus content in the magnetic powder obtained in the phosphorus treatment step is preferably 0.05% by mass or more, more preferably 0.15% by mass or more.
  • the phosphorus content in the magnetic powder obtained in the phosphorus treatment step is preferably 4% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less. When the phosphorus content is 0.02% by mass or more, the effect of coating with the phosphorus compound tends to be greater.
  • the phosphorus content is preferably 0.15% by mass or more and 1% by mass or less. ICP emission spectroscopic analysis) can be used.
  • the local phosphorus content of the magnetic powder phase and the phosphorus compound coating part in the phosphorus compound-coated powder can be measured by STEM-EDX (energy dispersive X-ray analysis) method.
  • the phosphorus (P) atomic concentration in the phosphorus compound-coated portion is preferably 1 atomic percent or more, more preferably 5 atomic percent or more.
  • the atomic concentration may be 25 atomic % or less, preferably 15 atomic % or less.
  • the rare earth (R) atom concentration in the phosphorus compound coating portion present on the surface of the resulting magnetic powder is reduced to the R atom concentration in the rare earth (R)-iron-nitrogen magnetic powder that is the base material. It may be done so as to have a higher region (R high concentration region).
  • the R atom concentration in the R high concentration region can be 1.05 times or more, preferably 1.1 times or more, and 1.2 times or more the R atom concentration in the rare earth-iron-nitrogen magnetic powder. is more preferable, and 1.5 times or more is even more preferable.
  • the R atom concentration in the R high concentration region can be, for example, four times or less the R atom concentration in the rare earth-iron-nitrogen system magnetic powder.
  • the R high concentration region is a region including a layer showing a P (phosphorus) peak in STEM-EDX line analysis of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder.
  • the thickness of the R high concentration region can be, for example, 1 nm or more, preferably 3 nm or more and 150 nm or less, more preferably 10 nm or more and 100 nm or less, and even more preferably 20 nm or more and 80 nm or less.
  • the atomic concentration (atomic %) of each element in the R high-concentration region is obtained by averaging the atomic concentration in the phosphorus compound coating portion in the STEM-EDX line analysis.
  • the rare earth element (R) may be, for example, Nd. In this case, the high Nd concentration region can be evaluated based on the Nd atomic concentration.
  • the adjustment of the pH of the slurry containing the rare earth-iron-nitrogen based magnetic powder, water, and the phosphorus-containing material to the range of 1 or more and 4.5 or less is preferably performed for 10 minutes or more, and the thickness of the coating is thin. From the viewpoint of reducing the portion, it is more preferable to carry out for 30 minutes or more.
  • the pH rises quickly, so the interval at which the inorganic acid is added for pH control is short. I can judge.
  • the magnetic powder obtained in the phosphorus treatment step may optionally be subjected to an oxidation treatment.
  • an oxidation treatment By oxidizing the magnetic powder, the surface of the rare earth-iron-nitrogen magnetic powder is oxidized to form an iron oxide layer, thereby improving the oxidation resistance of the magnetic powder.
  • oxidizing the magnetic powder when the magnetic powder is exposed to high temperatures, it is possible to suppress the occurrence of unfavorable oxidation-reduction reactions, decomposition reactions, and alterations on the surface of the rare earth-iron-nitrogen magnetic powder particles. can. As a result, it is possible to obtain a magnetic material having magnetic field amplification characteristics with low tan ⁇ in the high frequency region and absorption characteristics with high ⁇ ′′ in the ultra-high frequency region.
  • the oxidation treatment is performed by heat-treating the magnetic powder after phosphorus treatment in an oxygen-containing atmosphere.
  • the reaction atmosphere preferably contains oxygen in an inert gas such as nitrogen or argon.
  • the oxygen concentration is preferably 3% or more and 21% or less, more preferably 3.5% or more and 10% or less.
  • the gas is preferably exchanged at a flow rate of 2 L/min or more and 10 L/min or less per 1 kg of the magnetic powder.
  • the temperature during the oxidation treatment is preferably 150°C or higher and 330°C or lower, more preferably 150°C or higher and 250°C or lower, even more preferably 170°C or higher and 230°C or lower. If the temperature is less than 150°C, the formation of the iron oxide layer is insufficient, and the oxidation resistance tends to be low. When the temperature exceeds 330° C., an excessive iron oxide layer is formed, and the real term of the relative permeability in the high frequency region and the imaginary term of the relative permeability in the ultrahigh frequency region tend to decrease.
  • the reaction time is preferably 3 hours or more and 10 hours or less.
  • the magnetic powder after phosphorus treatment may be subjected to silica treatment if necessary.
  • Oxidation resistance can be improved by forming a silica thin film on the magnetic powder.
  • a silica thin film can be formed, for example, by mixing an alkyl silicate, a magnetic powder, and an alkaline solution.
  • the magnetic powder after silica treatment may be further treated with a silane coupling agent.
  • a silane coupling agent film is formed on the silica thin film.
  • the silane coupling agent may be selected according to the type of resin and is not particularly limited.
  • silane coupling agents may be used alone or in combination of two or more.
  • the amount of the silane coupling agent added is preferably 0.2 parts by mass or more and 0.8 parts by mass or less, more preferably 0.25 parts by mass or more and 0.6 parts by mass or less, relative to 100 parts by mass of the magnetic powder. If the amount is less than 0.2 parts by mass, the effect of the silane coupling agent is small, and if the amount exceeds 0.8 parts by mass, the magnetic powder tends to aggregate and the magnetic properties of the magnetic powder and the compact tend to deteriorate.
  • the magnetic powder can be filtered, dehydrated, and dried by conventional methods.
  • the rare earth-iron-nitrogen magnetic powder used in the production method of the present embodiment contains R (where R is Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm When Sm is included, Sm is less than 50 atomic % with respect to the entire R component), Fe and N are included.
  • R is at least one selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm, but Nd, Y, Ce, Pr, Gd, Dy is preferable from the viewpoint of stability of raw material supply and realization of high relative magnetic permeability, and Nd, Y, Ce, and Pr are more preferable from the viewpoint of cost.
  • the content of Sm with respect to the entire R component is less than 50 atomic %, preferably less than 20 atomic %.
  • the content of Nd or Pr is 50 atomic % or more of the entire R component, a magnetic material with a higher relative permeability and a magnetic material with a lower tan ⁇ can be obtained.
  • the content of Nd or Pr is 70 atomic % or more. index) is high and the absorption performance at ultra-high frequencies is high.
  • the content of Fe in the rare earth-iron-nitrogen magnetic powder is preferably 40 atomic % or more and 87 atomic % or less, more preferably 50 atomic % or more and 85 atomic % or less.
  • the rare earth-iron-nitrogen-based magnetic powder used in the production method of the present embodiment has a Th 2 Zn 17 - type crystal structure and a general formula of R ( However, R is at least one selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm, and when Sm is included, the entire R component Sm is less than 50 atomic %), iron (Fe) and nitrogen (N).
  • x is 3 or more and 30 or less
  • y is 10 or more and 30 or less
  • the balance is mainly Fe.
  • isopropyl triisostearoyl titanate isopropyl tri(N-aminoethyl-aminoethyl) titanate, isopropyl tris(dioctyl pyrophosphate) titanate, tetraisopropylbis(dioctylphosphite)titanate, tetraisopropyltitanate, tetrabutyltitanate, tetraoctylbis(ditridecylphosphite)titanate, isopropyltrioctanoyltitanate, isopropyltridodecylbenzenesulfonyltitanate, isopropyltri( dioctyl phosphate) titanate, bis(dioctyl pyrophosphate) titanate, tetraisopropylbis(dioctylphosphit
  • the surface of the magnetic powder can be treated by using a titanium-based coupling agent, an aluminum-based, zirconium-based, chromium-based, iron-based, or tin-based coupling agent such as acetoalkoxyaluminum diisopropylate.
  • a titanium-based coupling agent such as aluminum-based, zirconium-based, chromium-based, iron-based, or tin-based coupling agent such as acetoalkoxyaluminum diisopropylate.
  • the method of manufacturing the rare earth-iron-nitrogen magnetic powder is not particularly limited, and these methods are described in detail below.
  • the method for producing rare earth-iron-nitrogen magnetic powder by the solid-phase method includes: a step of mixing the R oxide powder, the Fe raw material and the Ca powder (mixing step); a step of reducing the resulting mixture (reduction step); A step of nitriding the alloy particles obtained in the reduction step (nitriding step) is a method that includes
  • Fe raw material not only metallic Fe but also Fe 2 O 3 and/or Fe 3 O 4 can be used.
  • Content when using Fe 2 O 3 and/or Fe 3 O 4 (Fe 2 O 3 and/or Fe 2 O 3 and / or The total number of moles of Fe contained in Fe 3 O 4 ) is preferably 30 atomic % or less. Due to the heat of reaction when these iron oxides are reduced by Ca, the reaction proceeds uniformly as a whole, leading to saving of external energy and improvement of yield.
  • the amount of granular Ca to be mixed must be sufficient to reduce the oxide of the R oxide and the selectively mixed metal oxide.
  • the amount of granular Ca to be mixed is 0.5 to 3 times the equivalent of oxygen atoms contained in Fe 2 O 3 and/or Fe 3 O 4 selectively mixed with the R oxide. 1 times or more and 2 times or less is preferable.
  • the mixed powder obtained in the mixing step is placed in a heating container that can be evacuated. After the inside of the heating vessel is evacuated, it is heated at 600° C. or higher and 1300° C. or lower, preferably 700° C. or higher and 1200° C. or lower, more preferably 800° C. or higher and 1100° C. or lower while passing argon gas.
  • the heating temperature is less than 600°C, the reduction reaction of the oxide does not proceed.
  • the heating temperature is 700 ° C. or higher, the reduction time can be shortened and productivity tends to improve. .
  • the heat treatment time may be 4 hours or less, preferably less than 120 minutes, more preferably less than 90 minutes, and the heat treatment time is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the mixed powder contains an appropriate amount of Fe 2 O 3 and/or Fe 3 O 4 in addition to metallic Fe, heat is generated by itself during the temperature rise, and the reaction proceeds efficiently and uniformly.
  • Fe 2 O 3 and/or Fe 3 O 4 is mixed in an amount of Fe 2 O 3 and/or Fe 3 O 4 exceeding 30 atomic % in terms of Fe element as in the above-described mixing step, extremely large heat generation will cause explosion or scattering. may occur.
  • the particle size of the obtained rare earth-iron-nitrogen magnetic powder can be controlled. In general, the higher the reduction temperature, the larger the particle size of the powder.
  • Nonriding process It is cooled in an argon gas to a temperature range of preferably 250° C. or higher and 800° C. or lower, more preferably 300° C. or higher and 600° C. or lower. In order to suppress the decomposition of the nitriding reaction product in the subsequent nitriding step and increase the reaction efficiency, it is more preferable to cool to a temperature range of 400° C. or higher and 550° C. or lower. After that, the heating container is evacuated again, and then nitrogen gas is introduced.
  • the gas to be introduced is not limited to nitrogen, and may be gas containing nitrogen atoms, such as ammonia. It may be heated for 4 hours or more while passing nitrogen gas at a pressure higher than the atmospheric pressure, preferably after heating for 10 hours or more and 40 hours or less, the heating is stopped and the mixture is allowed to cool.
  • the product obtained after the nitriding process contains by-produced CaO, unreacted metallic calcium, etc. in addition to the rare earth-iron-nitrogen based magnetic powder, and these are combined to form a sintered mass.
  • this product is put into ion-exchanged water to remove calcium oxide (CaO) and other calcium-containing components from the magnetic particles as a calcium hydroxide (Ca(OH) 2 ) suspension. can be separated.
  • stirring in water, standing, and removing the supernatant may be repeated several times.
  • residual calcium hydroxide may be sufficiently removed by washing the magnetic particles with acetic acid or the like.
  • the remaining unreacted Ca becomes calcium nitride (CaN), which is easier to remove. Therefore, it is preferable to perform a water washing step after the heat treatment in a nitrogen atmosphere.
  • the resulting rare earth-iron-nitrogen magnetic powder tends to have a sharper particle size distribution.
  • the method for producing rare earth-iron-nitrogen based magnetic powder by the precipitation method includes: A step of mixing a solution containing R and Fe with a precipitant to obtain a precipitate containing R and Fe (precipitation step); a step of calcining the precipitate to obtain an oxide containing R and Fe (oxidation step); a step of heat-treating the oxide in an atmosphere containing a reducing gas to obtain a partial oxide (pretreatment step); A step of reducing the partial oxide (reduction step), and a step of nitriding the alloy particles obtained in the reduction step (nitriding step). is a method that includes
  • the R raw material and the Fe raw material are dissolved in a strongly acidic solution to prepare a solution containing R and Fe.
  • the R raw material and the Fe raw material are not limited as long as they can be dissolved in a strongly acidic solution.
  • the R raw material may be R oxide
  • the Fe raw material may be iron sulfate (FeSO 4 ).
  • the concentration of the solution containing R and Fe can be appropriately adjusted within a range in which the R raw material and the Fe raw material are substantially dissolved in the acidic solution.
  • sulfuric acid can be mentioned in terms of solubility.
  • the solution containing R and Fe may be a solution containing R and Fe during the reaction with the precipitant.
  • a raw material containing R and a raw material containing Fe are prepared as separate solutions, and each The solution may be added dropwise to react with the precipitant. Even when they are prepared as separate solutions, they are adjusted as appropriate within the range in which each raw material is substantially dissolved in the acidic solution.
  • the precipitant is not limited as long as it is an alkaline solution that reacts with a solution containing R and Fe to give a precipitate, and examples thereof include aqueous ammonia and caustic soda, with caustic soda being preferred.
  • the precipitate After separating the precipitate, the precipitate is re-dissolved in the remaining solvent in the heat treatment of the subsequent oxidation step, and when the solvent evaporates, the precipitate aggregates, and the particle size distribution, powder particle size, etc. change. It is preferable to remove the solvent from the separated product in order to prevent the separation. Specifically, for example, when water is used as the solvent, a method of drying in an oven at 70° C. or higher and 200° C. or lower for 5 hours or longer and 12 hours or shorter can be used as a method for removing the solvent.
  • a step of separating and washing the resulting precipitate may be included after the precipitation step.
  • the washing step is appropriately performed until the conductivity of the supernatant solution becomes 5 mS/m or less.
  • a solvent preferably water
  • a filtration method, a decantation method, or the like can be used as the step of separating the precipitate.
  • the oxidation step is a step of obtaining an oxide containing R and Fe by firing the precipitate formed in the precipitation step.
  • a heat treatment can convert the precipitate to an oxide.
  • heat-treating the precipitate it must be performed in the presence of oxygen, and can be performed, for example, in an air atmosphere.
  • the reaction since the reaction must be carried out in the presence of oxygen, it is preferable that the non-metallic portion of the precipitate contains an oxygen atom.
  • the heat treatment temperature in the oxidation step (hereinafter referred to as oxidation temperature) is not particularly limited, but is preferably 700° C. or higher and 1300° C. or lower, more preferably 900° C. or higher and 1200° C. or lower.
  • the heat treatment time is also not particularly limited, but may be 0.5 hours or more and 4 hours or less, preferably 1 hour or more and 3 hours or less.
  • the pretreatment step is a step of heat-treating an oxide containing R and Fe in an atmosphere containing a reducing gas to obtain a partially reduced oxide.
  • the reduction step is a step of heating the partial oxide at 600° C. or higher and 1300° C. or lower, preferably 700° C. or higher and 1200° C. or lower, more preferably 800° C. or higher and 1100° C. or lower in the presence of a reducing agent.
  • the heating temperature is less than 600°C, the reduction reaction of the oxide does not proceed.
  • the heating temperature is 700 ° C. or higher, the reduction time can be shortened and productivity tends to improve. Variation tends to be more reduced.
  • the heat treatment time is preferably less than 120 minutes, more preferably less than 90 minutes, and more preferably 10 minutes or more, more preferably 30 minutes or more, from the viewpoint of performing the reduction reaction more uniformly.
  • the nitriding step is a step of nitriding the alloy particles obtained in the reduction step to obtain anisotropic magnetic particles. Since the particulate precipitate obtained in the precipitation step is used, the reduction step yields porous massive alloy particles. As a result, nitriding can be performed uniformly by heat treatment in a nitrogen atmosphere immediately without pulverization.
  • the heat treatment temperature (hereinafter referred to as nitriding temperature) in the nitriding treatment of alloy particles is preferably 250°C or higher and 800°C or lower, more preferably 300°C or higher and 600°C or lower.
  • the temperature is particularly preferably set to 400° C. or more and 550° C. or less, and the atmosphere is replaced with a nitrogen atmosphere within this temperature range.
  • the heat treatment time may be set to such an extent that the alloy particles are sufficiently and uniformly nitrided. For example, it may be heated for 4 hours or more while passing nitrogen gas at a pressure higher than the atmospheric pressure, preferably for 10 hours or more and 40 hours or less, and then the heating is stopped and allowed to cool.
  • the product obtained after the nitriding process contains by-produced CaO, unreacted metallic calcium, etc. in addition to the rare earth-iron-nitrogen based magnetic powder, and these are combined to form a sintered mass.
  • this product is put into ion-exchanged water to remove calcium oxide (CaO) and other calcium-containing components from the magnetic particles as a calcium hydroxide (Ca(OH)2) suspension. can be separated.
  • stirring in water, standing, and removing the supernatant may be repeated several times.
  • residual calcium hydroxide may be sufficiently removed by washing the magnetic particles with acetic acid or the like.
  • the remaining unreacted Ca becomes calcium nitride (CaN), which is easier to remove. Therefore, it is preferable to perform a water washing step after the heat treatment in a nitrogen atmosphere.
  • the resulting rare earth-iron-nitrogen magnetic powder tends to have a sharper particle size distribution.
  • the magnetic powder of the present embodiment comprises a phosphorus compound and R (where R is at least one selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm).
  • R is at least one selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm.
  • the seed contains Sm, it is characterized by containing less than 50 atomic % of Sm with respect to the entire R component), Fe and N.
  • the rare earth-iron-nitrogen based magnetic powder and the phosphorus content of this embodiment are the same as in the phosphorus treatment step described above. Since the rare earth-iron-nitrogen magnetic powder is a nitride, it has a higher electric resistance than metal materials and is superior in corrosion resistance.
  • the average particle size of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder is preferably 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the magnetic material for magnetic field amplification preferably has a thickness of 1 ⁇ m or more and 100 ⁇ m or less.
  • the magnetic material for ultrahigh frequency absorption preferably has a thickness of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • a more preferable particle size range is 3 ⁇ m or more and 100 ⁇ m or less for the magnetic field amplifying magnetic material described later, and 0.1 ⁇ m or more and 3 ⁇ m or less for the ultrahigh frequency absorbing magnetic material.
  • the filling amount of the magnetic powder in the compact becomes small, so that the real term of the relative magnetic permeability in the high frequency region and the imaginary term of the relative magnetic permeability in the ultrahigh frequency region decrease.
  • the thickness is 0.1 ⁇ m or less, the specific surface area is further increased, so that the volume fraction of the magnetic material portion having a high real term of relative permeability in a high frequency region and an imaginary term of relative permeability in an ultra-high frequency region becomes small.
  • the properties as a magnetic material tend to be extremely low. If it exceeds 10 ⁇ m, the ⁇ ′′ of the molded product tends to decrease, and if it exceeds 100 ⁇ m, this tendency becomes remarkable.
  • the average particle diameter is measured under dry conditions using a laser diffraction particle size distribution analyzer That is, the average particle size of the magnetic powder of the present disclosure is represented by D50, and D50 is the volume-based particle size distribution of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder. It is the particle size corresponding to the integrated value of 50%.
  • the particle size of the rare earth-iron-nitrogen magnetic powder increases, eddy currents begin to occur in the grains at low frequencies due to the skin effect. begin. Therefore, by reducing the particle size of the magnetic powder, there is a tendency for the magnetic field amplification characteristics and the ultrahigh frequency absorption characteristics to be kept high up to high frequencies.
  • a rare earth-iron-nitrogen magnetic powder having a particle diameter near this upper limit is preferable as the magnetic field amplifying material of the present disclosure.
  • the particle size becomes smaller, the filling rate of the molded body becomes lower and the surface area becomes larger. Even if the relative magnetic permeability is reduced by only about 50%, if the particle size is 0.05 ⁇ m, the relative magnetic permeability will be about 6%.
  • the lower limit of is around 0.1 ⁇ m regardless of the frequency. Due to the above trade-off, it is preferable to set the particle size range more suitable for the target frequency band of the magnetic material.
  • the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder preferably has an exothermic start temperature in DSC of 145°C or higher, more preferably 170°C or higher.
  • the exothermic start temperature in DSC is a comprehensive evaluation of the density, thickness, oxidation resistance, etc. of the phosphorus compound, and when it is 145 ° C or higher, excellent efficiency in the high frequency region and excellent ultrahigh frequency absorption in the ultrahigh frequency region properties are obtained.
  • the exothermic start temperature in DSC can be measured under the conditions described in Examples.
  • the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder has a carbon content of preferably 1000 mass ppm or less, more preferably 800 mass ppm or less, even more preferably 500 mass ppm or less, and particularly preferably 420 mass ppm or less.
  • the carbon content indicates the amount of organic impurities in the phosphorus compound.
  • the carbon content exceeds 1000 ppm by mass, the organic impurities decompose when the magnetic powder is exposed to high temperatures, creating voids in the phosphorus compound. As a result, the efficiency tends to decrease, and the magnetic field amplification characteristics in the high frequency region tend to decrease, and the ultrahigh frequency absorption characteristics decrease.
  • the content is preferably 0 mass ppm or more and 800 mass ppm or less.
  • the carbon content can be measured by the TOC method.
  • the thickness of the coating is 10 nm or more and 200 nm or less from the viewpoint of improving the tan ⁇ of the magnetic material in the high frequency region and the ⁇ ′′ in the ultra-high frequency region.
  • the thickness of the coating portion is preferably 12 nm or more and 100 nm or less.
  • EDX energy dispersive X-ray analysis
  • composition analysis by point analysis with a sufficient number of measurement points when measuring by line analysis, for example, The range in which the atomic concentration of phosphorus (P) is observed to be 1 atomic % or more may be regarded as the phosphorus compound coating portion.
  • P atomic concentration of phosphorus
  • the phosphorus compound coating has the effect of reducing the iron loss caused by the eddy current across the grains, and the tan ⁇ in the high frequency range is further improved, resulting in a higher efficiency.
  • a magnetic material for magnetic field amplification can be obtained.
  • the part need not completely cover the surface of the rare earth-iron-nitrogen magnetic powder, and if the surface coverage is 10% or more, a certain degree of eddy current reduction effect can be expected, preferably 50% or more, More preferably, a surface coverage of 80% or more is desired, and at a surface coverage of 10% or more and less than 80%, free phosphorus compounds are preferably present between the magnetic powder particles.
  • the surface coverage by the compound coating portion can be estimated by observing the cross section of the powder with a TEM, STEM or FE-SEM equipped with EDX, and the observed rare earth-iron-nitrogen magnetic powder surface portion
  • the ratio of the length of the contact portion of the coating containing phosphorus to the total circumference of the is defined as the "surface coverage". At this time, it is preferable to measure the cross-sections of 20 to 50 magnetic powder particles from the image observed by the above-described method, and take the average value as the surface coverage.
  • the phosphorus compound coating portion present on the surface of the rare earth-iron-nitrogen magnetic powder is a region where the rare earth (R) atom concentration is higher than the R atom concentration in the base material of the rare earth-iron-nitrogen magnetic powder ( R high concentration region).
  • the R atom concentration in the R high concentration region can be 1.05 times or more, preferably 1.1 times or more, and 1.2 times or more the R atom concentration in the rare earth-iron-nitrogen magnetic powder. is more preferable, and 1.5 times or more is even more preferable.
  • the R atom concentration in the R high concentration region can be, for example, four times or less the R atom concentration in the rare earth-iron-nitrogen system magnetic powder.
  • the R high concentration region is a region including a layer showing the maximum P (phosphorus) peak in STEM-EDX line analysis of the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder.
  • the thickness of the R high concentration region can be, for example, 1 nm or more, preferably 3 nm or more and 150 nm or less, more preferably 10 nm or more and 100 nm or less, and even more preferably 20 nm or more and 80 nm or less.
  • the atomic concentration (atomic %) of each element in the R high-concentration region is obtained by averaging the atomic concentration in the phosphorus compound coating portion in the STEM-EDX line analysis.
  • the rare earth element may be, for example, Nd.
  • the high Nd concentration region can be evaluated based on the Nd atomic concentration.
  • the R atom concentration in the R high concentration region may be 0.3 times or more, preferably 1 time or more, the Fe atom concentration in the R high concentration region.
  • the R atom concentration in the R high concentration region is preferably 20 times or less the Fe atom concentration in the R high concentration region.
  • the atomic concentration ratio R/Fe of R and Fe in the R high concentration region may be 0.3 or more, preferably 0.5 or more, more preferably 1 or more, and even more preferably 2 or more.
  • R/Fe in the R high concentration region may be 100 or less, or 10 or less.
  • R/Fe in the R high concentration region may have a higher value than R/Fe in the rare earth-iron-nitrogen system magnetic powder as the base material.
  • R/Fe in the R high-concentration region can be 1 times or more, preferably 1.5 times or more, and 2 times or more, the R/Fe in the rare earth-iron-nitrogen magnetic powder that is the base material. More preferably, 5 times or more is even more preferable.
  • R/Fe in the R high-concentration region is within the above range, the Fe atom concentration near the surface of the rare earth-iron-nitrogen magnetic powder tends to be low, and the water resistance tends to be further improved.
  • the rare earth-iron-nitrogen magnetic powder has a Th 2 Zn 17- type or Th 2 Ni 17 -type crystal structure, and the general formula is R represented by R x Fe 100-x-y N y (where R is at least one selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm, and when Sm is included, for the entire R component , Sm is less than 50 atomic %), iron (Fe) and nitrogen (N).
  • x is 3 or more and 30 or less
  • y is 10 or more and 30 or less
  • the balance is mainly Fe.
  • This magnetic powder is powder exhibiting ferromagnetism.
  • Phosphorus compounds contained in the phosphorus compound-coated rare earth-iron-nitrogen based magnetic powder include inorganic phosphoric acids such as orthophosphoric acid, pyrophosphoric acid and polyphosphoric acid, and these and Na, Ca, Pb, Zn, Fe, R, Phosphate compounds such as phosphates with ammonium (these metal elements and atomic groups are referred to as M components in the present disclosure and may be simply referred to as M), and R, Fe, M and N.
  • Phosphorus-containing amorphous and "Phosphorus-containing nanocrystalline compound” containing at least one material containing P and/or phosphorus.
  • phosphates, “phosphorus-containing amorphous compounds” and “phosphorus-containing nanocrystalline compounds” are preferable in terms of making the surface coating of rare earth-iron-nitrogen magnetic powder dense.
  • the inclusion of the "phosphorus-containing nanocrystalline compound” further improves the thermal stability, so the high-frequency characteristics of the magnetic powder tend to be less likely to deteriorate even after the kneading process and thermosetting process, in which high heat is applied after the phosphorus treatment. Furthermore, it contributes to the high thermal stability of the final molded product.
  • nanocrystals refer to fine crystals of 1 nm or more and less than 1 ⁇ m, and phosphorous compounds containing fine crystals of less than 1 nm fall under the category of amorphous compounds.
  • the crystallinity of the phosphorus compound-coated portion and the diameter of fine crystals in the phosphorus compound-coated portion can be confirmed by lattice image observation by a TEM method and analysis by an ED (electron beam diffraction) device attached to the TEM device.
  • the content of the phosphorus compound in the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder is preferably 0.5% by mass or more and 4.5% by mass or less, more preferably 0.55% by mass or more and 2.5% by mass or less. It is preferably 0.75% by mass or more and 2% by mass or less, most preferably.
  • the rare earth-iron-nitrogen based magnetic powder aggregates, which tends to lower the relative magnetic permeability and at the same time worsen the tan ⁇ in the high frequency region. If it is less than 0.5% by mass, the electrical insulation effect of the phosphorus compound coating portion is reduced, and the relative magnetic permeability is similarly reduced, and tan ⁇ in the high frequency region tends to be deteriorated.
  • the phosphorus content in the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder can be set to 0.02% by mass or more.
  • the phosphorus content in the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder is preferably at least 0.05% by mass, more preferably at least 0.15% by mass.
  • the phosphorus content in the phosphorus compound-coated rare earth-iron-nitrogen magnetic powder is preferably 4% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less.
  • the phosphorus compound preferably coats at least a part of the surface of the rare earth-iron-nitrogen magnetic powder in that it does not reduce efficiency due to eddy currents, ie, does not increase tan ⁇ .
  • a surface coverage of 10% or more is effective in reducing eddy current to some extent, but a surface coverage of 50% or more, more preferably 80% or more is desired. If the surface coverage is less than 10%, eddy currents occurring between grains cannot be prevented sufficiently, and tan ⁇ becomes large, which is undesirable.
  • the rare earth-iron-nitrogen magnetic powder having a coverage of 100% has a very small tan ⁇ due to the phosphorus compound coating, and although it depends on the composition, crystal structure and particle size of the magnetic powder, it reaches 0 at 1 MHz. A tan ⁇ of 0.01 or less can be realized.
  • the phosphorus compound does not cause a decrease in relative magnetic permeability due to eddy currents, particularly a decrease in ⁇ ′′, that is, does not deteriorate the ultrahigh-frequency absorption characteristics.
  • a surface coverage of 10% or more has the effect of reducing eddy current to some extent, but a surface coverage of 50% or more, more preferably 80% or more is desired. If the surface coverage is less than 10%, the eddy current generated between the grains cannot be prevented sufficiently, and ⁇ ′′ is lowered due to the skin effect, which is undesirable.
  • the rare earth-iron-nitrogen-based magnetic powder having a coverage of 100% by the phosphorus compound coating has a very small decrease in relative magnetic permeability due to eddy currents, and the composition, crystal structure and particle size of the magnetic powder are improved.
  • ⁇ ′′ of 1 or more can be realized at 1 GHz.
  • a surface coverage of 10% or more is effective in reducing eddy currents to some extent, but a surface coverage of 50% or more, more preferably 80% or more is desired.
  • a surface coverage of 50% or more, more preferably 80% or more is desired.
  • the rare earth-iron-nitrogen magnetic powder having a coverage of 100% has a very small tan ⁇ due to the phosphorus compound coating, and although it depends on the composition, crystal structure and particle size of the magnetic powder, it reaches 0 at 1 MHz.
  • a tan ⁇ of 0.01 or less can be realized.
  • the magnetic anisotropy of the rare earth-iron-nitrogen based magnetic powder of this embodiment exhibits in-plane crystal magnetic anisotropy, which has the property that the magnetic moment tends to be oriented in the c-plane direction rather than in the c-axis direction.
  • the fact that the magnetic powder of the present embodiment has this property is because the real term ⁇ ′ of the high relative magnetic permeability is maintained in the high frequency region and the imaginary term ⁇ ′′ of the high relative magnetic permeability is expressed in the ultrahigh frequency region.
  • the absolute value of the negative magnetocrystalline anisotropy energy is very large, and the magnetic powder having this in-plane magnetocrystalline anisotropy is contained in a non-oriented state.
  • the natural resonance frequency is widely distributed in the range of 1 GHz to 1 THz.
  • the surface of the ferromagnetic powder is coated with the phosphorus compound contained in the magnetic powder, or the phosphorus compound is present between the magnetic powders.
  • the generation of eddy current in the grains is also suppressed, so that the magnetic powder
  • the original high-frequency characteristics tend to be less deteriorated by eddy currents, and tend to be more improved in the range of 1 MHz to 1 THz.”
  • Magnetic field amplification materials created by the material design concept that covers such a wide frequency band at once. is not known. Also, with the same design concept, there is no known "ultra-high-frequency absorbing material” that functions seamlessly in an "ultra-wide frequency band.”
  • the magnetic field amplifying magnetic material of the present embodiment includes a phosphorus compound and R (R is at least one selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm). It is characterized by containing a rare earth element-iron-nitrogen magnetic powder containing Fe and N, with Sm being less than 50 atomic % with respect to the entire R component when Sm is included.
  • the magnetic material for magnetic field amplification of the present embodiment contains rare earth-iron-nitrogen based magnetic powder and a phosphorus compound, so that it has a high relative magnetic permeability of 2 or more ⁇ ′ in the region of 1 MHz or more and less than 1 GHz for magnetic field amplification.
  • tan ⁇ is 0.2 or less in the region of 1 MHz or more and less than 1 GHz, and excellent efficiency may also be provided.
  • the magnetic field amplifying magnetic material of the present embodiment includes a phosphorus compound and R (R is at least one selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm).
  • the seed contains Sm, it is not particularly limited as long as it contains less than 50 atomic % of Sm with respect to the entire R component) and rare earth-iron-nitrogen magnetic powder containing Fe and N.
  • the magnetic powder of the embodiment described above can be used.
  • the above rare earth-iron-nitrogen magnetic powder preferably has a particle size of 1 ⁇ m or more and 100 ⁇ m or less.
  • the reason for this is as described above.
  • a powder having a size larger than 100 ⁇ m is used as a magnetic material for amplifying a magnetic field of 1 MHz or higher, the relative magnetic permeability tends to decrease due to the skin effect.
  • a large pressure of 0.5 GPa or more is usually applied in order to increase the volume fraction. occurs, and the real term of the relative permeability is greatly reduced.
  • the rare earth-iron-nitrogen magnetic powder is covered with a fine and moderately soft substance such as a phosphorous compound, which is not hard like ferrite or oxides of transition metals and not too soft like resin. It is very important to intervene in the magnetic powder in order not to deteriorate the inherent properties of the magnetic powder such as relative magnetic permeability. That is, in the method for producing a magnetic field amplifying magnetic material of this embodiment, which is made to have a high density and a high relative magnetic permeability by applying a large pressure, and the magnetic field amplifying magnetic material produced by the method, the inclusion of a phosphorus compound is It is an essential requirement.
  • Magnetic materials for magnetic field amplification are preferably used at frequencies of 1 MHz or more and less than 1 GHz, but at frequencies of 1 GHz or more, they are also used as magnetic materials for ultrahigh frequency absorption. Therefore, depending on the composition and particle size distribution of the rare earth-iron-nitrogen magnetic powder, the imaginary term of the relative magnetic permeability may start to increase in the frequency range of 0.5 GHz or more and less than 1 GHz.
  • the magnetic field amplifying magnetic material of the present embodiment may be used in the range of 1 MHz or more and less than 0.5 GHz, and preferably in the range of 1 MHz or more and less than 0.1 GHz.
  • magnetic materials for magnetic field amplification include coils for wireless power supply, magnetic field amplification materials for RFID (Radio Frequency Identification) tags, transformers for high frequency circuits exceeding 20 MHz, inductors and reactors.
  • coils for wireless power supply magnetic field amplification materials for RFID (Radio Frequency Identification) tags
  • RFID Radio Frequency Identification
  • transformers for high frequency circuits exceeding 20 MHz inductors and reactors.
  • it can be made into a thin sheet and pasted on the back of an antenna or receiver/transmitter to concentrate the magnetic flux in the sheet due to its magnetic field amplification characteristics, or it can be inserted inside a cylindrical or rectangular parallelepiped coil, or it can be donut-shaped or yoke-shaped.
  • a wire is wound around the magnetic core to improve the real term of the relative magnetic permeability of the coil, which is used as a magnetic material for magnetic field amplification.
  • the magnetic field amplifying magnetic material of this embodiment has a feature that the real term of the relative magnetic permeability is high even in a high frequency region.
  • the real term of the relative magnetic permeability at a frequency of 1 MHz or more and 20 MHz or less is preferably 3 or more, more preferably 4 or more.
  • the real term of the relative magnetic permeability at a frequency greater than 20 MHz and less than 1 GHz is preferably 2 or more, more preferably 3 or more.
  • the real term ⁇ ′ of the relative magnetic permeability at a frequency of 20 MHz can be 3.2 or more, preferably 3.5 or more, more preferably 4 or more, and 4 0.5 or more is more preferable.
  • the real term ⁇ ′ of the relative magnetic permeability at a frequency of 20 MHz can be, for example, 200 or less, and may be 100 or less.
  • the Q value ( ⁇ ′/ ⁇ ′′) at 20 MHz of the magnetic field amplifying magnetic material of the present embodiment is preferably 3 or more, more preferably 3.5 or more, and even more preferably 4 or more. If the Q value at 20 MHz is within the above range, it is preferable to use it especially at frequencies around this (for example, 10 MHz or more and 30 MHz or less) because it becomes a low-cost magnetic field amplification material with excellent efficiency. When the Q value is 3 or more, heat generation can be reduced when incorporated into an element or system, and the temperature of parts, etc.
  • the complex relative permeability can be measured by measuring the impedance of a toroidal sample with an impedance analyzer, a (vector) network analyzer, and a BH analyzer, and using the result as a complex relative permeability. It can be measured using a method of converting to magnetic flux, or depending on the frequency range (for example, when measuring using a network analyzer at 500 MHz or higher), the S parameter method, or the like.
  • the magnetic field amplifying magnetic material of the present embodiment also has a characteristic that the frequency dependence of the relative magnetic permeability is small.
  • a magnetic material with a small change in the real term ⁇ ' of relative magnetic permeability in the range of 2 MHz to 20 MHz including that frequency has excellent efficiency. It can be used preferably.
  • the ratio of the real term of the relative permeability at 20 MHz is preferably 0.8 or more, more preferably 0.9 or more.
  • the ratio may be 1.1 or less, and when the ratio of the real terms of the relative magnetic permeability is 0.8 or more, the decrease in energy efficiency can be reduced, and the heat generation of the device incorporating the magnetic material tends to be reduced. Also, when the ratio of the real terms of the relative magnetic permeability is 1.1 or less, there is a tendency that the input/output of the device becomes easier to control.
  • the magnetic field amplifying magnetic material of this embodiment may contain a resin.
  • a composite material of a magnetic material and a resin is called a bonded magnetic material, and the resin contained in the bonded magnetic material may be either a thermosetting resin or a thermoplastic resin.
  • thermoplastic resins include polyphenylene sulfide (PPS), polyetheretherketone (PEEK), liquid crystal polymer (LCP), polyamide (PA), polypropylene (PP), polyethylene (PE), and thermoplastic elastomers.
  • Thermosetting resins include epoxy resins, phenol resins, urea resins, melamine resins, guanamine resins, unsaturated polyester resins, vinyl ester resins, diallyl phthalate resins, polyurethane resins, silicone resins, polyimide resins, alkyd resins, furan resins, Dicyclopentadiene resins, acrylic resins, allyl carbonate resins, and thermosetting elastomers generally called rubbers can be used.
  • the content of the resin contained in the bond magnetic material is preferably 0.1% by mass or more and 95% by mass or less.
  • the content of the resin component is 0.1% by mass or more, the impact resistance is further improved, and when it is 95% by mass or less, an extreme decrease in relative magnetic permeability and magnetization can be suppressed.
  • the range of 0.5% by mass or more and 50% by mass or less is further added. Most preferably, it is in the range of 1 mass % or more and 15 mass % or less when it is used as a high-frequency circuit transformer having particularly excellent efficiency.
  • the amount of 15% by mass or less may vary slightly depending on the application. preferably. Molded bodies that do not undergo sintering hardening and do not contain resin, such as green compacts that use auxiliaries such as volatile organic solvents, are extremely fragile and are subjected to magnetic fields such as the magnetic cores of wireless power supply coils and inductors. It is extremely difficult to apply it to amplification materials or ultra-high frequency absorption materials to be installed in 5G+ and 6G mobile devices that are frequently carried and subjected to many impacts.
  • the resin content is preferably 0.1% by mass or more and 95% by mass or less, more preferably 0.5% by mass or more and 50% by mass or less, and 1% by mass or more and 15% by mass. % or less is more preferable.
  • the resin compound for the bond magnetic material is obtained by, for example, using a kneader to mix and/or knead a phosphorus compound, a rare earth-iron-nitrogen magnetic powder and a resin at 180° C. or higher and 300° C. or lower, or It can be obtained by mixing and/or kneading a phosphorus compound-coated rare earth-iron-nitrogen magnetic powder and a resin.
  • a phosphorus compound-coated rare earth-iron-nitrogen magnetic powder and a resin are mixed in a mixer, then kneaded in a twin-screw extruder, extruded strands are air-cooled, and then cut into several millimeters in size by a pelletizer to form pellets. can obtain the resin compound for bond magnetic material of this embodiment.
  • the bonded magnetic material of the present embodiment can be produced. Specifically, for example, a resin compound melted in the barrel of a molding machine is injection-molded in a mold to which a magnetic field is applied, and the axis of easy magnetization is aligned (orientation step) to obtain a magnetically oriented molded bonded magnetic material. can be done. Further, by subjecting the pellet-shaped resin compound to calendering or hot-press molding, a sheet-shaped bonded magnetic material sheet for magnetic field amplification or a bonded magnetic material sheet for ultrahigh frequency absorption can be produced.
  • a magnetic material for magnetic field amplification with a high real term of relative magnetic permeability can be obtained.
  • it can be suitably used as a magnetic material molded sheet for magnetic field amplification for RFID tags. It is used as a magnetic material molded sheet for absorbing ultra-high frequencies for mobile devices.
  • the magnetic material for ultrahigh frequency absorption of the present embodiment includes a phosphorus compound and R (R is selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm). It is characterized by containing rare earth-iron-nitrogen-based magnetic powder containing Fe and N, and Sm is less than 50 atomic% with respect to the entire R component when Sm is contained. .
  • the magnetic material for absorbing ultrahigh frequencies of the present embodiment contains rare earth-iron-nitrogen-based magnetic powder and a phosphorus compound, so that it has a high relative permeability of 0.2 or more ⁇ ′′ in the range of 1 GHz or more and 0.11 THz or less. and has an imaginary term of , and ⁇ ′′ is 0.1 or more even in the region of 1 MHz or more and less than 1 GHz as a magnetic material for magnetic field amplification.
  • the magnetic material for ultrahigh frequency absorption of the present embodiment includes a phosphorus compound and R (R is selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm).
  • Sm is less than 50 atomic% with respect to the entire R component
  • a rare earth-iron-nitrogen-based magnetic powder containing Fe and N is particularly limited. Although not used, for example, the magnetic powder of the embodiment described above can be used.
  • the average particle size of the rare earth-iron-nitrogen magnetic powder used for the magnetic material for absorbing ultrahigh frequencies is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. The reason for this is as described above. In the super-high frequency region of 1 GHz or higher, the relative magnetic permeability of powders of 3 ⁇ m or higher tends to decrease due to the skin effect. and direct contact between magnetic particles should be avoided as much as possible. For example, when trying to apply rare earth-iron-nitrogen magnetic powder of 30 ⁇ m to a magnetic material for ultra-high frequencies, even if it is pulverized to 5 ⁇ m or less, when it is molded, the magnetic powders come into contact with each other and conduct. The average size of the aggregates that interact may be 30 ⁇ m.
  • the effect of the particle size on the high-frequency characteristics is the same as when the powder before pulverization is used, and the purpose of the pulverization is lost.
  • molding methods that apply heat and pressure at the same time such as hot pressing and calendering, are often applied.
  • the magnetic particles are electrically insulated even if the magnetic particles aggregate in the compact matrix.
  • heat and pressure are applied simultaneously to achieve high density and high ratio.
  • a high-frequency magnetic material having magnetic permeability can be used.
  • the magnetic material for absorbing ultrahigh frequencies of the present embodiment is characterized in that the imaginary term ⁇ ′′ of the relative permeability is high even at ultrahigh frequencies. 0.2 or more is preferable, and 0.3 or more is more preferable. Also, the imaginary term ⁇ ′′ of the relative magnetic permeability at 20 GHz or more and 1 THz or less is preferably 0.1 or more, more preferably 0.2 or more. The imaginary term ⁇ ′′ of the relative magnetic permeability can be 0.2 or more, preferably 0.47 or more, more preferably 0.5 or more, and even more preferably 0.55 or more.
  • the imaginary term ⁇ ′′ of the relative magnetic permeability at a frequency of 10 GHz can be 5 or less, and may be 4 or less.
  • the imaginary term ⁇ ′′ of the relative magnetic permeability at a frequency of 0.11 THz can be 0.02 or more, preferably 0.05 or more, more preferably 0.1 or more, and 0.2 or more. More preferred.
  • the imaginary term ⁇ ′′ of the relative magnetic permeability at a frequency of 0.11 THz can be 2 or less, and may be 1.5 or less.
  • the ratio of the imaginary term ⁇ ′′ in the relative permeability at a frequency of 10 GHz to the imaginary term ⁇ ′′ in the relative permeability at a frequency of 10 GHz is preferably 0.03 or more, and 0.03 or more. It is more preferably 1 or more.
  • the ratio of the imaginary term ⁇ ′′ of the relative permeability at a frequency of 10 GHz to the imaginary term ⁇ ′′ of the relative permeability at a frequency of 10 GHz is 5 or less.
  • the ratio of the imaginary term ⁇ ′′ in the relative permeability at 0.11 THz to the imaginary term ⁇ ′′ in the relative permeability at a frequency of 10 GHz of the magnetic material for absorbing ultrahigh frequencies is in the above range. , can exhibit higher absorption characteristics in a wide frequency band.
  • the magnetic material for absorbing ultra-high frequencies of the present embodiment contains rare earth-iron-nitrogen-based magnetic powder and a phosphorus compound, so that it is possible to absorb ultra-wide frequency bands from 1 GHz to 1 THz.
  • a magnetic material with a narrow band and low relative permeability in a bandwidth of about 10 GHz such as uniaxial magnetocrystalline anisotropic materials such as hexagonal ferrite, boride, and epsilon iron oxide, which are expected to be used at ultra-high frequencies? draw a line
  • the electrical resistivity is lower than that of oxide materials, it is higher than that of metallic materials.
  • the magnetic powder contains a phosphorus compound with high electrical resistivity.
  • the main feature is that it contains
  • More specific uses of magnetic materials for absorbing ultrahigh frequencies include 5G (5th Generation Mobile Communication System), 5G+ (5th Generation Plus Mobile Communication System) and 6G (6th generation mobile communication system: 6th generation mobile communication system), ultra-high frequency signals and spurious signals applied to infrastructure equipment such as mobile communication equipment, mobile phone small base stations and cloud base stations, their equipment, devices, and antennas Absorption member, ITS (Intelligent Transport Systems), Wireless HDMI (registered trademark) (Wireless High-Definition Multimedia Interface), Wireless LAN (Wireless Local Area Network: Local Area Network ), materials for absorbing ultra-high frequency signals and spurious absorption for equipment and devices used in satellite broadcasting (Ka-band), etc., and electromagnetic noise absorbing materials for personal computers that mainly remove the 2nd to 7th harmonics. .
  • 5G Fifth Generation Mobile Communication System
  • 5G+ Fifth Generation Plus Mobile Communication System
  • 6G 6th generation mobile communication system
  • ultra-high frequency signals and spurious signals applied to infrastructure equipment such as mobile communication equipment, mobile phone small base stations and cloud base stations
  • the superhigh-frequency absorbing magnetic material of this embodiment may contain a resin.
  • a composite material of a magnetic material and a resin is called a bonded magnetic material, and the resin contained in the bonded magnetic material may be either a thermosetting resin or a thermoplastic resin.
  • thermoplastic resins include polyphenylene sulfide (PPS), polyetheretherketone (PEEK), liquid crystal polymer (LCP), polyamide (PA), polypropylene (PP), polyethylene (PE), and thermoplastic elastomers.
  • Thermosetting resins include epoxy resins, phenol resins, urea resins, melamine resins, guanamine resins, unsaturated polyester resins, vinyl ester resins, diallyl phthalate resins, polyurethane resins, silicone resins, polyimide resins, alkyd resins, furan resins, Dicyclopentadiene resins, acrylic resins, allyl carbonate resins, and thermosetting elastomers generally called rubbers can be used.
  • the content of the resin contained in the bond magnetic material is preferably 0.1% by mass or more and 95% by mass or less.
  • the content of the resin component is 0.1% by mass or more, the impact resistance is further improved, and when it is 95% by mass or less, an extreme decrease in relative magnetic permeability and magnetization can be suppressed.
  • the range of 0.5% by mass or more and 50% by mass or less is more preferable for the same reason as above. More preferably, the content is in the range of 1% by mass or more and 15% by mass or less when used as a transformer for a high-frequency circuit having particularly excellent efficiency.
  • the amount of 15% by mass or less may vary slightly depending on the application. preferably. Molded bodies that do not undergo sintering hardening and do not contain resin, such as green compacts that use auxiliaries such as volatile organic solvents, are extremely fragile and are subjected to magnetic fields such as the magnetic cores of wireless power supply coils and inductors. It is extremely difficult to apply it to amplification materials or ultra-high frequency absorption materials to be installed in 5G+ and 6G mobile devices that are frequently carried and subjected to many impacts.
  • the resin content is preferably 0.1% by mass or more and 95% by mass or less, more preferably 0.5% by mass or more and 50% by mass or less, and 1% by mass or more and 15% by mass. % or less is more preferable.
  • the resin compound for the bond magnetic material is obtained by, for example, using a kneader to mix and/or knead a phosphorus compound, a rare earth-iron-nitrogen magnetic powder and a resin at 180° C. or higher and 300° C. or lower, or can be obtained by mixing and/or kneading a phosphorus compound-coated rare earth-iron-nitrogen magnetic powder and a resin.
  • a phosphorus compound-coated rare earth-iron-nitrogen magnetic powder and a resin are mixed in a mixer, then kneaded in a twin-screw extruder, extruded strands are air-cooled, and then cut into several millimeters in size by a pelletizer to form pellets. can obtain the resin compound for bond magnetic material of this embodiment.
  • the bonded magnetic material of the present embodiment can be produced. Specifically, for example, a resin compound melted in the barrel of a molding machine is injection-molded in a mold to which a magnetic field is applied, and the axis of easy magnetization is aligned (orientation step) to obtain a magnetically oriented molded bonded magnetic material. can be done. Further, by subjecting the pellet-shaped resin compound to calendering or hot-press molding, a sheet-shaped bonded magnetic material sheet for magnetic field amplification or a bonded magnetic material sheet for ultrahigh frequency absorption can be produced.
  • a magnetic material for magnetic field amplification with a high real term of relative magnetic permeability can be obtained.
  • it can be suitably used as a magnetic material molded sheet for magnetic field amplification for RFID tags. It is used as a magnetic material molded sheet for absorbing ultra-high frequencies for mobile devices.
  • DSC exothermic start temperature 20 mg of the phosphorous compound-coated magnetic powder was weighed and measured using a high-temperature differential scanning calorimeter (DSC6300, manufactured by Hitachi High-Tech Science Co., Ltd.) in an air atmosphere (200 mL/min) from room temperature to 400°C. C. (heating rate: 20.degree. C./min), reference: alumina (20 mg), DSC analysis was performed to measure the exothermic start temperature.
  • a high exothermic start temperature means that heat generation due to oxidation is less likely to occur, so that the phosphorus compound coating is formed more densely.
  • Total carbon content (TC) The total carbon (TC) content in the phosphorus compound-coated magnetic powder was measured using a combustion catalyst oxidation type total organic carbon (TOC) meter (manufactured by Shimadzu Corporation; model: SSM-5000A).
  • the thickness and atomic concentration of the phosphorus compound-coated portion on the surface of the phosphorus compound-coated magnetic powder were measured as follows. First, the obtained magnetic powder was dispersed in an epoxy resin and solidified, and then cross-sections were taken out by FIB (focused ion beam) to obtain cross-section samples for measurement. The resulting sample was analyzed by STEM (manufactured by FEI, model number Talos F200X; acceleration voltage 200 kV) and STEM-EDX (system: manufactured by FEI, model number SuperX, detector: SDD detector manufactured by Bruker).
  • the atomic concentration in the phosphorus compound-coated portion was analyzed by line analysis at steps of 0.184 nm from the outside to the inside of the phosphorus compound-coated magnetic powder, and the atomic concentration change of each constituent element was continuously observed to determine phosphorus ( P) Obtained by measuring the range in which the atomic concentration is 1 atomic % or more. At this time, depending on the measurement location, there may be a location where a large amount of carbon (C) in the resin used to prepare the cross-sectional sample may be detected, so the atomic concentration was calculated as the total of the elements excluding C. .
  • the crystallinity of the phosphorus compound-coated portion on the surface of the phosphorus compound-coated magnetic powder was determined using TEM-ED.
  • the size of the phosphorus-containing nanocrystalline compound was roughly determined from the spread of lattice fringes in the TEM image and the relationship between the size of the ED observation area and the ring pattern.
  • another toroidal molded body was produced by cutting out a sample piece having an inner diameter of 3.04 mm and an outer diameter of 7 mm and having a size different from that of the toroidal molded body.
  • the complex relative magnetic permeability in the frequency range of 1 GHz to 18 GHz was evaluated from the S parameter value obtained by the coaxial method with a network analyzer (N5290A, manufactured by Keysight Technologies).
  • the complex relative magnetic permeability of the 100 mm ⁇ 100 mm ⁇ 1 mm magnetic sheet obtained by the above method was evaluated from the S parameter value obtained by the free space method using the above network analyzer in the frequency range of 18 GHz to 0.11 THz.
  • Non-phosphorus-treated Nd 2 Fe 17 N 3 magnetic powder having an average particle size of 9 ⁇ m was produced by a precipitation method using iron sulfate and neodymium sulfate as raw materials.
  • Nd--Fe sulfuric acid solution 5.0 kg of FeSO 4 .7H 2 O was mixed and dissolved in 2.0 kg of pure water. Further, 0.45 kg of Nd 2 O 3 and 0.70 kg of 70% sulfuric acid were added and thoroughly stirred to dissolve completely. Next, pure water was added to the obtained solution to finally adjust the Fe concentration to 0.726 mol/L and the Nd concentration to 0.106 mol/L to obtain an Nd—Fe sulfuric acid solution.
  • Pretreatment process 100 g of Nd--Fe oxide was placed in a steel container so as to have a bulk thickness of 10 mm. After the container was placed in a furnace and the pressure was reduced to 100 Pa, the temperature was raised to the pretreatment temperature of 850°C while introducing hydrogen gas, and the temperature was maintained for 15 hours to obtain a partial oxide of black powder.
  • Example 1 The vicinity of the powder surface of Example 1, which was treated with phosphorus, and Comparative Example 1, which was not treated with phosphorus, was observed by STEM-EDX.
  • the STEM images obtained are shown in FIGS. 1A and 1C, respectively.
  • the gray portion is the phosphorus compound coating portion
  • the white portion is the rare earth-iron-nitrogen based magnetic powder as the base material
  • the black portion is the portion outside the magnetic powder.
  • the gray portion is the oxygen-rich film (substantially free of phosphorus)
  • the white portion is the rare earth-iron-nitrogen-based magnetic powder as the base material
  • the black portion is the magnetic powder. It is the part outside the body.
  • FIG. 2A shows a TEM image and an ED image of the magnetic powder of Example 1.
  • the part included in the white rectangle is the phosphorus compound coating part, the crystal phase on the left is the rare earth-iron-nitrogen magnetic powder part, and the part on the right is the part outside the magnetic powder (required for measurement when preparing the TEM sample part of the carbon layer added for conduction).
  • the phosphorus compound-coated portion of this magnetic powder consisted of a "phosphorus-containing nanocrystalline compound” and a “phosphorus-containing amorphous” with a particle size of 1 to 5 nm.
  • a 5-10 nm oxygen-rich film exists on the surface as shown in FIG. 1C. part was not seen.
  • FIGS. 3A and 3C are line analysis results by STEM-EDX of Example 1 and Comparative Example 1, respectively.
  • FIG. 3A a region in which the atomic concentration ratio of Nd is higher than that of Fe in the phosphorus compound-coated portion and the atomic concentration of Nd is higher than that of the magnetic powder, which is the base material, was observed over about 40 nm.
  • the average Nd/Fe atomic concentration ratio of Nd and Fe is about 2.2, which is about 11 times the average Nd/Fe of the base material rare earth-iron-nitrogen magnetic powder. there were.
  • FIG. 1B The results of STEM-EDX observation of the vicinity of the surface of the magnetic powder of Example 2 are shown in FIG. 1B. It was found that the film thickness of the phosphorus compound coating portion of the magnetic powder was about 20 nm.
  • FIG. 2B shows a TEM image and an ED image of the magnetic powder.
  • the phosphorus compound coating portion of the magnetic powder consisted of "phosphorus-containing nanocrystalline compound” and "phosphorus-containing amorphous" with a particle size of 1 to 5 nm. Also, the concentration of P atoms contained in this phosphorus compound coating was about 4 atomic %. Compared with the magnetic powder of Example 1, the film thickness of the phosphorus compound coated portion showed a smaller value.
  • FIG. 3B is the line analysis result by STEM-EDX of Example 2.
  • the average value of the atomic concentration ratio Nd/Fe between Nd and Fe was about 0.45.
  • Examples 3 and 4 Comparative Example 2 Using the powders of Examples 1 and 2 treated with phosphorus and the powders of Comparative Example 1 not treated with phosphorus, samples for complex relative permeability measurement at 1 MHz to 1 GHz were prepared by the method described above (density 5.76 (Example 3), 5.55 (Example 4), and 5.75 (Comparative Example 2) toroidal moldings (resin addition amount 6% by mass)).
  • FIG. 4 shows the results of measuring the frequency dependence of the complex relative permeability at 1 MHz to 1 GHz by the method described above, and Table 2 shows the evaluation results of the high-frequency characteristics.
  • the "ratio of the real term of the relative permeability at 20 MHz to the real term of the relative permeability at 2 MHz" in Examples 3 and 4 and Comparative Example 2 was 0.92, 0.84 and 0.92, respectively. was 60. In Examples 3 and 4, it was in the range of 0.8 or more and 1.1 or less, but in Comparative Example 2, it was less than 0.8.
  • Examples 5 and 6, Comparative Example 3 Using the powders of Examples 1 and 2 which were treated with phosphorus and Comparative Example 1 which was not treated with phosphorus, samples for complex relative permeability measurement at 1 MHz or more and 0.11 THz or less were prepared by the method described above (density: 4.96 (Example 5), a magnetic sheet having a density of 4.95 (Example 6), and a density of 4.95 (Comparative Example 3) (resin addition amount: 8% by mass)).
  • FIG. 5 shows the results of measuring the frequency dependence of the complex relative magnetic permeability at 1 MHz or more and 0.11 THz or less for Example 5 by the method described above. is shown in Table 3.
  • the "ratio of the imaginary term of the relative permeability at 0.11 THz to the imaginary term of the relative permeability at 10 GHz" of Examples 5 and 6 and Comparative Example 3 is 0.44 and 0, respectively. 0.03 and 0.02. In Examples 5 and 6, it was in the range of 0.03 or more and 5 or less, but in Comparative Example 3, it was less than 0.03.
  • Example 5 in an ultra-wideband ultra-high frequency region of 1 GHz or more and 0.11 THz or less, an excellent ultra-high-frequency absorption characteristic in which the imaginary term ⁇ ′′ of the complex relative permeability is 0.2 or more is obtained.
  • the characteristics of the in-plane magnetocrystalline anisotropic material, which is different from the uniaxial magnetocrystalline anisotropic material are the Further improved by the electrical insulation effect.
  • the magnetic powder of Example 6 in which the phosphorus compound coating portion had a thickness of 20 nm, had a super-high frequency of 0.11 THz, compared to the comparative example, in which the oxygen-rich film had a thickness of about 5 to 10 nm.
  • the magnetic powder of Example 5 has a phosphorus compound coating with a thickness of about 60 nm, so that the influence of eddy current can be suppressed to a smaller extent.
  • the value of ⁇ ′′ was as high as 0.26 even in the ultra-high frequency region of 0.11 THz.
  • Example 5 showed an improvement in ⁇ ′′ compared to Comparative Example 3, which is considered to be due to the fact that eddy current loss could be reduced.
  • Example 6 The layer is thinner than the magnetic powder of Example 5, and the volume fraction occupied by the magnetic powder, which is the base material, in the magnetic material of Example 6 is high. It is considered that the value of ⁇ ′′ larger than that of Example 5 was shown.
  • a phosphorus compound-coated rare earth-iron-nitrogen magnetic powder having excellent magnetic field amplification characteristics and ultrahigh frequency absorption characteristics can be obtained.
  • the obtained magnetic powder can be suitably used as a magnetic field amplifying magnetic material and a super high frequency absorbing magnetic material.
  • R (where R is at least one selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm, and when Sm is included, R
  • An inorganic acid is added to a slurry containing rare earth-iron-nitrogen-based magnetic powder containing Fe and N, water, and a phosphorus-containing material (Sm is less than 50 atomic% relative to the entire component)
  • a method for producing magnetic powder comprising a phosphorus treatment step for obtaining a phosphorus compound and rare earth-iron-nitrogen magnetic powder.
  • (Section 2) Item 2 The method for producing magnetic powder according to Item 1, wherein in the phosphorus treatment step, the pH of the slurry is adjusted to 1 or more and 4.5 or less by adding the inorganic acid.
  • (Section 4) The magnetic powder according to any one of Items 1 to 3, further comprising an oxidation step of heat-treating the phosphorus compound and the rare earth-iron-nitrogen magnetic powder in an oxygen-containing atmosphere after the phosphorus treatment step. manufacturing method.
  • a phosphorus compound and R (R is at least one selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm, and when Sm is included, A magnetic material for amplifying a magnetic field, containing rare earth-iron-nitrogen-based magnetic powder containing Fe and N, and Sm being less than 50 atomic percent with respect to the entire R component.
  • (Section 9) Item 9 The magnetic field amplifying device according to any one of Items 5 to 8, wherein the phosphorus content is 0.02% by mass or more and 4% by mass or less with respect to the phosphorus compound and the rare earth-iron-nitrogen magnetic powder. magnetic material.
  • a phosphorus compound and R (R is at least one selected from Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, and Sm, and when Sm is included, A magnetic material for absorbing ultra-high frequencies, containing rare earth element-iron-nitrogen magnetic powder containing Fe and N (Sm is less than 50 atomic % with respect to the entire R component).
  • Item 13 The magnetic material for absorbing ultrahigh frequencies according to Item 12, wherein the imaginary term in the relative permeability at 0.11 THz is 0.02 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

高周波を作用させても、鉄損が低く優れた効率を有する高周波特性に優れた磁性粉体、並びに、超高周波を作用させても、渦電流による劣化が小さく優れた吸収特性を有する高周波特性に優れた磁性粉体の製造方法、高周波の磁場増幅特性を有する磁場増幅用磁性材料、および超高周波吸収用磁性材料を提供する。R(ただし、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体、水、およびリン含有物を含むスラリーに対して無機酸を添加して、リン化合物および希土類-鉄-窒素系磁性粉体を得るリン処理工程を含む磁性粉体の製造方法に関する。また、リン化合物および希土類-鉄-窒素系磁性粉体を含む磁場増幅用磁性材料並びに超高周波吸収用磁性材料に関する。

Description

磁性粉体の製造方法、磁場増幅用磁性材料、および超高周波吸収用磁性材料
 本開示は、磁性粉体の製造方法、磁場増幅用磁性材料、および超高周波吸収用磁性材料に関する。
 近年、機器の小型多機能化や演算処理速度の高速化に伴って、駆動周波数の高周波化が進展しており、高周波や超高周波を利用した機器の普及は拡大の一途を辿っている。特に、注目されるのは、1MHz以上1GHz未満までの高周波数領域で利用されるパワーデバイスの進展である。例えば、GaN電子デバイスは高周波・高出力の無線用やパワーエレクトロニクス用デバイスとして今後大きく市場が伸長すると予測されている。パワーエレクトロニクス用GaN回路の高周波化にはGaNデバイスのみならず、併せて受動部品の高周波化が必要になる。例えば、GaN非接触給電では扱う周波数が10MHzを超えてくるため、高周波に追従できる磁芯材料を用いたコイルが必要である。しかし、現状では高周波特性に優れた磁芯材料が無いために、空芯コイルを使用せざるを得ず、折角GaNを適用し高周波化してデバイスを小型化することができても、全体の回路サイズが増大するという問題がある。
 次に注目されるのは、1GHz~1THzまでの超高周波領域における情報インフラの進展である。5Gでは1GHz以上10GHz未満、5G+では10GHz以上100GHz未満、6Gでは100GHz以上1THz以下の領域の信号やその高調波などのスプリアスを吸収する材料の高周波特性に対する様々なニーズがあり、昨今その必要性が高まっている。特に1GHz以上さらに10GHz以上で広帯域の超高周波を吸収する材料が現状存在せず、1GHz以上1THz以下の領域で幅広く使用できる超広周波数帯域超高周波吸収材料の出現に大きな期待が寄せられている。これまでの高周波用磁性材料の一例としては、粉体表面にフェライト系磁性材料を被覆した希土類-鉄-窒素系磁性材料が知られている(特許文献1)。
国際公開2008/136391号
 しかし、特許文献1に開示されている材料は、上記の1MHz以上1THz以下までの領域での磁場増幅材料に適用するには効率が十分でなく、また超高周波領域での超広周波数帯域吸収材ニーズに答えられる高周波特性を有していないという問題がある。
 本開示は、高周波を作用させても、鉄損が低く優れた効率を有する高周波特性に優れた磁性粉体、並びに、超高周波を作用させても、渦電流による劣化が小さく、優れた吸収特性を有する高周波特性に優れた磁性粉体の製造方法、および、高周波の磁場増幅特性を有する磁場増幅用磁性材料を提供することを目的とする。
 本開示の一態様にかかる磁性粉体の製造方法は、R(ただし、Rは希土類元素の一部であって、Y、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体、水、およびリン含有物を含むスラリーに対して無機酸を添加して、リン化合物および希土類-鉄-窒素系磁性粉体を得るリン処理工程を含む。
 また、本開示の一態様にかかる磁場増幅用磁性材料および超高周波吸収用磁性材料は、リン化合物およびR(ただし、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体を含む。
 本開示によれば、高周波領域において、優れた効率を有する磁性粉体、並びに、超高周波領域において、優れた吸収特性を有する磁性粉体の製造方法、磁場増幅特性を有する磁場増幅用磁性材料、および、超高周波吸収用磁性材料を提供することができる。
実施例1で作製したリン化合物被覆希土類-鉄-窒素系磁性粉体断面のSTEM(走査型透過電子顕微鏡)像を示す。 実施例2で作製したリン化合物被覆希土類-鉄-窒素系磁性粉体断面のSTEM像を示す。 比較例1で作製したリン化合物被覆希土類-鉄-窒素系磁性粉体断面のSTEM像を示す。 左側の図は、実施例1で作製したリン化合物被覆希土類-鉄-窒素系磁性粉体断面のTEM(透過電子顕微鏡)像を示す。右側の2枚の図は、左側の図中、白色矩形で示した枠内に含まれる組織のED(電子線回折)図である。 左側の図は、実施例2で作製したリン化合物被覆希土類-鉄-窒素系磁性粉体断面のTEM像を示す。右側の2枚の図は、左側の図中、白色矩形で示した枠内に含まれる組織のED図である。 実施例1で作製したリン化合物被覆希土類-鉄-窒素系磁性粉体のライン分析の結果を示す。 実施例2で作製したリン化合物被覆希土類-鉄-窒素系磁性粉体のライン分析の結果を示す。 比較例1で作製したリン化合物被覆希土類-鉄-窒素系磁性粉体のライン分析の結果を示す。 実施例3、4および比較例2で作製した磁性材料の複素比透磁率の周波数依存性を示す。 実施例5で作製した超高周波吸収用磁性材料の複素比透磁率の周波数依存性を示す。
 以下、本開示の実施形態について詳述する。ただし、以下に示す実施形態は、本開示の技術思想を具体化するための一例であり、本開示を以下のものに限定するものではない。なお、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書において、「高周波」とは、高い周波数を有する電磁波のことであり、本開示では特に断らない限り、特に1MHz以上1GHz未満の電磁波のことをいうものとする。
 本明細書において、「優れた効率」とは、ある周波数fにおいて、磁性材料の複素比透磁率(μ)の虚数項(μ”)に対する実数項(μ’)の比、即ちQ値(品質係数)が大きな値をとることである。そのような特性を有する磁性材料により、周波数fの電磁波の損失を低減しつつ増幅することができる。なお、μ”とμ’の比のことをtanδ(=μ”/μ’)又は損失係数といい、tanδはQ値の逆数に等しい。tanδが低いことを「効率が良い」、高いことを「効率が悪い」といい、またtanδが低くなることを「tanδが向上する」、高くなることを「tanδが悪化する」ともいう。
 本明細書において、「磁場増幅」特性とは、磁性材料の複素比透磁率の実数項(μ’)が真空の比透磁率の実数項である1より大きく、磁性材料が置かれた空間の磁場を真空(または大気)の場合に比べ増大させる特性のことである。磁場増幅特性が良い、または、高いとは、μ’が高いことをいい、ある周波数fにおいてμ’が2を超える材料のことを(周波数fにおける)「磁場増幅用」磁性材料という。単に比透磁率という場合、複素比透磁率の実数項の絶対値並びに虚数項の絶対値のことを総称するものとする。高比透磁率という場合、特に断りがない限り、比透磁率の実数項が高いことをいうものとする。
 本明細書において、「超高周波吸収」特性とは、超高周波領域での高周波特性のことをいい、超高周波領域で磁性材料の複素比透磁率の虚数項(μ”)が0より大きく、磁性材料が置かれた空間に入射する高周波を減衰させる特性のことである。ある周波数で超高周波吸収特性が良い、または、高いとは、その周波数でμ”が高いことをいい、超高周波領域においてμ”が0を超える材料のことを「超高周波吸収用磁性材料」という。超高周波吸収用磁性材料に限って、μ”が高くなることを「μ”が向上する」、低くなることを「μ”が悪化する」ともいう。また、高周波領域での磁場増幅特性と、超高周波領域での高周波吸収特性を併せて「高周波特性」という。
<磁性粉体の製造方法>
 本実施形態の磁性粉体の製造方法は、R(ただし、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体、水、およびリン含有物を含むスラリーに対して無機酸を添加して、リン化合物および希土類-鉄-窒素系磁性粉体を得るリン処理工程を含むことを特徴とする。
[リン処理工程]
 リン処理工程では、RとFeとNを含む希土類-鉄-窒素系磁性粉体、水、およびリン含有物を含むスラリーに対して無機酸を添加して、リン化合物および希土類-鉄-窒素系磁性粉体を得る。リン化合物および希土類-鉄-窒素系磁性粉体は、希土類-鉄-窒素系磁性粉体に含まれる金属成分(例えば鉄やネオジム等)とリン含有物に含まれるリン成分(例えばリン酸)が反応することによりリン化合物(例えばリン酸鉄、リン酸ネオジム等)が析出することによって形成される。また、リン化合物および希土類-鉄-窒素系磁性粉体は、希土類-鉄-窒素系磁性粉体の表面でリン化合物が析出することにより希土類-鉄-窒素系磁性粉体の少なくとも一部の表面を被覆(このような被覆を「リン化合物被覆」という。このような被覆により形成された部分を「リン化合物被覆部」という)することにより形成することが好ましい。なお、本実施形態によると、無機酸を添加してスラリーのpHを調整することによって、無機酸を添加しない場合と比較して、リン化合物の析出量を多くすることができる。そのため、被覆部の厚み(膜厚ともいう)が厚いリン化合物被覆希土類-鉄-窒素系磁性粉体が得られ、tanδが低下し、磁場増幅特性が向上する。また、本実施形態によると、溶媒を水とすることによって、有機溶媒を使用する場合と比較して、粒径が小さいリン酸塩などのリン化合物が析出するので、緻密なリン化合物および希土類-鉄-窒素系磁性粉体が得られ、高周波領域での優れた効率や超高周波領域での優れた吸収特性が得られやすい傾向がある。
 RとFeとNを含む希土類-鉄-窒素系磁性粉体、水、およびリン含有物を含むスラリーを作製する方法は、特に限定されないが、例えば、水を溶媒として希土類-鉄-窒素系磁性粉体とリン含有物を含むリン含有物溶液とを混合することによって得られる。スラリー中の希土類-鉄-窒素系磁性粉体の含有量は、1質量%以上50質量%以下が好ましく、生産性の点から5質量%以上20質量%以下がより好ましい。スラリー中のリン含有物の含有量は特に限定されないが、リン含有物がリン酸であり、水素とリン酸成分(PO)のみで構成されている場合の含有量は、PO換算量で、例えば0.01質量%以上10質量%以下であり、金属成分とリン酸成分との反応性や生産性の点から0.05質量%以上5質量%以下が好ましい。
 リン含有物としては、リン単体及びその組成物、オルトリン酸などのリン酸化合物、リンタングステン酸、リンモリブデン酸等のヘテロポリ酸化合物、リン酸化合物やヘテロポリ酸化合物などのリン含有酸化合物と金属イオンまたはアンモニウムイオンとの塩、リン酸エステル、亜リン酸エステル、ホスフィンオキシド等の有機リン化合物、リン化鉄、リン青銅、Fe-B-P-CuやFe-Nb-B-P系合金などのリン含有金属等が挙げられる。
 リン含有物がリン酸化合物の場合、リン酸水溶液はリン酸化合物と水を混合することによって得られる。リン酸化合物としては、例えば、オルトリン酸、リン酸二水素ナトリウム、リン酸一水素ナトリウム、リン酸二水素アンモニウム、リン酸一水素アンモニウム、リン酸亜鉛、リン酸カルシウムなどのリン酸塩系、次亜リン酸系、次亜リン酸塩系、ピロリン酸系、ポリリン酸系などの無機リン酸等、有機リン酸が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。また、被覆部の耐水性、耐食性や磁性粉体の磁気特性を向上する目的で、モリブデン酸塩、タングステン酸塩、バナジン酸塩、クロム酸塩などのオキソ酸塩等、硝酸ナトリウム、亜硝酸ナトリウムなどの酸化剤等、EDTAなどのキレート剤等を添加剤として用いることができる。リン含有物のなかでも、反応の制御、被覆量の制御の観点で、オルトリン酸、ピロリン酸、ポリリン酸などの無機リン酸、および、それらとNa、Ca、Pb、Zn、Fe、Y、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、Sm、アンモニウムなどとのリン酸塩などのリン酸化合物が好ましい。
 リン酸水溶液におけるリン酸の濃度(PO換算量)は、5質量%以上50質量%以下が好ましく、リン酸化合物の溶解度、保存安定性や化成処理のし易さの点から10質量%以上30質量%以下がより好ましい。リン酸水溶液のpHは、1以上4.5以下が好ましく、リン酸塩の析出速度を制御しやすい点から1.5以上4以下であることがより好ましい。pHは希塩酸、希硫酸などにより調整できる。
 リン処理工程においては、無機酸を添加することによりスラリーを酸性にするが、pHを1以上4.5以下に調整することが好ましく、1.6以上3.9以下に調整することがより好ましく、2以上3以下に調整することがさらに好ましい。pHが1未満では、局部的に多量に析出したリン化合物を起点として希土類-鉄-窒素系磁性粉体同士が凝集することにより、高周波領域でtanδが悪化し、超高周波領域でμ”が低下する傾向がある。pHが4.5を超えると、リン酸塩などのリン化合物の析出量が減少することにより、高周波領域でtanδが悪化し、超高周波領域ではμ”が低下する傾向がある。添加する無機酸としては、塩酸、硝酸、硫酸、ほう酸、フッ化水素酸が挙げられる。リン処理工程中は、上記pHの範囲となるように、無機酸を随時添加することが好ましい。廃液処理の観点から無機酸を使用するが、目的に応じて有機酸を併用することができる。有機酸としては酢酸、蟻酸、酒石酸等が挙げられる。
 リン処理工程は、得られる磁性粉体におけるリンの含有量が0.02質量%以上となるように行うこともできる。リン処理工程において得られる磁性粉体におけるリンの含有量は、0.05質量%以上が好ましく、0.15質量%以上がより好ましい。リン処理工程において得られる磁性粉体におけるリンの含有量は4質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下がさらに好ましい。リンの含有量が0.02質量%以上であると、リン化合物による被覆の効果がより大きくなる傾向があり、4質量%以下であると、リン化合物を起点として希土類-鉄-窒素系磁性粉体同士が凝集して高周波領域でtanδが上昇したり、超高周波領域でμ”が低下したりすることを抑制できる傾向がある。特に優れた効率を有する磁場増幅用磁性材料や、優れた吸収特性を有する超高周波吸収用磁性材料を作製する場合は、リン含有量は0.15質量%以上1質量%以下が好ましい。なお、磁性粉体全体のバルクのリン含有量は、ICP-AES(ICP発光分光分析法)を用いて測定できる。また、リン化合物被覆粉体における磁性粉体相やリン化合物被覆部の局所的なリン含有量はSTEM-EDX(エネルギー分散型X線分析)法を用いて測定することができる。また、リン化合物被覆部中のリン(P)原子濃度は、好ましくは1原子%以上、より好ましくは5原子%以上である。また、リン化合物被覆部中のP原子濃度は、25原子%以下であってよく、好ましくは15原子%以下である。リン化合物被覆部中のリン含有量が、1原子%未満であると、リン化合物の電気絶縁性が機能しづらい傾向があり、25原子%を超えると、高周波領域における比透磁率の実数項及び超高周波領域における比透磁率の虚数項が低下するだけでなく、耐食性に対する性能も低下する傾向がある。
 リン処理工程は、得られる磁性粉体の表面に存在するリン化合物被覆部において、希土類(R)原子濃度が、母材である希土類(R)-鉄-窒素系磁性粉体中のR原子濃度より高い領域(R高濃度領域)を有するように行われても良い。R高濃度領域中のR原子濃度は、希土類-鉄-窒素系磁性粉体中のR原子濃度の1.05倍以上とすることができ、1.1倍以上が好ましく、1.2倍以上がより好ましく、1.5倍以上がさらに好ましい。また、R高濃度領域中のR原子濃度は、例えば希土類-鉄-窒素系磁性粉体中のR原子濃度の4倍以下とすることができる。ここで、R高濃度領域は、リン化合物被覆希土類-鉄-窒素系磁性粉体のSTEM-EDXライン分析において、P(リン)のピークを示す層を包含する領域である。R高濃度領域の厚みは例えば1nm以上とすることができ、3nm以上150nm以下が好ましく、10nm以上100nm以下がより好ましく、20nm以上80nm以下がさらに好ましい。R高濃度領域中の各元素の原子濃度(原子%)は、STEM-EDXライン分析におけるリン化合物被覆部中の原子濃度を平均することにより求められる。希土類元素(R)としては例えばNdであってよく、その場合、Nd高濃度領域として、Nd原子濃度を基準として評価することができる。
 希土類-鉄-窒素系磁性粉体、水、およびリン含有物を含むスラリーのpHを1以上4.5以下の範囲にする調整は、10分間以上行うことが好ましく、被覆部の厚さが薄い部分を減らす観点から、30分間以上行うことがより好ましい。pH維持の初期はpHの上昇が早いためにpH制御用の無機酸の投入間隔が短いが、被覆が進むとともに次第にpH変動が緩やかになり、無機酸の投入間隔が長くなることから反応終点が判断できる。
[リン処理後の酸化工程]
 リン処理工程で得られた磁性粉体は、必要に応じて酸化処理を行ってもよい。磁性粉体を酸化処理することにより、希土類-鉄-窒素系磁性粉体の表面が酸化されて酸化鉄層が形成され、磁性粉体の耐酸化性が向上する。また、酸化することにより、磁性粉体が高温に曝された際に、希土類-鉄-窒素系磁性粉体粒子表面での好ましくない酸化還元反応、分解反応や変質が生じることを抑制することができる。その結果、高周波領域でのtanδが低い磁場増幅特性及び超高周波領域でのμ”が高い吸収特性を有する磁性材料を得ることができる。
 酸化処理は、リン処理後の磁性粉体を、酸素含有雰囲気下で熱処理することにより行う。反応雰囲気は窒素、アルゴンなどの不活性ガス中に酸素を含むことが好ましい。酸素濃度は3%以上21%以下が好ましく、3.5%以上10%以下がより好ましい。酸化反応中は磁性粉体1kgに対して2L/分以上10L/分以下の流速でガスを交換することが好ましい。
 酸化処理時の温度は150℃以上330℃以下が好ましく、150℃以上250℃以下がより好ましく、170℃以上230℃以下がさらに好ましい。150℃未満では酸化鉄層の生成が不十分であり、耐酸化性が小さくなる傾向がある。330℃を超えると酸化鉄層が過剰に形成され、高周波領域における比透磁率の実数項及び超高周波領域における比透磁率の虚数項が低下する傾向がある。反応時間は3時間以上10時間以下が好ましい。
[シリカ処理工程]
 リン処理後の磁性粉体は、必要に応じてシリカ処理を行ってもよい。磁性粉体にシリカ薄膜を形成することにより、耐酸化性を向上できる。シリカ薄膜は、例えば、アルキルシリケート、磁性粉体、およびアルカリ溶液を混合することにより形成できる。
[シランカップリング処理工程]
 シリカ処理後の磁性粉体を、さらにシランカップリング剤で処理してもよい。シリカ薄膜が形成された磁性粉体をシランカップリング処理することで、シリカ薄膜上にシランカップリング剤膜が形成され、磁性粉体の磁気特性が向上するとともに、樹脂との濡れ性、成形体の強度を改善することができる。シランカップリング剤は、樹脂の種類に合わせて選定すればよく特に限定されないが、例えば、3-アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン・塩酸塩、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチレンジシラザン、γ-アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン、オクタデシル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、γ-クロロプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、ビニルトリクロロシラン、ビニルトリス(βメトキシエトキシ)シラン、ビニルトリエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、オレイドプロピルトリエトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、ポリエトキシジメチルシロキサン、ポリエトキシメチルシロキサン、ビス(トリメトキシシリルプロピル)アミン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、γ-イソシアネートプロピルトリメトキシシラン、ビニルメチルジメトキシシラン、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、t-ブチルカルバメートトリアルコキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のシランカップリング剤が挙げられる。これらのシランカップリング剤は1種のみを使用してもよく、2種以上を組み合わせて使用してもよい。シランカップリング剤の添加量は、磁性粉体100質量部に対して、0.2質量部以上0.8質量部以下が好ましく、0.25質量部以上0.6質量部以下がより好ましい。0.2質量部未満ではシランカップリング剤の効果が小さく、0.8質量部を超えると、磁性粉体の凝集により、磁性粉体や成形体の磁気特性を低下させる傾向がある。
 リン処理工程後、酸化工程後、シリカ処理工程後、またはシランカップリング処理工程後の磁性粉体は、常法により、ろ過、脱水、乾燥を行うことができる。
 本実施形態の製造方法で使用する希土類-鉄-窒素系磁性粉体は、R(ただし、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む。Rは、Y、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であるが、Nd、Y、Ce、Pr、Gd、Dyが原料供給の安定性と高い比透磁率の実現の観点から好ましく、さらにNd、Y、Ce、Prがコスト面より好ましい。ここで、Smを含む場合、R成分全体に対するSmの含有量は50原子%未満であるが、20原子%未満がより好ましい。特に、Nd又はPrの含有量がR成分全体の50原子%以上であると、より高い比透磁率を有する磁性材料やtanδがより低い磁性材料が得られる。さらに、耐酸化性能やコストのバランスから、Nd又はPrの含有量が70原子%以上であることが好ましく、資源量が豊富で結晶磁気異方性磁場の絶対値(磁気異方性の大きさを示す指標)が大きく、より超高周波での吸収性能が高いことから、Ndの含有量が100原子%であるNdFeNからなる希土類-鉄-窒素系磁性粉体が特に好ましい。
 希土類-鉄-窒素系磁性粉体中のFeの含有量は、40原子%以上87原子%以下が好ましく、50原子%以上85原子%以下がより好ましい。
 本実施形態の製造方法で使用する希土類-鉄-窒素系磁性粉体は、ThZn17型の結晶構造をもち、一般式がRFe100-x-yで表されるR(ただし、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)と鉄(Fe)と窒素(N)からなる窒化物であってよい。ここで、xは、3以上30以下、yは10以上30以下、残部が主としてFeとされることが好ましい。
 なお、シリカ処理工程、及び/若しくは、シランカップリング処理工程を行わず、又はこれらの処理工程の後に、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトライソプロピルチタネート、テトラブチルチタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルジメタクリルイソステアロイルチタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、イソプロピルトリクミルフェニルチタネート等のチタン系カップリング剤、アセトアルコキシアルミニウムジイソプロピレートのようなアルミニウム系、ジルコニウム系、クロム系、鉄系、スズ系などのカップリング剤を用いて、磁性粉体の表面処理を行うことができる。この処理を経た粉体をボンド磁性材料とするときは、添加する樹脂との親和性が向上し、リン化合物被覆希土類-鉄-窒素系磁性粉体の孤立分散がより顕著となり、粉体間の電気的絶縁がなされて、高周波領域での優れた効率や超高周波領域での優れた吸収特性が発現する場合がある。  
 希土類-鉄-窒素系磁性粉体の製造方法は特に限定されず、以下にこれらの方法を詳述する。
<<固相法>>
 固相法による希土類-鉄-窒素系磁性粉体の製造方法は、
R酸化物粉体とFe原料とCa粉体を混合する工程(混合工程)、
得られた混合物を還元する工程(還元工程)、
還元工程で得られた合金粒子を窒化処理する工程(窒化工程)
を含む方法である。
[混合工程]
 混合工程において、Fe原料としては、金属Feだけでなく、Fe及び/又はFeを使用することもできる。Fe及び/又はFeを使用する場合の含有量(金属Fe、Fe及び/又はFeに含まれるFeの合計モル数に対する、Fe及び/又はFeに含まれるFeの合計モル数)は、30原子%以下が好ましい。これらの酸化鉄がCaにより還元されるときの反応熱により、全体として均一な反応が進行し、外部エネルギーの節約や収率の向上につながる。粒状のCaの混合量は、R酸化物と、選択的に混合する金属酸化物との酸化物を還元するために充分な量であることが必要である。粒状のCaの混合量としては、R酸化物と、選択的に混合するFe及び/又はFe中に含まれる酸素原子の当量に対し0.5倍以上3倍以下であってよく、1倍以上2倍以下が好ましい。
[還元工程]
 混合工程で得られた混合粉を、真空排気が可能な加熱容器中に配置する。加熱容器内を真空排気した後、アルゴンガスを通じながら、600℃以上1300℃以下、好ましくは700℃以上1200℃以下、より好ましくは800℃以上1100℃以下で加熱する。加熱温度が600℃未満では、酸化物の還元反応が進行せず、加熱温度が1300℃を超えると、希土類とFeが融解して塊状になることがある。また、加熱温度が700℃以上では、還元時間を短時間とでき生産性が向上する傾向があり、1200℃以下とすると、Caの飛散を低減でき、還元時のばらつきをより低減できる傾向がある。熱処理時間は、還元反応をより均一に行う観点から、4時間以下であってよく、120分未満が好ましく、90分未満がより好ましく、熱処理時間は10分以上が好ましく、30分以上がより好ましい。ここで、金属Feのほか混合粉にFe及び/又はFeが適量含まれている場合、昇温途中で自己発熱し、効率的に均一な反応が進行する。一方で、上述の混合工程のようにFe元素換算で、金属Feに対して30原子%を超えるFe及び/又はFeが混合されていると、極めて大きな発熱により爆発あるいは飛散が生じることがある。また、還元温度を制御することにより、得られる希土類-鉄-窒素系磁性粉体の粒径を制御することができる。一般に還元温度が高くなるにつれ粉体粒径は大きくなる。
[窒化工程]
 アルゴンガス中で、好ましくは250℃以上800℃以下、より好ましくは300℃以上600℃以下の温度領域まで冷却する。後段の窒化工程で窒化反応物の分解を抑制して反応効率を上げるために、さらに好ましくは400℃以上550℃以下の温度領域まで冷却する。その後、加熱容器を再び真空排気した後、窒素ガスを導入する。導入するガスは窒素に限らず、窒素原子を含むガス、例えば、アンモニアでもよい。大気圧以上の圧力で窒素ガスを通じながら4時間以上加熱しても良く、好適には10時間以上40時間以下加熱した後、加熱を停止し放冷する。
 窒化工程後に得られる生成物には、希土類-鉄-窒素系磁性粉体に加えて、副生するCaO、未反応の金属カルシウム等が含まれ、これらが複合した焼結塊状態となっている場合がある。その場合は、水洗工程として、この生成物をイオン交換水中に投入して、酸化カルシウム(CaO)及びその他のカルシウムを含む成分を水酸化カルシウム(Ca(OH))懸濁物として磁性粒子から分離することができる。この水洗工程として、水中での撹拌、静置、上澄み液の除去を数回繰り返してもよい。さらに残留する水酸化カルシウムは、磁性粒子を酢酸等で洗浄して充分に除去してもよい。残存する未反応のCaが窒化カルシウム(CaN)となり、除去がより容易となるため、窒素雰囲気での熱処理の後、水洗工程を行うことが好ましい。これにより得られた希土類-鉄-窒素系磁性粉体は粒度分布がよりシャープになる傾向がある。
<<沈殿法>>
 沈殿法による希土類-鉄-窒素系磁性粉体の製造方法は、
RとFeを含む溶液と沈殿剤を混合し、RとFeとを含む沈殿物を得る工程(沈殿工程)、
前記沈殿物を焼成してRとFeを含む酸化物を得る工程(酸化工程)、
前記酸化物を、還元性ガス含有雰囲気下で熱処理して部分酸化物を得る工程(前処理工程)、
前記部分酸化物を還元する工程(還元工程)、および
還元工程で得られた合金粒子を窒化処理する工程(窒化工程)
を含む方法である。
[沈殿工程]
 沈殿工程では、強酸性の溶液にR原料、Fe原料を溶解して、RとFeを含む溶液を調製する。R原料、Fe原料としては、強酸性の溶液に溶解できるものであれば限定されない。例えば、入手のしやすさの点で、R原料としてはR酸化物が、Fe原料としては硫酸鉄(FeSO)が挙げられる。RとFeを含む溶液の濃度は、R原料とFe原料が実質的に酸性溶液に溶解する範囲で適宜調整することができる。酸性溶液としては溶解性の点で硫酸が挙げられる。
 RとFeを含む溶液と沈殿剤を反応させることにより、RとFeを含む不溶性の沈殿物を得る。ここで、RとFeを含む溶液は、沈殿剤との反応時にRとFeを含む溶液となっていればよく、たとえばRを含む原料とFeを含む原料を別々の溶液として調製し、各々の溶液を滴下して沈殿剤と反応させても良い。別々の溶液として調製する場合においても各原料が実質的に酸性溶液に溶解する範囲で適宜調整する。沈殿剤としては、アルカリ性の溶液でRとFeを含む溶液と反応して沈殿物が得られるものであれば限定されず、アンモニア水、苛性ソーダなどが挙げられ、苛性ソーダが好ましい。
 沈殿物を分離した後は、続く酸化工程の熱処理において残存する溶媒に沈殿物が再溶解して、溶媒が蒸発する際に沈殿物が凝集したり、粒度分布、粉体粒径等が変化したりすることを抑制するために、分離物を脱溶媒しておくことが好ましい。脱溶媒する方法として具体的には、例えば溶媒として水を使用する場合、70℃以上200℃以下のオーブン中で5時間以上12時間以下乾燥する方法が挙げられる。
 沈殿工程の後に、得られる沈殿物を分離洗浄する工程を含んでもよい。洗浄する工程は上澄み溶液の導電率が5mS/m以下となるまで適宜行う。沈殿物を分離する工程としては、例えば、得られた沈殿物に溶媒(好ましくは水)を加えて混合した後、濾過法、デカンテーション法等を用いることができる。
[酸化工程]
 酸化工程とは、沈殿工程で形成された沈殿物を焼成することにより、RとFeとを含む酸化物を得る工程である。例えば、熱処理により沈殿物を酸化物に変換することができる。沈殿物を熱処理する場合、酸素の存在下で行われる必要があり、例えば、大気雰囲気下で行うことができる。また、酸素存在下で行われる必要があるため、沈殿物中の非金属部分に酸素原子を含むことが好ましい。酸化工程における熱処理温度(以下、酸化温度)は特に限定されないが、700℃以上1300℃以下が好ましく、900℃以上1200℃以下がより好ましい。700℃未満では酸化が不十分となり、1300℃を超えると、目的とする希土類-鉄-窒素系磁性粉体の形状、平均粒径および粒度分布が得られない傾向にある。熱処理時間も特に限定されないが、0.5時間以上4時間以下であってよく、1時間以上3時間以下が好ましい。
[前処理工程]
 前処理工程とは、RとFeを含む酸化物を、還元性ガス含有雰囲気下で熱処理することにより、酸化物の一部が還元された部分酸化物を得る工程である。
[還元工程]
 還元工程とは、前記部分酸化物を、還元剤の存在下、600℃以上1300℃以下、好ましくは、700℃以上1200℃以下、より好ましくは800℃以上1100℃以下で加熱する工程である。加熱温度が600℃未満では、酸化物の還元反応が進行せず、加熱温度が1300℃を超えるとRとFeが融解して塊状になることがある。また、加熱温度が700℃以上である場合には、還元時間を短時間にでき生産性が向上する傾向があり、1200℃以下とすると、還元剤であるCaの飛散を低減でき、還元時のばらつきをより低減できる傾向がある。この還元温度を制御することにより、希土類-鉄-窒素系磁性粉体の粒径を制御することができ、一般に還元温度が高くなるにつれ粉体粒径は大きくなる。熱処理時間は、還元反応をより均一に行う観点から、120分未満が好ましく、90分未満がより好ましく、熱処理時間は10分以上が好ましく、30分以上がより好ましい。
[窒化工程]
 窒化工程とは、還元工程で得られた合金粒子を窒化処理することにより、異方性の磁性粒子を得る工程である。前述の沈殿工程で得られる粒子状の沈殿物を用いていることから、還元工程にて多孔質塊状の合金粒子が得られる。これにより、粉砕処理を行うことなく直ちに窒素雰囲気中で熱処理して窒化することができるため、窒化を均一に行うことができる。
 合金粒子の窒化処理における熱処理温度(以下、窒化温度)は、好ましくは250℃以上800℃以下、より好ましくは300℃以上600℃以下である。また、後段の窒化工程で窒化反応物の分解を抑制して反応効率を上げるために、特に好ましくは400℃以上550℃以下の温度とし、この温度範囲で雰囲気を窒素雰囲気に置換することにより行われる。熱処理時間は、合金粒子の窒化が充分に均一に行われる程度に設定されればよい。たとえば、大気圧以上の圧力で窒素ガスを通じながら4時間以上加熱しても良く、好適には10時間以上40時間以下加熱した後、加熱を停止し放冷する。
 窒化工程後に得られる生成物には、希土類-鉄-窒素系磁性粉体に加えて、副生するCaO、未反応の金属カルシウム等が含まれ、これらが複合した焼結塊状態となっている場合がある。その場合は、水洗工程として、この生成物をイオン交換水中に投入して、酸化カルシウム(CaO)及びその他のカルシウムを含む成分を水酸化カルシウム(Ca(OH)2)懸濁物として磁性粒子から分離することができる。この水洗工程として、水中での撹拌、静置、上澄み液の除去を数回繰り返してもよい。さらに残留する水酸化カルシウムは、磁性粒子を酢酸等で洗浄して充分に除去してもよい。残存する未反応のCaが窒化カルシウム(CaN)となり、除去がより容易となるため、窒素雰囲気での熱処理の後、水洗工程を行うことが好ましい。これにより得られた希土類-鉄-窒素系磁性粉体は粒度分布がよりシャープになる傾向がある。
<リン化合物被覆希土類-鉄-窒素系磁性粉体>
 本実施形態の磁性粉体は、リン化合物およびR(ただし、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含むことを特徴とする。なお、本実施形態の希土類-鉄-窒素系磁性粉体およびリン含有量は、前述のリン処理工程の通りである。希土類-鉄-窒素系磁性粉体は、窒化物であるため、金属材料より電気抵抗が高く、また耐食性も優れる。
 リン化合物被覆希土類-鉄-窒素系磁性粉体の平均粒径は、0.1μm以上100μm以下が好ましい。磁場増幅用磁性材料としては、1μm以上100μm以下が好ましい。超高周波吸収用磁性材料としては、0.1μm以上10μm以下が好ましい。より好ましい粒径の範囲は、後述する磁場増幅用磁性材料としては、3μm以上100μm以下であり、超高周波吸収用磁性材料としては、0.1μm以上3μm以下である。1μm未満では、成形体中の磁性粉体の充填量が小さくなるため高周波領域における比透磁率の実数項や超高周波領域での比透磁率の虚数項が低下する。0.1μm以下になるとさらに比表面積が大きくなるために、高周波領域における比透磁率の実数項や超高周波領域での比透磁率の虚数項の高い磁性体部分の体積分率が小さくなる。この結果として磁性材料としての特性が極端に低くなる傾向がある。10μmを超えると、成形体のμ”が低下する傾向があり、さらに100μmを超えるとその傾向は顕著となる。ここで、平均粒径は、レーザー回折式粒径分布測定装置を用いて乾式条件で測定したメジアン径のことである。すなわち、本開示の磁性粉体の平均粒径はD50で表し、D50とは、リン化合物被覆希土類-鉄-窒素系磁性粉体の体積基準による粒度分布の積算値が50%に相当する粒径である。
 希土類-鉄-窒素系磁性粉体の粒径が大きくなると、表皮効果により低い周波数から渦電流が粒内に生じ始めるので、粒径が大きいほど低周波領域から比透磁率の実数項の低下が始まる。従って、磁性粉体の粒径を小さくすることによって、磁場増幅特性や超高周波吸収特性が高周波まで高く保たれる傾向がある。例えば、NdFe17においては、磁性粉体の粒径r(m)と比透磁率の実数項が低下し始める周波数f(Hz)との関係は、0.1μmであればf=1THz、3μmであればf=1GHz、100μmであればf=1MHzと推測される。従って、粒径の上限値がこの付近となる希土類-鉄-窒素系磁性粉体とすれば、本開示の磁場増幅材料として好ましい。一方、粒径が小さくなるに従い、成形体の充填率が稼げなくなる上、表面積が大きくなることから、例えばリン化合物被覆部の厚みが10nmであったとして、粉体の粒径が0.1μmなら、比透磁率が50%程度低下するに過ぎなくても、粒径が0.05μmとなれば、比透磁率は約6%となってしまうので、本開示の磁性粉体の粉体粒径の下限値は周波数に関係なく、0.1μm辺りになる。以上のトレードオフがあるために、磁性材料の目的の周波数帯域により適した粒径範囲とすることが好ましい。
 リン化合物被覆希土類-鉄-窒素系磁性粉体は、DSCにおける発熱開始温度が145℃以上が好ましく、170℃以上がより好ましい。DSCにおける発熱開始温度はリン化合物の緻密さ、厚み、および耐酸化性等の総合的な評価であり、145℃以上であるときに高周波領域における優れた効率及び超高周波領域における優れた超高周波吸収特性が得られる。なお、DSCにおける発熱開始温度は、実施例に記載した条件で測定できる。
 リン化合物被覆希土類-鉄-窒素系磁性粉体は、炭素含有量が1000質量ppm以下が好ましく、800質量ppm以下がより好ましく、500質量ppm以下がさらに好ましく、420質量ppm以下が特に好ましい。炭素含有量は、リン化合物中の有機不純物量を示しており、炭素含有量が1000質量ppmを超えると、磁性粉体が高温にさらされる場合に有機不純物が分解することでリン化合物に空隙が生じるため、効率が低下し、高周波領域での磁場増幅特性が低下したり、超高周波吸収特性が低下したりする傾向がある。特に、高周波領域における優れた効率及び超高周波領域における優れた超高周波吸収特性を得るためには0質量ppm以上800質量ppm以下とすることが好ましい。ここで、炭素含有量は、TOC法によって測定することができる。
 希土類-鉄-窒素系磁性粉体の表面をリン化合物が被覆した場合の被覆部の厚みは、高周波領域における磁性材料のtanδや超高周波領域でのμ”を向上させる観点から、10nm以上200nm以下が好ましく、12nm以上100nm以下がより好ましい。なお、被覆部の厚みは、リン化合物が被覆された希土類-鉄-窒素系磁性粉体の断面にTEM(透過電子顕微鏡)、STEM又はFE-SEM観察像においてEDX(エネルギー分散型X線分析)によるライン分析或いは面分析、さらに十分な測定点数を実施した点分析によって組成分析を行うことにより測定できる。なお、ライン分析などで測定する際、例えば、リン(P)の原子濃度が1原子%以上として観測される範囲をリン化合物被覆部とみなしてもよい。優れた高周波特性を有する本実施形態の理想的な粉体微構造の典型例として、リン化合物被覆部が希土類-鉄-窒素系磁性粉体の表面を全面被覆(表面被覆率100%)している構造が挙げられる。この場合、隣り合う磁性粒子の電気的な絶縁状態を完全に保つことが判っている。すなわち、この構造であれば、粒間をまたぐ渦電流による鉄損をリン化合物被覆部により低減する効果があって、高周波領域のtanδがより向上し、より高効率の磁場増幅用磁性材料が得られる。また、超高周波領域まで渦電流の影響を低減でき、より高い超高周波吸収特性が保たれた超高周波吸収用磁性材料とすることができる。なお、リン化合物被覆部は完全に希土類-鉄-窒素系磁性粉体表面を被覆しなくてもよく、10%以上の表面被覆率であれば、ある程度の渦電流低減の効果が期待できる。好ましくは50%以上、より好ましくは80%以上の表面被覆率が望まれる。10%以上80%未満の表面被覆率では、遊離したリン化合物が磁性粉体粒間に存在している方が好ましい。磁性粉体のリン化合物被覆部による表面被覆率は、粉体の断面を、EDXが備えられたTEM、STEM又はFE-SEMで観測して見積もることができ、観察される希土類-鉄-窒素系磁性粉体表面部の全体周長に対するリンを含む被膜の接触部分の長さの比を「表面被覆率」と定義する。この際、上述の方法で観察される画像の中から20個から50個の磁性粉体の断面を測定し、平均した値を表面被覆率とすることが好ましい。
 希土類-鉄-窒素系磁性粉体の表面に存在するリン化合物被覆部は、希土類(R)原子濃度が、母材である希土類-鉄-窒素系磁性粉体中のR原子濃度より高い領域(R高濃度領域)を有していてもよい。R高濃度領域中のR原子濃度は、希土類-鉄-窒素系磁性粉体中のR原子濃度の1.05倍以上とすることができ、1.1倍以上が好ましく、1.2倍以上がより好ましく、1.5倍以上がさらに好ましい。また、R高濃度領域中のR原子濃度は、例えば希土類-鉄-窒素系磁性粉体中のR原子濃度の4倍以下とすることができる。ここで、R高濃度領域は、リン化合物被覆希土類-鉄-窒素系磁性粉体のSTEM-EDXライン分析においてP(リン)の最大ピークを示す層を包含する領域である。R高濃度領域の厚みは例えば1nm以上とすることができ、3nm以上150nm以下が好ましく、10nm以上100nm以下がより好ましく、20nm以上80nm以下がさらに好ましい。R高濃度領域中のR原子濃度が母材中のR原子濃度に対して、上述の範囲にあることで、電気抵抗率が高くなり、比透磁率を高くできる傾向がある。R高濃度領域中の各元素の原子濃度(原子%)は、STEM-EDXライン分析におけるリン化合物被覆部中の原子濃度を平均することにより求められる。希土類元素としては例えばNdであってよく、その場合、Nd高濃度領域として、Nd原子濃度を基準として評価することができる。
 R高濃度領域中でのR原子濃度は、R高濃度領域中のFe原子濃度の0.3倍以上であってよく、1倍以上が好ましい。R高濃度領域中のR原子濃度は、R高濃度領域中のFe原子濃度の20倍以下が好ましい。R高濃度領域中のR原子濃度とFe原子濃度の関係が上述の範囲にあることで、希土類-鉄-窒素系磁性粉体の表面近傍のFe原子濃度が低くなり、耐水性がより向上する傾向がある。
 R高濃度領域中のRとFeの原子濃度比R/Feが、0.3以上であってよく、0.5以上が好ましく、1以上がより好ましく、2以上がさらに好ましい。R高濃度領域中のR/Feは、100以下であってよく、10以下であってもよい。また、R高濃度領域中のR/Feは母材である希土類-鉄-窒素系磁性粉体中のR/Feより高い値を有していてもよい。R高濃度領域中のR/Feは母材である希土類-鉄-窒素系磁性粉体中のR/Feの1倍以上とすることができ、1.5倍以上が好ましく、2倍以上がより好ましく、5倍以上がさらに好ましい。R高濃度領域中のR/Feが上述の範囲にあることで、希土類-鉄-窒素系磁性粉体の表面近傍のFe原子濃度が低くなり、耐水性がより向上する傾向がある。
 希土類-鉄-窒素系磁性粉体は、ThZn17型或いはThNi17型の結晶構造をもち、一般式がRFe100-x-yで表されるR(ただし、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)と鉄(Fe)と窒素(N)からなる窒化物である。ここで、xは、3以上30以下、yは10以上30以下、残部が主としてFeとされることが好ましい。この磁性粉体は強磁性を示す粉体である。
 リン化合物被覆希土類-鉄-窒素系磁性粉体に含まれるリン化合物としては、オルトリン酸、ピロリン酸、ポリリン酸などの無機リン酸、および、それらとNa、Ca、Pb、Zn、Fe、R、アンモニウム(これらの金属元素、原子団を本開示ではM成分といい、単にMと表記する場合もある)などとのリン酸塩などのリン酸化合物やR、Fe、M及びNの中から選択される少なくとも1種とP及び/又はリン含有物を含む「リン含有アモルファス」や「リン含有ナノ結晶化合物」などが挙げられる。なかでも、希土類-鉄-窒素系磁性粉体の表面被覆を緻密なものとするなどの点で、リン酸塩、「リン含有アモルファス」や「リン含有ナノ結晶化合物」が好ましい。「リン含有ナノ結晶化合物」を含むとさらに熱安定性が良くなるので、リン処理後に高熱が加わる、混練工程、熱硬化工程を経ても、磁性粉体の高周波特性が劣化しにくい傾向があり、さらに最終成形体の高い熱安定性にも寄与する。ここで、ナノ結晶とは、1nm以上1μm未満の微細結晶のことをいい、1nm未満の微細結晶を含むリン化合物はアモルファス化合物の範疇にあるとする。リン化合物被覆部の結晶性、リン化合物被覆部中の微細結晶の径については、TEM法による格子像観察、TEM装置に付随するED(電子線回折)装置による解析で確認することができる。リン化合物被覆希土類-鉄-窒素系磁性粉体中のリン化合物の含有量は、0.5質量%以上4.5質量%以下が好ましく、0.55質量%以上2.5質量%以下がより好ましく、0.75質量%以上2質量%以下が最も好ましい。4.5質量%を超えると、希土類-鉄-窒素系磁性粉体が凝集することにより、比透磁率が低下すると同時に、高周波領域でのtanδが悪化する傾向がある。0.5質量%未満では、リン化合物被覆部の電気絶縁効果が低下することで、同様に比透磁率が低下し、高周波領域でのtanδが悪化する傾向がある。また、リン化合物被覆希土類-鉄-窒素系磁性粉体中におけるリンの含有量は0.02質量%以上とすることができる。リン化合物被覆希土類-鉄-窒素系磁性粉体中のリンの含有量は、0.05質量%以上が好ましく、0.15質量%以上がより好ましい。リン化合物被覆希土類-鉄-窒素系磁性粉体中のリンの含有量は4質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下がさらに好ましい。
 前記リン化合物は、渦電流による効率の低下、すなわちtanδの増大をもたらさないという点で、前記希土類-鉄-窒素系磁性粉体の少なくとも一部の表面を被覆していることが好ましい。磁性粉体において、10%以上の表面被覆率であれば、ある程度の渦電流低減の効果があるが、好ましくは50%以上、さらに好ましくは80%以上の表面被覆率が望まれる。10%より小さい表面被覆率であると、十分に粒間に生ずる渦電流を阻止できず、tanδが大きくなって好ましくない。リン化合物被覆部により、100%の被覆率を有する希土類-鉄-窒素系磁性粉体は、tanδが極めて小さくなり、磁性粉体の組成、結晶構造及び粉体粒径などによるが、1MHzで0.01以下のtanδを実現できる。
 前記リン化合物は、渦電流による比透磁率の低下、特にμ”の低下、すなわち超高周波吸収特性の悪化をもたらさないという点で、前記希土類-鉄-窒素系磁性粉体の少なくとも一部の表面を被覆していることが好ましい。10%以上の表面被覆率であれば、ある程度の渦電流低減の効果があるが、好ましくは50%以上、さらに好ましくは80%以上の表面被覆率が望まれる。10%より小さい表面被覆率であると、十分に粒間に生ずる渦電流を阻止できず、表皮効果によりμ”が低下して好ましくない。リン化合物被覆部により、100%の被覆率を有する希土類-鉄-窒素系磁性粉体は、渦電流による比透磁率の低下が極めて小さくなり、磁性粉体の組成、結晶構造及び粉体粒径などによるが、1GHzで1以上のμ”を実現できる。
 10%以上の表面被覆率であれば、ある程度の渦電流低減の効果があるが、好ましくは50%以上、より好ましくは80%以上の表面被覆率が望まれる。1GHz未満の高周波領域においては、10%より小さい表面被覆率であると、十分に粒間に生ずる渦電流を阻止できず、tanδが大きくなる傾向にある。リン化合物被覆部により、100%の被覆率を有する希土類-鉄-窒素系磁性粉体は、tanδが極めて小さくなり、磁性粉体の組成、結晶構造及び粉体粒径などによるが、1MHzで0.01以下のtanδを実現できる。
 なお、本実施形態の希土類-鉄-窒素系磁性粉体の磁気異方性は、磁気モーメントがc軸方向より、c面方向を向きやすい性質を有する面内結晶磁気異方性を示す。本実施形態の磁性粉体がこの特性を有することが、高周波領域で高い比透磁率の実数項μ’を維持し、さらに超高周波領域で高い比透磁率の虚数項μ”を発現するために極めて重要である。本実施形態の磁性粉体における、負の結晶磁気異方性エネルギーの絶対値は非常に大きく、さらにこの面内結晶磁気異方性を有した磁性粉体が無配向で含有されるので、その自然共鳴周波数は1GHz以上1THz以下の範囲内で広く分布する。従って、1GHz未満では自然共鳴によるμ”の増加とμ’の低下が生じることなく、1GHz以上1THz以下の領域では広帯域で自然共鳴による高いμ”が発現する。特に本実施形態の磁性粉体では、磁性粉体に含まれるリン化合物により強磁性粉体表面が被覆されていたり、磁性粉体間にリン化合物が存在したりすることにより、粒間の渦電流の発生を抑止できる。さらに磁性粉体を特定の平均粒径とした際には、粒内の渦電流の発生も抑制されるので、磁性粉体本来の高周波特性が、渦電流による劣化が小さくなり、1MHz~1THzの領域でより向上する傾向がある。このような広い周波数帯域を一気に網羅した材料設計思想により作り上げられた、「磁場増幅材料」は知られていない。また、同設計思想で、“超広周波数帯域”でシームレスに機能する「超高周波吸収材料」も知られていない。
<磁場増幅用磁性材料>
 本実施形態の磁場増幅用磁性材料は、リン化合物およびR(RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体を含むことを特徴とする。
 本実施形態の磁場増幅用磁性材料は、希土類-鉄-窒素系磁性粉体とリン化合物を含むことにより、磁場増幅用として1MHz以上1GHz未満の領域でμ’が2以上の高比透磁率を有するとともに、1MHz以上1GHz未満の領域でtanδが0.2以下である領域が存在しており、優れた効率を併せ持っていてもよい。本実施形態の磁場増幅用磁性材料は、リン化合物およびR(RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体を含んでいれば特に限定されないが、例えば、前述した実施形態の磁性粉体を用いることができる。
 上記希土類-鉄-窒素系磁性粉体は1μm以上100μm以下の粒径が好ましい。その理由は上述したとおりであり、100μmより大きい粉体を1MHz以上の磁場増幅用磁性材料として使用すると、表皮効果により、比透磁率が低下する傾向にあるからである。さらに、7μm以上の粉体を磁場増幅用磁性材料として活用する際には、体積分率を大きくするために大抵0.5GPa以上の大きな圧力をかけるので、粉体同士が接して大きな渦電流損失が生じ、比透磁率の実数項が大きく低下する。従って、フェライトや遷移金属の酸化物のように固くなく、樹脂のように柔らかすぎないリン化合物のような微細で適度に柔らかい物質が希土類-鉄-窒素系磁性粉体を覆うことや、粒間に介在することは、磁性粉体の本来有する比透磁率などの特性を悪化させないためにも非常に重要である。すなわち、大きな圧力を印加して高密度化そして高比透磁率とする本実施形態の磁場増幅用磁性材料の製造方法とそれにより製造される磁場増幅用磁性材料にとって、リン化合物を含有することは必須の要件である。
 磁場増幅用磁性材料は、1MHz以上1GHz未満の周波数で好適に使用されるが、1GHz以上では、超高周波吸収用磁性材料としても使用される。そのため、希土類-鉄-窒素系磁性粉体の組成や粒度分布などによっては、0.5GHz以上1GHz未満の周波数領域で比透磁率の虚数項が大きくなり始める場合がある。本実施形態の磁場増幅用磁性材料は、1MHz以上0.5GHz未満の領域で使用してもよく、1MHz以上0.1GHz未満で使用することが好ましい。上述の範囲で磁場増幅用材料として使用すると、ジェットミルなどの微粉砕装置を採用せず3μm以上100μm以下の粉体を使用し、スループットが落ちる磁場配向なども行う必要がなくなるため、コストと特性のバランスの観点で好ましい。
 磁場増幅用磁性材料のより具体的な用途としては、無線給電のコイル、RFID(Radio Frequency Identification)タグ用磁場増幅材、20MHzを超える高周波用回路のトランス、インダクタ及びリアクトルなどが挙げられる。たとえば、薄いシート状として、アンテナや受発信機の裏面に張り付け、磁場増幅特性によりシート内に磁束を集中させたり、円柱状や直方体状のコイルの内部に挿入したりする、或いはドーナツ状やヨーク付きの磁芯に導線を巻き付けてコイルの比透磁率の実数項を向上させ、磁場増幅用磁性材料として使用する。
 本実施形態の磁場増幅用磁性材料は、高周波領域においても比透磁率の実数項が高いという特徴を有する。例えば周波数1MHz以上20MHz以下での比透磁率の実数項は、3以上が好ましく、4以上がより好ましい。又、20MHzより大きく1GHz未満での比透磁率の実数項は2以上が好ましく、3以上がさらに好ましい。また、本実施形態の磁場増幅用磁性材料は、例えば周波数20MHzにおける比透磁率の実数項μ’が3.2以上とすることができ、3.5以上が好ましく、4以上がより好ましく、4.5以上がさらに好ましい。本実施形態の磁場増幅用磁性材料は、周波数20MHzにおける比透磁率の実数項μ’は、例えば200以下とすることができ、100以下であってもよい。
 本実施形態の磁場増幅用磁性材料は、20MHzにおけるQ値(μ’/μ”)は3以上が好ましく、3.5以上がより好ましく、4以上がさらに好ましい。また、20MHzにおけるQ値は10000以下であってよい。20MHzにおけるQ値が上記範囲内にあると、特にこの周辺の周波数(例えば10MHz以上30MHz以下)で利用することは、効率が優れた低コストの磁場増幅材料となるので好ましい。Q値が3以上であると、素子やシステムに組み込んだ時の発熱を小さくでき、部品等の温度を低くできることで安定性を向上できる傾向がある。Q値が10000以下であると、材料の均質性を高めるためのコストを低減することができる。ここで、複素比透磁率は、インピーダンスアナライザ、(ベクトル)ネットワークアナライザ、BHアナライザにより、トロイダル試料のインピーダンスを測定して結果を複素比透磁率に換算する方法、周波数領域によっては(例えば500MHz以上でネットワークアナライザを使用して測定する場合など)Sパラメーター法などを用いて測定することができる。
 また、本実施形態の磁場増幅用磁性材料は、比透磁率の周波数依存性が小さいという特徴も有する。たとえば無線給電という用途では13.56MHzの周波数で給電されるため、その周波数を含む2MHz以上20MHz以下の範囲での比透磁率の実数項μ’の変化が小さい磁性材料が優れた効率を有するので好ましく使用できる。また、5MHz以下においてさえ比透磁率が大きく変化する材料も多く、この周波数領域での用途などでも、2MHz以上20MHz以下の領域で比透磁率の実数項が安定した材料は好ましく使用できる。これらの用途において、上記周波数範囲でμ’の変化が大きい材料は、それに伴いμ”も0からの乖離が大きくなるので、tanδも悪化する傾向がある。2MHzでの比透磁率の実数項に対する20MHzでの比透磁率の実数項の比は、0.8以上が好ましく、0.9以上がより好ましい。また、2MHzでの比透磁率の実数項に対する20MHzでの比透磁率の実数項の比は、1.1以下であってよい。この比透磁率の実数項の比が0.8以上であると、エネルギー効率の低下を低減し、磁性材料を組み込んだデバイスの発熱を小さくできる傾向がある。また、比透磁率の実数項の比が1.1以下であると、同デバイスに対する入出力の制御がしやすくなる傾向がある。
 本実施形態の磁場増幅用磁性材料は、樹脂を含んでいてもよい。磁性材料と樹脂の複合材料をボンド磁性材料と呼び、そのボンド磁性材料に含まれる樹脂は、熱硬化性樹脂であっても、熱可塑性樹脂であってもよい。熱可塑性樹脂としては、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリアミド(PA)、ポリプロピレン(PP)、ポリエチレン(PE)、熱可塑性エラストマー等が挙げられる。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリイミド樹脂、アルキド樹脂、フラン樹脂、ジシクロペンタジエン樹脂、アクリル樹脂、アリルカーボネート樹脂、一般にゴムと言われる熱硬化性エラストマーなどが挙げられる。
 ボンド磁性材料中に含まれる樹脂の含有量は、0.1質量%以上95質量%以下が好ましい。樹脂成分の含有量が0.1質量%以上であることで耐衝撃性がより向上し、95質量%以下であることで比透磁率や磁化の極端な低下を抑制することができる。さらに、本実施形態のボンド磁性材料において、高比透磁率に耐衝撃性が併せて要求される用途においては、上記と同様な理由で、0.5質量%以上50質量%以下の範囲がさらに好ましく、特に優れた効率を有する高周波回路用トランスとして用いる場合などは、1質量%以上15質量%以下の範囲とするのが最も好ましい。また、本実施形態の磁場増幅用磁性材料として比透磁率の実数項が特に高く、超高周波吸収材料として吸収特性を特によくするためには、用途により多少異なるが、同様に15質量%以下にすることが好ましい。焼結硬化をせず、樹脂を含まない成形体、例えば揮発性有機溶媒などの助剤を使用した圧粉体などは、非常に脆く、負荷が掛かる無線給電コイルやインダクタの磁芯等の磁場増幅材料、或いは頻繁に持ち運ばれ、衝撃が多く加わる5G+や6Gモバイル機器に搭載する超高周波吸収材料などに応用することは極めて困難である。又、1.5GPa以下の圧力で加圧成形された圧粉体のような貫通した空気層を多く含む成形体は、50℃以上の温度に長時間晒されると、酸化劣化したり、極端に脆化して耐衝撃性が劣化したりするので、高温での用途には不向きな傾向がある。従って、上記のような用途における成形体において、樹脂の含有量は0.1質量%以上95質量%以下が好ましく、0.5質量%以上50質量%以下がより好ましく、1質量%以上15質量%以下がさらに好ましい。
 前記ボンド磁性材料用の樹脂コンパウンドは、例えば、混練機を用いて、180℃以上300℃以下でリン化合物と、希土類-鉄-窒素系磁性粉体および樹脂とを混合及び/又は混練する、またはリン化合物被覆希土類-鉄-窒素系磁性粉体および樹脂を混合及び/又は混練することにより得ることができる。例えば、リン化合物被覆希土類-鉄-窒素系磁性粉体および樹脂をミキサーで混合し、次いで二軸押出機で混練し押し出したストランドを空冷した後、ペレタイザーで数mmサイズに切断することでペレット形状の本実施形態のボンド磁性材料用樹脂コンパウンドを得ることができる。
 前記樹脂コンパウンドを、適切な成形機を用いて成形することにより、本実施形態のボンド磁性材料を製造することができる。具体的には例えば、成形機バレル内で溶融した樹脂コンパウンドを、磁場を印可した金型内に射出成形し、磁化容易軸を揃える(配向工程)ことにより、磁場配向成形ボンド磁性材料を得ることができる。また、前記ペレット状の樹脂コンパウンドをカレンダー加工やホットプレス成形することにより、シート状の磁場増幅用ボンド磁性材料シートや超高周波吸収用ボンド磁性材料シートを作製することができる。これを20μm以上200μm以下の薄さまで圧延することにより、比透磁率の実数項が高い磁場増幅用磁性材料とすることができ、例えばRFIDタグ用の磁場増幅用磁性材料成形体シートとして好適に利用され、モバイル機器用途の超高周波吸収用磁性材料成形体シートとして利用される。
<超高周波吸収用磁性材料>
 本実施形態の超高周波吸収用磁性材料は、リン化合物およびR(RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体を含むことを特徴とする。
 本実施形態の超高周波吸収用磁性材料は、希土類-鉄-窒素系磁性粉体とリン化合物を含むことにより、1GHz以上0.11THz以下の領域でμ”が0.2以上の高い比透磁率の虚数項を有するとともに、磁場増幅用磁性材料としても1MHz以上1GHz未満の領域でもμ”が0.1以上の領域が大部分である。本実施形態の超高周波吸収用磁性材料は、リン化合物およびR(RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体を含んでいれば特に限定されないが、例えば、前述した実施形態の磁性粉体を用いることができる。
 超高周波吸収用磁性材料に用いられる希土類-鉄-窒素系磁性粉体の平均粒径は、0.1μm以上10μm以下が好ましい。その理由は上述したとおりであるが、1GHz以上の超高周波領域になると、3μm以上の粉体は表皮効果により、比透磁率が低下する傾向にあるので、できるだけ粉体粒径は0.1μm以上であって、また磁性粒子同士の直接の接触はできるだけ避けなければならない。例えば30μmの希土類-鉄-窒素系磁性粉体を超高周波用磁性材料に適用しようとして、5μm以下に粉砕したとしても、成形した際、磁性粉体同士が接触して導通してしまい、その導通し合う凝集体の平均的な大きさが30μmとなる場合がある。その場合、粉砕前の粉体を使用した場合と比べて高周波特性に対する粒径の効果は同等となってしまい、粉砕した目的を失ってしまう。特に磁性シートを作製する場合、しばしばホットプレスやカレンダー加工のように熱と圧力が同時に掛かる成形法を適用するが、この際、リン化合物のような絶縁膜が磁性粒子表面にしっかりと密着し、成形体マトリックスの中で磁性粒子が凝集しても磁性粒子間は電気的に絶縁されていることが好ましい。凝集しやすい磁性粉体の表面を、フェライトや遷移金属の酸化物のように固くなく、微細に又適度に柔らかいリン化合物で被覆することで、熱と圧力を同時に印加して高密度かつ高比透磁率とした高周波用磁性材料とすることができる。
 本実施形態の超高周波吸収用磁性材料は、超高周波においても比透磁率の虚数項μ”が高いという特徴を有する。例えば周波数1GHz以上20GHz未満での比透磁率の虚数項μ”は、0.2以上が好ましく、0.3以上がより好ましい。又、20GHz以上1THz以下での比透磁率の虚数項μ”は0.1以上が好ましく、0.2以上がさらに好ましい。また、本実施形態の超高周波吸収用磁性材料は、例えば周波数10GHzにおける比透磁率の虚数項μ”が、0.2以上とすることができ、0.47以上が好ましく、0.5以上がより好ましく、0.55以上がさらに好ましい。本実施形態の超高周波吸収用磁性材料は、周波数10GHzにおける比透磁率の虚数項μ”は、5以下とすることができ、4以下であってもよい。また、本実施形態の超高周波吸収用磁性材料は、例えば周波数0.11THzにおける比透磁率の虚数項μ”は0.02以上とすることができ、0.05以上が好ましく、0.1以上がより好ましく、0.2以上がさらに好ましい。本実施形態の超高周波吸収用磁性材料は、周波数0.11THzにおける比透磁率の虚数項μ”は、2以下とすることができ、1.5以下であってもよい。加えて、本実施形態の超高周波吸収用磁性材料は、例えば周波数10GHzでの比透磁率における虚数項μ”に対する0.11THzでの比透磁率における虚数項μ”の比が、0.03以上が好ましく、0.1以上がより好ましい。本実施形態の超高周波吸収用磁性材料は、周波数10GHzでの比透磁率における虚数項μ”に対する0.11THzでの比透磁率の虚数項μ”の比は5以下が好ましく、1以下がより好ましい。超高周波吸収用磁性材料の周波数10GHzでの比透磁率における虚数項μ”に対する0.11THzでの比透磁率における虚数項μ”の比が上記範囲にあることで、広周波数帯域においてより高い吸収特性を示すことができる。
 本実施形態の超高周波吸収用磁性材料は、希土類-鉄-窒素系磁性粉体とリン化合物を含むことにより、1GHz~1THzまで、超広周波数帯域超高周波吸収が可能で、例えば、このような超高周波で使用が期待される六方晶フェライト、ホウ化物、イプシロン酸化鉄などの一軸結晶磁気異方性材料のように、帯域幅10GHz程度での狭帯域で低比透磁率である磁性材料とは一線を画する。酸化物材料より電気抵抗率は小さいが、金属系材料より高抵抗であり、1THzまで高周波特性が保たれる面内結晶磁気異方性材料にとって、磁性粉体に高電気抵抗率のリン化合物が含有されていることが大きな特徴である。
 超高周波吸収用磁性材料のより具体的な用途としては、5G(第5世代移動通信システム:5th Generation Mobile Communication System)、5G+(第5世代プラス移動通信システム:5th Generation Plus Mobile Communication System)及び6G(第6世代移動通信システム:6th Generation Mobile Communication System)に適用するモバイル通信機、携帯電話小型基地局及びクラウド基地局、それらの機器、デバイス、アンテナなどのインフラ機材に適用する超高周波信号やスプリアス吸収用の部材、ITS(高度道路交通システム:Intelligent Transport Systems)、ワイヤレスHDMI(登録商標)(ワイヤレス高精細度マルチメディアインターフェース:High-Definition Multimedia Interface)、無線LAN(ワイヤレスローカルエリアネットワーク:Local Area Network)、衛星放送(Ka-バンド)などに用いられる機器・デバイス用超高周波信号やスプリアス吸収用の部材、パーソナルコンピュータの主に第2~第7高調波を除去する電磁ノイズ吸収部材などが挙げられる。
 本実施形態の超高周波吸収用磁性材料は、樹脂を含んでいてもよい。磁性材料と樹脂の複合材料をボンド磁性材料と呼び、そのボンド磁性材料に含まれる樹脂は、熱硬化性樹脂であっても、熱可塑性樹脂であってもよい。熱可塑性樹脂としては、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリアミド(PA)、ポリプロピレン(PP)、ポリエチレン(PE)、熱可塑性エラストマー等が挙げられる。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリイミド樹脂、アルキド樹脂、フラン樹脂、ジシクロペンタジエン樹脂、アクリル樹脂、アリルカーボネート樹脂、一般にゴムと言われる熱硬化性エラストマーなどが挙げられる。
 ボンド磁性材料中に含まれる樹脂の含有量は、0.1質量%以上95質量%以下が好ましい。樹脂成分の含有量が0.1質量%以上であることで耐衝撃性がより向上し、95質量%以下であることで比透磁率や磁化の極端な低下を抑制することができる。さらに、本実施形態のボンド磁性材料において、高比透磁率に耐衝撃性が併せて要求される用途においては、上記と同様な理由で、0.5質量%以上50質量%以下の範囲がより好ましく、特に優れた効率を有する高周波回路用トランスとして用いる場合などは、1質量%以上15質量%以下の範囲とするのがさらに好ましい。また、本実施形態の磁場増幅用磁性材料として比透磁率の実数項が特に高く、超高周波吸収材料として吸収特性を特によくするためには、用途により多少異なるが、同様に15質量%以下にすることが好ましい。焼結硬化をせず、樹脂を含まない成形体、例えば揮発性有機溶媒などの助剤を使用した圧粉体などは、非常に脆く、負荷が掛かる無線給電コイルやインダクタの磁芯等の磁場増幅材料、或いは頻繁に持ち運ばれ、衝撃が多く加わる5G+や6Gモバイル機器に搭載する超高周波吸収材料などに応用することは極めて困難である。又、1.5GPa以下の圧力で加圧成形された圧粉体のような貫通した空気層を多く含む成形体は、50℃以上の温度に長時間晒されると、酸化劣化したり、極端に脆化して耐衝撃性が劣化したりするので、高温での用途には不向きな傾向がある。従って、上記のような用途における成形体において、樹脂の含有量は0.1質量%以上95質量%以下が好ましく、0.5質量%以上50質量%以下がより好ましく、1質量%以上15質量%以下がさらに好ましい。
 前記ボンド磁性材料用の樹脂コンパウンドは、例えば、混練機を用いて、180℃以上300℃以下でリン化合物と、希土類-鉄-窒素系磁性粉体および樹脂とを混合及び/又は混練する、または、リン化合物被覆希土類-鉄-窒素系磁性粉体および樹脂を混合及び/又は混練することにより得ることができる。例えば、リン化合物被覆希土類-鉄-窒素系磁性粉体および樹脂をミキサーで混合し、次いで二軸押出機で混練し押し出したストランドを空冷した後、ペレタイザーで数mmサイズに切断することでペレット形状の本実施形態のボンド磁性材料用樹脂コンパウンドを得ることができる。
 前記樹脂コンパウンドを、適切な成形機を用いて成形することにより、本実施形態のボンド磁性材料を製造することができる。具体的には例えば、成形機バレル内で溶融した樹脂コンパウンドを、磁場を印可した金型内に射出成形し、磁化容易軸を揃える(配向工程)ことにより、磁場配向成形ボンド磁性材料を得ることができる。また、前記ペレット状の樹脂コンパウンドをカレンダー加工やホットプレス成形することにより、シート状の磁場増幅用ボンド磁性材料シートや超高周波吸収用ボンド磁性材料シートを作製することができる。これを20μm以上200μm以下の薄さまで圧延することにより、比透磁率の実数項が高い磁場増幅用磁性材料とすることができ、例えばRFIDタグ用の磁場増幅用磁性材料成形体シートとして好適に利用され、モバイル機器用途の超高周波吸収用磁性材料成形体シートとして利用される。
 以下の実施例などにより、本開示を更に具体的に説明するが、本開示はこれらの実施例などにより何ら限定されるものではない。
 実施例で行った評価方法は以下のとおりである。
(1)DSC発熱開始温度
 リン化合物被覆磁性粉体を20mg計量し、高温型示差走査熱分析装置(DSC6300、株式会社日立ハイテクサイエンス製)を用いて、エアー雰囲気(200mL/min)、室温から400℃(昇温速度:20℃/min)、リファレンス:アルミナ(20mg)の測定条件でDSC分析を行い、発熱開始温度を測定した。発熱開始温度が高いことは、酸化による発熱が起こりにくいことから、リン化合物被覆がより緻密に形成されていることを意味する。
(2)P含有量
 リン化合物被覆磁性粉体中のP濃度を、ICP発光分光分析法(ICP-AES)を用いて測定した。
(3)全炭素含有量(TC)
 リン化合物被覆磁性粉体中の全炭素(TC)含有量を、燃焼触媒酸化式全有機体炭素(TOC)計(株式会社島津製作所製;型式:SSM-5000A)を用いて測定した。
(4)リン化合物被覆部の厚み、原子濃度及び結晶性
 リン化合物被覆磁性粉体の表面のリン化合物被覆部の厚みと原子濃度は、以下のようにして測定した。まず、得られた磁粉粉末を、エポキシ樹脂に分散させて固化した後、FIB(集束イオンビーム)にて断面出しを行って測定用断面サンプルを得た。得られたサンプルについて、STEM(FEI社製、型番Talos F200X;加速電圧200kV)とSTEMに付随したSTEM-EDX(システム:FEI社製、型番SuperX、検出器:Bruker製SDD検出器)によって、それぞれの値を見積もった。リン化合物被覆部中の原子濃度は、リン化合物被覆磁性粉体の外部から内部に向かって0.184nmのステップでライン分析し、連続的な各構成元素の原子濃度変化を観測して、リン(P)原子濃度が1原子%以上となる範囲を測定することで求めた。この際、測定箇所によっては、断面サンプルの作製に利用した樹脂中の炭素(C)が、多く検出される箇所が発生するおそれがあるため、Cを除いた元素の合計で原子濃度を算出した。また、リン化合物被覆磁性粉体の表面のリン化合物被覆部の結晶性は、TEM-EDを用いて判定した。TEM像に格子縞が見えず、ED像がハローパターンになっている場合、その部分はアモルファス相であると判定した。リン含有ナノ結晶化合物の大きさは、TEM像の格子縞の広がり、及びEDの観測領域の大きさとリングパターンの関係により、概略で求めた。
(5)1MHz~1GHzにおける複素比透磁率測定
 リン化合物被覆磁性粉体を熱硬化性樹脂であるエポキシ樹脂と混合した後、混練して、樹脂コンパウンドを作製した。この樹脂コンパウンドを内径3.1mm、外径8mmの金型に仕込んで、加圧力0.8GPaで成形したのち、真空中で150℃、2時間熱硬化処理してトロイダル成形体を作製した。この試料を用い、インピーダンスアナライザ(HP4291B、ヒューレットパッカード社製)により、1MHz~1GHzの周波数範囲の複素比透磁率を、1巻きインダクタ形のテストフィクスチャーより求めたインダクタンス値から評価した。
(6)1MHz~0.11THzにおける複素比透磁率測定
 リン化合物被覆磁性粉体を熱可塑性樹脂であるポリアミドエステルエーテルエラストマーと180℃で混合・混練して樹脂コンパウンドを作製した。この樹脂コンパウンドを190℃、加圧力12.7MPaの条件でホットプレス成形を行い、100mm×100mm×1mmの磁性シートを作製した。この磁性シートから、内径3.1mm、外径8mmの試料片を切り出してトロイダル成形体を作製した。この試料を用い、上記(5)と同様にして、1MHz~1GHzの複素比透磁率を評価した。
 さらに上記の磁性シートから、内径3.04mm、外径7mmの上記トロイダル成形体とは異なるサイズの試料片を切り出して別のトロイダル成形体を作製した。この試料を用い、ネットワークアナライザ(N5290A、キーサイトテクノロジー社製)により、1GHz~18GHzの周波数範囲の複素比透磁率を、同軸法により求めたSパラメーター値から評価した。さらに上記方法で得た100mm×100mm×1mmの磁性シートの複素比透磁率を、18GHz~0.11THzの周波数範囲において、上記ネットワークアナライザを用い、自由空間法により求めたSパラメーター値から評価した。
比較例1
 硫酸鉄と硫酸ネオジムを原料とした沈殿法により、以下のようにしてリン処理されていない平均粒径9μmのNdFe17磁性粉体を作製した。
[Nd-Fe硫酸溶液の調製]
 純水2.0kgにFeSO・7HO 5.0kgを混合溶解した。さらにNd 0.45kgと70%硫酸0.70kgとを加えてよく攪拌し、完全に溶解させた。次に、得られた溶液に純水を加え、最終的にFe濃度が0.726mol/L、Nd濃度が0.106mol/Lとなるように調整し、Nd-Fe硫酸溶液とした。
[沈殿工程]
 温度が40℃に保たれた純水20kg中に、調製したNd-Fe硫酸溶液全量を反応開始から70分間で攪拌しながら滴下し、同時に15%アンモニア水を滴下させ、pHを7~8に調整した。これにより、Nd-Fe水酸化物を含むスラリーを得た。得られたスラリーをデカンテーションにより純水で洗浄した後、水酸化物を固液分離した。分離した水酸化物を100℃のオーブン中で10時間乾燥した。
[酸化工程]
 沈殿工程で得られた水酸化物を大気中1000℃で1時間、焼成処理した。冷却後、原料粉体として赤色のNd-Fe酸化物を得た。
[前処理工程]
 Nd-Fe酸化物100gを、嵩厚10mmとなるように鋼製容器に入れた。容器を炉内に入れ、100Paまで減圧した後、水素ガスを導入しながら、前処理温度の850℃まで昇温し、そのまま15時間保持することにより、黒色粉体の部分酸化物を得た。
[還元工程]
 前処理工程で得られた部分酸化物60gと平均粒径約6mmの金属カルシウム19.2gとを混合して炉内に入れた。炉内を真空排気した後、アルゴンガス(Arガス)を導入した。1045℃まで上昇させて、45分間保持することにより、Fe-Nd合金粒子を得た。
[窒化工程]
 引き続き、炉内温度を100℃まで冷却した後、真空排気を行い、窒素ガスを導入しながら、温度を450℃まで上昇させて、そのまま29時間保持して、磁性粒子を含む塊状生成物を得た。
[水洗工程]
 窒化工程で得られた塊状の生成物を純水3kgに投入し、30分間攪拌した。静置した後、デカンテーションにより上澄みを排水した。純水への投入、攪拌及びデカンテーションを10回繰り返した。次いで99.9%酢酸2.5gを投入して15分間攪拌した。静置した後、デカンテーションにより上澄みを排水した。純水への投入、攪拌及びデカンテーションを2回繰り返し行い、続いて脱水と乾燥後、機械的解砕処理を行うことでNdFe17磁性粉体(平均粒径9μm)を得た。
実施例1
 比較例1で作製したNdFe17磁性粉体を用いて、以下のようにリン処理した。
 リン酸処理液として、85%オルトリン酸:リン酸二水素ナトリウム:モリブデン酸ナトリウム2水和物=1:6:1の質量比で混合し、純水と希塩酸でpHを2、PO濃度を20質量%に調整したものを準備した。水洗工程で得られたNd-Fe-N系磁性粉体を、水1000g:塩化水素70gの希塩酸中で1分間攪拌して表面酸化膜や汚れ成分を除去した後、上澄み液の導電率が100μS/cm以下になるまで排水と注水を繰り返し、Nd-Fe-N系異方性磁性粉体を10質量%含むスラリーを得た。得られたスラリーを撹拌しながら、準備したリン酸処理液100gを処理槽中に全量投入した後、6質量%の塩酸を随時投入することでリン酸処理反応スラリーのpHを2.0±0.1の範囲にて制御し30分間維持した。続いて吸引濾過、脱水し、真空乾燥することでリン化合物被覆Nd-Fe-N系異方性磁性粉体を得た。
実施例2
 比較例1で作製したNdFe17磁性粉体を用いて、以下のようにしてリン処理した。
 リン酸処理液として、85%オルトリン酸:リン酸二水素ナトリウム:モリブデン酸ナトリウム2水和物=1:6:1の質量比で混合し、純水と希塩酸でpHを2.5、PO濃度を20質量%に調整したものを準備した。水洗工程で得られたNd-Fe-N系磁性粉体を、水1000g:塩化水素70gの希塩酸中で1分間攪拌して表面酸化膜や汚れ成分を除去した後、上澄み液の導電率が100μS/cm以下になるまで排水と注水を繰り返し、スラリーを得た。得られたスラリーを撹拌しながら、準備したリン酸処理液100gを処理槽中に投入した。処理槽のpHは5分間かけて2から6に上昇した。15分間攪拌した後に吸引濾過、脱水し、真空乾燥することでリン化合物被覆Nd-Fe-N系異方性磁性粉体を得た。
 実施例1~2及び比較例1で作製した磁性粉体を使用して、前述した方法で、DSC発熱開始温度、P含有量、全炭素含有量(TC)を測定した。リン処理条件とともに、測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 リン処理した実施例1とリン処理していない比較例1の粉体表面付近を、STEM-EDXで観測した。得られたSTEM像が、それぞれ図1Aと図1Cである。図1A中、灰色の部分がリン化合物被覆部であり、白色部分が母材である希土類-鉄-窒素系磁性粉体であり、黒色部分は磁性粉体外の部分である。また、図1C中において、灰色の部分が酸素高濃度膜(リンを実質上含まない)であり、白色部分が母材である希土類-鉄-窒素系磁性粉体であり、黒色部分は磁性粉体外の部分である。実施例1の磁性粉体のリン化合物被覆部の膜厚は、約60nmであった。このリン化合物被覆部に含まれるP原子濃度(原子%)は、平均で約12原子%であった。図2Aに、実施例1の磁性粉体のTEM像並びにED図を示した。白色矩形に含まれる部分はリン化合物被覆部、それより左側の結晶相は希土類-鉄-窒素系磁性粉体部、右側は磁性粉体外の部分(TEM試料調整の際、測定上必要である導通のために付加した炭素層の部分)と考えられる。この磁性粉体のリン化合物被覆部は、粒径1~5nmの「リン含有ナノ結晶化合物」と「リン含有アモルファス」からなっていた。一方、比較例1の磁性粉体の表面には、図1Cに示したように5~10nmの酸素高濃度膜が存在するが、後述のライン分析からもリンはほとんど検出されず、リン化合物被覆部は見られなかった。
 図3Aと図3Cは、それぞれ実施例1と比較例1のSTEM-EDXによるライン分析結果である。図3Aでは、リン化合物被覆部中に、原子濃度の比でNdがFeより大きくなり、母材である磁性粉体よりNdの原子濃度が大きくなる領域が、約40nmに亘って観測された。同領域において、NdとFeの原子濃度比Nd/Feの平均値は約2.2であり、母材である希土類-鉄-窒素系磁性粉体のNd/Feの平均値の約11倍であった。
 実施例2の磁性粉体の表面付近を、STEM-EDXで観測した結果を図1Bに示す。磁性粉体のリン化合物被覆部の膜厚は、約20nmであることがわかった。図2Bに、磁性粉体のTEM像並びにED図を示した。磁性粉体のリン化合物被覆部は、粒径1~5nmの「リン含有ナノ結晶化合物」と「リン含有アモルファス」からなっていた。又、このリン化合物被覆部に含まれるP原子濃度は、約4原子%であった。実施例1の磁性粉体と比較して、リン化合物被覆部の膜厚は小さい値を示した。
 図3Bは、実施例2のSTEM-EDXによるライン分析結果である。図3Bでは、リン化合物被覆部中に、Nd原子濃度が母材である磁性粉体中より大きくなる領域が、約4nmに亘って観測された。同領域において、NdとFeの原子濃度比Nd/Feの平均値は約0.45であった。
実施例3、4、比較例2
 リン処理した実施例1及び2とリン処理していない比較例1の粉体を用い、前述した方法で1MHz~1GHzにおける複素比透磁率測定用試料をそれぞれ作製した(密度5.76(実施例3)、5.55(実施例4)、5.75(比較例2)のトロイダル成形体(樹脂添加量6質量%))。前述した方法で1MHz~1GHzの複素比透磁率の周波数依存性を測定した結果を図4に示し、高周波特性の評価結果を表2に示した。
 図4より、実施例3、4及び比較例2の「2MHzでの比透磁率の実数項に対する20MHzでの比透磁率の実数項の比」は、それぞれ0.92、0.84及び0.60であった。実施例3及び4では0.8以上1.1以下の範囲内にあったが、比較例2では0.8未満であった。
Figure JPOXMLDOC01-appb-T000002
実施例5、6、比較例3
 リン処理した実施例1及び2とリン処理していない比較例1の粉体を用い、前述した方法で1MHz以上0.11THz以下における複素比透磁率測定用試料をそれぞれ作製した(密度4.96(実施例5)、密度4.95(実施例6)、密度4.95(比較例3)の磁性シート(樹脂添加量8質量%))。実施例5について、前述した方法で1MHz以上0.11THz以下の複素比透磁率の周波数依存性を測定した結果を図5に示し、実施例5、6、比較例3について、高周波特性の評価結果を表3に示した。
 図5、表3より、実施例5、6及び比較例3の「10GHzでの比透磁率の虚数項に対する0.11THzでの比透磁率の虚数項の比」は、それぞれ0.44、0.03及び0.02であった。実施例5及び6では0.03以上5以下の範囲内にあったが、比較例3では0.03未満であった。
Figure JPOXMLDOC01-appb-T000003
 特に、実施例5では、図5より、1GHz以上0.11THz以下の超広帯域の超高周波領域で、複素比透磁率の虚数項μ”が0.2以上という優れた超高周波吸収特性が得られた。本開示のリン化合物被覆希土類-鉄-窒素系磁性粉体は、一軸結晶磁気異方性材料とは異なる面内結晶磁気異方性材料の特徴が、リン化合物被覆部の粉体間の電気的絶縁効果によりさらに向上された。
 表3より、リン化合物被覆部の厚みが20nmとなっていた実施例6の磁性粉体は、酸素高濃度膜の厚みが5~10nm程度の比較例に比べて、0.11THzでの超高周波領域におけるμ”が高くなっていた。また、実施例5の磁性粉体は、厚さ60nm程度のリン化合物被覆部を有していることもあって、渦電流の影響をより小さく抑えることができ、0.11THzの超高周波領域においても、μ”の値が0.26と高い値を示した。また、10GHzにおいて、実施例5は比較例3と比較して、μ”の向上が見られ、これは渦電流損失を小さくできたためと考えられる。一方で、実施例6の磁性粉体の被覆層は実施例5の磁性粉体と比べて薄く、実施例6の磁性材料中において母材である磁性粉体の占める体積分率が高くなっているため、自然共鳴によるμ”の向上により、実施例5より大きなμ”の値を示したと考えられる。
 本開示の製造方法によれば、優れた磁場増幅特性及び超高周波吸収特性を有するリン化合物被覆希土類-鉄-窒素系磁性粉体が得られる。得られた磁性粉体は、磁場増幅用磁性材料及び超高周波吸収用磁性材料として好適に使用することができる。
 本開示は以下の形態を含む。
(項1)
 R(ただし、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体、水、およびリン含有物を含むスラリーに対して無機酸を添加して、リン化合物および希土類-鉄-窒素系磁性粉体を得るリン処理工程を含む磁性粉体の製造方法。
(項2)
 前記リン処理工程において、前記無機酸を添加して、前記スラリーのpHを1以上4.5以下に調整する項1に記載の磁性粉体の製造方法。
(項3)
 前記リン化合物および前記希土類-鉄-窒素系磁性粉体に含まれるリンの含有量が0.02質量%以上4質量%以下である項1または2に記載の磁性粉体の製造方法。
(項4)
 前記リン処理工程の後に、前記リン化合物および前記希土類-鉄-窒素系磁性粉体を、酸素含有雰囲気下で熱処理する酸化工程を含む、項1~3のいずれか1項に記載の磁性粉体の製造方法。
(項5)
 リン化合物およびR(RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体を含む、磁場増幅用磁性材料。
(項6)
 2MHzでの比透磁率の実数項に対する20MHzでの比透磁率の実数項の比が0.8以上1.1以下である項5に記載の磁場増幅用磁性材料。
(項7)
 20MHzでの比透磁率における虚数項に対する実数項の比が3以上10000以下である項5または6に記載の磁場増幅用磁性材料。
(項8)
 前記リン化合物は、前記希土類-鉄-窒素系磁性粉体の表面を被覆している、項5~7のいずれか1項に記載の磁場増幅用磁性材料。
(項9)
 リンの含有量が前記リン化合物および前記希土類-鉄-窒素系磁性粉体に対して、0.02質量%以上4質量%以下である項5~8のいずれか1項に記載の磁場増幅用磁性材料。
(項10)
 無線給電に用いられる項5~9のいずれか1項に記載の磁場増幅用磁性材料。
(項11)
 前記希土類-鉄-窒素系磁性粉体に加えて、さらに樹脂を含む項5~10のいずれか1項に記載の磁場増幅用磁性材料。
(項12)
 リン化合物およびR(RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体を含む、超高周波吸収用磁性材料。
(項13)
 0.11THzでの比透磁率における虚数項が0.02以上である項12に記載の超高周波吸収用磁性材料。
(項14)
 10GHzでの比透磁率における虚数項に対する0.11THzでの比透磁率における虚数項の比が0.03以上である項12または13に記載の超高周波吸収用磁性材料。

Claims (14)

  1.  R(ただし、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体、水、およびリン含有物を含むスラリーに対して無機酸を添加して、リン化合物および希土類-鉄-窒素系磁性粉体を得るリン処理工程を含む磁性粉体の製造方法。
  2.  前記リン処理工程において、前記無機酸を添加して、前記スラリーのpHを1以上4.5以下に調整する請求項1に記載の磁性粉体の製造方法。
  3.  前記リン化合物および前記希土類-鉄-窒素系磁性粉体に含まれるリンの含有量が0.02質量%以上4質量%以下である請求項1または2に記載の磁性粉体の製造方法。
  4.  前記リン処理工程の後に、前記リン化合物および前記希土類-鉄-窒素系磁性粉体を、酸素含有雰囲気下で熱処理する酸化工程を含む、請求項1~3のいずれか1項に記載の磁性粉体の製造方法。
  5.  リン化合物およびR(RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体を含む、磁場増幅用磁性材料。
  6.  2MHzでの比透磁率の実数項に対する20MHzでの比透磁率の実数項の比が0.8以上1.1以下である請求項5に記載の磁場増幅用磁性材料。
  7.  20MHzでの比透磁率における虚数項に対する実数項の比が3以上10000以下である請求項5または6に記載の磁場増幅用磁性材料。
  8.  前記リン化合物は、前記希土類-鉄-窒素系磁性粉体の表面を被覆している、請求項5~7のいずれか1項に記載の磁場増幅用磁性材料。
  9.  リンの含有量が前記リン化合物および前記希土類-鉄-窒素系磁性粉体に対して、0.02質量%以上4質量%以下である請求項5~8のいずれか1項に記載の磁場増幅用磁性材料。
  10.  無線給電に用いられる請求項5~9のいずれか1項に記載の磁場増幅用磁性材料。
  11.  前記希土類-鉄-窒素系磁性粉体に加えて、さらに樹脂を含む請求項5~10のいずれか1項に記載の磁場増幅用磁性材料。
  12.  リン化合物およびR(RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、およびSmの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である)とFe及びNを含む希土類-鉄-窒素系磁性粉体を含む、超高周波吸収用磁性材料。
  13.  0.11THzでの比透磁率における虚数項が0.02以上である請求項12に記載の超高周波吸収用磁性材料。
  14.  10GHzでの比透磁率における虚数項に対する0.11THzでの比透磁率における虚数項の比が0.03以上である請求項12または13に記載の超高周波吸収用磁性材料。
PCT/JP2022/041715 2021-11-22 2022-11-09 磁性粉体の製造方法、磁場増幅用磁性材料、および超高周波吸収用磁性材料 WO2023090220A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247020253A KR20240115266A (ko) 2021-11-22 2022-11-09 자성 분체의 제조 방법, 자장 증폭용 자성 재료, 및 초고주파 흡수용 자성 재료
EP22895502.7A EP4438201A1 (en) 2021-11-22 2022-11-09 Method for manufacturing magnetic powder, magnetic field-amplifying magnetic material, and ultra high frequency-absorbing magnetic material
JP2023561549A JPWO2023090220A1 (ja) 2021-11-22 2022-11-09
CN202280077404.3A CN118284483A (zh) 2021-11-22 2022-11-09 磁性粉体的制造方法、磁场放大用磁性材料及超高频吸收用磁性材料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-189558 2021-11-22
JP2021189558 2021-11-22
JP2022-029942 2022-02-28
JP2022029942 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023090220A1 true WO2023090220A1 (ja) 2023-05-25

Family

ID=86396943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041715 WO2023090220A1 (ja) 2021-11-22 2022-11-09 磁性粉体の製造方法、磁場増幅用磁性材料、および超高周波吸収用磁性材料

Country Status (4)

Country Link
EP (1) EP4438201A1 (ja)
JP (1) JPWO2023090220A1 (ja)
KR (1) KR20240115266A (ja)
WO (1) WO2023090220A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269937A (ja) * 2005-03-25 2006-10-05 Nichia Chem Ind Ltd ボンド磁石
WO2008136391A1 (ja) 2007-04-27 2008-11-13 Asahi Kasei Kabushiki Kaisha 高周波用磁性材料とその製造方法
JP5071160B2 (ja) * 2008-03-04 2012-11-14 住友金属鉱山株式会社 ボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法
JP2019036667A (ja) * 2017-08-18 2019-03-07 国立大学法人東北大学 皮膜付磁石合金粉の製造方法
JP2020036044A (ja) * 2019-11-26 2020-03-05 日亜化学工業株式会社 ボンド磁石およびその製造方法
JP2021105192A (ja) * 2019-12-26 2021-07-26 国立大学法人東北大学 希土類鉄窒素系磁性粉末、ボンド磁石用コンパウンド、ボンド磁石及び希土類鉄窒素系磁性粉末の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269937A (ja) * 2005-03-25 2006-10-05 Nichia Chem Ind Ltd ボンド磁石
WO2008136391A1 (ja) 2007-04-27 2008-11-13 Asahi Kasei Kabushiki Kaisha 高周波用磁性材料とその製造方法
JP5071160B2 (ja) * 2008-03-04 2012-11-14 住友金属鉱山株式会社 ボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法
JP2019036667A (ja) * 2017-08-18 2019-03-07 国立大学法人東北大学 皮膜付磁石合金粉の製造方法
JP2020036044A (ja) * 2019-11-26 2020-03-05 日亜化学工業株式会社 ボンド磁石およびその製造方法
JP2021105192A (ja) * 2019-12-26 2021-07-26 国立大学法人東北大学 希土類鉄窒素系磁性粉末、ボンド磁石用コンパウンド、ボンド磁石及び希土類鉄窒素系磁性粉末の製造方法

Also Published As

Publication number Publication date
KR20240115266A (ko) 2024-07-25
EP4438201A1 (en) 2024-10-02
JPWO2023090220A1 (ja) 2023-05-25

Similar Documents

Publication Publication Date Title
KR101648658B1 (ko) 자성 부품과 이것에 이용되는 금속분말 및 그 제조 방법
JP5708454B2 (ja) アルコール系溶液および焼結磁石
US20170186519A1 (en) Anisotropic magnetic powders and method of producing the same
JP2013236021A5 (ja)
EP3300089A1 (en) Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
KR101496626B1 (ko) 자성 부품과 그것에 이용되는 연자성 금속 분말 및 그 제조 방법
JP2013149854A (ja) 磁性部品とそれに用いられる軟磁性金属粉末およびその製造方法
US20230386710A1 (en) Coated rare earth-iron-nitrogen-based magnetic powder, production method thereof, magnetic material for magnetic field amplification, and magnetic material for hyper-high frequency absorption
KR20160140777A (ko) Fe-Co 합금 분말 및 이의 제조 방법 및 안테나, 인덕터 및 EMI 필터
WO2023090220A1 (ja) 磁性粉体の製造方法、磁場増幅用磁性材料、および超高周波吸収用磁性材料
JP6242568B2 (ja) 高周波用圧粉体、及びそれを用いた電子部品
WO2024038829A1 (ja) α-Fe含有希土類-鉄-窒素系磁性粉体、その製造方法、磁場増幅用磁性材料、超高周波吸収用磁性材料
US20200353536A1 (en) Fe-Co ALLOY POWDER, MOLDED BODY FOR INDUCTOR USING SAME, AND INDUCTOR
US11456097B2 (en) Composite magnetic body
CN118284483A (zh) 磁性粉体的制造方法、磁场放大用磁性材料及超高频吸收用磁性材料
US11424059B2 (en) Composite magnetic body
WO2020137542A1 (ja) 焼結体およびその製造方法
JP7002179B2 (ja) Fe-Ni合金粉並びにそれを用いたインダクタ用成形体およびインダクタ
CN111599567B (zh) 复合磁性材料、磁芯和电子零件
WO2023135933A1 (ja) 軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに樹脂複合組成物
CN117637277A (zh) 金属磁性粉末、复合磁性体以及电子部件
CN117501393A (zh) SmFeN系各向异性磁性粉末及粘结磁体、以及它们的制造方法
CN117594348A (zh) 稀土类磁性粉末的制造方法及稀土类磁性粉末
JP2019135735A (ja) 圧粉磁心および磁心用粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023561549

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18712397

Country of ref document: US

Ref document number: 202280077404.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247020253

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202447046789

Country of ref document: IN

Ref document number: 1020247020253

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022895502

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022895502

Country of ref document: EP

Effective date: 20240624