WO2023135933A1 - 軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに樹脂複合組成物 - Google Patents

軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに樹脂複合組成物 Download PDF

Info

Publication number
WO2023135933A1
WO2023135933A1 PCT/JP2022/042779 JP2022042779W WO2023135933A1 WO 2023135933 A1 WO2023135933 A1 WO 2023135933A1 JP 2022042779 W JP2022042779 W JP 2022042779W WO 2023135933 A1 WO2023135933 A1 WO 2023135933A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composite
soft magnetic
less
metal flat
flat powder
Prior art date
Application number
PCT/JP2022/042779
Other languages
English (en)
French (fr)
Inventor
宏 安井
信彦 日笠
信一 西山
直也 行吉
けんた 鶴崎
Original Assignee
株式会社メイト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メイト filed Critical 株式会社メイト
Publication of WO2023135933A1 publication Critical patent/WO2023135933A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to noise suppression parts used as countermeasures against unwanted electromagnetic waves in communication equipment and various electronic devices, magnetic shield parts used in electromagnetic induction devices, and soft magnetic metal flats used for cores for electronic parts such as inductors and reactors.
  • the present invention relates to a powder, a resin composite sheet using the same, and a resin composite composition for molding.
  • Soft magnetic metal flat powders are used in resin composite sheets and molded products used for electromagnetic wave noise suppression and magnetic shielding. This is because flat processing reduces the demagnetizing coefficient, increases the magnetic permeability in the in-plane direction, and makes it possible to maintain the magnetic permeability up to higher frequencies beyond the Snake limit.
  • the imaginary permeability ⁇ '' indicating the magnetic loss of the permeability is used, and the magnetic shield uses the real permeability ⁇ ' of the magnetic permeability.
  • the mounting space for electromagnetic noise suppression and magnetic shielding parts has become limited. There is an increasing demand for a resin composite sheet using flat soft magnetic metal powder having high magnetic properties and a resin composite composition for molding.
  • Patent Document 2 proposes a higher magnetic permeability can be obtained by positively adjusting the composition of Al and Si.
  • Patent Document 3 proposes that a higher magnetic permeability can be obtained by positively adjusting the composition of Al and Si.
  • nanocrystalline soft magnetic metal flat powders have been proposed in Japanese Patent No. 2702757 (Patent Document 4) and Japanese Patent Laid-Open No. 11-269509 (Patent Document 5).
  • Patent Document 6 a Fe-Al-Si system soft magnetic material that can obtain a high magnetic permeability with little change in magnetic permeability in the temperature range where various devices actually operate Metal flat powders have been proposed.
  • the resin composite sheet and the molded article stably secure high electromagnetic wave noise suppression and magnetic shielding performance, or soft magnetic properties as a core material, in a temperature range of -40 to 85°C at the lowest.
  • the module in contactless power supply using electromagnetic induction, the module generates heat due to magnetic loss in the battery and coil components including magnetic materials during charging. This creates a vicious cycle in which the temperature rises further and performance declines, resulting in a problem of reduced charging efficiency.
  • measurements of soft magnetic properties including magnetic permeability are performed only at room temperature.
  • Patent Documents 4 and 5 an Fe-based amorphous ribbon is processed into a flat shape using a powder pulverized after an embrittlement treatment, and a nanocrystalline soft magnetic metal flat powder subjected to a nanocrystallization treatment is used to achieve high soft magnetism. Although it is described that characteristics can be obtained, Patent Document 4 focuses on coercive force and saturation magnetic flux density, and does not describe magnetic permeability.
  • the D50 average particle diameter is small and the aspect ratio is also low.
  • Patent Document 5 there is no description about coercive force, and it cannot be said that magnetic permeability has a sufficiently high value.
  • resin composite sheets are required to have low core loss while maintaining magnetic permeability, realize thin-walled products with high flexibility, and products with higher magnetic permeability and low core loss.
  • nanocrystalline soft magnetic metal flat powders that have high soft magnetic properties even if the particle size is small, and reduce the amount of powder blended.
  • the present invention has been made to solve the above problems, and the temperature range of -40 ° C to 150 ° C of a resin composite sheet or a resin composite composition molded product using nanocrystalline soft magnetic metal flat powder A nanocrystalline soft magnetic metal flat powder that has a small change in the temperature coefficient of magnetic permeability and has high magnetic permeability and low core loss, and a resin composite sheet using the material and having high magnetic permeability and low core loss and for molding. It is intended to provide a resin composite composition of An object of the present invention is to solve the problems associated with the above-described conventional soft magnetic metal flat powder, resin composite sheet using the material, and resin composite composition for molding.
  • the nanocrystalline particles have a particle size of 5 nm to less than 30 nm, a crystallinity of 65% to less than 95%, and an aspect ratio of the powder having a particle size near the average particle size D50 of 20 to less than 80.
  • the temperature coefficient of magnetic permeability Kn (n is 1, 2, 3) is expressed by the following formulas (1) (2) (3) in the range of -40 ° C to 150 ° C or less, and 0 ⁇ K1 ⁇ 0.20 , ⁇ 0.10 ⁇ K2 ⁇ 0.10, and ⁇ 0.15 ⁇ K3 ⁇ 0.05.
  • K1 ( ⁇ (0°C) ⁇ ( ⁇ 40°C))/ ⁇ ( ⁇ 40°C) (1)
  • K2 ( ⁇ (85°C) ⁇ ( ⁇ 40°C))/ ⁇ ( ⁇ 40°C) (2)
  • K3 ( ⁇ (150°C)- ⁇ (-40°C))/ ⁇ (-40°C) (3)
  • magnetic permeability ( ⁇ ′: real magnetic permeability, ⁇ ′′: imaginary magnetic permeability), ⁇ (0 ° C.): magnetic permeability at 0 ° C.
  • the nanocrystalline soft magnetic metal flat powder has an average grain size
  • the diameter D50 is 20 ⁇ m to less than 40 ⁇ m
  • the average thickness near the D50 average particle size is 0.2 ⁇ m to less than 1.5 ⁇ m
  • the resin composite sheet using the nanocrystalline soft magnetic metal flat powder has a coercive force of 20 A. /m to less than 100 A/m, a nanocrystalline soft magnetic metal flat powder is obtained.
  • the nanocrystalline soft magnetic metal flat powder has an average particle size D50 of 40 ⁇ m to less than 100 ⁇ m and an average thickness near the D50 average particle size of 1.5 ⁇ m to less than 5 ⁇ m, and the nanocrystal A nanocrystalline soft magnetic metal flat powder is obtained using the soft magnetic metal flat powder, characterized in that the resin composite sheet has a coercive force of 20 A/m to less than 80 A/m.
  • a ring-shaped sample made of the nanocrystalline soft magnetic metal flat powder and resin having a coercive force of 20 A/m to less than 100 A/m, and having an outer diameter of 20 mm, an inner diameter of 10 mm, and a thickness of 0.15 mm
  • a resin composite sheet characterized by having a core loss of 50 kW/m to less than 300 kW/m when measured under the conditions of Bm and frequency of 50 mT-100 kHz using three layers of .
  • a product made of the nanocrystalline soft magnetic metal flat powder and resin which is molded to have an outer diameter of 12.8 mm, an inner diameter of 7.5 mm, and a thickness of 5 mm, is used to obtain Bm and a frequency of 50 mT-100 kHz.
  • a resin composite composition for molding is obtained, characterized by having a core loss of 100 kW/m 3 to less than 600 kW/m 3 when measured under conditions.
  • the present invention provides a resin composite sheet or resin composite composition molded product using nanocrystalline soft magnetic metal flat powder, which has a small change in the temperature coefficient of magnetic permeability within the range of -40 ° C to 150 ° C and has high permeability.
  • An object of the present invention is to provide a nanocrystalline soft magnetic metal flat powder having a magnetic permeability and a low core loss, a resin composite sheet having a high magnetic permeability and a low core loss using the material, and a resin composite composition for molding.
  • FIG. 2 is a graph showing the temperature dependence of magnetic permeability of resin composite sheets using flat soft magnetic metal powders of Examples 4 and 9 and Comparative Examples 10 and 11.
  • Amorphous alloy which is the raw material for nanocrystalline soft magnetic metal flat powder, can be produced by a rapid cooling method such as a single roll method, a twin roll method, or a melt spin method, or by a water atomization method, a gas atomization method, or the like. However, it is not particularly limited as long as a nanocrystalline phase is not generated.
  • the amorphous alloy is an Fe-based alloy, and for example, Fe--Si--B--Nb--Cu composition or Fe--Si--B--P--Cu composition can be used.
  • Hf, Ti, Ni, and C may be included, but are not particularly limited as long as a nanocrystalline phase can be obtained by the crystallization treatment.
  • embrittlement treatment is performed at temperatures above 200°C and below the nanocrystallization temperature in the atmosphere, nitrogen gas atmosphere, inert gas atmosphere, or vacuum, followed by a ball mill, vibration mill, pin mill, hammer mill, or the like. By pulverizing, a raw material powder for flattening with a predetermined particle size can be obtained.
  • the embrittlement treatment is not particularly necessary, and the metal foil strip may be pulverized as it is. Further, when the metal foil strip can be flattened, embrittlement treatment and pulverization can be omitted.
  • the powder obtained by the water atomization method, the gas atomization method, etc. does not particularly need to be embrittled, but in order to adjust the workability into flat powder, it may be used as a raw material for flattening after embrittlement treatment. .
  • the flattening process is not particularly limited, but can be carried out in the presence of distilled water or an organic solvent using an attritor, ball mill, vibration mill, or the like.
  • Toluene, hexane, alcohol, ethylene glycol, or the like can be used as the organic solvent, and the atmosphere in the apparatus may be adjusted during processing.
  • stearic acid or the like may be added as a flattening aid.
  • the amorphous alloy flat powder is heat-treated in a nitrogen gas atmosphere, an inert gas atmosphere, or in a vacuum at a temperature higher than the crystallization temperature to generate a nanocrystalline phase.
  • the heat treatment apparatus and conditions are not particularly limited as long as the target crystal grain size and crystallinity can be achieved by self-fracture due to shrinkage to reduce the diameter.
  • the powder near the average particle size D50 of the nanocrystalline soft magnetic metal flat powder has an aspect ratio of 20 to less than 80 and a coercive force of 20 A/m to less than 150 A/m. If the aspect ratio is less than 20, the diamagnetic field coefficient becomes large, and if it is 80 or more, the workability deteriorates. However, even if the aspect ratio is less than 20 to 80, the coercive force becomes 150 A/m or more when the proportion of fine powder is increased, and the magnetic permeability of the resin composite sheet and molded product is lowered. Therefore, the coercive force may be adjusted by removing fine powder by air classification or the like.
  • the average particle size D50 of the nanocrystalline soft magnetic metal flat powder was measured using R4 with HELOS/BR-multi manufactured by Sympatec.
  • a flat powder having a particle size range of ⁇ 10% of the obtained average particle size D50 was extracted by air classification, embedded in an epoxy resin, and mirror-polished to obtain a sample for thickness measurement. Since the flat powder is generally disk-shaped, the aspect ratio is represented by diameter/thickness.
  • the diameter is the value of the average particle size D50, and the thickness of the flat powder is measured with a scanning electron microscope to obtain the aspect ratio. .
  • the aspect ratio may be obtained by embedding a resin composite sheet or molded article in an epoxy resin, measuring the average length and thickness with a scanning electron microscope, and correcting the length to the diameter.
  • the magnetic permeability was measured in a temperature range of -40°C to 150°C in a thermo-hygrostat using an impedance analyzer E4991B, a magnetic material test fixture 16454A and a heat resistance test kit manufactured by Keysight.
  • a resin composite sheet and a molded resin composite composition were used as a measurement sample.
  • a measurement sample of the resin composite sheet was prepared by punching a ring-shaped sample with an outer diameter of 20 mm and an inner diameter of 10 mm from a sheet with a thickness of 0.15 mm.
  • a sample having an outer diameter of 20 mm, an inner diameter of 20 mm, and a thickness of 0.6 mm was used as the molded product.
  • the shape of the sample for magnetic permeability measurement is not particularly limited as long as the magnetic permeability can be measured. Furthermore, it may be measured in the state of a resin composite sheet, a molded product, or in the state of powder using a vibrating sample magnetometer (VSM), BH analyzer, LCR meter, or the like.
  • VSM vibrating sample magnetometer
  • the coercive force was measured with an applied magnetic field of 148 kA/m using an automatic measuring coercive force meter K-HC1000 manufactured by Tohoku Steel. About 10 mg of the flat powder was covered with a non-magnetic tape so as not to scatter and used as a sample for measurement.
  • a sample for magnetic permeability measurement was used to measure the coercive force of the resin composite sheet and the molded product of the resin composite composition.
  • Coercive force may be measured using a vibrating sample magnetometer (VSM), BH analyzer, or the like.
  • the crystal grain size of the nanocrystalline particles of the nanocrystalline soft magnetic metal flat powder is preferably 5 nm to less than 30 nm, more preferably 5 nm to less than 25 nm. If the crystal grain size is less than 5 nm, the growth of the nanocrystalline grains is insufficient and the soft magnetic properties are lowered. Also, the degree of crystallinity is preferably 65% to less than 95%, more preferably 65% to less than 90%. If the degree of crystallinity is less than 65%, crystal grain formation is insufficient, and if the degree of crystallinity is 95% or more, the crystal grains become coarse and the soft magnetic properties deteriorate.
  • the degree of crystallinity was calculated from the XRD measurement results by profile fitting using Rigaku's SmartLab Studio II application analysis package. For the calculation, as shown in FIG. 1, the areas of diffraction peaks before and after nanocrystallization of bcc Fe(110) were used.
  • the sample for XRD measurement does not have to be a powder, and the sheet and molded product can be set in a folder so that the plane of the nanocrystalline metal flat powder is generally parallel to the measurement surface.
  • the nanocrystalline soft magnetic metal flat powder preferably has an average particle size D50 of 20 ⁇ m to less than 40 ⁇ m. If it is less than 20 ⁇ m, fine powder having a high coercive force increases, making it difficult to obtain a sufficiently high magnetic permeability. If the thickness is 40 ⁇ m or more, the flexibility of the resin composite sheet is lowered.
  • the average thickness near the D50 average particle size is 0.2 ⁇ m to less than 1.5 ⁇ m. If it is less than 0.2 ⁇ m, the specific surface area becomes too large, resulting in deterioration of workability. It is desirable that the resin composite sheet using the nanocrystalline soft magnetic metal flat powder has a coercive force of 20 A/m to less than 100 A/m. When the coercive force is 100 A/m or more, the magnetic permeability decreases.
  • the nanocrystalline soft magnetic metal flat powder preferably has an average particle size D50 of 40 ⁇ m to less than 100 ⁇ m.
  • the thickness is less than 40 ⁇ m, it is not possible to meet the requirement for a particularly high magnetic permeability, and if it exceeds 100 ⁇ m, workability decreases. Furthermore, since the coarse and flat powder contains internal cracks that form magnetic gaps and lead to a decrease in soft magnetism, they may be removed by air classification or mechanical sieving. In addition, it is desirable that the average thickness near the D50 average particle size is from 1.5 ⁇ m to less than 5 ⁇ m. If the particle size is less than 1.5 ⁇ m, fine powder having a high coercive force increases. It is desirable that the resin composite sheet using the nanocrystalline soft magnetic metal flat powder has a coercive force of 20 A/m to less than 80 A/m.
  • the bulk density/true density is preferably in the range of 0.034 to 0.076. If it is smaller than 0.034, the flattening progresses too much, making handling difficult, and the amount of excessively pulverized fine powder increases and the profile becomes uneven, resulting in an increase in coercive force and a decrease in magnetic permeability. On the other hand, when it exceeds 0.076, flattening becomes insufficient, and magnetic permeability decreases. Bulk density was measured according to JISZ2504. The true density was measured using AccuPyc1330 manufactured by Shimadzu Corporation.
  • the resin composite sheet is made by blending nanocrystalline soft magnetic metal flat powder and polymer material in a predetermined ratio, making it into ink by various known methods, and forming a sheet by doctor coating, comma coating, screen printing, etc. Although it is produced, it may be further compressed by various rolls or a press. Alternatively, the resin composite sheet may be produced by kneading with a kneader or the like and roll-molding it, and further compressing this with a press, but the production method of the resin composite sheet is not limited to these. Magnetic permeability can be increased by applying a magnetic field during sheet fabrication to control the orientation of the nanocrystalline soft magnetic metal flat powder.
  • Polyurethane-based, acrylic-based, silicone-based, epoxy-based, chlorinated polyethylene-based, chloroprene-based rubbers, etc. can be used alone or in combination as polymer resins, but are not particularly limited, and have heat resistance of 150°C. It is desirable to have Thermoplasticity and thermosetting properties are also not particularly limited.
  • various additives such as antioxidants, pigments, non-magnetic fillers, thermally conductive fillers, etc., as well as various surface treatments such as coupling agents, dispersants, and anti-rust agents, as long as they do not impair the purpose of the present invention. can be added as needed.
  • the resin composite sheet preferably has a coercive force of 20 A/m to less than 100 A/m, more preferably less than 80 A/m. If it becomes 100 A/m or more, the magnetic permeability will decrease. Also, the core loss is preferably 50 kW/m 3 to less than 300 kW/m 3 , more preferably less than 200 kW/m 3 . If the core loss is 300 kW/m 3 or more, the magnetic loss increases when used in the magnetic parts of various electronic parts, and the performance of the parts deteriorates. Also, when used as a magnetic shield material for non-contact charging, a reduction in charging efficiency due to magnetic loss and accompanying heat generation pose a serious problem.
  • the content of the nanocrystalline soft magnetic metal flat powder is less than 35 vol % to less than 65 vol % with respect to the total solid content. More preferably, it is less than 40vol% to 55vol%. If it is less than 35 vol %, the magnetic permeability will be low even if the coercive force is less than 100 A/m.
  • the core loss was measured using a BH analyzer SY-8219 manufactured by Iwasaki Tsushinki Co., Ltd. and a high-speed bipolar power source HSA4041 manufactured by N.F.
  • the measurement sample for the resin composite sheet is obtained by punching a ring-shaped sample with an outer diameter of 20 mm and an inner diameter of 10 mm from a sheet with a thickness of 0.15 mm.
  • the primary side had 19 turns and the secondary side had 5 turns.
  • a sample with an outer diameter of 20 mm, an inner diameter of 10 mm and a thickness of 0.6 mm and a sample with an outer diameter of 12.8 mm, an inner diameter of 7.5 mm and a thickness of 5 mm were prepared.
  • a sample with an outer diameter of 12.8 mm was wound with 15 turns on the primary side and 5 turns on the secondary side to prepare a sample for measurement. The measurement was performed at a room temperature of 25° C. under the conditions of Bm and frequency of 50 mT-100 kHz.
  • the resin composite composition can be obtained by mixing flat nanocrystalline soft magnetic metal powder and polymer resin and kneading the mixture with a kneader or a twin-screw kneader, but not limited thereto, and various known methods. can be made with It is desirable that the content of the nanocrystalline soft magnetic metal flat powder is less than 35 vol % to less than 65 vol % with respect to the total solid content. It is more preferably 40 vol % to less than 60 vol %. If it is less than 35 vol%, the magnetic permeability of the molded product will be low, and if it is 65 vol% or more, molding will become difficult and the magnetic permeability will decrease.
  • the core loss is preferably less than 100 kW/m 3 to 600 kW/m 3 , more preferably less than 400 kW/m 3 . Although it can be molded into various shapes, it is not limited to these. At the time of molding, the molding may be performed while applying a magnetic field in order to orient the flattened powder.
  • Fe 83.3 Si 7.7 B having a thickness of 20 ⁇ m prepared by a single roll method was used to prepare the nanocrystalline soft magnetic metal flat powders used in Examples 1 to 12 and Comparative Examples 1 to 4 and 6 to 9 .
  • An amorphous ribbon having a composition of 0 Nb 5.7 Cu 1.3 (wt %) was used as a starting material. This was embrittled in an Ar atmosphere at 420 ° C. for Examples 1 to 5 and Comparative Examples 1 to 4, and at 220 ° C. for Examples 6 to 12 and Comparative Examples 6 to 9 for 1 hour. pulverized into The ground powder was then flattened by wet conditions with ethanol in an attritor.
  • nano-crystallization treatment was performed in an Ar atmosphere at 560° C. for 1 hour.
  • the obtained nanocrystalline soft magnetic metal flat powder was used, and the heat resistance temperature was 150 ° C. so that the total solid content was 50 vol%.
  • a curable acrylic rubber mixed resin was blended in a resin solution diluted with toluene and then dispersed to prepare a coating material for coating. This paint was applied with a comma coater to a thickness of 0.05 mm, and after magnetic field orientation, it was dried at 50° C. to remove the solvent. Six dried sheets were laminated and hot-pressed at 150° C.
  • Comparative Examples 5 and 10 an alloy powder having a composition of Fe 84.8 Al 5.6 Si 9.6 (wt %) produced by a gas atomization method, and in Comparative Example 11, Fe 84.0 Al 7.0 Si 9.0 ( %) composition was used as a starting material, flattened by an attritor under wet conditions using ethanol, and then heat-treated at 700° C. for 1 hour in an Ar atmosphere.
  • a resin composite sheet was prepared using this flat powder and a thermosetting acrylic rubber mixed resin having a heat resistant temperature of 150° C., and the magnetic permeability, coercive force and core loss were measured.
  • the real part ( ⁇ ′) and the imaginary part ( ⁇ ′′) of the magnetic permeability at each temperature were measured at 1 MHz and 10 MHz, respectively.
  • Table 1 shows Examples 1-5 and Comparative Examples 1-5.
  • Examples 1 to 5 focus on the flexibility of the resin composite sheet, and the nanocrystalline metal flat powder has an average particle size of 20 ⁇ m to less than 40 ⁇ m and an average thickness of 0.2 to less than 1.5 ⁇ m.
  • Flattening conditions were adjusted so that a flattened powder having a predetermined bulk density/true density was obtained after the flattening treatment. Furthermore, in the flattening process, the generation of fine powder is suppressed so that the coercive force after the nano-crystallization treatment is minimized, and the flattening such as the slurry concentration and the collision energy of the grinding media is adjusted so that the outline of the flattened powder is smooth.
  • the processing conditions were optimized.
  • Table 2 shows Examples 6 to 12 and Comparative Examples 6 to 11.
  • Examples 6 to 12 focus on the magnetic permeability of the resin composite sheet, and the nanocrystalline soft magnetic metal flat powder has an average particle size of 40 ⁇ m to less than 100 ⁇ m and an average thickness of 1.5 to less than 5 ⁇ m.
  • Flattening conditions were adjusted so as to obtain a flattened powder having a predetermined bulk density/true density after the treatment.
  • the generation of fine powder is suppressed so that the coercive force after the nano-crystallization treatment is minimized, and the flattening such as the slurry concentration and the collision energy of the grinding media is adjusted so that the outline of the flattened powder is smooth.
  • the processing conditions were optimized.
  • controlled moderate microcracks were introduced in the plane of the flat powder.
  • air classification was performed to remove 5 wt % of fine powder with high coercive force and 5 wt % of coarse and flat powder whose internal cracks act as magnetic gaps and affect soft magnetic properties. Table 3 shows Examples 13 and 14 and Comparative Examples 12 and 13.
  • Example 13 and 14 and Comparative Examples 12 and 13 the nanocrystalline soft magnetic metal flat powder of Example 4 and the Fe 84.8 Al 5.6 Si 9.6 (wt%) composition of Comparative Example 10 were used.
  • a soft magnetic metal flat powder was used.
  • the flat metal powder was surface-treated with a silane coupling agent, mixed with heat-resistant nylon (PA-9T), and heat-kneaded using a twin-screw kneader to obtain a resin composite composition.
  • a plate-shaped molded article having a thickness of 0.6 mm was produced using an injection molding machine, and the magnetic permeability and coercive force were measured on a sample punched to a thickness of 0.6 mm with an outer diameter of 20 mm and an inner diameter of 10 mm.
  • a ring-shaped molded product with an outer diameter of 12.8 mm, an inner diameter of 7.5 mm, and a thickness of 5 mm was shaped. Prepared as 2.
  • the samples of shape 1 and shape 2 were wound, and the core loss was measured under the conditions of Bm and frequency of 50 mT-100 kHz. From Table 1, all of Examples 1 to 5 have a temperature coefficient K of real (1 MHz) and imaginary permeability (10 MHz) in the range of -40 ° C. to 150 ° C.
  • Examples 6 to 12 have a temperature coefficient K of real (1 MHz) and imaginary permeability (10 MHz) in the range of -40 ° C. to 150 ° C. 0 ⁇ K1 ⁇ 0.20, -0.10 ⁇ K2 ⁇ 0.10 and -0.15 ⁇ K3 ⁇ 0.05 are satisfied, and the influence of the measurement temperature on the magnetic permeability is slight. In addition, they have significantly higher real and imaginary magnetic permeability at 0° C. than those of Comparative Examples 6 to 9, and low core loss. In particular, the magnetic permeability of Examples 8 to 10, in which fine powder and coarse and flat powder were removed by air classification, shows extremely high values.
  • Example 9 has a remarkably high magnetic permeability in the temperature range of -40°C to 150°C.
  • Example 10 has a smaller particle size, it has a higher magnetic permeability than Comparative Examples 10 and 11, and the amount of flat powder compounded to achieve the same magnetic permeability can be reduced. It is possible to realize thinning and improvement of flexibility.
  • both Examples 13 and 14 have a temperature coefficient K of real number (1 MHz) and imaginary number permeability (10 MHz) in the range of -40 ° C. to 150 ° C. 0 ⁇ K1 ⁇ 0.20, -0.10 ⁇ K2 ⁇ 0.10 and -0.15 ⁇ K3 ⁇ 0.05 are satisfied, and the influence of the measurement temperature on the magnetic permeability is slight. Moreover, it has higher real and imaginary magnetic permeability at 0° C. than Comparative Example 12, and Example 14, which contains a large amount of powder, is superior to Comparative Example 12 in moldability. Therefore, it becomes easy to reduce the thickness of the molded product. In Comparative Example 12, the magnetic permeability at 0° C.
  • Comparative Example 13 cannot be molded because the amount of powder blended is too large, and cannot be measured.
  • shape 1 shows a lower value than shape 2, but Examples 13 and 14 are compared. It shows significantly lower values than Example 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

ナノ結晶軟磁性金属扁平粉末を使用した樹脂複合シートまたは樹脂複合組成物成形品の-40℃~150℃の範囲内での透磁率の温度係数の変化が少なく、かつ、高い透磁率と低いコアロスを有するナノ結晶軟磁性金属扁平粉末と、該材料を用いた高い透磁率と低いコアロスを有する樹脂複合シート並びに成形加工用の樹脂複合組成物を提供しようというものである。 ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シート、または、樹脂複合組成物を成形した物の透磁率の温度係数Kn(nは1、2、3)が、-40℃~150℃の範囲で下記式(1)(2)(3)で示され、0≦K1≦0.20、-0.10≦K2≦0.10、-0.15≦K3≦0.05の範囲にあり、さらに従来の技術よりも高い軟磁気特性が得られることを特徴とする、ナノ結晶軟磁性金属扁平粉末。 K1=(μ(0℃)-μ(-40℃))/μ(-40℃)(1) K2=(μ(85℃)-μ(-40℃))/μ(-40℃)(2) K3=(μ(150℃)-μ(-40℃))/μ(-40℃)(3) μ:透磁率(μ':実数透磁率、μ":虚数透磁率)、μ(0℃):0℃の透磁率 また、ナノ結晶軟磁性金属扁平粉末と樹脂よりなり、コアロスが300kW/m未満であることを特徴とする樹脂複合シート、並びに成形加工品のコアロスが600kW/m未満である樹脂複合組成物。

Description

軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに樹脂複合組成物
 本発明は、通信機器や各種電子機器において不要電磁波対策として使用されるノイズ抑制部品や、電磁誘導装置で使用される磁気シールド部品、インダクタやリアクトルなどの電子部品用コアに用いられる軟磁性金属扁平粉末と、それを用いた樹脂複合シート並びに成形加工用樹脂複合組成物に関する。
 通信機器や各種電子機器から不要電磁波が発生するため、外部および内部干渉による機器の誤動作や通信障害が問題となり各種の対策が行われているが、使用される電波の種類が増えるとともに、高周波数化も進んでいる。さらにコントロールICの種類や、駆動周波数も多様化しており、問題がさらに顕在化してきている。
 また、通信機器や各種電子機器の薄型化、小型化が進み、電子部品の実装密度が飛躍的に高まったことで部品間や回路基板間の電磁干渉に起因する問題が頻発し、電磁波対策のためにノイズ対策用電子部品やフレキシブル磁性シート(樹脂複合シート)が使用されている。
 一方で電磁波の有効利用が進んでおり、電磁誘導方式を利用したモバイル機器のペン入力や非接触充電が普及し、金属部品との干渉防止や磁界を有効に利用するためにコイル部品との組み合わせで、樹脂複合シートや成形加工品は磁気シールド材として使用されている。
 電磁波ノイズ抑制や、磁気シールドのために使用される樹脂複合シートや成形加工品には、軟磁性金属扁平粉末が使用されている。これは扁平状に加工することにより反磁界係数が小さくなり、面内方向の透磁率が高くなることと、スネークの限界を超えてより高い周波数まで透磁率を維持できるようになるためである。電磁波ノイズ抑制のためには、透磁率の磁気損失を示す虚数透磁率μ’’を利用しており、磁気シールドでは透磁率の実数透磁率μ’が利用されている。
 しかしながら、近年の装置の薄型化、小型化の進行で、電磁波ノイズ抑制や磁気シールド部品の実装スペースが限られるようになり、今まで以上に透磁率が高く、コアロスが低いような、所謂、軟磁気特性の高い、軟磁性金属扁平粉末を用いた樹脂複合シート並びに成形加工用の樹脂複合組成物への要求が高まっている。また、インダクタや昇圧回路用のリアクトルなどの電子部品でも小型化、損失低減と大電流対応のために、軟磁気特性の高いコア材料の要求がある。
 従来、Fe基合金粉末を用いた軟磁性金属扁平粉末として、センダストと呼ばれるFe−Al−Si組成の扁平粉末の透磁率が高いことが知られており、特に結晶磁気異方性と磁歪がともにゼロでとなるAl:5.4wt%、Si:9.6wt%付近で、残部がFeと不可避の不純物からなる組成が優れている。このため、扁平粉末表面酸化を加味して組成を調整する特許第3722391(特許文献1)がある。一方で、特許第6592424(特許文献2)、特開2005−281783(特許文献3)ではAl、Siの組成を積極的に調整することで、より高い透磁率を得られることが提案されている。
 また、センダストを越える高い軟磁気特性が期待できるナノ結晶材料に関して、ナノ結晶軟磁性金属扁平粉末が、特許第2702757(特許文献4)、特開平11−269509(特許文献5)で提案されている。さらに、特開2021−111766(特許文献6)では、各種機器が実際に動作する温度範囲で透磁率の変化が少なく、かつ、高い透磁率を得ることができるFe−Al−Si系の軟磁性金属扁平粉末が提案されている。
特許第3722391 特許第6592424 特開2005−281783 特許第2702757 特開平11−269509 特開2021−111766
 通信機器や各種電子機器が実際に使用される際には周辺温度の変化や発熱があり、自動車では−40~150℃、その他では−40~85℃での性能保証の要求がある。このため、最低でも−40~85℃の温度域で、樹脂複合シートや成形加工品は安定して高い電磁波ノイズ抑制や磁気シールド性能、あるいはコア材料としての軟磁気特性を確保する必要がある。特に、電磁誘導を利用した非接触給電では、充電時のバッテリーや、磁性材料を含めたコイル部品の磁気損失によるモジュールの発熱があるため、温度上昇により磁気シールド材の性能が低下すると磁気損失が増え、これによりさらに温度が上昇して性能が低下するという悪循環に陥り、充電効率が低下する問題がある。
 しかしながら、一般的に透磁率を含む軟磁気特性の測定は常温でしか行われておらず、特許文献1、2、3、4および5では本発明でいう実際の使用温度範囲で安定した透磁率を得ることに関しての記載がない。さらに、NFC用や非接触充電用で用いられているフェライト焼結体、あるいはプリクラックを入れたフェライトシート、アモルファスシート、ナノ結晶金属シート等と比較して、透磁率が不足しており、磁気シールド性能が十分では無い。
 また、特許文献4および5ではFe基アモルファス薄帯を脆化処理後に粉砕した粉末を用いて扁平状に加工し、さらにナノ結晶化処理したナノ結晶軟磁性金属扁平粉末を用いることで高い軟磁気特性が得られると記載されているが、特許文献4では保磁力と飽和磁束密度に注目しており、透磁率に関する記載が無い。また、D50平均粒径が小さく、アスペクト比も低い。特許文献5では保磁力に関する記載が無く、透磁率も十分高い値を有しているとはいえない。
 さらに樹脂複合シートには、透磁率を維持しつつ低いコアロスを有し、フレキシビリティーの高い薄肉製品の実現と、より高い透磁率と低いコアロスを有する製品への要求がある。フレキシビリティーの高い薄肉製品の実現のためには、粒径が小さくても軟磁気特性が高いナノ結晶軟磁性金属扁平粉末を用いて粉末配合量を下げる必要がある。さらに高透磁率化に対応するためには、ナノ結晶軟磁性金属扁平粉末の軟磁気特性を著しく向上させる必要がある。しかし、これらの両立は困難であり、ナノ結晶軟磁性金属扁平粉末の最適なナノ結晶化と、粒径とアスペクト比の調整、ならびに保磁力を低く抑えることで、フレキシビリティーと透磁率のいずれかに特徴を持たせた樹脂複合シートを提供することが必要である。また成形加工用の樹脂複合組成物でも薄肉化と高透磁率化の要求があり、透磁率を維持しつつ低いコアロスを有して薄肉化に対応できる樹脂複合組成物と、より高い透磁率と低いコアロスを有する樹脂複合組成物を提供することが必要である。
 本発明は、上記の課題を解決するためになされたものであって、ナノ結晶軟磁性金属扁平粉末を使用した樹脂複合シートまたは樹脂複合組成物成形品の−40℃~150℃の範囲内での透磁率の温度係数の変化が少なく、かつ、高い透磁率と低いコアロスを有するナノ結晶軟磁性金属扁平粉末と、該材料を用いた高い透磁率と低いコアロスを有する樹脂複合シート並びに成形加工用の樹脂複合組成物を提供しようというものである。
 本発明は、上述した従来の軟磁性金属扁平粉末および該材料を用いた樹脂複合シート並びに成形加工用の樹脂複合組成物が有する課題を解決することにある。
 本発明によれば、ナノ結晶粒子の粒径が5nm~30nm未満、結晶化度が65%~95%未満で、さらに平均粒径D50付近の粒径の粉末におけるアスペクト比が20~80未満、保磁力が20A/m~150A/m未満であるナノ結晶軟磁性金属扁平粉末であって、該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シート、または、樹脂複合組成物を成形した物の透磁率の温度係数Kn(nは1、2、3)が、—40℃~150℃以下の範囲で下記式(1)(2)(3)で示され、0≦K1≦0.20、−0.10≦K2≦0.10、−0.15≦K3≦0.05の範囲にあることを特徴とする、ナノ結晶軟磁性金属扁平粉末。
 K1=(μ(0℃)−μ(−40℃))/μ(−40℃)    (1)
 K2=(μ(85℃)−μ(−40℃))/μ(−40℃)   (2)
 K3=(μ(150℃)−μ(−40℃))/μ(−40℃)  (3)
 μ:透磁率(μ’:実数透磁率、μ”:虚数透磁率)、μ(0℃):0℃の透磁率
 また本発明によれば、前記ナノ結晶軟磁性金属扁平粉末で、平均粒径D50=20μm~40μm未満で、D50平均粒径付近の平均厚みが0.2μm~1.5μm未満であって、該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シートの保磁力が20A/m~100A/m未満であることを特徴とするナノ結晶軟磁性金属扁平粉末が得られる。
 また本発明によれば、前記ナノ結晶軟磁性金属扁平粉末で、平均粒径D50=40μm~100μm未満で、D50平均粒径付近の平均厚みが1.5μm~5μm未満であって、該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シートの保磁力が20A/m~80A/m未満であることを特徴とするナノ結晶軟磁性金属扁平粉末が得られる。
 また本発明によれば、前記ナノ結晶軟磁性金属扁平粉末と樹脂よりなり、保磁力が20A/m~100A/m未満で、さらに外径20mm−内径10mmで厚みが0.15mmのリング状サンプルを3枚重ねた物を用いて、Bmと周波数が50mT−100kHzの条件で測定した時のコアロスが50kW/m~300kW/m未満であることを特徴とする、樹脂複合シートが得られる。
 また本発明によれば、前記ナノ結晶軟磁性金属扁平粉末と樹脂よりなり、外径12.8mm−内径7.5mmで厚み5mmに成形加工した物を用いて、Bmと周波数が50mT−100kHzの条件で測定した時のコアロスが100kW/m~600kW/m未満であることを特徴とする、成形加工用の樹脂複合組成物が得られる。
 本発明は、ナノ結晶軟磁性金属扁平粉末を使用した樹脂複合シートまたは樹脂複合組成物成形品の−40℃~150℃の範囲内での透磁率の温度係数の変化が少なく、かつ、高い透磁率と低いコアロスを有するナノ結晶軟磁性金属扁平粉末と、該材料を用いた高い透磁率と低いコアロスを有する樹脂複合シート並びに成形加工用の樹脂複合組成物を提供しようというものである。
 図1はナノ結晶金属扁平粉末を測定面に平行になるように配向させ、Cu管球を用いてXRD測定して得られた2θ=45°付近のbcc Fe(110)のピークを用いて、プロファイルフィッティング法で結晶化度を算出する方法を示した図である。
 図2は実施例4と9、比較例10と11の軟磁性金属扁平粉末を用いた樹脂複合シートの、透磁率の温度依存性を示した図である。
 以下、本発明について具体的な最良の形態について説明する。
 ナノ結晶軟磁性金属扁平粉末の原料となる非晶質合金は、単ロール法、双ロール法、メルトスピン法などの急冷法で作製でき、この他、水アトマイズ法、ガスアトマイズ法などでも作製することができるが、ナノ結晶相が生成しない限りにおいては特に限定するものではない。
 非晶質合金はFe基合金で、例えばFe−Si−B−Nb−Cu組成や、Fe−Si−B−P−Cu組成の物を用いることができ、必要に応じてCr、W、Ta、Hf、Ti、Ni、C等の微量成分を含んでいても良いが、結晶化処理でナノ結晶相が得られれば特に限定するものではない。
 単ロール法、双ロール法、メルトスピン法等で得られる金属箔帯を用いる場合には、そのままでは扁平加工用原料を得るための粉砕が困難であることに加え、目的とする加工性を有する原料粉末を得るために、大気もしくは窒素ガス雰囲気、不活性ガス雰囲気あるいは真空中で200℃を越えてナノ結晶化温度以下で脆化処理を行った後に、ボールミル、振動ミル、ピンミル、ハンマーミルなどで粉砕して、所定の粒径の扁平加工用の原料粉末を得ることができる。しかしながら、金属箔帯の製造工程内で脆化が進行している場合には、脆化処理は特に必要はなく、そのまま粉砕しても良い。また、金属箔帯の状態で扁平加工を行うことができる場合には、脆化処理や粉砕を省略することができる。
 水アトマイズ法、ガスアトマイズ法等で得られた粉末は脆化処理の必要は特には無いが、扁平粉末への加工性を調整するために、脆化処理を行った後に扁平加工用原料としても良い。
 扁平加工は特に制限はないが、アトライター、ボールミル、振動ミルなどを用いて蒸留水もしくは有機溶剤の存在下で実施することができる。有機溶剤としてはトルエン、ヘキンサン、アルコール、エチレングリコールなどを用いることができ、加工中は装置内の雰囲気を調整してもよい。また、扁平化助剤としてステアリン酸などを加えてもよい。
 扁平加工後は、非晶質合金扁平粉末を窒素ガス雰囲気、不活性ガス雰囲気あるいは真空中で、結晶化温度以上で熱処理してナノ結晶相を生成させるが、扁平粉末がナノ結晶化に伴う体積収縮で自己破断して小径化することと、目的とする結晶粒径と結晶化度を実現できれば良く、特に熱処理装置や条件を限定するものではない。
 ナノ結晶軟磁性金属扁平粉末の平均粒径D50付近の粉末におけるアスペクト比は20~80未満であり、保磁力が20A/m~150A/m未満であることが望ましい。アスペクト比が20未満だと反磁界係数が大きくなり、80以上では加工性が低下する。しかし、アスペクト比が20~80未満であっても微粉末の割合が増えると保磁力が150A/m以上になり、樹脂複合シート、成形加工品の透磁率が低下する。このため、空気分級などで微粉末を除去して保磁力を調整しても良い。
 ナノ結晶軟磁性金属扁平粉末の平均粒子径D50の測定は、Sympatec社製のHELOS/BR−multiでR4を用いて測定を行った。得られた平均粒径D50に対して、±10%の粒径範囲の扁平粉末を空気分級で抽出し、エポキシ樹脂に埋め込み鏡面研磨して厚み測定用のサンプルを得た。アスペクト比は、扁平粉末は概ね円盤状であるため、直径/厚みで表わされるが、直径は平均粒径D50の値とし、扁平粉末の厚みを走査型電子顕微鏡で計測してアスペクト比を求めた。アスペクト比は、樹脂複合シートもしくは成形品をエポキシ樹脂に埋め込み、平均的な長さと厚みを走査型電子顕微鏡で計測し、長さを直径に補正して求めても良い。
 透磁率の測定は、Keysight社製のインピーダンスアナライザーE4991Bと磁性材料テストフィクスチャー16454Aと耐熱テストキットを用いて、恒温恒湿機中で−40℃~150℃の温度範囲で行った。測定用サンプルは、樹脂複合シートと樹脂複合組成物を成形加工した物を使用した。
 樹脂複合シートでの測定サンプルは厚み0.15mmのシートから外径20mm−内径10mmのリング状サンプルを抜き加工して作製した。成形加工品は、外径20mm−内径20mmで厚み0.6mmのサンプルを用いた。透磁率測定用のサンプル形状は特に限定するものではなく、透磁率を測定できれば良い。さらに、振動試料型磁力計(VSM)、BHアナライザー、LCRメーター等を用いて、樹脂複合シートあるいは成形加工品の状態、もしくは粉末の状態で測定しても良い。
 保磁力は東北特殊鋼製の自動計測保磁力計K−HC1000を用い印可磁場148kA/mで測定した。扁平粉末約10mgを、飛散しないように非磁性のテープで被覆し測定用サンプルとした。樹脂複合シートと樹脂複合組成物の成形品の保磁力測定には透磁率測定用のサンプルを用いた。保磁力の測定は振動試料型磁力計(VSM)、BHアナライザー等を用いても良い。
 ナノ結晶軟磁性金属扁平粉末のナノ結晶粒子の結晶粒径は5nm~30nm未満であることが望ましく、5nm~25nm未満であることがより好ましい。結晶粒径が5nm未満ではナノ結晶粒子成長が不十分で軟磁気特性が低くなり、30nm以上になると結晶粒子の交流磁界に対する応答性が低下し、軟磁気特性が低下するためである。また、結晶化度が65%~95%未満であることが望ましく65%~90%未満であることがより好ましい。結晶化度が65%未満だと結晶粒子生成が不十分であり、95%以上になると結晶粒子の粗大化が生じて軟磁気特性が低下するためである。
 ナノ結晶粒子の結晶粒径は、ナノ結晶金属扁平粉末の平面が概ね測定面に平行なるように配向させ、Rigaku社製の粉末X線回折装置MiniFlex600でCu管球を用いてXRD測定した結果より、2θ=45°付近のbcc Fe(110)のピークを用いてSherrerの式より求めた。結晶化度は前記XRD測定結果より、Rigaku社製SmartLab StudioII応用解析パッケージを用いてプロファイルフィッティング法で計算により求めた。計算には図1に示すように、bcc Fe(110)のナノ結晶化前後の回折ピークの面積を用いた。結晶化度の厳密な測定は困難であり、XRD測定結果より簡易的に求めた見掛けの結晶化度を、結晶化度とした。XRD測定用のサンプルは粉末である必要はなく、ナノ結晶金属扁平粉末の平面が概ね測定面に平行なるようにシートおよび成形加工品をフォルダーにセットすれば良い。
 ナノ結晶軟磁性金属扁平粉末は、平均粒径D50=20μm~40μm未満であることが望ましい。20μmより小さいと保磁力の高い微粉末が増加するために十分高い透磁率を得ることが困難となる。40μm以上になると樹脂複合シートのフレキシビリティーが低下する。また、D50平均粒径付近の平均厚みが0.2μm~1.5μm未満であることが望ましい。0.2μm未満になると比表面積が高くなりすぎるために加工性が低下し、1.5μm以上になるとアスペクト比が小さくなり、反磁界係数の増加により透磁率が低下する。該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シートの保磁力が20A/m~100A/m未満であることが望ましい。保磁力が100A/m以上になると透磁率が低下する。
 ナノ結晶軟磁性金属扁平粉末は、平均粒径D50=40μm~100μm未満であることが望ましい。40μmより小さいと、特に高い透磁率の要求に対してこれを満たすことができず、100μm以上になると加工性が低下する。さらに、粗大扁平粉末には内在亀裂が含まれ、これが磁気ギャップとなって軟磁性の低下につながるため、空気分級や機械式篩で除去しても良い。また、D50平均粒径付近の平均厚みが1.5μm~5μm未満であることが望ましい。1.5μm未満では保磁力の高い微粉末が増加し、5μm以上になると反磁界係数が大きくなり透磁率が低下する。該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シートの保磁力が20A/m~80A/m未満であることが望ましい。80A/m以上になると透磁率が低下する。
 さらに、かさ密度/真密度は0.034~0.076の範囲であることが望ましい。0.034より小さくなると扁平化が進みすぎ、取り扱いが困難となるとともに、過粉砕された微粉の増加と、輪郭が不均一となることで保磁力が高くなって透磁率が低下する。一方0.076を超えると扁平化が不十分となり、透磁率が低下する。かさ密度の測定はJISZ2504に基づいて実施した。真密度は島津製作所製のAccuPyc1330を用いて測定した。
 樹脂複合シートは、ナノ結晶軟磁性金属扁平粉末と高分子材料とを所定の割合で配合し、公知の種々の方法でインク状にしてドクターコーティング、コンマコーティング、スクリーン印刷等でシート状の物を作製するが、さらにこれを各種のロールや、プレスで圧縮しても良い。また、ニーダー等で混練してロール成形して作製してもよく、さらにこれをプレスで圧縮しても良いが、樹脂複合シートの製造方法としてこれらに限定するものではない。シート作製時には磁場を印加して、ナノ結晶軟磁性金属扁平粉末の配向を制御することで、透磁率を高めることができる。
 高分子樹脂として、ポリウレタン系、アクリル系、シリコン系、エポキシ系、塩素化ポリエチレン系、クロロプレン系ゴム等を単独もしくは組み合わせて使用することができるが、特に限定するものではなく、150℃の耐熱性があることが望ましい。熱可塑性、熱硬化性についても特に限定するものではない。また、本発明の目的を損なわない範囲で、カップリング剤、分散剤、防錆剤などによる各種表面処理や、酸化防止剤、顔料、非磁性充填剤、熱伝導性充填剤等の各種添加剤を必要に応じて添加することができる。
 樹脂複合シートは、保磁力が20A/m~100A/m未満であることが望ましく、80A/m未満であることがより好ましい。100A/m以上になると透磁率が低下する。またコアロスが50kW/m~300kW/m未満であることが望ましく、200kW/m未満であることがより好ましい。コアロスが300kW/m以上になると各種電子部品の磁性体部分に使用した場合には磁気損失が大きくなり部品性能が低下する。また非接触充電用の磁気シールド材として使用した場合には、磁気損失による充電効率の低下とこれに伴う発熱が大きな問題となる。全固形分に対してナノ結晶軟磁性金属扁平粉末の含有量が35vol%~65vol%未満であることが望ましい。より好ましくは、40vol%~55vol%未満である。35vol%未満の場合には保磁力が100A/m未満でも透磁率が低くなり、65vol%以上になるとシート化が困難となり、透磁率が低下する。
 コアロスは、岩崎通信機社製のBHアナライザーSY−8219とエヌエフ回路設計ブロック社製の高速バイポーラ電源HSA4041を用いて、樹脂複合シートと樹脂複合組成物の成形加工品で測定した。樹脂複合シートでの測定サンプルは厚み0.15mmのシートから外径20mm−内径10mmのリング状サンプルを抜き加工し、これを3枚重ねた後に非磁性の樹脂プレートで挟みφ0.26mmの線材を二次巻きして作製した。一次側は19ターン、二次側は5ターンとした。成形加工品は、外径20mm−内径10mmで厚み0.6mmのサンプルと、外径12.8mm−内径7.5mmで厚み5mmのサンプルを準備し、外径20mmのサンプルでは一次側は19ターン、二次側は5ターンの巻き線を施し、外径12.8mmのサンプルでは一次側は15ターン、二次側は5ターンの巻き線を施して測定用サンプルとした。測定は25℃の室温で、Bmと周波数が50mT−100kHzの条件で実施した。
 樹脂複合組成物は、ナノ結晶軟磁性金属扁平粉末と高分子樹脂とを混合し、ニーダーや二軸混練機で混練して得られるが、これらに限定されるものではなく、公知の種々の方法で作製することができる。全固形分に対してナノ結晶軟磁性金属扁平粉末の含有量が35vol%~65vol%未満であることが望ましい。より好ましくは40vol%~60vol%未満である。35vol%未満の場合には成形物の透磁率が低くなり、65vol%以上になると成形が困難となり、透磁率が低下する。またコアロスが100kW/m~600kW/m未満であることが望ましく、400kW/m未満であることがより好ましい
 樹脂複合組成物は押出成形機、押出成形機、圧縮成形機等を用いて各種の形状に成形加工することができるが、これらに限定するものではない。成形の時には、扁平粉末を配向させるために、磁場をかけながら成形しても良い。
 以下、本発明について実施例により具体的に説明する。
 実施例1~12および比較例1~4と6~9で使用したナノ結晶軟磁性金属扁平粉末の作製には、単ロール法により作製した厚み20μmのFe83.3Si7.72.0Nb5.7Cu1.3(wt%)組成のアモルファス薄帯を出発原料として用いた。これをAr雰囲気中で実施例1~5と比較例1~4は420℃で、実施例6~12と比較例6~9はそれぞれ220℃で1時間脆化処理した後に、ボールミルで74μm以下に粉砕した。次いで粉砕粉末を、アトライターでエタノールを用いた湿式条件により扁平加工した。さらにAr雰囲気中560℃で1時間のナノ結晶化処理を行った。
 実施例1~12、比較例1~4、比較例6~9では得られたナノ結晶軟磁性金属扁平粉末を用い、全固形分に対して50vol%となるように、耐熱温度150℃の熱硬化型アクリルゴム系混合樹脂をトルエンで希釈した樹脂溶液に配合後に分散させて、コーティング用の塗料を作製した。この塗料をコンマコーターで0.05mm厚みに塗布し、磁場配向を行った後に50℃で乾燥し溶剤を除去した。乾燥後のシートを6枚積層して150℃で10MPaの圧力で熱プレスし、厚み0.15mmの性能評価用の樹脂複合シートを得た。次に外形20mm、内径10mmのドーナツ状に抜き加工し、透磁率と保磁力とコアロスを測定した。各温度での透磁率の実数部(μ’)は1MHz、虚数部(μ’’)は10MHzで測定した。
 比較例5、10では、ガスアトマイズ法により作製したFe84.8Al5.6Si9.6(wt%)組成の合金粉末、比較例11ではFe84.0Al7.0Si9.0(wt%)組成の合金粉末を出発原料とし、アトライターで、エタノールを用いた湿式条件により扁平加工した後に、Ar雰囲気中700℃で1時間の熱処理を行った。この扁平粉末と耐熱温度150℃の熱硬化型アクリルゴム系混合樹脂を用いて樹脂複合シートを作成し、透磁率と保磁力とコアロスを測定した。各温度での透磁率の実数部(μ’)は1MHz、虚数部(μ’’)は10MHzで測定した。
 表1に実施例1~5、比較例1~5を示す。実施例1~5は樹脂複合シートのフレキシビリティーを重視して、ナノ結晶金属扁平粉末の平均粒径が20μm~40μm未満で、かつ平均厚みが0.2~1.5μm未満で、ナノ結晶化処理後に所定のかさ密度/真密度の扁平粉末が得られるように扁平加工条件を調整した。さらに扁平加工工程で、ナノ結晶化処理後の保磁力が最低となるように、微粉末の発生を抑え、扁平粉末の輪郭が平滑になるように、スラリー濃度、粉砕メディアの衝突エネルギーなどの扁平加工条件を最適化した。同時に、扁平粉末の面内に制御された適度なマイクロクラックを導入した。
 表2に実施例6~12、比較例6~11を示す。実施例6~12は樹脂複合シートの透磁率を重視して、ナノ結晶軟磁性金属扁平粉末の平均粒径が40μm~100μm未満で、かつ平均厚みが1.5~5μm未満で、ナノ結晶化処理後に所定のかさ密度/真密度の扁平粉末が得られるように扁平加工条件を調整した。さらに扁平加工工程で、ナノ結晶化処理後の保磁力が最低となるように、微粉末の発生を抑え、扁平粉末の輪郭が平滑になるように、スラリー濃度、粉砕メディアの衝突エネルギーなどの扁平加工条件を最適化した。同時に、扁平粉末の面内に制御された適度なマイクロクラックを導入した。実施例8~10では空気分級により、保磁力の高い微粉末と、内在亀裂が磁気ギャップとなり軟磁気特性に影響を及ぼす粗大扁平粉末をそれぞれ5wt%除去した。
 表3に実施例13と14、比較例12と13を示す。実施例13と14、比較例12と13には、それぞれ実施例4のナノ結晶軟磁性金属扁平粉末と、比較例10のFe84.8Al5.6Si9.6(wt%)組成の軟磁性金属扁平粉末を用いた。この金属扁平粉末にシランカップリング剤で表面処理した後に耐熱ナイロン(PA−9T)と混合し、二軸混練機を用いて加熱混練することで樹脂複合組成物を得た。次いで、射出成形機を用いて厚み0.6mmのプレート状成形品を作製し、外径20mm−内径10mmで厚み0.6mmに抜き加工したサンプルで、透磁率と保磁力を測定した。前記サンプル形状を形状1とし、ナノ結晶軟磁性金属扁平粉末の配向性が乱れた状態でのコアロスを測定するために、外形12.8mm−内径7.5mmで厚み5mmのリング状成形品を形状2として準備した。形状1と形状2のサンプルに巻き線を施し、Bmと周波数が50mT−100kHzの条件でコアロスを測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1より、実施例1~5はいずれも実数(1MHz)および虚数透磁率(10MHz)の温度係数Kが−40℃~150℃の範囲で0≦K1≦0.20、−0.10≦K2≦0.10、−0.15≦K3≦0.05を満たしており、測定温度の透磁率への影響が軽微である。また、比較例1~4よりも高い実数および虚数透磁率を0℃で有しているとともに、コアロスがいずれも低い。比較例5のガスアトマイズ法により作製したFe84.8Al5.6Si9.6(wt%)組成の合金粉末を用いた金属扁平粉末では、0℃で透磁率が最大になり、85℃、150℃での透磁率の低下が顕著である。さらに、0℃での透磁率が大幅に不足しているともに、コアロスが高い。
 表2より、実施例6~12はいずれも実数(1MHz)および虚数透磁率(10MHz)の温度係数Kが−40℃~150℃の範囲で0≦K1≦0.20、−0.10≦K2≦0.10、−0.15≦K3≦0.05を満たしており、測定温度の透磁率への影響が軽微である。また、比較例6~9よりも著しく高い実数および虚数透磁率を0℃で有していて、コアロスが低い。特に空気分級で微粉末と粗大扁平粉末を除去した実施例8~10の透磁率は極めて高い値を示している。比較例10のガスアトマイズ法により作製したFe84.8Al5.6Si9.6(wt%)組成の合金粉末を用いた金属扁平粉末では、0℃で透磁率が最大になり、85℃、150℃での低下が顕著である。さらに、0℃での透磁率が不足しており、コアロスが高い。比較例11のFe84.0Al7.0Si9.0(wt%)組成の合金粉末を用いた金属扁平粉末では、比較例10よりは透磁率の温度依存性が小さいが、85℃を越えると透磁率の低下が顕著となり、0℃での透磁率も不足しており、コアロスが高い。
 図2に示すように、実施例4と9の実数透磁率(1MHz)は0℃付近で極大値を示すが、比較例10、11よりも透磁率の温度変化が小さく、しかも高い値を示している。特に実施例9は−40℃~150℃の温度範囲で著しく高い透磁率を有している。また、実施例10は粒径が小さいにもかかわらず、比較例10、11よりも高い透磁率を有しており、同等の透磁率とするための扁平粉末配合量を減量でき、樹脂複合シートの薄肉化とフレキシビリティーの向上を実現できる。
 表3より、実施例13と14はいずれも実数(1MHz)および虚数透磁率(10MHz)の温度係数Kが−40℃~150℃の範囲で0≦K1≦0.20、−0.10≦K2≦0.10、−0.15≦K3≦0.05を満たしており、測定温度の透磁率への影響が軽微である。また、比較例12よりも高い実数および虚数透磁率を0℃で有しており、粉末配合量の多い実施例14においても比較例12より成形加工性が優れている。このため成形加工品の薄肉化が容易となる。比較例12は0℃の透磁率が極大値を示し、温度上昇に伴い透磁率が顕著に低下している。比較例13は粉末配合量が多すぎたために成形できず、測定不可としている。コアロスは、ナノ結晶軟磁性金属扁平粉末の配向性の高い形状1、ランダム配向になっている形状2では、形状1の方が形状2よりも低い値を示すが、実施例13と14は比較例12よりも著しく低い値を示している。

Claims (5)

  1.  ナノ結晶粒子の粒径が5nm~30nm未満、結晶化度が65%~95%未満であるナノ結晶軟磁性金属扁平粉末であって、平均粒径D50付近の粒径の粉末におけるアスペクト比が20~80未満、保磁力が20A/m~150A/m未満で、さらに該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シート、または、樹脂複合組成物を成形した物の透磁率の温度係数Kn(nは1、2、3)が、—40℃~150℃以下の範囲で下記式(1)(2)(3)で示され、0≦K1≦0.20、−0.10≦K2≦0.10、−0.15≦K3≦0.05の範囲にあることを特徴とする、ナノ結晶軟磁性金属扁平粉末。
    K1=(μ(0℃)−μ(−40℃))/μ(−40℃)    (1)
    K2=(μ(85℃)−μ(−40℃))/μ(−40℃)   (2)
    K3=(μ(150℃)−μ(−40℃))/μ(−40℃)  (3)
    μ:透磁率(μ’:実数透磁率、μ”:虚数透磁率)、μ(0℃):0℃の透磁率
  2.  請求項1に記載のナノ結晶軟磁性金属扁平粉末で、平均粒径D50=20μm~40μm未満で、D50平均粒径付近の平均厚みが0.2μm~1.5μm未満であって、該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シートの保磁力が20A/m~100A/m未満であることを特徴とするナノ結晶軟磁性金属扁平粉末。
  3.  請求項1に記載のナノ結晶軟磁性金属扁平粉末で、平均粒径D50=40μm~100μm未満で、D50平均粒径付近の平均厚みが1.5μm~5μm未満であって、該ナノ結晶軟磁性金属扁平粉末を使用した、樹脂複合シートの保磁力が20A/m~80A/m未満であることを特徴とするナノ結晶軟磁性金属扁平粉末。
  4.  請求項1から3のいずれかに記載のナノ結晶軟磁性金属扁平粉末と樹脂よりなり、保磁力が20A/m~100A/m未満で、さらに外径20mm−内径10mmで厚みが0.15mmのリング状サンプルを3枚重ねた物を用いて、Bmと周波数が50mT−100kHzの条件で測定した時のコアロスが50~300kW/m未満であることを特徴とする、樹脂複合シート。
  5.  請求項1から3のいずれかに記載のナノ結晶軟磁性金属扁平粉末と樹脂よりなり、外径12.8mm−内径7.5mmで厚み5mmに成形加工した物を用いて、Bmと周波数が50mT−100kHzの条件で測定した時のコアロスが100~600kW/m未満であることを特徴とする、成形加工用の樹脂複合組成物。
PCT/JP2022/042779 2022-01-13 2022-11-11 軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに樹脂複合組成物 WO2023135933A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022013691A JP2023103144A (ja) 2022-01-13 2022-01-13 軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに樹脂複合組成物
JP2022-013691 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023135933A1 true WO2023135933A1 (ja) 2023-07-20

Family

ID=87278876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042779 WO2023135933A1 (ja) 2022-01-13 2022-11-11 軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに樹脂複合組成物

Country Status (2)

Country Link
JP (1) JP2023103144A (ja)
WO (1) WO2023135933A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269509A (ja) * 1998-03-19 1999-10-05 Hitachi Metals Ltd ノイズ抑制効果に優れた扁平状ナノ結晶軟磁性粉末およびその製造方法
JP2003209010A (ja) * 2001-11-07 2003-07-25 Mate Co Ltd 軟磁性樹脂組成物、その製造方法及び成形体
JP2009059753A (ja) * 2007-08-30 2009-03-19 Hitachi Chem Co Ltd 難燃化ノイズ抑制シート
JP2016094652A (ja) * 2014-11-14 2016-05-26 株式会社リケン 軟磁性合金および磁性部品
JP2021111766A (ja) * 2020-01-11 2021-08-02 株式会社メイト 軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに成形加工用樹脂複合コンパウンド

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269509A (ja) * 1998-03-19 1999-10-05 Hitachi Metals Ltd ノイズ抑制効果に優れた扁平状ナノ結晶軟磁性粉末およびその製造方法
JP2003209010A (ja) * 2001-11-07 2003-07-25 Mate Co Ltd 軟磁性樹脂組成物、その製造方法及び成形体
JP2009059753A (ja) * 2007-08-30 2009-03-19 Hitachi Chem Co Ltd 難燃化ノイズ抑制シート
JP2016094652A (ja) * 2014-11-14 2016-05-26 株式会社リケン 軟磁性合金および磁性部品
JP2021111766A (ja) * 2020-01-11 2021-08-02 株式会社メイト 軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに成形加工用樹脂複合コンパウンド

Also Published As

Publication number Publication date
JP2023103144A (ja) 2023-07-26

Similar Documents

Publication Publication Date Title
JP5710427B2 (ja) 磁性材料、磁性材料の製造方法および磁性材料を用いたインダクタ素子
JP5669389B2 (ja) 高周波用磁性材料とその製造方法
US8840800B2 (en) Magnetic material, method for producing magnetic material, and inductor element
EP2696356A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
EP2518740B1 (en) Method for producing a reactor
US8974608B2 (en) Powder magnetic core and the method of manufacturing the same
KR20050015563A (ko) 철계 비정질 금속 분말의 제조방법 및 이를 이용한 연자성코어의 제조방법
WO2021141140A1 (ja) 軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに成形加工用樹脂複合コンパウンド
WO2011016207A1 (ja) 複合磁性体及びその製造方法
US10576539B2 (en) Flat soft magnetic powder and production method therefor
KR20180048377A (ko) 연자성 합금 및 자성 부품
TW201426773A (zh) 磁性零件、用於其之軟磁性金屬粉末及其製造方法
JP2014204051A (ja) 軟磁性扁平粉末およびこれを用いた磁性シート
WO2023135933A1 (ja) 軟磁性金属扁平粉末およびそれを用いた樹脂複合シート並びに樹脂複合組成物
JP2023174580A (ja) 被覆希土類-鉄-窒素系磁性粉体、その製造方法、磁場増幅用磁性材料、超高周波吸収用磁性材料
TWI751302B (zh) 鎳系鐵氧體燒結體、線圈零件、及鎳系鐵氧體燒結體的製造方法
EP4280234A1 (en) Magnetic composite
CN112635147B (zh) 一种软磁性粉末及其制备方法和用途
WO2022202760A1 (ja) 高周波用磁性材料とその製造法
US20240177902A1 (en) Magnetic core and magnetic component
US20240047109A1 (en) Magnetic core and magnetic component
WO2023090220A1 (ja) 磁性粉体の製造方法、磁場増幅用磁性材料、および超高周波吸収用磁性材料
WO2024024853A1 (ja) 複合磁性シート
JPH06275418A (ja) 磁気シールド用粉末
WO2024038829A1 (ja) α-Fe含有希土類-鉄-窒素系磁性粉体、その製造方法、磁場増幅用磁性材料、超高周波吸収用磁性材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920453

Country of ref document: EP

Kind code of ref document: A1