WO2023087866A1 - 蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂制备方法及其应用 - Google Patents

蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂制备方法及其应用 Download PDF

Info

Publication number
WO2023087866A1
WO2023087866A1 PCT/CN2022/117734 CN2022117734W WO2023087866A1 WO 2023087866 A1 WO2023087866 A1 WO 2023087866A1 CN 2022117734 W CN2022117734 W CN 2022117734W WO 2023087866 A1 WO2023087866 A1 WO 2023087866A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
nitrate
honeycomb ceramic
carbon film
monolithic catalyst
Prior art date
Application number
PCT/CN2022/117734
Other languages
English (en)
French (fr)
Inventor
李霞章
黄杰
姚超
左士祥
刘经伟
业绪华
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州大学 filed Critical 常州大学
Publication of WO2023087866A1 publication Critical patent/WO2023087866A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the field of environmental protection, and in particular relates to a honeycomb ceramic/biological carbon film/rare earth perovskite integral catalyst and a preparation method and application thereof.
  • VOCs volatile organic compounds
  • the honeycomb monolithic catalyst is the most common application in the field of environmental protection. It consists of a monolithic structure of many narrow, straight or curved parallel channels. It has superior performance over traditional granular catalysts, such as smaller bed pressure drop, mass transfer The advantages of high efficiency, easy assembly, disassembly and replacement facilitate the formation of a more compact, clean and energy-saving process.
  • the coating method is a process that can produce monolithic catalysts on an industrial scale.
  • the catalyst is usually composed of a carrier skeleton and a coating containing active components. Since the active components are loaded on the inner wall surface of the carrier pores, the diffusion distance of the reaction gas molecules is short. , can make the reaction proceed quickly, and the reaction gas molecules can fully contact the catalyst to improve the catalytic performance.
  • the second carrier provides a high specific surface area for the attachment of the active component, and then carries out the loading of the active component;
  • the second is the direct coating method, which makes the catalyst powder or active component precursor into a slurry, and adjusts the solid content , pH, and the amount of binder to control the performance of the slurry, and then the carrier is immersed in it, taken out, dried and roasted to make a monolithic catalyst.
  • Rare earth perovskite is a kind of ABO 3 type bimetal composite oxide, which has attracted extensive attention due to its superior low-temperature catalytic oxidation activity, low cost and easy availability. Its activity is significantly better than that of the corresponding single oxide.
  • the catalytic activity of pure perovskite is limited due to its small specific surface area and the characteristics that large particles are easy to fall off.
  • Rare-earth perovskites prepared by traditional methods usually require the addition of a large amount of organic complexing agents. After synthesis, they are directly coated on honeycombs and are prone to agglomeration, which limits the exposure of their catalytic active sites.
  • Agricultural and forestry wastes such as straw, pomegranate peels, rice husks, leaves, etc. are rich in lignocellulose, which has a wide range of sources and is cheap.
  • agricultural and forestry waste biomass is used as raw material.
  • the agricultural and forestry waste biomass powder is partially degraded to produce a complexing agent.
  • the biomass degradation product is used as a combustion agent to prepare Carbon-based rare earth perovskite materials.
  • it is no report on using it as a complexing agent to support perovskite catalysts on honeycomb supports.
  • the invention provides a honeycomb ceramic/biological carbon film/rare earth perovskite monolithic catalyst and its preparation method and application.
  • the method of indirect coating on the honeycomb ceramic carrier through the second carrier layer of the biological carbon film is used as a monolithic catalyst for catalytic oxidation and degradation of VOCs volatile organic compounds.
  • the use of agricultural and forestry waste biomass to form the second carrier layer of the bio-carbon film on the surface of the honeycomb helps to increase the specific surface area of the carrier and provide more attachment sites for the active components. On the other hand, it can play the role of immobilizing the active components, which is beneficial to inhibiting the aggregation of active components and grain growth.
  • the technical solution adopted in the present invention is: a preparation method of honeycomb ceramic/biological carbon film/rare earth perovskite monolithic catalyst, comprising the following steps:
  • the preparation method is to stir in a water bath at 60-90° C. for 3-5 hours, and then add ammonia water dropwise to adjust the pH of the solution to neutral.
  • step (3) Immerse the honeycomb ceramics in the suspension of step (2) for 2-4 hours, dry after purging, and then calcinate in a muffle furnace at 300-500°C for 2-4 hours to obtain a finished product.
  • a muffle furnace at 300-500°C for 2-4 hours.
  • the agricultural and forestry waste biomass in step (1) is one or more of straw, pomegranate peel, rice husk, leaves, etc., and its main component is lignocellulose.
  • the obtained biomass powder was sieved with 30 mesh.
  • the rare earth nitrate in step (2) is any one or more of lanthanum nitrate, samarium nitrate, and praseodymium nitrate;
  • the transition metal nitrate is any one or more of iron nitrate, cobalt nitrate, manganese nitrate, nickel nitrate, and chromium nitrate;
  • the ratio of rare earth nitrate and transition metal nitrate is 1:1 according to the molar ratio of A position and B position (that is, the molar ratio of rare earth nitrate and transition metal nitrate is 1:1), and the biomass powder and rare earth
  • the mass ratio of nitrate (such as lanthanum nitrate) is 0.2-2:1.
  • the honeycomb ceramics in the step (3) can be any one of mullite, cordierite, silicon carbide, and attapulgite, and the impregnation requires that the whole honeycomb is immersed in the suspension. During purging, the airflow blows away the remaining suspension in the pores of the honeycomb ceramics at a uniform speed.
  • honeycomb ceramics/biological carbon film/rare earth perovskite integral catalyst prepared by the above method of the present invention agricultural and forestry wastes generate a biological carbon film on the surface of the honeycomb ceramic carrier as the second carrier layer, and the perovskite oxide passes through the biological carbon film for the second time.
  • the second carrier layer is indirectly coated on the honeycomb ceramic carrier, avoiding the disadvantages of perovskite being easy to fall off and large particles when directly coated, and the cost is low and easy to obtain.
  • the honeycomb ceramic/biological carbon film/rare earth perovskite monolith catalyst of the present invention has a good catalytic degradation effect on VOCs volatile organic compounds, for example, it can be used for catalytic oxidation of p-xylene.
  • the present invention also provides a catalytic oxidation method for benzenes (p-xylene and/or toluene and/or m-xylene), comprising the following steps : Put the honeycomb ceramic/biological carbon film/rare earth perovskite monolithic catalyst into the reaction furnace, bubble benzene through N 2 , use air as the balance gas, and pass it into the reaction device at the same time, then the reaction furnace is heated up, and the benzene is treated. catalytic oxidative degradation.
  • the present invention utilizes agricultural and forestry wastes to generate a biological carbon film on the surface of the honeycomb ceramic carrier as the second carrier layer, which avoids the disadvantages of perovskite being easy to fall off and large particles when directly coated, and is low in cost and easy to obtain.
  • the biochar film helps to increase the specific surface area of the carrier and provide more attachment sites for active components.
  • it can play the role of immobilizing active components, which is beneficial to inhibiting the aggregation of active components and grain growth, improves the high temperature resistance of the catalyst, and enables the catalyst to withstand short-term high temperature impact.
  • the pore structure of the biochar material is developed, and there are a large number of defects and unsaturated bonds on the surface. Oxygen and other heteroatoms are easily adsorbed on these defects to form various functional groups such as carboxyl, anhydride, and carbonyl, which promote the adsorption of VOCs, thereby facilitating the catalytic oxidation reaction.
  • Figure 1 is the XRD spectrum of LaFeO 3 /honeycomb ceramics and LaFeO 3 /biochar/honeycomb ceramics;
  • Fig. 2 is the optical biomicrograph of the LaFeO 3 / biochar/honeycomb ceramic surface that embodiment 1 obtains;
  • Fig. 3 is the LaFeO that embodiment 1 obtains the Raman spectrometer optical microscope picture of/biochar/honeycomb ceramic surface
  • Fig. 4 is the scanning electron micrograph of LaFeO 3 /biochar/honeycomb ceramic surface 2 ⁇ m scale range that embodiment 1 obtains;
  • Fig. 5 is the Raman spectrogram of LaFeO 3 /biochar/honeycomb ceramics that embodiment 1 obtains;
  • FIG. 6 is an optical microscope photo of the LaFeO 3 /honeycomb ceramic obtained in Comparative Example 1.
  • the pomegranate peel is washed, dried, and ground to obtain the pomegranate peel powder.
  • the Raman spectrum of the LaFeO 3 /biochar composite is shown in Fig. 5:
  • the Raman spectrum of the LaFeO 3 /biochar composite has two characteristic peaks at 1351 cm ⁇ 1 and 1533 cm ⁇ 1 , corresponding to D Peak (sp 3 of carbon atom) and G peak (sp 2 of carbon atom). This result confirmed the presence of carbon in the composite.
  • the invention also provides an application method of the LaFeO 3 /biological carbon film/honeycomb ceramic composite material for thermocatalytic degradation of VOC gas p-xylene.
  • the method is as follows: the LaFeO3 /biological carbon film/honeycomb ceramics obtained in Example 1 are put into the quartz tube of the evaluation device, and p-xylene is bubbled by N2 , and the air is used as a balance gas, and simultaneously passed into the reaction device to test After the initial concentration, the temperature of the reaction furnace is raised, and the real-time concentration is recorded every 10°C to calculate the degradation rate of p-xylene. Generally, the temperature at which the degradation rate reaches 90% is used as the evaluation of the ability to degrade p-xylene, namely T 90 .
  • the T 90 of the LaFeO 3 /biological carbon film/honeycomb ceramic composite was tested by the above method to be 307°C.
  • the pomegranate peel is washed, dried, and ground to obtain the pomegranate peel powder.
  • the T 90 of the LaCoO 3 /biological carbon membrane/honeycomb ceramic composite material tested by the method of Example 1 is 309°C.
  • the pomegranate peel is washed, dried, and ground to obtain the pomegranate peel powder.
  • the T 90 of the LaMnO 3 /biological carbon membrane/honeycomb ceramic composite material tested by the method of Example 1 is 302°C.
  • the pomegranate peel is washed, dried, and ground to obtain the pomegranate peel powder.
  • the T 90 of the LaNiO 3 /biological carbon membrane/honeycomb ceramic composite material tested by the method of Example 1 is 305°C.
  • the pomegranate peel is washed, dried, and ground to obtain the pomegranate peel powder.
  • the T 90 of the LaCrO 3 /biological carbon film/honeycomb ceramic composite material tested by the method of Example 1 is 318°C.
  • the pomegranate peel is washed, dried, and ground to obtain the pomegranate peel powder.
  • the T 90 of the SmFeO 3 /biological carbon membrane/honeycomb ceramic composite material tested by the method of Example 1 is 316°C.
  • the pomegranate peel is washed, dried, and ground to obtain the pomegranate peel powder.
  • the T 90 of the PrFeO 3 /biological carbon membrane/honeycomb ceramic composite material tested by the method of Example 1 is 315°C.
  • the pomegranate peel is washed, dried, and ground to obtain the pomegranate peel powder.
  • the T90 of the LaFeO 3 /honeycomb ceramic composite material tested by the method of Example 1 is 380°C
  • the pomegranate peel is washed, dried, and ground to obtain the pomegranate peel powder.
  • the introduction of excess biomass carbon blocked the abundant active sites on the surface of the honeycomb ceramic itself and the catalytic active sites of the perovskite.
  • the T 90 of the LaFeO 3 /excess biochar/honeycomb ceramic composite material tested by the method of Example 1 is 365°C
  • the pomegranate peel is washed, dried, and ground to obtain the pomegranate peel powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明属于环境保护领域,具体涉及蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂及其制备方法和应用,利用农林废弃生物质在蜂窝陶瓷表面形成生物碳膜第二载体层,并将钙钛矿氧化物间接涂覆在蜂窝陶瓷载体上形成整体式催化剂,一方面有助于提高载体的比表面积,为活性组分提供更多的附着位点。另一方面,可以起到固定活性组分的作用,对抑制活性组分发生聚集和晶粒长大有利,同时部分碳元素掺杂进入钙钛矿的晶格,造成缺陷,提高了催化剂的低温催化氧化活性。而且生物炭孔隙结构发达,表面有大量的缺陷和不饱和键。氧和其他杂原子容易吸附在这些缺陷上,形成羧基、酸酐和羰基等多种官能团,促进催化氧化降解VOCs挥发性有机物。

Description

蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂制备方法及其应用 技术领域
本发明属于环境保护领域,具体涉及蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂及其制备方法和应用。
背景技术
随着石油化工、喷涂、制鞋业和印刷等行业的迅速发展,以芳烃类有机物为代表的挥发性有机化合物(VOCs)排放量逐渐增加,对环境、动植物生长及人类健康构成很大威胁。催化氧化因具有净化率高、无二次污染、能耗低的特点成为当前有机废气治理行业的研究热点,而制备廉价高效的催化剂又是催化氧化技术的核心。
蜂窝整体式催化剂在环保领域中的应用最常见,由许多狭窄、直的或是弯曲的平行通道的整体结构组成,具有超越传统颗粒催化剂的优越性能,如较小的床层压降、传质效率高等优点,易于装卸和更换,便于形成更紧凑、清洁和节能的工艺。涂覆法是一种可工业化大规模生产整体式催化剂的工艺,催化剂通常由载体骨架和包含有活性组分的涂层组成,由于活性组分负载于载体孔道内壁表面,反应气体分子扩散距离短,可以使反应快速进行,并且反应气体分子能够与催化剂充分接触进而提升催化性能,而提升催化剂涂层的稳定性、耐磨损性及高活性是目前涂覆型整体式催化剂研究的重点。整体式催化剂涂层的制备通常有两种方法:一种是间接涂覆法,在预处理后的载体上先制备氧化物(TiO 2、SiO 2)、沸石分子筛、炭材料等涂层作为第二载体,为活性组分的附着提供高的比表面积,再进行活性组分的负载;第二种是直接涂覆法,将催化剂 粉体或活性组分前体制成浆料,通过调节固含量、pH、黏结剂的用量控制浆料性能,然后将载体浸入其中,取出干燥焙烧后制成整体式催化剂。
以贵金属Pt,Pd,Rh为活性组分的负载催化剂是目前广泛使用的商业催化剂,但是其高昂的价格限制了其应用。稀土钙钛矿是一种ABO 3型双金属复合氧化物,由于其优越的低温催化氧化活性,廉价易得等优点得到了广泛关注。其活性明显优于相应的单一氧化物。但是,单纯的钙钛矿因其较小的比表面积以及大颗粒易脱落的特性使其催化活性受到限制。传统方法制备的稀土钙钛矿通常需要加入大量的有机络合剂,合成后直接涂覆在蜂窝上易团聚,限制了其催化活性位的暴露。
农林废弃物如秸秆、石榴皮、稻壳、树叶等含有丰富的木质纤维素,来源广泛,价格低廉。在申请号CN 112604690 A的专利中,以农林废弃生物质为原料,在水浴过程中,农林废弃生物质粉末发生部分降解,产生络合剂作用,同时利用生物质降解产物作为燃烧剂,制备出了碳基稀土钙钛矿材料。以其为络合剂在蜂窝载体上负载钙钛矿催化剂尚无报道。
发明内容
鉴于蜂窝直接涂覆钙钛矿氧化物分散性差,易脱落的缺点,本发明提供一种蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂及其制备方法和应用,将钙钛矿氧化物通过生物碳膜第二载体层间接涂覆在蜂窝陶瓷载体的方法,并以其作为整体式催化剂用于催化氧化降解VOCs挥发性有机物。利用农林废弃生物质在蜂窝表面形成生物碳膜第二载体层,一方面有助于提高载体的比表面积,为活性组分提供更多的附着位点。另一方面,可以起到固定活性组分的作用,对抑制活性组分发生聚集和晶粒长大有利,同时部分碳元素掺杂进入钙钛矿的晶格,造成缺陷,提高了催化剂的低温催化氧化活性。而且生物炭孔隙结构发达, 表面有大量的缺陷和不饱和键。氧和其他杂原子容易吸附在这些缺陷上,形成羧基、酸酐和羰基等多种官能团,促进催化反应的进行。
为达到上述发明目的,本发明所采用的技术方案为:一种蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的制备方法,包括如下步骤:
(1)取农林废弃生物质洗净烘干研碎,得到生物质粉末;
(2)称取稀土硝酸盐、过渡金属硝酸盐和步骤(1)的生物质粉末加入到去离子水中,配置成中性的均匀悬浊液。
进一步的,配置方法为60~90℃水浴搅拌3~5h,滴加氨水调节溶液pH至中性。
(3)将蜂窝陶瓷浸渍在步骤(2)的悬浊液中2-4h,吹扫后烘干,然后在马弗炉300-500℃煅烧2-4h后得到成品,在本煅烧温度下,可以避免因煅烧时间过长生物碳膜消失,并影响蜂窝整体式催化剂的稳定性,时间过短钙钛矿不易晶化形成的问题。
进一步的,步骤(1)中的农林废弃生物质为秸秆、石榴皮、稻壳、树叶等中的一种或几种,其主要成分为木质纤维素。得到的生物质粉末过筛30目。
进一步的,步骤(2)中的稀土硝酸盐为硝酸镧,硝酸钐,硝酸镨中的任意一种或多种;
和/或,过渡金属硝酸盐为硝酸铁,硝酸钴,硝酸锰,硝酸镍,硝酸铬中的任意一种或多种;
和/或,稀土硝酸盐与过渡金属硝酸盐按A位、B位摩尔比为1:1进行配比(即稀土硝酸盐与过渡金属硝酸盐摩尔比为1:1),生物质粉末与稀土硝酸盐(例如硝酸镧)的质量比为0.2~2:1。
步骤(3)中的蜂窝陶瓷可以是莫来石,堇青石,碳化硅,凹凸棒石中的任意 一种,浸渍需要蜂窝整体浸渍在悬浊液中。吹扫时气流匀速吹尽在所述蜂窝陶瓷的孔道中残留的悬浊液。
本发明上述方法制得的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂,农林废弃物在蜂窝陶瓷载体表面生成生物碳膜作为第二载体层,钙钛矿氧化物通过生物碳膜第二载体层间接涂覆在蜂窝陶瓷载体,避免钙钛矿直接涂覆易脱落,颗粒大的缺点,而且成本低廉,易获取。最重要的是本发明的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂对VOCs挥发性有机物具有很好的催化降解作用,例如可以用于对二甲苯进行催化氧化。
基于本发明的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂,本发明还提供了对苯类(对二甲苯和/或甲苯和/或间二甲苯)的催化氧化方法,包括如下步骤:将蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂放入反应炉中,通过N 2鼓泡苯类,空气作为平衡气,同时通入反应装置,之后反应炉升温,进行对苯类的催化氧化降解。
与现有的技术相比,本发明的的有益效果在于:
1.本发明利用农林废弃物在蜂窝陶瓷载体表面生成生物碳膜作为第二载体层,避免钙钛矿直接涂覆易脱落,颗粒大的缺点,而且成本低廉,易获取。
2.生物碳膜作为第二载体层,一方面有助于提高载体的比表面积,为活性组分提供更多的附着位点。另一方面,可以起到固定活性组分的作用,对抑制活性组分发生聚集和晶粒长大有利,提高了催化剂的抗高温性能,使催化剂能承受短时间高温冲击。
3.生物炭材料孔隙结构发达,表面有大量的缺陷和不饱和键。氧和其他杂原子容易吸附在这些缺陷上,形成羧基、酸酐和羰基等多种官能团,促进VOCs的吸附,从而利于催化氧化反应的进行。
附图说明
图1为LaFeO 3/蜂窝陶瓷和LaFeO 3/生物炭/蜂窝陶瓷的XRD谱图;
图2,为实施例1得到的LaFeO 3/生物炭/蜂窝陶瓷表面的光学生物显微镜照片;
图3为实施例1得到的LaFeO 3/生物炭/蜂窝陶瓷表面的拉曼光谱仪光学显微镜照片;
图4为实施例1得到的LaFeO 3/生物炭/蜂窝陶瓷表面2μm标尺范围的扫描电镜照片;
图5为实施例1得到的LaFeO 3/生物炭/蜂窝陶瓷的拉曼光谱图;
图6为对比实施例1得到的LaFeO 3/蜂窝陶瓷的光学显微镜照片。
具体实施方式
本发明不局限于下列具体实施方式,本领域一般技术人员根据本发明公开的内容,可以采用其他多种具体实施方式实施本发明的,或者凡是采用本发明的设计结构和思路,做简单变化或更改的,都落入本发明的保护范围。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
本发明下面结合实施例作进一步详述:
实施例1
取石榴皮洗净烘干研碎,得到石榴皮粉末。称取4.33g硝酸镧和4.04g硝酸铁溶解在100mL去离子水中,加入1.0g石榴皮粉末,80℃水浴搅拌,保温3h,滴加氨水调节pH值至中性,将蜂窝陶瓷浸渍在所得悬浊液中2h,吹扫后烘干,放入马弗炉中400℃保温2h,得到成品蜂窝陶瓷/生物碳膜/LaFeO 3
在不影响蜂窝陶瓷的整体结构的情况下,从蜂窝陶瓷表层刮下粉末,并对样品进行X射线粉末衍射实验,同时在显微镜下观察涂覆后的蜂窝陶瓷的形貌和结构,按照实施例1的工艺参数制得的LaFeO 3/生物炭/蜂窝陶瓷纳米结构复 合材料、与LaFeO 3/蜂窝陶瓷的XRD图谱如图1所示,通过对照LaFeO 3的PDF卡片可以得知,在角度=22.6°、32.2°、39.7°、46.2°、57.4°、67.4°等处出现了LaFeO 3特有的衍射特征峰,此外因为复合材料中的碳为无定形状态,在XRD图谱中无法显示出有其对应的特征衍射峰,同时结合显微镜照片图2,图3,以及扫描电镜图4,可以证明了LaFeO 3通过生物碳膜第二载体层间接涂覆在蜂窝陶瓷载体。
此外,LaFeO 3/生物炭复合材料的拉曼光谱图如图5所示:LaFeO 3/生物炭复合材料的拉曼光谱在1351cm -1和1533cm -1处有两个特征峰,分别对应于D峰(碳原子的sp 3)和G峰(碳原子的sp 2)。这一结果证实了复合材料中有碳的存在。
本发明还提供了LaFeO 3/生物碳膜/蜂窝陶瓷复合材料用于热催化降解VOC气体对二甲苯的应用方法。
所述方法为:将实施例1所得的LaFeO 3/生物碳膜/蜂窝陶瓷放入评价装置的石英管中,通过N 2鼓泡对二甲苯,空气作为平衡气,同时通入反应装置,测试初始浓度,之后反应炉升温,每隔10℃记录实时浓度,计算对二甲苯的降解率,一般通过降解率达到90%的温度高低作为评价降解对二甲苯的能力即T 90
经过上述方法测试LaFeO 3/生物碳膜/蜂窝陶瓷复合材料的T 90为307℃。
实施例2
取石榴皮洗净烘干研碎,得到石榴皮粉末。称取4.33g硝酸镧和2.91g硝酸钴溶解在100mL去离子水中,加入1.5g石榴皮粉末,60℃水浴搅拌,保温4h,滴加氨水调节pH值至中性,将蜂窝陶瓷浸渍在所得悬浊液中2h,吹扫后烘干,放入马弗炉中400℃保温3h,得到成品蜂窝陶瓷/生物碳膜/LaCoO 3
经过实施例1方法测试LaCoO 3/生物碳膜/蜂窝陶瓷复合材料的T 90为309℃。
实施例3
取石榴皮洗净烘干研碎,得到石榴皮粉末。称取4.33g硝酸镧和2.50g硝酸锰溶解在100mL去离子水中,加入2g石榴皮粉末,90℃水浴搅拌,保温4h,滴加氨水调节pH值至中性,将蜂窝陶瓷浸渍在所得悬浊液中4h,吹扫后烘干,放入马弗炉中400℃保温4h,得到成品蜂窝陶瓷/生物碳膜/LaMnO 3
经过实施例1方法测试LaMnO 3/生物碳膜/蜂窝陶瓷复合材料的T 90为302℃。
实施例4
取石榴皮洗净烘干研碎,得到石榴皮粉末。称取4.33g硝酸镧和2.90g硝酸镍溶解在100mL去离子水中,加入0.86g石榴皮粉末,60℃水浴搅拌,保温3h,滴加氨水调节pH值至中性,将蜂窝陶瓷浸渍在所得悬浊液中2h,吹扫后烘干,放入马弗炉中300℃保温2h,得到成品蜂窝陶瓷/生物碳膜/LaNiO 3
经过实施例1方法测试LaNiO 3/生物碳膜/蜂窝陶瓷复合材料的T 90为305℃。
实施例5
取石榴皮洗净烘干研碎,得到石榴皮粉末。称取4.33g硝酸镧和4.00g硝酸铬溶解在100mL去离子水中,加入2.17g石榴皮粉末,90℃水浴搅拌,保温5h,滴加氨水调节pH值至中性,将蜂窝陶瓷浸渍在所得悬浊液中4h,吹扫后烘干,放入马弗炉中500℃保温2h,得到成品蜂窝陶瓷/生物碳膜/LaCrO 3
经过实施例1方法测试LaCrO 3/生物碳膜/蜂窝陶瓷复合材料的T 90为318℃。
实施例6
取石榴皮洗净烘干研碎,得到石榴皮粉末。称取4.44g硝酸钐和4.04g硝酸 铁溶解在100mL去离子水中,加入2.17g石榴皮粉末,90℃水浴搅拌,保温5h,滴加氨水调节pH值至中性,将蜂窝陶瓷浸渍在所得悬浊液中4h,吹扫后烘干,放入马弗炉中500℃保温3h,得到成品蜂窝陶瓷/生物碳膜/SmFeO 3
经过实施例1方法测试SmFeO 3/生物碳膜/蜂窝陶瓷复合材料的T 90为316℃。
实施例7
取石榴皮洗净烘干研碎,得到石榴皮粉末。称取4.35g硝酸镨和4.04g硝酸铁溶解在100mL去离子水中,加入2.17g石榴皮粉末,90℃水浴搅拌,保温5h,滴加氨水调节pH值至中性,将蜂窝陶瓷浸渍在所得悬浊液中4h,吹扫后烘干,放入马弗炉中400℃保温4h,得到成品蜂窝陶瓷/生物碳膜/PrFeO 3
经过实施例1方法测试PrFeO 3/生物碳膜/蜂窝陶瓷复合材料的T 90为315℃。
对比实施例1
取石榴皮洗净烘干研碎,得到石榴皮粉末。称取4.33g硝酸镧和4.04g硝酸铁溶解在100mL去离子水中,加入2.10g柠檬酸,80℃水浴搅拌,保温3h,滴加氨水调节pH值至中性,将蜂窝陶瓷浸渍在所得悬浊液中2h,吹扫后烘干,放入马弗炉中400℃保温2h,得到复合材料LaFeO 3/蜂窝陶瓷。由图6可观察到LaFeO 3直接涂覆在蜂窝陶瓷上,存在颗粒大,易脱落的缺点。
经过实施例1方法测试LaFeO 3/蜂窝陶瓷复合材料的T 90为380℃
对比实施例2
取石榴皮洗净烘干研碎,得到石榴皮粉末。称取4.33g硝酸镧和4.04g硝酸铁溶解在100mL去离子水中,加入4g石榴皮粉末,80℃水浴搅拌,保温3h,滴加氨水调节pH值至中性,将蜂窝陶瓷浸渍在所得悬浊液中2h,吹扫后烘干,放入马弗炉中400℃保温2h,得到成品蜂窝陶瓷/生物碳膜/LaFeO 3。过量生物 质碳的引入堵塞了蜂窝陶瓷自身表面丰富的活性位点以及钙钛矿的催化活性位点。
经过实施例1方法测试LaFeO 3/过量生物碳/蜂窝陶瓷复合材料的T 90为365℃
对比实施例3
取石榴皮洗净烘干研碎,得到石榴皮粉末。称取1g石榴皮粉末溶解在100mL去离子水中,80℃水浴搅拌,保温3h,将蜂窝陶瓷浸渍在所得悬浊液中3h,吹扫后烘干,放入马弗炉中400℃保温2h,得到成品蜂窝陶瓷/生物碳。
经过实施例1方法测试蜂窝陶瓷/生物碳复合材料,由于蜂窝陶瓷和生物炭自身几乎无催化活性,对VOC气体对二甲苯的降解率极低,可忽略不计。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的制备方法,其特征在于:包括如下步骤:
    (1)取农林废弃生物质洗净烘干研碎,得到生物质粉末;
    (2)称取稀土硝酸盐、过渡金属硝酸盐和步骤(1)的生物质粉末加入到去离子水中,配置成中性的均匀悬浊液;
    (3)将蜂窝陶瓷浸渍在步骤(2)的悬浊液中2-4h,吹扫后烘干,然后在马弗炉300-500℃煅烧2-4h后得到成品。
  2. 根据权利要求1所述的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的制备方法,其特征在于:步骤(1)中的农林废弃生物质为秸秆、石榴皮、稻壳、树叶中的任意一种或几种。
  3. 根据权利要求1所述的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的制备方法,其特征在于:步骤(2)中配置方法为60~90℃水浴搅拌3~5h,滴加氨水调节溶液pH至中性。
  4. 根据权利要求1所述的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的制备方法,其特征在于:步骤(2)中的稀土硝酸盐为硝酸镧,硝酸钐,硝酸镨中的任意一种或多种;
    和/或,过渡金属硝酸盐为硝酸铁,硝酸钴,硝酸锰,硝酸镍,硝酸铬中的任意一种或多种。
  5. 根据权利要求1所述的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的制备方法,其特征在于:稀土硝酸盐与过渡金属硝酸盐摩尔比为1:1,生物质粉末与稀土硝酸盐的质量比为0.2~2:1。
  6. 根据权利要求1所述的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的制备方法,其特征在于:步骤(3)中的蜂窝陶瓷为莫来石,堇青石,碳化硅,凹 凸棒石中的任意一种。
  7. 根据权利要求1至6中任一项所述的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的制备方法制得的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂。
  8. 根据权利要求7所述的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的应用,其特征在于:用于催化降解苯类挥发性有机物。
  9. 根据权利要求8所述的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的应用,其特征在于:包括如下步骤:将蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂放入反应炉中,通过N 2鼓泡苯类,空气作为平衡气,同时通入反应装置,之后反应炉升温,进行对苯类的催化氧化降解。
  10. 根据权利要求8所述的蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂的应用,其特征在于:所述苯类为对二甲苯和/或甲苯和/或间二甲苯。
PCT/CN2022/117734 2021-11-17 2022-09-08 蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂制备方法及其应用 WO2023087866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111361438.9A CN113976130B (zh) 2021-11-17 2021-11-17 蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂制备方法及其应用
CN202111361438.9 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023087866A1 true WO2023087866A1 (zh) 2023-05-25

Family

ID=79749012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117734 WO2023087866A1 (zh) 2021-11-17 2022-09-08 蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂制备方法及其应用

Country Status (2)

Country Link
CN (1) CN113976130B (zh)
WO (1) WO2023087866A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976130B (zh) * 2021-11-17 2023-12-08 常州大学 蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂制备方法及其应用
CN115254198A (zh) * 2022-08-23 2022-11-01 山东菲天环保科技有限公司 一种纳米生物质纤维增强低温脱硝催化剂的制作方法
CN115254011A (zh) * 2022-08-23 2022-11-01 山东菲天环保科技有限公司 一种纳米生物质纤维增强的涂敷型分子筛吸附材料及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088961A (zh) * 1993-12-08 1994-07-06 林科 一种钙钛矿型稀土复合氧化物一氧化碳燃烧催化剂的制备方法及其产品和用途
CN102728341A (zh) * 2012-07-12 2012-10-17 中国石油大学(华东) 一种负载型钙钛矿催化剂及其制备工艺
CN112604690A (zh) * 2020-12-07 2021-04-06 常州大学 利用农林废弃物制备稀土钙钛矿/生物炭复合材料的方法及其应用
CN113976130A (zh) * 2021-11-17 2022-01-28 常州大学 蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂制备方法及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439290A (zh) * 2008-12-31 2009-05-27 浙江工业大学 一种蜂窝陶瓷型钙钛矿催化燃烧催化剂及其制备和应用
JP7069133B2 (ja) * 2016-11-14 2022-05-17 リサーチ トライアングル インスティテュート ペロブスカイト触媒およびその使用
CN106944093B (zh) * 2017-04-24 2019-11-05 北京三聚环保新材料股份有限公司 一种钙钛矿型蜂窝整体式甲烷催化燃烧催化剂及其制备方法
JP2018202406A (ja) * 2017-05-31 2018-12-27 古河電気工業株式会社 Voc酸化触媒構造体及びその製造方法、ならびに、voc処理装置及び触媒成形体
CN108325536B (zh) * 2018-02-10 2021-02-12 普利飞尔环保科技(上海)有限公司 一种催化VOCs的锰-铜基复合氧化物掺杂稀土元素的催化剂及其制备方法和应用
CN111468131B (zh) * 2020-05-28 2022-05-24 福建师范大学 一种具有高催化氧化活性LaCoO3催化剂的合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088961A (zh) * 1993-12-08 1994-07-06 林科 一种钙钛矿型稀土复合氧化物一氧化碳燃烧催化剂的制备方法及其产品和用途
CN102728341A (zh) * 2012-07-12 2012-10-17 中国石油大学(华东) 一种负载型钙钛矿催化剂及其制备工艺
CN112604690A (zh) * 2020-12-07 2021-04-06 常州大学 利用农林废弃物制备稀土钙钛矿/生物炭复合材料的方法及其应用
CN113976130A (zh) * 2021-11-17 2022-01-28 常州大学 蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI LIU ET AL.: "Boosting photocatalytic reduction of nitrate to ammonia enabled by perovskite/biochar nanocomposites with oxygen defects and O-containing functional groups", CHEMOSPHERE, vol. 294, 1 February 2022 (2022-02-01), XP086978563, ISSN: 0045-6535, DOI: 10.1016/j.chemosphere.2022.133763 *

Also Published As

Publication number Publication date
CN113976130A (zh) 2022-01-28
CN113976130B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2023087866A1 (zh) 蜂窝陶瓷/生物碳膜/稀土钙钛矿整体式催化剂制备方法及其应用
CN108325536B (zh) 一种催化VOCs的锰-铜基复合氧化物掺杂稀土元素的催化剂及其制备方法和应用
CN110508309B (zh) 一种氮化碳负载铬氧化物催化剂及其制备方法和应用
CN109999830A (zh) 负载CoCr(Mn/Al)FeNi高熵合金的纳米颗粒催化剂及其制备方法和应用
CN109772465B (zh) 一种水溶性碳点改性钙钛矿型催化材料的制备方法
CN110013831A (zh) 一种负载CoCrCuFeNi高熵合金的纳米颗粒活性炭及其制备方法和应用
Deng et al. Effect of coating modification of cordierite carrier on catalytic performance of supported NiMnO3 catalysts for VOCs combustion
US20220040675A1 (en) Three-dimensionally ordered macroporous oxygen-deficient cerium dioxide catalyst, and preparation method and application thereof
JP5607131B2 (ja) 排ガス浄化用触媒
CN110479261B (zh) VOCs催化氧化负载型催化剂及其制备方法
CN112007688A (zh) 一种用于低温催化氧化挥发性有机污染物的钌催化剂、其制备方法及应用
CN111111656B (zh) 一种常温催化引燃VOCs自持燃烧的耐高温催化燃烧催化剂及其制备方法和应用
CN112452326B (zh) 铜黑钛催化剂的制备方法及其在选择性催化氧化脱硝中的应用
CN113042039A (zh) 一种钯基催化剂、其制备方法及应用
JPH06304449A (ja) 窒素酸化物の除去装置
CN109317145B (zh) 一种锰氧化物贵金属复合型催化剂、制备方法及其应用
CN110302803A (zh) 用于VOCs催化燃烧的复合催化剂及其制备方法
CN115445599A (zh) 一种利用超声双雾化法制备蜂窝催化剂及其催化氧化降解VOCs的用途
CN114100604B (zh) LaMnO3催化剂及其制备方法和应用
JPH04250852A (ja) 含炭素化合物を酸化するための触媒およびその製造方法
TWI413548B (zh) 處理含有機酸之排放廢氣用觸媒,及含有機酸之排放廢氣的處理方法
JP2007144413A (ja) 排ガス浄化用触媒
CN112536044A (zh) 利用复合催化剂进行空气污染处理的方法
TWI411470B (zh) 用於蓄熱式觸媒焚化法之觸媒、其製備方法及其用於處理揮發性有機物之方法
JPH0356140A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894406

Country of ref document: EP

Kind code of ref document: A1