WO2023087749A1 - 一种线性阻变元件及制备方法 - Google Patents

一种线性阻变元件及制备方法 Download PDF

Info

Publication number
WO2023087749A1
WO2023087749A1 PCT/CN2022/105406 CN2022105406W WO2023087749A1 WO 2023087749 A1 WO2023087749 A1 WO 2023087749A1 CN 2022105406 W CN2022105406 W CN 2022105406W WO 2023087749 A1 WO2023087749 A1 WO 2023087749A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
resistive
functional unit
conductive
Prior art date
Application number
PCT/CN2022/105406
Other languages
English (en)
French (fr)
Inventor
康赐俊
沈鼎瀛
单利军
邱泰玮
刘宇
张雅君
Original Assignee
厦门半导体工业技术研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门半导体工业技术研发有限公司 filed Critical 厦门半导体工业技术研发有限公司
Publication of WO2023087749A1 publication Critical patent/WO2023087749A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides

Definitions

  • the present application relates to the technical field of semiconductor devices, in particular to a linear resistive variable element and a preparation method thereof.
  • the resistance variable element is an element that can provide resistance change.
  • the change of material resistance value is often used for data storage.
  • the existing resistance variable element often generates a conductive wire between two electrodes.
  • the single conductive wire The linear resistive characteristic is poor, and it is difficult to apply to the application environment such as the linear weight of the neural network.
  • Embodiments of the present application provide a linear resistive variable element and a manufacturing method, capable of generating multiple conductive filaments between two electrodes.
  • An embodiment of the present application provides a linear resistive variable element, including a substrate unit, a functional unit, and an electrode unit;
  • the substrate unit includes a substrate layer; the substrate layer is used for connecting the functional unit and the electrode unit;
  • the electrode unit includes a first electrode and a second electrode, the first electrode and the second electrode are deposited on the substrate layer, and the functional unit is connected between the first electrode and the second electrode;
  • the functional unit includes a first dielectric layer and a resistive switch layer, and the first dielectric layer and the resistive switch layer are alternately stacked and deposited on the substrate layer, and the resistive switch layer is at least two layers, so
  • the resistance variable layer is formed with conductive wires for conductively connecting the first electrode and the second electrode.
  • conductive filaments of a second thickness are formed in the resistive switchable layer, and the second thickness corresponds to the first thickness, wherein , the conductive filament is an atomic-scale conductive filament.
  • a through hole is opened on the substrate layer, the through hole is filled with a conductive element, and the conductive element is electrically connected to the second electrode.
  • the functional unit is further connected to a second dielectric layer, and a wire is passed through the second dielectric layer, and the wire is electrically connected to the first electrode.
  • the first electrode and the second electrode are vertically arranged on the substrate layer.
  • the first electrode and the second electrode are arranged symmetrically on both sides of the functional unit.
  • the number of the electrode units connected to the substrate layer is multiple.
  • the resistive switch layer is made of resistive switchable material.
  • the first dielectric layer is an insulating layer, and the insulating layer is made of insulating material; the second dielectric layer is a dielectric material layer.
  • Another aspect of the embodiment of the present application provides a method for manufacturing a linear resistive variable element.
  • the method includes: opening a through hole on the substrate layer, filling the through hole with conductive elements; alternately depositing on the substrate layer
  • the functional unit formed by the first dielectric layer and the resistive switch layer; the resistive switch layer is at least two layers; a first electrode and a second electrode are deposited on the substrate layer, and the first electrode and the first electrode are deposited on the substrate layer.
  • the functional unit is connected between the two electrodes, and the second electrode is also in contact with the conductive member; a second dielectric layer is deposited above the functional unit, and a wire is arranged in the second dielectric layer, so that The wire is electrically connected to the first electrode; a voltage is applied to the first electrode and the second electrode through the conductive member and the wire, so that the resistive layer in the functional unit is formed with A conductive thread connecting the first electrode and the second electrode.
  • a linear resistive variable element is provided.
  • a functional unit containing multiple layers of resistive variable layers is provided in the linear resistive variable element.
  • Conductive filaments are formed in each resistive variable layer, so that there are multiple The conductive filament enables the linear resistive variable element to have a linear resistive variable characteristic, and can be applied in various application environments.
  • FIG. 1 is a schematic structural diagram of a linear resistive variable element according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of the connection between a functional unit and an electrode unit of a linear resistive variable element according to an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a substrate layer of a method for preparing a linear resistive variable element according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a through hole of a method for preparing a linear resistive variable element according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of functional unit deposition of a method for preparing a linear resistive variable element according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of photoresist and hard mask deposition of a method for manufacturing a linear resistive variable element according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of hard mask etching of a method for manufacturing a linear resistive variable element according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of functional unit etching of a method for preparing a linear resistive variable element according to an embodiment of the present application
  • FIG. 9 is a schematic diagram of chemical mechanical polishing of a method for manufacturing a linear resistive variable element according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a linear resistive variable element according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of connection between functional units and electrode units of a linear resistive variable element according to an embodiment of this application. Refer to Figure 1 and Figure 2.
  • the embodiment of the present application provides a linear resistive variable element, including a substrate unit, a functional unit 2 and an electrode unit 3; the substrate unit includes a substrate layer 11; the substrate layer 11 is used for connecting the functional unit 2 and the electrode unit 3;
  • the electrode unit 3 includes a first electrode 31 and a second electrode 32, the first electrode 31 and the second electrode 32 are deposited on the substrate layer 11, the functional unit 2 is connected between the first electrode 31 and the second electrode 32; the functional unit 2 Including the first dielectric layer 21 and the resistive switch layer 22, the first dielectric layer 21 and the resistive switch layer 22 are alternately stacked and deposited on the substrate layer 11, the resistive switch layer 22 is at least two layers, and the resistive switch layer 22 is formed for The conductive thread 23 electrically connects the first electrode 31 and the second electrode 32 .
  • a linear resistive variable element is provided.
  • a functional unit 2 containing multiple resistive variable layers 22 is provided in the linear resistive variable element.
  • Conductive filaments 23 are formed in each resistive variable layer 22, so that two There are a plurality of conductive wires 23 between the electrodes, so that the linear resistive variable element has a linear resistive variable characteristic, and can be applied in various application environments.
  • the substrate unit is used for connecting the functional unit 2 and the electrode unit 3; the substrate unit at least includes a substrate layer 11, wherein the substrate layer 11 is made of a substrate material.
  • the electrode unit 3 includes a first electrode 31 and a second electrode 32, the positive and negative of the first electrode 31 and the second electrode 32 are not limited; the functional unit 2 is connected between the first electrode 31 and the second electrode 32, usually, located The first electrode and the second electrode on both sides of the same functional unit 2 are respectively a positive electrode and a negative electrode.
  • the functional unit 2 is mainly formed by combining the first dielectric layer 21 and the resistive switch layer 22, specifically, it is mainly formed by alternately stacking multiple first dielectric layers 21 and multiple resistive switch layers 22, specifically, alternately stacked
  • the order can be: the first dielectric layer 21, the resistive switch layer 22, the first dielectric layer 21, the resistive switch layer 22, the first dielectric layer 21, etc. stacked in sequence, wherein the number of resistive switch layers 22 is at least two layers , not limited to two layers; because of the multilayer resistive layer 22, after applying a voltage, conductive filaments 23 are formed in each resistive layer 22, thereby realizing the control of the number of conductive filaments 23 by controlling the number of resistive layers 22 control.
  • the linear resistive variable element has a linear resistive variable characteristic, so that the linear resistive variable element can realize the linear weight required by the neural network.
  • the first dielectric layer 21 is an insulating layer, and the insulating layer is made of an insulating material; specifically, the insulating material can be silicon dioxide or aluminum oxide, so as to ensure that no Conductive wire 23.
  • the resistive layer 22 is used to generate conductive wires 23 under the action of voltage, and the resistive layer 22 is made of a material that is easy to form electrical wires compared with the dielectric layer, wherein the resistive layer is mainly made of resistive materials
  • the resistance switch material refers to a material with a resistance switch function, specifically, it may be made of transition metal oxides, and the transition metal oxides include at least hafnium dioxide, titanium dioxide and tantalum pentoxide.
  • the resistive switch layer 22 is used to electrically connect the first electrode 31 and the second electrode 32 , specifically, the conductive wire 23 in the resistive switch layer 22 is used to electrically connect the first electrode 31 and the second electrode 32 .
  • the first electrode 31 and the second electrode 32 are vertically deposited on the substrate layer 11, that is, the contact surface between the first electrode 31 and the second electrode 32 and the substrate layer 11 is in a vertical state, so as to facilitate the electrode and the resistive variable layer 22. connection; in addition, because the electrodes are set upright, a multi-layer resistive layer 22 is set between the two upright electrodes, and multiple conductive wires 23 can be formed in the area of one resistive layer 22, thereby reducing the linear resistance The area of the element.
  • the electrodes are vertically arranged, there is no requirement that the size of the electrodes correspond to those of the resistive switch layer 22 , and the operator can reduce the formation voltage of the conductive wire 23 by performing a miniaturization operation on the resistive switch layer 22 .
  • the first electrode 31 and the second electrode 32 may be symmetrically arranged on both sides of the functional unit 2 to facilitate the formation of the conductive wire 23 .
  • a conductive wire 23 of a second thickness is formed in the resistive layer 22, and the second thickness corresponds to the first thickness, wherein the conductive wire 23 is Atomic Scale Conductive Filaments 23 .
  • conductive filaments 23 of a second thickness are formed in the resistive layer 22, and the second thickness corresponds to the first thickness, wherein the first thickness is formed by
  • the staff pre-sets that by adjusting the thickness of the resistive layer 22, the size of the conductive thread 23 can be controlled, so that the conductance of the conductive thread 23 can be controlled, that is, the strength of its ability to transmit current can be controlled.
  • the size of the conductive filament 23 is generally at the atomic level, so during the process of depositing the resistive switch layer 22 , atomic layer deposition can be used for deposition, so as to easily control the size of the conductive filament 23 .
  • the atomic layer deposition overlapping resistive switch layer 22 and first dielectric layer 21 between the vertically arranged first electrode 31 and second electrode 32 can precisely control the position where the conductive wire 23 is formed.
  • a through hole 12 is opened on the substrate layer 11 , the through hole 12 is filled with a conductive element 13 , and the conductive element 13 is electrically connected to the second electrode 32 .
  • the shape of the through hole 12 opened on the substrate layer 11 is not limited, and the conductive member 13 made of conductive material can be filled in the through hole 12 to serve as the lower terminal of the linear resistive variable element for connecting with the first
  • the two electrodes 32 are electrically connected, and the conductive material can specifically be titanium nitride or tungsten.
  • the number of the through holes 12 is consistent with the number of the second electrodes 32 for matching with the second electrodes 32 .
  • the functional unit 2 is further connected with the second dielectric layer 4 , and the second dielectric layer 4 is pierced with a wire 5 , and the wire 5 is electrically connected with the first electrode 31 .
  • the functional unit 2 is also connected with a second dielectric layer 4, wherein the second dielectric layer 4 can be arranged above the functional unit 2, and the second dielectric layer 4 is mainly made of a dielectric material.
  • the second dielectric layer 4 may be an ultra-low dielectric constant dielectric material layer, which is mainly made of ultra-low dielectric constant material (ULK).
  • ULK ultra-low dielectric constant material
  • a metal wire 5 is pierced, and the metal wire 5 can be copper material or other conductive materials; wherein, the connection of the metal wire 5 can be realized by a dual damascene method; the wire 5 is used to connect with the first electrode 31 electrical connection.
  • the number of electrode units 3 connected to the substrate layer 11 may be multiple; when the number of electrode units 3 is multiple, the number of functional units 2 is consistent with the number of electrode units 3 .
  • the number of electrode units 3 and functional units 2 is not limited, and a plurality of linear resistive variable elements composed of electrode units 3 and functional units 2 may be integrated on a substrate layer 11 . Wherein, it should be noted that the number of electrode units 3 is consistent with the number of functional units 2 .
  • Another aspect of the embodiment of the present application provides a method for preparing a linear resistive variable element, the method includes: opening a through hole 12 on the substrate layer 11, filling the through hole 12 with conductive elements 13; A dielectric layer 21 and a resistive switch layer 22 form a functional unit 2; the resistive switch layer 22 is at least two layers; a first electrode 31 and a second electrode 32 are deposited on the substrate layer 11, and the first electrode 31 and the second electrode 32 is connected with a functional unit 2, and the second electrode 32 is also in contact with the conductive member 13; the second dielectric layer 4 is deposited on the functional unit 2, and a wire 5 is arranged in the second dielectric layer 4, and the wire 5 is connected to the first The electrodes 31 are electrically connected; a voltage is applied to the first electrode 31 and the second electrode 32 through the conductive member 13 and the wire 5, so that the resistive layer 22 in the functional unit 2 is formed with a conductive layer connecting the first electrode 31 and the second electrode 32. silk23.
  • the first dielectric layer 21 and the resistive switch layer 22 are alternately deposited on the substrate layer 11, and after the functional unit 2 is formed, the functional unit 2 may be etched to form the first electrode 31 After the accommodating cavity for the second electrode 32 is accommodated, the first electrode 31 and the second electrode 32 are deposited on the substrate layer 11 according to the position of the accommodating cavity. Wherein, when the second electrode 32 is deposited on the substrate layer 11 , the second electrode 32 is electrically connected to the conductive member 13 , specifically, it may be a contact electrical connection.
  • the second dielectric layer 4 is deposited on the top of the functional unit 2 and the electrode unit 3, and the wire 5 electrically connected to the first electrode 31 is arranged on the second dielectric layer 4, and the first electrode 31 is connected to the first electrode 31 through the conductive member 13 and the wire 5.
  • a voltage is applied to the second electrode 32 so that each resistive layer 22 in the functional unit 2 is formed with a conductive wire 23 connecting the first electrode 31 and the second electrode 32 .
  • Step 1 Obtain the substrate layer 11, which is shown in FIG. 3 .
  • the substrate unit 1 comprises a substrate layer 11 .
  • Step 2 as shown in Figure 4, open a through hole 12 on the substrate layer 11, and fill the through hole 12 with a conductive member 13 made of a conductive material (titanium nitride or tungsten) as the lower terminal of the linear resistive variable element .
  • a conductive member 13 made of a conductive material (titanium nitride or tungsten) as the lower terminal of the linear resistive variable element .
  • Step 3 as shown in FIG. 5 , on the substrate layer 11 alternately in the order of "first dielectric layer 21 - resistive variable layer 22 - first dielectric layer 21 - resistive variable layer 22 - first dielectric layer 21"
  • the first dielectric layer 21 and the resistive switch layer 22 are deposited to form the functional unit 2 .
  • Step 4 deposit a hard mask 41 over the functional unit 2, the hard mask 41 may be a material with a selectivity ratio to the dielectric layer and the resistive layer 22, so as to facilitate etching of the functional unit 2, Specifically, silicon nitride material can be used. Then a photoresist 42 is coated on the hard mask 41 and the photoresist 42 is exposed.
  • Step 5 as shown in FIG. 7 , the hard mask 41 is etched, and the size of the hard mask 41 is reduced by shrinking technology, so as to reduce the voltage required for forming the conductive wire 23 .
  • Step 6 the first dielectric layer 21 and the resistive switch layer 22 are etched, and the etched first dielectric layer 21 and the resistive switch layer 22 are further reduced to reduce the size of the components. size, so as to reduce the voltage formed by the conductive wire 23.
  • the first dielectric layer 21 and the resistive switch layer 22 are etched to obtain accommodating grooves for accommodating the first electrode 31 and the second electrode 32 .
  • the conductive wire 23 is quite small relative to the area of the electrode, it is often limited by the size of the electrode in the traditional process, so the components cannot be miniaturized.
  • Step 7 deposit the first electrode 31 and the second electrode 32 on the substrate layer 11 according to the position of the accommodating groove, and connect the second electrode 32 to the conductive member 13 .
  • the upper surface of the element is ground flat by a chemical mechanical polishing technique.
  • Step 8 as shown in Figure 1, connect the first electrode 31 with the metal wire 5, and deposit the second dielectric layer 4 on the upper surface formed by the first electrode 31, the second electrode 32 and the functional unit 2, the second dielectric layer
  • the electrical layer 4 is made of a dielectric material, preferably, an ultra-low dielectric constant material ULK.
  • the metal wire 5 may be copper or other conductive materials for connection by dual damascene or other metal wiring technology.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means two or more, unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本申请实施例公开了一种线性阻变元件及其制备方法,线性阻变元件包括衬底单元、功能单元和电极单元;衬底单元包括衬底层;衬底层用于供功能单元和电极单元连接;电极单元包括第一电极和第二电极,第一电极和第二电极沉积在衬底层上,第一电极和第二电极之间连接有功能单元;功能单元包括第一介电层和阻变层,第一介电层和阻变层交替堆叠的沉积在衬底层上,阻变层至少为两层,阻变层形成有用于导电连接第一电极和第二电极的导电丝。

Description

一种线性阻变元件及制备方法
相关申请的交叉引用
本申请基于申请号为202111386648.3、申请日为2021年11月22日的中国专利申请提出,并要求中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及半导体器件技术领域,尤其涉及一种线性阻变元件及制备方法。
背景技术
阻变元件是一种能够提供电阻变化的元件,在现有技术中常利用材料电阻值变化进行数据存储,现有的阻变元件往往通过两个电极之间生成一个导电丝,单一的导电丝的线性阻变特性较差,难以应用于神经网络线性权重等应用环境。
发明内容
本申请实施例提供了一种线性阻变元件及制备方法,能够在两个电极之间生成多个导电丝。
本申请实施例一方面提供线性阻变元件,包括衬底单元、功能单元和电极单元;所述衬底单元包括衬底层;所述衬底层用于供所述功能单元和所述电极单元连接;所述电极单元包括第一电极和第二电极,所述第一电极和第二电极沉积在所述衬底层上,所述第一电极和所述第二电极之间连接有所述功能单元;所述功能单元包括第一介电层和阻变层,所述第一介电层和所述阻变层交替堆叠的沉积在所述衬底层上,所述阻变层至少为两层,所述阻变 层形成有用于导电连接第一电极和第二电极的导电丝。
在一可实施方式中,当所述阻变层为第一厚度的情况下,所述阻变层中形成有第二厚度的导电丝,所述第二厚度与所述第一厚度对应,其中,所述导电丝为原子级导电丝。
在一可实施方式中,所述衬底层上开设有通孔,所述通孔中填充有导电件,所述导电件与所述第二电极电连接。
在一可实施方式中,所述功能单元还连接有第二介电层,所述第二介电层上穿设有导线,所述导线与所述第一电极电连接。
在一可实施方式中,所述第一电极和所述第二电极直立设置在所述衬底层上。
在一可实施方式中,所述第一电极和所述第二电极对称设置在所述功能单元的两侧。
在一可实施方式中,所述衬底层上连接的所述电极单元的数量为多个。
在一可实施方式中,所述阻变层由阻变材料所制成。
在一可实施方式中,所述第一介电层为绝缘层,所述绝缘层采用绝缘材料所制成;所述第二介电层为介电材料层。
本申请实施例另一方面提供一种线性阻变元件的制备方法,所述方法包括:在衬底层上开设有通孔,将所述通孔中填充导电件;在所述衬底层上交替沉积第一介电层和阻变层,形成的功能单元;所述阻变层至少为两层;在所述衬底层上沉积第一电极和第二电级,所述第一电极和所述第二电极之间连接有所述功能单元,所述第二电极还与所述导电件接触连接;所述功能单元上方沉积第二介电层,在所述第二介电层中设置导线,所述导线与所述第一电极电连接;通过所述导电件和所述导线对所述第一电极和所述第二电极施加电压,以使所述功能单元中的所述阻变层形成有连接所述第一电极和所述第二电极的导电丝。
在本申请实施例提供了一种线性阻变元件,线性阻变元件内设置含有多 层阻变层的功能单元,通过每个阻变层内形成导电丝,从而使两个电极间存在多个导电丝,使线性阻变元件具有线性阻变特性,能够应用于多种的应用环境。
附图说明
通过参考附图阅读下文的详细描述,本申请示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本申请的若干实施方式,其中:
在附图中,相同或对应的标号表示相同或对应的部分。
图1为本申请实施例一种线性阻变元件的结构示意图;
图2为本申请实施例一种线性阻变元件的功能单元与电极单元连接示意图;
图3为本申请实施例一种线性阻变元件的制备方法的衬底层示意图;
图4为本申请实施例一种线性阻变元件的制备方法的通孔示意图;
图5为本申请实施例一种线性阻变元件的制备方法的功能单元沉积示意图;
图6为本申请实施例一种线性阻变元件的制备方法的光阻和硬掩膜沉积示意图;
图7为本申请实施例一种线性阻变元件的制备方法的硬掩膜刻蚀示意图;
图8为本申请实施例一种线性阻变元件的制备方法的功能单元刻蚀示意图;
图9为本申请实施例一种线性阻变元件的制备方法的化学机械研磨示意图。
附图标记如下所示:
11、衬底层;12、通孔;13、导电件;2、功能单元;21、第一介电层;22、阻变层;23、导电丝;3、电极单元;31、第一电极;32、第二电极;4、 第二介电层;41、硬掩膜;42、光阻;5、导线。
具体实施方式
为使本申请的目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而非全部实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请实施例一种线性阻变元件的结构示意图;图2为本申请实施例一种线性阻变元件的功能单元与电极单元连接示意图。参考图1和图2所示。
本申请实施例一方面提供一种线性阻变元件,包括衬底单元、功能单元2和电极单元3;衬底单元包括衬底层11;衬底层11用于供功能单元2和电极单元3连接;电极单元3包括第一电极31和第二电极32,第一电极31和第二电极32沉积在衬底层11上,第一电极31和第二电极32之间连接有功能单元2;功能单元2包括第一介电层21和阻变层22,第一介电层21和阻变层22交替堆叠的沉积在衬底层11上,阻变层22至少为两层,阻变层22形成有用于导电连接第一电极31和第二电极32的导电丝23。
在本申请实施例中提供了一种线性阻变元件,线性阻变元件内设置含有多层阻变层22的功能单元2,通过每个阻变层22内形成导电丝23,从而使两个电极间存在多个导电丝23,使线性阻变元件具有线性阻变特性,能够应用于多种的应用环境。
在本实施例中,衬底单元用于供功能单元2与电极单元3连接;衬底单元至少包括衬底层11,其中,衬底层11由衬底材料所制成。电极单元3包括第一电极31和第二电极32,该第一电极31和第二电极32的正负不作限定;第一电极31和第二电极32之间连接有功能单元2,通常,位于同 一功能单元2两侧的第一电极和第二电极分别为正电极和负电极。功能单元2是主要由第一介电层21和阻变层22组合形成,具体的,主要由多层第一介电层21和多层阻变层22交替堆叠形成,具体的,交替层叠的顺序可以为:依次层叠的第一介电层21、阻变层22、第一介电层21、阻变层22、第一介电层21…其中,阻变层22的数量至少为两层,而不限于两层;因为多层的阻变层22,便可以施加电压后,在每个阻变层22中形成导电丝23,从而通过控制阻变层22的数量实现对导电丝23数量的控制。进一步,由于在功能单元2中形成多个导电丝23,使线性阻变元件具有线性阻变特性,以使线性阻变元件能实现神经网络所需要线性权重。其中,第一介电层21为绝缘层,绝缘层采用绝缘材料所制成;具体的,绝缘材料可以为二氧化硅或三氧化二铝,以保证在第一介电层21中不会生成导电丝23。其中,阻变层22用于在电压的作用下生成导电丝23,阻变层22采用相对于介质层容易形成电导丝的材料所制成,其中,阻变层主要由阻变材料所制成,阻变材料是指具有阻变功能的材料,具体的,可以由过渡金属氧化物所制成,过渡金属氧化物至少包括:二氧化铪、二氧化钛和五氧化二钽。阻变层22用于通电连接第一电极31和第二电极32,具体的,是阻变层22中的导电丝23用于通电连接第一电极31和第二电极32。其中,第一电极31和第二电极32直立的沉积在衬底层11上,即第一电极31和第二电极32与衬底层11的接触面呈垂直状态,以方便电极与阻变层22的连接;此外,因为电极是直立设置的,在直立的两个电极之间设置多层阻变层22,能够以一个阻变层22的面积实现形成多个导电丝23,从而降低了线性阻变元件的面积。此外,因为电极是直立设置,所以电极与阻变层22不存在尺寸对应的需求,操作者可以通过对阻变层22进行微缩操作,以降低导电丝23的形成电压。进一步,第一电极31和第二电极32可以是对称设置在功能单元2的两侧,以方便导电丝23的形成。
在一可实施方式中,当阻变层22为第一厚度的情况下,阻变层22中 形成有第二厚度的导电丝23,第二厚度与第一厚度对应,其中,导电丝23为原子级导电丝23。
在本实施例中,当阻变层22为第一厚度的情况下,阻变层22中形成有第二厚度的导电丝23,第二厚度和第一厚度对应,其中,第一厚度是由工作人员预先设置,通过调整阻变层22的厚度,可以实现控制导电丝23的大小,从而可以控制导电丝23的电导,即控制其传输电流能力的强弱程度。其中,导电丝23的尺寸通常为原子级,所以在沉积阻变层22的过程中,可以采用原子层沉积方法进行沉积,以易于对导电丝23的大小实现控制。进一步,在直立设置的第一电极31和第二电极32间原子层沉积交叠阻变层22和第一介电层21便可以精准的控制导电丝23形成的位置。
在一可实施例中,衬底层11上开设有通孔12,通孔12中填充有导电件13,导电件13与第二电极32电连接。
在本实施例中,衬底层11上开设的通孔12的形状不作限制,在通孔12中可以填充导电材料制成的导电件13,以作为线性阻变元件的下端子,用于与第二电极32电连接,该导电材料具体可以采用氮化钛或者钨。其中,通孔12的数量和第二电极32的数量一致,用于和第二电极32配合。
在一可实施例中,功能单元2还连接有第二介电层4,第二介电层4上穿设有导线5,导线5与第一电极31电连接。
在本实施例中,功能单元2还连接有第二介电层4,其中,第二介电层4可以设置在功能单元2上方,第二介电层4主要采用介电材料所制成,具体的,第二介电层4可以为超低介电常数介电材料层,主要采用超低介电常数材料(ULK)所制成。在第二介电层4上穿设有金属导线5,金属导线5可以为铜材料或者其他导电材料;其中,金属导线5的连接可以采用双镶嵌方法实现;导线5用于与第一电极31电连接。
在一可实施例中,衬底层11上连接的电极单元3的数量可以为多个;当电极单元3的数量为多个的情况下,功能单元2的数量与电极单元3的 数量一致。
在本实施例中,电极单元3和功能单元2的数量不作限定,在一衬底层11上可以集成有多个由电极单元3和功能单元2构成的线性阻变元件。其中,需要注意的是,电极单元3的数量与功能单元2的数量一致。
本申请实施例另一方面提供一种线性阻变元件的制备方法,方法包括:在衬底层11上开设有通孔12,将通孔12中填充导电件13;在衬底层11上交替沉积第一介电层21和阻变层22,形成功能单元2;阻变层22至少为两层;在衬底层11上沉积第一电极31和第二电级32,第一电极31和第二电极32之间连接有功能单元2,第二电极32还与导电件13接触连接;功能单元2上方沉积第二介电层4,在第二介电层4中设置导线5,导线5与第一电极31电连接;通过导电件13和导线5对第一电极31和第二电极32施加电压,以使功能单元2中的阻变层22形成有连接第一电极31和第二电极32的导电丝23。
在本实施例中,在衬底层11上交替沉积第一介电层21和阻变层22,形成功能单元2后,可以是通过对功能单元2进行刻蚀,形成用于供第一电极31和第二电极32容纳的容置腔后,将电极单元按容置腔的位置将第一电极31和第二电极32沉积在衬底层11上。其中,第二电极32沉积在衬底层11上的情况下,第二电极32与导电件13电连接,具体的,可以是接触电连接。在功能单元2和电极单元3的上方沉积第二介电层4,在第二介电层4上设置与第一电极31电连接的导线5,通过导电件13和导线5对第一电极31和第二电极32施加电压,以使功能单元2中的每个阻变层22形成有连接第一电极31和第二电极32的导电丝23。
提供一种具体实施例:
步骤1、获取衬底层11,该衬底层如图3所示。衬底单元1包括衬底层11。
步骤2、如图4所示,在衬底层11上开设通孔12,在通孔12中填充 导电材料(氮化钛或钨)制成的导电件13,以作为线性阻变元件的下端子。
步骤3、如图5所示,在衬底层11上以“第一介电层21-阻变层22-第一介电层21-阻变层22-第一介电层21”的顺序交替沉积第一介电层21和阻变层22,形成的功能单元2。
步骤4、如图6所示,在功能单元2上方沉积硬掩膜41,硬掩膜41可以是相对介电层和阻变层22具有选择比材料,以方便对功能单元2进行刻蚀,具体的,可以采用氮化硅材料。然后在硬掩膜41上涂布光阻42,并对光阻42进行曝光。
步骤5、如图7所示,对硬掩膜41进行刻蚀,并通过微缩技术以缩小硬掩膜41的尺寸,以降低形成导电丝23所需要的电压。
步骤6、如图8所示,对第一介电层21及阻变层22进行刻蚀,对刻蚀后的第一介电层21和阻变层22进行进一步的微缩,以减小元件尺寸,以降低导电丝23形成电压。此时,第一介电层21和阻变层22刻蚀后获得用于容纳第一电极31和第二电极32的容置槽。其中,因为导电丝23相对于电级面积相当小,所有在传统工艺中往往受限于电极大小而无法对元件进行微缩。
步骤7、如图9所示,根据容置槽的位置,将第一电极31和第二电极32沉积在衬底层11上,并使第二电极32与导电件13连接。通过化学机械研磨技术将元件的上表面进行磨平。
步骤8、如图1所示,将第一电极31与金属导线5连接,并在第一电极31、第二电极32和功能单元2形成的上表面沉积第二介电层4,第二介电层4采用介电材料,优选的,采用超低介电常数材料ULK制成。其中,金属导线5可为铜或其它导电材料采用双镶嵌或其它金属连线技术进行连接。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体 特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种线性阻变元件,包括衬底单元、功能单元(2)和电极单元(3);所述衬底单元包括衬底层(11);所述衬底层(11)用于供所述功能单元(2)和所述电极单元(3)连接;
    所述电极单元(3)包括第一电极(31)和第二电极(32),所述第一电极(31)和第二电极(32)沉积在所述衬底层(11)上,所述第一电极(31)和所述第二电极(32)之间连接有所述功能单元(2);
    所述功能单元(2)包括第一介电层(21)和阻变层(22),所述第一介电层(21)和所述阻变层(22)交替堆叠的沉积在所述衬底层(11)上,所述阻变层(22)至少为两层,所述阻变层(22)形成有用于导电连接第一电极(31)和第二电极(32)的导电丝(23)。
  2. 根据权利要求1所述的线性阻变元件,其中,
    当所述阻变层(22)为第一厚度的情况下,所述阻变层(22)中形成有第二厚度的导电丝(23),所述第二厚度与所述第一厚度对应,其中,所述导电丝(23)为原子级导电丝(23)。
  3. 根据权利要求1所述的线性阻变元件,其中,所述衬底层(11)上开设有通孔(12),所述通孔(12)中填充有导电件(13),所述导电件(13)与所述第二电极(32)电连接。
  4. 根据权利要求1所述的线性阻变元件,其中,所述功能单元(2)还连接有第二介电层(4),所述第二介电层(4)上穿设有导线(5),所述导线(5)与所述第一电极(31)电连接。
  5. 根据权利要求1所述的线性阻变元件,其中,所述第一电极(31)和所述第二电极(32)直立设置在所述衬底层(11)上。
  6. 根据权利要求1所述的线性阻变元件,其中,所述第一电极(31)和所述第二电极(32)对称设置在所述功能单元(2)的两侧。
  7. 根据权利要求1所述的线性阻变元件,其中,所述衬底层(11)上连 接的所述电极单元(3)的数量为多个。
  8. 根据权利要求1所述的线性阻变元件,其中,所述阻变层(22)由阻变材料所制成。
  9. 根据权利要求4所述的线性阻变元件,其中,所述第一介电层(21)为绝缘层,所述绝缘层采用绝缘材料所制成;
    所述第二介电层(4)为介电材料层。
  10. 一种线性阻变元件的制备方法,包括:
    在衬底层(11)上开设通孔(12),将所述通孔(12)中填充导电件(13);
    在所述衬底层(11)上交替沉积第一介电层(21)和阻变层(22),形成的功能单元(2);所述阻变层(22)至少为两层;
    在所述衬底层(11)上沉积第一电极(31)和第二电级(32),所述第一电极(31)和所述第二电极(32)之间连接有所述功能单元(2),所述第二电极(32)还与所述导电件(13)接触连接;
    所述功能单元(2)上方沉积第二介电层(4),在所述第二介电层(4)中设置导线(5),所述导线(5)与所述第一电极(31)电连接;
    通过所述导电件(13)和所述导线(5)对所述第一电极(31)和所述第二电极(32)施加电压,以使所述功能单元(2)中的所述阻变层(22)形成有连接所述第一电极(31)和所述第二电极(32)的导电丝(23)。
PCT/CN2022/105406 2021-11-22 2022-07-13 一种线性阻变元件及制备方法 WO2023087749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111386648.3 2021-11-22
CN202111386648.3A CN114220914A (zh) 2021-11-22 2021-11-22 一种线性阻变元件及制备方法

Publications (1)

Publication Number Publication Date
WO2023087749A1 true WO2023087749A1 (zh) 2023-05-25

Family

ID=80697739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105406 WO2023087749A1 (zh) 2021-11-22 2022-07-13 一种线性阻变元件及制备方法

Country Status (3)

Country Link
CN (1) CN114220914A (zh)
TW (1) TWI819714B (zh)
WO (1) WO2023087749A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220914A (zh) * 2021-11-22 2022-03-22 厦门半导体工业技术研发有限公司 一种线性阻变元件及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931634A (zh) * 2018-08-31 2020-03-27 清华大学 阻变器件及其制备方法、设计方法
CN111769196A (zh) * 2020-07-17 2020-10-13 厦门半导体工业技术研发有限公司 阻变存储器、阻变元件及其制备方法
US20210057645A1 (en) * 2019-08-23 2021-02-25 Globalfoundries Singapore Pte. Ltd. Memory device and method of forming the same
CN113285020A (zh) * 2021-04-29 2021-08-20 华中科技大学 一种单通道忆阻器及其制备方法
CN114220914A (zh) * 2021-11-22 2022-03-22 厦门半导体工业技术研发有限公司 一种线性阻变元件及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931634A (zh) * 2018-08-31 2020-03-27 清华大学 阻变器件及其制备方法、设计方法
US20210057645A1 (en) * 2019-08-23 2021-02-25 Globalfoundries Singapore Pte. Ltd. Memory device and method of forming the same
CN111769196A (zh) * 2020-07-17 2020-10-13 厦门半导体工业技术研发有限公司 阻变存储器、阻变元件及其制备方法
CN113285020A (zh) * 2021-04-29 2021-08-20 华中科技大学 一种单通道忆阻器及其制备方法
CN114220914A (zh) * 2021-11-22 2022-03-22 厦门半导体工业技术研发有限公司 一种线性阻变元件及制备方法

Also Published As

Publication number Publication date
CN114220914A (zh) 2022-03-22
TW202322154A (zh) 2023-06-01
TWI819714B (zh) 2023-10-21

Similar Documents

Publication Publication Date Title
US7306986B2 (en) Method of making a semiconductor device, and semiconductor device made thereby
US7898059B2 (en) Semiconductor device comprising passive components
US7078310B1 (en) Method for fabricating a high density composite MIM capacitor with flexible routing in semiconductor dies
US5005102A (en) Multilayer electrodes for integrated circuit capacitors
US7479424B2 (en) Method for fabricating an integrated circuit comprising a three-dimensional capacitor
CN109390466A (zh) 电阻式随机存取存储器(rram)单元及其形成方法
KR20050084240A (ko) 상 변화 메모리 형성 방법
WO2023087749A1 (zh) 一种线性阻变元件及制备方法
CN109545778A (zh) 电容器组件
WO2018092722A1 (ja) コンデンサ及びコンデンサの実装構造
CN109196609A (zh) 电容器
CN107204331B (zh) 多层电容器的制造方法
US20080090376A1 (en) Method of fabricating semiconductor device
WO2023087750A1 (zh) 一种半导体集成电路器件及其制造方法
WO2023115920A1 (zh) 一种存储单元组及其制造方法
TWI393216B (zh) 電阻式記憶體以及其製造方法
JPH0689831A (ja) 薄膜コンデンサ
WO2021020322A1 (ja) トレンチキャパシタ
US11217747B2 (en) Memory devices and methods of forming memory devices
US9276205B2 (en) Storage device
JP2021072331A (ja) トレンチキャパシタ及びトレンチキャパシタの製造方法
TWI662696B (zh) 半導體結構與其製造方法
CN117116919A (zh) 半导体结构及其形成方法
WO2020133998A1 (zh) 贴片式电容及其制作方法
TW202420500A (zh) 電阻式隨機存取記憶體及其製作方法