WO2023087614A1 - 尼龙增韧剂及其制备方法和应用 - Google Patents

尼龙增韧剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023087614A1
WO2023087614A1 PCT/CN2022/087179 CN2022087179W WO2023087614A1 WO 2023087614 A1 WO2023087614 A1 WO 2023087614A1 CN 2022087179 W CN2022087179 W CN 2022087179W WO 2023087614 A1 WO2023087614 A1 WO 2023087614A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
nylon
toughening agent
polyolefin elastomer
preparation
Prior art date
Application number
PCT/CN2022/087179
Other languages
English (en)
French (fr)
Inventor
殷玉明
郭森
唐舫成
汪加胜
林世康
Original Assignee
广州鹿山新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州鹿山新材料股份有限公司 filed Critical 广州鹿山新材料股份有限公司
Publication of WO2023087614A1 publication Critical patent/WO2023087614A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the disclosure relates to the technical field of polymer materials, in particular to a nylon toughening agent and its preparation method and application.
  • nylon As a thermoplastic engineering plastic, nylon has excellent properties such as high mechanical strength, oil resistance, acid and alkali resistance, easy processing and molding, and friction resistance. It is widely used in the automotive industry, electronic appliances industry, sports equipment industry, medical equipment industry, etc. However, nylon has high notch sensitivity and poor toughness in dry state and low temperature, which cannot meet the needs of super-tough polymer materials. At the same time, due to the presence of amide bonds on nylon molecular chains, nylon has high water absorption and poor product stability, which limits Further development of nylon. In order to solve these problems, current researchers mainly improve it by adding toughening agents.
  • Nylon tougheners are mainly elastomers that graft or copolymerize polar monomers.
  • Elastomers are generally non-polar and have poor compatibility with nylon. It is necessary to modify the elastomer, such as grafting polar monomers or copolymerizing polar monomers.
  • By introducing polar groups into the molecular chain of the elastomer Improve interfacial compatibility with nylon and reduce the risk of high water absorption of nylon due to the presence of a large number of amide bonds. When stressed, the stress concentration of the elastic body produces plastic deformation, absorbs energy, and then causes crazes and shear bands through the interpenetrating interface.
  • the development of crazes will stop when it encounters another elastic body, and the shear bands will also prevent silver crazes from forming.
  • the development of striations consumes a lot of energy and improves the impact resistance of the material.
  • the toughness of the material mainly depends on the interfacial compatibility between the elastomer and the matrix, as well as the dispersed particle size and spacing of the elastomer in the matrix.
  • the multi-component grafting monomer makes the grafting reaction more complicated, and The residual amount is difficult to control, the toughening agent has a strong taste, and the production controllability is not good.
  • the present disclosure provides a nylon toughening agent, which is mainly prepared from the following components in parts by weight:
  • the crosslinking aid includes polyfunctional acrylate compounds.
  • the nylon toughening agent is mainly prepared from the following components in parts by weight: 95-98 parts of polyolefin elastomer, 0.1-0.5 part of initiator, 1 part of graft monomer ⁇ 3 parts, 0.5 ⁇ 0.8 parts of cross-linking auxiliary agent and 0.5 ⁇ 2 parts of antioxidant;
  • the nylon toughening agent is mainly prepared from the following components in parts by weight: 96-98 parts of polyolefin elastomer, 0.1-0.3 parts of initiator, 1 part of grafted monomer ⁇ 2 parts, 0.5 ⁇ 0.6 parts of cross-linking auxiliary agent and 0.5 ⁇ 1 part of antioxidant.
  • the crosslinking aids include dipropylene glycol diacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, and ditrimethylolpropane Any one or more of four acrylates.
  • the polyolefin elastomer is an ethylene-octene copolymer and/or an ethylene-propylene-non-conjugated diene terpolymer.
  • the initiator includes dibenzoyl peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane, di-tert-butylperoxy Any one or more of oxides, dicumyl peroxide and di-tert-butylperoxycumene.
  • the grafting monomer includes any one or more of maleic anhydride, itaconic acid, glycidyl methacrylate, and acrylic acid.
  • the antioxidants include Antioxidant 168 and Antioxidant 1010. In some embodiments of the present disclosure, the mass ratio of Antioxidant 168 and Antioxidant 1010 is 2:(2.5-3.5).
  • the present disclosure also provides a preparation method of the nylon toughening agent described in any one of the above, comprising the steps of:
  • the mixed material of initiator, graft monomer, crosslinking aid, antioxidant and part of polyolefin elastomer is melt-extruded with the rest of polyolefin elastomer; wherein, the mixed material is fed by main feeding method , the remaining amount of polyolefin elastomer is fed by side feeding.
  • the temperature between the main feed and the side feed is controlled at 80°C ⁇ 10°C to 190°C ⁇ 10°C; the temperature between the side feed and the end is controlled At 190°C ⁇ 10°C ⁇ 180°C ⁇ 10°C.
  • the melt extrusion is performed using a twin-screw extruder.
  • the twin-screw extruder includes 13 temperature zones, and the temperatures are 80°C ⁇ 10°C, 120°C ⁇ 10°C, 170°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C °C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 180°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, the head temperature is 180°C ⁇ 10°C.
  • the side feeding is performed in the ninth zone.
  • the aspect ratio of the twin-screw extruder is ⁇ 40. In some embodiments of the present disclosure, the aspect ratio of the twin-screw extruder is ⁇ 56.
  • the mass ratio of the part of the polyolefin elastomer to the remainder of the polyolefin elastomer is 1:(0.8 ⁇ 1.2).
  • the mass ratio of the part of the polyolefin elastomer to the rest of the polyolefin elastomer is 1:1.
  • the preparation method further includes granulating, cooling and drying to obtain the nylon toughening agent.
  • the present disclosure also provides the application of any one of the nylon toughening agents mentioned above in the preparation of toughened nylon.
  • the present disclosure provides a kind of nylon, including being prepared from the following materials:
  • the nylon toughening agent accounts for 10wt%-20wt% of the mass of the nylon matrix.
  • the disclosure provides a nylon toughening agent to solve technical problems such as uneven dispersion and poor toughening effect in the prior art.
  • Some embodiments of the present disclosure provide a nylon toughening agent, which is mainly made of the following components in parts by weight:
  • the crosslinking aid includes polyfunctional acrylate compounds.
  • the nylon toughening agent of the present disclosure by introducing a specific crosslinking aid, produces micro-crosslinking when the graft monomer is grafted with the polyolefin elastomer, and the micro-crosslinking structure acts as a bridge, not only being able to form Better compatible interface, and can physically entangle with uncrosslinked polyolefin elastomer molecular chains; when blended with nylon, uncrosslinked polyolefin elastomer molecular chains endow better fluidity, while
  • the micro-crosslinked structure can ensure compatibility, and at the same time cooperate with the intermolecular force between the ester bond in the crosslinking agent and the amide bond in nylon, on the one hand to further improve compatibility, on the other hand to ensure Sometimes it is easy to cause multiple silver crazes, thereby improving the toughening effect.
  • the amount of each component can be as follows:
  • the amount of polyolefin elastomer can be, for example, 90-96 parts, 91-98 parts or 94-98 parts, such as 90 parts, 91 parts, 92 parts, 93 parts, 94 parts, 95 parts, 96 parts, 97 parts, 98 parts copies, etc.;
  • the amount of the initiator can be, for example, 0.1-0.5 parts, 0.5-1 parts or 0.2-0.8 parts, such as 0.1 parts, 0.2 parts, 0.3 parts, 0.4 parts, 0.5 parts, 0.6 parts, 0.7 parts, 0.8 parts, 0.9 parts, 1 copy etc.;
  • the amount of grafting monomer can be, for example, 1.5 to 5 parts, 1 to 4.5 parts or 2 to 4 parts, such as 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts, 4.5 parts, 5 parts copies, etc.;
  • the amount of cross-linking auxiliary agent can be, for example, 0.5-0.9 parts, 0.55-1 parts or 0.5-0.8 parts, such as 0.5 parts, 0.55 parts, 0.6 parts, 0.65 parts, 0.7 parts, 0.75 parts, 0.8 parts, 0.85 parts, 0.9 parts copies, 1 copy, etc.;
  • the amount of antioxidant can be, for example, 0.5-4.6 parts, 0.9-5 parts or 1.1-4.5 parts, such as 0.5 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts, 4.5 parts , 5 copies, etc.
  • the nylon toughening agent is mainly prepared from the following components in parts by weight: 95-98 parts of polyolefin elastomer, 0.1-0.5 part of initiator, grafted monomer 1-3 parts, 0.5-0.8 parts of cross-linking auxiliary agent and 0.5-2 parts of antioxidant.
  • the nylon toughening agent is mainly prepared from the following components in parts by weight: 96-98 parts of polyolefin elastomer, 0.1-0.3 part of initiator, graft monomer 1-2 parts, 0.5-0.6 parts of cross-linking auxiliary agent and 0.5-1 part of antioxidant.
  • the functionality is 2-4, such as 2 or 3 or 4, and the functionality is optionally 4.
  • the crosslinking aids include, but are not limited to, dipropylene glycol diacrylate (DPGDA), trimethylolpropane triacrylate (TMPTA), ethoxylated trimethylolpropane triacrylate Any one or more of acrylate (3-EO-TMPTA) and ditrimethylolpropane tetraacrylate (Di-TMPTA).
  • DPGDA dipropylene glycol diacrylate
  • TMPTA trimethylolpropane triacrylate
  • ethoxylated trimethylolpropane triacrylate Any one or more of acrylate (3-EO-TMPTA) and ditrimethylolpropane tetraacrylate (Di-TMPTA).
  • the ester bond in the above-mentioned cross-linking aid and the amide bond in the nylon can generate intermolecular force, which not only improves the interfacial compatibility, but also contributes to the generation of silver craze when the force is applied, and improves the toughening effect.
  • the polyolefin elastomer is an ethylene-octene copolymer and/or an ethylene-propylene-non-conjugated diene terpolymer.
  • the initiators include but are not limited to dibenzoyl peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane, di-tert- Any one or more of butyl peroxide, dicumyl peroxide and di-tert-butyl peroxide cumene.
  • the grafting monomer includes, but is not limited to, any one or more of maleic anhydride, itaconic acid, glycidyl methacrylate, and acrylic acid.
  • the antioxidants include Antioxidant 168 and Antioxidant 1010.
  • the mass ratio of Antioxidant 168 to Antioxidant 1010 is 2:(2.5-3.5), such as 2:(2.6-3.4), 2:(2.7-3.3) or 2:(2.8-3.2). In some embodiments, the mass ratio of Antioxidant 168 and Antioxidant 1010 may be 2:3.
  • Some embodiments of the present disclosure also provide a preparation method of a nylon toughening agent, comprising the following steps:
  • the mixed material of initiator, graft monomer, crosslinking aid, antioxidant and part of polyolefin elastomer is melt-extruded with the rest of polyolefin elastomer; wherein, the mixed material is fed by main feeding method , the remaining amount of polyolefin elastomer is fed by side feeding.
  • part of the polyolefin elastomer is first reacted with grafted monomers and cross-linking aids to generate micro-crosslinking while grafting;
  • the body and the grafted and micro-crosslinked polyolefin elastomer form an intersecting coating structure.
  • the side-fed polyolefin elastomer endows the toughener with better fluidity, and the micro-crosslinked structure acts as a bridge.
  • the molecular weight of the polyolefin elastomer in the nylon toughening agent is not completely limited, and some active molecular chains improve the dispersion of the toughening agent in the nylon matrix, while the micro-crosslinked structure promotes three Combined with the intermolecular force between the ester bond in the crosslinking agent and the amide bond in nylon, the interfacial compatibility is greatly improved, and the toughness of nylon is jointly improved, and a high processing flow is maintained. sex.
  • the preparation method of the present disclosure is formed in one step, has a short production cycle and strong controllability, and can greatly reduce initiator and monomer residues, improve product quality, and is suitable for industrial production.
  • the preparation of the mixed material includes: mixing the initiator, the grafted monomer, the cross-linking aid, the antioxidant and part of the polyolefin elastomer in a high-speed mixer for 1-2 minutes.
  • the temperature between the main feed and the side feed is controlled at 80°C ⁇ 10°C to 190°C ⁇ 10°C, for example, 100°C ⁇ 10°C to 190°C ⁇ 10°C , 80°C ⁇ 10°C ⁇ 180°C ⁇ 10°C or 100°C ⁇ 10°C ⁇ 150°C ⁇ 10°C; the temperature between the side feeder and the end is controlled at 190°C ⁇ 10°C ⁇ 180°C ⁇ 10°C, For example, 181°C ⁇ 10°C to 190°C ⁇ 10°C, 181°C ⁇ 10°C to 189°C ⁇ 10°C, or 185°C ⁇ 10°C to 190°C ⁇ 10°C.
  • the melt extrusion is performed using a twin-screw extruder.
  • the twin-screw extruder is a co-rotating twin-screw extruder.
  • the twin-screw extruder includes 13 temperature zones, the temperatures are 80°C ⁇ 10°C, 120°C ⁇ 10°C, 170°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C °C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 180°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C, 190°C ⁇ 10°C,
  • the melt extrusion in actual operation, is performed in a twin-screw extruder, followed by granulation, cooling and drying to obtain the nylon toughening agent.
  • the present disclosure adopts a twin-screw extruder, realizes grafting and cross-linking in the front section of the screw to produce a microstructure, and mixes a high-viscosity structure and a low-viscosity structure in the rear section to form a coating structure to obtain a nylon toughening agent.
  • the disclosure uses a twin-screw extruder to combine a high-viscosity structure and a low-viscosity structure to form a coating structure, which is easy to disperse in nylon on the one hand, and can form interfacial penetration with the nylon matrix on the other hand; when stressed, plastic shear deformation Absorbency, while the polymer in the permeation zone forms fine microfibers to form silver crazes, improving the toughening effect.
  • the side feeding is performed in the ninth zone.
  • grafting and crosslinking are melted and plasticized in zones 1 to 9, and a coating structure is formed by melting in zones 10 to 13, and at the same time, residual initiators and grafted monomers can be removed.
  • the mass ratio of the part of the polyolefin elastomer to the rest of the polyolefin elastomer is 1:(0.8-1.2), optionally 1:1.
  • the mass ratio of the part of the polyolefin elastomer in the mixed material to the rest of the polyolefin elastomer can be, for example, 1: (0.8-1.0), 1: (0.9-1.2) or 1 : (0.9 ⁇ 1.1), such as 1:0.8, 1:0.9, 1:1, 1:1.1, 1:1.2 and so on.
  • the aspect ratio of the twin-screw extruder is ⁇ 40, optionally ⁇ 56, for example, the aspect ratio is 40-60, 45-60 or 50-60, such as 40, 45 , 50, 52, 54, 55, 56, 58 or 60.
  • the rotation speed ratio of the main feed and the side feed is 1:1.
  • Some embodiments of the present disclosure also provide the application of any one of the nylon toughening agents mentioned above in the preparation of toughened nylon.
  • Some embodiments of the present disclosure also provide a kind of nylon, comprising:
  • the amount of the nylon toughening agent is 10wt% to 20wt% of the mass of the nylon matrix, for example, 12wt% to 20wt%, 10wt% to 18wt%, or 14wt% to 18wt% %, such as optionally 10 wt%, 12 wt%, 14 wt%, 15 wt%, 16 wt%, 18 wt%, 20 wt%.
  • the nylon toughening agent prepared by the present disclosure is used in the toughening of nylon substrates such as PA6, the toughness of the toughened nylon material is significantly improved, and its IZOD notched impact strength is ⁇ 60KJ/m 2 , and can Up to 71.3KJ/m 2 ; meanwhile, the melt mass flow rate (190°C, 2.16kg) of the nylon toughener is ⁇ 0.1g/10min, optionally ⁇ 0.15g/10min.
  • the nylon toughening agent of the present disclosure by introducing a specific crosslinking assistant, produces micro-crosslinking while grafting the graft monomer and the polyolefin elastomer, and forms a mutual crosslink with the unreacted polyolefin elastomer. coating structure; when blended with nylon, it can take into account interfacial compatibility, processing fluidity and toughening effect;
  • the preparation method of the nylon toughening agent of the present disclosure first reacts part of the polyolefin elastomer with the grafted monomer and the cross-linking auxiliary agent, and produces micro-cross-linking while grafting; then side feeds the remaining
  • the amount of polyolefin elastomer, the side-fed polyolefin elastomer and the grafted and slightly cross-linked polyolefin elastomer form an intersecting coating structure, taking into account interfacial compatibility, processing fluidity and toughening effect; and, While forming the coating structure, the initiator and graft monomer can be removed to reduce the residue.
  • the present embodiment provides the preparation method of nylon toughening agent, comprises the steps:
  • step (1) The initiator in step (1), grafting monomer, crosslinking aid, antioxidant and half of the ethylene-octene copolymer (49 parts) are mixed in a high-speed mixer for 1.5min before feeding
  • the temperature settings from Zone 1 to Zone 13 of the extruder are 80°C, 120°C, 170°C, 190°C, 190°C, 190°C, 190°C, 180°C , 190°C, 190°C, 190°C, 190°C, 190°C
  • the machine head is 180°C
  • side feeding is set in the ninth zone, and the remaining ethylene-octene copolymer (49 parts) is fed, the side feeding speed is the same as the main feeding
  • the ratio of material rotation speed is 1:1, and the extruded product is pelletized under water, cooled, centrifugally dehydrated, and blast-dried to obtain nylon toughening agent.
  • the present embodiment refers to the preparation method of the nylon toughening agent of Example 1, and the difference is only in:
  • crosslinking aids are different, and the crosslinking aid dipropylene glycol diacrylate DPGDA in Example 1 is replaced by trimethylolpropane triacrylate TMPTA in equal parts by weight.
  • the present embodiment refers to the preparation method of the nylon toughening agent of Example 1, and the difference is only in:
  • cross-linking aids are different, and the cross-linking aid dipropylene glycol diacrylate DPGDA in Example 1 is replaced by an equal weight portion of ethoxylated trimethylolpropane triacrylate 3-EO-TMPTA.
  • the present embodiment refers to the preparation method of the nylon toughening agent of Example 1, and the difference is only in:
  • cross-linking aids are different, and the cross-linking aid dipropylene glycol diacrylate DPGDA in Example 1 is replaced by ditrimethylolpropane tetraacrylate Di-TMPTA in equal parts by weight.
  • the amount of crosslinking aids varies.
  • the amount of the cross-linking auxiliary agent di-trimethylolpropane tetraacrylate Di-TMPTA in Example 5 is 0.8 parts.
  • the amount of crosslinking aids varies.
  • the amount of the crosslinking aid di-trimethylolpropane tetraacrylate Di-TMPTA in Example 6 is 1 part.
  • Step (2) is different.
  • the step (2) of embodiment 7 comprises: the ethylene-octene copolymer (49 parts) of the initiator in the step (1), graft monomer, crosslinking aid, antioxidant and half (49 parts) in high speed mixer After mixing for 1.5 minutes, the material is fed to a twin-screw extruder with an aspect ratio of 40.
  • the temperature of the extruder zone 1 to zone 9 is set to 80°C, 120°C, 170°C, 190°C, 180°C, 190°C, 190°C °C, 190 °C, 190 °C, 190 °C, 190 °C, the machine head is 180 °C, side feeding is set in the fifth zone, and the remaining ethylene-octene copolymer (49 parts) is fed, the ratio of the side feeding speed to the main feeding speed is 1:1, the extruded product undergoes underwater pelletizing, cooling, centrifugal dehydration, and blast drying to obtain nylon toughening agent.
  • cross-linking aids are different, and the cross-linking aid dipropylene glycol diacrylate DPGDA in Example 1 is replaced by triallyl isocyanurate TAIC in equal parts by weight.
  • the amount of crosslinking aids varies.
  • the amount of the crosslinking aid di-trimethylolpropane tetraacrylate Di-TMPTA in Comparative Example 4 was 0.3 parts.
  • Step (2) is different.
  • the step (2) of comparative example 4 comprises: the initiator in step (1), grafting monomer, crosslinking aid, antioxidant and ethylene-octene copolymer mix 1.5min in the high-speed mixer and place
  • the material is fed to a twin-screw extruder with an aspect ratio of 56, and the temperature settings from zone 1 to zone 13 of the extruder are 80°C, 120°C, 170°C, 190°C, 190°C, 190°C, 190°C, 190°C, 190°C, 190°C, 190°C °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, 190 °C, the head temperature is 180 °C
  • Step (2) is different.
  • the step (2) of comparative example 5 comprises: the initiator in the step (1), grafting monomer, crosslinking aid, antioxidant and ethylene-octene copolymer mix 1.5min in high-speed mixer and place
  • the material is fed to a twin-screw extruder with an aspect ratio of 40, and the temperature settings from zone 1 to zone 9 of the extruder are 80°C, 120°C, 170°C, 190°C, 190°C, 190°C, 190°C, 190°C, 190°C, 190°C °C, the machine head is 180 °C, and the extruded product is pelletized under water, cooled, centrifugally dehydrated, and blast-dried to obtain a nylon toughening agent.
  • nylon toughening agents prepared in different examples and comparative examples were applied to PA6 (Yueyang Petrochemical PA6BL3280H), and each group of nylon toughened
  • the additive amount is 15wt% of the mass of PA6.
  • PA6 and nylon toughening agent are mixed in the mixer and then added to the twin-screw extruder.
  • the extrusion temperature is 80°C, 150°C, 190°C, 210°C, 230°C, 240°C, 240°C, 240°C, 240°C, 240°C, head temperature 230°C, extrusion, granulation, cooling, and drying to obtain toughened nylon.
  • the nylon toughening effect is tested, and the test results are shown in Table 1 (wherein, the test objects of melt mass flow rate, grafting rate, and yellow index are nylon toughening agent, IZOD notched impact strength
  • the test object is toughened nylon).
  • the melt mass flow rate also refers to the melt index (MI, melt index), which means that in a standardized melt index instrument at a certain temperature and pressure, the resin melt flows out through a standard capillary within a certain period of time (generally 10min). The number of grams of molten material in g/10min. Melt flow rate is an important reference for selecting plastic processing materials and grades, which can make the selected raw materials better meet the requirements of processing technology, and improve the reliability and quality of products in molding;
  • melt mass flow rate is carried out according to the method of GB/T 3682.1-2018;
  • the measuring method of grafting rate is: take by weighing W g sample, add the potassium hydroxide ethanol solution and 5ml xylene that concentration is M 1 mol/L, volume is V 1 ml, reflux 2h and use concentration M 2 mol/L, the volume is titrated to the xylene acetate solution of V 2 ml to neutralize,
  • the formula for calculating the grafting rate is:
  • the yellowness index is used to characterize the degree of yellowishness of the white sample
  • the determination method of yellowness index is carried out according to ASTM E313 method
  • IZOD notched impact strength is used to indicate the toughness value of the material. Generally, the larger the value, the better the toughness of the material;
  • test method of IZOD notched impact strength is carried out according to GB/T 1843-2008 method.
  • the acrylate crosslinking aid in the disclosed embodiment can also be combined with nylon to form intermolecular force, the compatibility between the toughening agent and nylon is improved, and the toughness is further improved. With the increase of the number of multifunctional groups, the degree of crosslinking increases and the toughness improves.
  • Example 5 Example 6 and Comparative Example 3
  • the crosslinking aid content With the increase of the crosslinking aid content, the system appears a maximum value and then decreases. This is because the crosslinking aid exceeds a certain amount, and the system crosslinks As the degree increases, the movement of molecular chains is limited, and the toughening effect cannot be reduced evenly due to the inability to disperse uniformly.
  • Example 4 and Example 7 of the present disclosure both side-feed POE, the system has moderate viscosity, can be uniformly dispersed in the nylon matrix, and has excellent toughening effect.
  • POE was not side-fed, the system was mainly cross-linked, the viscosity increased, and it could not be uniformly dispersed in the nylon matrix, and the toughening effect was not good.
  • the length-to-diameter ratio of the screw in Embodiment 4 of the present disclosure is within the scope of the present disclosure, so that the cross-linking reaction can fully occur and then side-feed into POE, the formed coating structure is complete, the toughening effect is excellent, and it is further beneficial to the subsequent initiation.
  • the volatilization of the agent and the grafted monomer, the odor is small.
  • the nylon toughening agent provided by the present disclosure when blended with nylon, can take into account interfacial compatibility, processing fluidity and toughening effect; at the same time, the preparation method of the nylon toughening agent disclosed in the present disclosure can produce micro-crosslinked polyolefin While the elastomer forms an intersecting coating structure, it also takes into account interfacial compatibility, processing fluidity and toughening effect; and, while forming the coating structure, the initiator and graft monomer can be removed to reduce residues. To sum up, the nylon toughener provided by the present disclosure and its preparation method have significant application value and broad market prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本公开涉及高分子材料技术领域,尤其是涉及一种尼龙增韧剂及其制备方法和应用。尼龙增韧剂主要由如下组分制得:聚烯烃弹性体90~98份、引发剂0.1~1份、接枝单体1~5份、交联助剂0.5~1份和抗氧剂0.5~5份;交联助剂包括多官能团丙烯酸酯类化合物。尼龙增韧剂的制备方法包括:引发剂、接枝单体、交联助剂、抗氧剂和部分聚烯烃弹性体的混合物料与余量聚烯烃弹性体进行熔融挤出;其中,混合物料采用主喂料方式喂入,余量聚烯烃弹性体采用侧喂料方式喂入。本公开通过引入特定的交联助剂,在接枝单体与聚烯烃弹性体接枝的同时产生微交联,与未反应的聚烯烃弹性体形成相互交叉的包覆结构,可兼顾界面相容性、加工流动性和增韧效果。

Description

尼龙增韧剂及其制备方法和应用
相关申请的交叉引用
本公开要求于2021年11月16日提交中国专利局的申请号为“CN 202111356712.3”名称为“尼龙增韧剂及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及高分子材料技术领域,尤其是涉及一种尼龙增韧剂及其制备方法和应用。
背景技术
尼龙作为热塑性工程塑料,具有机械强度高、耐油、耐酸碱、易加工成型、耐摩擦等优异性能,被广泛应用于汽车行业、电子电器行业、运动器械行业、医疗器械行业等。但尼龙缺口敏感性高,在干态和低温下韧性较差,无法满足超韧高分子材料的需求,同时由于尼龙分子链上酰胺键的存在,导致尼龙吸水率大,制品稳定性差,限制了尼龙的进一步发展。为解决这些问题,目前科研人员主要是通过添加增韧剂进行改善。
尼龙增韧剂主要是以接枝或共聚极性单体的弹性体为主。弹性体一般为非极性,与尼龙相容性差,需要对弹性体进行改性,如接枝极性单体或共聚极性单体等,通过在弹性体分子链上引入极性基团,提高与尼龙的界面相容性,降低尼龙由于大量酰胺键存在而吸水率高的风险。受力时,弹性体应力集中产生塑性变形,吸收能量,进而通过相互渗透的界面引发银纹和剪切带,银纹发展遇到另一弹性体便会终止,而剪切带也会阻止银纹的发展,大量消耗能量,提高材料的抗冲击性。材料韧性主要取决于弹性体与基体的界面相容性,以及弹性体在基体中的分散粒径与间距等。
而现有技术中,主要是通过提高增韧剂的流动性等,改善其在尼龙中的分散,保持或轻微降低增韧效果,多组分的接枝单体使得接枝反应较为复杂,且残留量不易控制,增韧剂味道较大,生产可控性欠佳。
发明内容
本公开提供了尼龙增韧剂,主要由按重量份数计的如下组分制得:
聚烯烃弹性体90~98份、引发剂0.1~1份、接枝单体1~5份、交联助剂0.5~1份和抗氧剂0.5~5份;
所述交联助剂包括多官能团丙烯酸酯类化合物。
在本公开的一些实施方式中,所述尼龙增韧剂主要由按重量份数计的如下组分制得:聚烯烃弹性体95~98份、引发剂0.1~0.5份、接枝单体1~3份、交联助剂0.5~0.8份和抗氧剂0.5~2份;
在本公开的一些实施方式中,所述尼龙增韧剂主要由按重量份数计的如下组分制得:聚烯烃弹性体96~98份、引发剂0.1~0.3份、接枝单体1~2份、交联助剂0.5~0.6份和抗氧剂0.5~1份。
在本公开的一些实施方式中,所述交联助剂包括二丙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯和双三羟甲基丙烷四丙烯酸酯中任一种或多种。
在本公开的一些实施方式中,所述聚烯烃弹性体为乙烯-辛烯共聚物和/或乙烯-丙烯-非共轭二烯三元共聚物。
在本公开的一些实施方式中,所述引发剂包括过氧化二苯甲酰、2,5-二甲基-2,5-二(叔丁基过氧基)己烷、二叔丁基过氧化物、过氧化二异丙苯和二叔丁基过氧化异丙基苯中的任一种或多种。
在本公开的一些实施方式中,所述接枝单体包括马来酸酐、衣康酸、甲基丙烯酸缩水甘油酯和丙烯酸中的任一种或多种。
在本公开的一些实施方式中,所述抗氧剂包括Antioxidant 168和Antioxidant 1010。在本公开的一些实施方式中,所述Antioxidant 168和Antioxidant 1010的质量比为2﹕(2.5~3.5)。
本公开还提供了上文任一项所述的尼龙增韧剂的制备方法,包括如下步骤:
引发剂、接枝单体、交联助剂、抗氧剂和部分聚烯烃弹性体的混合物料与余量聚烯烃弹性体进行熔融挤出;其中,所述混合物料采用主喂料方式喂入,所述余量聚烯烃弹性体采用侧喂料方式喂入。
在本公开的一些实施方式中,所述主喂料与所述侧喂料之间的温度控制在80℃±10℃~190℃±10℃;所述侧喂料与末端之间的温度控制在190℃±10℃~180℃±10℃。
在本公开的一些实施方式中,采用双螺杆挤出机进行所述熔融挤出。在本公开的一些实施方式中,所述双螺杆挤出机包括13个温区,温度依次为80℃±10℃、120℃±10℃、170℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、180℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃,机头温度为180℃±10℃。
在本公开的一些实施方式中,在第九区进行所述侧喂料。
在本公开的一些实施方式中,所述双螺杆挤出机的长径比≥40。在本公开的一些实施方式中,所述双螺杆挤出机的长径比≥56。
在本公开的一些实施方式中,所述部分聚烯烃弹性体与所述余量聚烯烃弹性体的质量比为1﹕(0.8~1.2)。
在本公开的一些实施方式中,所述部分聚烯烃弹性体与所述余量聚烯烃弹性体的质量比为1﹕1。在本公开的一些实施方式中,所述制备方法还包括造粒、冷却和干燥,得到所述尼龙增韧剂。
本公开还提供了上述任意一种所述尼龙增韧剂在制备增韧尼龙中的应用。
本公开提供一种尼龙,包括由以下材料制备:
尼龙基体,和
上文任一项所述的尼龙增韧剂。
在本公开的一些实施方式中,所述尼龙增韧剂占比所述尼龙基体的质量的10wt%~20wt%。
具体实施方式
下面将结合一些实施方式对本公开的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本公开一部分实施例,而不是全部的实施例,仅用于说明本公开,而不应视为限制本公开的范围。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。实施例中未注明一些条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本公开提供了尼龙增韧剂,以解决现有技术中存在的分散不均、增韧效果欠佳等技术问题。本公开一些实施方式提供了尼龙增韧剂,主要由按 重量份数计的如下组分制得:
聚烯烃弹性体90~98份、引发剂0.1~1份、接枝单体1~5份、交联助剂0.5~1份和抗氧剂0.5~5份;
所述交联助剂包括多官能团丙烯酸酯类化合物。
本公开的尼龙增韧剂,通过引入特定的交联助剂,在接枝单体与聚烯烃弹性体接枝的同时产生微交联,微交联结构起到桥梁作用,不仅能够与尼龙形成较好的相容界面,同时能够与未交联的聚烯烃弹性体分子链发生物理缠结;在与尼龙共混时,未交联的聚烯烃弹性体分子链赋予较好的流动性,而微交联结构能够保证相容性,同时配合交联助剂中的酯键与尼龙中的酰胺键之间的分子间作用力,一方面进一步提高相容性,另一方面能够保证在受力时易引发多重银纹产生,从而提高增韧效果。
如在不同实施方式中,尼龙增韧剂的原料组分中,各组分用量可以分别如下:
聚烯烃弹性体的用量可以为例如90~96份、91~98份或94~98份,诸如90份、91份、92份、93份、94份、95份、96份、97份、98份等等;
引发剂的用量可以为例如0.1~0.5份、0.5~1份或0.2~0.8份,诸如0.1份、0.2份、0.3份、0.4份、0.5份、0.6份、0.7份、0.8份、0.9份、1份等等;
接枝单体的用量可以为例如1.5~5份、1~4.5份或2~4份,诸如1份、1.5份、2份、2.5份、3份、3.5份、4份、4.5份、5份等等;
交联助剂的用量可以为例如0.5~0.9份、0.55~1份或0.5~0.8份,诸如0.5份、0.55份、0.6份、0.65份、0.7份、0.75份、0.8份、0.85份、0.9份、1份等等;
抗氧剂的用量可以为例如0.5~4.6份、0.9~5份或1.1~4.5份,诸如0.5份、1份、1.5份、2份、2.5份、3份、3.5份、4份、4.5份、5份等等。
在本公开的一些实施方式中,所述尼龙增韧剂,主要由按重量份数计的如下组分制得:聚烯烃弹性体95~98份、引发剂0.1~0.5份、接枝单体1~3份、交联助剂0.5~0.8份和抗氧剂0.5~2份。在本公开的一些实施方式中,所述尼龙增韧剂,主要由按重量份数计的如下组分制得:聚烯烃弹性体96~98份、引发剂0.1~0.3份、接枝单体1~2份、交联助剂0.5~0.6份和抗氧剂0.5~1份。
在本公开的一些实施方式中,所述多官能团丙烯酸酯类化合物中,官能度为2~4,如2或3或4,可选地官能度为4。
在本公开的一些实施方式中,所述交联助剂包括但不限于二丙二醇二丙烯酸酯(DPGDA)、三羟甲基丙烷三丙烯酸酯(TMPTA)、乙氧基化三羟甲基丙烷三丙烯酸酯(3-EO-TMPTA)和双三羟甲基丙烷四丙烯酸酯(Di-TMPTA)中任一种或多种。
上述交联助剂中的酯键与尼龙中的酰胺键之间可产生分子间作用力,在提高界面相容性的同时,在受力时也有助于引发银纹产生,提高增韧效果。
在本公开的一些实施方式中,所述聚烯烃弹性体为乙烯-辛烯共聚物和/或乙烯-丙烯-非共轭二烯三元共聚物。
在本公开的一些实施方式中,所述引发剂包括但不限于过氧化二苯甲酰、2,5-二甲基-2,5-二(叔丁基过氧基)己烷、二叔丁基过氧化物、过氧化二异丙苯和二叔丁基过氧化异丙基苯中的任一种或多种。
在本公开的一些实施方式中,所述接枝单体包括但不限于马来酸酐、衣康酸、甲基丙烯酸缩水甘油酯和丙烯酸中的任一种或多种。
在本公开的一些实施方式中,所述抗氧剂包括Antioxidant 168和Antioxidant 1010。在一些实施方式中,所述Antioxidant 168和Antioxidant 1010的质量比为2﹕(2.5~3.5),例如2﹕(2.6~3.4)、2﹕(2.7~3.3)或2﹕(2.8~3.2)。在一些实施方式中,所述Antioxidant 168和Antioxidant 1010的质量比可以为2﹕3。
本公开一些实施方式还提供了尼龙增韧剂的制备方法,包括如下步骤:
引发剂、接枝单体、交联助剂、抗氧剂和部分聚烯烃弹性体的混合物料与余量聚烯烃弹性体进行熔融挤出;其中,所述混合物料采用主喂料方式喂入,所述余量聚烯烃弹性体采用侧喂料方式喂入。
本公开将部分聚烯烃弹性体与接枝单体和交联助剂等先进行反应,在接枝的同时产生微交联;然后再侧喂余量聚烯烃弹性体,侧喂的聚烯烃弹性体与接枝并产生微交联的聚烯烃弹性体形成相互交叉的包覆结构,侧喂的聚烯烃弹性体赋予增韧剂以较好的流动性,而微交联结构起到桥梁作用,不仅与尼龙形成较好的相容界面,同时与侧喂的聚烯烃弹性体分子链发生物理缠结等等,提高界面相容性,且受力时易引发多重银纹产生,从而提 高增韧效果,并保持了较高的加工流动性。
通过本公开的制备方法,尼龙增韧剂中的聚烯烃弹性体的分子量未完全受限,部分活动分子链改善了增韧剂在尼龙基体中的分散性,而微交联结构促进了三种结合,进一步配合交联助剂中的酯键与尼龙中的酰胺键之间的分子间作用力,极大的提高了界面相容性,进而共同提升尼龙韧性,且保持了较高的加工流动性。
并且,本公开的制备方法一步成型,生产周期短,可控性强,同时能够大大降低引发剂和单体残留,提升产品品质,适用于工业化生产。
在本公开的一些实施方式中,所述混合物料的制备包括:引发剂、接枝单体、交联助剂、抗氧剂和部分聚烯烃弹性体于高速混合机中混合1~2min。
在本公开的一些实施方式中,所述主喂料与所述侧喂料之间的温度控制在80℃±10℃~190℃±10℃,例如100℃±10℃~190℃±10℃、80℃±10℃~180℃±10℃或100℃±10℃~150℃±10℃;所述侧喂料与末端之间的温度控制在190℃±10℃~180℃±10℃,例如181℃±10℃~190℃±10℃、181℃±10℃~189℃±10℃或185℃±10℃~190℃±10℃。
在本公开的一些实施方式中,采用双螺杆挤出机进行所述熔融挤出。在一些实施方式中,所述双螺杆挤出机为同向双螺杆挤出机。在一些实施方式中,所述双螺杆挤出机包括13个温区,温度依次为80℃±10℃、120℃±10℃、170℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、180℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃,机头温度为180℃±10℃。
在本公开的一些实施方式中,在实际操作中,于双螺杆挤出机中进行所述熔融挤出,然后造粒、冷却、干燥,得到所述尼龙增韧剂。
本公开采用双螺杆挤出机,在螺杆前段实现接枝交联产生微结构,后段将高粘结构与低粘结构混合形成包覆结构得到尼龙增韧剂。本公开利用双螺杆挤出机将高粘结构与低粘结构结合形成包覆结构,一方面易于在尼龙中分散,另一方面能够与尼龙基体形成界面渗透;在受力时,塑性剪切变形吸收能力,同时渗透区的聚合物形成细小的微纤形成银纹,提高增韧效果。
在本公开的一些实施方式中,在第九区进行所述侧喂料。在一些实施 方式中,在1~9区熔融塑化接枝交联,在10~13区熔融形成包覆结构,同时能够除去残留的引发剂与接枝单体。
在本公开的一些实施方式中,所述部分聚烯烃弹性体与所述余量聚烯烃弹性体的质量比为1﹕(0.8~1.2),可选地为1﹕1。
如在不同实施方式中,混合物料中的所述部分聚烯烃弹性体与所述余量聚烯烃弹性体的质量比可以为例如1﹕(0.8~1.0)、1﹕(0.9~1.2)或1﹕(0.9~1.1),诸如1﹕0.8、1﹕0.9、1﹕1、1﹕1.1、1﹕1.2等等。
在本公开的一些实施方式中,所述双螺杆挤出机的长径比≥40,可选地≥56,例如长径比为40~60、45~60或50~60,诸如40、45、50、52、54、55、56、58或60。
在本公开的一些实施方式中,所述主喂料与所述侧喂料的转速比为1﹕1。
本公开一些实施方式还提供了上述任意一种所述尼龙增韧剂在制备增韧尼龙中的应用。
本公开一些实施方式还提供一种尼龙,包括由以下材料制备:
尼龙基体,和
上文所述的尼龙增韧剂。
在本公开的一些实施方式中,所述尼龙增韧剂的用量为所述尼龙基体的质量的10wt%~20wt%,可以为例如12wt%~20wt%、10wt%~18wt%或14wt%~18wt%,诸如可选地为10wt%、12wt%、14wt%、15wt%、16wt%、18wt%、20wt%。
通过本公开制得的尼龙增韧剂,其用于尼龙基体如PA6的增韧中时,增韧处理后的尼龙材料的韧性得到显著提高,其IZOD缺口冲击强度≥60KJ/m 2,且可高达71.3KJ/m 2;同时尼龙增韧剂的熔体质量流动速率(190℃,2.16kg)≥0.1g/10min,可选地≥0.15g/10min。
本公开的有益效果为:
(1)本公开的尼龙增韧剂,通过引入特定的交联助剂,在接枝单体与聚烯烃弹性体接枝的同时产生微交联,与未反应的聚烯烃弹性体形成相互交叉的包覆结构;与尼龙共混时,可兼顾界面相容性、加工流动性和增韧效果;
(2)本公开的尼龙增韧剂的制备方法,将部分聚烯烃弹性体与接枝单 体和交联助剂等先进行反应,在接枝的同时产生微交联;然后再侧喂余量聚烯烃弹性体,侧喂的聚烯烃弹性体与接枝并产生微交联的聚烯烃弹性体形成相互交叉的包覆结构,兼顾界面相容性、加工流动性和增韧效果;并且,在形成包覆结构的同时,能够除去引发剂与接枝单体,降低残留。
实施例1
本实施例提供了尼龙增韧剂的制备方法,包括如下步骤:
(1)按重量份数称取乙烯-辛烯共聚物(陶氏POE 8150)98份、引发剂(过氧化二异丙苯DCP)0.15份、接枝单体(马来酸酐MAH)1.5份、交联助剂(二丙二醇二丙烯酸酯DPGDA)0.5份、抗氧剂(168﹕1010=2﹕3)0.5份。
(2)将步骤(1)中的引发剂、接枝单体、交联助剂、抗氧剂和一半的乙烯-辛烯共聚物(49份)在高速混合机中混合1.5min后下料至长径比为56的双螺杆挤出机,挤出机1区到13区温度设置为80℃、120℃、170℃、190℃、190℃、190℃、190℃、190℃、180℃、190℃、190℃、190℃、190℃,机头为180℃,在第九区设置侧喂料,喂料剩余的乙烯-辛烯共聚物(49份),侧喂料转速与主喂料转速之比为1﹕1,挤出物经水下切粒、冷却、离心脱水、鼓风干燥,得到尼龙增韧剂。
实施例2
本实施例参考实施例1的尼龙增韧剂的制备方法,区别仅在于:
交联助剂种类不同,将实施例1中的交联助剂二丙二醇二丙烯酸酯DPGDA替换为等重量份的三羟甲基丙烷三丙烯酸酯TMPTA。
实施例3
本实施例参考实施例1的尼龙增韧剂的制备方法,区别仅在于:
交联助剂种类不同,将实施例1中的交联助剂二丙二醇二丙烯酸酯DPGDA替换为等重量份的乙氧基化三羟甲基丙烷三丙烯酸酯3-EO-TMPTA。
实施例4
本实施例参考实施例1的尼龙增韧剂的制备方法,区别仅在于:
交联助剂种类不同,将实施例1中的交联助剂二丙二醇二丙烯酸酯DPGDA替换为等重量份的双三羟甲基丙烷四丙烯酸酯Di-TMPTA。
实施例5
本实施例参考实施例4的尼龙增韧剂的制备方法,区别仅在于:
交联助剂的用量不同。实施例5的交联助剂双三羟甲基丙烷四丙烯酸酯Di-TMPTA的用量为0.8份。
实施例6
实施例6参考实施例4的尼龙增韧剂的制备方法,区别仅在于:
交联助剂的用量不同。实施例6的交联助剂双三羟甲基丙烷四丙烯酸酯Di-TMPTA的用量为1份。
实施例7
本实施例参考实施例4的尼龙增韧剂的制备方法,区别仅在于:
步骤(2)不同。
实施例7的步骤(2)包括:将步骤(1)中的引发剂、接枝单体、交联助剂、抗氧剂和一半的乙烯-辛烯共聚物(49份)在高速混合机中混合1.5min后下料至长径比为40的双螺杆挤出机,挤出机1区到9区温度设置为80℃、120℃、170℃、190℃、180℃、190℃、190℃、190℃、190℃,机头为180℃,在第五区设置侧喂料,喂料剩余的乙烯-辛烯共聚物(49份),侧喂料转速与主喂料转速之比为1﹕1,挤出物经水下切粒、冷却、离心脱水、鼓风干燥,得到尼龙增韧剂。
比较例1
比较例1参考实施例1的尼龙增韧剂的制备方法,区别在于:
交联助剂种类不同,将实施例1中的交联助剂二丙二醇二丙烯酸酯DPGDA替换为等重量份的三烯丙基异三聚氰酸酯TAIC。
比较例2
比较例2参考实施例1的尼龙增韧剂的制备方法,区别在于:
比较例2不添加交联助剂种。
比较例3
比较例3参考实施例4的尼龙增韧剂的制备方法,区别在于:
交联助剂的用量不同。比较例4的交联助剂双三羟甲基丙烷四丙烯酸酯Di-TMPTA的用量为0.3份。
比较例4
比较例4参考实施例4的尼龙增韧剂的制备方法,区别仅在于:
步骤(2)不同。
比较例4的步骤(2)包括:将步骤(1)中的引发剂、接枝单体、交联助剂、抗氧剂和乙烯-辛烯共聚物在高速混合机中混合1.5min后下料至长径比为56的双螺杆挤出机,挤出机1区到13区温度设置为80℃、120℃、170℃、190℃、190℃、190℃、190℃、190℃、190℃、190℃、190℃、190℃、190℃,机头为180℃,挤出物经水下切粒、冷却、离心脱水、鼓风干燥,得到尼龙增韧剂。
比较例5
比较例5参考实施例4的尼龙增韧剂的制备方法,区别仅在于:
步骤(2)不同。
比较例5的步骤(2)包括:将步骤(1)中的引发剂、接枝单体、交联助剂、抗氧剂和乙烯-辛烯共聚物在高速混合机中混合1.5min后下料至长径比为40的双螺杆挤出机,挤出机1区到9区温度设置为80℃、120℃、170℃、190℃、190℃、190℃、190℃、190℃、190℃,机头为180℃,挤出物经水下切粒、冷却、离心脱水、鼓风干燥,得到尼龙增韧剂。
实验例
为了验证不同实施例和比较例制备得到的尼龙增韧剂对尼龙增韧的效果,将不同实施例和比较例制备得到的尼龙增韧剂应用到PA6(岳阳石化PA6BL3280H),各组尼龙增韧剂在添加量分别为PA6的质量的15wt%, PA6与尼龙增韧剂在混料机中混合后加入双螺杆挤出机中,挤出温度为80℃、150℃、190℃、210℃、230℃、240℃、240℃、240℃、240℃,机头温度230℃,挤出、造粒、冷却、干燥即得增韧尼龙。对各组得到的增韧尼龙中,尼龙增韧效果进行测试,测试结果见表1(其中,熔体质量流动速率、接枝率、黄色指数的测试对象为尼龙增韧剂,IZOD缺口冲击强度的测试对象为增韧尼龙)。
在本实验例中:
(1)熔体质量流动速率也指熔融指数(MI,melt index),是在标准化熔融指数仪中于一定的温度和压力下,树脂熔料通过标准毛细管在一定时间内(一般10min)内流出的熔料克数,单位为g/10min。熔体流动速率是一个选择塑料加工材料和牌号的重要参考依据,能使选用的原材料更好地适应加工工艺的要求,使制品在成型的可靠性和质量方面有所提高;
熔体质量流动速率的测定方法参照GB/T 3682.1-2018方法进行;
(2)接枝率的测定方法为:称取W g样品,加入浓度为M 1mol/L、体积为V 1ml的氢氧化钾乙醇溶液和5ml二甲苯,回流2h后用浓度为M 2mol/L、体积为V 2ml的醋酸二甲苯溶液滴定至中和,
接枝率的计算公式为:
[(M 1V 1-M 2V 2)×M/(5000×W)]×100%(公式1),式中M为马来酸酐分子量;
(3)黄色指数是用来表征白色样品的偏黄程度;
黄色指数的测定方法参照ASTM E313方法进行;
(4)IZOD缺口冲击强度是用来表示材料的韧性数值,一般情况下,数值越大,表示材料的韧性越好;
IZOD缺口冲击强度的测试方法参照GB/T 1843-2008方法进行。
表1 不同组测试结果
Figure PCTCN2022087179-appb-000001
Figure PCTCN2022087179-appb-000002
从上述测试结果可知,比较例2中未添加交联助剂,相同工艺下未形成有效相互交叉的包覆结构,增韧效果不明显,而实施例1~4和比较例1都加入交联助剂,形成相互交叉的微交联包覆结构,部分活动的分子链提供了较好的流动性,使其在尼龙中分散更均匀,而微交联结构起到桥梁作用,与尼龙形成相互渗透界面,并与相邻弹性体发生物理缠结,受力时引发多重银纹,大大提高韧性。同时,由于本公开实施例中的丙烯酸酯类交联助剂还可与尼龙结合形成分子间作用力,提高了增韧剂与尼龙的相容性,进一步提高韧性,而随着交联助剂多官能团数的增加,交联度上升,韧性提升。
结合实施例4、实施例5、实施例6和比较例3可知,随着交联助剂含量的提高,体系出现极大值后下降,这是因为交联助剂超过一定量,体系交联程度上升,分子链运动受限,无法均匀分散导致增韧效果下降。
结合实施例4、实施例7、比较例4和比较例5可知,本公开实施例4和7均侧喂POE,体系粘度适中,可以在尼龙基体中均匀分散,具有优异的增韧效果。而比较例4和比较例5均未侧喂POE,体系以交联为主,粘度增大,无法在尼龙基体中均匀分散,增韧效果不佳。同时本公开实施4的螺杆长径比在本公开的范围内,可使交联反应充分发生后再侧喂引入POE,形成的包覆结构完整,增韧效果优异,同时进一步有利于后续的引发剂及接枝单体的挥发,气味较小。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非 对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开提供的尼龙增韧剂,与尼龙共混时,可兼顾界面相容性、加工流动性和增韧效果;同时本公开的尼龙增韧剂的制备方法,在产生微交联的聚烯烃弹性体形成相互交叉的包覆结构的同时,兼顾界面相容性、加工流动性和增韧效果;并且,在形成包覆结构的同时,能够除去引发剂与接枝单体,降低残留。综上,本公开提供的尼龙增韧剂及其制备方法具有显著的应用价值和广泛的市场前景。

Claims (13)

  1. 尼龙增韧剂,其特征在于,主要由按重量份数计的如下组分制得,聚烯烃弹性体90~98份、引发剂0.1~1份、接枝单体1~5份、交联助剂0.5~1份和抗氧剂0.5~5份;
    所述交联助剂包括多官能团丙烯酸酯类化合物。
  2. 根据权利要求1所述的尼龙增韧剂,其特征在于,主要由按重量份数计的如下组分制得:聚烯烃弹性体95~98份、引发剂0.1~0.5份、接枝单体1~3份、交联助剂0.5~0.8份和抗氧剂0.5~2份;
    优选的,主要由按重量份数计的如下组分制得:聚烯烃弹性体96~98份、引发剂0.1~0.3份、接枝单体1~2份、交联助剂0.5~0.6份和抗氧剂0.5~1份。
  3. 根据权利要求1或2所述的尼龙增韧剂,其特征在于,所述交联助剂包括二丙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯和双三羟甲基丙烷四丙烯酸酯中任一种或多种。
  4. 根据权利要求1-3任一项所述的尼龙增韧剂,其特征在于,所述聚烯烃弹性体为乙烯-辛烯共聚物和/或乙烯-丙烯-非共轭二烯三元共聚物;
    和/或,所述引发剂包括过氧化二苯甲酰、2,5-二甲基-2,5-二(叔丁基过氧基)己烷、二叔丁基过氧化物、过氧化二异丙苯和二叔丁基过氧化异丙基苯中的任一种或多种;
    和/或,所述接枝单体包括马来酸酐、衣康酸、甲基丙烯酸缩水甘油酯和丙烯酸中的任一种或多种;
    和/或,所述抗氧剂包括Antioxidant 168和Antioxidant 1010;
    和/或,所述Antioxidant 168和Antioxidant 1010的质量比为2﹕(2.5~3.5)。
  5. 权利要求1-4任一项所述的尼龙增韧剂的制备方法,其特征在于,包括如下步骤:
    引发剂、接枝单体、交联助剂、抗氧剂和部分聚烯烃弹性体的混合物料与余量聚烯烃弹性体进行熔融挤出;其中,所述混合物料采用主喂料方式喂入,所述余量聚烯烃弹性体采用侧喂料方式喂入。
  6. 根据权利要求5所述的尼龙增韧剂的制备方法,其特征在于,所述 主喂料与所述侧喂料之间的温度控制在80℃±10℃~190℃±10℃;所述侧喂料与末端之间的温度控制在190℃±10℃~180℃±10℃。
  7. 根据权利要求5或6所述的尼龙增韧剂的制备方法,其特征在于,采用双螺杆挤出机进行所述熔融挤出;
    优选的,所述双螺杆挤出机包括13个温区,温度依次为80℃±10℃、120℃±10℃、170℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、180℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃、190℃±10℃,机头温度为180℃±10℃;
    优选的,在第九区进行所述侧喂料。
  8. 根据权利要求7所述的尼龙增韧剂的制备方法,其特征在于,所述双螺杆挤出机的长径比≥40;
    优选的,所述双螺杆挤出机的长径比≥56。
  9. 根据权利要求5-8任一项所述的尼龙增韧剂的制备方法,其特征在于,所述部分聚烯烃弹性体与所述余量聚烯烃弹性体的质量比为1﹕(0.8~1.2);
    优选的,所述部分聚烯烃弹性体与所述余量聚烯烃弹性体的质量比为1﹕1。
  10. 根据权利要求5-9任一项所述的尼龙增韧剂的制备方法,其特征在于,所述制备方法还包括造粒、冷却和干燥,得到所述尼龙增韧剂。
  11. 权利要求1-4任一项所述的尼龙增韧剂在制备增韧尼龙中的应用。
  12. 一种尼龙,包括由以下材料制备:
    尼龙基体,和
    权利要求1-4任一项所述的尼龙增韧剂。
  13. 根据权利要求12所述的尼龙,其特征在于,所述尼龙增韧剂占比所述尼龙基体的质量的10wt%~20wt%。
PCT/CN2022/087179 2021-11-16 2022-04-15 尼龙增韧剂及其制备方法和应用 WO2023087614A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111356712.3A CN113968939B (zh) 2021-11-16 2021-11-16 尼龙增韧剂及其制备方法和应用
CN202111356712.3 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023087614A1 true WO2023087614A1 (zh) 2023-05-25

Family

ID=79590028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087179 WO2023087614A1 (zh) 2021-11-16 2022-04-15 尼龙增韧剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113968939B (zh)
WO (1) WO2023087614A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113968939B (zh) * 2021-11-16 2024-05-28 广州鹿山新材料股份有限公司 尼龙增韧剂及其制备方法和应用
CN116102882B (zh) * 2022-12-22 2023-10-13 沈阳工业大学 一种低温高韧性、低吸水率生物基pa56合金及其制备方法
CN116178629B (zh) * 2022-12-27 2024-05-07 广州鹿山新材料股份有限公司 羟基化改性poe及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176978A2 (de) * 1984-10-04 1986-04-09 BASF Aktiengesellschaft Schlagzähe Polyamid-Formmassen mit verminderter Spannungsrissanfälligkeit
JPS6454062A (en) * 1987-05-18 1989-03-01 Mitsui Petrochemical Ind Polyamide resin composition
CA2178715A1 (en) * 1994-01-21 1995-07-27 Rolf Bernhard Wissmann Blowmoldable nylon compositions
CN1480489A (zh) * 2002-09-03 2004-03-10 中国石油化工股份有限公司 一种增韧聚酰胺组合物及其制备方法
CN113968939A (zh) * 2021-11-16 2022-01-25 广州鹿山新材料股份有限公司 尼龙增韧剂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9224512D0 (en) * 1992-11-20 1993-01-13 Exxon Chemical Patents Inc Toughened thermoplastic nylon compositions
US20110207838A1 (en) * 2010-02-25 2011-08-25 E.I. Du Pont De Nemours And Company Recycled thermoplastic with toughener
CN103073880A (zh) * 2012-12-25 2013-05-01 广州鹿山新材料股份有限公司 一种增韧尼龙复合物及其制备方法
CN106750347B (zh) * 2017-03-09 2020-04-28 山东省科学院能源研究所 一种尼龙增韧剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176978A2 (de) * 1984-10-04 1986-04-09 BASF Aktiengesellschaft Schlagzähe Polyamid-Formmassen mit verminderter Spannungsrissanfälligkeit
JPS6454062A (en) * 1987-05-18 1989-03-01 Mitsui Petrochemical Ind Polyamide resin composition
CA2178715A1 (en) * 1994-01-21 1995-07-27 Rolf Bernhard Wissmann Blowmoldable nylon compositions
CN1480489A (zh) * 2002-09-03 2004-03-10 中国石油化工股份有限公司 一种增韧聚酰胺组合物及其制备方法
CN113968939A (zh) * 2021-11-16 2022-01-25 广州鹿山新材料股份有限公司 尼龙增韧剂及其制备方法和应用

Also Published As

Publication number Publication date
CN113968939A (zh) 2022-01-25
CN113968939B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2023087614A1 (zh) 尼龙增韧剂及其制备方法和应用
JPH08509772A (ja) グラフト改質した実質的に線状であるエチレンポリマー類と他の熱可塑性ポリマー類とのブレンド物
JPS58198529A (ja) ポリオレフイン系共重合体の製造方法
CN102391431B (zh) 一种尼龙增韧剂及其制备方法和应用
CN105037958B (zh) 一种新能源汽车线缆用弹性体料及其制备方法
CN109181281B (zh) 一种用于尼龙增韧的合金增韧剂
DE60102051T2 (de) Mischungen von thermoplastischen elastomeren und polaren polymeren
CN101591416B (zh) 一种环保型聚丙烯相容剂的制备方法
CN109627582A (zh) 一种轻量化、高韧性和高刚性的聚丙烯组合物及其制备方法
CN113563593B (zh) 一种核壳增韧剂及其制备方法及其应用的增韧尼龙
CN111825801B (zh) 一种增韧剂组合物及其制备方法
JPH041023B2 (zh)
CN1957032B (zh) 用于热塑性合金的改性剂和使用这种改性剂生产的合金
JPS63305148A (ja) ガラス繊維強化ポリアミド組成物
CN101948599B (zh) 一种热塑性弹性体的制备方法
KR100468641B1 (ko) 화학적 개질에 의한 폴리올레핀 탄성체 조성물
DE102008019801B4 (de) Funktionalisierte Polybutene-1 und Verfahren zu ihrer Herstellung
CN115521566B (zh) 尼龙增韧剂及其制备方法和应用
JPH08311293A (ja) 改質された樹脂組成物
JP2840394B2 (ja) 繊維強化樹脂組成物
CN116179088A (zh) 一种可粘接多类基材的聚烯烃热熔胶及其制备工艺
JPS6176518A (ja) 変性されたブロツクコポリマーおよびその製造方法
CN114456491A (zh) 一种抗低温冲击聚丙烯改性材料及其制备方法
JPH07258355A (ja) 変性ポリオレフィンとこれを用いた積層物
CN117209668A (zh) 一种聚乳酸增韧的接枝共聚物制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894160

Country of ref document: EP

Kind code of ref document: A1