WO2023087425A1 - 乙烯催化降解催化剂及其制备方法和用途 - Google Patents

乙烯催化降解催化剂及其制备方法和用途 Download PDF

Info

Publication number
WO2023087425A1
WO2023087425A1 PCT/CN2021/136019 CN2021136019W WO2023087425A1 WO 2023087425 A1 WO2023087425 A1 WO 2023087425A1 CN 2021136019 W CN2021136019 W CN 2021136019W WO 2023087425 A1 WO2023087425 A1 WO 2023087425A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ethylene
catalytic degradation
tio
temperature
Prior art date
Application number
PCT/CN2021/136019
Other languages
English (en)
French (fr)
Inventor
李歌
王宝冬
马子然
马静
彭胜攀
王红妍
Original Assignee
国家能源投资集团有限责任公司
北京低碳清洁能源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家能源投资集团有限责任公司, 北京低碳清洁能源研究院 filed Critical 国家能源投资集团有限责任公司
Priority to AU2021474825A priority Critical patent/AU2021474825A1/en
Publication of WO2023087425A1 publication Critical patent/WO2023087425A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1204Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent
    • C22B34/1213Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent by wet processes, e.g. using leaching methods or flotation techniques
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1236Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
    • C22B34/124Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors
    • C22B34/125Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors containing a sulfur ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]

Definitions

  • the invention relates to the technical field of ethylene catalytic degradation, in particular to an ethylene catalytic degradation catalyst and its preparation method and application.
  • VOCs Volatile organic compounds
  • the current VOCs treatment technology is mainly divided into three categories: adsorption recovery technology, combustion technology, adsorption concentration + combustion technology, among which combustion technology is used for the treatment of VOCs without recovery value.
  • the volatile organic compounds in the coal chemical industry mainly come from the coal gasification process, low-temperature methanol washing tail gas, etc., which have the characteristics of a wide variety of VOCs, low recovery value, and large air volume.
  • Combustion technology can oxidize VOCs into harmless CO 2 and H 2 O emissions.
  • VOCs oxidation catalysts generally consist of two parts: a carrier and an active component (noble metal).
  • Ethylene is a common VOCs gas in coal chemical industry, and the commercial catalysts for oxidizing ethylene are mainly Pt/ ⁇ -Al 2 O 3 catalysts.
  • precious metals as active components are expensive and have a long supply cycle, basically relying on foreign imports.
  • commercial Pt/ ⁇ -Al 2 O 3 catalysts also have disadvantages such as poor thermal stability and poor anti-poisoning ability.
  • the purpose of the present invention is to overcome the problem that the existing ethylene catalytic degradation catalysts all need precious metals as active components, and provide a kind of ethylene catalytic degradation catalyst and its preparation method and application.
  • the ethylene catalytic degradation catalyst can realize higher ethylene catalytic degradation active.
  • the inventors of the present invention found in the course of their research that when the composition of the catalyst used for the catalytic degradation of ethylene contains K 2 O and Na 2 O, and anatase TiO 2 crystals, and the surface of the TiO 2 crystals is covered with a surface layer containing When the TiO 2 disordered layer of hydroxyl group and Ti 3+ can achieve good catalytic degradation of ethylene into CO 2 and H 2 O, no need to contain noble metals as active components in the catalyst, thus obtaining the present invention.
  • the first aspect of the present invention provides a catalyst for the catalytic degradation of ethylene, wherein the catalyst comprises: TiO 2 crystals and additives; wherein the crystal form of the TiO 2 crystals is anatase, and The surface of the TiO2 crystal is covered with a TiO2 disordered layer containing surface hydroxyl groups.
  • the second aspect of the present invention provides a kind of preparation method of ethylene catalytic degradation catalyst, wherein, the method comprises:
  • the nano- TiO2 powder is hydrogenated to obtain an ethylene catalytic degradation catalyst
  • the titanium source powder is selected from spent SCR denitration catalysts containing Na 2 O and K 2 O.
  • the third aspect of the present invention provides a kind of ethylene catalytic degradation catalyst prepared by the aforementioned method.
  • the fourth aspect of the present invention provides a use of the aforementioned ethylene catalytic degradation catalyst in ethylene degradation.
  • the present invention has the following beneficial effects:
  • the preparation method of the ethylene catalytic degradation catalyst of the present invention adopts the waste SCR catalyst containing Na2O and K2O additives as a raw material, and can rationally utilize the elements contained on the anatase TiO prepared by the sulfuric acid method, Provide acid sites for hydrogenated TiO2 .
  • the as-prepared TiO 2 crystal structure defect can rationally control its redox property.
  • the ethylene catalytic degradation catalyst of the present invention does not need to use transition metals or noble metals as active components, thereby eliminating the need to deal with the problems of catalyst poisoning and aging during the ethylene catalytic degradation process, and the catalyst is easy to regenerate after deactivation.
  • Fig. 1 is the technological process schematic diagram of the preparation method of ethylene catalytic degradation catalyst of the present invention
  • Fig. 2 is that the embodiment of the present invention 1 makes ethylene catalytic degradation catalyst and TiO 2 appearance contrast figure of powder;
  • Fig. 3 is that the embodiment of the present invention 1 makes ethylene catalytic degradation catalyst and TiO The X- ray diffraction contrast figure of powder;
  • Fig. 4 is the comparison diagram of the nitrogen adsorption-desorption isotherm of the ethylene catalytic degradation catalyst prepared in Example 1 of the present invention
  • Fig. 5 is that the embodiment of the present invention 1 makes ethylene catalytic degradation catalyst and pure nanometer TiO 2 EPR contrast figure;
  • Fig. 6 is the TEM figure that the embodiment of the present invention 1 makes ethylene catalytic degradation catalyst
  • Fig. 7 is a graph showing the relationship between temperature and ethylene conversion rate of the ethylene catalytic degradation catalyst prepared in Example 1 of the present invention.
  • the first aspect of the present invention provides a catalyst for the catalytic degradation of ethylene, wherein the catalyst comprises: TiO 2 crystals and additives; wherein the crystal form of the TiO 2 crystals is anatase, and the TiO 2 crystals The surface of is covered with a TiO2 disordered layer containing surface hydroxyl groups.
  • the catalyst for catalytic degradation of ethylene provided by the present invention contains TiO2 crystals with a specific structure and additives, without noble metals as active components, and can achieve better catalytic degradation effect of ethylene.
  • the content of TiO 2 in the catalyst is 99.9-99.99 wt%.
  • the catalyst also contains additives, which can be beneficial to promote the technical effect of improving the catalytic degradation of ethylene.
  • the additive includes K 2 O and Na 2 O, based on the total weight of the catalyst contained, the content of K 2 O in the catalyst is 0.002-0.006 wt%, and the content of Na 2 O is 0.006-0.098 wt%.
  • the catalyst may also have a pore structure that facilitates the catalytic degradation reaction of ethylene.
  • the specific surface area of the catalyst is 80-120 m 2 /g
  • the pore volume is 0.2-0.8 cm 3 /g
  • the pore diameter is 8-13 nm.
  • the thickness of the TiO 2 disordered layer is 1.8-3 nm.
  • the structural defect formed by the TiO 2 crystal in the catalyst can form the TiO 2 disordered layer on the surface of the TiO 2 crystal, and can contain surface hydroxyl groups.
  • the molar percentage of Ti 3+ in the titanium element is 2.15%-10.37%, preferably 5.15%-8.66%.
  • the TiO2 crystal described in the present invention contains the above-mentioned defects and the amount of defects is calculated as Ti3 + .
  • the catalyst can be controlled to have a more suitable match with the above-mentioned additives, showing better catalytic degradation of ethylene catalytic activity of the reaction.
  • the amount of Ti 3+ can be determined by X-ray photoelectron spectroscopy.
  • the surface hydroxyl group is a hydroxyl group connected to Ti 3+ , which can be expressed as Ti-OH.
  • the appearance of the ethylene catalytic degradation catalyst is khaki, and the shape is spherical.
  • the second aspect of the present invention provides a kind of preparation method of ethylene catalytic degradation catalyst, as shown in Figure 1, wherein, the method comprises:
  • the nano- TiO2 powder is hydrogenated to obtain an ethylene catalytic degradation catalyst
  • the titanium source powder is selected from spent SCR denitration catalysts containing Na 2 O and K 2 O.
  • steps (1) and (2) can be used to mainly extract Ti element, and obtain soluble Ti-containing compound, can also extract Na element and K element.
  • the acid is concentrated sulfuric acid; preferably, the concentration of the acid is 85-92wt%, preferably 88-91wt%. Meet the requirements of extracting beneficial elements mainly Ti element.
  • the mixing conditions include: the temperature is 20-30°C, and the time is 2-6h; preferably, the temperature is 22-28°C, and the time is 3-5h.
  • the mass ratio of the titanium source powder to the acid is 1:(1.5-2).
  • the titanium source powder may also contain additives, preferably Na 2 O and K 2 O, more preferably based on the total amount of the titanium source powder, the content of K 2 O is 0.1-0.3 wt%, Na The content of 2 O is 0.2-0.8 wt%, which can ensure that the finally obtained ethylene catalytic degradation catalyst contains a limited amount of Na 2 O and K 2 O, so as to further promote the improvement of the catalytic activity of ethylene catalytic degradation.
  • the calcination temperature is 150-300° C.
  • the calcination time is 30-90 min.
  • the average particle size of the titanium source powder is 10-1000 ⁇ m, preferably 50-200 ⁇ m.
  • the above conditions can promote more effective extraction of Ti, Na, and K elements to obtain soluble Ti-containing compounds.
  • step (2) can realize the dissolution of Ti element, and can also dissolve auxiliary elements, such as Na and K.
  • auxiliary elements such as Na and K.
  • the conditions of water immersion include: the temperature is 60-120° C., and the time is 60-180 minutes; preferably, the temperature is 80-100° C., and the time is 80-120 minutes.
  • the mass ratio of the product to the water used in the water immersion is 1:(2-6), preferably 1:(3-5).
  • step (3) may be mainly used to achieve precipitation of Ti.
  • the hydrolysis temperature is 80-110°C, preferably 85-105°C; the hydrolysis time is 2-5h, preferably 2.5-4h.
  • aging treatment is performed after hydrolysis, preferably, the aging time is 15-30 h, preferably 16-26 h; the aging temperature is 10-50°C, preferably 20-35°C.
  • the aged material is separated by suction filtration and washed with water to obtain the metatitanic acid colloid containing additive elements.
  • the implementation of step (4) can purify the metatitanic acid colloid, for example, it can be used to remove impurities and moisture.
  • the water washing is used to remove impurities in the metatitanic acid colloid, and the process includes mixing the metatitanic acid colloid with water, stirring, and filtering to remove the filtrate. Can be washed and filtered multiple times.
  • the drying temperature is 65-95° C., and the drying time is 60-120 minutes.
  • the calcination temperature is 450-700°C
  • the calcination time is 2-8h
  • the heating rate is 5-10°C/min.
  • the calcination is carried out for 5-6 hours at a temperature of 500-600° C. and a heating rate of 5-7° C./min, and the effect is better.
  • the crystal form of the obtained nano TiO 2 powder is anatase.
  • the nano-TiO 2 powder also contains additives, such as Na 2 O and K 2 O, dispersed in the nano-TiO 2 powder.
  • the nano TiO 2 powder is subjected to surface hydrogenation reduction, and defect structures can be generated after hydrogenation.
  • the hydrogenation conditions include: the hydrogenation temperature is 400-550°C, the hydrogenation heating rate is 5-10°C/min, the hydrogenation time is 2-12h, the hydrogen concentration is 90-100% by volume, and the hydrogen flow rate is 100- 300mL/min.
  • the TiO2 powder is heated from room temperature to the hydrogenation temperature at a hydrogenation heating rate, and then hydrogenated at a constant temperature.
  • the hydrogenation is carried out at a temperature of 420-460° C. for 4-12 hours under a 100 volume % H 2 atmosphere under normal pressure, and the hydrogen flow rate is 100-150 mL/min, and the effect is better.
  • the third aspect of the present invention provides a kind of ethylene catalytic degradation catalyst prepared by the aforementioned method.
  • the catalyst for catalytic degradation of ethylene prepared by the aforementioned method includes: TiO 2 crystals and additives; based on the total weight of the catalyst, the content of K 2 O is 0.002-0.006 wt%, and Na 2 O The content is 0.006-0.098wt%.
  • the crystal form of the TiO 2 crystal is anatase type, the content of TiO 2 is 99.9-99.99wt%, and the surface of the TiO 2 crystal is covered with a TiO 2 disordered layer.
  • the thickness of the disordered layer of TiO 2 is 1.8-3nm; in the disordered layer of TiO 2 , the mole percentage of Ti 3+ in the titanium element is 2.15%-10.37%, preferably 5.15%-8.66%.
  • the specific surface area of the catalyst is 80-120m 2 /g, the pore volume is 0.2-0.8cm 3 /g, and the pore diameter is 8-13nm.
  • the fourth aspect of the present invention provides a use of the aforementioned ethylene catalytic degradation catalyst in ethylene degradation.
  • the application includes: contacting the organic volatile gas containing ethylene with the ethylene catalytic degradation catalyst of the present invention to perform ethylene catalytic degradation reaction.
  • the application is carried out at a temperature which may be in the range 100-500°C.
  • the volume concentration of ethylene in the organic volatile gas, can be 10-1000ppm.
  • the volume space velocity of the organic volatile gas is 4000-40000h -1 .
  • the morphology of the prepared ethylene catalytic degradation catalyst was determined by TEM, using a JEM ARM 200F transmission electron microscope from Japan JEOL Company.
  • EPR Electron Paramagnetic Resonance
  • the titanium source powder is a waste SCR catalyst with an average particle size of 74 ⁇ m.
  • the chemical composition is determined by XRF fluorescence analysis method (RIPP 117-90 standard method). The results are shown in Table 1. The composition content of the prepared catalyst was also measured by XRF fluorescence analysis method.
  • the filtrate is hydrolyzed and aged sequentially.
  • the hydrolysis conditions are hydrolysis temperature 100°C and hydrolysis time 3h; the aging conditions are aging temperature 25°C and aging time 20h; Metatitanic acid colloid, additives containing Na 2 O and K 2 O;
  • the obtained ethylene catalytic degradation catalyst is analyzed by XRD.
  • the ethylene catalytic degradation catalyst comprises an anatase-type TiO 2 crystal.
  • the catalyst has a disordered layer with a thickness of 2.74nm, wherein Ti The mole percent of 3+ is 6.73%.
  • the catalyst also contains Na 2 O and K 2 O, and the composition is shown in Table 2.
  • Fig. 2 is that embodiment 1 makes ethylene catalytic degradation catalyst and TiO 2 appearance comparison figure of powder; Can find out from figure: TiO 2 powder is white powder, and the outward appearance of ethylene catalytic degradation catalyst of the present invention is khaki, shape Appearance is spherical.
  • Fig. 3 is that embodiment 1 makes ethylene catalytic degradation catalyst X-ray diffraction contrast figure, as can be seen from Fig. 3: all diffraction peaks of ethylene catalytic degradation catalyst of the present invention all match with TiO The diffraction peak of powder, no impurity occurs , this result is consistent with the XRD spectrum of mesoporous TiO 2 reported in the literature; in addition, the XRD diffraction peak of the ethylene catalytic degradation catalyst is obviously wider and lower, indicating that the size and structure of the crystallites have changed slightly, which is Because trivalent titanium and oxygen vacancies are generated during the hydrogenation reduction process.
  • Fig. 4 is the nitrogen adsorption-desorption isotherm contrast figure that embodiment 1 makes ethylene catalytic degradation catalyst; Wherein, one of two curves is adsorption curve, and the other is desorption curve, and Fig. 4 shows that ethylene catalytic degradation catalyst of the present invention is Langmuir type IV belongs to the typical adsorption curve of mesoporous substances, that is, with the increase of adsorption partial pressure, a large hysteresis loop appears.
  • the pressure p/p 0 value corresponding to the point of steep increase in the adsorption isotherm indicates the pore size of the sample. It can be seen from the pore size distribution diagram in Figure 4 that the ethylene catalytic degradation catalyst of the present invention has a highly effective Ordered mesoporous structure, uniform pore size distribution and regular channels.
  • Fig. 5 is that embodiment 1 makes ethylene catalytic degradation catalyst and TiO 2 EPR contrast figure of powder; Signal peak is oxygen vacancy (V O * ) Ti 3+ signal peak at g value ⁇ 2 place; As can be seen from Fig. 5 , 1 represents TiO 2 powder, 2 represents the ethylene catalytic degradation catalyst of the present invention, after hydrogenation, more signal peaks of ( VO * )Ti 3+ are generated, indicating that hydrogenation generates more oxygen vacancies on the surface of the material, and more Facilitate the denitrification reaction.
  • Fig. 6 is the TEM figure of the ethylene catalytic degradation catalyst that embodiment 1 makes; From Fig. 6 (the lower part of the middle part, many marked dotted lines and arrows) it can be seen that: the edge of TiO 2 crystal nuclei is like being etched, and a thin film is formed. A disordered layer, further indicating that TiO 2 was successfully hydrogenated.
  • Fig. 7 is the reaction activity diagram of the ethylene catalytic degradation catalyst obtained in Example 1; as can be seen from Fig. 7: at 325-500°C, the ethylene degradation activity of the ethylene catalytic degradation catalyst is >50%; after 450°C, ethylene is catalytically degraded The ethylene degradation activity of the catalyst is >90%.
  • the filtrate was hydrolyzed and aged sequentially.
  • the hydrolysis conditions were hydrolysis temperature 85°C, hydrolysis time 2.5h; the aging conditions were aging time 16h, aging temperature 20°C; the obtained solid phase product was analyzed to contain additives
  • the metatitanic acid colloid, the auxiliary agent contains Na 2 O and K 2 O;
  • T-2 was analyzed, and the results are shown in Table 2. Carry out the comparison of appearance, XRD, nitrogen adsorption-desorption isotherm, EPR, TEM, the result of the photograph or curve or spectrogram that obtains is similar to that obtained in embodiment 1.
  • the filtrate is hydrolyzed and aged sequentially.
  • the hydrolysis conditions are hydrolysis temperature 105°C and hydrolysis time 4h; the aging conditions are aging time 26h and aging temperature 35°C; the obtained solid phase product is analyzed as additive-containing Metatitanic acid colloid, additives containing Na 2 O and K 2 O;
  • T-3 was analyzed, and the results are shown in Table 2.
  • the comparison of the appearance, XRD, nitrogen adsorption-desorption isotherm, EPR, and TEM is carried out, and the results of the obtained photos or curves or spectrograms are similar to those obtained in Example 1.
  • the difference is that "the hydrogenation temperature is 400°C” is replaced by "the hydrogenation temperature is 420°C”.
  • the prepared ethylene catalytic degradation catalyst is designated as T-4.
  • T-4 was analyzed, and the results are shown in Table 2. Carry out the comparison of appearance, XRD, nitrogen adsorption-desorption isotherm, EPR, TEM, the result of the photograph or curve or spectrogram that obtains is similar to that obtained in embodiment 1.
  • the difference is that "the hydrogenation time is 2h” replaces "the hydrogenation time is 12h”.
  • the prepared ethylene catalytic degradation catalyst is designated as T-5.
  • T-5 was analyzed, and the results are shown in Table 2.
  • the comparison of the appearance, XRD, nitrogen adsorption-desorption isotherm, EPR, and TEM is carried out, and the results of the obtained photos or curves or spectrograms are similar to those obtained in Example 1.
  • the parameters of the catalyst are shown in Table 2 using commercially purchased TiO 2 .
  • comparative example 1 adopts the TiO that does not have impurity 2Hydrogenation
  • comparative example 2 adopts the hydrogenation that concentration is not high
  • comparative example 3 adopts hydrogenation time and hydrogenation temperature all are not within the scope limited by the present invention
  • the hydrogenation was carried out under the conditions; as a result, the ethylene catalytic degradation catalyst obtained by the preparation method of the present invention in Examples 1-5 had a specific disordered layer thickness and Ti 3+ accounted for the mole percentage of titanium.
  • the catalysts prepared in Examples 1-5 and Comparative Examples 1-3 are applied to the catalytic degradation reaction of ethylene, wherein, in the catalytic oxidation decomposition of organic volatile gases, the volume concentration of ethylene is 700ppm, and the content of other gases O2 10v %, N 2 is the balance gas, the total flow rate is 1000mL/min; the volume space velocity of the organic volatile gas is 100000h -1 , the results are shown in Table 3.
  • degradation efficiency % (inlet ethylene concentration-outlet ethylene concentration)/inlet ethylene concentration ⁇ 100%.
  • the titanium dioxide of Comparative Example 1 was calcined according to the conditions of step (4) in Example 1 to obtain anatase crystals, and hydrogenated according to the method of step (5) in Example 1, but the catalyst obtained did not contain K 2 O and Na 2 O cannot have the thickness of the disordered layer and the mole percentage of Ti 3+ as defined in the present invention, so a good ethylene catalytic degradation effect cannot be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)

Abstract

提供一种乙烯催化降解催化剂及其制备方法和用途,涉及乙烯催化降解技术领域。所述催化剂包含:TiO 2晶体和助剂;其中,所述TiO 2晶体的晶型为锐钛矿型,且所述TiO 2晶体的表面覆盖有TiO 2无序层,所述无序层含有表面羟基。所述乙烯催化降解催化剂在300-450℃时乙烯降解效率达到50%以上,最高达到90%,相比现有催化剂,可以无任何过渡金属或贵金属为活性组分。

Description

乙烯催化降解催化剂及其制备方法和用途
相关申请的交叉引用
本申请要求2021年11月16日提交的发明名称为“乙烯催化降解催化剂及其制备方法和应用”的中国专利申请202111356393.6的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及乙烯催化降解技术领域,具体涉及一种乙烯催化降解催化剂及其制备方法和用途。
背景技术
挥发性有机物(以下简称VOCs)是形成PM 2.5和O 3的重要前体物,为进一步改善空气质量,需加强煤化工等VOCs重点排放行业的综合治理。当前VOCs处理技术主要分为三类:吸附回收技术、燃烧技术、吸附浓缩+燃烧技术,其中燃烧技术用于无回收价值VOCs的治理。例如,煤化工行业挥发性有机物主要来源于煤气化工艺、低温甲醇洗尾气等,具有VOCs种类繁多、回收价值低、风量大等特点,燃烧技术可将VOCs氧化成无害的CO 2和H 2O排放。
催化燃烧是燃烧技术中的重要手段之一,其中,催化燃烧技术的关键节点包括VOCs氧化催化剂设计与制备。VOCs氧化催化剂一般由载体和活性组分(贵金属)两部分组成。乙烯是常见的煤化工VOCs气体,商业催化氧化乙烯的催化剂主要是Pt/γ-Al 2O 3催化剂。但活性组分贵金属价格昂贵且供货周期长,基本依赖于国外进口。此外商业Pt/γ-Al 2O 3催化剂还存在热稳定性差、抗中毒能力差等缺点。
综上所述,开发低成本、抗中毒、稳定的新型环保催化剂以有效减少VOCs大气污染物势在必行。
发明内容
本发明的目的是为了克服现有乙烯催化降解催化剂均需要以贵金属为活性组分的问题,提供一种乙烯催化降解催化剂及其制备方法和用途,该乙烯催化降解催化剂可实现较高的乙烯催化活性。
本发明的发明人在研究过程中发现,当用于乙烯催化降解的催化剂组成中包含K 2O和Na 2O,以及锐钛矿型的TiO 2晶体,且TiO 2晶体的表面覆盖有含有表面羟基、Ti 3+的TiO 2无序层时,能够实现很好的乙烯催化降解成为CO 2和H 2O,无需催化剂中含有贵金属作为活性组分,因而得到本发明。
为了实现上述目的,本发明第一方面提供了一种乙烯催化降解催化剂,其中,所述催化剂包含:TiO 2晶体和助剂;其中,所述TiO 2晶体的晶型为锐钛矿型,且所述TiO 2晶体的表面覆盖有TiO 2无序层,所述无序层含有表面羟基。
本发明第二方面提供了一种乙烯催化降解催化剂的制备方法,其中,该方法包括:
(1)将钛源粉末与酸进行混合,得到的混合料进行焙烧;
(2)将所述焙烧得到的产物进行水浸,然后进行固液分离,得到含Ti滤液;
(3)将所述滤液进行水解和陈化,得到含助剂元素的偏钛酸胶体,所述助剂元素含有Na和K;
(4)将所述偏钛酸胶体进行水洗、干燥和煅烧,得到纳米TiO 2粉体;
(5)将所述纳米TiO 2粉体进行氢化,得到乙烯催化降解催化剂;
其中,钛源粉末选自含有Na 2O和K 2O的废SCR脱硝催化剂。
本发明第三方面提供了一种由前述所述的方法制备得到的乙烯 催化降解催化剂。
本发明第四方面提供了一种前述所述的乙烯催化降解催化剂在乙烯降解中的用途。
通过上述技术方案,本发明具有如下的有益效果:
(1)本发明的乙烯催化降解催化剂的制备方法采用含有Na 2O和K 2O助剂的废SCR催化剂为原料,能够合理利用硫酸法制备得到的锐钛矿型TiO 2上含有的元素,为氢化TiO 2提供酸性位。另外,制备得到的TiO 2晶体构筑缺陷,可以合理调控其氧化还原性。
(2)本发明的乙烯催化降解催化剂不需要使用过渡金属或贵金属为活性组分,从而无需处理乙烯催化降解过程中催化剂中毒和老化的问题,且催化剂失活后容易再生。
附图说明
图1为本发明的乙烯催化降解催化剂的制备方法的工艺流程示意图;
图2为本发明实施例1制得乙烯催化降解催化剂与TiO 2粉末的外观对比图;
图3为本发明实施例1制得乙烯催化降解催化剂与TiO 2粉末的X射线衍射对比图;
图4为本发明实施例1制得乙烯催化降解催化剂的氮气吸附-脱附等温线对比图;
图5为本发明实施例1制得乙烯催化降解催化剂与纯纳米TiO 2的EPR对比图;
图6为本发明实施例1制得乙烯催化降解催化剂的TEM图;
图7为本发明实施例1制得乙烯催化降解催化剂的温度与乙烯转 化率关系图。
附图标记说明
1、TiO 2粉末            2、乙烯催化降解催化剂
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供了一种乙烯催化降解催化剂,其中,所述催化剂包含:TiO 2晶体和助剂;其中,所述TiO 2晶体的晶型为锐钛矿型,且所述TiO 2晶体的表面覆盖有TiO 2无序层,所述无序层含有表面羟基。
本发明提供的用于乙烯催化降解的催化剂,含有具有特定结构的TiO 2晶体以及助剂,没有贵金属作为活性组分,能够实现更好的乙烯催化降解效果。
在本发明的一些实施方式中,优选地,基于所述催化剂的总重量,所述催化剂中,TiO 2的含量为99.9-99.99wt%。
在本发明的一些实施方式中,所述催化剂中还含有的助剂,能够有利于促进提高乙烯催化降解的技术效果。优选地,所述助剂包含K 2O和Na 2O,基于所含催化剂的总重量,所述催化剂中,K 2O的含量为0.002-0.006wt%,Na 2O的含量为0.006-0.098wt%。
在本发明的一些实施方式中,所述催化剂还可以具有有利于乙烯催化降解反应的孔结构。优选地,所述催化剂的比表面积为80-120 m 2/g,孔体积为0.2-0.8cm 3/g,孔径为8-13nm。
在本发明的一些实施方式中,优选地,所述TiO 2无序层的厚度为1.8-3nm。所述催化剂中TiO 2晶体形成的结构缺陷可以在所述TiO 2晶体的表面形成所述TiO 2无序层,且能够含有表面羟基。
在本发明的一些实施方式中,优选地,所述TiO 2无序层中,Ti 3+占钛元素的摩尔百分数为2.15%-10.37%,优选为5.15%-8.66%。本发明中所述TiO 2晶体含有上述缺陷且缺陷的量以Ti 3+计,当在上述范围内时可以控制所述催化剂与上述助剂有更合适的匹配,表现出更好的乙烯催化降解反应的催化活性。Ti 3+的量可以通过X射线光电子能谱分析方法测定。
本发明中,所述表面羟基为羟基与Ti 3+相连接,可以表示为Ti-OH。
本发明中,所述乙烯催化降解催化剂的外观为土黄色,形貌为球形。
本发明第二方面提供了一种乙烯催化降解催化剂的制备方法,如图1所示,其中,该方法包括:
(1)将钛源粉末与酸进行混合,得到的混合料进行焙烧;
(2)将所述焙烧得到的产物进行水浸,然后进行固液分离,得到含Ti滤液;
(3)将所述滤液进行水解和陈化,得到含助剂元素的偏钛酸胶体,所述助剂元素含有Na和K;
(4)将所述偏钛酸胶体进行水洗、干燥和煅烧,得到纳米TiO 2粉体;
(5)将所述纳米TiO 2粉体进行氢化,得到乙烯催化降解催化剂;
其中,钛源粉末选自含有Na 2O和K 2O的废SCR脱硝催化剂。
在本发明的一些实施方式中,步骤(1)和(2)可以用于主要提 取Ti元素,并得到可溶的含Ti化合物,也能够提取Na元素和K元素。优选地,所述酸为浓硫酸;优选地,所述酸的浓度为85-92wt%,优选为88-91wt%。满足提取Ti元素为主的有益元素的要求。
在本发明的一些实施方式中,优选地,所述混合的条件包括:温度为20-30℃,时间为2-6h;优选,温度为22-28℃,时间为3-5h。
在本发明的一些实施方式中,优选地,所述钛源粉末与所述酸的质量比为1:(1.5-2)。其中,所述钛源粉末中,还可以含有助剂,优选含有Na 2O和K 2O,更优选基于所述钛源粉末的总量,K 2O的含量为0.1-0.3wt%,Na 2O的含量为0.2-0.8wt%,能够保证提供最终获得的乙烯催化降解催化剂含有限定量的Na 2O和K 2O,以进一步促进提高乙烯催化降解的催化活性。
在本发明的一些实施方式中,优选地,焙烧温度为150-300℃,焙烧时间为30-90min。
在本发明的一些实施方式中,优选地,所述钛源粉末的平均粒径为10-1000μm,优选为50-200μm。以上条件可以促进更有效提取Ti、Na、K元素,得到可溶的含Ti化合物。
在本发明的一些实施方式中,步骤(2)可以实现溶出Ti元素,还可以溶出助剂元素,如Na和K。优选地,所述水浸的条件包括:温度为60-120℃,时间为60-180min;优选,温度为80-100℃,时间为80-120min。
在本发明的一些实施方式中,优选地,所述产物与所述水浸中使用的水的质量比为1:(2-6),优选为1:(3-5)。
在本发明的一些实施方式中,步骤(3)可以主要用于实现沉淀Ti。优选地,水解温度为80-110℃,优选为85-105℃;水解时间为2-5h,优选为2.5-4h。
在本发明的一些实施方式中,水解后还进行陈化处理,优选地,陈化时间为15-30h,优选为16-26h;陈化温度为10-50℃,优选为20-35℃。
本发明中,将陈化后的物料抽滤分离,水洗,得到含助剂元素的偏钛酸胶体。
在本发明的一些实施方式中,步骤(4)实施可以对偏钛酸胶体进行净化,例如可以用于除杂和除去水分。所述水洗用于除去所述偏钛酸胶体中的杂质,过程包括将所述偏钛酸胶体与水混合、搅拌,并过滤除去滤液。可以进行多次水洗和过滤。优选地,干燥温度为65-95℃,干燥时间为60-120min。
在本发明的一些实施方式中,优选地,煅烧温度为450-700℃,煅烧时间为2-8h,升温速率为5-10℃/min。优选情况下,在温度为500-600℃,升温速率为5-7℃/min的条件下进行焙烧5-6h,效果更好。
本发明中,经煅烧后,得到的纳米TiO 2粉体的晶型为锐钛矿型。
优选地,所述纳米TiO 2粉体中还含有助剂,例如Na 2O和K 2O,分散在所述纳米TiO 2粉体中。
在本发明的一些实施方式中,在步骤(5)中,将所述纳米TiO 2粉体进行表面氢化还原,氢化后可以生成缺陷结构。优选地,所述氢化的条件包括:氢化温度为400-550℃,氢化升温速率为5-10℃/min,氢化时间为2-12h,氢气浓度为90-100体积%,氢气流量为100-300mL/min。在设定流量的氢气存在下,将所述TiO 2粉末从室温开始,以氢化升温速率加热至氢化温度,然后恒温进行氢化。优选地,在常压下,100体积%H 2气氛下,在温度为420-460℃条件下氢化4-12h,氢气流量为100-150mL/min,效果更好。
本发明第三方面提供了一种由前述所述的方法制备得到的乙烯 催化降解催化剂。
优选地,由前述所述的方法制备得到的乙烯催化降解催化剂中,包含:TiO 2晶体和助剂;基于所含催化剂的总重量,K 2O的含量为0.002-0.006wt%,Na 2O的含量为0.006-0.098wt%。所述TiO 2晶体的晶型为锐钛矿型,TiO 2的含量为99.9-99.99wt%,所述TiO 2晶体的表面覆盖有TiO 2无序层。所述TiO 2无序层的厚度为1.8-3nm;所述TiO 2无序层中,Ti 3+占钛元素的摩尔百分数为2.15%-10.37%,优选为5.15%-8.66%。所述催化剂的比表面积为80-120m 2/g,孔体积为0.2-0.8cm 3/g,孔径为8-13nm。
本发明第四方面提供了一种前述所述的乙烯催化降解催化剂在乙烯降解中的用途。
根据本发明,具体地,该应用包括:将含有乙烯的有机挥发性气体与本发明的乙烯催化降解催化剂接触进行乙烯催化降解反应。
根据本发明,所述应用在温度可以为100-500℃的温度条件下进行。
根据本发明,有机挥发性气体中,乙烯的体积浓度可以为10-1000ppm。
根据本发明,有机挥发性气体的体积空速为4000-40000h -1
以下将通过实施例对本发明进行详细描述。
以下实施例和对比例中:
(1)制得的乙烯催化降解催化剂的晶体结构通过XRD分析测得,使用德国Bruker公司的D8ADVANCE,测试扫描速率为0.5°/min至5°/min。
(2)制得的乙烯催化降解催化剂的孔结构和介孔孔径通过N 2吸附方法测定,使用美国Micromeritics公司的ASAP 2020物理吸附 仪,吸附介质为N 2
(3)制得的乙烯催化降解催化剂的形貌通过TEM测定,使用日本JEOL公司的型号为JEM ARM 200F透射电子显微镜。
(4)电子顺磁共振图(EPR)分析使用电子顺磁共振波谱仪。
(5)钛源粉末为废SCR催化剂,平均粒径为74μm,化学组成采用XRF荧光分析方法(RIPP 117-90标准方法)测定,结果如表1所示。制得催化剂组成含量也采用XRF荧光分析方法测定。
表1
Figure PCTCN2021136019-appb-000001
实施例1
(1)按照废SCR催化剂(粒径120μm):浓硫酸(90wt%)的质量比为1:1.8进行混合,得到混合料;在180℃下进行焙烧1h。
(2)将焙烧的产物与水按照质量比为1:4进行水浸,温度为100℃,时间为100min,然后,进行固液分离,得到含Ti滤液;
(3)将滤液依次进行水解和陈化,水解条件为水解温度100℃,水解时间3h;陈化条件为陈化温度25℃,陈化时间20h;得到固相产物经分析为含助剂的偏钛酸胶体,助剂含有Na 2O和K 2O;
(4)将偏钛酸胶体进行水洗,分离得到的固体在80℃烘干60min,最后在马弗炉中以7℃/min的升温速率在500℃下煅烧6h,得到纳米TiO 2粉体,分析纳米TiO 2粉体的颗粒粒径约为30nm,且分析纳米TiO 2粉体的晶型为锐钛矿型;
(5)将纳米TiO 2粉体在管式炉中进行氢化,压力为0.1MPa,氢气浓度为100体积%,氢气流量为120mL/min,氢化升温速率为10℃/min,达到氢化温度为420℃,保温氢化时间为12h,然后降至室温, 得到乙烯催化降解催化剂,记为T-1。
得到的乙烯催化降解催化剂,进行XRD分析,乙烯催化降解催化剂包含晶型为锐钛矿型的TiO 2晶体,从图6的TEM图可以看出,催化剂具有2.74nm厚度的无序层,其中Ti 3+的摩尔百分数为6.73%。催化剂还含有Na 2O、K 2O,组成见表2。
图2为实施例1制得乙烯催化降解催化剂与TiO 2粉末的外观对比图;从图中能够看出:TiO 2粉末为白色粉末,而本发明的乙烯催化降解催化剂的外观为土黄色,形貌为球形。
图3为实施例1制得乙烯催化降解催化剂X射线衍射对比图,从图3可以看出:本发明的乙烯催化降解催化剂的所有的衍射峰均与TiO 2粉末的衍射峰吻合,无杂质出现,此结果与文献报道的介孔TiO 2的XRD谱相一致;另外,乙烯催化降解催化剂的XRD衍射峰明显变宽且变低,说明微晶的尺寸与结构发生了较小的改变,这是因为氢化还原的过程中产生了三价钛和氧空位。
图4为实施例1制得乙烯催化降解催化剂的氮气吸附-脱附等温线对比图;其中,两个曲线一个是吸附曲线,一个是脱附曲线,图4表明本发明的乙烯催化降解催化剂为朗格缪尔IV型,属于典型的介孔物质吸附曲线,即随着吸附分压的提高,出现了一个大的滞后环。另外,吸附等温线中吸附量陡增点所对应的的对压力p/p 0值标示样品的孔径大小,从图4中的孔径分布图可看出:本发明的乙烯催化降解催化剂具有高度有序的介孔结构、均一的孔径分布和规整的孔道。
图5为实施例1制得乙烯催化降解催化剂与TiO 2粉末的EPR对比图;在g值<2处信号峰为氧空位(V O *)Ti 3+的信号峰;从图5可以看出,1表示TiO 2粉末,2表示本发明的乙烯催化降解催化剂,氢化后生成了较多的(V O *)Ti 3+的信号峰,说明氢化使材料表面生成了 较多的氧空位,更有利于脱硝反应的进行。
图6为实施例1制得乙烯催化降解催化剂的TEM图;从图6中(中部下方,多处标记虚线和箭头)能够看出:TiO 2晶核的边缘像被刻蚀一样,生成了薄的一层无序层,进一步表明TiO 2被成功的氢化。
图7为实施例1制得乙烯催化降解催化剂的反应活性图;从图7中能够看出:在325-500℃时,乙烯催化降解催化剂的乙烯降解活性>50%;450℃后乙烯催化降解催化剂的乙烯降解活性>90%。
实施例2
(1)按照废SCR催化剂(粒径50μm):浓硫酸(88wt%)的质量比为1:1.5进行混合,得到混合料;在150℃下进行焙烧0.5h。
(2)将焙烧的产物与水按照质量比为1:3进行水浸,温度为90℃,时间为80min,然后,进行固液分离,得到含Ti滤液;
(3)将滤液依次进行水解和陈化,水解条件为水解温度85℃,水解时间2.5h;陈化条件为陈化时间16h,陈化温度20℃;得到固相产物经分析为含助剂的偏钛酸胶体,助剂含有Na 2O和K 2O;
(4)将偏钛酸胶体进行水洗,分离得到的固体在95℃烘干120min,最后在马弗炉中以5℃/min的升温速率在600℃下煅烧5h,得到纳米TiO 2粉体,分析纳米TiO 2粉体的颗粒粒径约为20nm,且分析纳米TiO 2粉体的晶型为锐钛矿型;
(5)将纳米TiO 2粉体在管式炉中进行氢化,压力为0.1MPa,氢气浓度为100体积%,氢气流量为100mL/min,氢化升温速率为5℃/min,达到氢化温度为430℃,保温氢化时间为4h,然后降至室温,得到乙烯催化降解催化剂,记为T-2。
将T-2进行分析,结果如表2所示。进行外观、XRD、氮气吸附-脱附等温线、EPR、TEM的比对,得到的照片或曲线或谱图的结果 与实施例1获得的相似。
实施例3
(1)按照废SCR催化剂(粒径200μm):浓硫酸(91wt%)的质量比为1:2进行混合,得到混合料;在300℃下进行焙烧1.5h。
(2)将焙烧的产物与水按照质量比为1:5进行水浸,温度为80℃,时间为120min,然后,进行固液分离,得到含Ti滤液;
(3)将滤液依次进行水解和陈化,水解条件为水解温度105℃,水解时间4h;陈化条件为陈化时间26h,陈化温度35℃;得到固相产物经分析为含助剂的偏钛酸胶体,助剂含有Na 2O和K 2O;
(4)将偏钛酸胶体进行水洗,分离得到的固体在65℃烘干100min,最后在马弗炉中以6℃/min的升温速率在550℃下煅烧5h,得到纳米TiO 2粉体,分析纳米TiO 2粉体的颗粒粒径约为40nm,且分析纳米TiO 2粉体的晶型为锐钛矿型;
(5)将纳米TiO 2粉体在管式炉中进行氢化,压力为0.1MPa,氢气浓度为100体积%,氢气流量为150mL/min,氢化升温速率为8℃/min,达到氢化温度为460℃,保温氢化时间为9h,然后降至室温,得到乙烯催化降解催化剂,记为T-3。
将T-3进行分析,结果如表2所示。进行外观、XRD、氮气吸附-脱附等温线、EPR、TEM的比对,得到的照片或曲线或谱图的结果与实施例1获得的相似。
实施例4
按照实施例1的方法,不同的是,“氢化温度为400℃”替换“氢化温度为420℃”。制备得到的乙烯催化降解催化剂记为T-4。
将T-4进行分析,结果如表2所示。进行外观、XRD、氮气吸附 -脱附等温线、EPR、TEM的比对,得到的照片或曲线或谱图的结果与实施例1获得的相似。
实施例5
按照实施例1的方法,不同的是,“氢化时间为2h”替换“氢化时间为12h”。制备得到的乙烯催化降解催化剂记为T-5。
将T-5进行分析,结果如表2所示。进行外观、XRD、氮气吸附-脱附等温线、EPR、TEM的比对,得到的照片或曲线或谱图的结果与实施例1获得的相似。
对比例1
采用商业购买的TiO 2,该催化剂的参数如表2所示。
对比例2
按照实施例1的方法,不同的是,“氢气浓度为50体积%”替换“氢气浓度为100体积%”。得到的催化剂的参数如表2所示。
对比例3
按照实施例1的方法,不同的是,“氢化时间0.5h”替换“氢化时间为12h”,“氢化温度200℃”替换“氢化温度为420℃”。得到的催化剂的参数如表2所示。
表2
Figure PCTCN2021136019-appb-000002
Figure PCTCN2021136019-appb-000003
通过表2的结果可以看出,对比例1采用没有杂质的TiO 2氢化,对比例2采用浓度不高的氢气氢化,对比例3采用氢化时间和氢化温度都不在本发明所限定的范围之内的条件进行氢化;结果,实施例1-5中采用本发明的制备方法,获得的乙烯催化降解催化剂具有特定的无序层厚度和Ti 3+占钛元素的摩尔百分数。
应用例
将实施例1-5和对比例1-3制备的催化剂应用于乙烯催化降解反应中,其中,进行催化氧化分解有机挥发性气体中,乙烯体积浓度为700ppm,其他气体含量O 2 10v%,N 2为平衡气,总流量为1000mL/min;有机挥发性气体的体积空速为100000h -1,结果如表3所示。
其中,降解效率%=(入口乙烯浓度-出口乙烯浓度)/入口乙烯浓度×100%。
表3
Figure PCTCN2021136019-appb-000004
通过表3的结果可以看出,采用对比例1未经过氢化的二氧化钛,对乙烯无降解效率,对比例2和3中的氢化时间、温度以及氢气浓度不在范围内,得到的催化剂不具有本发明的催化剂的结构,乙烯催化降解效果相比实施例1-5按照本发明的提供催化剂较差。另外,将对比例1的二氧化钛按照实施例1中步骤(4)的条件煅烧,得到锐钛矿型晶体,并按实施例1中步骤(5)的方法进行氢化,但得到的催化剂不含有助剂K 2O和Na 2O,也不能具有本发明限定的厚度的无序层和Ti 3+的摩尔百分数,不能获得好的乙烯催化降解效果。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (12)

  1. 一种乙烯催化降解催化剂,其特征在于,所述催化剂包含:TiO 2晶体和助剂;
    其中,所述TiO 2晶体的晶型为锐钛矿型,且所述TiO 2晶体的表面覆盖有TiO 2无序层,所述无序层含有表面羟基。
  2. 根据权利要求1所述的催化剂,其中,所述TiO 2无序层的厚度为1.8-3nm。
  3. 根据权利要求1或2所述的催化剂,其中,所述TiO 2无序层中,Ti 3+占钛元素的摩尔百分数为2.15%-10.37%,优选为5.15%-8.66%。
  4. 根据权利要求1-3中任意一项所述的催化剂,其中,基于所述催化剂的总重量,所述催化剂中,TiO 2的含量为99.9-99.99wt%;
    优选地,所述助剂包含K 2O和Na 2O;
    优选地,基于所含催化剂的总重量,所述催化剂中,K 2O的含量为0.002-0.006wt%,Na 2O的含量为0.006-0.098wt%。
  5. 一种乙烯催化降解催化剂的制备方法,其特征在于,该方法包括:
    (1)将钛源粉末与酸进行混合,得到的混合料进行焙烧;
    (2)将所述焙烧得到的产物进行水浸,然后进行固液分离,得到含Ti滤液;
    (3)将所述滤液进行水解和陈化,得到含助剂元素的偏钛酸胶体,所述助剂元素含有Na和K;
    (4)将所述偏钛酸胶体进行水洗、干燥和煅烧,得到纳米TiO 2 粉体;
    (5)将所述纳米TiO 2粉体进行氢化,得到乙烯催化降解催化剂;
    其中,钛源粉末选自含有Na 2O和K 2O的废SCR脱硝催化剂。
  6. 根据权利要求5所述的方法,其中,所述酸为浓硫酸;优选,所述酸的浓度为85-92wt%;
    优选地,所述混合的条件包括:温度为20-30℃,时间为2-6h;
    优选地,所述钛源粉末与所述酸的质量比为1∶(1.5-2);
    优选地,焙烧温度为150-300℃,焙烧时间为30-90min;
    优选地,所述钛源粉末的平均粒径为10-1000μm。
  7. 根据权利要求5或6所述的方法,其中,所述水浸的条件包括:温度为60-120℃,时间为60-180min;
    优选地,所述产物与所述水浸中使用的水的质量比为1∶(2-6)。
  8. 根据权利要求5-7中任意一项所述的方法,其中,水解温度为80-110℃,优选为85-105℃;水解时间为2-5h,优选为2.5-4h;
    优选地,陈化时间为15-30h,优选为16-26h;陈化温度为10-50℃,优选为20-35℃。
  9. 根据权利要求5-8中任意一项所述的方法,其中,干燥温度为65-95℃,干燥时间为60-120min;
    优选地,煅烧温度为450-700℃,煅烧时间为2-8h,升温速率为5-10℃/min。
  10. 根据权利要求5-9中任意一项所述的方法,其中,所述氢化 的条件包括:氢化温度为400-550℃,氢化升温速率为5-10℃/min,氢化时间为2-12h,氢气浓度为90-100体积%,氢气流量为100-300mL/min。
  11. 一种权利要求5-10中任意一项所述的方法制备得到的乙烯催化降解催化剂。
  12. 一种权利要求1-4和11中任意一项所述的催化剂在乙烯催化降解中的用途。
PCT/CN2021/136019 2021-11-16 2021-12-07 乙烯催化降解催化剂及其制备方法和用途 WO2023087425A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021474825A AU2021474825A1 (en) 2021-11-16 2021-12-07 Catalyst for catalytic degradation of ethylene, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111356393.6 2021-11-16
CN202111356393.6A CN116135303A (zh) 2021-11-16 2021-11-16 乙烯催化降解催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023087425A1 true WO2023087425A1 (zh) 2023-05-25

Family

ID=86324966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136019 WO2023087425A1 (zh) 2021-11-16 2021-12-07 乙烯催化降解催化剂及其制备方法和用途

Country Status (4)

Country Link
US (1) US11813591B2 (zh)
CN (1) CN116135303A (zh)
AU (1) AU2021474825A1 (zh)
WO (1) WO2023087425A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297277A (ja) * 2005-04-20 2006-11-02 Eco Holistic:Kk 光触媒材料
CN104229876A (zh) * 2014-08-27 2014-12-24 浙江大学 一种不同黑度的无定型羟基化纳米TiO2及其制备方法
CN110743581A (zh) * 2019-11-04 2020-02-04 国家能源投资集团有限责任公司 氢化TiO2脱硝催化剂及其制备方法和应用
CN110787807A (zh) * 2019-11-04 2020-02-14 国家能源投资集团有限责任公司 低温脱硝催化剂及其制备方法和烟气脱硝的方法
CN111346627A (zh) * 2020-03-12 2020-06-30 浙江大学 一种多重结TiO2纳米异质结构光催化剂及其制备方法
CN112919530A (zh) * 2019-12-06 2021-06-08 国家能源投资集团有限责任公司 介孔二氧化钛材料及其制备方法和催化剂及其制备方法以及烟气脱硝方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950763A (en) * 1988-07-29 1990-08-21 Basf Aktiengesellschaft Preparation of ketones
CN101113018B (zh) * 2006-07-26 2011-03-30 黑龙江大学 高光催化活性二氧化钛的制备方法
CZ200895A3 (cs) * 2008-02-21 2010-01-13 Advanced Materials - Jtj S. R. O. Katalytická struktura TiO2 pro katalytické procesy do 1000 °C a zpusob její výroby
US8545796B2 (en) * 2009-07-31 2013-10-01 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297277A (ja) * 2005-04-20 2006-11-02 Eco Holistic:Kk 光触媒材料
CN104229876A (zh) * 2014-08-27 2014-12-24 浙江大学 一种不同黑度的无定型羟基化纳米TiO2及其制备方法
CN110743581A (zh) * 2019-11-04 2020-02-04 国家能源投资集团有限责任公司 氢化TiO2脱硝催化剂及其制备方法和应用
CN110787807A (zh) * 2019-11-04 2020-02-14 国家能源投资集团有限责任公司 低温脱硝催化剂及其制备方法和烟气脱硝的方法
CN112919530A (zh) * 2019-12-06 2021-06-08 国家能源投资集团有限责任公司 介孔二氧化钛材料及其制备方法和催化剂及其制备方法以及烟气脱硝方法
CN111346627A (zh) * 2020-03-12 2020-06-30 浙江大学 一种多重结TiO2纳米异质结构光催化剂及其制备方法

Also Published As

Publication number Publication date
CN116135303A (zh) 2023-05-19
AU2021474825A1 (en) 2024-05-16
US20230149903A1 (en) 2023-05-18
US11813591B2 (en) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2021088277A1 (zh) 氢化TiO2脱硝催化剂及其制备方法和应用
TWI417137B (zh) 在無釩可移動觸媒中之觸媒促進劑
CN110787807B (zh) 低温脱硝催化剂及其制备方法和烟气脱硝的方法
CN109382132B (zh) 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN111097422B (zh) 一种除甲醛的催化剂及其制备方法和应用
CN111437870A (zh) 一种金属@mfi的多级孔结构的封装催化剂及其封装方法和用途
CN111036201A (zh) 一种负载型单原子Pt催化剂及其制备方法和应用
CN112264016B (zh) 用于甲醛催化氧化的高缺陷四氧化三钴催化剂及其制备方法和应用
US7807605B2 (en) Process for the preparation of a TiO2-containing catalyst or catalyst support which is stable to high temperatures
CN112934219A (zh) 一种耐杂原子燃烧催化剂、其制备方法和应用
CN109289847B (zh) 催化丙烷脱氢反应的催化剂及其制备方法和丙烷脱氢制丙烯的方法
WO2023087425A1 (zh) 乙烯催化降解催化剂及其制备方法和用途
WO2023082628A1 (zh) 利用芬顿试剂制备得到的碳纳米管催化剂及方法和应用
CN113797926B (zh) 一种甲醛催化氧化催化剂及其制备方法与应用
WO2014047937A1 (zh) 一种高热稳定性高活性的钒钛化合物材料及其制备方法
CN113797963B (zh) 一种高耐碱的复合脱硝粉体及其制备方法
CN102441388B (zh) 一种高稳定性钴基费托合成催化剂的制备方法
CN109908857B (zh) 一种铂改性二氧化钛纳米线滤膜的制备方法
CN114588894A (zh) 一种铑基催化剂及其制备方法与应用
JP2017100120A (ja) メタン酸化除去用触媒の製造方法およびメタン酸化除去用触媒
CN114247458B (zh) 氮掺杂二氧化钛脱硝催化剂的制备方法及应用
CN111185221A (zh) 一种PdAg合金负载Ti-SBA-15催化剂及其制备方法与应用
CN115254083B (zh) 一种铝锆复合载体的制备方法、包含该载体的馏分油加氢精制催化剂
CN115155580B (zh) 一种用于有机废气催化燃烧的高抗氯性及抗热老化性催化剂及其制备方法
CN112516987B (zh) 一种以CeZrK/rGO纳米固溶体为主要成分的催化剂的使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2021474825

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2021474825

Country of ref document: AU

Date of ref document: 20211207

Kind code of ref document: A