WO2023085812A1 - 탈세포 자궁 조직 유래 세포외기질을 포함하는 조성물 및 이의 용도 - Google Patents

탈세포 자궁 조직 유래 세포외기질을 포함하는 조성물 및 이의 용도 Download PDF

Info

Publication number
WO2023085812A1
WO2023085812A1 PCT/KR2022/017662 KR2022017662W WO2023085812A1 WO 2023085812 A1 WO2023085812 A1 WO 2023085812A1 KR 2022017662 W KR2022017662 W KR 2022017662W WO 2023085812 A1 WO2023085812 A1 WO 2023085812A1
Authority
WO
WIPO (PCT)
Prior art keywords
endometrial
decellularized
organoids
extracellular matrix
uem
Prior art date
Application number
PCT/KR2022/017662
Other languages
English (en)
French (fr)
Inventor
조승우
진윤희
최이선
박은주
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2023085812A1 publication Critical patent/WO2023085812A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0681Cells of the genital tract; Non-germinal cells from gonads
    • C12N5/0682Cells of the female genital tract, e.g. endometrium; Non-germinal cells from ovaries, e.g. ovarian follicle cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
    • C12N2533/92Amnion; Decellularised dermis or mucosa

Definitions

  • the present invention relates to a composition comprising a decellularized uterine tissue-derived extracellular matrix and its use, and more specifically, to a hydrogel composition for 3-dimensional culture of endometrial organoids, endometrial organoids, and a manufacturing method and use thereof. .
  • Organoid which has recently been in the spotlight, is a rapidly growing technology worldwide as a tissue analog capable of various clinical applications such as new drug screening, drug toxicity evaluation, disease modeling, cell therapy, and tissue engineering.
  • Organoids are not only composed of various cells constituting specific organs and tissues of the human body within a three-dimensional structure, but also can implement complex interactions between them, so they are compatible with conventional drug evaluation models such as simple cell line models and animal models. In comparison, it can be applied as a much more accurate in vitro model platform.
  • Matrigel is a component extracted from rat sarcoma cancer tissue, it is difficult to maintain uniform quality of the product, it is expensive, and there are problems in terms of safety such as animal infectious bacteria and virus transfer, so it has many problems to be solved as an organoid culture system.
  • a cancer tissue-derived material it does not provide an optimal tissue-specific microenvironment required for culturing specific tissue organoids.
  • the uterus is a female reproductive organ in which a fertilized egg implants and grows, and is a very important female organ as a place where a fertilized egg implants and a placenta attaches to a fetus until it reaches birth through development and growth.
  • the uterus can be caused by various factors such as fibroids, adenomyosis, endometriosis, cervicitis, cervical dysplasia, cervical intraepithelial tumor, cervical cancer, uterine prolapse, endometrial cancer, etc.
  • Organoid expression technology derived from uterine tissue is urgently needed for research.
  • the present inventors have completed the present invention by confirming that endometrial organoids can be cultured using decellularized uterine tissue-derived extracellular matrix.
  • An object of the present invention is to provide a hydrogel composition for three-dimensional culture of endometrial organoids, including a decellularized uterine tissue-derived extracellular matrix (UEM).
  • a hydrogel composition for three-dimensional culture of endometrial organoids including a decellularized uterine tissue-derived extracellular matrix (UEM).
  • an object of the present invention is to provide endometrial organoids cultured in the hydrogel composition for three-dimensional culture.
  • the present invention comprises the steps of mixing Triton X-100 and ammonium hydroxide in uterine tissue; freeze-drying and pulverizing the tissue to prepare an extracellular matrix derived from decellularized cervical tissue; dissolving the decellularized uterine tissue-derived extracellular matrix in a pepsin solution; and mixing PBS buffer, tertiary distilled water, and NaOH with the dissolution solution, followed by gelation; It is an object of the present invention to provide a method for producing a hydrogel composition for three-dimensional culture of cervical organoids, comprising:
  • an object of the present invention is to provide a method for preparing endometrial organoids, comprising culturing endometrial organoids in the hydrogel composition for three-dimensional culture of endometrial organoids.
  • an object of the present invention is to provide a method for preventing or treating a uterine-related disease by transplanting the endometrial organoid to a subject having a uterine-related disease.
  • One aspect of the present invention provides a hydrogel composition for three-dimensional culture of endometrial organoids, including decellularized uterine tissue-derived extracellular matrix (UEM).
  • ELM decellularized uterine tissue-derived extracellular matrix
  • Another aspect of the present invention provides endometrial organoids cultured in the hydrogel composition for three-dimensional culture.
  • Another aspect of the present invention comprises mixing Triton X-100 and ammonium hydroxide in uterine tissue; freeze-drying and pulverizing the tissue to prepare an extracellular matrix derived from decellularized cervical tissue; dissolving the decellularized uterine tissue-derived extracellular matrix in a pepsin solution; and mixing PBS buffer, tertiary distilled water, and NaOH with the dissolution solution, followed by gelation; It provides a method for producing a hydrogel composition for three-dimensional culture of cervical organoids, comprising a.
  • Another aspect of the present invention provides a method for producing endometrial organoids, comprising culturing endometrial organoids in the hydrogel composition for 3-dimensional culture of endometrial organoids.
  • Another aspect of the present invention provides a method for preventing or treating a uterine-related disease by transplanting the endometrial organoid to a subject having a uterine-related disease.
  • the hydrogel composition comprising the decellularized uterine tissue-derived extracellular matrix of the present invention produces endometrial organoids that are very similar to uterine tissues and organs in vivo through the properties, components, and physical properties of the decellularized uterine tissue-derived extracellular matrix. These endometrial organoids can be usefully used for in vivo implantation and drug testing for various uterine-related diseases.
  • 1 relates to the preparation of extracellular matrix derived from decellularized uterine tissue.
  • 11 and 12 relate to the results of physical property analysis of decellularized cervical tissue-derived extracellular matrix (UEM) hydrogels.
  • UDM extracellular matrix
  • 13 and 14 relate to the concentration of decellularized uterine tissue-derived extracellular matrix (UEM) hydrogels optimized for endometrial organoid culture.
  • UDM tissue-derived extracellular matrix
  • 15 to 18 relate to endometrial-specific protein expression of endometrial organoids cultured in UEM hydrogel.
  • tissue-derived extracellular matrix (UEM) solution concentrations optimized for endometrial organoid culture relate to decellularized uterine tissue-derived extracellular matrix (UEM) solution concentrations optimized for endometrial organoid culture.
  • UDM tissue-derived extracellular matrix
  • CM 24 and 25 show morphological changes of endometrial organoids cultured in decellularized uterine tissue-derived extracellular matrix (UEM) hydrogels according to WNT3a conditioned medium (CM) concentration.
  • FIG. 28 relates to results of confirming the similarity of organoid culture performance between batches of decellularized uterine tissue-derived extracellular matrix (UEM) hydrogels.
  • UDM extracellular matrix
  • 29 to 32 relate to tissue-specific effects of decellularized uterine tissue-derived scaffolds for endometrial organoid culture.
  • 33 relates to subculture of endometrial organoids on a hydrogel scaffold derived from decellularized uterine tissue.
  • 34 relates to the results of establishing an animal model for in vivo transplantation of endometrial organoids.
  • 35 relates to results of in vivo implantation of endometrial organoids using a hydrogel scaffold derived from decellularized uterine tissue and confirmation of regeneration effect.
  • 36 relates to the results of verifying the applicability of the decellularized cervical tissue-derived extracellular matrix composition as a coating material.
  • 37 to 42 relate to the preparation of an endometrial organoid chip using a hydrogel scaffold derived from decellularized uterine tissue.
  • the present invention provides a hydrogel composition for three-dimensional culture of endometrial organoids, including decellularized uterine tissue-derived extracellular matrix (UEM).
  • EMM tissue-derived extracellular matrix
  • the present invention provides endometrial organoids cultured in the hydrogel composition for three-dimensional culture.
  • the present invention provides a scaffold support for in vivo organoid transplantation comprising the hydrogel composition for 3-dimensional culture.
  • the present invention provides a composition for coating the surface of a culture vessel comprising the hydrogel composition for three-dimensional culture.
  • the present invention provides an endometrial organoid chip or a method for manufacturing the same, including the hydrogel composition for three-dimensional culture.
  • extracellular matrix refers to a natural support for cell growth prepared through decellularization of tissues found in mammals and multicellular organisms.
  • the extracellular matrix may be further processed through dialysis or crosslinking.
  • the extracellular matrix includes collagens, elastins, laminins, glycosaminoglycans, proteoglycans, antimicrobials, chemoattractants, and cytokines. , and mixtures of structural and nonstructural biomolecules, including but not limited to growth factors.
  • the decellularized uterine tissue contains actual tissue-specific extracellular matrix components, it can provide a physical, mechanical, and biochemical environment for the tissue, and is very efficient in promoting differentiation into uterine tissue cells and tissue-specific functionality. am.
  • the “organoid” refers to a microscopic biological organ manufactured in the form of an artificial organ by culturing cells derived from tissues or pluripotent stem cells in a 3D form.
  • the organoid is a three-dimensional tissue analog including organ-specific cells that arise from stem cells and self-organize (or self-pattern) in a manner similar to the in vivo state. can develop into
  • the organoids may have the original physiological characteristics of cells and may have an anatomical structure that mimics the original state of a cell mixture (including not only limited cell types but also remaining stem cells and adjacent physiological niches). .
  • the organoids can have cells and cell functions more well arranged through a 3-dimensional culture method, and have organ-like morphology and tissue-specific functions having functional properties.
  • the "hydrogel” is a material in which a liquid using water as a dispersion medium hardens through a sol-gel phase transition and loses fluidity and forms a porous structure. can be formed
  • the decellularized uterine tissue-derived extracellular matrix may include glycosaminoglycan, collagen, fibronectin, and/or laminin.
  • the decellularized uterine tissue-derived extracellular matrix of the present invention is characterized in that all of these extracellular matrix proteins are well preserved.
  • the decellularized cervical tissue-derived extracellular matrix may include COL6A3, COL6A1, and/or COL6A2 of collagen type VI as collagen and fibrinogen FGA, FGB, and/or FGG as glycoproteins.
  • the decellularized uterine tissue-derived extracellular matrix of the present invention is characterized by the presence of various types of extracellular matrix and growth factor proteins.
  • the decellularized uterine tissue-derived extracellular matrix may have a higher elastic modulus (G') than the viscous modulus (G''), and specifically, the concentration of the decellularized uterine tissue-derived extracellular matrix is 1 to 8 mg/mL, it may have an elastic modulus of 10 1 to 10 2 Pa and a viscous modulus of 10 0 to 10 1 Pa.
  • the decellularized cervical tissue-derived extracellular matrix of the present invention has appropriate elastic modulus and viscous modulus, and is characterized by having physical properties capable of forming a stable polymer network inside the hydrogel.
  • the concentration of the extracellular matrix derived from decellularized uterine tissue may be 1 to 8, or 3 to 7 mg/mL.
  • the concentration of the extracellular matrix corresponds to a range in which endometrial organoids can be stably formed, similar to the case of commercially available Matrigel.
  • the endometrial organoids cultured in the hydrogel composition for three-dimensional culture may express or overexpress ER ⁇ , E-cadherin, and/or cytokeratin (pan-cytokeratin; PanCK). More specifically, compared to endometrial organoids cultured on Matrigel, or endometrial organoids cultured on hydrogel scaffolds derived from organs or organs other than the uterus, such as the esophagus, heart, intestine, liver, spinal cord, pancreas, bladder, and salivary glands. In comparison, endometrial organoids cultured in the hydrogel composition for 3D culture of the present invention may exhibit 90 to 99% similar expression levels of ER ⁇ , E-cadherin, and PanCK. These proteins are endometrial-specific proteins, and are meaningful as substitutes for conventional matrigel for endometrial organoid culture.
  • the endometrial organoids cultured in the hydrogel composition for three-dimensional culture may express or overexpress Esr1, Lgr5, Foxa2, and/or Muc1 genes. More specifically, compared to endometrial organoids cultured on Matrigel, or endometrial organoids cultured on hydrogel scaffolds derived from organs or organs other than the uterus, such as the esophagus, heart, intestine, liver, spinal cord, pancreas, bladder, and salivary glands. In comparison, endometrial organoids cultured in the hydrogel composition for 3D culture of the present invention may overexpress Esr1, Lgr5, Foxa2, and/or Muc1 genes. Through the expression or overexpression of these stem cells and differentiation markers, the composition of the present invention can be provided as a hydrogel composition more suitable for inducing endometrial organoid development and differentiation than Matrigel.
  • mucin secretion of endometrial organoids may be increased, and more specifically As a result, mucin secretion may be increased compared to endometrial organoids cultured in Matrigel.
  • the endometrial organoids cultured in the hydrogel composition for 3-dimensional culture may have an increased expression level of a cell proliferation marker (Ki67) when treated with estradiol, and more specifically, treated with estradiol and progesterone Compared to one endometrial organoid, the marker may be overexpressed in an endometrial organoid treated only with estradiol. This indicates that the endometrial organoids cultured in the hydrogel composition for three-dimensional culture of the present invention have higher functionality than those cultured in Matrigel.
  • a cell proliferation marker Ki67
  • mixing Triton X-100 and ammonium hydroxide in uterine tissue freeze-drying and pulverizing the tissue to prepare an extracellular matrix derived from decellularized cervical tissue; dissolving the decellularized uterine tissue-derived extracellular matrix in a pepsin solution; and mixing the dissolution solution with PBS buffer, tertiary distilled water, and NaOH, followed by gelation.
  • the present invention provides a method for producing endometrial organoids, comprising culturing endometrial organoids in the hydrogel composition for three-dimensional culture of endometrial organoids.
  • the step of dissolving the decellularized uterine tissue-derived extracellular matrix in the pepsin solution may be performed at a temperature of 15 to 30 °C.
  • These temperature conditions relate to the solubility and degree of hydrogel formation of the decellularized uterine tissue-derived extracellular matrix (UEM). If the temperature condition is out of the above temperature conditions, the uterine tissue-derived extracellular matrix is not normally dissolved or the hydrogel is not formed well. problems may arise.
  • the concentration of the pepsin solution in the step of dissolving the decellularized uterine tissue-derived extracellular matrix in the pepsin solution, may be 3 to 10, or 4 to 8 mg/mL, specifically, the concentration of UEM Based on the concentration of 20 mg/mL, the concentration of the pepsin solution may be 3 to 10, or 4 to 8 mg/mL.
  • the concentration of the pepsin solution is for efficient and stable cultivation of endometrial organoids, and if the concentration of the pepsin solution is out of the above range, there may be a problem of gel shrinkage during organoid culture.
  • the method for preparing endometrial organoids may further include subculturing in WNT3a conditioned medium (CM), and the concentration of the WNT3a conditioned medium is 5 to 30, 10 to 25, or 10 or It may be 25% (volume/volume).
  • CM WNT3a conditioned medium
  • the concentration of the CM is 5 to 15 or 10%
  • the organoid undergoes subculture and cell proliferation occurs actively to develop in a dense form
  • the concentration of CM is 20 to 30 or 25%
  • the organoid may develop into a cystic form by inducing cell differentiation.
  • the method for producing endometrial organoids may further include subculturing the hydrogel composition for 3-dimensional culture of the endometrial organoids.
  • Another aspect of the present invention provides a method for transplanting the endometrial organoid to a subject having endometrial damage or a subject having a uterus-related disease.
  • Another aspect of the present invention provides a method for improving or treating endometrial damage by transplanting the endometrial organoid to a subject with endometrial damage.
  • Another aspect of the present invention provides a method for preventing or treating a uterine-related disease by transplanting the endometrial organoid to a subject having a uterine-related disease.
  • Another aspect of the present invention provides a use of the endometrial organoid for preventing or treating uterine-related diseases.
  • Another aspect of the present invention provides a use of the endometrial organoid for preparing a drug for preventing or treating a uterine-related disease.
  • the uterus-related disease is endometriosis, uterine leiomyoma, cervical cancer, adenomyosis, vaginitis, ovarian cyst, endometrial cancer, uterine cancer, cervical dysplasia, endometriosis, uterine prolapse, cervicitis, functional uterine bleeding, Or it may be abnormal uterine bleeding.
  • an object means an animal including a human.
  • Endometrial organoids can be cultured and prepared through the hydrogel composition for 3-dimensional culture of endometrial organoids containing decellularized uterine tissue-derived extracellular matrix, and these endometrial organoids can be produced by in vivo uterine tissue It has high similarity with in various aspects, so it can be used for the above-mentioned purposes.
  • Example 1 Preparation of decellularized uterine tissue-derived extracellular matrix (uterus extracellular matrix; UEM)
  • an extracellular matrix derived from decellularized uterine tissue was prepared.
  • step a After cutting the pig uterus tissue into small pieces, all cellular components in the tissue were removed by stirring in a mixture of 1% Triton X-100 and 0.1% ammonium hydroxide for 48 hours (step a). After this decellularization process, the tissue was lyophilized and pulverized to prepare a decellularized uterine tissue-derived uterus extracellular matrix (UEM) (step b). 20 mg of the decellularized uterine tissue-derived extracellular matrix was dissolved in a 4 mg/mL pepsin solution (a solution obtained by dissolving 4 mg of pepsin powder derived from porcine gastric mucosa in 1 mL of 0.02 M HCl) for two days (step c).
  • pepsin solution a solution obtained by dissolving 4 mg of pepsin powder derived from porcine gastric mucosa in 1 mL of 0.02 M HCl
  • UEM solution 10X PBS buffer (pH 7.2): Tertiary distilled water: NaOH (0.5M) was mixed in a ratio of 25: 10: 63: 2, mixed evenly, and adjusted to pH 7.0 to 7.2.
  • the characteristics of the prepared extracellular matrix (UEM) derived from decellularized uterine tissue were analyzed as shown in FIGS. 2 to 5 .
  • glycosaminoglycan (c, d in Fig. 3) To analyze glycosaminoglycan (GAG), one of the representative extracellular matrix components, (c) Toluidine blue tissue staining and (d) quantitative analysis of GAG were performed, and GAG was well detected in decellularized uterine tissue. confirmed to be preserved.
  • Fig. 5g Through tissue immunostaining performed to confirm the presence of Fibronectin and Laminin, which are one of the major extracellular matrix proteins, it was confirmed that both extracellular matrix proteins are well preserved after the decellularization process, and DAPI staining It was confirmed that all cell nuclei were removed.
  • Example 3 Component analysis of decellularized cervical tissue-derived extracellular matrix (UEM)
  • Fig. 6a, b It was found that various types of extracellular matrix (collagens, glycoproteins, proteoglycans, etc.) and growth factor proteins were present in UEM compared to Matrigel. On the other hand, in the case of Matrigel, it can be seen that it is mainly composed of glycoprotein.
  • the proteins expressed at the highest level in UEM are collagen [collagen type VI (COL6A3, COL6A1, COL6A2)], glycoprotein [Fibrinogen (FGA, FGB, FGG)], proteoglycan [Decorin (DCN)], but in the case of Matrigel, glycoproteins [Nidogen-1 (NID1), Laminin-111 (LAMB1, LAMA1, LAMC1)] accounted for most of the components (total 0.8 riBAQ). It can be seen that there is collagen [collagen type VI (COL6A3, COL6A1, COL6A2)], glycoprotein [Fibrinogen (FGA, FGB, FGG)], proteoglycan [Decorin (DCN)], but in the case of Matrigel, glycoproteins [Nidogen-1 (NID1), Laminin-111 (LAMB1, LAMA1, LAMC1)] accounted for most of the components (total 0.8 riBAQ). It can be seen that there is
  • FIG. 9 b As a result of gene ontology analysis of proteins known to be significantly more expressed in the uterus than in other tissues among proteins present in UEM, it was confirmed that they are mainly related to tissue development and development.
  • Example 4 Evaluation of solubility and hydrogel formation of decellularized cervical tissue-derived extracellular matrix (UEM) according to dissolution temperature (optimization of step of preparing scaffold solution)
  • the solubility and degree of hydrogel formation of the decellularized uterine tissue-derived extracellular matrix were evaluated according to the dissolution temperature.
  • the dried decellularized cervical tissue-derived scaffold (UEM 20 mg/mL) was solutionized for two days through pepsin (4 mg/mL) treatment under three temperature conditions. When melted at 4°C, only a part of the scaffold was dissolved, and when melted at room temperature (RT) and 37°C, it was confirmed that the support was well dissolved (leftmost images).
  • FIG. 10 c After inducing a gelation process at 37 ° C for 30 minutes, in order to check whether the hydrogel was formed well (d) in the case of a UEM sample dissolved at 4 ° C when placed in PBS buffer, hydrogel Gel formation but undissolved solid materials were seen (top rightmost image), hydrogel was well formed in the UEM sample dissolved at room temperature (rightmost middle image), and hydrogel was dissolved in the UEM sample dissolved at 37°C. No formation (bottom rightmost image).
  • Example 5 Analysis of physical properties of decellularized uterine tissue-derived extracellular matrix (UEM) hydrogel
  • a hydrogel was prepared by inducing cross-linking of dissolved UEM through pepsin treatment at room temperature, and mechanical properties were confirmed.
  • Example 6 Determination of concentration of decellularized uterine tissue-derived extracellular matrix (UEM) hydrogel optimized for endometrial organoid culture
  • Example 7 Endometrial-specific protein expression analysis of endometrial organoids cultured in UEM hydrogel (cell immunostaining analysis)
  • E-cadherin an epithelial marker protein
  • the 5 mg/mL UEM hydrogel has potential as an alternative to conventional matrigel for endometrial organoid culture.
  • Example 8 Analysis of stem cell and differentiation marker expression of endometrial organoids cultured in UEM hydrogel (quantitative PCR analysis)
  • Quantitative PCR quantitative PCR on the 4th day of culture PCR analysis was compared.
  • the UEM hydrogel has the ability to induce endometrial organoid development and differentiation enough to replace the commercialized matrigel scaffold.
  • Example 9 Determination of solution concentration of decellularized uterine tissue-derived extracellular matrix (UEM) optimized for endometrial organoid culture
  • UEM was solutionized for two days by treatment with pepsin at various concentrations (2, 4, and 8 mg/mL).
  • pepsin at various concentrations (2, 4, and 8 mg/mL).
  • FIG. 21 b When organoid formation efficiency was compared for each UEM solution treatment condition on the 3rd day of culture, endometrial organoids were formed in the UEM hydrogels under C and D conditions with the most similar efficiency to Matrigel. Therefore, the most appropriate protocols for solutionizing UEM are C and D conditions, and among them, the C condition with a low pepsin concentration was finally selected.
  • Example 10 Analysis of functionality (sex hormone responsiveness) of endometrial organoids cultured in decellularized uterine tissue-derived extracellular matrix (UEM) hydrogels
  • Sex hormone responsiveness was analyzed to evaluate the functionality of endometrial organoids cultured in UEM hydrogel derived from decellularized uterine tissue at a concentration of 5 mg/mL. Specifically, endometrial organoids (seeding density: 3.3 x 10 6 cells/mL) cultured for one day in Matrigel or UEM hydrogel were treated with sex hormones.
  • Hormone X1 group was treated with 10 nM estradiol (E2) for 2 days (D1-D3) and then treated with 10 nM estradiol (E2), 1 ⁇ M progesterone (P4), and 1 ⁇ M cAMP for 2 days (D3-D3). D5) treated. Hormone X3 group was treated with 30 nM estradiol (E2) for 2 days (D1-D3) and then additionally treated with 30 nM estradiol (E2), 3 ⁇ M progesterone (P4), and 3 ⁇ M cAMP for 2 days (D3-D5).
  • FIG. 22b On the 4th day (D5) after sex hormone treatment, mucin secretion from endometrial organoids following sex hormone treatment was confirmed by measuring the PAS-positive area inside the organoid through PAS staining. In endometrial organoids cultured on Matrigel and UEM hydrogel, mucin secretion increased significantly in proportion to sex hormone treatment concentration. In particular, when treated with the same concentration of sex hormones, it was confirmed that more mucin was secreted from UEM organoids than from Matrigel organoids.
  • FIG. 23 c In order to confirm the reactivity of endometrial organoids according to the sex hormone secretion cycle, the group not treated with sex hormones (untreated), the group treated only with 10 nM estradiol for 4 days (E2), and the group treated with only 10 nM estradiol for 2 days (E2) After treatment with estradiol, immunofluorescence staining was performed on the group (E2+P4+cAMP) additionally treated with 10 nM estradiol, 1 ⁇ M progesterone, and 1 ⁇ M cAMP for 2 days.
  • Ki67 a cell proliferation marker
  • Progesterone which induces the secretory phase, induces cell differentiation in uterine tissue, and at this time, cAMP assists progesterone to induce cell differentiation.
  • Cytokeratin 8 (KRT8), an epithelial cell marker unrelated to hormone treatment, was expressed similarly in all three groups.
  • Example 11 Morphological change of endometrial organoids cultured in decellularized uterine tissue-derived extracellular matrix (UEM) hydrogel according to WNT3a conditioned medium (CM) concentration
  • WNT3a conditioned medium (CM) 10% (volume/volume), 25% (volume/volume) were subcultured on the 4th, 8th, and 12th days of culture in the growth medium of endometrial organoids, respectively (P1 , P2, P3)
  • Changes in morphology of endometrial organoids cultured in 5 mg/mL decellularized uterine tissue-derived UEM hydrogel according to WNT3a CM concentration were confirmed on days 7, 11, and 15 of culture, respectively.
  • Fig. 24a, Fig. 25b Endometrial organoids cultured in 10% WNT3a CM conditions developed into a dense form through subculture, and when cultured in 25% WNT3a CM conditions, they were cystic ( developed in a cystic form.
  • Endometrial organoids cultured in UEM hydrogel developed in response to the two WNT3a CM concentrations in a form similar to that in Matrigel. , and under the condition of 25% WNT3a CM, cell differentiation was induced and it was confirmed that it developed into a cystic form.
  • Example 12 Analysis of differences between batches of decellularized cervical tissue-derived extracellular matrix (UEM) hydrogels
  • Endometrial organoids were cultured in 5 mg/mL UEM hydrogels (batch 1, 2, and 3) formed from UEM compositions prepared from other pig-derived uterine tissues through a decellularization process to confirm similarity between batches.
  • cells were isolated from mouse uterine tissue, cultured for 4 days at a cell density of 3.3 x 10 6 cells/mL, and then subcultured to UEM hydrogel at a ratio of 1:3.
  • FIG. 26 a All endometrial organoids cultured for 4 days in three different batches of UEM hydrogels were formed in similar shapes, and immunofluorescence staining showed that estrogen receptor alpha (ER ⁇ ) and cytoskeleton ), it was confirmed that the protein was expressed in a similar manner in all three batches when comparing the expression of F-actin, a major component of ).
  • ER ⁇ estrogen receptor alpha
  • cytoskeleton cytoskeleton
  • FIG. 27 c The number of ER ⁇ -positive cells was similarly distributed in endometrial organoids cultured for 4 days in three different batches of UEM hydrogels.
  • Example 13 Confirmation of similarity in organoid culture performance between batches of decellularized cervical tissue-derived extracellular matrix (UEM) hydrogels
  • endometrial organoids can be cultured and developed in the same way even when using different batches of UEM, and endometrial organoids can be produced at a uniform level through culture using UEM-based hydrogels that have undergone a decellularization process. What is possible can be inferred.
  • Example 14 Confirmation of tissue-specific effects of decellularized cervical tissue-derived scaffolds for endometrial organoid culture
  • UEM hydrogel scaffold provides a tissue-specific microenvironment for culturing endometrial organoids
  • endometrial organoids were cultured in decellularized tissue-derived extracellular matrix hydrogels from other organs to form organoids and express markers. The behavior was compared to organoids cultured on UEM hydrogel scaffolds.
  • endometrial organoid culture cells were isolated from mouse uterine tissue, cultured on Matrigel at a cell density of 3.3 x 10 6 cells/mL for 4 days, and subcultured at a ratio of 1:3.
  • endometrial organoids were cultured at a concentration of 7 mg/mL, and other decellularized tissue-derived extracellular matrix hydrogels including UEM were cultured at a concentration of 5 mg/mL. Endometrial organoids were cultured.
  • FIG. 29 a It was confirmed that endometrial organoids were formed in all of the decellularized hydrogel scaffolds derived from the uterus, esophagus, heart, intestine, liver, spinal cord, pancreas, bladder, and salivary gland, although there were differences in their appearance.
  • E-cadherin expression was observed in spinal cord-derived hydrogel scaffolds among various tissue-derived scaffolds. The expression of estrogen receptor alpha was the lowest in salivary gland tissue-derived scaffolds.
  • FIG. 30b As a result of comparing organoid formation efficiency in each decellularized tissue-derived hydrogel scaffold on the third day of culture, almost all tissues showed lower endometrial organoid formation efficiency than UEM hydrogel.
  • Lgr5 a stemness-related gene
  • Esr1 an estrogen receptor alpha expression gene
  • Foxa2 a uterine gland development regulatory gene
  • Muc1 an epithelial cell mucin expression gene
  • the UEM hydrogel scaffold can provide the most suitable microenvironment for the formation and development of endometrial organoids.
  • Example 15 Subculture of endometrial organoids on decellularized uterine tissue-derived hydrogel scaffolds
  • endometrial organoids were subcultured 4 times in 5 mg/mL UEM hydrogel (cultivation for a total of 18 days), and it was confirmed that the culture was successful.
  • Example 16 Establishment of an animal model for in vivo transplantation of endometrial organoids using a hydrogel scaffold derived from decellularized uterine tissue
  • An endometrial injury mouse model was established by inserting a 27G injection needle into the fallopian tube of the mouse uterine horn and scraping the endometrium 10 times to induce fibrosis and adhesion in the endometrial layer. applied for transplantation (FIG. 34).
  • Example 17 In vivo implantation of endometrial organoids using decellularized uterine tissue-derived hydrogel scaffold and confirmation of regeneration effect
  • Organoids cultured in Matrigel or 5 mg/mL UEM hydrogel for 4 days were separated from the hydrogel and labeled with DiI, a fluorescent dye, to confirm organoid engraftment in the body.
  • DiI a fluorescent dye
  • the fluorescent dye-labeled endometrial cells were mixed with Matrigel or UEM solution and injected into the submucosa of the uterus immediately after endometrial injury of mice. More specifically, 1.0 x 10 6 cells were transplanted per mouse, and 50 ⁇ L Matrigel or 50 ⁇ L UEM solution (adjusted to pH 7 by adding NaOH) was used before crosslinking.
  • the UEM hydrogel can be used as a scaffold support for efficient in vivo organoid transplantation as well as endometrial organoid culture.
  • Example 18 Validation of application of decellularized cervical tissue-derived extracellular matrix composition as a coating material
  • the UEM composition derived from decellularized cervical tissue can be applied as a coating material on the surface of a cell culture container as well as a 3D hydrogel material for organoid culture to enable attachment and cultivation of organoids, thereby greatly expanding the range of applications.
  • Example 19 Fabrication of an endometrial organoid chip using a hydrogel scaffold derived from decellularized uterine tissue
  • a biomimetic endometrial chip was constructed using endometrial organoids and UEM.
  • the endometrial chip made of polydimethylsiloxane (PDMS) consisted of a 1.5 mm high upper medium and endometrial organoid culture channel, a 1 mm high UEM support layer middle channel, and a 1.5 mm lower medium layer channel.
  • the overall size of the chip was 30 mm in width, 6 mm in length, and 2.4 mm in height (Fig. 37a).
  • the middle channel of the UEM support layer consists of 16 trapezoidal posts arranged at intervals of 80 ⁇ m above and below each other. At this time, the support was manufactured to have an acute angle of 60°, with a base of 200 ⁇ m, an upper side of 130 ⁇ m, and a height of 60 ⁇ m (FIG. 38b).
  • endometrial organoids For stable culture and support of endometrial organoids, they were coated with poly-L-lysine at a concentration of 20 ⁇ g/mL for 4 hours at 37°C, and then 5 mg/mL UEM solution was injected into the middle channel layer and 37°C for 30 minutes. Gelation was induced under these conditions. Then, 5 mg/mL UEM solution was passed through the endometrial organoid culture channel to coat the inner wall of the channel, followed by gelation at 37°C for 30 minutes, and finally, 50 ⁇ g/mL UEM solution was injected and coated at room temperature for 30 minutes. (Fig. 39 a).
  • Endometrial organoids were treated with TrypLE containing 10 ⁇ M Y-27632 at 37°C for 5 minutes to make single cells, and then injected into the upper culture channel of the endometrial chip at a cell concentration of 2 x 10 7 mg/mL. did Immediately after cell injection, the endometrial chip was cultured in an upright position so that the endometrial organoids could form a monolayer (FIG. 40(b)).
  • endometrial monolayer formation was induced using a biomimetic endometrial chip of a different design.
  • the endometrial chip was composed of a 0.4 mm high upper medium layer and an endometrial organoid culture channel, a 1 mm high UEM support layer middle channel, and a 0.4 mm lower medium layer channel.
  • endometrial organoids For stable culture and support of endometrial organoids, they were coated with poly-L-lysine at a concentration of 20 ⁇ g/mL for 4 hours at 37°C, and then 5 mg/mL UEM solution was injected into the middle channel layer and 37°C for 30 minutes. Gelation was induced under these conditions.
  • FIG. 42 b Endometrial organoids were treated with TrypLE containing 10 ⁇ M Y-27632 at 37°C for 5 minutes to make single cells, and then endometrial chip at a cell concentration of 2 x 10 7 mg/mL. was injected into the upper culture channel of Immediately after cell injection, the endometrial chip was cultured in an upright position so that the endometrial organoids could form a monolayer.
  • an endometrial organoid chip can be manufactured using the decellularized uterine tissue-derived hydrogel scaffold.
  • the hydrogel composition comprising the decellularized uterine tissue-derived extracellular matrix of the present invention produces endometrial organoids that are very similar to uterine tissues and organs in vivo through the properties, components, and physical properties of the decellularized uterine tissue-derived extracellular matrix. These endometrial organoids can be usefully used for in vivo transplantation and drug testing for various uterine-related diseases, so they have industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Reproductive Health (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 탈세포 자궁 조직 유래 세포외기질을 포함하는 조성물 및 이의 용도에 관한 것으로, 구체적으로 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물, 자궁내막 오가노이드 및 이의 제조방법과 용도 등에 관한 것이다. 본 발명의 탈세포 자궁 조직 유래 세포외기질을 포함하는 하이드로겔 조성물은, 탈세포 자궁 조직 유래 세포외기질의 특성, 성분, 물성을 통해 생체 내 자궁 조직 및 기관과 유사성이 매우 높은 자궁내막 오가노이드를 제조하는 데에 활용될 수 있으며, 이러한 자궁내막 오가노이드는 생체 내 이식 및 다양한 자궁 관련 질환에 대한 약물 테스트 등에 유용하게 이용될 수 있다.

Description

탈세포 자궁 조직 유래 세포외기질을 포함하는 조성물 및 이의 용도
본 발명은 탈세포 자궁 조직 유래 세포외기질을 포함하는 조성물 및 이의 용도에 관한 것으로, 구체적으로 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물, 자궁내막 오가노이드 및 이의 제조방법과 용도 등에 관한 것이다.
최근 각광받고 있는 오가노이드는 신약 스크리닝, 약물 독성 평가, 질환 모델링, 세포 치료제, 조직공학 등 다양한 임상적 적용이 가능한 조직 유사체로서 전 세계적으로 급격하게 성장하고 있는 기술이다. 오가노이드는 삼차원 구조체 내에 인체의 특정 장기 및 조직을 구성하는 다양한 세포로 이루어져 있을 뿐만 아니라 그들 간의 복합적인 상호 작용을 구현할 수 있기 때문에 단순 세포주 모델이나 동물 모델과 같은 기존에 주로 이용되던 약물 평가 모델과 비교해서 훨씬 정확한 체외 모델 플랫폼으로 적용이 가능하다.
이러한 오가노이드를 연구하는 전 세계 수많은 연구팀에서 현재까지 오가노이드를 배양하기 위해 배양 지지체로서 공통적으로 매트리젤(Matrigel) 제품을 이용하고 있다. 하지만 매트리젤은 쥐의 육종암 조직에서 추출한 성분이기 때문에 제품의 품질을 균일하게 유지하기 어려우며 고가이고, 동물성 감염균 및 바이러스 전이 등 안전성 측면에서 문제가 있어 오가노이드 배양 시스템으로서 해결해야 하는 많은 문제점을 가지고 있다. 특히, 암 조직 유래의 소재로서 특정 조직 오가노이드 배양을 위해 필요한 최적의 조직 특이적 미세환경을 제공해 주지 못한다. 매트리젤을 대체하기 위한 고분자 기반 하이드로겔 개발 연구가 일부 진행되어 왔으나 아직까지 매트리젤을 대체할만한 수준의 소재는 보고된 바 없다.
한편, 자궁은 수정된 난자가 착상하고 성장하는 여성 생식기관으로, 수정란이 착상하고 태반이 부착되어 태아가 발생과 성장을 거쳐 출생에 이를 때까지 머무는 장소로서 매우 중요한 여성 기관이다. 이러한 자궁은 다양한 요인으로 인해 자궁 근종, 자궁 선근증, 자궁 내막증, 자궁경부염, 자궁경부 이형성증, 자궁경부 상피내 종양, 자궁경부암, 자궁 탈출, 자궁내막암 등이 발생될 수 있으며, 이러한 자궁 관련 질환에 대한 연구를 위해 자궁 조직 유래의 오가노이드 발현 기술이 절실히 필요한 실정이다.
이러한 배경하에서, 본 발명자들은 탈세포 자궁 조직 유래 세포외기질을 이용하여 자궁내막 오가노이드의 배양이 가능함 등을 확인함으로써 본 발명을 완성하였다.
본 발명은 탈세포 자궁 조직 유래 세포외기질(uterus extracellular matrix; UEM)을 포함하는, 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 3차원 배양용 하이드로겔 조성물에서 배양된, 자궁내막 오가노이드를 제공하는 것을 목적으로 한다.
또한, 본 발명은 자궁 조직에 Triton X-100 및 수산화 암모늄을 혼합하는 단계; 상기 조직을 동결건조 및 분쇄하여 탈세포 자궁 조직 유래 세포외기질을 제조하는 단계; 상기 탈세포 자궁 조직 유래 세포외기질을 펩신 용액에 용해시키는 단계; 및 상기 용해 용액에 PBS 버퍼, 3차 증류수 및 NaOH를 혼합한 후 젤화하는 단계; 를 포함하는, 자궁 오가노이드의 3차원 배양용 하이드로겔 조성물의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물에서 자궁내막 오가노이드를 배양하는 단계를 포함하는, 자궁내막 오가노이드의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 자궁 관련 질환을 갖는 개체에 대해, 상기 자궁내막 오가노이드를 이식하여 자궁 관련 질환을 예방 또는 치료하는 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 양상은 탈세포 자궁 조직 유래 세포외기질(uterus extracellular matrix; UEM)을 포함하는, 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물을 제공한다.
본 발명의 다른 일 양상은 상기 3차원 배양용 하이드로겔 조성물에서 배양된, 자궁내막 오가노이드를 제공한다.
본 발명의 다른 일 양상은 자궁 조직에 Triton X-100 및 수산화 암모늄을 혼합하는 단계; 상기 조직을 동결건조 및 분쇄하여 탈세포 자궁 조직 유래 세포외기질을 제조하는 단계; 상기 탈세포 자궁 조직 유래 세포외기질을 펩신 용액에 용해시키는 단계; 및 상기 용해 용액에 PBS 버퍼, 3차 증류수 및 NaOH를 혼합한 후 젤화하는 단계; 를 포함하는, 자궁 오가노이드의 3차원 배양용 하이드로겔 조성물의 제조방법을 제공한다.
본 발명의 다른 일 양상은 상기 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물에서 자궁내막 오가노이드를 배양하는 단계를 포함하는, 자궁내막 오가노이드의 제조방법을 제공한다.
본 발명의 다른 일 양상은 자궁 관련 질환을 갖는 개체에 대해, 상기 자궁내막 오가노이드를 이식하여 자궁 관련 질환을 예방 또는 치료하는 방법을 제공한다.
본 발명의 탈세포 자궁 조직 유래 세포외기질을 포함하는 하이드로겔 조성물은, 탈세포 자궁 조직 유래 세포외기질의 특성, 성분, 물성을 통해 생체 내 자궁 조직 및 기관과 유사성이 매우 높은 자궁내막 오가노이드를 제조하는 데에 활용될 수 있으며, 이러한 자궁내막 오가노이드는 생체 내 이식 및 다양한 자궁 관련 질환에 대한 약물 테스트 등에 유용하게 이용될 수 있다.
도 1은 탈세포 자궁 조직 유래 세포외기질 제조에 관한 것이다.
도 2 내지 5는 제조된 탈세포 자궁 조직 유래 세포외기질(UEM)의 성분에 관한 것이다.
도 6 내지 9는 제조된 탈세포 자궁 조직 유래 세포외기질(UEM)의 단백체 분석에 관한 것이다.
도 10은 용해 온도에 따른 탈세포 자궁 조직 유래 세포외기질 (UEM)의 용해도 및 하이드로겔 형성 정도에 관한 것이다.
도 11 및 12는 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔의 물성 분석 결과에 관한 것이다.
도 13 및 14는 자궁내막 오가노이드 배양에 최적화된 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔의 농도에 관한 것이다.
도 15 내지 18은 UEM 하이드로겔에서 배양한 자궁내막 오가노이드의 자궁내막 특이적 단백질 발현에 관한 것이다.
도 19는 UEM 하이드로겔에서 배양한 자궁내막 오가노이드의 줄기세포 및 분화 마커 발현 분석에 관한 것이다.
도 20 및 21은 자궁내막 오가노이드 배양에 최적화된 탈세포 자궁 조직 유래 세포외기질 (UEM) 용액화 농도에 관한 것이다.
도 22 및 23은 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔에서 배양된 자궁내막 오가노이드의 기능성 분석 결과에 관한 것이다.
도 24 및 25는 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔에서 배양된 자궁내막 오가노이드의 WNT3a conditioned medium (CM) 농도에 따른 형태 변화에 관한 것이다.
도 26 및 27은 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔의 배치(batch)간 차이 여부 분석 결과에 관한 것이다.
도 28은 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔의 배치(batch)간 오가노이드 배양 성능 유사성 확인 결과에 관한 것이다.
도 29 내지 32는 자궁내막 오가노이드 배양을 위한 탈세포 자궁 조직 유래 지지체의 조직 특이적 효과에 관한 것이다.
도 33은 탈세포 자궁 조직 유래 하이드로겔 지지체에서 자궁내막 오가노이드의 계대 배양에 관한 것이다.
도 34는 자궁내막 오가노이드의 생체 내 이식을 위한 동물모델 수립 결과에 관한 것이다.
도 35는 탈세포 자궁 조직 유래 하이드로겔 지지체를 이용한 자궁내막 오가노이드의 생체 내 이식 및 재생효과 확인 결과에 관한 것이다.
도 36은 탈세포 자궁 조직 유래 세포외기질 조성물의 코팅 물질로서의 활용 가능성 검증 결과에 관한 것이다.
도 37 내지 42는 탈세포 자궁 조직 유래 하이드로겔 지지체를 이용한 자궁내막 오가노이드 칩 제작에 관한 것이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
달리 정의되지 않는 한, 분자 생물학, 미생물학, 단백질 정제, 단백질 공학, 및 DNA 서열 분석 및 당업자의 능력 범위 안에서 재조합 DNA 분야에서 흔히 사용되는 통상적인 기술에 의해 수행될 수 있다. 상기 기술들은 당업자에게 알려져 있고, 많은 표준화된 교재 및 참고저서에 기술되어 있다.
본 명세서에 달리 정의되어 있지 않으면, 사용된 모든 기술 및 과학 용어는 당업계에 통상의 기술자가 통상적으로 이해하는 바와 같은 의미를 가진다.
본 명세서에 포함되는 용어를 포함하는 다양한 과학적 사전이 잘 알려져 있고, 당업계에서 이용가능하다. 본 명세서에 설명된 것과 유사 또는 등가인 임의의 방법 및 물질이 본원의 실행 또는 시험에 사용되는 것으로 발견되나, 몇몇 방법 및 물질이 설명되어 있다. 당업자가 사용하는 맥락에 따라, 다양하게 사용될 수 있기 때문에, 특정 방법학, 프로토콜 및 시약으로 본 발명이 제한되는 것은 아니다. 이하 본 발명을 더욱 상세히 설명한다.
본 발명은 탈세포 자궁 조직 유래 세포외기질(uterus extracellular matrix; UEM)을 포함하는, 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물을 제공한다.
또한, 본 발명의 다른 하나의 양태로서, 본 발명은 상기 3차원 배양용 하이드로겔 조성물에서 배양된 자궁내막 오가노이드를 제공한다.
또한, 본 발명의 다른 하나의 양태로서, 본 발명은 상기 3차원 배양용 하이드로겔 조성물을 포함하는, 생체 내 오가노이드 이식을 위한 스캐폴드 지지체를 제공한다.
또한, 본 발명의 다른 하나의 양태로서, 본 발명은 상기 3차원 배양용 하이드로겔 조성물을 포함하는, 배양용기 표면 코팅용 조성물을 제공한다.
또한, 본 발명의 다른 하나의 양태로서, 본 발명은 상기 3차원 배양용 하이드로겔 조성물을 포함하는, 자궁내막 오가노이드 칩 또는 이의 제조방법을 제공한다.
상기 “세포외기질(extracellular matrix)”은 포유류 및 다세포 생물(multicellular organisms)에서 발견된 조직의 탈세포화를 통해 제조된 세포 성장용 자연 지지체를 의미한다. 상기 세포외기질은 투석 또는 가교화를 통해 더 처리할 수 있다.
상기 세포외기질은 콜라겐(collagens), 엘라스틴(elastins), 라미닌(laminins), 글리코스아미노글리칸 (glycosaminoglycans), 프로테오글리칸(proteoglycans), 항균제(antimicrobials), 화학유인물질 (chemoattractants), 시토카인 (cytokines), 및 성장 인자에 제한되지 않는, 구조형 및 비구조형 생체 분자 (biomolecules)의 혼합물일 수 있다.
상기 탈세포화된 자궁 조직은 실제 조직 특이적 세포외기질 성분을 포함하므로 해당 조직의 물리적, 기계적, 생화학적 환경을 제공할 수 있으며, 자궁 조직 세포로의 분화 및 조직 특이적 기능성을 증진시키는데 매우 효율적이다.
상기 “오가노이드(organoid)”는 조직 또는 전분화능 줄기세포에서 유래된 세포를 3D 형태로 배양하여 인공장기와 같은 형태로 제작한 초소형 생체기관을 의미한다.
상기 오가노이드는 줄기세포에서 발생하고 생체 내 상태와 유사한 방식으로 자가-조직화(또는 자가-패턴화)하는 장기 특이적 세포를 포함한 삼차원 조직 유사체로서 제한된 요소(Ex. growth factor) 패터닝에 의해 특정 조직으로 발달할 수 있다.
상기 오가노이드는 세포의 본래 생리학적 특성을 가지며, 세포 혼합물(한정된 세포 유형뿐만 아니라 잔존 줄기세포, 근접 생리학적 니치(physiological niche)를 모두 포함) 원래의 상태를 모방하는 해부학적 구조를 가질 수 있다. 상기 오가노이드는 3차원 배양 방법을 통해 세포와 세포의 기능이 더욱 잘 배열되고, 기능성을 가지는 기관 같은 형태와 조직 특이적 기능을 가질 수 있다.
상기 “하이드로겔”은 졸-겔 상변이를 통해 물을 분산매로 하는 액체가 굳어 유동성을 상실하고 다공성 구조를 이루는 물질로서, 3차원 망목 구조와 미결정 구조를 갖는 친수성 고분자가 물을 함유하여 팽창함으로써 형성될 수 있다.
본 발명에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질은 글리코스 아미노글리칸, 콜라겐, 피브로넥틴 및/또는 라미닌을 포함하는 것일 수 있다. 본 발명의 탈세포 자궁 조직 유래 세포외기질은 이러한 세포외기질 단백질이 모두 잘 보존되어 있다는 특징이 있다.
본 발명에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질은 콜라겐으로서 콜라겐 유형 VI의 COL6A3, COL6A1, 및/또는 COL6A2, 당단백질로서 피브리노겐 FGA, FGB, 및/또는 FGG을 포함하는 것일 수 있다. 이처럼 본 발명의 탈세포 자궁 조직 유래 세포외기질은 다양한 종류의 세포외기질과 성장인자 단백질들이 존재하는 특징이 있다.
본 발명에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질은, 점성계수 (G'')보다 높은 탄성계수 (G’)를 갖는 것일 수 있고, 구체적으로 탈세포 자궁 조직 유래 세포외기질의 농도가 1 내지 8 mg/mL인 경우 101 내지 102 Pa의 탄성계수 및 100 내지 101 Pa의 점성계수를 갖는 것일 수 있다. 이를 통해 본 발명의 탈세포 자궁 조직 유래 세포외기질은 적절한 탄성계수와 점성계수를 가져, 하이드로겔 내부에 안정적인 고분자 네트워크가 형성될 수 있는 물성을 가지는 특징이 있다.
본 발명에 있어서, 상기 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물에 있어서, 탈세포 자궁 조직 유래 세포외기질의 농도는 1 내지 8, 또는 3 내지 7 mg/mL인 것일 수 있다. 이러한 세포외기질의 농도는 상용되는 매트리젤의 경우와 유사하게 자궁내막 오가노이드를 안정적으로 형성할 수 있는 범위에 해당한다.
본 발명에 있어서, 상기 3차원 배양용 하이드로겔 조성물에서 배양된 자궁내막 오가노이드는, ERα, E-cadherin, 및/또는 cytokeratin(pan-cytokeratin; PanCK)을 발현 또는 과발현하는 것일 수 있다. 보다 구체적으로 매트리젤에서 배양된 자궁내막 오가노이드에 비해, 또는 자궁 이외의 장기 또는 기관, 예컨대 식도, 심장, 장, 간, 척수, 췌장, 방광, 침샘 유래 하이드로겔 지지체에서 배양된 자궁내막 오가노이드에 비해, 본 발명의 3차원 배양용 하이드로겔 조성물에서 배양된 자궁내막 오가노이드가 90 내지 99% 유사한 ERα, 및/또는 E-cadherin, PanCK 의 발현량을 나타내는 것일 수 있다. 이러한 단백질은 자궁내막 특이적 단백질로서, 자궁내막 오가노이드 배양을 위한 기존 매트리젤의 대체재로서 의미가 있음을 나타낸다.
본 발명에 있어서, 상기 3차원 배양용 하이드로겔 조성물에서 배양된 자궁내막 오가노이드는, Esr1, Lgr5, Foxa2, 및/또는 Muc1 유전자를 발현 또는 과발현하는 것일 수 있다. 보다 구체적으로 매트리젤에서 배양된 자궁내막 오가노이드에 비해, 또는 자궁 이외의 장기 또는 기관, 예컨대 식도, 심장, 장, 간, 척수, 췌장, 방광, 침샘 유래 하이드로겔 지지체에서 배양된 자궁내막 오가노이드에 비해, 본 발명의 3차원 배양용 하이드로겔 조성물에서 배양된 자궁내막 오가노이드가 Esr1, Lgr5, Foxa2, 및/또는 Muc1 유전자를 과발현하는 것일 수 있다. 이러한 줄기세포 및 분화 마커의 발현 또는 과발현을 통해, 본 발명의 조성물이 매트리젤 보다 더 적합한 자궁내막 오가노이드 발달과 분화 유도용 하이드로겔 조성물로서 제공될 수 있다.
본 발명에 있어서, 상기 3차원 배양용 하이드로겔 조성물에서 배양된 자궁내막 오가노이드는 성호르몬으로서 에스트라디올 및/또는 프로게스테론을 처리한 경우 자궁내막 오가노이드의 뮤신 분비가 증가되는 것일 수 있고, 보다 구체적으로 매트리젤에서 배양된 자궁내막 오가노이드 대비 뮤신 분비가 증가된 것일 수 있다.
또한 본 발명에 있어서, 상기 3차원 배양용 하이드로겔 조성물에서 배양된 자궁내막 오가노이드는 에스트라디올 처리시 세포 증식 마커 (Ki67)의 발현량이 증가된 것일 수 있고, 보다 구체적으로 에스트라디올 및 프로게스테론을 처리한 자궁내막 오가노이드 대비, 에스트라디올만을 처리한 자궁내막 오가노이드에서 상기 마커가 과발현되는 것일 수 있다. 이는 본 발명의 3차원 배양용 하이드로겔 조성물에서 배양된 자궁내막 오가노이드가 매트리젤에서 배양한 경우와 비교하여 높은 기능성을 가짐을 나타낸다.
본 발명의 다른 하나의 양태로서, 자궁 조직에 Triton X-100 및 수산화 암모늄을 혼합하는 단계; 상기 조직을 동결건조 및 분쇄하여 탈세포 자궁 조직 유래 세포외기질을 제조하는 단계; 상기 탈세포 자궁 조직 유래 세포외기질을 펩신 용액에 용해시키는 단계; 및 상기 용해 용액에 PBS 버퍼, 3차 증류수 및 NaOH를 혼합한 후 젤화하는 단계;를 포함하는, 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물의 제조방법을 제공한다.
또한, 본 발명의 다른 하나의 양태로서, 본 발명은 상기 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물에서 자궁내막 오가노이드를 배양하는 단계를 포함하는, 자궁내막 오가노이드의 제조방법을 제공한다.
본 발명에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질을 펩신 용액에 용해시키는 단계는 15 내지 30°C의 온도에서 이루어지는 것일 수 있다. 이러한 온도 조건은 탈세포 자궁 조직 유래 세포외기질 (UEM)의 용해도 및 하이드로겔 형성 정도에 관한 것으로, 상기 온도 조건을 벗어날 경우 자궁 조직 유래 세포외기질이 정상적으로 용해되지 않거나, 하이드로겔이 잘 형성되지 않는 문제가 발생할 수 있다.
본 발명에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질을 펩신 용액에 용해시키는 단계에 있어서, 펩신 용액의 농도는 3 내지 10, 또는 4 내지 8 mg/mL인 것일 수 있고, 구체적으로 UEM의 농도가 20 mg/mL인 것을 기준으로 펩신 용액의 농도는 3 내지 10, 또는 4 내지 8 mg/mL인 것일 수 있다. 이러한 펩신 용액의 농도는 자궁내막 오가노이드의 효율적이고 안정적인 배양을 위한 것으로서, 펩신 용액의 농도가 상기 범위를 벗어날 경우 오가노이드 배양시 젤이 수축하는 문제가 있을 수 있다.
본 발명에 있어서, 상기 자궁내막 오가노이드의 제조방법은 WNT3a conditioned medium (CM)에서 계대배양 하는 단계를 더 포함할 수 있고, 상기 WNT3a conditioned medium의 농도는 5 내지 30, 10 내지 25, 또는 10 또는 25 %(volume/volume)인 것일 수 있다. 상기 CM의 농도가 5 내지 15 또는 10%인 경우 오가노이드는 계대배양을 거치며 세포 증식(proliferation)이 활발히 일어나 조밀한 (dense) 형태로 발달할 수 있고, CM의 농도가 20 내지 30 또는 25%인 경우 오가노이드는 세포 분화(differentiation)가 유도되어 낭포형(cystic) 형태로 발달하는 것일 수 있다.
본 발명에 있어서, 상기 자궁내막 오가노이드의 제조방법은 상기 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물을 계대배양하는 단계를 더 포함할 수 있다.
본 발명의 다른 하나의 양태는, 자궁내막 손상 개체 또는 자궁 관련 질환을 갖는 개체에 대해, 상기 자궁내막 오가노이드를 이식하는 방법을 제공한다.
본 발명의 다른 하나의 양태는, 자궁내막 손상 개체에 대해, 상기 자궁내막 오가노이드를 이식하여 자궁 내막 손상을 개선 또는 치료하는 방법을 제공한다.
본 발명의 다른 하나의 양태는, 자궁 관련 질환을 갖는 개체에 대해, 상기 자궁내막 오가노이드를 이식하여 자궁 관련 질환을 예방 또는 치료하는 방법을 제공한다.
본 발명의 다른 하나의 양태는, 상기 자궁내막 오가노이드의 자궁 관련 질환의 예방 또는 치료 용도를 제공한다.
본 발명의 다른 하나의 양태는, 상기 자궁내막 오가노이드의 자궁 관련 질환의 예방 또는 치료용 약제를 제조하기 위한 용도를 제공한다.
본 발명에 있어서, 상기 자궁 관련 질환은 자궁내막증, 자궁근종, 자궁경부암, 자궁선근증, 질염, 난소낭종, 자궁내막암, 자궁암, 자궁경부이형성증, 자궁내막염, 자궁탈출증, 자궁경부염, 기능성자궁출혈, 또는 비정상자궁출혈인 것일 수 있다.
본 발명에 있어서, 개체는 인간을 포함한 동물을 의미한다.
본 발명의 탈세포 자궁 조직 유래 세포외기질을 포함하는 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물을 통해 자궁내막 오가노이드를 배양, 제조할 수 있으며, 이러한 자궁내막 오가노이드는 생체 내 자궁 조직과 다양한 측면에서 유사성이 높아, 상술한 용도로의 활용이 가능하다.
이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 탈세포 자궁 조직 유래 세포외기질 (uterus extracellular matrix; UEM)의 제조
먼저, 도 1과 같이 탈세포 자궁 조직 유래 세포외기질을 제조하였다.
구체적으로, 돼지 자궁 조직을 잘게 자른 후, 1% Triton X-100와 0.1% 수산화 암모늄(ammonium hydroxide)를 혼합한 용액에 48 시간 교반하여 조직 내 세포 성분을 모두 제거하였다(단계 a). 이러한 탈세포 과정 이후, 조직을 동결건조, 분쇄하여 탈세포 자궁 조직 유래 세포외기질(uterus extracellular matrix; UEM)을 제조하였다 (단계 b). 상기 탈세포 자궁 조직 유래 세포외기질 20 mg을 4 mg/mL 펩신 용액 (돼지 위 점막 유래 펩신 파우더 4 mg을 0.02 M HCl 1 mL에 녹인 용액)에 이틀 동안 용해 시켰다(단계 c).
UEM 용액 : 10X PBS 버퍼(pH 7.2) : 삼차 증류수 : NaOH (0.5M)를 25 : 10 : 63 : 2 비율로 혼합하고 균일하게 섞은 뒤 pH를 7.0~7.2로 맞춰주고, 37°C의 온도에서 30분 동안 젤화(gelation)를 유도하여 5 mg/mL 농도의 UEM 하이드로겔 형태의 지지체 조성물을 제조하였다(단계 d).
실시예 2: 탈세포 자궁 조직 유래 세포외기질 (UEM)의 분석
상기 제조된 탈세포 자궁 조직 유래 세포외기질(UEM)의 특성을 도 2 내지 도 5와 같이 분석하였다.
(도 2의 a, b) 탈세포 과정 전후 (a) H&E 조직염색 및 (b) DNA 정량 분석을 통해 탈세포 과정에 의해 세포 성분이 대부분 제거됨을 확인하였다. 탈세포 전의 자궁조직 (Native 군)에 비해 99.5% DNA가 제거되었으며, 실제 잔존량의 경우 동결건조된 UEM (Decell 군) 1 mg 당 8.95±1.28 ng 수준의 미량의 DNA만 남아 있음을 확인하였다.
(도 3의 c, d) 대표적인 세포외기질 성분 중 하나인 glycosaminoglycan (GAG)에 대한 분석을 위해 (c)Toluidine blue 조직염색 및 (d) GAG 정량분석을 실시하여 탈세포 자궁 조직 내에 GAG가 잘 보존 되어 있다는 것을 확인하였다.
(도 4의 e, f) 또한, (e) Masson’s Trichrome 조직염색 및 (f) 콜라겐 정량 분석을 통해 탈세포 과정 후에도 콜라겐 성분이 잘 보존되어 있는 것을 확인하였다.
(도 5의 g) 주요 세포외기질 단백질 중 하나인 Fibronectin과 Laminin 존재 여부를 확인하기 위하여 실시한 조직 면역염색을 통해 탈세포 과정 후에도 두 세포외기질 단백질 모두 잘 보존되어 있음을 확인하였고 DAPI 염색을 통해 세포핵은 모두 제거가 된 것을 확인하였다.
실시예 3: 탈세포 자궁 조직 유래 세포외기질 (UEM)의 성분 분석
상기 제조된 탈세포 자궁 조직 유래 세포외기질(UEM)의 성분을 도 6 내지 도 9와 같이 분석하였다. 구체적으로, 탈세포 자궁 조직 유래 세포외기질 조성물 (UEM)의 구성 성분을 파악하기 위해 질량 분석법 (Mass spectrometry)을 이용하여 단백체 분석 (Proteomics)을 실시하였다.
(도 6의 a, b) 매트리젤 (Matrigel)에 비해 UEM 내에 다양한 종류의 세포외기질 (collagens, glycoproteins, proteoglycans 등)과 성장인자 단백질들이 존재하는 것을 알 수 있었다. 반면, Matrigel의 경우 주로 glycoprotein으로 구성된 것을 알 수 있다.
(도 7의 c) 보다 더 구체적으로는 UEM에서 가장 높은 수준으로 발현하는 단백질들은 collagen [Collagen type VI (COL6A3, COL6A1, COL6A2)], glycoprotein [Fibrinogen (FGA, FGB, FGG)], proteoglycan [Decorin (DCN)] 등 다양한 세포외기질 성분들이 골고루 존재했지만, Matrigel의 경우 glycoprotein [Nidogen-1 (NID1), Laminin-111 (LAMB1, LAMA1, LAMC1)]이 대부분의 구성 성분 (합계 0.8 riBAQ)을 차지하고 있는 것을 알 수 있다.
(도 8의 d, e) Matrigel과 UEM에서 유의미하게 발현 수준이 차이가 나는 단백질들을 (d) Volcano plot과 (e) Heatmap으로 분석한 결과, 두 지지체 간 발현 분포가 다른 단백질들이 다수 존재한다는 것을 알 수 있다.
(도 9의 a) UEM에 존재하는 모든 단백질에 대한 유전자 온톨로지 (Gene Ontology) 분석을 진행한 결과, 구조체 형성 및 발달, 그리고 발생과 관련된 역할들을 주로 담당하는 단백질들이 다수 존재함을 확인하였다. 특히, “intracellular estrogen signaling pathway”, “in utero embryonic development” 등 자궁 특이적 발달, 성숙 및 기능과 관련된 단백질들이 존재하는 것을 알 수 있다.
(도 9의 b) UEM에 존재하는 단백질들 중 다른 조직보다 자궁에서 유의미하게 더 많이 발현된다고 알려진 단백질들에 대한 유전자 온톨로지 분석한 결과, 주로 조직 발달 및 발생과 연관이 있는 것을 확인하였다
실시예 4: 용해 온도에 따른 탈세포 자궁 조직 유래 세포외기질 (UEM)의 용해도 및 하이드로겔 형성 평가 (지지체 용액을 준비하는 단계의 최적화)
도 10과 같이, 용해 온도에 따른 탈세포 자궁 조직 유래 세포외기질 (UEM)의 용해도 및 하이드로겔 형성 정도를 평가하였다.
(도 10의 a) 건조된 상태의 탈세포 자궁 조직 유래 지지체 (UEM 20 mg/mL)를 세가지 온도 조건에서 pepsin (4 mg/mL) 처리를 통해 이틀 동안 용액화 하였다. 4°C에서 녹였을 때에는 일부의 지지체만 용해되었고, 상온 (RT)과 37°C에서 녹인 경우 용해가 잘 되는 것이 확인되었다 (가장 왼쪽 이미지들).
(도 10의 b) 용액화된 UEM (20 mg/mL)을 삼차 증류수, 10X PBS(pH 7.2), NaOH와 혼합하여 최종적으로 5 mg/mL 농도의 pre-gel UEM 용액 (pH 7.0~7.2)을 제작하였다.
(도 10의 c) 37°C에서 30분 동안 젤화 (gelation) 과정을 유도한 뒤 하이드로겔 형성이 잘 되었는지 확인하기 위하여 (d) PBS 버퍼에 넣었을 때 4°C에서 용해된 UEM 샘플의 경우 하이드로겔 형성은 되었지만 녹지 못한 고체 물질들이 보였고 (가장 오른쪽 상단 이미지), 상온에서 용해된 UEM 샘플의 경우에는 하이드로겔이 잘 형성되었으며 (가장 오른쪽 중간 이미지), 37°C에서 용해된 UEM 샘플은 하이드로겔 형성이 되지 않았다 (가장 오른쪽 아래 이미지).
따라서, 탈세포 자궁 조직 유래 세포외기질 (UEM)을 상온에서 펩신에 용해하는 조건이 UEM 하이드로겔 형성에 가장 적합하다는 것을 알 수 있었다.
실시예 5: 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔의 물성 분석
상온에서 펩신 처리를 통해 용해된 UEM의 가교를 유도하여 하이드로겔을 제작하고, 기계적 물성을 확인하였다.
구체적으로, 0.1-10 Hz 범위의 주파수 (frequency)에서의 탄성계수 (G’, elastic modulus) 및 점성계수 (G'', viscous modulus)를 회전형 유량계 (rheometer)로 측정하여, 2, 3, 5, 7 mg/mL 농도의 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔 지치체의 물성을 분석하였다.
그 결과, 도 11의 a와 같이 30분간의 가교 반응 후 모든 농도에서 제작된 UEM 하이드로겔 내부에 안정적인 고분자 네트워크가 형성됨을 (G’ > G’’) 확인하였다. 또한, UEM의 농도가 높을수록 물성이 증가한다는 것이 확인되었다 (도 12의 b).
실시예 6: 자궁내막 오가노이드 배양에 최적화된 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔의 농도 결정
도 13 및 14와 같이, 자궁내막 오가노이드 배양에 최적화된 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔의 농도를 확인하고자 하였다.
구체적으로, 마우스 자궁 조직의 지방 및 혈관을 제거한 뒤 collagenase type V 효소처리 과정을 통해 세포를 추출하고 이를 적절한 3차원 배양 지지체 내에서 배양하여 자궁내막 (endometrium) 오가노이드를 형성하였다. 자궁내막 오가노이드 배양에 있어 본 발명에서 개발한 UEM 하이드로겔 지지체의 최적화된 농도를 선정하고자, 농도 별(2, 3, 5, 7 mg/mL) UEM 하이드로겔 및 상용화된 배양 지지체인 매트리젤에서 자궁내막 오가노이드를 배양 (seeding density: 3.3 x 106 cells/mL)하여 형성된 자궁내막 오가노이드의 형태와 형성 효율 및 유전자 발현을 비교하였다.
그 결과, 4가지 농도 조건(2, 3, 5, 7 mg/mL)의 UEM 하이드로겔에서 모두 자궁내막 오가노이드가 형성되었으며, 매트리젤에서 배양한 오가노이드와 유사한 형태로 형성되는 것을 확인하였다 (도 13의 a).
또한, UEM에서 배양 3일차에 UEM 하이드로겔의 농도 별 매트리젤 대비 오가노이드 형성 효율(organoid formation efficiency)을 비교했을 때 매트리젤을 포함한 모든 조건에서 유사한 형성 효율이 관찰되었다. 그 중 5 mg/mL UEM 하이드로겔에서 매트리젤 및 다른 농도의 UEM 군에 비해 가장 높은 형성 효율을 보이는 것을 확인하였다 (도 14의 b).
실시예 7: UEM 하이드로겔에서 배양한 자궁내막 오가노이드의 자궁내막 특이적 단백질 발현 분석 (세포 면역염색 분석)
도 15 내지 18과 같이 UEM 하이드로겔에서 배양한 자궁내막 오가노이드의 자궁내막 특이적 단백질 발현을 분석하였다.
그 결과, 매트리젤 및 다양한 농도의 UEM 하이드로겔에서 배양된 자궁내막 오가노이드에 대해 배양 4일차에 면역형광염색 분석을 실시하여 에스트로겐에 의해 활성화되는 핵 수용체 유형 중 하나인 estrogen receptor-alpha (ERα) 마커가 오가노이드에서 잘 발현되는 것을 확인하였다 (도 15의 a).
또한, 매트리젤 및 다양한 농도의 UEM 하이드로겔에서 배양된 자궁내막 오가노이드를 배양 4일차에 분석했을 때 estrogen receptor-alpha (ERα) 양성 세포가 거의 유사한 수준으로 분포하는 것을 확인하였다 (도 16의 b).
다음으로, UEM에서 배양 4일차에 면역형광염색 분석을 통해 다양한 농도의 UEM 하이드로겔 중에서 5 mg/mL 농도 조건의 UEM 하이드로겔에서 배양된 자궁내막 오가노이드에서 상피 마커 단백질인 E-cadherin 발현이 매트리젤에서 배양된 오가노이드와 유사함을 확인하였다 (도 17의 a).
또한, 5 mg/mL 농도 조건의 UEM 하이드로겔에서 4일간 배양된 오가노이드에서 에스트로젠 수용체인 estrogen receptor α (ERα)와 상피세포의 세포골격을 이루는 중간섬유(intermediate filament)인 cytokeratin(pan-cytokeratin; PanCK) 발현이 매트리젤에서 배양된 오가노이드와 유사한 양상을 보이는 것을 확인하였다 (도 18의 b).
따라서 5 mg/mL 농도의 UEM 하이드로겔이 자궁내막 오가노이드 배양을 위해 기존 매트리젤의 대체재로 가능성이 있음을 알 수 있었다.
실시예 8: UEM 하이드로겔에서 배양한 자궁내막 오가노이드의 줄기세포 및 분화 마커 발현 분석 (정량적 PCR 분석)
3가지 농도 조건(3, 5, 7 mg/mL)의 탈세포 자궁 조직 유래 UEM 하이드로겔과 매트리젤에서 배양된 자궁내막 오가노이드의 특정 유전자에 대한 mRNA 발현양을 배양 4일차에 정량적 PCR (quantitative PCR) 분석을 통해 비교하였다.
그 결과 도 19와 같이, 5 mg/mL UEM 자궁내막 오가노이드 군에서 estrogen receptor alpha 유전자인 Esr1과 줄기세포능(stemness) 관련 유전자인 Lgr5는 3 mg/mL 및 7 mg/mL UEM 하이드로겔과 매트리젤 군 대비, 보다 높게 발현되는 것을 확인할 수 있었다.
또한, 자궁샘(uterine gland) 발달의 직접적인 조절과 관련된 유전자인 Foxa2와, 상피세포가 생산하고 세포막 점액에 점성을 부여하는 주 구성요소인 뮤신-1 (Mucin-1; Muc1)에 대해서 UEM 하이드로겔에서 배양된 자궁내막 오가노이드와 매트리젤에서 배양된 오가노이드를 비교했을 때, 모든 농도의 UEM 하이드로겔 군에서 매트리젤 군보다 해당 마커들의 발현이 증가했음을 확인하였다.
이러한 결과를 통해 UEM 하이드로겔이 상용화된 매트리젤 지지체를 대체할 만큼 자궁내막 오가노이드 발달과 분화를 유도할 수 있는 성능을 가지고 있음을 확인할 수 있다.
실시예 9: 자궁내막 오가노이드 배양에 최적화된 탈세포 자궁 조직 유래 세포외기질 (UEM) 용액화 농도 결정
자궁내막 오가노이드 배양에 있어 최적화된 UEM 용액화 조건을 결정하기 위하여 다양한 농도(2, 4, 8 mg/mL)의 펩신(pepsin)을 처리하여 이틀 동안 UEM을 용액화 하였다. 용액화된 UEM을 하이드로겔 형태로 제작할 때에는 앞서 최적화된 UEM 농도로 결정된 5 mg/mL UEM 농도로 맞추었다.
(도 20의 a) 네가지 조건 (A: 10 mg/mL UEM을 2 mg/mL pepsin에 녹인 조건, B: 10 mg/mL UEM을 4 mg/mL pepsin에 녹인 조건, C: 20 mg/mL UEM을 4 mg/mL pepsin에 녹인 조건, D: 20 mg/mL UEM을 8 mg/mL pepsin에 녹인 조건)에서 UEM를 용액화 하였다. 모든 군에서 최종적으로 5 mg/mL UEM으로 농도를 맞추고, 자궁내막 오가노이드 형성을 유도하였다 (seeding density: 3.3 x 106 cells/mL). 그 결과, 모든 조건에서 자궁내막 오가노이드가 형성되었으나 A와 B 조건에서는 3일 이상 오가노이드를 배양할 경우 젤이 수축하는 것이 관찰 되었다.
(도 21의 b) 배양 3일차에 UEM 용액화 조건별로 오가노이드 형성 효율을 비교하였을 때 C와 D 조건의 UEM 하이드로겔에서 매트리젤과 가장 유사한 효율로 자궁내막 오가노이드가 형성되었다. 따라서, UEM을 용액화 하는데 가장 적절한 프로토콜은 C와 D 조건이며, 그 중에서 펩신 농도가 낮은 C 조건을 최종 선택하였다
실시예 10: 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔에서 배양된 자궁내막 오가노이드의 기능성 (성호르몬 반응성) 분석
5 mg/mL 농도의 탈세포 자궁 조직 유래 UEM 하이드로겔에서 배양된 자궁내막 오가노이드의 기능성 평가를 위해 성호르몬 반응성을 분석하였다. 구체적으로, 매트리젤 또는 UEM 하이드로겔 내에서 하루 동안 배양된 자궁내막 오가노이드 (seeding density: 3.3 x 106 cells/mL)에 성호르몬을 처리하였다.
(도 22의 a) Hormone X1 군은 10 nM estradiol (E2)을 2일간 처리 후 (D1-D3) 10 nM estradiol (E2), 1 μM progesterone (P4), 1 μM cAMP를 2일간 추가적으로 (D3-D5) 처리하였다. Hormone X3 군은 30 nM estradiol (E2)을 2일간 처리 후 (D1-D3) 30 nM estradiol (E2), 3 μM progesterone (P4), 3 μM cAMP를 2일간 추가적으로 (D3-D5) 처리하였다.
(도 22의 b) 성호르몬 처리 후 4일차 (D5)에 PAS 염색을 통해 성호르몬 처리에 따른 자궁내막 오가노이드의 mucin 분비를 오가노이드 내부의 PAS 양성 면적을 측정하여 확인하였다. 매트리젤과 UEM 하이드로겔에서 배양된 자궁내막 오가노이드에서 성호르몬 처리 농도에 비례하여 mucin 분비량이 유의하게 증가하였다. 특히, 같은 농도의 성호르몬을 처리했을 경우 UEM 오가노이드에서 매트리젤 오가노이드 보다 더 많은 mucin이 분비됨을 확인하였다.
(도 23의 c) 성호르몬 분비 주기에 따른 자궁내막 오가노이드의 반응성을 확인하기 위해 성호르몬을 처리하지 않은 군 (untreated), 4일간 10 nM estradiol만 처리한 군 (E2), 2일간 10 nM estradiol 처리 후 10 nM estradiol, 1 μM progesterone, 1 μM cAMP를 2일간 추가 처리한 군 (E2+P4+cAMP)에 대하여 면역형광염색을 진행하였다. Estradiol 단독 처리는 자궁 조직에서 세포 증식을 유도하는데, 이에 따라 세포 증식 (proliferation) 마커인 Ki67 발현이 E2 단독처리 군에서 다른 군에 비해 높게 관찰되었다. Secretory phase로 유도하는 progesterone은 자궁 조직에서 세포의 분화를 유도하며 이때 cAMP가 progesterone을 보조하여 세포 분화 유도를 돕는데, 이에 따라 Ki67 양성세포의 분포가 감소하였다. 반면, 호르몬 처리와 상관없는 상피세포 마커인 Cytokeratin 8 (KRT8)의 경우 세가지 군에서 모두 유사하게 발현되었다.
이를 통해 UEM 하이드로겔에서 배양한 자궁내막 오가노이드가 매트리젤에서 배양한 경우와 비교하여 유사하거나 다소 높은 기능성을 가지고 있음을 검증하였다.
실시예 11: 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔에서 배양된 자궁내막 오가노이드의 WNT3a conditioned medium (CM) 농도에 따른 형태 변화
WNT3a conditioned medium (CM) 10% (volume/volume), 25% (volume/volume)로 각각 조성된 자궁내막 오가노이드의 성장 배지에서 배양 4일차, 8일차, 12일차에 계대배양을 진행하여 (P1, P2, P3) 5 mg/mL 탈세포 자궁 조직 유래 UEM 하이드로겔에서 배양된 자궁내막 오가노이드의 WNT3a CM 농도에 따른 형태 (morphology) 변화를 배양 7일, 11일, 15일차에 각각 확인하였다.
(도 24의 a, 도 25의 b) 10% WNT3a CM 조건에서 배양된 자궁내막 오가노이드는 계대배양을 거치며 조밀한 (dense) 형태로 발달하였으며, 25% WNT3a CM 조건에서 배양된 경우 낭포형(cystic) 형태로 발달하였다. UEM 하이드로겔에서 배양된 자궁내막 오가노이드는 매트리젤에서와 유사한 형태로 두 WNT3a CM 농도에 반응하여 발달하였는데, 구체적으로 10% WNT3a CM 조건에서는 세포 증식(proliferation)이 활발히 일어나 조밀한(dense) 형태로 발달하였고, 25% WNT3a CM 조건에서는 세포 분화(differentiation)가 유도되어 낭포형(cystic) 형태로 발달함을 확인하였다.
실시예 12: 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔의 배치(batch)간 차이 여부 분석
다른 돼지 유래 자궁 조직으로부터 탈세포 공정을 통해 제작된 UEM 조성물로 형성된 5 mg/mL UEM 하이드로겔(batch 1, 2, 3)에서 자궁내막 오가노이드를 배양하여 배치(batch)간 유사성을 확인하였다.
구체적으로, 자궁내막 오가노이드 배양을 위해 마우스 자궁 조직에서 세포 분리하고 3.3 x 106 cells/mL 세포 밀도로 4일간 배양한 후 1:3의 비율로 UEM 하이드로겔에 계대배양 하였다.
(도 26의 a) 세 가지 다른 배치의 UEM 하이드로겔에서 4일간 배양된 자궁내막 오가노이드 모두 서로 유사한 형태로 형성되었으며, 면역형광염색을 통해 에스트로겐 수용체인 estrogen receptor alpha (ERα)와 세포골격(cytoskeleton)의 주요 구성 성분인 F-actin 발현을 비교하였을 때 세 배치에서 모두 유사한 양상으로 해당 단백질이 발현됨을 확인하였다.
(도 27의 b) 오가노이드 형성 효율을 UEM 하이드로겔에서 배양 3일차에 비교하였을 때 각 배치 간 유사한 형성 효율을 나타내는 것을 확인하였다.
(도 27의 c) 세가지 다른 배치의 UEM 하이드로겔에서 4일간 배양된 자궁내막 오가노이드에서 ERα 양성 세포 수가 유사하게 분포하였다
실시예 13: 탈세포 자궁 조직 유래 세포외기질 (UEM) 하이드로겔의 배치(batch)간 오가노이드 배양 성능 유사성 확인
도 28과 같이, 각 배치의 5 mg/mL UEM 하이드로겔에서 배양한 자궁내막 오가노이드에 대해 배양 4일차에 정량적 PCR 분석을 실시한 결과, 줄기세포능(stemness) 관련 유전자인 Lgr5와 자궁샘(uterine gland) 발달 조절 유전자인 Foxa2가 유사한 수준으로 발현됨을 확인하였다. Estrogen receptor alpha 발현 유전자인 Esr1과 상피세포 점막을 구성하는 뮤신-1 (Mucin-1; Muc1)의 경우에도 각 배치간 발현 차이가 유의미하게 나타나지 않았다.
따라서, 다른 배치의 UEM을 사용하여도 동일한 양상으로 자궁내막 오가노이드 배양 및 발달이 가능함을 알 수 있으며 탈세포 공정을 거친 UEM 기반 하이드로겔을 이용한 배양을 통해 균일한 수준의 자궁내막 오가노이드 생산이 가능한 것을 유추할 수 있다.
실시예 14: 자궁내막 오가노이드 배양을 위한 탈세포 자궁 조직 유래 지지체의 조직 특이적 효과 확인
UEM 하이드로겔 지지체가 자궁내막 오가노이드 배양에 있어 조직 특이적인 미세 환경을 제공하는 것을 확인하고자, 다른 장기의 탈세포 조직 유래 세포외기질 하이드로겔에서도 자궁내막 오가노이드를 배양하여 오가노이드 형성 및 마커 발현 양상을 UEM 하이드로겔 지지체에서 배양된 오가노이드와 비교하였다. 자궁내막 오가노이드 배양을 위해 마우스 자궁 조직에서 세포를 분리한 후 매트리젤에서 3.3 x 106 cells/mL의 세포 밀도로 4일간 배양한 후 1:3의 비율로 계대배양 하였다. 이때, 침샘 탈세포 조직 세포외기질 하이드로겔의 경우 7 mg/mL의 농도에서 자궁내막 오가노이드가 배양되었으며, UEM을 포함한 그 이외 탈세포 조직 유래 세포외기질 하이드로겔은 5 mg/mL의 농도에서 자궁내막 오가노이드가 배양되었다.
(도 29의 a) 탈세포된 자궁, 식도, 심장, 장, 간, 척수, 췌장, 방광, 침샘 유래 하이드로겔 지지체에서 양상의 차이는 있지만 모두 자궁내막 오가노이드가 형성되는 것을 확인하였다. 탈세포 조직 세포외기질 하이드로겔에서 배양 4일차에 면역형광염색을 통해 estrogen receptor alpha, F-actin 및 E-cadherin의 발현도를 비교했을 때 다양한 조직 유래 지지체 중에서 척수 유래 하이드로겔 지지체에서 E-cadherin 발현이 가장 크게 감소하였으며, estrogen receptor alpha의 경우 침샘 조직 유래 지지체에서 발현이 가장 낮게 관찰되었다.
(도 30의 b) 배양 3일차에 각 탈세포 조직 유래 하이드로겔 지지체에서의 오가노이드 형성 효율을 비교한 결과 거의 모든 조직에서 UEM 하이드로겔과 비교하여 자궁내막 오가노이드 형성 효율이 낮게 나타났다.
이는 UEM 지지체가 자궁내막 오가노이드 배양에 가장 적합하며 UEM 지지체의 조직 특이적 효과를 보여주는 결과이다.
다음으로, 도 31 및 도 32와 같이, UEM 하이드로겔의 자궁내막 오가노이드 배양을 위한 조직 특이적 효과 분석을 위해 다양한 장기의 탈세포 조직 유래 세포외기질 하이드로겔에서 배양된 자궁내막 오가노이드에 대한 정량적 PCR 분석을 배양 4일차에 실시하여 각 마커 발현을 비교 분석하였다. 침샘 탈세포 조직 세포외기질 하이드로겔의 경우 7 mg/mL의 농도에서 자궁내막 오가노이드가 배양되었으며, UEM을 포함한 그 이외 탈세포 조직 유래 세포외기질 하이드로겔은 5 mg/mL의 농도에서 자궁내막 오가노이드가 배양되었다.
줄기세포능(stemness) 관련 유전자인 Lgr5의 경우 침샘 조직 유래 지지체를 제외하고 모든 조직 지지체에서 배양된 경우 UEM 보다 낮은 발현을 보였다. 또한, estrogen receptor alpha 발현 유전자인 Esr1, 자궁샘(uterine gland) 발달 조절 유전자인 Foxa2, 상피세포 점막 mucin 발현 유전자인 Muc1은 모든 조직 지지체에서 배양된 경우에 UEM 지지체 보다 낮은 발현도를 보였으며, UEM 하이드로겔에서 배양된 오가노이드의 경우 다른 조직 유래 지지체뿐만 아니라 매트리젤에서 배양된 경우와 비교하였을 때에도 각 마커 유전자에 대해 유사하거나 더 높은 발현을 보였다.
따라서 UEM 하이드로겔 지지체가 자궁내막 오가노이드의 형성 및 발달에 가장 적합한 미세환경을 제공할 수 있음을 확인하였다.
실시예 15: 탈세포 자궁 조직 유래 하이드로겔 지지체에서 자궁내막 오가노이드의 계대 배양
도 33과 같이, 5 mg/mL UEM 하이드로겔에서 자궁내막 오가노이드의 4회 계대 배양을 진행하여 (총 18일 배양) 배양이 잘 되는 것을 확인하였다.
따라서, UEM 하이드로겔을 이용한 자궁내막 오가노이드의 장기 계대 배양이 가능함을 확인하였다.
실시예 16: 탈세포 자궁 조직 유래 하이드로겔 지지체를 이용한 자궁내막 오가노이드의 생체 내 이식을 위한 동물모델 수립
27G 주사바늘을 마우스 자궁뿔의 나팔관 밑으로 삽입하여 자궁내막을 10회 긁어내어 자궁내막층에 섬유화 및 유착을 유도한 자궁내막 손상 마우스 모델을 수립하였고, UEM 하이드로겔에서 배양된 자궁내막 오가노이드의 이식을 위해 적용하였다 (도 34).
실시예 17: 탈세포 자궁 조직 유래 하이드로겔 지지체를 이용한 자궁내막 오가노이드의 생체 내 이식 및 재생효과 확인
오가노이드의 체내 생착 확인을 위해 매트리젤 또는 5 mg/mL UEM 하이드로겔에서 4일간 배양된 오가노이드를 하이드로겔로부터 분리하고 형광 dye인 DiI로 표지 하였다. 형광 dye로 표지된 자궁내막 세포를 매트리젤 또는 UEM 용액과 함께 섞어 마우스 자궁 내막 손상 직후 자궁 점막하층(submucosa)에 주입하였다. 보다 더 구체적으로, 마우스 당 1.0 x 106 개의 세포를 이식하였으며, 가교되기 전 용액 상태의 50 μL 매트리젤 또는 50 μL UEM 용액(NaOH 추가하여 pH 7로 맞춘 상태)을 사용하였다.
이식 후 1, 5일차에 손상된 부위 조직을 수거하여 DiI로 표지된 자궁내막 오가노이드의 생착을 확인하였다. 매트리젤을 이용한 이식군에 비해 UEM 하이드로겔을 이용한 이식군에서 자궁내막 손상부위 및 그 인근에 자궁내막 오가노이드가 더 많이 위치하는 것을 확인하였으며, 이식된 오가노이드가 상피조직 마커인 cytokeratin 8 (KRT8)을 안정적으로 발현하고 있음을 확인하였다(DiI+ KRT8+ co-positive cell = 흰색 화살표로 표기) (도 35).
이를 통해 UEM 하이드로겔이 자궁내막 오가노이드 배양뿐 아니라 효율적인 생체 내 오가노이드 이식을 위한 스캐폴드 지지체로서도 활용 가능함을 알 수 있다.
실시예 18: 탈세포 자궁 조직 유래 세포외기질 조성물의 코팅 물질로서의 활용 가능성 검증
탈세포 자궁 조직 유래 세포외기질 조성물의 배양 표면 코팅 물질로서의 활용 가능성을 확인하고자, UEM 50 μg/mL, 1형 콜라겐 (collagen type 1) 20 μg/mL, 매트리젤 2% (v/v)로 각각 배양 접시 및 트랜스웰(Transwell)을 코팅하여 자궁내막 오가노이드 배양에 적용하였다. 자궁내막 오가노이드를 단일세포로 만들어 준 후 UEM 코팅된 배양접시 및 트랜스웰에 4일간 배양한 뒤 면역염색을 통해 분석한 결과 자궁내막 오가노이드가 단일층을 형성하는 것을 확인하였다. 이를 통해 UEM, 콜라겐, 매트리젤 모든 군에서 단일층을 형성하였고 세포간 접촉(contact) 정도 또한 유사하게 형성됨을 확인하였다 (도 36).
이를 통해 탈세포 자궁 조직 유래 UEM 조성물은 오가노이드 배양을 위한 3D 하이드로겔 소재뿐 아니라 세포 배양 용기 표면에 코팅 소재로 적용되어 오가노이드의 부착 및 배양을 가능하게 함으로써 활용 범위가 크게 확장될 수 있다.
실시예 19: 탈세포 자궁 조직 유래 하이드로겔 지지체를 이용한 자궁내막 오가노이드 칩 제작
자궁내막의 기능 및 형태를 모사하기 위한 자궁내막 칩 개발을 목적으로 자궁내막 오가노이드와 UEM을 이용한 생체모방 자궁내막 칩을 구성하였다.
PDMS (polydimethylsiloxane)로 제작된 자궁내막 칩은 1.5 mm 높이의 상층 배지 및 자궁내막 오가노이드 배양 채널, 1 mm 높이의 UEM 지지층 중간 채널, 1.5 mm의 하층 배지 채널로 구성되었다. 칩의 전체적인 크기는 가로 30 mm, 세로 6 mm, 높이 2.4 mm로 제작하였다 (도 37의 a).
UEM 지지층 중간 채널은 상하에 각각 80 μm의 간격으로 배열된 16개의 사다리꼴 모양의 지주(posts)로 구성된다. 이때 지주는 밑변 200 μm, 윗변 130 μm, 높이 60 μm이며 60°의 예각을 갖도록 제작되었다 (도 38b).
자궁내막 오가노이드의 안정적인 배양 및 지지를 위해 20 μg/mL 농도의 poly-L-lysine으로 4시간 동안 37℃에서 코팅한 후 중간 채널층에 5 mg/mL UEM 용액을 주입하고 30분 동안 37℃ 조건에서 젤화(gelation)를 유도하였다. 이후 자궁내막 오가노이드 배양 채널에 5 mg/mL UEM 용액을 통과시켜 채널 내벽에 코팅한 후 30분 간 37℃에서 젤화(gelation)시키고 최종적으로 50 μg/mL UEM 용액을 주입하여 30분간 상온에서 코팅하였다 (도 39의 a).
자궁내막 오가노이드에 10 μM Y-27632가 포함된 TrypLE를 37℃에서 5분간 처리하여 단일 세포(single cell)로 만든 후 2 x 107 mg/mL 세포 농도로 자궁 내막 칩의 상층 배양 채널에 주입하였다. 세포 주입 직후 자궁내막 칩을 수직으로 세워 배양하여 자궁내막 오가노이드가 단일층(monolayer)을 형성할 수 있도록 하였다 (도 40의 b).
더불어 다른 디자인의 생체모방 자궁내막 칩을 사용하여 자궁내막 단일층 형성을 유도하였다.
(도 41의 a) 자궁내막 칩은 0.4 mm 높이의 상층 배지 및 자궁내막 오가노이드 배양 채널, 1 mm 높이의 UEM 지지층 중간 채널, 0.4 mm의 하층 배지 채널로 구성되었다. 자궁내막 오가노이드의 안정적인 배양 및 지지를 위해 20 μg/mL 농도의 poly-L-lysine으로 4시간 동안 37℃에서 코팅한 후 중간 채널층에 5 mg/mL UEM 용액을 주입하고 30분 동안 37℃ 조건에서 젤화(gelation)를 유도하였다. 이후 자궁내막 오가노이드 배양 채널에 5 mg/mL 의 UEM 용액을 통과시켜 채널 내벽에 코팅한 후 30분 간 37℃에서 젤화(gelation)시키고 최종적으로 50 μg/mL UEM 용액을 주입하여 30분간 상온에서 코팅하였다.
(도 42의 b) 자궁내막 오가노이드에 10 μM Y-27632가 포함된 TrypLE를 37℃에서 5분간 처리하여 단일 세포(single cell)로 만든 후 2 x 107 mg/mL 세포 농도로 자궁 내막 칩의 상층 배양 채널에 주입하였다. 세포 주입 직후 자궁내막 칩을 수직으로 세워 배양하여 자궁내막 오가노이드가 단일층(monolayer)을 형성할 수 있도록 하였다.
이로써, 탈세포 자궁 조직 유래 하이드로겔 지지체를 이용한 자궁내막 오가노이드 칩을 제작할 수 있음을 확인하였다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명의 탈세포 자궁 조직 유래 세포외기질을 포함하는 하이드로겔 조성물은, 탈세포 자궁 조직 유래 세포외기질의 특성, 성분, 물성을 통해 생체 내 자궁 조직 및 기관과 유사성이 매우 높은 자궁내막 오가노이드를 제조하는 데에 활용될 수 있으며, 이러한 자궁내막 오가노이드는 생체 내 이식 및 다양한 자궁 관련 질환에 대한 약물 테스트 등에 유용하게 이용될 수 있으므로, 산업상 이용가능성이 있다.

Claims (14)

  1. 탈세포 자궁 조직 유래 세포외기질(uterus extracellular matrix; UEM)을 포함하는, 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물.
  2. 제1항에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질은 콜라겐 유형 VI로서 COL6A3, COL6A1, 또는 COL6A2; 또는 피브리노겐으로서 FGA, FGB, 또는 FGG을 포함하는 것인, 조성물.
  3. 제1항에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질은 점성계수 (G'')보다 높은 탄성계수 (G’)를 갖는 것인, 조성물.
  4. 제1항에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질은 상기 세포외기질의 농도가 1 내지 8 mg/mL인 경우 101 내지 102 Pa의 탄성계수 및 100 내지 101 Pa의 점성계수를 갖는 것인, 조성물.
  5. 제1항에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질의 농도는 1 내지 8 mg/mL인 것인, 조성물.
  6. 제1항의 3차원 배양용 하이드로겔 조성물에서 배양된, 자궁내막 오가노이드.
  7. 제6항에 있어서, 상기 자궁내막 오가노이드는 단백질로서 ERα, E-cadherin, 또는 PanCK를 발현하는 것인, 자궁내막 오가노이드.
  8. 제6항에 있어서, 상기 자궁내막 오가노이드는 유전자로서 Esr1, Lgr5, Foxa2, 또는 Muc1를 발현하는 것인, 자궁내막 오가노이드.
  9. 제6항에 있어서, 상기 자궁내막 오가노이드는 에스트라디올 또는 프로게스테론을 처리한 경우 자궁내막 오가노이드의 뮤신 분비가 증가되는 것인, 자궁내막 오가노이드.
  10. 자궁 조직에 Triton X-100 및 수산화 암모늄을 혼합하는 단계;
    상기 조직을 동결건조 및 분쇄하여 탈세포 자궁 조직 유래 세포외기질을 제조하는 단계;
    상기 탈세포 자궁 조직 유래 세포외기질을 펩신 용액에 용해시키는 단계; 및
    상기 용해 용액에 PBS 버퍼, 3차 증류수 및 NaOH를 혼합한 후 젤화하는 단계; 를 포함하는,
    자궁 오가노이드의 3차원 배양용 하이드로겔 조성물의 제조방법.
  11. 제10항에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질을 펩신 용액에 용해시키는 단계는 15 내지 30°C의 온도에서 이루어지는 것인, 제조방법.
  12. 제10항에 있어서, 상기 탈세포 자궁 조직 유래 세포외기질을 펩신 용액에 용해시키는 단계에서, 펩신 용액의 농도는 3 내지 10 mg/mL인 것인, 제조방법.
  13. 제 1항의 자궁내막 오가노이드의 3차원 배양용 하이드로겔 조성물에서 자궁내막 오가노이드를 배양하는 단계를 포함하는, 자궁내막 오가노이드의 제조방법.
  14. 제13항에 있어서, 상기 자궁내막 오가노이드의 제조방법은 WNT3a conditioned medium (CM)에서 계대배양 하는 단계를 더 포함하는 것인, 제조방법.
PCT/KR2022/017662 2021-11-10 2022-11-10 탈세포 자궁 조직 유래 세포외기질을 포함하는 조성물 및 이의 용도 WO2023085812A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0153961 2021-11-10
KR20210153961 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023085812A1 true WO2023085812A1 (ko) 2023-05-19

Family

ID=86336146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017662 WO2023085812A1 (ko) 2021-11-10 2022-11-10 탈세포 자궁 조직 유래 세포외기질을 포함하는 조성물 및 이의 용도

Country Status (2)

Country Link
KR (1) KR20230068353A (ko)
WO (1) WO2023085812A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003916A (ko) * 2014-03-21 2017-01-10 유니버시티 오브 피츠버그 - 오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 세포외 기질로부터 유래한 최종 멸균된 하이드로겔의 제조 방법
KR20200025502A (ko) * 2018-08-30 2020-03-10 연세대학교 산학협력단 탈세포 조직 기반 세포 봉입 및 배양용 비드, 및 이의 용도

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3587564B1 (en) 2018-06-21 2022-10-26 Industry-Academic Cooperation Foundation, Yonsei University Composition for culturing brain organoid based on decellularized brain matrix and method for preparing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003916A (ko) * 2014-03-21 2017-01-10 유니버시티 오브 피츠버그 - 오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 세포외 기질로부터 유래한 최종 멸균된 하이드로겔의 제조 방법
KR20200025502A (ko) * 2018-08-30 2020-03-10 연세대학교 산학협력단 탈세포 조직 기반 세포 봉입 및 배양용 비드, 및 이의 용도

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAMPO, ET AL.: "De- and re-cellularization of the pig uterus: a bioengineering pilot study", BIOLOGY OF REPRODUCTION, vol. 96, no. 1, 20 December 2016 (2016-12-20), pages 34 - 45, XP055601106, DOI: 10.1095/biolreprod.116.143396 *
FRANCÉS-HERRERO EMILIO, JUÁREZ-BARBER ELENA, CAMPO HANNES, LÓPEZ-MARTÍNEZ SARA, DE MIGUEL-GÓMEZ LUCÍA, FAUS AMPARO, PELLICER ANTON: "Improved Models of Human Endometrial Organoids Based on Hydrogels from Decellularized Endometrium", JOURNAL OF PERSONALIZED MEDICINE, vol. 11, no. 6, pages 504, XP093065287, DOI: 10.3390/jpm11060504 *
GARGUS EMMA S.; ROGERS HUNTER B.; MCKINNON KELLY E.; EDMONDS MAXWELL E.; WOODRUFF TERESA K.: "Engineered reproductive tissues", NATURE BIOMEDICAL ENGINEERING, NATURE PUBLISHING GROUP UK, LONDON, vol. 4, no. 4, 1 April 2020 (2020-04-01), London , pages 381 - 393, XP037092304, DOI: 10.1038/s41551-020-0525-x *

Also Published As

Publication number Publication date
KR20230068353A (ko) 2023-05-17

Similar Documents

Publication Publication Date Title
Ashworth et al. Peptide gels of fully-defined composition and mechanics for probing cell-cell and cell-matrix interactions in vitro
WO2020130713A1 (ko) 인간 줄기세포 유래 폐포 대식세포를 포함하는 3차원 폐 오가노이드의 제조방법
WO2020111868A1 (ko) 인체 유래 성분을 함유하고 조직 특이적 세포 분화 효과를 갖는 3d 프린팅 바이오 잉크 조성물 및 그 제조방법
EP3483262A1 (en) Small molecule compound combination for reprogramming digestive tract derived epithelial cells to endodermal stem/progenitor cells, reprogramming method and application
WO2016153256A1 (ko) 접착성 펩타이드 및 그 용도
WO2022005098A1 (ko) 폐 오가노이드 배양용 조성물의 제조 방법, 그 조성물 및 이를 이용한 오가노이드 배양 방법
Kirchhoff et al. Immortalization by large T-antigen of the adult epididymal duct epithelium
CN109337857A (zh) 融合蛋白E-钙粘素-Fc、VE-钙粘素-Fc和VEGF-Fc的用途
WO2023085812A1 (ko) 탈세포 자궁 조직 유래 세포외기질을 포함하는 조성물 및 이의 용도
WO2017155166A1 (ko) 물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법
WO2017022981A9 (ko) 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법
Vidrich et al. A method for the rapid establishment of normal adult mammalian colonic epithelial cell cultures
WO2021162530A1 (ko) 심장 오가노이드 배양 및 이식을 위한 탈세포 심장 조직 유래 지지체 및 이의 제조방법
WO2017034211A1 (ko) 무기물 표면 접착 또는 코팅용 단백질 접착제
WO2022250406A1 (ko) 비알코올성 지방간 인공 조직 모델
WO2022149944A1 (ko) 오가노이드 배양을 위한 탈세포 지방 조직 유래 지지체 및 이의 제조방법
WO2021162533A1 (ko) 장기 오가노이드 배양 및 이식을 위한 탈세포 장기 조직 유래 지지체 및 이의 제조방법
WO2022108314A1 (ko) 췌장 오가노이드 배양 및 이식을 위한 탈세포 췌장 조직 유래 지지체 및 이의 제조방법
WO2018135891A1 (ko) 포유동물 유래 중간엽 줄기세포 또는 그로부터 분화된 세포를 포함하는 3 차원 세포배양 구조체, 이를 이용한 3 차원 세포배양 방법, 이를 이용한 약물 스크리닝 방법 및 이의 용도
Sung et al. Human pluripotent stem cell culture on polyvinyl alcohol-co-itaconic acid hydrogels with varying stiffness under xeno-free conditions
WO2022005106A1 (ko) 췌장 오가노이드 배양용 조성물의 제조 방법, 그 조성물 및 이를 이용한 오가노이드 배양 방법
WO2021002554A1 (ko) Cp1p 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 줄기세포 증식 촉진용 조성물
WO2020005011A1 (ko) 돌연변이 마우스 유래 췌장 오거노이드 및 표준화된 약물 효과 확인 방법
WO2022211523A1 (ko) 인공 조직 제작을 위한 페놀 유도체로 수식된 조직 유래 세포외기질 유도체
WO2024080707A1 (ko) 줄기세포 자기구조화능을 이용한 오가노이드 제조 방법 및 상기 방법에 의해 제조된 오가노이드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893231

Country of ref document: EP

Kind code of ref document: A1