WO2017155166A1 - 물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법 - Google Patents

물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법 Download PDF

Info

Publication number
WO2017155166A1
WO2017155166A1 PCT/KR2016/008754 KR2016008754W WO2017155166A1 WO 2017155166 A1 WO2017155166 A1 WO 2017155166A1 KR 2016008754 W KR2016008754 W KR 2016008754W WO 2017155166 A1 WO2017155166 A1 WO 2017155166A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
differentiated
cell
differentiation
culture medium
Prior art date
Application number
PCT/KR2016/008754
Other languages
English (en)
French (fr)
Inventor
김순학
Original Assignee
가톨릭관동대학교기술지주 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160071852A external-priority patent/KR101855967B1/ko
Application filed by 가톨릭관동대학교기술지주 주식회사 filed Critical 가톨릭관동대학교기술지주 주식회사
Priority to US16/082,926 priority Critical patent/US11859175B2/en
Priority to EP16893680.5A priority patent/EP3428275B1/en
Priority to CN201680084450.0A priority patent/CN109089423A/zh
Priority to JP2018567550A priority patent/JP7219618B2/ja
Publication of WO2017155166A1 publication Critical patent/WO2017155166A1/ko
Priority to US18/512,026 priority patent/US20240101998A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves

Definitions

  • the present invention relates to a cell reprogramming method using environmental influx by physical stimulation such as ultrasound, laser or heat treatment.
  • the national R & D project supporting the present invention is a high-tech medical technology development project managed by the Ministry of Health and Welfare and the Korea Institute of Health Industry Promotion, and assigned a unique project number "HI14C3297", titled “In vivo in vivo using micro RNA tracking system in ischemic brain injury model.” Development of Stem Cell Distribution and Neurodifferentiation Monitoring Method, ”and was supported by the clergyman Industry-Academic Cooperation Group.
  • the national R & D project supporting the present invention is a mid-sized researcher support project organized by the Ministry of Science, ICT and Future Planning, and the project's unique number "2013R1A2A2A01068140", titled “Micro RNA-based Stem Cell Differentiation Tracking Radiation Biomolecular Imaging Development "and was supported by the clergy Kanto University Industry-Academic Cooperation Group.
  • the medium component contains various substances and ions, and the intracellular inflow of such an environment may be a breakthrough method for promoting cellular change.
  • the cells are not easily delivered by the cell membrane composed of phospholipids.
  • ultrasonic waves cause ATP, and it has been reported that such ATP reacts with receptors on cell membranes to cause mass transport.
  • the present inventors devised a method of delivering a variety of substances into the cell by using a physical stimulation such as ultrasound to temporarily damage the somatic cell membrane and at the same time using the cavitation effect of the medium caused by the ultrasonic wave.
  • the present invention has been completed by developing a cell reprogramming method using environmental influx, aka "Physical stimulation-mediated permeation of En vironmental t ransition guided e llular r eprogramming, ENTER cell".
  • the present invention provides a physical stimulus capable of promoting environmental influx in a mixture of differentiated or undifferentiated cells and culture medium,
  • a method for reprogramming cells comprising culturing the mixture provided with the physical stimulus for a period of time to obtain reprogrammed cells.
  • the invention also provides a physical stimulus capable of promoting environmental influx in a mixture of differentiated or undifferentiated cells and culture medium,
  • Exosome-containing extracellular vesicles (extracellular vesicles) separated from the above cultures and differentiated or undifferentiated cells are mixed and cultured for a period of time to provide a reprogrammed cell, comprising a method for reprogramming the cells.
  • the present invention provides differentiated cells with physical stimuli that can promote environmental influx, such as ultrasound, laser, or heat treatment, without the introduction of derivatization inducers and chemicals into differentiated cells, thereby pluripotent cells by inflow of external environment. It can be reprogrammed into any differentiated cell that has a different phenotype from the cells or differentiated cells, and this induction has an effect of increasing the possibility of autologous cell treatment because the production process is simple and efficient.
  • FIG. 1 is a conceptual view of a wide variety ENTER (En vironmental ransition guided t c e r llular eprogramming) reprogramming method of a cell according to the present invention.
  • ENTER En vironmental ransition guided t c e r llular eprogramming
  • Figure 2a-b is a result showing the cell membrane damage and recovery by ultrasonic stimulation
  • Figure 2a is a cell surface image taken by SEM
  • Figure 2b is a live / dead kit staining image.
  • 3A-C show the results of RT-PCR analysis (c) for intracellular Ca influx assay (a), ATP response assay (b) and ATP receptor gene expression.
  • Figure 4a-c is a result showing the influx of foreign substances in the cell by ultrasonic stimulation using QD605
  • Figure 4a is a result of QD605 influx analysis in the ultrasound-exposed medium and cells (usMC-S) spheroid and single cells
  • 4b and 4c show the QD605 influx analysis and transcription factor expression results in usMC-S spheroid (b) and single cell (c) for each environmental condition.
  • Figure 5 shows the results of RT-PCR analysis of RNA of exosomes in the sonicated culture.
  • Figure 6a-c is a result showing the mass transfer by exosomes
  • Figure 6a is an image of the process of the QD605 is moved to another cell by the exosomes
  • Figure 6b shows the expression of protein markers in the exosomes
  • 6C shows the results of poly (A) 27 -Cy5.5 delivery experiment by exosomes.
  • Figure 7a-b shows the change of cells according to the co-culture of exosomes and non-sonicated cells in the culture of sonicated cells
  • Figure 7a is a change in cell morphology with incubation time
  • Figure 7b is an exosome
  • the results show the expression of Oct4 in cells cultured for 6 days.
  • FIG. 8 illustrates a direct differentiation method of human dermal fibroblasts according to the present invention.
  • Figure 9a-b shows the results of differentiation of the human dermal fibroblasts sonicated into adipocytes in the adipocyte differentiation medium
  • Fig. 9a is a result of the change of cells and oil red O staining of adipocytes 20 days after induction of differentiation
  • 9B shows the results of RT-PCR analysis of adipocyte marker gene expression of differentiation-induced cells.
  • FIG. 10a-c shows the results of differentiation of neural stem cell differentiation-inducing medium and ultrasound-treated human dermal fibroblasts into neural progenitor cells
  • FIG. 10a shows changes in cells at 3 days after induction of differentiation
  • FIG. Cell Marker Expression shows the results of analysis of neural progenitor cell marker expression in attached cells.
  • FIG. 11 is a flow cytometry analysis result of analyzing the expression of Pax6 and Nestin in cells differentiated into neural progenitor cells (n / ENTER cells).
  • FIG. 13A shows the process of cell proliferation in a single sphere of n / ENTER cells
  • FIG. 13B shows the result of maintaining the properties of neuroprogenitor cells in the proliferated cells.
  • FIG. 14A-B show differentiation after transplanting n / ENTER cells into the rat brain
  • FIG. 14A shows expression of astrocytic markers (Gfap) in transplanted cells (HNA stained cells)
  • FIG. 14B shows transplantation Post secretion of synapsin (Syn1) in differentiated cells.
  • FIG. 15A-C show the differentiation of MEFs into neural progenitor cells by neural stem cell differentiation induction medium and ultrasound stimulation.
  • FIG. 15A is a change in cell morphology
  • FIG. 15B is an expression of neurosphere progenitor markers of spear
  • FIG. 15C is Expression analysis results of neural progenitor cell markers using flow cytometry are shown.
  • FIG. 16 shows the results of differentiation marker expression analysis of differentiation-induced neuron progenitor cells (mouse n / ENTER cells) in MEF.
  • 17 is a schematic showing direct differentiation into hepatocytes.
  • Figures 18a-b is the result of differentiation of hepatocyte differentiation medium and sonicated HDF into hepatocytes
  • Figure 18a shows the change in cell morphology
  • Figure 18b shows the expression of hepatocyte markers.
  • 19A-C shows the differentiation of hepatocyte differentiation-inducing medium and heLa cells treated with ultrasound into HeLa cells (HeLa h / ENTER), FIG. 19A shows the change in cell morphology, FIG. 19B shows the expression of hepatocyte markers using qPCR, and FIG. 19C shows Expression results of hepatocyte markers are shown using immunocytochemistry.
  • Figures 20a-b shows the differentiation of hepatocyte differentiation induction medium and sonicated Hep3B cells into hepatocytes (Hep3B h / ENTER cells), Figure 20a shows the change in cell morphology, Figure 20b shows the expression of hepatocyte markers.
  • Figure 21a-b is a result of differentiation of human ES culture medium and ultrasonic treated HDF into es / ENTER cells, Figure 21a shows the change in cell morphology, Figure 21b shows the change of Oct4 expression with incubation time.
  • 22A-B show expression of pluripotent marker genes (a) and protein (b) in es / ENTER cells.
  • Figure 23a-c shows the results of pluripotency analysis in es / ENTER cells
  • Figure 23a shows a pluripotency marker analysis using flow cytometry
  • Figure 23b shows a pluripotency gene expression pattern analysis using a microarray
  • Figure 23c Is the result of methylation of Oct4 and Nanog promoter using bisulfite sequencing.
  • Figures 24A-B show expression of trioderm marker genes (a) and proteins (b) in es / ENTER cells.
  • Figures 26a-b show the results of the expression of triploid marker protein in adherent cultured es / ENTER cells (a) and the methylation analysis (b) of triploid marker DNA of es / ENTER cells using bisulfite sequencing.
  • Figure 27a-c shows the results of in vitro differentiation of es / ENTER cells into neurons (a), cardiomyocytes (b) and hepatocytes (c).
  • Figure 28a-c shows the results of analyzing the expression of neurons (a), cardiomyocytes (b) and hepatocytes (c) markers in HDF.
  • 29a-c show the results of RT-PCR analysis on the expression of neuronal (a), cardiomyocyte (b) and hepatocyte (c) differentiation marker genes of differentiation-induced es / ENTER cells.
  • FIG. 31A-B show the results of muscle transplantation and in vivo differentiation of es / ENTER cells
  • FIG. 31A shows the result of differentiation of the transplanted cells into skeletal muscle
  • FIG. 31B shows the presence or absence of Oct4 expression and proliferation (Ki67) of the transplanted cells. Shows.
  • FIG. 32A-C show the results of transplantation and in vivo differentiation of es / ENTER cells into the rat brain
  • FIG. 32A shows the coordinates of transplantation of cells
  • FIG. 32B shows the astrocytic differentiation markers (Gfap) and neuronal functional markers of transplanted cells.
  • Gfap astrocytic differentiation markers
  • FIG. 32C shows Oct4 expression and proliferation (Ki67) in transplanted cells.
  • FIG. 33a-c shows the differentiation of MEF into mouse es / ENTER cells by human ES culture medium and ultrasonic stimulation
  • FIG. 33a shows the change in cell morphology and Oct4-GFP expression according to the culture time
  • FIG. 33b shows the culture.
  • FIG. 33C shows the change in Oct4 expression.
  • Figure 34a-d is a result of pluripotent property analysis in mouse es / ENTER cells
  • Figure 34a is the expression of pluripotent marker protein by immunocytochemistry
  • Figure 34b is the expression of pluripotent marker gene by RT-PCR
  • Figure 34c shows the expression ratio analysis of the pluripotent marker gene by flow cytometry
  • Figure 34d shows the alkaline phosphatase (AP) staining results of mouse es / ENTER cells.
  • AP alkaline phosphatase
  • Figure 35a-c is a result of analyzing the three germ cells characteristics in mouse es / ENTER cells
  • Figure 35a is the expression of the three germ cells markers by immunocytochemistry
  • Figures 35b and 35c is the three germ marker genes by culture time (b) And analysis results of expression patterns of protein (c).
  • 36A-C show in vitro differentiation of mouse es / ENTER cells into neurons (a) and cardiomyocytes (b), and karyotyping results (c) by chromosomal G-band analysis of mouse es / ENTER cells. will be.
  • FIG. 37a-c shows the differentiation of L132 cells into L132 es / ENTER cells by human ES culture medium and ultrasonic stimulation
  • FIG. 37a shows cell morphology change according to culture time
  • FIGS. 37b and 37c show L132 es / ENTER.
  • the pluripotent (b) and trioderm (c) properties of the cells are shown.
  • FIG. 38A-C shows the differentiation of MSCs into MSC es / ENTER cells by human ES culture medium and ultrasonic stimulation.
  • FIG. 38A shows cell morphology changes with culture time
  • FIGS. 38B and 38C show MSC es / ENTER cells. Shows pluripotency (b) and trioderm (c) properties.
  • Figure 39a-c shows the differentiation of human skin fibroblasts into SF es / ENTER cells by the human ES culture medium and ultrasonic stimulation
  • Figure 39a is a change in cell morphology with culture time
  • Figures 39b and 39c is SF es / ENTER cells show pluripotent (b) and trioderm (c) properties.
  • FIGS. 40B and 40C show pluripotency of es / ENTER cells.
  • FIGS. 40B and 40C show pluripotency of es / ENTER cells.
  • c triplet
  • FIG. 41A-C show the differentiation of HDF into es / ENTER cells using laser stimulation and hES medium.
  • FIG. 41A shows differentiation induced HDF spheroids.
  • FIGS. 41B and 41C show pluripotency of es / ENTER cells.
  • FIG. 44 shows changes in cell morphology of cultured human fibroblasts treated with EVs during es / ENTER induction.
  • 46a-b shows the results of confirming the expression of pluripotent marker protein (a: ICC image) and gene (b: qPCR analysis) in 3 days cultured HDF treated with EVs recovered upon es / ENTER induction.
  • 47a-b is a result confirming the expression of neural stem cell marker protein (a: ICC image) and gene (b: qPCR analysis) in 3 days cultured HDF treated EVs recovered when n / ENTER induction.
  • the present invention provides a physical stimulus capable of promoting environmental influx in a mixture of differentiated or undifferentiated cells and a culture medium, and culturing the mixture provided with the physical stimulus for a period of time to obtain reprogrammed cells. It relates to a method of reprogramming cells.
  • the present invention provides pluripotency by culturing differentiated or undifferentiated cells in any medium capable of inducing the reprogrammed cells of interest while providing physical stimulation to promote the influx of environment such as ultrasound, laser or heat treatment to differentiated or undifferentiated cells.
  • (pluripotency) cells or any differentiated cells that differ in phenotype from the differentiated or undifferentiated cells, such as hepatocytes, osteoblasts, adipocytes, muscle cells, neurons, astrocytes, keratinocytes, hair follicle cells, pancreatic beta cells or cardiomyocytes. It is characterized in that the reprogramming of.
  • the differentiated cells when reprogrammed cells are intended for pluripotent cells, the differentiated cells may be reprogrammed into pluripotent cells by mixing differentiated cells with stem cell culture medium and providing a physical stimulus to culture for a period of time. .
  • the differentiated cells and the differentiated induction medium of the desired differentiated cells are mixed and cultured for a period of time by providing a physical stimulus.
  • differentiated cells can be reprogrammed to any differentiated cell with a different phenotype.
  • the differentiation of undifferentiated cells such as induced pluripotent stem cells or embryonic stem cells with the differentiation-inducing medium of the desired differentiation cells, and provides a physical stimulus to incubate for a certain period of time to differentiate the desired differentiation compared to the existing technology Can be reprogrammed into cells.
  • the reprogramming method of cells of the present invention appears to induce reprogramming of differentiated or undifferentiated cells in response to extracellular environmental influx through physical stimulation to differentiated or undifferentiated cells.
  • influx may include extracellular vesicles containing genetic material, chemicals, small molecules, exosomes, or exosomes, released from differentiated cells that have been provided with physical stimuli; Or influx into neighboring differentiated or undifferentiated cells such as culture medium components.
  • environmental influx into differentiated or undifferentiated cells is characterized by recombination into pluripotent cells stably expressing pluripotent markers and trioderm markers and to differentiated cells having different phenotypes from the differentiated or undifferentiated cells. It seems that programming direction can be determined.
  • the reprogramming directionality seems to be determined by the type of culture medium.
  • reprogramming from differentiated or undifferentiated cells to pluripotent cells can be induced when physical stimulation is provided to the mixture of differentiated cells and stem cell culture medium, and any Reprogramming to differentiated cells can be induced when a physical stimulus is provided to a mixture of differentiated cells and any differentiated cells, and a physical stimulus to a mixture of undifferentiated cells and differentiation induced media of any differentiated cells. If provided, it can be reprogrammed to any differentiated cell.
  • the inventors considered cell membrane damage and cell secreting substances (exosomes or exosome-containing extracellular vesicles) in particular by physical stimulation. That is, ultrasonic waves, lasers, or heat treatments induce temperature rise due to energy, vibration of microbubbles generated by ultrasonic waves, and induction of flow of liquids, that is, microstream generation along the cell membranes.
  • the Ca 2 + concentration rapidly increases immediately after sonication and gradually decreases so as not to process the ultrasonic wave. By decreasing to the level of the control group it can be seen that after the damage of the cell membrane is induced.
  • the generation and increase of ATP due to ultrasound is known to induce endocytosis in response to various cellular stresses and in response to intracellular membrane ATP receptors.
  • exosomes or exosome-containing extracellular vesicles are known to contain genetic information materials (DNA, mRNA, microRNA, protein) inside, exosomes or exosome-containing cells outside the cell membrane through cell membrane damage
  • Genetic information material present inside the exosomes or exosome-containing extracellular vesicles can be delivered by the endoplasmic reticulum reenters other surrounding cells.
  • stimulation by sonication induces or promotes the expression of pluripotent markers, trioderm markers, or differentiated cell markers that have been under-expressed or remained suppressed in the cell, and damage the cell membrane.
  • exosomes or exosome-containing extracellular vesicles present inside the cell including pluripotent markers, trioderm markers, or differentiated cell markers, whose expression is induced or promoted, are discharged to the outside and delivered to surrounding cells.
  • Peripheral cells also have a partially damaged cell membrane, which increases cell membrane fluidity, resulting in higher efficiency of exosomes or exosome-containing extracellular vesicles inside the cell than in normal conditions.
  • the expression induced or promoted pluripotency, developmental and differentiation tracts present inside the outer endoplasmic reticulum The genetic information is transferred pluripotent cells, or any of differentiated cells was thought to be made.
  • the culture medium is recovered during the pluripotent cell induction process, and the exosome or exosome-containing extracellular vesicles are extracted from the medium to determine whether there are pluripotent cell-related pluripotency markers or differentiation markers therein.
  • pluripotency markers known pluripotency markers, differentiation markers were identified with a high degree of expression, supporting the hypothesis of the present inventors.
  • ultrasonic, laser, or heat treatments were found to be normal without karyotyping.
  • somatic cells including dermal fibroblasts, dermal fibroblasts and the like derived from mammals; Cancer cells including uterine cancer cells (HeLa), liver cancer cells (Hep3B), and the like; Or organ tissue cells, including lung epithelial cells (L132 cell) can be used.
  • the term "somatic cell” refers to a cell that constitutes an adult and is limited in the capacity for differentiation and self-production.
  • the somatic cells may be somatic cells constituting the skin, hair, fat of the mammal, preferably fibroblasts derived from mammals, but is not limited thereto.
  • undifferentiated cell means a cell having differentiation capacity and self-producing capacity.
  • induced pluripotent stem cells embryonic stem cells, progenitor cells, etc. may be mentioned.
  • pluripotency refers to pluripotency after physical stimulation, in a strict sense ultrasound, laser, magnetic field, plasma, light-emitting diode, electrical stimulation, chemical exposure, heat treatment, or acid treatment. Refers to the obtained cell.
  • the pluripotency means a state of stably expressing a pluripotency marker expressed in stem cells. In addition, it means a state expressing three kinds of endoderm, ectoderm and mesoderm three germ layers markers.
  • the pluripotent cells are "E mbryonic s tem cell-based media En vironmental ransition t-guided c e llular r eprogramming (es / ENTER) cells can be used.
  • the pluripotent cells according to the present invention are well differentiated from the induced pluripotent stem cells in that differentiation is well induced according to the external environment, and that the properties of the progenitor cells, which have strong differentiation properties compared to those of the stem cells, are stronger. Has characteristics. In other words, when embryonic stem cells such as induced pluripotent stem cells are used as cell therapeutics, a preparatory step of undergoing a differentiation process is required, which includes a risk factor that can turn into cancer, and a virus for introducing a differentiation inducer.
  • pluripotent cells of the present invention are induced without introducing a differentiation-inducing substance such as a back-differentiation inducer or a chemical for genetic variation, so co-culture with other types of cells
  • a differentiation-inducing substance such as a back-differentiation inducer or a chemical for genetic variation
  • the pluripotent cells of the present invention have the advantage that the induction process is simple and short, so that time can be dramatically reduced until transplantation by treating autologous cells.
  • the pluripotent cells are pluripotent markers or mesoderm of any one of OCT3 / 4, SOX2, NANOG, c-MYC, KLF4, TDGF1, SSEA4, TRA-1-60, PAX6, Nestin, Brachyury, SMA, GATA4, or AFP. And it is characterized by stably expressing the three germ seed marker gene consisting of endoderm.
  • differentiated cells may be reprogrammed into pluripotent cells or any differentiated cells of interest that differ in phenotype from differentiated cells upon receiving a physical stimulus capable of promoting environmental influx.
  • undifferentiated cells can be reprogrammed to any differentiated cell with a markedly superior differentiation rate upon receiving a physical stimulus that can promote environmental influx.
  • the differentiated cells are, for example, neurons expressing any one of PAX6, SOX1, SOX2, Nestin, MAP2, TuJ1, GFAP or O4 (called “ n euronal stem cell media-based ENTER, n / ENTER”); Myocytes expressing any of Desmin, Pax3, Actinin, SMA, GATA4 or NKX2-5 (called “ m uscle differentiation media-based ENTER, m / ENTER”); Hepatocytes expressing any of AFP, HNF1a, HNF4a, CK18 or ALB (called “ h epatocyte differentiation media-based ENTER, h / ENTER”); Or adipocytes expressing any one of Pparc2, C / ebpa, aP2 or Fabp4 (referred to as “ a dipocyte differentiation media-based ENTER, a / ENTER”), but are not limited thereto.
  • culture medium is a medium used for in vitro cell culture in a comprehensive sense, and means a stem cell culture medium or differentiation induction medium in the present invention, the stem cell culture medium more specifically embryonic stem cell culture Mean badge.
  • differentiation induction medium is a medium used for induction of normal stem cells into differentiated cells, for example, multipotent cell differentiation induction medium, hepatocyte differentiation induction medium, bone formation differentiation induction medium, fat Cell differentiation induction media, muscle cell differentiation induction media, astrocyte differentiation induction media, neuronal cell differentiation induction media, vascular endothelial cell differentiation media, keratinocyte differentiation media, pancreatic beta cell differentiation media or cardiomyocyte differentiation media Can be used, but is not limited thereto.
  • the culture medium and the differentiated or undifferentiated cells are mixed and the mixture is provided with a physical stimulus.
  • physical stimulation Prior to providing a physical stimulus to a mixture comprising differentiated or undifferentiated cells, physical stimulation may be provided to the culture medium to enhance the reprogramming efficiency of the cells.
  • the physical stimulus may be any one of ultrasonic wave, laser, plasma, light-emitting diode, electrical stimulation, chemical exposure, heat treatment or acid treatment.
  • Ultrasonic treatment of the culture medium has an output intensity of 1W / cm 2 1 to 20 minutes to the ultrasound of 20W / cm 2, specifically, the output strength of 2W / cm 2 To 10 W / cm 2 of ultrasound for 5 to 15 minutes, more specifically, output intensity 3 W / cm 2 To 7 W / cm 2 may be performed for 7 to 13 minutes.
  • Laser treatment of the culture medium is performed for 1 minute to 20 minutes for the pulsed laser beam in the 300 to 900 nm wavelength band, more specifically for 3 minutes to 10 minutes for the pulsed laser beam in the wavelength band, more specifically for the wavelength.
  • the pulsed laser beam of the band may be irradiated for 4 to 6 minutes.
  • the wavelength band may use a wavelength of 400 nm, 808 nm, and 880 nm.
  • Heat treatment of the culture medium may be carried out for 5 to 20 minutes at a temperature condition of 40 to 50 °C.
  • the sonication of the culture medium and the mixture of differentiated or undifferentiated cells is performed for 1 to 5 seconds at a power intensity of 0.5 W / cm 2 to 3 W / cm 2 , more specifically, at a power intensity of 0.7 W / cm 2 to 2 W / cm. 2 to 1 to 5 seconds, more specifically, the output intensity may be performed for 1 to 5 seconds at 0.8W / cm 2 to 1.5W / cm 2 .
  • Laser treatment of the culture medium and the mixture of differentiated or undifferentiated cells can be performed from 1 to 20 seconds for a pulsed laser beam in the 300 to 900 nm wavelength band, and more specifically 3 to 10 seconds for a pulsed laser beam in the wavelength band.
  • the pulsed laser beam of the wavelength band may be irradiated for 4 seconds to 6 seconds.
  • the wavelength band may use a wavelength of 400 nm, 808 nm, and 880 nm.
  • the heat treatment of the mixture of the culture medium and the differentiated or undifferentiated cells may be performed by exposing for 1 to 10 minutes at a temperature condition of 40 to 50 ° C. and then exposing for 5 to 10 seconds at a temperature condition of 0 ° C. to 4 ° C. have.
  • the mixture provided with the physical stimulus is incubated for a period of time to obtain reprogrammed cells.
  • Incubation of the mixture provided with the physical stimulus is carried out during the period of 2 to 10 days in which spheroids stably express pluripotency markers or differentiation markers are formed through a suspended culture or monolayer culture. It may be performed, but is not particularly limited thereto.
  • the floating culture exhibits higher spheroid formation efficiency than the adherent culture.
  • the floating culture has a larger number and size of spheroids than the attached culture, and shows a constant size distribution.
  • the reprogramming starts from this time by increasing or stabilizing the expression of the pluripotency marker or the differentiation marker from about 3 days in the suspension culture of the human skin fibroblasts treated with ultrasound or laser.
  • the expression of pluripotency markers increased or stabilized from about 8 days, and reprogramming started from this time.
  • pluripotency markers for example, OCT3 / 4, SOX2, NANOG, c-MYC, KLF4, TDGF1, SSEA4, TRA-1-60, it can be confirmed that spheroids have pluripotency.
  • Identification of pluripotency markers may be analyzed by RT-PCR or immunocytochemistry, but is not particularly limited thereto.
  • the pluripotent cells of the present invention are characterized by expressing high levels of trioderm markers, ie ectoderm (PAX6, Nestin), mesoderm (Brachyury, SMA), endoderm (GATA4, AFP) markers.
  • trioderm markers ie ectoderm (PAX6, Nestin), mesoderm (Brachyury, SMA), endoderm (GATA4, AFP) markers.
  • spheroids when providing physical stimulation to skin fibroblasts in differentiation-inducing media, may form between about 1 and 20 days after culture.
  • Differentiation markers may be one or more of PAX6, SOX1, SOX2, Nestin, MAP2, TuJ1, GFAP or O4 when reprogrammed into neurons.
  • reprogrammed into muscle cells it may be one or more of Desmin, Actinin, Pax3, SMA, GATA4 or NKX2-5.
  • telomeres When reprogrammed into hepatocytes, it may be one or more of AFP, HNF1a, HNF4a, CK18 or ALB.
  • oil red O staining may be any of Pparc2, C / ebpa, aP2 or Fabp4.
  • the pluripotent cells of the present invention are characterized by having proliferative capacity by expressing the proliferation marker protein Ki-67.
  • the co-culture of the reprogrammed pluripotent cells with feeder cells can increase the proliferation of pluripotent cells.
  • the reprogramming method of cells of the present invention may further comprise the step of culturing the pluripotent cells in differentiation induction medium.
  • Pluripotent cells may be differentiated into desired differentiated cells according to the type of differentiation-inducing medium.
  • differentiation induction medium multipotent cell differentiation induction medium, hepatocyte differentiation induction medium, osteoblast differentiation induction medium, adipocyte differentiation induction medium, muscle cell differentiation induction medium, astrocytic differentiation induction medium, neuronal cell differentiation induction medium , Vascular endothelial cell differentiation induction medium, keratinocyte differentiation induction medium, pancreatic beta cell differentiation induction medium or cardiomyocyte differentiation induction medium and the like can be used, but is not particularly limited thereto.
  • the invention also provides a physical stimulus capable of promoting environmental influx in a mixture of differentiated or undifferentiated cells and culture medium,
  • Exosome-containing extracellular vesicles isolated from the above cultures and to differentiate or undifferentiated cells and to culture for a period of time to obtain a reprogrammed cell, comprising a method for reprogramming the cells.
  • Reprogramming method of the cells of the present invention is characterized in that the exosome-containing extracellular vesicles isolated from differentiated or undifferentiated cells subjected to physical stimulation can be reprogrammed to any differentiated cells by incubating with differentiated or undifferentiated cells for a predetermined time. do.
  • the exosome-containing extracellular vesicles provide a physical stimulus capable of promoting environmental influx into a mixture of differentiated or undifferentiated cells and culture medium, and the mixture subjected to the physical stimulus is cultured for 1 to 6 days to centrifugation. Can be recovered.
  • the exosome-containing extracellular vesicles are pluripotent of any one of OCT3 / 4, SOX2, NANOG, c-MYC, KLF4, TDGF1, SSEA4, TRA-1-60, PAX6, Nestin, Brachyury, SMA, GATA4, or AFP.
  • Marker or triploid marker Neuronal markers of any one of PAX6, Nestin, Sox1, Sox2, MAP2, TuJ1, GFAP or O4; Myocyte markers of any of Desmin, Pax3, Actinin, SMA, GATA4 or NKX2-5; Hepatocyte markers of any of AFP, HNF1a, HNF4a, CK18 or ALB; Or may be oil red O staining, expressing any one of the adipocyte marker of Pparc2, C / ebpa, aP2 or Fabp4.
  • the differentiated cells when the exosome-containing extracellular vesicles contain pluripotent markers, the differentiated cells can be reprogrammed into pluripotent cells when cultured with differentiated cells.
  • cultured with the differentiated cells can be reprogrammed to any differentiated cells with different phenotypes.
  • the exosome-containing extracellular vesicles when they contain differentiation markers, they can be reprogrammed to any differentiated cells when cultured with undifferentiated cells.
  • pluripotency markers in extracellular vesicles (EVs) stained with CD63, an exosome marker recovered during es / ENTER induction, was confirmed, and in normal human somatic cells treated with the EVs After 3 days of culture, pluripotent markers Oct4, Sox2 and Nanog were expressed to confirm reprogramming of the cells.
  • neuronal stem cells such as Pax6 was detected in extracellular vesicles (EVs) stained with CD63, an exosome marker recovered during n / ENTER induction, and cultured in normal human somatic cells treated with the EVs after 3 days.
  • EVs extracellular vesicles
  • Sox1, Sox2, Pax6, Nestin expression was confirmed.
  • EVs extracellular vesicles
  • CD63 an exosome marker recovered from m / ENTER induction
  • CD63 an exosome marker recovered from h / ENTER induction
  • the physically stimulated differentiated or undifferentiated cells secrete extracellular vesicles containing the reprogramming factor, and treated them to differentiated or undifferentiated cells for 1 to 20 days through suspension culture or adherent culture.
  • Culture can be reprogrammed to any pluripotent, or differentiated, cell.
  • Cells that can be reprogrammed through the reprogramming method of the cells of the present invention may be pluripotent cells or differentiated cells of the kind described above, and the substrate is omitted to avoid overlapping substrates.
  • This example demonstrates the environmental influx into cells by physical stimulation.
  • the cells were prepared by adding 10% FBS (Gibco) and 1% penicillin / streptomycin (Gibco) to primary HDF cells purchased from invitrogen. Cultured in DMEM, sonication of the culture solution was performed at 5W / cm 2 for 10 minutes, and cell treatment was carried out for 1 ⁇ 10 6 cells at 1W / cm 2 for 5 seconds, followed by 2 ⁇ in a 35 mm culture dish with the treated solution. 10 5 cells were cultured.
  • Untreated HDF cells for SEM image analysis and cells cultured for 2 hours immediately after treatment as described above and in a 37 ° C., 5% CO 2 incubator for 4 hours at 4 ° C. were then fixed with 0.1% tannic acid. 1 hour in solution, 2 hours in 1% osmium tetroxide solution, dehydrated with acetone at different concentrations, dried cells with liquid CO 2, and immobilized on a gold-palladium-coated surface for electron microscopy (1555 VP-FESEM). Carl Zeiss) was observed for the cells.
  • live / dead image analysis cells were treated with live / dead viability / cytotoxicity assay kit (Molecular Probes, Eugene, OR) immediately after sonication with untreated HDF and incubated for 2 hours in a 37 ° C, 5% CO 2 incubator. , USA).
  • the staining process was performed by adding 2 ⁇ M live cell staining dye and 4 ⁇ M ethidium homodimer-1 (EthD-1, dead cell staining dye) to the cell culture and then in a 30 ° C. in a 5% CO 2 incubator.
  • the cell membrane is damaged by ultrasound to form a hole for entering the external environment, such damage was recovered after 2 hours.
  • the cells were stained using a Live / dead kit used to analyze cell death in order to confirm the recovery of damaged cells and cells after ultrasonic stimulation.
  • usMC u ltra s ound- exposed m edium and c ells
  • usMC-S refers to a suspension culture usMC
  • intracellular receptors may be used for Expression of the ATP receptor, which was known to open, was analyzed by RT-PCR.
  • ATP was measured using Adenosine 5'-triphosphate (ATP) Bioluminescent Assay Kit.
  • Cells were treated directly with untreated cells and with ultrasound (1 W / cm 2 , 5 sec) and then exposed to sonicated medium (5 W / cm 2 , 10 min) (usMC-S) in 96-well plates. After dispensing 3 ⁇ 10 4 cells per well, 100 ⁇ l of ATP assay mix and ATP standard were dispensed per well, followed by 3 minute incubation at room temperature, and the luminescence intensity was measured by a Varioskan Flash Fluorescent Microplate Fluorometer (Thermo Fisher Scientific).
  • ATP Adenosine 5'-triphosphate
  • RT-PCR for ATP receptor expression analysis extracted RNA using RNeasy plus mini kit (Qiagen, Hilden, Germany) and synthesized cDNA with Super Scrip II kit (Invitrogen, Carlsbad CA, USA). PCR was performed by mixing cDNA and primers in a PCR premix (Bioneer, Daejeon, Korea), using a thermal cycler dice PCR machine (TP600, TAKARA, Otsu, Japan). -65 ° C.) was performed at 30 cycles and 72 ° C. for 1 minute under 35 cycles, and 72 ° C. 15 minute conditions.
  • intracellular calcium influx increased up to 60 seconds after ultrasound stimulation, and intracellular ATP concentration increased maximally at 60 minutes, and expression of ATP receptor in the cell membrane was also increased at 1 and 4 hours. Appeared. This was confirmed by the increase in the concentration of calcium that the foreign material is introduced into the early cells by the ultrasonic stimulation, ATP is generated by the ultrasound, it can be seen that the ATP receptor reacts to open the cell membrane passages to allow foreign material inflow.
  • the external material was defined as QD605 and it was confirmed whether QD605 was introduced into the cell by ultrasound.
  • QD605 is a fluorescent nanomaterial that is known to be less penetrable in living cells. Thus, QD605 confirmed the influx of foreign substances into cells by ultrasonic waves using QD605.
  • HDF was treated with 100 pmol of QD605 after ultrasonic stimulation as in Example 1, and after 24 hours, the presence of QD605 in single cells and spheroids was confirmed.
  • the exosomes in the culture medium discharged from the sonicated cells may contain genetic material, which is one of the substances secreted from the reprogrammed cells. It has the potential to contain genetic material that plays an important role in programming, so that the exosomes in cultured culture medium after sonication are recovered at the time of medium exchange, and the RNA of the exosomes in the culture medium is changed to Amicon Ultra-0.5 kit (Millipore).
  • cDNA synthesis was performed using a Super Scrip II kit (Invitrogen, Carlsbad CA, USA). PCR was performed by mixing cDNA and primers in a PCR premix (Bioneer, Daejeon, Korea) and then denatured at 95 ° C for 5 minutes using a thermal cycler dice PCR machine (TP600, TAKARA, Otsu, Japan), 30 seconds at 95 ° C, gradient 30 RT-PCR analysis was performed at 35 cycles of 1 second at 72 ° C. and 15 minutes at 72 ° C. (Table 2).
  • usMC refers to the case of ultrasonic treatment for each cell and culture medium
  • usMC-A refers to the attachment culture usMC
  • PCR primer list of pluripotency marker gene Genetic code Primer sequence (5'-3 ') Annealing Temperature (°C) Forward direction Reverse Oct4 (POU5F1) GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAAC 60 Sox2 GGGAAATGGGAGGGGTGCAAAAGAGG TTGCGTGAGTGTGGATGGGATTGGTG 63 Nanog CAGCCCCGATTCTTCCACCAGTCCC CGGAAGATTCCCAGTCGGGTTCACC 64 Utf1 CCGTCGCTGAACACCGCCCTGCTG CGCGCTGCCCAGAATGAAGCCCAC 65 Lin28a AGCGCAGATCAAAAGGAGACA CCTCTCGAAAGTAGGTTGGCT 50 Rex1 CAGATCCTAAACAGCTCGCAGAAT GCGTACGCAAATTAAAGTCCAGA 52 Fgf4 CTACAACGCCTACGAGTCCTACA GTTGCACCAGAAAAGTCAGAGTTG 55 Foxd3 AAGCTGGTCGAGCAAACT
  • QD605 was added to capture the image of living cells. As shown in FIG. 6A, the QD605 of the cells into which QD605 was introduced was separated with a part of the cytoplasm and moved to another cell as shown in FIG. 6A. I could confirm it.
  • those suspected to be part of the cytoplasm that appeared around the cells were stained on CD63 and pluripotent, such as Oct4 and Nanog, in extracellular vesicles (EVs) stained with the exosome marker CD63 upon es / ENTER induction.
  • EVs extracellular vesicles
  • expression of sex cell markers was confirmed, and expression of neural stem cells such as Pax6 was detected in extracellular vesicles (EVs) stained with CD63, an exosome marker upon n / ENTER induction, and exosome marker upon m / ENTER induction.
  • the exosome is released from the cytoplasm, it contains a genetic material and proteins, it is hypothesized that the transfer to the peripheral cells can induce changes in the peripheral cells.
  • the exosomes were extracted and stained with exosomes with CD63 (staining to distinguish them from newly-injected exosomes because the exosomes were present in the cells in culture) and then poly (A) in the exosomes.
  • poly (A) 27 -Cy5.5 was thought to be delivered by the exosome.
  • exosomes stained with CD63 was found in the cells, it was confirmed that cy5.5 is expressed like CD63. This means that the gene (poly-A) injected by the exosomes was delivered.
  • exosomes secreted from cells cultured in human ES medium can also alter the properties of surrounding cells or untreated cells.
  • Exosome was extracted from the culture medium of 2 days of sonicated cells cultured in ES medium environment and cultured for 6 days by mixing exosome extract in the process of culturing cells not treated with human ES medium and fibroblast culture medium DMEM. It was.
  • human fibroblasts were collected into 1 ⁇ 10 6 cells with 1 mL of differentiation-inducing medium as shown in FIG. 8, followed by ultrasound for 5 seconds at 1 W / cm 2 intensity and then 2 ⁇ 10 in a 35 mm culture dish or 6-well plate. After dispensing at 5 / Well, ultrasonic waves were incubated in 2mL differentiation induction medium treated with 10W / cm 2 intensity for 10 minutes.
  • spheroids were formed between about 2 days and 6 days after incubation.
  • RNA of the cell by extracting the RNA of the cell, the expression of the adipocyte marker genes, Pparc2, C / ebpa, aP2, and Fabp4 using RT-PCR was found to increase the expression after differentiation induction (Fig. 9b).
  • neural stem cells neural progenitor cells
  • neural precursor cell markers Oct4
  • Expression of Sox2, Pax6, Nestin was confirmed by staining by immunocytochemical method.
  • Figure 10a is the appearance of differentiation-induced cells
  • Figure 10b shows the neural precursor cell markers in the spheroid, when the differentiation-induced expression of Oct4 is reduced, it was confirmed that the expression of Sox2, Pax6 and Nestin is high.
  • Figure 10c shows the expression pattern in the attached cells, showing the same expression pattern as above.
  • the markers of neural progenitor cells or neural stem cells are Sox2, Pax6, and Nestin.
  • Oct4 is a pluripotent marker, and in the case of adult stem cells or progenitor cells, expression of Oct4 is decreased.
  • composition of differentiation induction medium ingredient content Neuroprogenitor Cell Differentiation Induction Medium DMEM F12 bFGF 20ng / mL EGF 20ng / mL B27 supplement ( ⁇ 50) 1/50 N2 supplement ( ⁇ 100) 1/100
  • FIG. 11 shows Pax6 / Nestin expression patterns in differentiation-induced cells for 7 days after differentiation induction by flow cytometry. As a result, Pax6 and Nestin expressions were expressed more than 50% on day 1 after treatment. At 3 days, the expression of Pax6 and Nestin was the highest.
  • FIG. 12 is a result of confirming the expression of ki67 to confirm the proliferation in the cells expressing neuronal progenitor markers (Pax6 / nestin) among the cells 3 days after induction of differentiation, the cells indicated by the white arrow, the cells expressing Nestin Ki67 expression at was confirmed. These results indicate that differentiation-induced cells have proliferative capacity.
  • the arrow indicates that the cells stained with Nestin are proliferating.
  • FIG. 13 is an experimental result confirming self-renewal of differentiation-induced cells (n / ENTER cells), and FIG. 13A confirms that cells proliferated from one spheroid express Pax6 and nestin in video. By doing so, the neuroprogenitor cell properties were propagated to the proliferated cells.
  • neuroprogenitor markers Oct4, Sox2, Pax6, Nestin
  • the spheroid and attached cells were fixed in 4% paraformaldehyde for 10 minutes and soaked in PBS containing 0.1% Triton X-100 for 40 minutes.
  • Block for 1 hour with PBS containing 5% (v / v) goat serum and Oct4 (1: 200), Sox2 (1: 200), Pax6 (1; 200), Nestin (1: 200, Cell Signaling Technology) and others were stained overnight at 4 °C.
  • FIG. 15C shows the expression patterns of Pax6 / Nestin in cells differentiated for three days after induction of differentiation through flow cytometry. At least one day after treatment, expression of Pax6 and Nestin was expressed at 70% or higher. Pax6, Nestin expression was the highest.
  • FIG. 16 shows the results of staining the expression of neuroprogenitor markers (Sox2, Pax6, Nestin) by immunocytochemical method in 20 days after induction of differentiation.
  • the top and middle photographs show high expression of Sox2, Pax6 and Nestin.
  • the bottom photo shows the expression of oligodendrocyte markers, which also showed the same expression pattern.
  • HeLa cells and Hep3B cells were collected into 1 ⁇ 10 6 cells with 1 mL of differentiation-inducing medium, and then treated with ultrasonic waves at 1 W / cm 2 intensity for 5 seconds, followed by 2 ⁇ in a 35 mm Laminin coated culture dish. After dispensing at 10 5 , ultrasound was incubated in 2 mL of hepatocyte differentiation medium treated with 10 W / cm 2 intensity for 10 minutes. Differentiation-induced cells were named h / ENTER using hepatocyte differentiation medium.
  • Figure 18 induced the differentiation of hepatocyte differentiation medium and ultrasound treated HDF into hepatocytes (h / ENTER). After 20 days of induction of differentiation of HDF, the cell appearance was changed. Hepatocellular markers (AFP, HNF4a, CK18, ALB) were confirmed by immunocytochemistry 20 days after induction of HDF differentiation. Expression was confirmed.
  • HeLa h / ENTER differentiation of hepatocyte differentiation induction medium and sonicated HeLa cells into hepatocytes.
  • HeLa cells showed changes in appearance after 19 days of induction of differentiation of HeLa cells, and hepatocyte markers (ALB, HNF4a, CYP3A4F, CYP3A7F, and AIAT) through qPCR 20 days after HeLa cell differentiation (HeLa h / ENTER). , SOX7, GATA6) was confirmed.
  • hepatocyte markers HNF4a, CK18, and ALB
  • Hep3B h / ENTER cells differentiation of hepatocyte differentiation-inducing medium and sonicated Hep3B cells into hepatocytes.
  • Hep3B h / ENTER cells The expression of hepatocyte markers (HNF4a, CK18, ALB) was confirmed by immunocytochemistry after 19 days of differentiation of Hep3B cells and 3 weeks after Hep3B cell differentiation.
  • Hep3B h / ENTER hepatocyte markers in Hep3B cells
  • Figure 21a shows the change in cell morphology according to the culture time
  • Figure 21b shows the difference in Oct4 expression according to the culture time
  • spheroids were formed on day 1 after induction into differentiation into human ES medium
  • pluripotency marker Oct4 Expression increased with incubation time.
  • the spheroids formed by incubating for 6 days were recovered and pluripotent marker expression was confirmed through RT-PCR and ICC.
  • expression of the pluripotent marker gene (a) and protein (b) was confirmed in es / ENTER cells.
  • FIG. 24 shows the expression (a) and protein expression (b) of the three germline marker genes in es / ENTER cells
  • Figure 25 shows the change in Oct4 and three germline marker gene expression in es / ENTER cells over time incubation
  • FIG. 26 shows the results of triploid marker DNA methylation analysis (b) of es / ENTER cells using bisulfite sequencing and expression of triploid marker proteins in adherent cultured es / ENTER cells.
  • PCR primer list of differentiation marker genes Genetic code Primer sequence (5-'3 ') Annealing Temperature (°C) Forward direction Reverse Endoderm Afp AGCAGCTTGGTGGTGGATGA CCTGAGCTTGGCACAGATCC 63 Foxa2 TTCAGGCCCGGCTAACTCTG CCTTGCGTCTCTGCAACACC 58 Gata6 TGTGCGTTCATGGAGAAGATCA TTTGATAAGAGACCTCATGAACCGACT 60 Ectoderm Nestin GAAACAGCCATAGAGGGCAAA TGGTTTTCCAGAGTCTTCAGTGA 50 Pax6 ACCCATTATCCAGATGTGTTTGCCCGAG ATGGTGAAGCTGGGCATAGGCGGCAG 58 Mesoderm, Cardiomyocyte Acta2 (a-SMA) CTATGAGGGCTATGCCTTGCC GCTCAGCAGTAGTAACGAAGGA 50 Mesoderm Brachyury (T) GCCCTCTCCCCTCCACGCACAG CGGCCGTTGCTCACAGACCACA
  • FIG. 27 shows the results of in vitro differentiation of es / ENTER cells into neurons (a), cardiomyocytes (b) and hepatocytes (c). Induction of es / ENTER cells into cells differentiated from each of the three germ layers. Induction of differentiation for 4 weeks using, induced differentiation into neurons (ectoderm), cardiomyocytes (mesoderm), hepatocytes (endoderm), and expressed differentiation markers.
  • Figure 28 shows the expression of differentiation markers of neurons (a), cardiomyocytes (b) and hepatocytes (c) in HDF, the differentiation marker was not expressed in HDF.
  • 29 shows the results of RT-PCR analysis showing the expression of differentiation marker genes of neurons (a), cardiomyocytes (b) and hepatocytes (c) of differentiation-induced es / ENTER cells. Expression of differentiation marker genes was increased. These results demonstrate the multiplicity of es / ENTER.
  • es / ENTER cells were transplanted into rat brains to confirm in vivo differentiation.
  • 4 weeks after es / ENTER cells were transplanted into the brains of 5 week old SCID mice, the cells transplanted using HNA were identified.
  • MEFs mouse fetal fibroblasts
  • hES medium which is the same as HDF.
  • the MEF used in this experiment was performed with fetal fibroblasts from mice transfected with the Oct4 promoter with OG2-MEF. These cells were used to observe the expression of Oct4 as the cells expressing GFP fluorescence when Oct4 is expressed.
  • the cells induced through sonication increased the number and size of spheroids and GFP expression over time.
  • pluripotency was analyzed in the mouse es / ENTER cells.
  • FIG. 36 shows in vitro differentiation of mouse es / ENTER into neurons (a) and cardiomyocytes (b), and FIG. 36c shows karyotype analysis by chromosome G band analysis of mouse es / ENTER. Karyotyping was performed using GTG banding chromosome analysis (GenDix, Inc. Seoul, Korea).
  • neuronal and cardiomyocyte differentiation markers were identified in mouse es / ENTER cells to confirm that they were differentiated.
  • L132 lung epithelial cell
  • MSC mesenchymal stem cell
  • Skin fibroblast patient-derived dermal fibroblast
  • FIG. 37 shows the differentiation of L132 cells into L132 es / ENTER cells by human ES culture medium and ultrasonic stimulation.
  • FIG. 37A shows the change in cell morphology according to culture time
  • FIGS. 37B and 37C show the Pluripotent (b) and trioderm (c) properties are shown.
  • FIG. 38 shows the differentiation of MSCs into MSC es / ENTER cells by human ES culture medium and ultrasonic stimulation.
  • FIG. 38A shows the change in cell morphology according to the culture time. The viability (b) and triploid (c) properties are shown.
  • FIG. 39 shows the differentiation of human skin fibroblasts into SF es / ENTER cells by ultrasonic stimulation with human ES culture medium.
  • FIG. 39A shows the change in cell morphology according to culture time
  • FIGS. 39B and 39C show SF es / ENTER.
  • the pluripotent (b) and trioderm (c) properties of the cells are shown.
  • Heat shock and laser were used as physical stimuli to induce differentiation in the same medium environment called human ES culture.
  • FIGS. 40A and 40C show the pluripotency (b) and triploid (c) properties of es / ENTER cells.
  • FIG. 41A shows differentiation induced HDF spheroids
  • Figures 41B and 41C show the pluripotency (b) and triploid (c) properties of es / ENTER cells.
  • the culture solution was recovered and washed twice with D-PBS, and then es / ENTER in embryonic stem cell medium or neural stem cell differentiation medium (Gibco), respectively. And 10 ⁇ l / mL (v / v) of concentrated EVs recovered from the culture medium on day 1 of n / ENTER were added and then mixed with the washed HDF and incubated for 3 days.
  • the EVs obtained after daily culturing of the cells subjected to physical stimulation as in Example 12 were concentrated and labeled with EVs using Did dye, and the EVs were delivered to normal somatic cells. In the delivered cells, expression of each pluripotent marker Oct4 and neural stem cell marker Pax6 was confirmed.
  • Example 12 50 ⁇ l of EVs obtained in Example 12 was diluted with 450 ⁇ l of D-PBS, and 2.5 ⁇ l of Vybrant DiD cell-labelling solution (molecular probe, excitation / emission, 644/667 nm) was added thereto. And stained exosomes for 30 minutes at 37 °C. After staining, centrifuge again at 14000 rpm for 20 minutes with Amicon Ultra centrifugal filter (Millipore) to concentrate Did stained EVs and repeat diluting with D-PBS twice. 3mL HDF broth (DMEM with 5% FBS) (Gibco culture) and then incubated for 24 hours at 37 °C, 5% CO 2 .
  • Vybrant DiD cell-labelling solution moleukin-labelling solution
  • HDF cultured for 24 hours was fixed for 10 minutes with 4% paraformaldehyde and permeated for 10 minutes with 0.2% triton X100 in PBS buffer. After blocking for 1 hour with 3% BSA in PBS buffer and then stained overnight at 4 °C with rabbit-anti Oct4 (1: 250, abcam) and Pax6 (1: 200, abcam), the primary antibody and then secondary antibody Anti-rabbit conjugated Alexa-488 (1: 1000, Thermo, excitation / emission, 495/519 nm) was stained for 1 hour.
  • EVs secreted from cells after physical stimulation included genes and proteins of various pluripotency markers according to the cell medium environment, and these factors could be delivered to adjacent cells by EVs. It was confirmed that there is.
  • the results suggest that EVs secreted from physically stimulated cells in various media environments are likely to induce reprogramming of normal somatic cells.
  • Example 13 the EVs secreted from the cells stimulated in various media environments may induce reprogramming of normal somatic cells, and thus, to verify this, EVs cultured in human fibroblast culture medium DMEM medium and human embryonic stem cells or iPS cells.
  • the experiment was carried out using hESC medium which is a culture medium of.
  • the control group was incubated for 3 days in each medium without added EVs, and the treated group was incubated for 3 days by adding 10 ⁇ l / mL (v / v) of EVs to each medium.
  • the cultured cells were rabbit-anti-Oct4 (1: 250, abcam) as the primary antibody, anti-rabbit conjugated Alexa-488 (1: 1000, Thermo excitation / emission, 495/519 nm), mounted with a mounting solution containing DAPI, and analyzed by confocal laser microscopy.
  • hESC represents human ESC medium
  • DMEM represents fibroblast culture medium
  • EVs represent EVs recovered upon es / ENTER induction.
  • Oct4 expression was not observed in the control group, but Oct4 expression and cells formed spheroids were observed in the treated group.
  • the results indicate that cell reprogramming was induced by EVs and not by the culture medium.
  • the morphology of the cells was changed according to the incubation time, and spheroid formation was observed on the third day.
  • the amount of EVs was added at different amounts and treated in HDF and incubated for 6 days.
  • the EVs recovered during es / ENTER induction were used, cells expressing the pluripotent marker Oct4 were analyzed by flow cytometry.
  • the EVs recovered during es / ENTER induction were added at 37 ° C. and 5% CO 2 conditions at concentrations of 0, 5, 12.5, 25, 50 and 100 ⁇ l / mL (v / v), respectively. Incubated daily.
  • the cultured cells were rabbit-anti-Oct4 (1: 250, abcam) as the primary antibody, anti-rabbit conjugated Alexa-488 (1: 1000, Thermo excitation / emission, 495/519 nm) and analyzed using BD AccuriTM C6 Flow cytometry (BD biosciences).
  • Oct4 expression was observed in the largest 84.6% of cells when treated with 12.5 ⁇ l / mL (v / v) of EVs.
  • qPCR analysis was performed by using Trizol (Takara) to recover the total RNA in cells cultured for 3 days and synthesized cDNA with the Superscrip 2 kit (Invitrogen). PCR analysis was performed using a real time PCR instrument (ab step one plus, AB) for the pluripotency markers Oct4, Sox2 and Nanog.
  • ICC analysis showed the expression of pluripotent markers Oct4, Sox2 and Nanog in human fibroblast nuclei, and qPCR analysis of gene expression by real time PCR showed that Oct4, Sox2 and Nanog genes were treated with EVs. It was overexpressed about 50 times compared to normal fibroblasts.
  • Example 18 Neural stem cell marker expression confirmation experiment in 3 days cultured HDF treated with EVs recovered when n / ENTER induction
  • Anti-Nestin (1: 250, Thermo Scientific), anti-rabbit conjugated Alexa-488 (1: 1000, Thermo excitation / emission, 495/519 nm) and anti-mouse conjugated Alexa-594 with secondary antibody (1: 1000, Thermo, alexa 488 excitation / emission, 495/519 nm; alexa 594 excitation / emission, 590/617 nm), mounted with a mounting solution containing DAPI, and then imaged using a confocal laser microscope Was analyzed.
  • qPCR analysis was performed by using Trizol (Takara) to recover the total RNA in cells cultured for 3 days and synthesized cDNA with the Superscrip 2 kit (Invitrogen). PCR analysis was carried out using a real time PCR device (ab step one plus, AB) for the neural stem cell markers Sox1, Sox2, Pax6 and Nestin.
  • ICC analysis showed expression of the neural stem cell markers Sox1, Sox2 and Pax6 in the human fibroblast nucleus and Nestin expression in the cytoplasm.
  • Sox1, Sox2, Pax6 and Nestin genes were overexpressed about 200 times compared to normal fibroblasts without EVs treatment.
  • the present invention can be used in the field of cell therapy.

Abstract

본 발명은 물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법에 관한 것으로, 보다 상세하게는 분화된 세포로의 역분화 유도인자 및 화학물질의 도입 없이 초음파, 레이저 또는 열처리 등 환경유입을 촉진할 수 있는 물리적 자극을 분화 또는 미분화 세포에 제공하여, 외부환경의 유입만으로 세포를 다능성 세포 또는 분화 또는 미분화 세포와 표현형이 다른 임의의 분화 세포로 리프로그래밍할 수 있으며, 이러한 유도는 생산 과정이 간단하고 효율적이므로 자가 세포치료 가능성을 높여줄 수 있는 효과가 있다.

Description

물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법
본 발명은 초음파, 레이저 또는 열 처리 등의 물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법에 관한 것이다.
본 발명을 지원한 국가연구개발사업은 보건복지부 및 한국보건산업진흥원 주관의 첨단의료기술개발사업으로서, 과제고유번호 "HI14C3297", 연구과제명 "허혈성 뇌손상 모델에서 마이크로 RNA 추적 시스템을 이용한 생체 내 줄기세포 분포 및 신경분화 모니터링법 개발"이며, 주관기관인 가톨릭관동대학교 산학협력단이 지원하였다.
또한, 본 발명을 지원한 국가연구개발사업은 미래창조과학부 및 한국연구재단 주관의 중견연구자지원사업으로서, 과제고유번호 "2013R1A2A2A01068140", 연구과제명 "마이크로 RNA 기반 줄기세포 분화 추적 방사선 생체분자영상법 개발"이며, 주관기관인 가톨릭관동대학교 산학협력단이 지원하였다.
체세포를 다른 종류의 세포, 전구세포 및 줄기세포 등으로 리프로그래밍하는 방법은 세포 치료, 질환 모델 및 이식에서 임상적으로 중요한 기술이다. 이러한 기술들은 현재 몇몇 다능성 유전자 및 다양한 분화 특이적 발현 유전자 등을 표적으로 하는 분자 및 화학 방법들을 통해 시도되었다. 그러나 기존의 방법은 안정성과 효율성에 있어서 지적을 받고 있으며, 과정이 복잡한 단점을 가지고 있다.
세포는 다양한 환경에 노출되어 있으며, 이러한 환경은 세포가 세대를 거쳐 감에 따라 짧거나 혹은 긴 시간 동안에 세포의 유전자 발현에 영향을 미치며, 환경 변화에 의한 스트레스로 인해 세포의 유전자 발현 프로그램이 조절된다. 세포 배양 환경에서 배지 성분은 다양한 물질과 이온을 포함하고 있으며, 이러한 환경의 세포내 유입은 세포 변화를 촉진시킬 수 있는 획기적인 방법이 될 수 있다. 그러나 세포는 인지질로 구성된 세포막에 의해 세포 배지의 다양한 성분들 중에 극성 정도 및 크기의 다양성 때문에 세포 전달 및 유입이 잘 이루어지지 못 하고 있다. 최근에 초음파에 의해 발생된 마이크로버블과 공동현상(cavitation) 효과로 인한 외부 환경의 세포내 유입 가능성이 보고되었으며, 초음파 자극이 세포 발달에 긍정적인 효과를 미친다는 보고가 있다. 또한, 초음파로 인해 ATP가 유발되며 이러한 ATP가 세포막의 수용체와 반응하여 물질 수송을 유발한다는 보고도 있다.
이러한 측면에서, 본 발명자들은 초음파와 같은 물리적 자극을 이용하여 체세포 막에 일시적인 손상을 줌과 동시에 초음파로 인한 배지의 공동현상 효과를 이용하여 다양한 물질들을 세포 내로 전달시키는 방법을 고안하여 물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법, 일명 "Physical stimulation-mediated permeation of Environmental transition guided cellular reprogramming, ENTER 세포"를 개발함으로써 본 발명을 완성하였다.
본 발명의 목적은 환경유입을 촉진할 수 있는 물리적 자극을 통해 분화된 세포를 리프로그래밍하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명은 분화 또는 미분화 세포 및 배양 배지의 혼합물에 환경유입(environmental influx)을 촉진할 수 있는 물리적 자극을 제공하고,
상기 물리적 자극을 제공받은 혼합물을 일정 시간 배양하여 리프로그래밍된 세포를 수득하는 것을 포함하는, 세포의 리프로그래밍 방법을 제공한다.
본 발명은 또한 분화 또는 미분화 세포 및 배양 배지의 혼합물에 환경유입(environmental influx)을 촉진할 수 있는 물리적 자극을 제공하고,
상기 물리적 자극을 제공받은 혼합물을 1일 내지 6일 동안 배양하고,
상기의 배양물에서 분리한 엑소좀 함유 세포 밖 소포체(extracellular vesicles)와 분화 또는 미분화 세포를 혼합하여 일정 시간 동안 배양하여 리프로그래밍된 세포를 수득하는 것을 포함하는, 세포의 리프로그래밍 방법을 제공한다.
본 발명은 분화된 세포로의 역분화 유도인자 및 화학물질의 도입 없이 초음파, 레이저 또는 열처리 등 환경유입을 촉진할 수 있는 물리적 자극을 분화된 세포에 제공하여, 외부환경의 유입만으로 세포를 다능성 세포 또는 분화된 세포와 표현형이 다른 임의의 분화 세포로 리프로그래밍할 수 있으며, 이러한 유도는 생산 과정이 간단하고 효율적이므로 자가 세포치료 가능성을 높여줄 수 있는 효과가 있다.
도 1은 본 발명에 따른 다양한 ENTER(Environmental transition guided cellular reprogramming) 세포로의 리프로그래밍 방법을 도시한 모식도이다.
도 2a-b는 초음파 자극에 의한 세포막 손상 및 회복을 보여주는 결과로, 도 2a는 SEM으로 촬영된 세포 표면 이미지이고 도 2b는 live/dead kit 염색 이미지이다.
도 3a-c는 세포 내 Ca 유입 분석(a), ATP 반응 분석(b) 및 ATP 수용체 유전자 발현에 대한 RT-PCR 분석 결과(c)이다.
도 4a-c는 QD605을 이용하여 초음파 자극에 의한 세포 내 외부물질 유입 가능성을 보여주는 결과로, 도 4a는 usMC-S(ultrasound-exposed medium and cells) 스페로이드와 단일세포에서 QD605 유입 분석 결과이고, 도 4b 및 4c는 각각의 환경 조건별 usMC-S 스페로이드(b)와 단일세포(c) 내 QD605 유입 분석 및 전사 인자 발현 결과를 나타낸 것이다.
도 5는 초음파 처리된 배양액 내 엑소좀의 RNA를 RT-PCR 분석한 결과이다.
도 6a-c는 엑소좀에 의한 물질 전달을 보여주는 결과로, 도 6a는 엑소좀에 의해 QD605가 다른 세포로 이동되는 과정을 캡쳐한 이미지이고, 도 6b는 엑소좀 내 단백질 마커의 발현을 보여주며, 도 6c는 엑소좀에 의한 poly(A)27-Cy5.5 전달 실험 결과를 나타낸 것이다.
도 7a-b는 초음파 처리된 세포의 배양액 내 엑소좀과 초음파 처리되지 않은 세포의 공동배양에 따른 세포의 변화를 나타낸 것으로, 도 7a는 배양시간에 따른 세포 형태의 변화이고, 도 7b는 엑소좀과 6일간 배양된 세포내 Oct4의 발현을 보여주는 결과이다.
도 8은 본 발명에 따른 인간 진피 섬유아세포의 직접 분화 방법을 도시한 것이다.
도 9a-b는 지방세포 분화유도배지에서 초음파 처리된 인간 진피 섬유아세포의 지방세포로의 분화 결과를 나타낸 것으로, 도 9a는 분화 유도 후 20일째 세포의 변화와 지방세포의 oil red O 염색 결과이고, 도 9b는 분화 유도된 세포의 지방세포 마커 유전자 발현에 대한 RT-PCR 분석 결과이다.
도 10a-c는 신경줄기세포 분화유도배지와 초음파 처리된 인간 진피 섬유아세포의 신경전구세포로의 분화 결과를 나타낸 것으로, 도 10a는 분화 유도 후 3일째 세포의 변화, 도 10b는 분화 유도된 신경전구세포 마커 발현, 도 10c는 부착된 세포에서 신경전구세포 마커 발현을 분석한 결과이다.
도 11은 신경전구세포로 분화 유도된 세포(n/ENTER cells)에서 Pax6 및 Nestin의 발현을 분석한 플로우 사이토메트리 분석 결과이다.
도 12는 n/ENTER 세포에서의 증식 마커인 Ki67 발현을 나타낸 것이다.
도 13a는 n/ENTER 세포의 단일 스피어에서 세포가 증식되는 과정을, 도 13b는 증식된 세포에서의 신경전구세포의 속성 유지 결과를 보여준다.
도 14a-b는 n/ENTER 세포를 쥐의 뇌에 이식한 후 분화를 보여주는 결과로, 도 14a는 이식된 세포(HNA 염색된 세포)에서의 성상세포 마커(Gfap)의 발현, 도 14b는 이식 후 분화된 세포에서 시냅신(Syn1)의 분비를 보여준다.
도 15a-c는 신경줄기세포 분화유도배지와 초음파 자극에 의한 MEF의 신경전구세포로의 분화를 보여주는 결과로, 도 15a는 세포 형태 변화, 도 15b는 스피어의 신경전구세포 마커의 발현, 도 15c는 플로우 사이토메트리를 이용한 신경전구세포 마커의 발현 분석 결과를 나타낸다.
도 16은 MEF에서 분화 유도된 신경전구세포(mouse n/ENTER cells)의 분화 마커 발현 분석 결과이다.
도 17은 간세포로의 직접 분화를 보여주는 도식도이다.
도 18a-b는 간세포 분화유도배지와 초음파 처리된 HDF의 간세포로의 분화 결과로, 도 18a는 세포 형태 변화, 도 18b는 간세포 마커의 발현을 보여준다.
[규칙 제91조에 의한 정정 12.10.2016] 
도 19a-c는 간세포 분화유도배지와 초음파 처리된 HeLa 세포의 간세포(HeLa h/ENTER)로의 분화 결과로, 도 19a는 세포 형태 변화, 도 19b는 qPCR을 이용한 간세포 마커의 발현 결과, 도 19c는 면역세포화학법을 이용한 간세포 마커의 발현 결과를 보여준다.
도 20a-b는 간세포 분화유도배지와 초음파 처리된 Hep3B 세포의 간세포(Hep3B h/ENTER cell)로의 분화 결과로, 도 20a는 세포 형태 변화, 도 20b는 간세포 마커의 발현을 보여준다.
도 21a-b는 인간 ES 배양배지와 초음파 처리된 HDF의 es/ENTER 세포로의 분화 결과로, 도 21a는 세포 형태 변화, 도 21b는 배양시간에 따른 Oct4 발현의 변화를 보여준다.
도 22a-b는 es/ENTER 세포에서의 다능성 마커 유전자(a) 및 단백질(b)의 발현을 나타낸 것이다.
도 23a-c는 es/ENTER 세포에서의 다능성 속성 분석 결과로, 도 23a는 플로우 사이토메트리를 이용한 다능성 마커 분석 결과, 도 23b는 마이크로어레이를 이용한 다능성 유전자 발현 패턴 분석 결과, 도 23c는 바이설파이트 시퀀싱을 이용한 Oct4 및 Nanog 프로모터의 메틸화 여부 분석 결과이다.
도 24a-b는 es/ENTER 세포에서의 3배엽 마커 유전자(a) 및 단백질(b)의 발현을 나타낸 것이다.
도 25는 배양시간 별 es/ENTER 세포에서의 Oct4 및 3배엽 마커 발현의 변화를 나타낸 것이다.
도 26a-b는 부착 배양된 es/ENTER 세포에서의 3배엽 마커 단백질의 발현(a) 및 바이설파이트 시퀀싱을 이용한 es/ENTER 세포의 3배엽 마커 DNA의 메틸화 분석(b) 결과를 나타낸 것이다.
도 27a-c는 es/ENTER 세포의 신경세포(a), 심근세포(b) 및 간세포(c)로의 인 비트로 분화 결과를 나타낸 것이다.
도 28a-c는 HDF에서 신경세포(a), 심근세포(b) 및 간세포(c) 마커의 발현 여부를 분석한 결과를 나타낸 것이다.
도 29a-c는 분화 유도된 es/ENTER 세포의 신경세포(a), 심근세포(b) 및 간세포(c) 분화 마커 유전자 발현에 대한 RT-PCR 분석 결과를 나타낸 것이다.
도 30은 es/ENTER 세포의 염색체 G-밴드 분석에 의한 핵형분석 결과를 나타낸 것이다.
도 31a-b는 es/ENTER 세포의 근육 이식 및 인 비보 분화 결과로, 도 31a는 이식된 세포의 골격 근육으로의 분화 결과를, 도 31b는 이식된 세포의 Oct4 발현 및 증식(Ki67) 유무를 보여준다.
도 32a-c는 es/ENTER 세포의 쥐의 뇌로의 이식 및 인 비보 분화 결과로, 도 32a는 세포가 이식된 좌표, 도 32b는 이식된 세포의 성상세포 분화 마커(Gfap)와 신경세포 기능성 마커(시냅신, Syn1 및 Vesicular Glutamate transpoter(vGlut1))의 분비, 도 32c는 이식된 세포의 Oct4 발현과 증식(Ki67) 유무를 보여준다.
도 33a-c는 인간 ES 배양배지와 초음파 자극에 의한 MEF의 mouse es/ENTER 세포로의 분화를 보여주는 결과로, 도 33a는 배양시간에 따른 세포 형태 및 Oct4-GFP 발현의 변화, 도 33b는 배양시간에 따른 스페로이드 형성율, 도 33c는 Oct4 발현의 변화를 보여준다.
도 34a-d는 mouse es/ENTER 세포에서의 다능성 속성 분석 결과로, 도 34a는 면역세포화학법에 의한 다능성 마커 단백질의 발현, 도 34b는 RT-PCR에 의한 다능성 마커 유전자의 발현, 도 34c는 플로우 사이토메트리에 의한 다능성 마커 유전자의 발현 비율 분석 결과, 도 34d는 mouse es/ENTER 세포의 알칼라인 포스파타아제(AP) 염색 결과를 보여준다.
도 35a-c는 mouse es/ENTER 세포에서 3배엽 특성을 분석한 결과로, 도 35a는 면역세포화학법에 의한 3배엽 마커의 발현, 도 35b 및 35c는 배양시간 별 3배엽 마커 유전자(b) 및 단백질(c)의 발현 패턴의 분석 결과를 보여준다.
도 36a-c는 mouse es/ENTER 세포의 신경세포(a), 심근세포(b)로의 인 비트로 분화 결과와, mouse es/ENTER 세포의 염색체 G-밴드 분석에 의한 핵형 분석 결과(c)를 나타낸 것이다.
도 37a-c는 인간 ES 배양배지와 초음파 자극에 의한 L132 세포의 L132 es/ENTER 세포로의 분화를 보여주는 결과로, 도 37a는 배양시간에 따른 세포 형태 변화, 도 37b 및 37c는 L132 es/ENTER 세포의 다능성(b) 및 3배엽(c) 속성을 보여준다.
도 38a-c는 인간 ES 배양배지와 초음파 자극에 의한 MSC의 MSC es/ENTER 세포로의 분화를 보여주는 결과로, 도 38a는 배양시간에 따른 세포 형태 변화, 도 38b 및 38c는 MSC es/ENTER 세포의 다능성(b) 및 3배엽(c) 속성을 보여준다.
도 39a-c는 인간 ES 배양배지와 초음파 자극에 의한 인간 피부 섬유아세포의 SF es/ENTER 세포로의 분화를 보여주는 결과로, 도 39a는 배양시간에 따른 세포 형태 변화, 도 39b 및 39c는 SF es/ENTER 세포의 다능성(b) 및 3배엽(c) 속성을 보여준다.
도 40a-c는 열 처리와 hES 배지를 이용한 HDF의 es/ENTER 세포로의 분화를 보여주는 결과로, 도 40a는 분화 유도된 HDF 스페로이드, 도 40b 및 40c는 es/ENTER 세포의 다능성(b) 및 3배엽(c) 속성을 보여준다.
도 41a-c는 레이저 자극과 hES 배지를 이용한 HDF의 es/ENTER 세포로의 분화를 보여주는 결과로, 도 41a는 분화 유도된 HDF 스페로이드, 도 41b 및 41c는 es/ENTER 세포의 다능성(b) 및 3배엽(c) 속성을 보여준다.
도 42는 정상 체세포로의 세포 밖 소포체(EVs)의 전달 여부를 확인한 결과이다.
도 43은 EVs에 의한 인간 섬유아세포의 리프로그래밍 유도 여부를 확인한 결과이다.
도 44는 es/ENTER 유도 시 회수한 EVs 처리된 인간 섬유아세포의 배양시간별 세포 형태의 변화를 나타낸 것이다.
도 45는 EVs 첨가량에 따른 6일 배양된 HDF의 Oct4 발현 여부를 확인한 Flow cytometry 분석 결과이다.
도 46a-b는 es/ENTER 유도 시 회수한 EVs 처리된 3일 배양된 HDF에서 다능성 마커 단백질(a: ICC 이미지) 및 유전자(b: qPCR 분석) 발현 여부를 확인한 결과이다.
도 47a-b는 n/ENTER 유도 시 회수한 EVs 처리된 3일 배양된 HDF에서 신경줄기세포 마커 단백질(a: ICC 이미지) 및 유전자(b: qPCR 분석) 발현 여부를 확인한 결과이다.
이하, 본 발명의 구성을 구체적으로 설명한다.
본 발명은 분화 또는 미분화 세포 및 배양 배지의 혼합물에 환경유입(environmental influx)을 촉진할 수 있는 물리적 자극을 제공하고, 상기 물리적 자극을 제공받은 혼합물을 일정 시간 배양하여 리프로그래밍된 세포를 수득하는 것을 포함하는, 세포의 리프로그래밍 방법에 관한 것이다.
본 발명은 분화 또는 미분화 세포에 초음파, 레이저 또는 열처리 등 환경 유입을 촉진할 수 있는 물리적 자극을 제공하면서 목적하는 리프로그래밍된 세포를 유도할 수 있는 임의의 배지에서 분화 또는 미분화 세포를 배양하여 다능성(pluripotency) 세포; 또는 상기 분화 또는 미분화된 세포와 표현형이 상이한 임의의 분화 세포, 예컨대, 간세포, 조골세포, 지방세포, 근육세포, 신경세포, 성상세포, 각질세포, 모근세포, 췌장 베타세포 또는 심근세포 등으로 세포의 리프로그래밍을 유도할 수 있는 것을 특징으로 한다.
일 예로, 리프로그래밍된 세포로 다능성 세포를 목적으로 하는 경우 분화된 세포와 줄기세포 배양 배지를 혼합하고, 물리적 자극을 제공하여 일정 시간 배양함으로써 분화된 세포는 다능성 세포로 리프로그래밍될 수 있다.
다른 예로, 리프로그래밍된 세포로 분화된 세포와 표현형이 상이한 임의의 분화 세포를 목적으로 하는 경우, 분화된 세포와 목적하는 분화 세포의 분화유도배지를 혼합하고, 물리적 자극을 제공하여 일정 시간 동안 배양함으로써 분화된 세포는 표현형이 상이한 임의의 분화 세포로 리프로그래밍될 수 있다.
또 다른 예로, 미분화 세포, 예컨대 유도만능줄기세포 또는 배아줄기세포와 목적하는 분화 세포의 분화유도배지를 혼합하고, 물리적 자극을 제공하여 일정 시간 동안 배양함으로써 기존 기술 대비 분화율이 개선된 목적하는 분화 세포로 리프로그래밍될 수 있다.
본 발명의 세포의 리프로그래밍 방법은 분화 또는 미분화 세포에의 물리적 자극을 통해 세포 외의 환경유입에 따라 분화 또는 미분화 세포의 리프로그래밍이 유도되는 것으로 보인다. 이러한 환경유입은 물리적 자극을 제공받은 분화된 세포에서 배출되는 유전물질, 화학물질, 소분자, 엑소좀, 또는 엑소좀 함유 세포 밖 소포체(extracellular vesicles); 또는 배양 배지 성분 등의 이웃하는 분화 또는 미분화 세포로의 유입을 의미한다.
본 발명의 세포의 리프로그래밍 방법에 따르면, 분화 또는 미분화 세포로의 환경유입은 다능성 마커와 3배엽 마커를 안정적으로 발현하는 다능성 세포와 상기 분화 또는 미분화 세포와 표현형이 상이한 분화 세포로의 리프로그래밍 방향성을 결정할 수 있는 것으로 보인다.
덧붙여, 리프로그래밍 방향성은 배양 배지의 종류에 의해 결정될 수 있는 것으로 보인다.
즉, 상술한 바와 같이 분화 또는 미분화 세포에서 다능성 세포로의 리프로그래밍은 분화된 세포와 줄기세포 배양 배지의 혼합물에 물리적 자극을 제공한 경우 유도될 수 있고, 분화된 세포에서 표현형이 상이한 임의의 분화 세포로의 리프로그래밍은 분화된 세포와 임의의 분화 세포의 분화유도배지의 혼합물에 물리적 자극을 제공한 경우 유도될 수 있으며, 미분화 세포와 임의의 분화 세포의 분화유도배지의 혼합물에 물리적 자극을 제공하는 경우 임의의 분화 세포로 리프로그래밍될 수 있다.
분화 또는 미분화 세포로의 환경유입과 관련하여, 본 발명자들은 특히 물리적 자극에 의한 세포막 손상과 세포 분비 물질(엑소좀 또는 엑소좀 함유 세포 밖 소포체)을 고려하였다. 즉, 초음파, 레이저, 또는 열 처리는 에너지에 의한 온도 상승, 초음파에 의해 생성되는 마이크로버블의 진동, 액체의 흐름 생성 유도 즉, 세포막을 따라 마이크로스트림 생성을 유도하여 이러한 효과로 인해 세포막에 미세한 손상을 가하고, 구멍 생성을 유도함으로써 외부 물질의 흡수가 증가하도록 하는데, 이는 세포 내 Ca2 + 농도 변화 즉, 세포 내 Ca2 + 농도 변화 분석은 세포막에 손상이나 막의 유동성이 증가될 경우 순간적으로 세포 내(cytosol) Ca2 + 농도가 증가함을 반영하여 세포막 유동성의 증가를 확인하는 것으로, 본 발명의 일 구체 예에 따르면, 초음파 처리 직후 Ca2 + 농도가 빠르게 증가하다가 점차 감소하여 초음파를 처리하지 않는 대조군의 수준으로 감소함을 통해 세포막의 손상이 유도된 후 회복됨을 알 수 있었다. 또한, 초음파로 인한 ATP 발생 및 증가가 다양한 세포성 스트레스에 대한 반응 및 세포막내 ATP 수용체와 반응하여 엔도사이토시스를 유도하는 것으로 알려져 있다. 즉 ATP 농도와 세포 손상 및 세포내 물질 유입과의 연관성이 있고, 이를 확인하기 위해, 초음파 처리 후 세포에서의 ATP 농도를 분석한 결과, 미처리 대조군에 비해 높은 수준으로 ATP를 농도가 높게 나타났다. 아울러, ATP 의해 영향을 받는 세포막내 이온성 P2X 수용체와 대사성 P2Y 수용체 발현 역시 초음파 처리된 세포에서 대조군 대비 활성화되었다. 이와 같은 결과는 초음파로 세포내 손상뿐만 아니라 세포 외부환경의 유입 가능성을 나타낸다.
한편, 엑소좀 또는 엑소좀 함유 세포 밖 소포체는 내부에 유전정보 물질(DNA, mRNA, microRNA, protein)을 포함하고 있는 것으로 알려져 있는데, 세포막 손상을 통해 세포막 밖으로 빠져 나온 엑소좀 또는 엑소좀 함유 세포 밖 소포체가 주변 다른 세포에 다시 들어가는 과정을 통해 엑소좀 또는 엑소좀 함유 세포 밖 소포체의 내부에 존재하는 유전정보 물질이 전달될 수 있다. 따라서, 초음파 처리에 의한 자극으로 인해 세포 내 저발현되거나 발현이 억제된 상태로 유지되었던 다능성 마커들, 3배엽 마커들, 또는 분화 세포 마커들의 발현이 유도 내지 촉진됨과 동시에 세포막에 손상이 생김에 따라, 상기 발현이 유도 내지 촉진된 다능성 마커들, 3배엽 마커들, 또는 분화 세포 마커들을 포함하는 세포 내부에 존재하는 엑소좀 또는 엑소좀 함유 세포 밖 소포체가 외부로 배출되어 주변 세포에 전달되는데 주변 세포 역시 세포막이 부분적으로 손상된 상태이기 때문에 세포막 유동성이 증가되어 세포 내부로 엑소좀 또는 엑소좀 함유 세포 밖 소포체가 들어가는 효율이 정상 상태에 비해 더 높을 것으로 추정되며, 이러한 엑소좀 또는 엑소좀 함유 세포 밖 소포체 내부에 존재하는 상기 발현 유도 내지 촉진된 다능성, 발생, 분화 관련 유전정보가 전달되어 다능성 세포 또는 임의의 분화 세포가 만들어지는 것으로 생각되었다. 본 발명의 일구체예에서 다능성 세포 유도 과정 중 배양 배지를 회수하고, 배지 내 엑소좀 또는 엑소좀 함유 세포 밖 소포체를 추출하여 이들 내부에 다능성 세포 관련 다능성 마커 내지는 분화 마커들이 존재하는지 확인한 결과, 알려진 다능성 마커들, 분화 마커들이 높은 발현 정도를 보이면서 확인되어 본 발명자들의 이러한 가설을 뒷받침하는 것으로 사료된다. 또한, 이러한 초음파, 레이저, 또는 열 처리에도 핵형 기형이 없이 정상인 것으로 나타났다.
이러한 가설은 세포막 손상에 의한 엑소좀 또는 엑소좀 함유 세포 밖 소포체의 방출 유도를 통해 다능성 세포, 또는 분화 세포를 제조할 수 있음을 가능케 한다.
상기 분화된 세포로, 포유류 유래의 진피섬유아세포, 피부섬유아세포 등을 포함하는 체세포; 자궁암세포(HeLa), 간암세포(Hep3B) 등을 포함하는 암세포; 또는 폐 상피세포(L132 cell)를 포함하는 기관 내 조직세포 등을 사용할 수 있다.
본 명세서에서, 용어 "체세포"란 성체를 구성하는 세포로서 분화능 및 자가생산능이 제한된 세포를 의미한다. 일 구현예에 따르면, 상기 체세포는 포유류의 피부, 모발, 지방을 구성하는 체세포일 수 있고, 바람직하게는 포유류 유래의 섬유아세포일 수 있으나, 이에 제한되지는 않는다.
본 명세서에서, 용어 “미분화 세포”란 분화능 및 자가생산능을 가진 세포를 의미한다. 예컨대, 유도만능줄기세포, 배아줄기세포, 전구세포 등을 예로 들 수 있다.
본 명세서에서, 용어 "다능성 세포"는 물리적 자극, 엄격한 의미에서 초음파, 레이저, 자기장, 플라즈마, 발광 다이오드(light-emitting diode), 전기적 자극, 화학적 노출, 열 처리, 또는 산 처리 후 다능성을 획득한 세포를 말한다. 본 명세서에서 상기 다능성은 포괄적으로 줄기세포에서 발현되는 다능성 마커를 안정적으로 발현하는 상태를 의미한다. 아울러, 세 종류의 내배엽, 외배엽 및 중배엽의 3배엽 마커를 발현하는 상태를 의미한다. 상기 다능성 세포는 "Embryonic stem cell media-based En vironmental t ransition-guided c e llular r eprogramming(es/ENTER) 세포 사용될 수 있다.
본 발명에 따른 다능성 세포는 외부 환경에 따라 분화 유도가 잘되며, 줄기세포의 속성 대비 분화속성이 강한 전구세포(progenitor cell)의 속성이 더 강하다는 점에서 공지의 유도만능줄기세포와 차별화된 특징을 갖는다. 즉, 유도만능줄기세포와 같은 배아줄기세포를 세포 치료제로 사용하는 경우, 어느 정도 분화 과정을 거치는 준비 단계가 요구되며, 암으로 변할 수 있는 위험 요소를 내포하고, 역분화 유도인자 도입을 위해 바이러스 벡터를 사용함에 따른 안전성 문제가 대두되나, 본 발명의 다능성 세포는 유전자 변이를 위한 역분화 유도인자 또는 화학물질 등의 역분화 유도 물질을 별도로 도입하지 않고 유도되므로 다른 종류의 세포와 공동 배양을 통한 배양이 필요 없어 세포 오염(다른 세포가 섞이는 문제점) 문제점이 없고 인 비보 실험에서 암세포와 유사한 테라토마를 형성하지 않아 암 발생의 문제점이 없어 안전성이 확보되어 있다. 다시 말해, 본 발명의 다능성 세포는 유도 과정이 단순하고 짧아 자가세포를 처리하여 이식 때까지 시간을 획기적으로 단축할 수 있는 장점을 가진다.
상기 다능성 세포는 OCT3/4, SOX2, NANOG, c-MYC, KLF4, TDGF1, SSEA4, TRA-1-60, PAX6, Nestin, Brachyury, SMA, GATA4, 또는 AFP 중 어느 하나의 다능성 마커 또는 중배엽 및 내배엽으로 이루어진 3배엽 마커 유전자를 안정적으로 발현하는 것을 특징으로 한다.
본 명세서에서, 용어 "리프로그래밍(reprogramming)"은 분화능이 없는 세포 또는 일정 부분 분화능이 있는 세포 등 서로 다른 양태로 존재하는 분화된 세포로부터 최종적으로 새로운 유형의 세포 또는 새로운 유형의 분화잠재력을 갖는 상태로 복원 또는 전환될 수 있는 프로세스를 의미한다. 뿐만 아니라 분화능이 있는 세포로부터 최종적으로 새로운 유형의 세포로 전환될 수 있는 프로세스 역시 포함한다. 본 발명에 따르면, 분화된 세포는 환경유입을 촉진할 수 있는 물리적 자극을 받을 시 다능성 세포 또는 분화된 세포와 표현형이 상이한 목적하는 임의의 분화 세포로 리프로그래밍될 수 있다. 또한, 미분화 세포는 환경유입을 촉진할 수 있는 물리적 자극을 받을 시 현저히 우수한 분화율을 보이면서 임의의 분화 세포로 리프로그래밍될 수 있다.
상기 분화 세포는 예시로, PAX6, SOX1, SOX2, Nestin, MAP2, TuJ1, GFAP 또는 O4 중 어느 하나를 발현하는 신경세포("neuronal stem cell media-based ENTER, n/ENTER"라고 함); Desmin, Pax3, Actinin, SMA, GATA4 또는 NKX2-5 중 어느 하나를 발현하는 근육세포("muscle differentiation media-based ENTER, m/ENTER"라고 함); AFP, HNF1a, HNF4a, CK18 또는 ALB 중 어느 하나를 발현하는 간세포("hepatocyte differentiation media-based ENTER, h/ENTER"라고 함); 또는 Pparc2, C/ebpa, aP2 또는 Fabp4 중 어느 하나를 발현하는 지방세포("adipocyte differentiation media-based ENTER, a/ENTER"라고 함)를 포함할 수 있으나, 이에 제한되지는 않는다.
본 명세서에서, "배양 배지"는 포괄적 의미에서 인 비트로 세포 배양에 사용되는 배지로, 본 발명에서는 줄기세포 배양 배지 또는 분화유도배지를 의미하며, 상기 줄기세포 배양 배지는 더 구체적으로 배아줄기세포 배양 배지를 의미한다. 또한, "분화유도배지"는 통상의 줄기세포의 분화 세포로의 유도에 사용하는 배지로, 예를 들어, 다분화능 (multipotent)세포 분화유도배지, 간세포 분화유도배지, 골형성 분화유도배지, 지방세포 분화유도배지, 근육세포 분화유도배지, 성상세포 분화유도배지, 신경계세포 분화유도배지, 혈관내피세포 분화유도배지, 각질세포 분화유도배지, 췌장 베타세포 분화유도배지 또는 심근세포 분화유도배지 등을 사용할 수 있으나, 이에 제한되지는 않는다.
본 발명의 세포의 리프로그래밍 방법은 도 1을 참고하여 구체적으로 설명하면 다음과 같다.
우선, 배양 배지와 분화 또는 미분화 세포를 혼합하고, 상기의 혼합물에 물리적 자극을 제공한다.
분화 또는 미분화 세포를 포함하는 혼합물에 물리적 자극을 제공하기 전에 배양 배지에 물리적 자극을 제공하여 세포의 리프로그래밍 효율을 높일 수 있다.
상기 물리적 자극은 초음파, 레이저, 플라즈마, 발광 다이오드(light-emitting diode), 전기적 자극, 화학적 노출, 열 처리 또는 산 처리 중 어느 하나일 수 있다.
상기 배양 배지에 대한 초음파 처리는 출력강도 1W/cm2 내지 20W/cm2의 초음파를 1 내지 20 분, 구체적으로, 출력강도 2W/cm2 내지 10W/cm2의 초음파를 5 내지 15 분, 더 구체적으로, 출력강도 3W/cm2 내지 7W/cm2의 초음파를 7 내지 13 분 동안 동안 동안 수행하는 것일 수 있다.
배양 배지에 대한 레이저 처리는 300 내지 900 nm 파장 대역의 펄스형 레이저 빔을 1분 내지 20분, 더 구체적으로, 상기 파장 대역의 펄스형 레이저 빔을 3분 내지 10분, 보다 구체적으로, 상기 파장 대역의 펄스형 레이저 빔을 4분 내지 6분 동안 조사하는 것일 수 있다. 상기 파장 대역은 예를 들어 400 nm, 808 nm, 880 nm의 파장을 사용할 수 있다.
배양 배지에 대한 열 처리는 40 내지 50 ℃의 온도 조건에서 5분 내지 20분 동안 수행할 수 있다.
분화 또는 미분화 세포에 물리적 자극을 제공할 경우, 일정 세기로 노출시키는 것이 좋고, 이 범위를 벗어날 경우 세포 생존율이 감소할 수 있다.
따라서, 배양 배지와 분화 또는 미분화 세포의 혼합물에 대한 초음파 처리는 출력강도 0.5W/cm2 내지 3W/cm2로 1 내지 5초 동안, 더 구체적으로, 출력강도 0.7W/cm2 내지 2W/cm2로 1 내지 5초 동안, 보다 구체적으로, 출력강도 0.8W/cm2 내지 1.5W/cm2로 1 내지 5초 동안 수행하는 것일 수 있다.
배양 배지와 분화 또는 미분화 세포의 혼합물에 대한 레이저 처리는 300 내지 900 nm 파장 대역의 펄스형 레이저 빔을 1초 내지 20초, 더 구체적으로, 상기 파장 대역의 펄스형 레이저 빔을 3초 내지 10초, 보다 구체적으로, 상기 파장 대역의 펄스형 레이저 빔을 4초 내지 6초 동안 조사하는 것일 수 있다. 상기 파장 대역은 예를 들어 400 nm, 808 nm, 880 nm의 파장을 사용할 수 있다.
배양 배지와 분화 또는 미분화 세포의 혼합물에 대한 열 처리는 40 내지 50 ℃의 온도 조건에서 1분 내지 10분 동안 노출한 후 0℃ 내지 4℃의 온도 조건에서 5 내지 10초간 노출하여 수행하는 것일 수 있다.
다음으로, 물리적 자극이 제공된 혼합물을 일정 시간 동안 배양하여 리프로그래밍된 세포를 수득한다.
물리적 자극이 제공된 혼합물의 배양은 부유 배양(suspended culture) 또는 부착 배양(monolayer culture) 방식을 통해 다능성 마커 또는 분화 마커를 안정적으로 발현하는 스페로이드가 형성되는 기간, 즉, 2일 내지 10일 동안 수행하는 것일 수 있으나, 이에 특별히 제한하는 것은 아니다.
본 발명의 일 구체예에 따르면, 부유 배양은 부착 배양에 비해 더 높은 스페로이드 형성 효율을 나타낸다. 또한, 부유 배양은 부착 배양에 비해 스페로이드의 수와 크기가 더 크며, 일정한 크기 분포를 나타낸다.
본 발명의 일 구체예에 따르면, 초음파 또는 레이저 처리된 사람 피부 섬유아세포의 부유 배양 시 대략 3일째부터 다능성 마커 또는 분화 마커의 발현이 증가하거나 안정화되어 이 시기부터 리프로그래밍이 시작되는 것으로 보인다. 또한, 열 처리된 사람 피부 섬유아세포의 부유 배양 시 대략 8일째부터 다능성 마커의 발현이 증가하거나 안정화되어 이 시기부터 리프로그래밍이 시작되는 것으로 보인다.
상기 다능성 마커, 예컨대, OCT3/4, SOX2, NANOG, c-MYC, KLF4, TDGF1, SSEA4, TRA-1-60 등이 발현됨을 통해 스페로이드가 다능성을 가짐을 확인할 수 있다. 다능성 마커의 확인은 RT-PCR 또는 면역세포화학법을 통해 분석할 수 있으나, 이에 특별히 제한하는 것은 아니다.
또한, 본 발명의 다능성 세포는 3배엽 마커, 즉 외배엽(PAX6, Nestin), 중배엽(Brachyury, SMA), 내배엽(GATA4, AFP) 마커들을 높은 수준으로 발현하는 특징을 나타낸다.
다른 구체예에서, 분화유도배지에서 피부 섬유아세포에 대해 물리적 자극을 제공하는 경우, 배양 후 약 1일 내지 20일 사이에 스페로이드가 형성될 수 있다.
분화 마커는, 신경세포로 리프로그래밍되는 경우, PAX6, SOX1, SOX2, Nestin, MAP2, TuJ1, GFAP 또는 O4 중 하나 이상일 수 있다.
근육세포로 리프로그래밍되는 경우, Desmin, Actinin, Pax3, SMA, GATA4 또는 NKX2-5 중 하나 이상일 수 있다.
간세포로 리프로그래밍되는 경우, AFP, HNF1a, HNF4a, CK18 또는 ALB 중 하나 이상일 수 있다.
지방세포로 리프로그래밍되는 경우, oil red O 염색이 되며, Pparc2, C/ebpa, aP2 또는 Fabp4 중 어느 하나일 수 있다.
또한, 본 발명의 다능성 세포는 증식 마커 단백질인 Ki-67를 발현하여 증식능을 가지는 특징이 있다.
또한, 상기의 리프로그래밍된 다능성 세포를 영양세포와 공배양할 경우 다능성 세포의 증식이 증가될 수 있다.
또한, 본 발명의 세포의 리프로그래밍 방법은 상기 다능성 세포를 분화유도배지에서 배양하는 단계를 더 포함할 수 있다. 상기 분화유도배지의 종류에 따라 다능성 세포는 목적하는 분화 세포로 분화될 수 있다.
상기 분화유도배지로, 다분화능 (multipotent)세포 분화유도배지, 간세포 분화유도배지, 골형성 분화유도배지, 지방세포 분화유도배지, 근육세포 분화유도배지, 성상세포 분화유도배지, 신경계세포 분화유도배지, 혈관내피세포 분화유도배지, 각질세포 분화유도배지, 췌장 베타세포 분화유도배지 또는 심근세포 분화유도배지 등을 사용할 수 있으나, 이에 특별히 제한하는 것은 아니다.
본 발명은 또한 분화 또는 미분화 세포 및 배양 배지의 혼합물에 환경유입(environmental influx)을 촉진할 수 있는 물리적 자극을 제공하고,
상기 물리적 자극을 제공받은 혼합물을 1일 내지 6일 동안 배양하고,
상기의 배양물에서 분리한 엑소좀 함유 세포 밖 소포체(extracellular vesicles)와 분화 또는 미분화 세포를 혼합하여 일정 시간 동안 배양하여 리프로그래밍된 세포를 수득하는 것을 포함하는, 세포의 리프로그래밍 방법에 관한 것이다.
본 발명의 세포의 리프로그래밍 방법은 물리적 자극을 받은 분화 또는 미분화 세포에서 분리한 엑소좀 함유 세포 밖 소포체를 분화 또는 미분화 세포와 일정 시간 동안 배양하여 임의의 분화 세포로 리프로그래밍할 수 있는 것을 특징으로 한다.
상기 엑소좀 함유 세포 밖 소포체는 분화 또는 미분화 세포 및 배양 배지의 혼합물에 환경유입을 촉진할 수 있는 물리적 자극을 제공하고, 상기 물리적 자극을 제공받은 혼합물을 1일 내지 6일 동안 배양하여 원심분리를 통해 회수할 수 있다.
상기 분화 또는 미분화 세포의 물리적 자극은 상기에 기재되어 있어 중복 기재를 피하기 위해 생략한다.
상기 엑소좀 함유 세포 밖 소포체는 OCT3/4, SOX2, NANOG, c-MYC, KLF4, TDGF1, SSEA4, TRA-1-60, PAX6, Nestin, Brachyury, SMA, GATA4, 또는 AFP 중 어느 하나의 다능성 마커 또는 3배엽 마커; PAX6, Nestin, Sox1, Sox2, MAP2, TuJ1, GFAP 또는 O4 중 어느 하나의 신경세포 마커; Desmin, Pax3, Actinin, SMA, GATA4 또는 NKX2-5 중 어느 하나의 근육세포 마커; AFP, HNF1a, HNF4a, CK18 또는 ALB 중 어느 하나의 간세포 마커; 또는 oil red O 염색이 되며, Pparc2, C/ebpa, aP2 또는 Fabp4 중 어느 하나의 지방세포 마커를 발현하는 것일 수 있다.
예컨대, 상기 엑소좀 함유 세포 밖 소포체가 다능성 마커를 포함하는 경우, 분화 세포와 배양하면 상기 분화 세포는 다능성 세포로 리프로그래밍될 수 있다. 또한, 상기 엑소좀 함유 세포 밖 소포체가 분화 마커를 포함하는 경우, 분화 세포와 배양하면 표현형이 상이한 임의의 분화 세포로 리프로그래밍될 수 있다. 또한, 상기 엑소좀 함유 세포 밖 소포체가 분화 마커를 포함하는 경우, 미분화 세포와 배양하면 임의의 분화 세포로 리프로그래밍될 수 있다.
본 발명의 일 구체예에 따르면, es/ENTER 유도 시 회수한 엑소좀 마커인 CD63이 염색된 세포 밖 소포체(EVs)에서 다양한 다능성 마커의 발현이 확인되었고, 상기 EVs가 처리된 정상 인간 체세포에서 3일 배양 후 다능성 마커인 Oct4, Sox2 및 Nanog가 발현되어 세포의 리프로그래밍이 확인되었다.
또한, n/ENTER 유도 시 회수한 엑소좀 마커인 CD63이 염색된 세포 밖 소포체(EVs)에서 Pax6와 같은 신경줄기세포의 마커의 발현이 확인되었고, 상기 EVs가 처리된 정상 인간 체세포에서 3일 배양 후 신경줄기세포 마커인 Sox1, Sox2, Pax6, Nestin 발현이 확인되었다.
또한, m/ENTER 유도 시 회수한 엑소좀 마커인 CD63이 염색된 세포 밖 소포체(EVs)에서 Pax3와 같은 근육세포 마커의 발현이 확인되었고, h/ENTER 유도 시 회수한 엑소좀 마커인 CD63이 염색된 세포 밖 소포체(EVs)에서 HNF1a와 같은 간세포 마커의 발현이 확인되었다.
따라서, 물리적 자극을 받은 분화 또는 미분화 세포는 리프로그래밍 인자가 포함된 세포 밖 소포체를 분비함을 알 수 있고, 이들을 분화 또는 미분화 세포에 처리하여 부유 배양 또는 부착 배양 방식을 통해 1일 내지 20일 동안 배양하면 임의의 다능성 세포, 또는 분화 세포로 리프로그래밍될 수 있다.
본 발명의 세포의 리프로그래밍 방법을 통해 리프로그래밍될 수 있는 세포로 상술한 종류의 다능성 세포 또는 분화 세포일 수 있고, 중복 기재를 피하기 위해 기재를 생략한다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
<실시예 1> 물리적 자극에 의한 세포 내 환경유입 증명 실험
본 실시예는 물리적 자극에 의한 세포 내로의 환경유입에 대한 증명 실험으로, 이를 위해, 세포는 invitrogen에서 구입한 primary HDF 세포를 10% FBS(Gibco)와 1% penicillin/streptomycin(Gibco)이 첨가된 DMEM에서 배양하였으며, 배양액에 대한 초음파 처리는 5W/cm2, 10분간 수행하고, 세포 처리는 1×106 세포에 1W/cm2, 5초간 처리 후 처리된 배양액과 함께 35mm 배양접시에 2×105 세포를 배양하였다.
SEM 이미지 분석을 위해 처리되지 않은 HDF 세포와 위와 같이 처리된 직후와 37℃, 5% CO2 인큐베이터에서 2시간 동안 배양한 세포를 4℃에서 4% 파라포름알데히드로 12시간 동안 고정한 후 0.1% 타닌산 용액에 1시간, 1% 오스뮴 테트록사이드 용액에서 2시간 처리 후 농도 단계별 아세톤으로 탈수시킨 후 액체 CO2로 세포를 건조하고, 금-팔라듐으로 코팅된 표면에 고정시켜 전자현미경(1555 VP-FESEM, Carl Zeiss)으로 세포를 관찰하였다.
Live/dead 이미지 분석을 위해 세포는 처리되지 않은 HDF와 초음파 처리 직 후와 37℃, 5% CO2 인큐베이터에서 2시간 동안 배양한 세포에 Live/dead viability/cytotoxicity assay kit(Molecular Probes, Eugene, OR, USA)을 사용하여 염색하였다. 염색 과정은 살아있는 세포에 2μM 칼세인(live cell staining dye) 및 4μM 에티디움 호모다이머-1(EthD-1, dead cell staining dye)을 세포 배양액에 첨가한 후 37℃, 5% CO2 인큐베이터에서 30분 동안 배양 후 형광현미경(IX3-ZDC, Olympus)으로 붉은색(EthD-1 염색, 죽거나 손상된 세포, excitation/emission, 528/617 nm)과 녹색 형광(calcein 염색, 살아있는 세포, excitation/emission, 494/517 nm)을 분석하였다.
도 2a에 나타난 바와 같이, 초음파에 의해 세포막이 손상되어 외부환경이 들어올 수 있는 구멍이 형성되며, 이와 같은 손상은 2시간 후 회복되었다.
또한, 초음파 자극 후 손상된 세포 및 세포의 회복을 확인하기 위해 세포 사멸을 분석하는데 이용되는 Live/dead kit를 이용하여 세포를 염색하였다.
도 2b에서와 같이, 초음파를 세포에 처리한 후 처리 직후 염색하고 2시간 지난 후 염색한 결과, 처리 직후 녹색 형광과 적색 형광이 같이 존재하는 세포가 관찰되었고 2시간 이후 적색 형광을 나타내는 세포의 수가 현저히 줄어들어도 2a와 같이 세포막이 회복됨으로 인해 적색 형광이 줄어드는 것으로 나타났다.
이는 초음파 자극으로 인해 세포손상이 일어나나 회복이 가능하며, 이렇게 자극에 의한 세포막 손상으로 인해 배지 환경유입이 가능할 수 있을 것이라 생각하고 세포 내 물질 유입에 의해 나타나는 현상을 분석하였다.
한편, 도 2에서 usMC(ultrasound-exposed medium and cells)은 세포 및 배양배지 각각에 초음파를 처리한 경우를 말하며, usMC-S는 부유 배양된 usMC를 의미한다.
<실시예 2> 물리적 자극에 의한 세포 내 외부 물질 유입에 대한 증명 실험
세포 내 외부 물질 유입에 민감한 세포 내 칼슘 농도의 변화를 측정하고, 초음파에 의한 ATP 발생에 따른 물질 유입 가능성을 확인하기 위해 세포 내 ATP 측정과 ATP 반응에 의해 세포막내 수용체가 세포막 외부물질 유입 통로를 개방하는 것으로 알려진 바 있는 ATP 수용체의 발현을 RT-PCR로 분석하였다.
칼슘 농도 분석은 Fluo-4 NW Calsium Assay Kit(Molecular Probes)를 이용하여 분석하였다. 처리되지 않은 HDF 세포와 초음파 (1W/cm2, 5초)로 직접 처리된 후 초음파 처리된 배지(5W/cm2, 10분)에 노출된 세포(usMC-S)를 각각 키트 내 구성 품 중 분석 버퍼와 섞어 주고 96-웰 플레이트의 웰당 3×104 세포를 분주한 후 웰당 50㎕의 Fluo-4 NW 시약과 섞은 후 Varioskan Flash Fluorescent Microplate Fluorometer(Thermo Fisher Scientific, Waltham, MA, USA)로 여기파장 494nm/방출파장 516nm 범위의 형광을 10초 간격으로 15분 동안 측정하였다.
ATP는 Adenosine 5'-triphosphate(ATP) Bioluminescent assay kit를 이용하여 측정하였다. 세포는 처리되지 않은 세포와 초음파(1W/cm2, 5초)로 직접 처리된 후 초음파 처리된 배지(5W/cm2, 10분)에 노출된 세포 (usMC-S)를 96-웰 플레이트의 웰당 3×104 세포를 분주한 후 웰당 100㎕의 ATP 분석 믹스와 ATP 표준물질을 분주하여 실온에서 3분 배양 후 Varioskan Flash Fluorescent Microplate Fluorometer(Thermo Fisher Scientific)로 발광 강도를 측정하였다.
ATP 수용체 발현 분석을 위한 RT-PCR은 처리된 세포를 RNeasy  plus mini kit(Qiagen, Hilden, Germany)를 이용하여 RNA를 추출하였고, Super ScripⅡ kit(Invitrogen, Carlsbad CA, USA)으로 cDNA를 합성하였다. PCR은 PCR 프리믹스(Bioneer, Daejeon, Korea)에 cDNA와 프라이머를 섞은 후 Thermal cycler dice PCR machine(TP600, TAKARA, Otsu, Japan)을 이용하여 95℃ 5분 변성, 95℃로 30초, gradient(50-65℃) 30초 및 72℃로 1분을 35 사이클, 및 72℃ 15분 조건으로 수행되었다.
P2 수용체의 PCR 프라이머 리스트
유전자 부호 프라이머 서열(5'-3')
정방향 역방향
P2X4 TCTCAACAGGCAGGTGCGTAGCTT GCTCAACGTCCCGTGTATCGAGG
P2X7 CAGAAGGCCAAGAGCAGCGGTT GGACACGTTGGTGGTCTTGTCGTCA
P2Y1 CTTGGTGCTGATTCTGGGCTG GCTCGGGAGAGTCTCCTTCTG
P2Y2 CCGCTCGCTGGACCTCAGCTG CTCACTGCTGCCCAACACATC
P2Y11 GAGGCCTGCATCAAGTGTCTG ACGTTGAGCACCCGCATGATG
도 3에 나타난 바와 같이, 초음파 자극 후 세포 내 칼슘 유입이 60초까지 증가하고, 60분에 세포 내 ATP 농도가 최대로 증가하였으며, 세포막내 ATP 수용체 역시 1시간 및 4시간 경에 발현이 증가되는 것으로 나타났다. 이는 초음파 자극에 의해 초반 세포 내로 외부 물질이 유입됨을 칼슘의 농도 증가로 확인되었으며 초음파에 의해 ATP가 발생되고, 그로 인해 ATP 수용체가 반응하여 세포막 통로가 개방되어 외부물질 유입이 가능함을 알 수 있었다.
<실시예 3> QD605를 이용한 물리적 자극에 의한 세포 내 외부 물질 유입 증명 실험
외부 물질로 QD605로 정하고 QD605가 초음파에 의해 세포 내로 유입되는지를 확인하였다. QD605는 형광을 띠는 나노 물질로 살아있는 세포에서 침투성이 떨어지는 것으로 알려져 있어 QD605를 이용한 초음파에 의한 세포 내 외부 물질 유입을 확인하였다.
이를 위해, HDF에 실시예 1과 같이 초음파 자극을 준 후 QD605 100pmol을 처리하고, 24시간 후 단일 세포와 스페로이드 내 QD605의 존재를 확인하였다.
도 4에 나타난 바와 같이, 초음파 자극을 받지 않은 HDF에는 형광이 보이지 않았다. 그러나, 초음파 자극을 받은 HDF에는 형광이 관찰되었다.
또한, 외부 물질 유입에 따른 세포 변화에 대한 가능성을 확인하기 위해 각각의 배지 환경(ES, Neuroprogenitor, Hepatocyte, muscle)에서 초음파를 처리한 후 QD605 100pmol을 넣고 24시간 후에 각각의 분화과정상의 전사 인자(ES: Oct4, Neuroprogenitor: Pax6, Hepatocyte: HNF1a, Muscle: Pax3)의 발현을 ICC를 통해 확인하였다.
도 4b 및 4c에 나타난 바와 같이, 외부 물질(QD605)이 들어간 세포 및 스페로이드 각각에서 전사 인자가 관찰되었다. 이는 외부 물질 유입에 따른 세포의 리프로그래밍 가능성을 나타내는 결과이다.
실험과정에서 4가지 환경유입 샘플 중 es/ENTER와 n/ENTER만 스페로이드를 형성하였다. 그러나 m/ENTER와 h/ENTER는 스페로이드를 형성하지 않았다. 이는 세포의 특성과 배지 조성에 있다. ES와 신경전구세포의 경우 부유 배양 과정에서 스페로이드나 스피어 형성이 되는 세포이나, 근육세포와 간세포의 경우는 스페로이드를 형성하지 않는다. 이는 분화유도과정에서 코팅된 배양접시에서 부착시켜 배양하였기 때문이며, 특히 근육세포의 배지에 FBS가 들어 있는데 FBS는 세포 부착력을 높여 주기 때문에 스페로이드가 형성되지 못한 것으로 보인다.
<실시예 4> 물리적 자극을 받은 세포 배양액 내 엑소좀 분석
초음파에 의한 세포 자극은 모든 세포에 동일하게 자극되지 않으므로, 세포의 리프로그래밍은 일부 세포에서 일어날 수 있으며, 이렇게 변화된 세포와 그렇지 않은 세포의 세포 교류의 가능성을 생각해 보았다. 최근 엑소좀에 의한 세포간의 물질 교류에 대한 가능성을 참고로 하여 초음파 처리된 세포에서 배출된 배양 배지 내 엑소좀이 유전물질을 포함하고 있을 가능성이 있으며, 이는 리프로그래밍된 세포에서 분비되는 물질 중 리프로그래밍에 중요한 역할을 하는 유전물질을 포함하고 있을 가능성을 가지고 있어 초음파 처리 후 배양된 배양 배지내 엑소좀을 배양시간별 배지 교환 시 회수하여 배양액 내 엑소좀의 RNA를 Amicon Ultra-0.5 kit(Millipore)로 추출하였으며, cDNA 합성은 Super ScripⅡ kit(Invitrogen, Carlsbad CA, USA)로 하였다. PCR은 PCR 프리믹스(Bioneer, Daejeon, Korea)에 cDNA와 프라이머를 섞은 후 Thermal cycler dice PCR machine(TP600, TAKARA, Otsu, Japan)을 이용하여 95℃로 5분 변성, 95℃로 30초, gradient 30초 및 72℃로 1분을 35 사이클, 72℃로 15분 조건으로 RT-PCR 분석을 수행하였다(표 2).
도 5에 나타난 바와 같이, 엑소좀의 RNA 중 다능성 RNA의 발현이 확인되었다.
한편, 도 5에서 usMC은 세포 및 배양배지 각각에 초음파를 처리한 경우를 말하며, usMC-A는 부착 배양된 usMC을 의미한다.
다능성 마커 유전자의 PCR 프라이머 리스트
유전자 부호 프라이머 서열(5'-3') 어닐링 온도(℃)
정방향 역방항
Oct4 (POU5F1) GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAAC 60
Sox2 GGGAAATGGGAGGGGTGCAAAAGAGG TTGCGTGAGTGTGGATGGGATTGGTG 63
Nanog CAGCCCCGATTCTTCCACCAGTCCC CGGAAGATTCCCAGTCGGGTTCACC 64
Utf1 CCGTCGCTGAACACCGCCCTGCTG CGCGCTGCCCAGAATGAAGCCCAC 65
Lin28a AGCGCAGATCAAAAGGAGACA CCTCTCGAAAGTAGGTTGGCT 50
Rex1 CAGATCCTAAACAGCTCGCAGAAT GCGTACGCAAATTAAAGTCCAGA 52
Fgf4 CTACAACGCCTACGAGTCCTACA GTTGCACCAGAAAAGTCAGAGTTG 55
Foxd3 AAGCTGGTCGAGCAAACTCA CTCCCATCCCCACGGTACTA 50
Esg1 ATATCCCGCCGTGGGTGAAAGTTC ACTCAGCCATGGACTGGAGCATCC 60
Tdgf1 CTGCTGCCTGAATGGGGGAACCTGC GCCACGAGGTGCTCATCCATCACAAGG 65
c- Myc AATGAAAAGGCCCCCAAGGTAGTTATCC GTCGTTTCCGCAACAAGTCCTCTTC 50
Klf4 CCCACATGAAGCGACTTCCC CAGGTCCAGGAGATCGTTGAA 54
<실시예 5> 엑소좀에 의한 물질 전달 증명 실험
상기 실시예 4에서 초음파 처리된 세포의 배양액 내 엑소좀에서 다능성 마커의 발현이 확인되었으므로, 이러한 엑소좀에 의해 유전물질 및 단백질이 전달되는지를 확인하였다.
초음파 처리 후 QD605를 첨가하여 살아있는 세포의 이미지를 촬영한 결과, 도 6a에 나타난 바와 같이, 7시간 45분경에 QD605가 유입된 세포의 QD605가 세포질의 일부와 함께 떨어져 나와 다른 세포로 이동되는 현상을 확인할 수 있었다.
이렇게 떨어져 나온 세포질의 일부분이 엑소좀일 것으로 예상하고, usMC 처리된 세포를 다양한 배지 환경에 노출시킨 후 4% 파라포름알데히드에 10분간 고정시키고 0.1% 트리톤 X-100을 포함하는 PBS에 40분간 스며들게 하였다. 5%(v/v) 염소 혈청을 포함하는 PBS 용액으로 1시간 동안 블록킹하고 1차 항체로 엑소좀 마커인 CD63(1:100, Santa Cruz Biotechnology)과 각각의 분화유도배지에 의해 유도될 세포의 초기 발현 마커인 배아줄기세포(Oct4 1:200; Nanog 1:200; abcam), 신경줄기세포(Pax6, 1:200; abcam), 근육세포(Pax3, 1:200; abcam) 및 간세포(HNF1a, 1:200; Cell Signaling Technology) 등을 4℃에서 하룻밤 동안 염색하였다. 그리고 0.03% 트리톤 X-100을 포함하는 PBS 버퍼로 세척하고, 2차 항체, Alexa-488 또는 -594이 결합된 항-토끼, 항-마우스 항체(1:1000, Thermo, excitation/emission, 495/519 nm, excitation/emission, 590/617 nm)를 실온에서 1시간 반 정도 염색 후 0.03% 트리톤 X-100을 포함하는 PBS 버퍼로 세척하고, DAPI가 포함된 마운팅 졸(Vector Laboratories, Inc., Burlingame, CA, excitation/emission, 420/480 nm)으로 마운팅하여 공초점 레이져 형광현미경(LSM 700; Carl Zeiss)으로 이미지를 분석하였다.
도 6b에 나타난 바와 같이, 세포 주변에 나와 있던 세포질의 일부분으로 추측되는 것들이 CD63에 염색되었으며, es/ENTER 유도 시 엑소좀 마커인 CD63이 염색된 세포 밖 소포체(EVs)에서 Oct4, Nanog와 같은 다능성세포 마커의 발현이 확인되었고, n/ENTER 유도 시 엑소좀 마커인 CD63이 염색된 세포 밖 소포체(EVs)에서 Pax6와 같은 신경줄기세포의 마커의 발현이 확인되었고, m/ENTER 유도 시 엑소좀 마커인 CD63이 염색된 세포 밖 소포체(EVs)에서 Pax3와 같은 근육세포 마커의 발현이 확인되었고, h/ENTER유도 시 엑소좀 마커인 CD63이 염색된 세포 밖 소포체(EVs)에서 Hnf1a와 같은 간세포 마커의 발현이 확인되었다.
상기 결과로부터 엑소좀이 세포질에서 떨어져 나오고, 그것은 유전물질과 단백질들을 포함하고 있어 주변세포에 전달시켜 주변세포의 변화를 유도할 수 있다는 가설을 세웠다. 이를 입증하기 위해, 엑소좀을 추출하여 엑소좀을 CD63으로 염색(배양중인 세포에서도 엑소좀이 존재하기 때문에 새로 주입하는 엑소좀이라는 것을 구분하기 위해 염색함)한 후 그 엑소좀 내에 poly(A)27-Cy5.5를 수식한 유전물질을 엑소좀에 유입시킨 후 처리하지 않은 HDF와 같이 배양시키면 엑소좀에 의해 poly(A)27-Cy5.5가 전달되지 않을까 생각하였다.
도 6c에 나타난 바와 같이, CD63이 염색된 엑소좀이 세포 내에서 발견되었으며, CD63과 같이 cy5.5가 발현되는 것을 확인하였다. 이는 엑소좀에 의해 주입한 유전자(poly-A)가 전달되었음을 의미한다.
<실시예 7> 물리적 자극을 받은 세포와 정상 세포의 공동 배양
엑소좀에 의해 유전물질이 전달될 수 있으므로, 인간 ES 배지에서 배양된 세포에서 분비되는 엑소좀이 주변의 세포나 아니면 처리되지 않은 세포의 속성도 변화시킬 수 있다는 가설을 세웠고, 이를 증명하기 위해 인간 ES 배지환경에서 배양된 초음파 처리된 세포의 2일 배양된 배지에서 엑소좀을 추출하여 인간 ES 배지와 섬유아세포 배양 배지인 DMEM으로 처리되지 않은 세포를 배양하는 과정에서 엑소좀 추출물을 섞어서 6일간 배양하였다.
그 결과, 엑소좀이 첨가된 그룹에서 스페로이드가 생성되었으며(도 7a), 이 세포에서의 Oct4 발현을 확인한 결과 다능성 마커인 Oct4의 발현이 관찰되었다(도 7b). 이는 엑소좀에 의한 유전물질 전달이 세포 리프로그래밍을 유도할 수 있다는 의미이다.
<실시예 8> 섬유아세포의 직접 리프로그래밍
상기 실시예 1 내지 7에서 배지 환경의 변화에 의한 세포 리프로그래밍 가능성과 주변세포까지 리프로그래밍할 수 있음이 입증되었는바, 이를 바탕으로 다양한 배지 환경을 적용하여 세포의 리프로그래밍을 확인해 보았다.
이를 위해, 도 8과 같이 인간 섬유아세포를 1mL의 분화유도배지로 1×106 세포로 모은 후 초음파를 1W/cm2 강도로 5초간 처리한 후 35mm 배양접시 또는 6-웰 플레이트에 2×105/Well로 분주한 후 초음파를 10W/cm2 강도로 10분간 처리한 2mL의 분화유도배지에서 배양하였다.
분화유도배지의 종류에 따라 차이가 있으나, 배양 후 약 2일 내지 6일 사이에 스페로이드가 형성되었다.
또한, 지방세포 분화유도배지를 이용하여 usMC 처리 후 20일간 배양한 결과 세포 내 기포가 생성되는 것이 관찰되었으며, 이 기포에 대한 분석으로 지방세포 판별을 위한 지질 염색시약인 oil red O가 염색되는 것으로 나타났다. 이는 세포가 지방을 생산함을 나타내는 지표이다(도 9a).
그리고, 세포의 RNA를 추출하여 RT-PCR을 이용하여 지방세포 마커 유전자, Pparc2, C/ebpa, aP2, Fabp4의 발현을 확인한 결과 분화유도 후 발현이 증가되는 것으로 나타났다(도 9b).
또한, 신경줄기세포(신경전구세포) 분화유도배지와 초음파에 의한 HDF의 신경전구세포로의 분화를 확인하기 위해, 분화 유도 후 3일째 생성된 스페로이드와 부착된 세포에서 신경전구세포 마커, Oct4, Sox2, Pax6, Nestin의 발현을 면역세포화학적 방법으로 염색하여 확인하였다.
도 10a는 분화 유도된 세포의 모습이며, 도 10b는 스페로이드에서의 신경전구세포 마커를 나타낸 것으로 분화 유도되면 Oct4의 발현이 감소되며, Sox2와 Pax6 그리고 Nestin의 발현이 높게 나타나는 것을 확인하였다. 도 10c는 부착된 세포에서의 발현을 본 결과로, 역시 위와 같은 발현 패턴을 보였다. 이때, 신경전구세포나 신경줄기세포의 마커는 Sox2, Pax6, Nestin이며, Oct4는 다능성 마커로 성체줄기세포나 전구세포의 경우 Oct4의 발현이 떨어진다.
분화유도배지의 조성
성분 함량
신경전구세포 분화유도 배지 DMEM F12
bFGF 20ng/mL
EGF 20ng/mL
B27 supplement (×50) 1/50
N2 supplement (×100) 1/100
도 11은 분화 유도 후 7일간 분화 유도된 세포에서의 Pax6/Nestin의 발현 패턴을 플로우 사이토메트리를 통해 분석한 결과로, 처리 후 1일째 Pax6와 Nestin의 발현이 상대적으로 50% 이상 발현되었으며, 3일째에 Pax6, Nestin의 발현이 제일 높게 나타났다.
도 12는 분화 유도 후 3일째 세포 중 신경전구세포 마커(Pax6/nestin)가 발현되는 세포에서 증식 유무를 확인하고자 ki67을 발현을 확인한 결과로, 하얀색 화살표가 가리키는 세포를 보면, Nestin이 발현되는 세포에서의 ki67 발현을 확인할 수 있었다. 이와 같은 결과는 분화 유도된 세포가 증식 능력을 가짐을 의미한다. 도 12에서 화살표는 Nestin이 염색된 세포가 증식하고 있음을 보여주는 표시이다.
도 13은 분화 유도된 세포(n/ENTER cells)의 자기재생(self-renewal)을 확인한 실험 결과로, 도 13a는 동영상으로 1개의 스페로이드로부터 증식되어 나온 세포들이 Pax6와 nestin을 발현함을 확인함으로써 이후 증식된 세포에 신경전구세포 속성이 그대로 전해짐을 알 수 있었다.
다음으로, 5주령된 쥐의 뇌에 분화 유도된 세포(n/ENTER cells)를 주입하여 4주 후에 뇌를 회수한 후 주입된 세포의 주변 세포로의 분화를 확인하고, 분화된 세포의 기능을 확인하였다.
도 14a에 나타난 바와 같이, 뇌에 주입된 세포(n/ENTER cells)를 Human Nuclear antigen(HNA)으로 염색하여 표시한 후 표시된 세포를 Gfap 항체를 염색한 결과 주입된 세포에서의 Gfap가 발현되는 것을 확인하였다.
그리고, Gfap가 발현되는 세포가 정상적인 기능을 하는지 확인하기 위해 synapsin을 분비하는지를 synapsin 1 항체(1:500, R&D system)로 염색하였다. 그 결과, HNA가 발현되는 세포 중 Gfap가 발현되는 세포에서 synapsin 1 발현이 관찰되었다(도 14b).
다음으로, 분화 유도 후 3일째 생성된 스페로이드에서 신경전구세포 마커(Oct4, Sox2, Pax6, Nestin)의 발현을 면역세포화학방법으로 염색하여 확인하였다.
이를 위해, 스페로이드와 부착된 세포는 4% 파라포름알데히드에 10분간 고정시키고 0.1% 트리톤 X-100을 포함하는 PBS에 40분간 스며들게 하였다. 5%(v/v) 염소 혈청을 포함하는 PBS로 1시간 동안 블록킹하고 1차 항체로 Oct4(1:200), Sox2(1:200), Pax6(1;200), Nestin(1:200, Cell Signaling Technology) 등을 4℃에서 하룻밤 동안 염색하였다. 그리고 0.03% 트리톤 X-100을 포함하는 PBS 버퍼로 세척하고, 2차 항체, Alexa-488 또는 -594가 결합된 항-토끼, 항-마우스 항체(1:1000, Thermo, excitation/emission, 495/519 nm, excitation/emission, 590/617 nm)를 실온에서 1시간 반 정도 염색 후 0.03% 트리톤 X-100을 포함하는 PBS 버퍼로 세척하고, DAPI가 포함된 마운팅 졸(Vector Laboratories, Inc., excitation/emission, 420/480 nm)으로 마운팅하여 공초점 레이져 형광현미경(LSM 700; Carl Zeiss)으로 이미지를 분석하였다.
도 15a에서 스페로이드 형성을 확인하였고, 스페로이드에서 신경전구세포 마커인 Pax6 및 Nestin의 발현이 높게 나타나는 것을 확인하였다(도 15b).
도 15c는 분화 유도 후 3일간 분화유도된 세포에서의 Pax6/Nestin의 발현 패턴을 플로우 사이토메트리를 통해 분석한 결과로, 처리 후 1일째 Pax6와 Nestin의 발현이 70% 이상 발현되었으며, 3일째에 Pax6, Nestin의 발현이 제일 높게 나타났다.
도 16은 분화 유도 후 20일된 세포에서 신경전구세포 마커(Sox2, Pax6, Nestin)의 발현을 면역세포화학 방법으로 염색하여 확인한 결과로, 상단 및 중간 사진은 Sox2와 Pax6 그리고 Nestin의 발현이 높게 나타남을 보여주며, 하단 사진은 희돌기교세포 마커의 발현을 본 결과로, 역시 위와 같은 발현 패턴을 보였다.
이 결과는 분화 유도된 세포가 신경전구세포 분화능력과 비슷한 분화 능력이 있다는 의미이다.
<실시예 9> 직접 간세포 분화
도 17의 도식도와 같이, HDF, HeLa 세포 및 Hep3B 세포를 1mL의 분화유도배지로 1×106 세포로 모은 후 초음파를 1W/cm2 강도로 5초간 처리한 후 35mm Laminin 코팅 배양접시에 2×105로 분주한 후 초음파를 10W/cm2 강도로 10분간 처리한 2mL의 간세포 분화유도배지에서 배양하였다. 간세포 분화유도배지를 이용하여 분화 유도된 세포를 h/ENTER 로 명명하였다.
도 18은 간세포 분화유도배지와 초음파 처리된 HDF의 간세포(h/ENTER)로의 분화를 유도하였다. HDF를 분화 유도 20일 후 세포 외형의 변화를 나타낸 것으로, HDF 분화 유도 20일 후 면역세포화학 방법을 통하여 간세포 마커(AFP, HNF4a, CK18, ALB)를 확인한 결과, h/ENTER 세포에서 간세포 마커의 발현이 확인되었다.
다음으로, 간세포 분화유도배지와 초음파 처리된 HeLa 세포의 간세포(HeLa h/ENTER)로의 분화를 유도하였다. HeLa 세포를 분화 유도 19일 후 세포(HeLa h/ENTER) 외형의 변화를 나타낸 것으로, HeLa 세포 분화 유도 20일 후 (HeLa h/ENTER) qPCR를 통하여 간세포 마커(ALB, HNF4a, CYP3A4F, CYP3A7F, AIAT, SOX7, GATA6)를 확인하였다.
도 19a에서와 같이, HeLa 세포와 비교하여 분화유도한 HeLa 세포에서 간세포 마커의 대부분이 증가한 것을 확인하였다.
또한, HeLa 세포 분화 유도 3주 후 면역세포화학법을 통하여 간세포 마커(HNF4a, CK18, ALB)를 확인한 결과, HeLa 세포와 비교하여 분화시킨 HeLa 세포(HeLa h/ENTER)에서 간세포 마커의 발현이 증가됨을 확인하였다(도 19b).
[규칙 제91조에 의한 정정 12.10.2016] 
HeLa 세포 분화 유도 3주 후 면역세포화학법을 통하여 간세포 마커(HNF4a, CK18, ALB)를 확인한 결과, HeLa 세포와 비교하여 분화시킨 HeLa 세포(HeLa h/ENTER)에서 간세포 마커의 발현이 증가됨을 확인하였다(도 19c).
다음으로, 간세포 분화유도배지와 초음파 처리된 Hep3B 세포의 간세포(Hep3B h/ENTER cell)로의 분화를 유도하였다. Hep3B 세포를 분화 유도한 19일 후 세포 외형의 변화와 Hep3B 세포 분화 유도 3주 후 면역세포화학에 의한 간세포 마커(HNF4a, CK18, ALB)의 발현 여부를 확인하였다.
도 20b에 나타난 바와 같이, Hep3B 세포와 비교하여 분화시킨 Hep3B 세포(Hep3B h/ENTER)에서 간세포 마커의 발현이 증가됨을 확인하였다.
다음으로, 인간 ES 배양배지와 초음파 처리된 HDF의 es/ENTER 세포로의 분화를 유도하였다. 도 21a는 배양시간에 따른 세포 형태 변화를, 도 21b는 배양시간에 따른 Oct4 발현의 차이를 보여주는 결과로, 인간 ES 배지로 분화 유도된 후 1일에 스페로이드가 형성되었으며, 다능성 마커인 Oct4의 발현이 배양시간에 따라 증가되었다.
6일간 배양되어 형성된 스페로이드를 회수하여 다능성 마커 발현을 RT-PCR과 ICC를 통해 확인하였다. 그 결과, es/ENTER 세포에서 다능성 마커 유전자(a) 및 단백질(b)의 발현이 확인되었다.
상기 es/ENTER 세포에서 다능성 속성을 분석한 결과, 플로우 사이토메트리를 이용하여 es/ENTER 세포의 SSEA4와 TRA-1-60의 발현을 확인하였고(도 23a), 다능성 유전자 발현의 패턴을 마이크로어레이(affymetrix chip)로 분석한 결과 HDF에 비해 ES세포에 비슷한 패턴을 나타냈다(도 23b). 그리고, 바이설파이트 시퀀싱을 통해 발현되는 DNA 유전자에서의 합성이 시작되는 프로모터 부분의 메틸화가 풀려있는지 확인한 결과, 중요한 다능성 유전자 Oct4와 Nanog이 개방되어 있음을 확인하였다. 이와 같은 결과들로 보아 인간 ES 배지로 분화 유도된 es/ENTER는 다능성 속성을 가진다는 것을 알 수 있다(도 23c).
메틸화 분석을 위한 바이설파이트 시퀀싱 프라이머 리스트
유전자 부호 프라이머 서열(5'-3') 어닐링 온도(℃)
정방향 역방향
Oct4 CCAGGTTCAATGGATTCTCC GTATCCGACCAGGGTTAGGG 58
Nanog TTCTCTCCTCCTCCCTCTCC CTCCCAAAATGCTGGGATTA 56
Tdgf1 1 GTGGGTCCTCTTCAGTGCAT GCTGCTGGAGAGGTGCTTAG 60
2 GACCCTCGCCTTATCCTTTC CACTGCCCTACTGCTTGGTT 60
3 GCACAGAGGGTGTCCATCTT CTGCCCCTCTCACTCATCTC 60
Afp CAGTCCAGCAACAAGCCTTT ACTGGAGTCACTGGGAGGAA 58
Gata4 TAGGATGCCTGCTGGATTTC CATTCATTCGCCCTCTCTTC 58
Acta2 GGAGCACTTGAGAAGCAAAGA CTCAGGAAAGCCTCCCTCTT 60
Msx1 GTAGACGCGGTTTGTGGAAC TTGGGGCTCTGTTTTTAACG 60
Pax6 GTTGCAGCTGGTGTGTTGAC GCATTGTTGTGAATGCTGCT 60
Nestin GGGTCAAGTGGACTTTCCTG CACCCTCCTTGTCACTCCTC 60
다음으로, es/ENTER 세포에서 분화 마커를 확인하였다. 도 24는 es/ENTER 세포에서의 3배엽 마커 유전자의 발현 (a) 과 단백질 발현 (b)을 나타낸 것이고, 도 25는 배양시간별 es/ENTER 세포에서의 Oct4와 3배엽 마커 유전자 발현의 변화를 나타낸 것이며, 도 26은 부착 배양된 es/ENTER 세포에서의 3배엽 마커 단백질의 발현(a) 및 바이설파이트 시퀀싱을 이용한 es/ENTER 세포의 3배엽 마커 DNA 메틸화 분석(b) 결과이다.
분화 마커 유전자의 PCR 프라이머 리스트
유전자 부호 프라이머 서열 (5-'3') 어닐링 온도(℃)
정방향 역방향
내배엽 Afp AGCAGCTTGGTGGTGGATGA CCTGAGCTTGGCACAGATCC 63
Foxa2 TTCAGGCCCGGCTAACTCTG CCTTGCGTCTCTGCAACACC 58
Gata6 TGTGCGTTCATGGAGAAGATCA TTTGATAAGAGACCTCATGAACCGACT 60
외배엽 Nestin GAAACAGCCATAGAGGGCAAA TGGTTTTCCAGAGTCTTCAGTGA 50
Pax6 ACCCATTATCCAGATGTGTTTGCCCGAG ATGGTGAAGCTGGGCATAGGCGGCAG 58
중배엽, 심근세포 Acta2 (a-SMA) CTATGAGGGCTATGCCTTGCC GCTCAGCAGTAGTAACGAAGGA 50
중배엽 Brachyury (T) GCCCTCTCCCTCCCCTCCACGCACAG CGGCGCCGTTGCTCACAGACCACAGG 66
Msx1 CGAGAGGACCCCGTGGATGCAGAG GGCGGCCATCTTCAGCTTCTCCAG 58
심근세포 Myl7 GGGCCCCATCAACTTCACCGTCTTCC TGTAGTCGATGTTCCCCGCCAGGTCC 58
Nkx2 -5 CCAAGGACCCTAGAGCCGAA ATAGGCGGGGTAGGCGTTAT 50
TnTc ATGAGCGGGAGAAGGAGCGGCAGAAC TCAATGGCCAGCACCTTCCTCCTCTC 63
신경세포 Map2 CAGGTGGCGGACGTGTGAAAATTGAGAGTG CACGCTGGATCTGCCTGGGGACTGTG 66.5
TuJ1 GAGCGGATCAGCGTCTACTACAA GATACTCCTCACGCACCTTGCT 52
Gfap CCTCTCCCTGGCTCGAATG GGAAGCGAACCTTCTCGATGTA 52
Vglut1 CGACGACAGCCTTTTGTGGT GCCGAGACGTAGAAAACAGAG 50
Vmat2 CTTTGGAGTTGGTTTTGC GCAGTTGTGGTCCATGAG 43
지방세포 Pparc2 ATTGACCCAGAAAGCGATTC CAAAGGAGTGGGAGTGGTCT 52.7
C/ ebpa GCAAACTCACCGCTCCAATG TTAGGTTCCAAGCCCCAAGTC 56.7
aP2 AACCTTAGATGGGGGTGTCCTG TCGTGGAAGTGACGCCTTTC 57.2
Fabp4 ACTGGGCCAGGAATTTGACG CTCGTGGAAGTGACGCCTT 55
간세포 Alb AGCTGTTATGGATGATTTCGCAG CCTCGGCAAAGCAGGTCTC 60
Cyp3a4 GTGACTTTGCCCATTGTTTAGAAAG CAGGCGTGAGCCACTGTG 60
Cyp3a7 GATTCTGTACGTGCATTGTGCTC ATTTGGTCATCTCCTCTATATTACCAAGT 60
Tat CCACACCCACACTCAGATCCT ATTAGTGAGTCACTCTAGCAGCGC 60
A1AT GGTCACAGAGGAGGCACCC AGTCCCTTTCTCGTCGATGGT 60
Sox7 TGCCCACTTCATGCAACTCC AGGTACCCTGGGTCTTTGGTCA 60
하우스키핑유전자 beta-actin CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT 50
Gapdh ATGGGGAAGGTGAAGGTCG GGGTCATTGATGGCAACAATATC 60
es/ENTER 스페로이드에서 3배엽 마커의 발현이 RT-PCR과 ICC를 통해 확인되었으며, 이와 같은 결과는 es/ENTER 세포가 다분화 분화속성을 가짐은 나타내는 지표이다.
따라서, 배양시간에 따른 다능성 마커인 Oct4의 발현 패턴을 확인한 결과 6일 이후 다능성 속성인 Oct4의 발현이 감소되고 3배엽 마커의 발현들이 증가되는 것을 확인하였다. 이와 같은 결과는 es/ENTER 세포가 다능성 속성에서 분화가 진행됨을 나타낸다. 이에 es/ENTER 스페로이드를 부착하여 2일간 배양한 스페로이드에서 나온 세포들이 3배엽 마커를 발현함이 확인되었고, 대표적인 3배엽 마커 유전자의 DNA 메틸화 분석 결과, 3배엽 마커 유전자는 개방되어 있음을 확인하였다.
도 27은 es/ENTER 세포의 신경세포(a), 심근세포(b) 및 간세포(c)로의 인 비트로 분화 실험 결과로, es/ENTER 세포를 각각의 3배엽에서 분화되는 세포로 분화 유도하는 배지를 이용하여 4주간 분화 유도한 결과, 신경세포(외배엽), 심근세포(중배엽), 간세포(내배엽)로 분화 유도되었으며, 각각의 분화 마커들이 발현되었다.
도 28은 HDF에서 신경세포(a), 심근세포(b) 및 간세포(c)의 분화 마커의 발현을 확인한 결과로, HDF에서는 분화 마커가 발현되지 않았다.
도 29는 분화 유도된 es/ENTER 세포의 신경세포(a), 심근세포(b) 및 간세포(c)의 분화 마커 유전자의 발현을 보여주는 RT-PCR 분석 결과로, 분화 유도된 es/ENTER에서의 분화 마커 유전자들의 발현이 증가되었다. 이와 같은 결과들은 es/ENTER의 다분화 능력을 증명하는 결과들이다.
도 30은 es/ENTER 세포의 염색체 G-밴드 분석에 의한 핵형을 보여주는 결과로, es/ENTER 생성에 있어서 초음파 자극으로 인한 세포 염색체의 돌연변이 여부를 분석한 결과, 정상으로 나타났다.
다음으로, es/ENTER 세포를 5주령 SCID 마우스의 다리 근육에 이식 후 4주 후에 HNA를 이용하여 이식한 세포를 확인하였다.
도 31에 나타난 바와 같이, es/ENTER 세포는 골격 근육으로 분화되었음을 확인하였다. 그리고 이식된 세포에서의 Oct4가 발현 및 증식되지 않음을 확인하였다.
다음으로, es/ENTER 세포를 쥐의 뇌에 이식하여 인 비보 분화를 확인하였다. 이를 위해, es/ENTER 세포를 5주령 SCID 쥐의 뇌에 이식 후 4주 후에 HNA를 이용하여 이식한 세포를 확인하였다.
그 결과, es/ENTER 세포는 성상세포(Gfap)로 분화되었음을 확인하였고, 시냅신과 Vesicular Glutamate transpoter가 분비됨을 확인하였다. 이는 이식된 세포가 정상적으로 분화되어 기능을 수행하고 있음을 의미한다. 그리고 이식된 세포에서의 Oct4가 발현되지 않고 있으며, 증식되지 않음을 확인하였다(도 32).
다음으로, MEF(마우스 태아 섬유아세포)도 HDF와 같은 방법인 hES 배지로 mouse es/ENTER 세포로 분화 유도하였다. 이번 실험에 이용된 MEF는 OG2-MEF로 Oct4 프로모터를 벡터로 형질전환된 마우스의 태아 섬유아세포를 가지고 실시하였다. 이 세포의 경우 Oct4가 발현되면 GFP 형광이 발현되는 세포로 Oct4의 발현을 관찰하기 위해 사용하였다.
도 33에 나타난 바와 같이, 초음파 처리를 통해 유도된 세포는 시간이 지남에 따라 스페로이드의 수와 크기 그리고 GFP 발현이 증가되었다.
다음으로, 상기 mouse es/ENTER 세포에서 다능성 속성을 분석하였다.
도 34에 나타난 바와 같이, mouse es/ENTER의 ICC, RT-PCR, 플로우 사이토메트리, AP 염색 결과, 마우스 ES와 비슷한 경향을 나타냈다.
다음으로 상기 mouse es/ENTER 세포에서 3배엽 특성을 분석하였다.
실험 결과, 인간 es/ENTER에서 나타난 3배엽 속성이 mouse es/ENTER 세포에서도 나타났으며, 배양시간별 RT-PCR과 ICC 분석을 통해 시간이 지남에 따라 그 발현의 차이가 나타났다. 이와 같은 결과는 인간 es/ENTER의 결과와 같았다(도 35).
도 36은 mouse es/ENTER의 신경세포(a)과 심근세포(b)로의 인 비트로 분화를 보여주며, 도 36c는 mouse es/ENTER의 염색체 G 밴드 분석에 의한 핵형 분석 결과를 보여준다. 핵형 분석은 GTG banding chromosome analysis(GenDix, Inc. Seoul, Korea)를 사용하여 수행하였다.
실험 결과, mouse es/ENTER 세포에서 신경세포 및 심근세포 분화 마커를 확인하여 분화되었음을 확인하였고, 초음파에 의한 염색체 변이를 핵형 분석한 결과 변이가 일어나지 않았음을 확인하였다.
<실시예 10> 다른 세포를 이용한 es/ENTER의 분화 유도 실험
이와 같은 결과를 통해 HDF 뿐만 아니라 다른 개체의 세포에도 이 방법이 가능하다는 결론을 내리고, 다양한 세포 (L132, MSC, 환자 피부섬유아세포)에 적용해 보았다.
L132(폐 상피세포), MSC(mesenchymal stem cell, 간엽줄기세포) 및 Skin fibroblast(환자유래 피부섬유아세포) 등을 이용하여 es/ENTER와 동일한 방법으로 분화를 유도한 결과, 세포 스페로이드가 형성되었고, es/ENTER와 비슷하게 다능성 마커 및 3배엽 마커들이 발현되는 것으로 나타났다.
도 37은 인간 ES 배양배지와 초음파 자극에 의한 L132 세포의 L132 es/ENTER 세포로의 분화를 보여주는 결과로, 도 37a는 배양시간에 따른 세포 형태 변화, 도 37b 및 37c는 L132 es/ENTER 세포의 다능성(b) 및 3배엽(c) 속성을 보여준다.
도 38은 인간 ES 배양배지와 초음파 자극에 의한 MSC의 MSC es/ENTER 세포로의 분화를 보여주는 결과로, 도 38a는 배양시간에 따른 세포 형태 변화, 도 38b 및 38c는 MSC es/ENTER 세포의 다능성(b) 및 3배엽(c) 속성을 보여준다.
도 39는 인간 ES 배양배지와 초음파 자극에 의한 인간 피부 섬유아세포의 SF es/ENTER 세포로의 분화를 보여주는 결과로, 도 39a는 배양시간에 따른 세포 형태 변화, 도 39b 및 39c는 SF es/ENTER 세포의 다능성(b) 및 3배엽(c) 속성을 보여준다.
<실시예 11> 다른 물리적 지극을 이용한 es/ENTER 세포로의 분화 유도
인간 ES 배양액이라는 동일한 배지환경에 이번엔 분화 유도를 위한 물리적 자극으로 열 처리(Heat shock)와 레이저를 사용하였다.
우선, 열 처리(Heat shock)와 hES 배지를 이용하여 HDF의 es/ENTER 세포의 분화를 유도하였다. 열 처리를 위해, HDF를 42℃로 2분간 노출시킨 후 아이스에서 약 5초간 정치하였다. 도 40a는 분화 유도된 HDF 스페로이드, 도 40b 및 40c는 es/ENTER 세포의 다능성(b) 및 3배엽(c) 속성을 보여준다.
다음으로, 레이저 자극과 hES 배지를 이용한 HDF의 es/ENTER 세포의 분화를 유도하였다. 레이저 처리 조건은 Ocla 치료용 레이저(Ndlux)를 사용하여, 808nm의 레이저를 5초간 조사한 후 배양하였다. 도 41a는 분화 유도된 HDF 스페로이드, 도 41b 및 41c는 es/ENTER 세포의 다능성(b) 및 3배엽(c) 속성을 보여준다.
도 40 및 41에 나타난 바와 같이, 두 자극 모두 초음파에 의한 효과와 유사하게 세포 스페로이드가 형성되었으며, 다능성 및 3배엽 마커들이 발현되는 것을 확인하였다. 이와 같은 결과들은 배지 환경 유입으로 인한 세포 리프로그래밍이 다양한 세포에 적용이 가능하며, 배지환경과 더불어 환경유입을 위한 물리적인 자극 또한 다양한 방법이 가능함을 나타내며, 이전의 결과에서와 같이 환경에 의해 세포의 속성이 변할 수 있다.
<실시예 12> 세포 밖 소포체(extracellular vesicles, EVs)를 이용한 세포의 리프로그래밍
세포는 invitrogen에서 구입한 primary HDF를 10% FBS(Gibco)와 1% penicillin/streptomycin(Gibco)이 첨가된 DMEM에서 배양하였으며, 배양 배지에 대한 초음파 처리는 5W/cm2, 10분간 수행하고, 세포 처리는 1×106 HDF에 1W/cm2, 5초간 처리 후 상기에서 초음파 처리된 배양 배지와 함께 35mm 배양접시에 2×105 세포를 1일간 37℃, 5% CO2 조건으로 배양하였다. 배양액을 회수하여 Amicon Ultra centrifugal filter (Millipore)에 넣고 14000 rpm, 20분간 원심분리하여 배양액내 EVs를 필터로 걸러 회수하였다.
다음으로, HDF를 배양접시에 약 70-80% 채워지게 배양한 후, 배양액을 회수하여 D-PBS로 2회 세척한 다음, 배아줄기세포 배지 또는 신경줄기세포 분화배지(Gibco)에 각각 es/ENTER 와 n/ENTER 1일째 배양 배지로부터 회수된 10㎕/mL(v/v)의 농축 EVs를 첨가한 후 상기에서 세척한 HDF와 혼합하여 3일간 배양하였다.
<실시예 13> 정상 체세포(HDF)에서 EVs의 전달 실험
EVs를 이용한 체세포의 리프로그래밍을 확인하기 위해 상기 실시예 12와 같이 물리적 자극을 받은 세포의 1일 배양 후 얻은 EVs를 농축한 후 Did dye를 이용하여 EVs를 표지하고, 정상 체세포에 상기 EVs가 전달되고, 전달된 세포에서 각각의 다능성 마커인 Oct4와 신경줄기세포 마커인 Pax6의 발현을 확인하였다.
이를 위해, 상기 실시예 12에서 얻은 EVs 50㎕를 D-PBS 450㎕와 혼합하여 희석하고, 여기에 2.5㎕의 Vybrant DiD cell-labelling solution(molecular probe, excitation/emission, 644/667 nm)을 첨가하여 37℃에서 30분간 엑소좀을 염색하였다. 염색 후 다시 Amicon Ultra centrifugal filter(Millipore)로 14000 rpm, 20분 원심분리하여 Did 염색된 EVs를 농축 후 D-PBS로 희석하기를 2회 반복한 후 3mL의 HDF 배양액(5% FBS가 포함된 DMEM(Gibco) 배양액)에 첨가한 후 37℃, 5% CO2에서 24시간 배양하였다. 24시간 배양된 HDF를 4% paraformaldehyde로 10분간 고정하고, 0.2% triton X100 in PBS buffer로 10분간 투과시켰다. 이후 3% BSA in PBS buffer로 1시간 블록킹한 후 1차 항체인 토끼-항 Oct4(1:250, abcam)와 Pax6(1:200, abcam)로 4℃에서 하룻밤 동안 염색한 후 2차 항체인 항-토끼 컨쥬게이티드 Alexa-488(1:1000, Thermo, excitation/emission, 495/519 nm)을 1시간 동안 염색하였다. 2차 항체가 염색된 샘플을 DAPI(4′, 6-diamidino-2-phenylindole dihydrochloride, Vector Laboratories, excitation/emission, 420/480 nm)가 포함된 마운팅 용액을 사용하여 공초점 레이저현미경(Confocal laser scanning microscope, LSM 700; Carl Zeiss) 이미지를 분석하고 도 42에 결과를 나타내었다. 도면에서, 녹색은 Oct4, 적색은 Did dye로 염색된 EVs이다.
도 42에 나타난 바와 같이, 물리적 자극 후 세포에서 분비되는 EVs는 세포 배지 환경에 따라 다양한 다능성 마커의 유전자 및 단백질을 포함하고 있음을 확인하였고, 이러한 인자들은 EVs에 의해 인접하는 세포로 전달될 수 있음을 확인하였다. 상기 결과는 다양한 배지 환경에서 물리적 자극을 받은 세포에서 분비된 EVs는 정상 체세포의 리프로그래밍을 유도할 가능성이 있음을 시사한다.
<실시예 14> EVs에 의한 인간 섬유아세포의 리프로그래밍 효과
상기 실시예 13에서 다양한 배지 환경에서 물리적 자극을 받은 세포에서 분비된 EVs는 정상 체세포의 리프로그래밍을 유도할 가능성이 있으므로 이를 검증하기 위해 인간 섬유아세포 배양 배지인 DMEM 배지와 인간 배아줄기세포 또는 iPS 세포의 배양 배지인 hESC 배지를 사용하여 실험하였다. 대조군은 EVs가 첨가되지 않은 각 배지에서 3일간 배양하였고, 처리군은 각 배지에 10㎕/mL(v/v)의 EVs를 첨가하여 3일간 배양하였다.
배양된 세포는 상기 실시예 13과 같이 1차 항체로 토끼-항-Oct4(1:250, abcam), 2차 항체로 항-토끼 컨쥬게이티드 Alexa-488(1:1000, Thermo excitation/emission, 495/519nm)를 사용하여 염색하고, DAPI가 포함된 마운팅 용액으로 마운팅한 후 공초점 레이저현미경으로 이미지를 분석하여 도 43에 나타내었다. 도면에서, hESC는 human ESC 배지, DMEM은 섬유아세포 배양 배지, EVs는 es/ENTER 유도 시 회수한 EVs를 나타낸다.
도 43에 나타난 바와 같이, 대조군에서는 Oct4의 발현이 관찰되지 않았지만, 처리군에서는 Oct4의 발현과 세포가 스페로이드를 형성하는 현상이 관찰되었다. 상기 결과는 세포 리프로그래밍이 배양 배지에 의한 영향이 아닌 오직 EVs에 의해 유도되었음을 나타낸다.
<실시예 15> EVs 처리된 인간 섬유아세포의 배양시간별 세포 형태의 변화
es/ENTER 유도 시 회수한 10㎕/mL(v/v)의 EVs를 인간 섬유아세포에 처리한 후 6일 동안 배양하여 세포의 형태 변화를 관찰하였다.
도 44에 나타난 바와 같이, 배양 시간에 따라 세포의 형태가 달라지고 있으며, 3일차에서 스페로이드가 형성되는 것을 관찰하였다.
<실시예 16> es/ENTER 유도 시 회수한 EVs 첨가량에 따른 6일 배양된 HDF의 다능성 마커 발현 확인 실험
세포 리프로그래밍을 위한 적정 EVs의 농도를 알아보기 위해 EVs의 첨가량을 달리하여 HDF에 처리하고 6일 동안 배양하였다. 또한, es/ENTER 유도 시 회수한 EVs를 사용하므로 다능성 마커인 Oct4가 발현되는 세포를 Flow cytometry로 분석하였다.
이를 위해, es/ENTER 유도 시 회수한 EVs를 섬유아세포 배양 시 각각 0, 5, 12.5, 25, 50 및 100㎕/mL(v/v)의 농도로 첨가형 37℃, 5% CO2 조건에서 6일간 배양하였다. 배양된 세포는 상기 실시예 13과 같이 1차 항체로 토끼-항-Oct4(1:250, abcam), 2차 항체로 항-토끼 컨쥬게이티드 Alexa-488(1:1000, Thermo excitation/emission, 495/519nm)를 사용하여 염색하고, BD AccuriTM C6 Flow cytometry(BD biosciences)를 이용하여 분석하였다.
도 45에 나타난 바와 같이, 12.5㎕/mL(v/v)의 EVs를 처리하였을 때 가장 많은 84.6%의 세포에서 Oct4의 발현이 확인되었다.
<실시예 17> es/ENTER 유도 시 회수한 EVs 처리된 3일 배양된 HDF에서 다능성 마커 발현 확인 실험
es/ENTER 유도 시 회수한 10㎕/mL(v/v)의 EVs를 인간 섬유아세포에 처리한 후 3일 동안 배양하여 세포 리프로그래밍 효과를 확인하였다. 배양된 세포는 ICC 분석을 위해 상기 실시예 13과 같이 1차 항체로 토끼-항-Oct4(1:250, abcam), Sox2 (1:250, abcam) 및 Nanog (1:250, abcam), 2차 항체로 항-토끼 컨쥬게이티드 Alexa-488(1:1000, Thermo excitation/emission, 495/519nm)를 사용하고, DAPI가 포함된 마운팅 용액으로 마운팅한 후 공초점 레이저현미경으로 이미지를 분석하였다. qPCR 분석은 3일간 배양된 세포에서 Trizol(Takara)을 이용하여 전체 RNA를 회수한 후 Superscrip 2 kit(Invitrogen)로 cDNA를 합성하였다. PCR 분석은 다능성 마커인 Oct4, Sox2 및 Nanog에 대해 Real time PCR 기기(ab step one plus, AB)로 분석하였다.
도 46에 나타난 바와 같이, ICC 분석 결과 인간 섬유아세포 핵에서 다능성 마커인 Oct4, Sox2 및 Nanog의 발현이 관찰되었으며, 유전자 발현을 real time PCR로 qPCR 분석한 결과 Oct4, Sox2 및 Nanog 유전자는 EVs 처리되지 않은 정상 섬유아세포 대비 약 50 배 정도 과발현되었다.
<실시예 18> n/ENTER 유도 시 회수한 EVs 처리된 3일 배양된 HDF에서의 신경줄기세포 마커 발현 확인 실험
n/ENTER 유도 시 회수한 10㎕/mL(v/v)의 EVs를 인간 섬유아세포에 처리한 후 3일 동안 배양하여 세포 리프로그래밍 효과를 확인하였다. 배양된 세포는 ICC 분석을 위해 상기 실시예 13과 같이 1차 항체로 토끼-항-Sox1(1:200, abcam), Sox2(1:250, abcam), Pax6(1:200, abcam) 및 마우스-항-Nestin (1:250, Thermo Scientific), 2차 항체로 항-토끼 컨쥬게이티드 Alexa-488(1:1000, Thermo excitation/emission, 495/519nm) 및 항-마우스 컨쥬게이티드 Alexa-594(1:1000, Thermo, alexa 488 excitation/emission, 495/519 nm; alexa 594 excitation/emission, 590/617 nm)를 사용하고, DAPI가 포함된 마운팅 용액으로 마운팅한 후 후 공초점 레이저현미경으로 이미지를 분석하였다. qPCR 분석은 3일간 배양된 세포에서 Trizol(Takara)을 이용하여 전체 RNA를 회수한 후 Superscrip 2 kit(Invitrogen)로 cDNA를 합성하였다. PCR 분석은 신경줄기세포 마커인 Sox1, Sox2, Pax6 및 Nestin에 대해 Real time PCR 기기(ab step one plus, AB)로 분석하였다.
도 47에 나타난 바와 같이, ICC 분석을 통해 인간 섬유아세포 핵에서 신경줄기세포 마커인 Sox1, Sox2 및 Pax6의 발현이 관찰되었으며 세포질에서 Nestin의 발현이 관찰되었다. 유전자 발현을 real time PCR로 qPCR 분석한 결과 Sox1, Sox2, Pax6 및 Nestin 유전자는 EVs 처리되지 않은 정상 섬유아세포 대비 약 200 배 정도 과발현되었다.
qPCR 프라이머 리스트
유전자 부호 프라이머 서열 (5'-3')
정방향 역방향
다능성마커 Oct4 GGGTTTTTGGGATTAAGTTCTTCA GCCCCCACCCTTTGTGTT
Sox2 CAAAAATGGCCATGCAGGTT AGTTGGGATCGAACAAAAGCTATT
Nanog ACAACTGGCCGAAGAATAGCA GGTTCCCAGTCGGGTTCAC
신경 줄기세포 마커 Sox1 TCTGTTAACTCACCGGGACC ACTCCAGGGTACACACAGGG
Sox2 GGAGTGCAATAGGGCGGAAT CCAGTTGTAGACACGCACCT
Pax6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT
Nestin CTCCAGAAACTCAAGCACC TCCTGATTCTCCTCTTCCA
Gapdh ATGGGGAAGGTGAAGGTCG GGGTCATTGATGGCAACAATATC
본 발명은 세포치료제 분야에 사용할 수 있다.

Claims (32)

  1. 분화 또는 미분화 세포 및 배양 배지의 혼합물에 환경유입(environmental influx)을 촉진할 수 있는 물리적 자극을 제공하고,
    상기 물리적 자극을 제공받은 혼합물을 일정 시간 배양하여 리프로그래밍된 세포를 수득하는 것을 포함하는, 세포의 리프로그래밍 방법.
  2. 제1항에 있어서,
    환경유입은 물리적 자극이 제공된 분화 또는 미분화 세포에서 배출되는 유전물질, 화학물질, 소분자, 엑소좀 또는 엑소좀 함유 세포 밖 소포체(extracellular vesicles); 또는 배양 배지 성분의 세포 내 유입을 포함하는, 세포의 리프로그래밍 방법.
  3. 제1항에 있어서,
    물리적 자극은 초음파, 레이저, 자기장, 플라즈마, 발광 다이오드(light-emitting diode), 전기적 자극, 화학적 노출, 열 처리 또는 산 처리 중 어느 하나인, 세포의 리프로그래밍 방법.
  4. 제1항에 있어서,
    분화 또는 미분화 세포는 체세포, 암세포, 기관 내 조직세포, 유도만능줄기세포 또는 배아줄기세포 중 어느 하나인, 세포의 리프로그래밍 방법.
  5. 제1항에 있어서,
    리프로그래밍된 세포는 다능성(pluripotency) 세포; 또는, 간세포, 조골세포, 지방세포, 근육세포, 신경세포, 성상세포, 각질세포, 모근세포, 췌장 베타세포 또는 심근세포를 포함하는 분화 세포 중 어느 하나이고, 상기 분화 또는 미분화 세포와 리프로그래밍된 세포는 서로 상이한 세포 표현형을 갖는 것인, 세포의 리프로그래밍 방법.
  6. 제5항에 있어서,
    다능성 세포는 OCT3/4, SOX2, NANOG, c-MYC, KLF4, TDGF1, SSEA4, TRA-1-60, PAX6, Nestin, Brachyury, SMA, GATA4, 또는 AFP 중 어느 하나의 다능성 마커 또는 3배엽 마커 유전자를 발현하는 세포인, 세포의 리프로그래밍 방법.
  7. 제5항에 있어서,
    분화 세포는 PAX6, Nestin, Sox1, Sox2, MAP2, TuJ1, GFAP 또는 O4 중 어느 하나를 발현하는 신경세포; Desmin, Actinin, Pax3, SMA, GATA4 또는 NKX2-5 중 어느 하나를 발현하는 근육세포; AFP, HNF1a, HNF4a, CK18 또는 ALB 중 어느 하나를 발현하는 간세포; 또는 oil red O 염색이 되며, Pparc2, C/ebpa, aP2 또는 Fabp4 중 어느 하나를 발현하는 지방세포 중 어느 하나인, 세포의 리프로그래밍 방법.
  8. 제1항에 있어서,
    배양 배지는 줄기세포 배양 배지, 다분화능 (multipotent)세포 분화유도배지, 간세포 분화유도배지, 골형성 분화유도배지, 지방세포 분화유도배지, 근육세포 분화유도배지, 성상세포 분화유도배지, 신경계세포 분화유도배지, 혈관내피세포 분화유도배지, 각질세포 분화유도배지, 췌장 베타세포 분화유도배지 또는 심근세포 분화유도배지 중 어느 하나인, 세포의 리프로그래밍 방법.
  9. 제1항 또는 제3항에 있어서,
    배양 배지와 분화 또는 미분화 세포를 혼합하기 전에 배양 배지에 출력강도 1W/cm2 내지 20W/cm2의 초음파를 1분 내지 20분 동안 처리하는 것을 추가로 포함하는, 세포의 리프로그래밍 방법.
  10. 제1항 또는 제3항에 있어서,
    배양 배지와 분화 또는 미분화 세포의 혼합물에 대한 초음파 처리는 출력강도 0.5W/cm2 내지 3W/cm2로 1초 내지 5초 동안 수행하는, 세포의 리프로그래밍 방법.
  11. 제1항 또는 제3항에 있어서,
    배양 배지와 분화 또는 미분화 세포를 혼합하기 전에 배양 배지에 300 내지 900nm인 파장 대역의 펄스형 레이저 빔을 1분 내지 20분 동안 조사하는 것을 추가로 포함하는, 세포의 리프로그래밍 방법.
  12. 제1항 또는 제3항에 있어서,
    배양 배지와 분화 또는 미분화 세포의 혼합물에 대한 레이저 처리는 300 내지 900nm인 파장 대역의 펄스형 레이저 빔을 1초 내지 10초 동안 조사하는 것인, 세포의 리프로그래밍 방법.
  13. 제1항 또는 제3항에 있어서,
    배양배지와 분화 또는 미분화 세포를 혼합하기 전에 배양 배지에 40 내지 50℃의 온도 조건에서 5분 내지 20분 동안 열 처리하는 것을 추가로 포함하는, 세포의 리프로그래밍 방법.
  14. 제1항 또는 제3항에 있어서,
    배양 배지와 분화 또는 미분화 세포의 혼합물에 대한 열 처리는 40 내지 50℃의 온도 조건에서 1분 내지 10분 동안 노출한 후 0℃ 내지 4℃의 온도 조건에서 5 내지 10초간 노출하여 수행되는 것인, 세포의 리프로그래밍 방법.
  15. 제1항에 있어서,
    물리적 자극이 제공된 혼합물은 부유 배양 또는 부착 배양 방식을 통해 1일 내지 20일 동안 배양되는, 세포의 리프로그래밍 방법.
  16. 분화 또는 미분화 세포 및 배양 배지의 혼합물에 환경유입(environmental influx)을 촉진할 수 있는 물리적 자극을 제공하고,
    상기 물리적 자극을 제공받은 혼합물을 1일 내지 6일 동안 배양하고,
    상기의 배양물에서 분리한 엑소좀 함유 세포 밖 소포체(extracellular vesicles)와 분화 또는 미분화 세포를 혼합하여 일정 시간 동안 배양하여 리프로그래밍된 세포를 수득하는 것을 포함하는, 세포의 리프로그래밍 방법.
  17. 제16항에 있어서,
    물리적 자극은 초음파, 레이저, 자기장, 플라즈마, 발광 다이오드(light-emitting diode), 전기적 자극, 화학적 노출, 열 처리 또는 산 처리 중 어느 하나인, 세포의 리프로그래밍 방법.
  18. 제16항에 있어서,
    분화 또는 미분화 세포는 체세포, 암세포, 기관 내 조직세포, 유도만능줄기세포 또는 배아줄기세포 중 어느 하나인, 세포의 리프로그래밍 방법.
  19. 제16항에 있어서,
    배양 배지는 줄기세포 배양 배지, 다분화능(multipotent)세포 분화유도배지, 간세포 분화유도배지, 골형성 분화유도배지, 지방세포 분화유도배지, 근육세포 분화유도배지, 성상세포 분화유도배지, 신경계세포 분화유도배지, 혈관내피세포 분화유도배지, 각질세포 분화유도배지, 췌장 베타세포 분화유도배지 또는 심근세포 분화유도배지 중 어느 하나인, 세포의 리프로그래밍 방법.
  20. 제16항 또는 제17항에 있어서,
    배양 배지와 분화 또는 미분화 세포를 혼합하기 전에 배양 배지에 출력강도 1W/cm2 내지 20W/cm2의 초음파를 1분 내지 20분 동안 처리하는 것을 추가로 포함하는, 세포의 리프로그래밍 방법.
  21. 제16항 또는 제17항에 있어서,
    배양 배지와 분화 또는 미분화 세포의 혼합물에 대한 초음파 처리는 출력강도 0.5W/cm2 내지 3W/cm2로 1초 내지 5초 동안 수행하는, 세포의 리프로그래밍 방법.
  22. 제16항 또는 제17항에 있어서,
    배양 배지와 분화 또는 미분화 세포를 혼합하기 전에 배양 배지에 300 내지 900nm인 파장 대역의 펄스형 레이저 빔을 1분 내지 20분 동안 조사하는 것을 추가로 포함하는, 세포의 리프로그래밍 방법.
  23. 제16항 또는 제17항에 있어서,
    배양 배지와 분화 또는 미분화 세포의 혼합물에 대한 레이저 처리는 300 내지 900nm인 파장 대역의 펄스형 레이저 빔을 1초 내지 10초 동안 조사하는 것인, 세포의 리프로그래밍 방법.
  24. 제16항 또는 제17항에 있어서,
    배양배지와 분화 또는 미분화 세포를 혼합하기 전에 배양 배지에 40 내지 50℃의 온도 조건에서 5분 내지 20분 동안 열 처리하는 것을 추가로 포함하는, 세포의 리프로그래밍 방법.
  25. 제16항 또는 제17항에 있어서,
    배양 배지와 분화 또는 미분화 세포의 혼합물에 대한 열 처리는 40 내지 50℃의 온도 조건에서 1분 내지 10분 동안 노출한 후 0℃ 내지 4℃의 온도 조건에서 5 내지 10초간 노출하여 수행되는 것인, 세포의 리프로그래밍 방법.
  26. 제16항에 있어서,
    물리적 자극이 제공된 혼합물은 부유 배양 또는 부착 배양 방식을 통해 배양되는, 세포의 리프로그래밍 방법.
  27. 제16항에 있어서,
    엑소좀 함유 세포 밖 소포체는 배양물을 원심분리하여 회수하는, 세포의 리프로그래밍 방법.
  28. 제16항에 있어서, 엑소좀 함유 세포 밖 소포체는
    OCT3/4, SOX2, NANOG, c-MYC, KLF4, TDGF1, SSEA4, TRA-1-60, PAX6, Nestin, Brachyury, SMA, GATA4, 또는 AFP 중 어느 하나의 다능성 마커 또는 3배엽 마커;
    PAX6, Nestin, Sox1, Sox2, MAP2, TuJ1, GFAP 또는 O4 중 어느 하나의 신경세포 마커;
    Desmin, Actinin, Pax3, SMA, GATA4 또는 NKX2-5 중 어느 하나의 근육세포 마커;
    AFP, HNF1a, HNF4a, CK18 또는 ALB 중 어느 하나의 간세포 마커; 또는
    oil red O 염색이 되며, Pparc2, C/ebpa, aP2 또는 Fabp4 중 어느 하나의 지방세포 마커를 발현하는 것인, 세포의 리프로그래밍 방법.
  29. 제16항에 있어서,
    엑소좀 함유 세포 밖 소포체와 분화 또는 미분화 세포는 부유 배양 또는 부착 배양 방식을 통해 1일 내지 20일 동안 배양되는, 세포의 리프로그래밍 방법.
  30. 제16항에 있어서,
    리프로그래밍된 세포는 다능성(pluripotency) 세포; 또는, 간세포, 조골세포, 지방세포, 근육세포, 신경세포, 성상세포, 각질세포, 모근세포, 췌장 베타세포 또는 심근세포를 포함하는 분화 세포 중 어느 하나이고, 상기 분화 또는 미분화 세포와 리프로그래밍된 세포는 서로 상이한 세포 표현형을 갖는 것인, 세포의 리프로그래밍 방법.
  31. 제30항에 있어서,
    다능성 세포는 OCT3/4, SOX2, NANOG, c-MYC, KLF4, TDGF1, SSEA4, TRA-1-60, PAX6, Nestin, Brachyury, SMA, GATA4, 또는 AFP 중 어느 하나의 다능성 마커 또는 3배엽 마커 유전자를 발현하는 세포인, 세포의 리프로그래밍 방법.
  32. 제30항에 있어서,
    분화 세포는 PAX6, Sox1, Sox2, Nestin, MAP2, TuJ1, GFAP 또는 O4 중 어느 하나를 발현하는 신경세포; Desmin, Pax3, Actinin, SMA, GATA4 또는 NKX2-5 중 어느 하나를 발현하는 근육세포; AFP, HNF1a, HNF4a, CK18 또는 ALB 중 어느 하나를 발현하는 간세포; 또는 oil red O 염색이 되며, Pparc2, C/ebpa, aP2 또는 Fabp4 중 어느 하나를 발현하는 지방세포 중 어느 하나인, 세포의 리프로그래밍 방법.
PCT/KR2016/008754 2016-03-11 2016-08-09 물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법 WO2017155166A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/082,926 US11859175B2 (en) 2016-03-11 2016-08-09 Cell reprogramming method using physical stimulation-mediated environmental influx
EP16893680.5A EP3428275B1 (en) 2016-03-11 2016-08-09 Cell reprogramming method using imposition of physical stimulation-mediated environmental transition
CN201680084450.0A CN109089423A (zh) 2016-03-11 2016-08-09 利用由物理刺激引起的环境流入的细胞重编程方法
JP2018567550A JP7219618B2 (ja) 2016-03-11 2016-08-09 物理的刺激による環境流入を用いた細胞のリプログラミング方法
US18/512,026 US20240101998A1 (en) 2016-03-11 2023-11-17 Cell reprogramming method using imposition of physical stimulation-mediated environmental transition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0029611 2016-03-11
KR20160029611 2016-03-11
KR10-2016-0071852 2016-06-09
KR1020160071852A KR101855967B1 (ko) 2016-03-11 2016-06-09 물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/082,926 A-371-Of-International US11859175B2 (en) 2016-03-11 2016-08-09 Cell reprogramming method using physical stimulation-mediated environmental influx
US18/512,026 Division US20240101998A1 (en) 2016-03-11 2023-11-17 Cell reprogramming method using imposition of physical stimulation-mediated environmental transition

Publications (1)

Publication Number Publication Date
WO2017155166A1 true WO2017155166A1 (ko) 2017-09-14

Family

ID=59789914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008754 WO2017155166A1 (ko) 2016-03-11 2016-08-09 물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법

Country Status (1)

Country Link
WO (1) WO2017155166A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200102547A1 (en) * 2018-10-02 2020-04-02 Stemon Inc. Reprosomes, as exosomes capable of inducing reprogramming of cells and preparation method thereof
WO2020243091A1 (en) * 2019-05-24 2020-12-03 University Of Central Florida Research Foundation, Inc. Xeno-free and transgene-free reprograming of mesenchymal stem cells toward neural progenitor cells
CN113061579A (zh) * 2019-12-12 2021-07-02 中国科学院深圳先进技术研究院 一种外泌体及其制备方法及应用
JP2022502032A (ja) * 2018-10-02 2022-01-11 ステムオン インコーポレーテッドStemon Inc. 誘導されたエキソソームを含む皮膚再生及び創傷治癒用組成物
CN116716288A (zh) * 2023-04-28 2023-09-08 四川大学 一种声波振动提高外泌体产量的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052720B1 (en) * 1999-06-17 2006-05-30 University Of Wales College Of Medicine Spheroid preparation
KR20140031943A (ko) * 2011-05-13 2014-03-13 더 리전트 오브 더 유니버시티 오브 캘리포니아 세포의 선택적 트랜스펙션을 위한 광열 기판
KR20150045935A (ko) * 2012-04-24 2015-04-29 더 브리검 앤드 우먼즈 하스피털, 인크. 다능성 세포를 다시 생성하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052720B1 (en) * 1999-06-17 2006-05-30 University Of Wales College Of Medicine Spheroid preparation
KR20140031943A (ko) * 2011-05-13 2014-03-13 더 리전트 오브 더 유니버시티 오브 캘리포니아 세포의 선택적 트랜스펙션을 위한 광열 기판
KR20150045935A (ko) * 2012-04-24 2015-04-29 더 브리검 앤드 우먼즈 하스피털, 인크. 다능성 세포를 다시 생성하는 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LV , YONGGANG ET AL.: "Effects of Low-intensity Pulsed Ultrasound on Cell Viability, Proliferation and Neural Differentiation of Induced Pluripotent Stem cells-derived Neural Crest Stem Cells", BIOTECHNOLOGY LETTERS, vol. 35, no. 12, 28 September 2013 (2013-09-28), pages 2201 - 2212, XP055551630 *
See also references of EP3428275A4 *
UCHUGONOVA, AISADA ET AL.: "Optical Reprogramming of Human Cells in an Ultrashort Femtosecond Laser Microfluidic Transfection Platform", JOURNAL OF BIOPHOTONICS, vol. 9, no. 9, 5 November 2015 (2015-11-05), pages 942 - 947, XP055261723 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200102547A1 (en) * 2018-10-02 2020-04-02 Stemon Inc. Reprosomes, as exosomes capable of inducing reprogramming of cells and preparation method thereof
JP2020054329A (ja) * 2018-10-02 2020-04-09 ステムオン インコーポレーテッドStemon Inc. 細胞のリプログラミングを誘導するリプロソーム及びその製造方法
JP2022502032A (ja) * 2018-10-02 2022-01-11 ステムオン インコーポレーテッドStemon Inc. 誘導されたエキソソームを含む皮膚再生及び創傷治癒用組成物
JP7249693B2 (ja) 2018-10-02 2023-03-31 ステムオン インコーポレーテッド 誘導されたエキソソームを含む皮膚再生及び創傷治癒用組成物
WO2020243091A1 (en) * 2019-05-24 2020-12-03 University Of Central Florida Research Foundation, Inc. Xeno-free and transgene-free reprograming of mesenchymal stem cells toward neural progenitor cells
CN113061579A (zh) * 2019-12-12 2021-07-02 中国科学院深圳先进技术研究院 一种外泌体及其制备方法及应用
CN116716288A (zh) * 2023-04-28 2023-09-08 四川大学 一种声波振动提高外泌体产量的方法

Similar Documents

Publication Publication Date Title
WO2017155166A1 (ko) 물리적 자극에 의한 환경유입을 이용한 세포 리프로그래밍 방법
US11560546B2 (en) Methods for neural conversion of human embryonic stem cells
JP6617310B2 (ja) in vitroでの内側神経節隆起前駆細胞の作製
US20240101998A1 (en) Cell reprogramming method using imposition of physical stimulation-mediated environmental transition
WO2010147395A2 (en) Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same
WO2011043591A2 (en) Method for differentiation into retinal cells from stem cells
WO2011043592A2 (en) Compositions for inducing differentiation into retinal cells from retinal progenitor cells or inducing proliferation of retinal cells comprising wnt signaling pathway activators
WO2016032263A1 (en) Method for differentiation into retinal ganglion cells from stem cells
WO2017179767A1 (ko) 지방줄기세포에서 신경줄기세포, 신경세포 및 가바성 신경세포로의 분화 유도 방법, 및 인간 골수 유래 중간엽 줄기세포로부터 성장인자를 다량 분비하는 인간 줄기세포의 분화 유도 방법
WO2013180395A1 (ko) 다능성 줄기세포의 제작, 유지, 증식을 증진하는 대사산물 및 이를 포함하는 조성물과 배양방법
WO2014163425A1 (ko) Hmga2를 이용하여 비신경 세포로부터 리프로그래밍된 유도 신경줄기세포를 제조하는 방법
JP7252076B2 (ja) エネルギーを利用した多能性細胞誘導装置及び方法
WO2019083281A2 (ko) 신규한 근골격계 줄기세포
WO2017051978A1 (ko) 심장내막 유래 성체줄기세포로부터 제조된 유도만능 줄기세포의 심혈관계 세포로의 분화방법 및 이의 용도
Hirano et al. Human and mouse induced pluripotent stem cells are differentially reprogrammed in response to kinase inhibitors
WO2021045374A1 (ko) 증식 가능한 간 오가노이드 분화용 배지 조성물 및 이를 이용한 간 오가노이드의 제조방법
WO2018135907A1 (ko) 슈반 세포 전구체 및 이로부터 분화된 슈반 세포의 제조 방법
Cheng et al. Kinetic analysis of porcine fibroblast reprogramming toward pluripotency by defined factors
Lee et al. Self-reprogramming of spermatogonial stem cells into pluripotent stem cells without microenvironment of feeder cells
WO2016089178A1 (ko) 에너지를 이용한 다능성 세포 유도 장치 및 방법
Lee et al. An ultra-effective method of generating extramultipotent cells from human fibroblasts by ultrasound
Kaini et al. Recombinant xeno-free vitronectin supports self-renewal and pluripotency in protein-induced pluripotent stem cells
WO2020139041A1 (ko) 전신경화증 질환 모델 및 이의 용도
WO2013162330A1 (ko) 키메라 중간엽 줄기세포군, 그의 제조방법 및 편도줄기세포를 이용하여 부갑상선 호르몬을 생산하는 방법
CA3224981A1 (en) Structurally complete organoids

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018567550

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016893680

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016893680

Country of ref document: EP

Effective date: 20181011

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893680

Country of ref document: EP

Kind code of ref document: A1