WO2023085172A1 - シューズソール用ブロックポリマー、シューズソール用樹脂組成物及びシューズソール - Google Patents

シューズソール用ブロックポリマー、シューズソール用樹脂組成物及びシューズソール Download PDF

Info

Publication number
WO2023085172A1
WO2023085172A1 PCT/JP2022/040873 JP2022040873W WO2023085172A1 WO 2023085172 A1 WO2023085172 A1 WO 2023085172A1 JP 2022040873 W JP2022040873 W JP 2022040873W WO 2023085172 A1 WO2023085172 A1 WO 2023085172A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
parts
block polymer
shoe sole
weight
Prior art date
Application number
PCT/JP2022/040873
Other languages
English (en)
French (fr)
Inventor
浩信 徳永
真範 服部
友平 田中
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Publication of WO2023085172A1 publication Critical patent/WO2023085172A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to block polymers for shoe soles, resin compositions for shoe soles, and shoe soles.
  • EVA resin ethylene vinyl acetate resin
  • shoe soles a resin for shoe soles.
  • Patent Document 1 a sports shoe sole composed of a plurality of members using EVA resin has been proposed.
  • An object of the present invention is to provide a shoe sole having a small compressive strain.
  • the present invention provides a block polymer (X) for shoe soles, which has, as constituent units, blocks of the following polyolefin (a) and blocks of the following polyalkylene glycol (b);
  • the shoe sole (Z) using the block polymer (X) for shoe sole or the resin composition (Y) for shoe sole of the present invention has a small compressive strain, excellent durability, and excellent resilience. It has the effect of
  • the polyolefin (a) in the present invention includes a polyolefin (a1-1) having a carboxyl group or a carboxylic anhydride group at both ends of the polymer, a polyolefin (a1-2) having a hydroxyl group at both ends of the polymer, and an amino group.
  • the above polyolefins (a1-1) to (a2-5) can be obtained by known production methods.
  • polyolefins (a1-1) and polyolefins (a2-1) having terminal carboxyl groups or carboxylic anhydride groups are preferred from the viewpoint of ease of modification and heat resistance during molding.
  • terminal means a terminal end where the repeating structure of the monomer units constituting the polymer is interrupted.
  • both ends means both ends of the main chain of the polymer, and "single end” means either one of the ends of the main chain of the polymer.
  • the polyolefin (a) for example, introduces a carboxyl group, a carboxylic anhydride group, a hydroxyl group, an amino group, or an isocyanate group to both ends of a polyolefin (a1-0) whose main component is a polyolefin that can be modified at both ends.
  • the term "main component" used herein means that the weight of the polyolefin that can be modified at both ends in the total weight of the polyolefin is 50% by weight or more (preferably more than 50% by weight) of the total weight of the polyolefin. means.
  • the weight of the polyolefin that can be modified at both ends is less than 50% by weight of the total weight of the polyolefin, the total weight of the polyolefin that can be modified at both ends and the weight of the polyolefin that can be modified at one end described later If the weight of the polyolefin is 50% by weight or more of the total weight of the polyolefin, and the weight of the polyolefin that can be modified at both ends is the weight of the polyolefin that can be modified at one end, the polyolefin is polyolefin (a1-0). and
  • the polyolefin (a1-0) includes those obtained by polymerization and those obtained by degradation.
  • Polyolefins obtained by polymerization include (co)polymerization of one or a mixture of two or more olefins having 2 to 30 carbon atoms (preferably 2 to 12, more preferably 2 to 10 carbon atoms) [“(co)polymerization ” means polymerization or copolymerization. Same below. ] and contains 30 mol % or more of structural units derived from propylene in the polyolefin.
  • Polyolefins obtained by the degradation method include polyolefins obtained by mechanically, thermally or chemically degrading polyolefins of high molecular weight [preferably number average molecular weight (hereinafter abbreviated as Mn) of 10,000 to 150,000]. is mentioned.
  • Mn number average molecular weight
  • a carboxyl group, a carboxylic anhydride group, a hydroxyl group, an amino group, or an isocyanate group it is preferably obtained by a degradation method.
  • the number average molecular weight (Mn) of the polymer in the invention can be measured using gel permeation chromatography (GPC) under the following conditions.
  • Sample solution 0.3 wt% ortho-dichlorobenzene solution
  • Solution injection amount 100 ⁇ l
  • Flow rate 1 ml/min
  • ⁇ Measurement temperature 135°C
  • Detector Refractive index detector
  • the polyolefin obtained by thermal degradation is not particularly limited, but is obtained by heating a high molecular weight polyolefin in an inert gas (for example, by the method described in JP-A-3-62804, 300 to 450 ° C. (obtained by heating at room temperature for 0.5 to 10 hours) and those thermally degraded by heating in air.
  • High-molecular-weight polyolefins used in the thermal degradation method include (co)polymers of one or a mixture of two or more olefins having 2 to 30 carbon atoms (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms) [ Mn is preferably 12,000 to 100,000, more preferably 15,000 to 70,000; Melt flow rate (hereinafter abbreviated as MFR.
  • the unit is g/10min) is preferably 0.5 to 150, more preferably 1 to 100], preferably having 30 mol % or more of structural units derived from propylene in the polyolefin.
  • the MFR is a numerical value representing the melt viscosity of a resin, and the larger the numerical value, the lower the melt viscosity.
  • an extrusion plastometer specified in JIS K6760 is used, and the measuring method conforms to the method specified in JIS K7210-1 (2014).
  • JIS K7210-1 (2014) For example, in the case of polypropylene, it is measured under conditions of 230° C. and a load of 2.16 kgf.
  • Examples of olefins having 2 to 30 carbon atoms include ⁇ -olefins having 2 to 30 carbon atoms and dienes having 4 to 30 carbon atoms.
  • Examples of ⁇ -olefins having 2 to 30 carbon atoms include ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-pentene, 1-octene, 1-decene, 1-dodecene, 1-icosene and 1- and tetracosene.
  • Examples of dienes having 4 to 30 carbon atoms include butadiene, isoprene, cyclopentadiene and 1,11-dodecadiene.
  • olefins having 2 to 30 carbon atoms ethylene, propylene, ⁇ -olefins having 4 to 12 carbon atoms, butadiene, isoprene and mixtures thereof are preferable from the viewpoint of molecular weight control, and ethylene, Propylene, ⁇ -olefins having 4 to 10 carbon atoms, butadiene and mixtures thereof, particularly preferably ethylene, propylene and mixtures thereof.
  • Mn of the polyolefin (a1-0) is preferably 800 to 10,000, more preferably 1,000 to 8,000, particularly preferably 1,200 to 6,000, from the viewpoint of compression strain and resilience. is.
  • polyolefins (a1-0) those having carbon-carbon double bonds at both ends are preferred, and the average number of terminal double bonds per molecule of such polyolefins (a1-0) is the compression strain and From the viewpoint of resilience, the number is preferably 1.1 to 2.5, more preferably 1.3 to 2.2, particularly preferably 1.5 to 2.0.
  • polyolefins (a1-0 ) is easily obtained.
  • the thermal degradation conditions are appropriately selected so as to obtain the desired Mn and average number of terminal double bonds.
  • the polyolefin (a2-0) whose main component is a polyolefin that can be modified at one end can be obtained by the aforementioned polymerization method or degradation method.
  • Mn of the polyolefin (a2-0) is preferably from 800 to 10,000, more preferably from 1,000 to 10,000, particularly preferably from 1,200 to 6,000, from the viewpoint of compression strain and resilience. is.
  • the term "main component" used herein means that the weight of the polyolefin that can be modified at one end in the total weight of the polyolefin is 50% by weight or more (preferably more than 50% by weight) of the total weight of the polyolefin. means.
  • the polyolefin that can be modified at one end is less than 50% by weight of the total weight of the polyolefin, the total weight of the polyolefin that can be modified at one end and the weight of the polyolefin that can be modified at both ends is the total weight of the polyolefin. and the weight of the polyolefin that can be modified at one end is greater than or equal to the weight of the polyolefin that can be modified at both ends, the polyolefin is defined as polyolefin (a2-0). .
  • the polyolefins (a2-0) those having a carbon-carbon double bond at one end are preferred, and the average number of terminal double bonds per molecule of such polyolefins (a2-0) is the compression strain and From the viewpoint of resilience, the number is preferably 0.5 to 1.4, more preferably 0.6 to 1.3, particularly preferably 0.7 to 1.2, and most preferably 0.8 to 1.1 pieces.
  • polyolefins (a2 -0) is readily obtained. Since this low-molecular-weight polyolefin has a carbon-carbon double bond at its terminal, it can be easily modified by introducing a carboxyl group, a carboxylic anhydride group, a hydroxyl group, an amino group, an isocyanate group, or the like.
  • the thermal degradation conditions are appropriately selected so as to obtain the desired Mn and average number of terminal double bonds.
  • Polyolefin (a1-0) and polyolefin (a2-0) are generally obtained as a mixture thereof, and the mixture may be used as it is or after purification and separation. Among these, a mixture is preferred from the viewpoint of production cost and the like.
  • polyolefins (a1-1) to (a1-5) having a carboxyl group, a carboxylic anhydride group, a hydroxyl group, an amino group or an isocyanate group at both ends of the polymer will be described.
  • polyolefins (a2-1) to (a2-5) having can be obtained by
  • a polyolefin (a1-1-1) having a structure obtained by modifying the end of the polyolefin (a1-0) with an ⁇ , ⁇ -unsaturated carboxylic acid (anhydride), the polyolefin (a1- 1-1) having a structure secondary modified with a lactam or aminocarboxylic acid (a1-1-2), polyolefin (a1-1-) having a structure modified by oxidation or hydroformylation of polyolefin (a1-0) 3), a polyolefin (a1-1-4) having a structure obtained by secondary modification of the polyolefin (a1-1-3) with a lactam or aminocarboxylic acid, a mixture of two or more of these, and the like can be used.
  • ⁇ , ⁇ -unsaturated carboxylic acid (anhydride) means an ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride.
  • Polyolefin (a1-1-1) can be obtained by modifying polyolefin (a1-0) with ⁇ , ⁇ -unsaturated carboxylic acid (anhydride).
  • ⁇ , ⁇ -unsaturated carboxylic acids (anhydrides) used for modification include monocarboxylic acids, dicarboxylic acids and anhydrides thereof, specifically (meth)acrylic acid, maleic acid (or its anhydride substance), fumaric acid, itaconic acid (or its anhydride) and citraconic acid (or its anhydride).
  • dicarboxylic acids and mono- or dicarboxylic acid anhydrides preferred are dicarboxylic acids and mono- or dicarboxylic acid anhydrides, more preferred are maleic acid (or its anhydride) and fumaric acid, and particularly preferred are is maleic acid (or its anhydride).
  • maleic acid or its anhydride
  • fumaric acid particularly preferred are is maleic acid (or its anhydride).
  • (meth)acrylic acid means acrylic acid or methacrylic acid.
  • the amount of the ⁇ , ⁇ -unsaturated carboxylic acid (anhydride) used for modification is preferably 0.5 to 20% by weight, based on the weight of the polyolefin (a1-0), from the viewpoint of compression strain and resilience. more preferably 1 to 15% by weight, particularly preferably 2 to 10% by weight.
  • Modification with an ⁇ , ⁇ -unsaturated carboxylic acid (anhydride) is performed, for example, by adding an ⁇ , ⁇ -unsaturated carboxylic acid (anhydride) to the terminal double bond of the polyolefin (a1-0) by either a solution method or a melt method. It can be carried out by an addition reaction (ene reaction) with an acid (anhydride), and the reaction temperature is preferably 170 to 230°C.
  • the lactam used for the secondary modification may be a lactam having 6 to 12 carbon atoms.
  • caprolactam, laurolactam, and aminocarboxylic acids having 6 to 12 carbon atoms such as ⁇ -aminocaproic acid, ⁇ -aminocaprylic acid, ⁇ -aminocapric acid, 11-aminoundecane. acid, 12-aminododecanoic acid. Preferred among these are caprolactam and 12-aminododecanoic acid.
  • the acid value (unit: mgKOH/g) of the polyolefin (a1-1) depends on the reactivity with the polyalkylene glycol (b) and the block polymer (X) for shoe sole [hereinafter abbreviated as block polymer (X) From the viewpoint of ease of structure control, it is preferably 4 to 100 mgKOH/g, more preferably 4 to 50 mgKOH/g, and particularly preferably 10 to 50 mgKOH/g.
  • the acid value in the present invention is measured by titration using a KOH/methanol solution containing phenolphthalein as an indicator. Measured as oxidation number.
  • a hydroxyl group-containing polyolefin obtained by modifying the polyolefin (a1-1) with a hydroxyl group-containing amine, or a mixture of two or more thereof can be used.
  • Amines having a hydroxyl group that can be used for modification include amines having a hydroxyl group having 2 to 10 carbon atoms, specifically 2-aminoethanol, 3-aminopropanol, 1-amino-2-propanol, 4-amino butanol, 5-aminopentanol, 6-aminohexanol, 3-aminomethyl-3,5,5-trimethylcyclohexanol and the like.
  • amines having a hydroxyl group of 2 to 6 carbon atoms (2-aminoethanol, 3-aminopropanol, 4-aminobutanol, 5-aminopentanol and 6-amino hexanol, etc.), more preferred are 2-aminoethanol and 4-aminobutanol, and particularly preferred is 2-aminoethanol.
  • the amount of amine having a hydroxyl group used for modification is preferably 0.5 to 20% by weight, more preferably 1 to 20% by weight, based on the weight of the polyolefin (a1-1), from the viewpoint of compression strain and resilience. 15% by weight, particularly preferably 2 to 10% by weight.
  • the hydroxyl value of the polyolefin (a1-2) is preferably 10 to 120 mgKOH/g, more preferably 10 to 120 mgKOH/g, from the viewpoint of reactivity with the polyalkylene glycol (b) and ease of structural control of the block polymer (X). 15 to 110 mg KOH/g, particularly preferably 20 to 100 mg KOH/g.
  • polyolefin (a1-3) a polyolefin having an amino group obtained by modifying the polyolefin (a1-1) with a diamine and a mixture of two or more thereof can be used.
  • Diamines include aliphatic diamines having 2 to 12 carbon atoms [linear diamines (ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-, 1,3- or 2,3-diamino butane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane and 1,10-diaminodecane) and branched alkyl chains (1,5-diamino-3-methylpentane, 1,3-diamino-2,2-diethylpropanediamine, etc.)] and alicyclic diamines having 6 to 20 carbon atoms [1,4-diaminocyclohexane , 1,4-bis(aminomethyl)cyclohexane and 2,2-bis(4-a
  • diamines having 2 to 8 carbon atoms preferred from the viewpoint of ease of modification are diamines having 2 to 8 carbon atoms, more preferred are ethylenediamine, 1,6-diaminohexane, 1,7-diaminoheptane and 1,8-diaminooctane, Especially preferred are ethylenediamine and 1,6-diaminohexane, most preferred is ethylenediamine.
  • the amount of diamine used for modifying the polyolefin (a1-1) is preferably 0.5 to 20% by weight, more preferably 0.5 to 20% by weight, based on the weight of the polyolefin (a1-1), from the viewpoint of compression set and resilience. is 1 to 15% by weight, particularly preferably 2 to 10% by weight.
  • Modification of the polyolefin (a1-1) with a diamine is preferably from 0.5 to 1,000% by weight, based on the weight of the polyolefin (a1-1), from the viewpoint of preventing cross-linking reaction between polymer molecules. More preferably, 1 to 500% by weight, particularly preferably 2 to 300% by weight of diamine is used, and then unreacted diamine is removed at 120 to 230° C. under reduced pressure.
  • the amine value of the polyolefin (a1-3) is preferably 10-120 mgKOH/g, more preferably 15-110 mgKOH/g, particularly preferably 20-100 mgKOH/g, from the viewpoint of compression set and resilience.
  • polyolefin (a1-4) examples include polyolefins having isocyanate groups obtained by modifying polyolefins (a1-2) with polyisocyanates (compounds having two or more isocyanate (NCO) groups), and mixtures of two or more thereof.
  • polyisocyanates include aromatic polyisocyanates having 6 to 20 carbon atoms (excluding carbon atoms in the isocyanate group; hereinafter the same), aliphatic polyisocyanates having 2 to 18 carbon atoms, and alicyclic polyisocyanates having 4 to 15 carbon atoms.
  • Polyisocyanates, araliphatic polyisocyanates having 8 to 15 carbon atoms, modified products of these polyisocyanates, and mixtures of two or more thereof are included.
  • Aromatic polyisocyanates include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), crude TDI, 2,4'- or 4,4'-diphenylmethane Diisocyanate (MDI), 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatodiphenylmethane and 1 , 5-naphthylene diisocyanate and the like.
  • TDI 1,4-phenylene diisocyanate
  • MDI 4,4'-diphenylmethane Diisocyanate
  • 4,4'-diisocyanatobiphenyl 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatodiphen
  • Aliphatic polyisocyanates include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis(2-isocyanatoethyl)fumarate, bis(2-isocyanatoethyl)carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate and the like.
  • HDI hexamethylene diisocyanate
  • dodecamethylene diisocyanate 2,2,4-trimethylhexamethylene diisocyanate
  • lysine diisocyanate 2,6-diisocyanatomethylcaproate
  • bis(2-isocyanatoethyl)fumarate bis(2-isocyanatoethyl
  • Alicyclic polyisocyanates include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated TDI), bis(2-isocyanatoethyl )-4-cyclohexene-1,2-dicarboxylate and 2,5- or 2,6-norbornane diisocyanate.
  • IPDI isophorone diisocyanate
  • MDI dicyclohexylmethane-4,4'-diisocyanate
  • TDI methylcyclohexylene diisocyanate
  • bis(2-isocyanatoethyl )-4-cyclohexene-1,2-dicarboxylate 2,5- or 2,6-norbornane diisocyanate.
  • Aroaliphatic polyisocyanates include m- or p-xylylene diisocyanate (XDI) and ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate (TMXDI).
  • modified polyisocyanate examples include urethane modified, urea modified, carbodiimide modified and uretdione modified. Preferred among the polyisocyanates are TDI, MDI and HDI, more preferred is HDI.
  • the reaction between polyisocyanate and polyolefin (a1-2) can be carried out in the same manner as in general urethanization reaction.
  • the equivalent ratio (NCO:OH) between the isocyanate groups of the polyisocyanate and the hydroxyl groups of the polyolefin (a1-2) is preferably 1.8:1 to 3:1, more preferably 2:1.
  • a catalyst generally used for the urethanization reaction may be used, if necessary.
  • metal catalysts ⁇ tin catalysts [dibutyltin dilaurate and stannus octoate, etc.], lead catalysts [lead 2-ethylhexanoate, lead octoate, etc.], other metal catalysts [metal naphthenate (cobalt naphthenate etc.) and phenylmercuric propionate etc.] ⁇ ; amine catalyst ⁇ triethylenediamine, diazabicycloalkene [1,8-diazabicyclo[5,4,0]undecene-7 etc.], dialkylaminoalkylamine (dimethylaminoethylamine and dimethylaminooctylamine, etc.), carbonates or organic acid (formic acid, etc.) salts of heterocyclic aminoalkylamines [2-(1-aziridinyl)ethylamine and 4-(1-piperidinyl)-2-hexylamine, etc.], N -
  • polyolefin (a1-5) a polyolefin having a structure obtained by modifying both ends of the polyolefin (a1-0) with an ⁇ , ⁇ -unsaturated carboxylic acid anhydride, and a structure obtained by secondary modification with a diolamine.
  • Polyolefin (a1-5-1) having Diolamine used for secondary modification includes, for example, diethanolamine.
  • Mn of the polyolefin (a) is preferably 1,000 to 10,000, more preferably 1,500 to 8,500, particularly preferably 2,000 to 7,000, from the viewpoint of compression strain and resilience. is.
  • the polyolefin (a) contains propylene and ethylene as constituent monomers, and the weight ratio of propylene and ethylene (propylene/ethylene) is 90/10 to 99.5/0.5, preferably 96/4 to 98. /2. If the weight ratio (propylene/ethylene) is less than 90/10 or exceeds 99.5/0.5, the resilience is poor.
  • the weight ratio (propylene/ethylene) tends to directly reflect the weight ratio of the constituent monomers of the high-molecular-weight polyolefin and the constituent monomers used in the polymerization method described above. A desired weight ratio can be obtained by appropriately adjusting the weight ratio.
  • a propylene/ethylene copolymer is preferable from the viewpoint of resilience.
  • the polyolefin (a1-1) is preferable, and the polyolefin (a1-1-2) is more preferable, from the viewpoint of compressive strain and resilience.
  • the polyalkylene glycol (b) in the present invention contains an alkylene glycol having 3 to 4 carbon atoms as a constituent monomer. It is preferred that the alkylene glycol has 4 carbon atoms.
  • Polyalkylene glycol (b) includes, for example, polytetramethylene glycol, polypropylene glycol, and terminal-modified products thereof (amino group-modified products, glycidyl etherified products). Among these, from the viewpoint of productivity of the block polymer (X), those having a hydroxyl group at at least one end of the polymer main chain are preferable.
  • Polyalkylene glycol (b) can be obtained by a known production method (polymerizing terorahydrofuran and propylene oxide under a catalyst). Moreover, the modified product is also obtained by a well-known manufacturing method. Polyalkylene glycol (b) may be obtained by the above method or may be a commercially available product.
  • the number average molecular weight (Mn) of the polyalkylene glycol (b) is preferably from 500 to 4,000, more preferably from 750 to 3,000, particularly preferably from 1,000 to 1,000, from the viewpoint of compression strain and resilience. 3,000.
  • the block polymer (X) for shoe soles of the present invention has the above polyolefin (a) and polyalkylene glycol (b) as structural units.
  • the polyolefin (a) and the polyalkylene glycol (b) constituting the block polymer (X) may each be one kind or two or more kinds.
  • Mn of the block of polyolefin (a) is preferably 1,000 to 10,000, more preferably 1,500 to 8,500, and particularly preferably 2,000 to 7, from the viewpoint of compressive strain and resilience. , 000.
  • Mn of the block of polyalkylene glycol (b) is preferably 500 to 4,000, more preferably 750 to 3,000, particularly preferably 1,000 to 3,000, from the viewpoint of compression strain and resilience. is.
  • the structure in which the polyolefin (a) block and the polyalkylene glycol (b) block constituting the block polymer (X) are bonded includes (a)-(b) type, (a)-(b)-( a) type, (b)-(a)-(b) type and [(a)-(b)] n type (where n represents the average number of repetitions).
  • the block polymer (X) can be produced, for example, by reacting the polyolefin (a1-1) and the polyalkylene glycol (b).
  • the block polymer (X) has a structure in which a block of polyolefin (a) and a block of polyalkylene glycol (b) are bonded via an amide bond, an imide bond or an ester bond, for example, polyolefin ( a) and polyalkylene glycol (b) are put into a reaction vessel, and under stirring, at a reaction temperature of 100 to 250° C. and a pressure of 0.1 MPa or less, the water produced by the amidation reaction, imidization reaction or esterification reaction is removed. It can be produced by a method of reacting for 1 to 50 hours while removing it from the reaction system.
  • the block polymer (X) has the below-described crosslinking agent (K) as a structural unit.
  • the block polymer (X) has a structure obtained by cross-linking the polyolefin (a) and/or the polyalkylene glycol (b) with the cross-linking agent (K).
  • the block polymer (X) preferably has a structure crosslinked with a crosslinking agent (K) having at least three functional groups capable of reacting with terminal functional groups of the polyolefin (a) and/or the polyalkylene glycol (b). .
  • the weight ratio [(a)/(b)] of the polyolefin (a) block and the polyalkylene glycol (b) block constituting the block polymer (X) is preferably 20 from the viewpoint of compression strain and resilience. /80 to 80/20, more preferably 25/75 to 75/25, particularly preferably 30/70 to 70/30.
  • Mn of the block polymer (X) is preferably 5,000 to 150,000, more preferably 10,000 to 100,000, particularly preferably 20,000 to 80,000.
  • the block polymer (X) for shoe soles of the present invention can be suitably used as a raw material resin for various shoe soles (outsoles, midsoles).
  • the cross-linking agent (K) in the present invention is a compound capable of cross-linking the polyolefin (a) and/or the polyalkylene glycol (b), and the terminal functional group of the polyolefin (a) and/or the polyalkylene glycol (b).
  • Compounds having at least three reactive functional groups are preferred.
  • the cross-linking agent (K) is preferably a compound having at least three functional groups (eg, carboxyl group, amino group, epoxy group, hydroxyl group) capable of reacting with a hydroxyl group and/or a carboxyl group.
  • these functional groups a carboxyl group is preferable from the viewpoint of reactivity.
  • Examples of the cross-linking agent (K) include trivalent or higher polycarboxylic acid (K1), trivalent or higher polyepoxide (K2), trivalent or higher polyamine (K3), and trivalent or higher polyol (K4).
  • Trivalent or higher polycarboxylic acids (K1) include, for example, trimesic acid, trimellitic acid, pyromellitic acid, hexanetricarboxylic acid, decanetricarboxylic acid, their acid anhydrides, and their alkyls (where the alkyl has 1 to 2) esters;
  • Trivalent or higher polyepoxides (K2) include, for example, triglycidyl ether of trimethylolpropane.
  • trivalent or higher polyamines examples include triethylenetetramine.
  • trivalent or higher polyols examples include triethanolamine.
  • cross-linking agents (K) from the viewpoint of reactivity and compressive strain, trivalent or higher polycarboxylic acid (K1) is preferable, and trimellitic anhydride is more preferable.
  • the crosslinker (K) When introducing a crosslinked structure into the block polymer (X), the crosslinker (K) may be added at any time before, during, or after the reaction between the polyolefin (a) and the polyalkylene glycol (b). good.
  • the amount of the cross-linking agent (K) is the molar ratio of the cross-linking agent (K) to the sum of the polyolefin (a) and the polyalkylene glycol (b) ⁇ (K)/[(a )+(b)] ⁇ is preferably 3/97 to 35/65, more preferably 5/95 to 15/85.
  • the resin composition (Y) for shoe soles of the present invention [hereinafter sometimes abbreviated as resin composition (Y)] is the block polymer (X) for shoe soles of the present invention and a block polymer other than the block polymer (X). It contains a thermoplastic resin (E).
  • the thermoplastic resin (E) include polyolefin resin (E1), polystyrene resin (E2), acrylic resin (E3), polyamide resin (E4), polyester resin (E5), polyacetal resin (E6), polycarbonate resin ( E7) and polyurethane resins (E8).
  • the polyolefin resin (E1) is preferable from the viewpoint of compressive strain and resilience.
  • the number average molecular weight (Mn) of the thermoplastic resin (E) is preferably 7,000 to 500,000, more preferably 10,000 to 200,000.
  • the weight ratio [(X)/(E)] between the block polymer (X) for shoe sole and the thermoplastic resin (E) other than the block polymer (X) is preferably 60/40 to 95/5, It is more preferably 75/25 to 90/10.
  • the shoe sole block polymer (X) and the shoe sole resin composition (Y) contain a colorant (D1) (azo pigment, etc.), a release agent (D2) (flow paraffin, etc.), antioxidants (D3) (triphenylphosphite, etc.), flame retardants (D4) (antimony trioxide, etc.), ultraviolet absorbers (D5) (phenylsalicylate, etc.), antibacterial agents (D6) ( benzimidazole, etc.), compatibilizers (D7) (modified vinyl copolymers, etc.), fillers (D8) (calcium carbide, etc.), and additives (D ) can be contained. Each additive may be used alone or in combination of two or more.
  • the total content of the additive (D) based on the weight of the shoe sole block polymer (X) and the shoe sole resin composition (Y) is generally 45% by weight or less.
  • the content of each additive (D) is preferably 0.001 to 40% by weight, more preferably 0.01 to 35% by weight; 0.1 to 3% by weight, more preferably 0.2 to 2% by weight; release agent (D2) is preferably 0.01 to 3% by weight, more preferably 0.05 to 1% by weight; antioxidant (D3) is preferably 0.01-3% by weight, more preferably 0.05-1% by weight; flame retardant (D4) is preferably 0.5-20% by weight, more preferably 1-10% by weight; UV absorber (D5) is preferably 0.01 to 3 wt%, more preferably 0.05 to 1 wt%; antibacterial agent (D6) is preferably 0.5 to 20 wt%, more preferably 1 to 10 % by weight; compatibilizer (D7) is preferably 0.5 to 10% by weight, more preferably 1 to 5% by
  • the shoe sole (Z) of the present invention is a foam-molded article of the block polymer (X) for shoe sole or the resin composition (Y) for shoe sole.
  • the density of the shoe sole (Z) is preferably 0.20-0.90 g/cm 3 , more preferably 0.30-0.80 g/cm 3 .
  • density is a value measured at 23° C. according to ASTM D1505.
  • the shoe sole (Z) of the present invention can be produced by mixing the shoe sole block polymer (X) or the shoe sole resin composition (Y) with, for example, an open roll, followed by foam molding. After foam molding, if necessary, further processing may be performed.
  • the molding temperature during foam molding is, for example, 150°C to 220°C.
  • a foaming agent (C) may be used in foam molding.
  • foaming agents (C) include azodicarbonamide (ADCA), azobisisobutyronitrile (AIBN), and dinitrosopentamethylenetetramine (DPT).
  • ADCA azodicarbonamide
  • AIBN azobisisobutyronitrile
  • DPT dinitrosopentamethylenetetramine
  • Weight ratio of block polymer (X) to blowing agent (C) [(X)/(C)] and weight ratio of resin composition (Y) to blowing agent (C) [(Y)/(C)] is preferably 90/10 to 99/1, more preferably 93/7 to 99/2, depending on the desired density.
  • the block polymer (X) for shoe soles of the present invention can be suitably used as a raw material resin for various shoe soles (outsoles, midsoles).
  • the shoe sole (Z) using the block polymer (X) for shoe soles has a small compressive strain, excellent durability, and excellent resilience (low loss factor, temperature-dependent change in resilience). small), so it is useful as a midsole or outsole.
  • a block polymer (X) for shoe soles which comprises a block of polyolefin (a) described below and a block of polyalkylene glycol (b) described below as structural units.
  • the weight ratio [(a)/(b)] of the polyolefin (a) block to the polyalkylene glycol (b) block is 20/80 to 80/20 [1] to [3]
  • Polyolefin (a-2) was obtained in the same manner as in Production Example 1, except that the amount of 12-aminododecanoic acid charged was changed to 12.4 parts.
  • Polyolefin (a-2) had an acid value of 33.4 and an Mn of 3,000.
  • Polyolefin (a-3) was obtained in the same manner as in Production Example 1, except that the amount of 12-aminododecanoic acid charged was changed to 9.3 parts.
  • Polyolefin (a-3) had an acid value of 34.2 and an Mn of 2,900.
  • polyolefin (a1-0-2) 100 parts is melted at 160° C., 23.5 parts of maleic anhydride is charged, and the mixture is reacted at 200° C. for 10 hours under nitrogen to remove excess maleic anhydride. The acid was removed under reduced pressure. Then, 20.7 parts of 12-aminododecanoic acid was charged and reacted at 200° C. for 1 hour to obtain polyolefin (a-4).
  • Polyolefin (a-4) had an acid value of 51.5 and an Mn of 2,000.
  • polyolefin (a1-0-3) 100 parts of polyolefin (a1-0-3) is melted at 160° C., 5.3 parts of maleic anhydride is charged, and the mixture is reacted at 200° C. for 10 hours under nitrogen to remove excess maleic anhydride. The acid was removed under reduced pressure. Then, 5.8 parts of 12-aminododecanoic acid was added and reacted at 200° C. for 1 hour to obtain polyolefin (a-5).
  • Polyolefin (a-5) had an acid value of 14.1 and an Mn of 6,600.
  • polyolefin (a1-0-5) 100 parts of polyolefin (a1-0-5) is melted at 160° C., 4.9 parts of maleic anhydride is charged, and the mixture is reacted at 200° C. for 10 hours under nitrogen to remove excess maleic anhydride. The acid was removed under reduced pressure. Then, 5.4 parts of 12-aminododecanoic acid was charged and reacted at 200° C. for 1 hour to obtain polyolefin (a-7).
  • Polyolefin (a-7) had an acid value of 13.1 and an Mn of 7,200.
  • Example 1 159 parts of polyolefin (a-1) and polytetramethylene glycol (b-1) (PTMG, Mn: 3) are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. ,000) 140 parts, an antioxidant [trade name “Irganox 1010”, manufactured by BASF Japan Co., Ltd.] 0.3 parts, and dibutyltin oxide 0.6 parts are added, and stirred at 220 ° C. and 0.13 kPa or less. for 6 hours under reduced pressure to obtain a shoe sole block polymer (X-1) (Mn: 37,000).
  • Example 2 157 parts of polyolefin (a-2), 142 parts of polytetramethylene glycol (b-1), an antioxidant are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 0.3 parts of [the above "Irganox 1010"] and 0.6 parts of dibutyltin oxide were added and polymerized at 220°C under a reduced pressure of 0.13 kPa or less for 6 hours while stirring to obtain a block polymer for shoe soles (X -2) (Mn: 46,000) was obtained.
  • X -2 block polymer for shoe soles
  • Example 3 155 parts of polyolefin (a-3), 144 parts of polytetramethylene glycol (b-1), an antioxidant are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 0.3 parts of [the above "Irganox 1010"] and 0.6 parts of dibutyltin oxide were added and polymerized at 220°C under a reduced pressure of 0.13 kPa or less for 6 hours while stirring to obtain a block polymer for shoe soles (X -3) (Mn: 65,000) was obtained.
  • X -3 block polymer for shoe soles
  • Example 4 153 parts of polyolefin (a-1), 142 parts of polytetramethylene glycol (b-1) and anhydrous trimellit are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 4.3 parts of an acid, 0.3 parts of an antioxidant [the above "Irganox 1010"], and 0.6 parts of dibutyltin oxide were added and polymerized for 6 hours at 220°C under a reduced pressure of 0.13 kPa or less while stirring. Thus, a shoe sole block polymer (X-4) (Mn: 51,000) was obtained.
  • Example 5 157 parts of polyolefin (a-4) and polytetramethylene glycol (b-2) (PTMG, Mn: 2) are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. ,000) 142 parts, an antioxidant [the above "Irganox 1010"] 0.3 parts, and dibutyltin oxide 0.6 parts were added, and polymerized for 6 hours at 220°C under a reduced pressure of 0.13 kPa or less while stirring. Thus, block polymer (X-5) for shoe sole (Mn: 41,000) was obtained.
  • Example 6 127 parts of polyolefin (a-4), 173 parts of polytetramethylene glycol (b-1), an antioxidant are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 0.3 parts of [the above "Irganox 1010"] and 0.6 parts of dibutyltin oxide were added and polymerized at 220°C under a reduced pressure of 0.13 kPa or less for 6 hours while stirring to obtain a block polymer for shoe soles (X -6) (Mn: 47,000).
  • Example 7 206 parts of polyolefin (a-2) and polytetramethylene glycol (b-3) (PTMG, Mn: 1) are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. , 500) 93 parts, 0.3 parts of the antioxidant [Irganox 1010] above, and 0.6 parts of dibutyltin oxide were added and polymerized for 6 hours at 220°C under a reduced pressure of 0.13 kPa or less while stirring. Thus, block polymer (X-7) for shoe sole (Mn: 47,000) was obtained.
  • Example 8 146 parts of polyolefin (a-1), 152 parts of polytetramethylene glycol (b-1) and anhydrous trimellit are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 0.9 parts of acid, 0.3 parts of antioxidant [Irganox 1010] above, and 0.6 parts of dibutyltin oxide were added and polymerized for 6 hours at 220° C. under reduced pressure of 0.13 kPa or less while stirring. Thus, block polymer (X-8) (Mn: 41,000) for shoe sole was obtained.
  • Example 9 133 parts of polyolefin (a-1), 164 parts of polytetramethylene glycol (b-1) and anhydrous trimellit are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 1.9 parts of an acid, 0.3 parts of an antioxidant [the above "Irganox 1010"], and 0.6 parts of dibutyltin oxide were added and polymerized for 6 hours at 220°C under a reduced pressure of 0.13 kPa or less while stirring. Thus, a block polymer (X-9) for shoe sole (Mn: 46,000) was obtained.
  • Example 10 207 parts of polyolefin (a-5), 91 parts of polytetramethylene glycol (b-1) and anhydrous trimellit are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 0.6 parts of acid, 0.3 parts of antioxidant [Irganox 1010] above, and 0.6 parts of dibutyltin oxide were added and polymerized for 6 hours at 220° C. under reduced pressure of 0.13 kPa or less while stirring. Thus, block polymer (X-10) (Mn: 40,000) for shoe sole was obtained.
  • Example 11 231 parts of polyolefin (a-5), 68 parts of polytetramethylene glycol (b-2) and anhydrous trimellit are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 0.6 parts of acid, 0.3 parts of antioxidant [Irganox 1010] above, and 0.6 parts of dibutyltin oxide were added and polymerized for 6 hours at 220° C. under reduced pressure of 0.13 kPa or less while stirring. Thus, block polymer (X-11) (Mn: 36,000) for shoe sole was obtained.
  • Example 12 167 parts of polyolefin (a-6), 132 parts of polytetramethylene glycol (b-1), antioxidant are added to a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 0.3 parts of [the above "Irganox 1010"] and 0.6 parts of dibutyltin oxide were added and polymerized at 220°C under a reduced pressure of 0.13 kPa or less for 6 hours while stirring to obtain a block polymer for shoe soles (X -12) (Mn: 37,000).
  • Example 13 155 parts of polyolefin (a-6), 143 parts of polytetramethylene glycol (b-1) and anhydrous trimellit are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 0.9 parts of acid, 0.3 parts of antioxidant [Irganox 1010] above, and 0.6 parts of dibutyltin oxide were added and polymerized for 6 hours at 220° C. under reduced pressure of 0.13 kPa or less while stirring. Thus, block polymer (X-13) (Mn: 39,000) for shoe sole was obtained.
  • Example 14 143 parts of polyolefin (a-6), 155 parts of polytetramethylene glycol (b-1) and anhydrous trimellit are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. Add 1.8 parts of an acid, 0.3 parts of an antioxidant [Irganox 1010] and 0.6 parts of dibutyltin oxide, and polymerize with stirring at 220° C. under reduced pressure of 0.13 kPa or less for 6 hours. Thus, a block polymer for shoe sole (X-14) (Mn: 47,000) was obtained.
  • Example 15 129 parts of polyolefin (a-6), 167 parts of polytetramethylene glycol (b-1) and anhydrous trimellit are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 2.8 parts of an acid, 0.3 parts of an antioxidant [Irganox 1010] above, and 0.6 parts of dibutyltin oxide were added and polymerized for 6 hours at 220° C. under a reduced pressure of 0.13 kPa or less while stirring. Thus, block polymer (X-15) (Mn: 53,000) for shoe sole was obtained.
  • Example 16 212 parts of polyolefin (a-7), 87 parts of polytetramethylene glycol (b-1) and anhydrous trimellit are placed in a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. 0.5 parts of acid, 0.3 parts of antioxidant [Irganox 1010] above, and 0.6 parts of dibutyltin oxide were added and polymerized for 6 hours at 220° C. under reduced pressure of 0.13 kPa or less while stirring. Thus, block polymer (X-16) (Mn: 34,000) for shoe sole was obtained.
  • Example 17 146 parts of polyolefin (a-1), polypropylene glycol (b-4) (PPG, Mn: 3,000) was added to a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. ) 152 parts, 0.9 parts of trimellitic anhydride, 0.3 parts of antioxidant [Irganox 1010] above, and 0.6 parts of dibutyltin oxide, and stirred at 220 ° C. under 0.13 kPa or less. Polymerization was carried out under reduced pressure for 6 hours to obtain a shoe sole block polymer (X-17) (Mn: 40,000).
  • PPG polypropylene glycol
  • Example 18 221 parts of polyolefin (a-1), polypropylene glycol (b-5) (PPG, Mn: 1,000) was added to a stainless steel pressure-resistant reaction vessel equipped with a stirrer, thermometer, heating/cooling device, nitrogen inlet tube and pressure reducing device. ) 77 parts of trimellitic anhydride, 1.4 parts of trimellitic anhydride, 0.3 parts of an antioxidant [the above "Irganox 1010"], and 0.6 parts of dibutyltin oxide were added, and stirred at 220 ° C. under 0.13 kPa or less. Polymerization was carried out under reduced pressure for 6 hours to obtain a shoe sole block polymer (X-18) (Mn: 37,000).
  • X-18 shoe sole block polymer
  • Example 19 90 parts of the block polymer (X-1) obtained in Example 1 and 10 parts of the polyolefin resin (E-1) [propylene homopolymer, trade name "PM801A” manufactured by SunAllomer Co., Ltd.] were heated at 190°C for a retention time of 30. The mixture was kneaded by a twin-screw extruder under conditions of seconds and pelletized to obtain a shoe sole resin composition (Y-19).
  • Example 20 70 parts of the block polymer (X-1) obtained in Example 1 and 30 parts of the polyolefin resin (E-1) were kneaded by a twin-screw extruder under the conditions of 190° C. and a residence time of 30 seconds, pelletized, and made into shoes.
  • a sole resin composition (Y-20) was obtained.
  • Example 21 90 parts of the block polymer (X-1) obtained in Example 1 and 10 parts of the polyolefin resin (E-2) [polyolefin having 96% by weight of propylene and 4% by weight of ethylene as constituent units, the above "Wintec WFX6"] were kneaded with a twin-screw extruder under conditions of 190° C. and a residence time of 30 seconds, and pelletized to obtain a resin composition for shoe soles (Y-21).
  • Example 22 70 parts of the block polymer (X-1) obtained in Example 1 and 30 parts of the polyolefin resin (E-2) were kneaded by a twin-screw extruder under the conditions of 190° C. and a residence time of 30 seconds, pelletized, and made into shoes. A sole resin composition (Y-22) was obtained.
  • Example 23 70 parts of the block polymer (X-8) obtained in Example 8 and 30 parts of the polyolefin resin (E-1) were kneaded by a twin-screw extruder under the conditions of 190° C. and a residence time of 30 seconds, pelletized, and made into shoes. A sole resin composition (Y-23) was obtained.
  • Example 24 70 parts of the block polymer (X-13) obtained in Example 13 and 30 parts of the polyolefin resin (E-2) were kneaded by a twin-screw extruder under the conditions of 190° C. and a residence time of 30 seconds, pelletized, and made into shoes. A sole resin composition (Y-24) was obtained.
  • Example 31 After mixing 100 parts of block polymer (X-1) for shoe sole and 4 parts of foaming agent (C-1) with an open roll, foam molding is performed under conditions of 160° C. and 15 MPa to produce shoe sole (Z-1). got The resulting shoe sole (Z-1) was evaluated.
  • Comparative Example 2 Shoe soles (Z-2) to (Z-24) and (ratio Z-1) were obtained in the same manner as in Example 31, except that the raw material compositions (parts) in Table 1 or Table 2 were followed. Incidentally, in Comparative Example 2, the EVA resin of Comparative Example 1 was used. The results are shown in Tables 1 and 2.
  • ⁇ Sample shape 40 ⁇ 3 mm long, 5 ⁇ 0.3 mm wide, 3 ⁇ 0.3 mm thick strip
  • ⁇ Measurement mode Tensile mode with sinusoidal strain ⁇ Distance between chucks: 30 ⁇ 0.2 mm ⁇ Temperature: -50 to 200°C ⁇ Frequency: 10Hz ⁇ Load: Automatic static load ⁇ Dynamic strain: 3 ⁇ m
  • each raw material is as follows.
  • EVA resin manufactured by Mitsui Chemicals, Inc., trade name "Evaflex 270"
  • Cross-linking agent dicumyl peroxide (DCP) [manufactured by NOF Corporation, trade name “Percumyl D”]
  • the shoe sole (Z) using the block polymer (X) for shoe soles of the present invention has a smaller compressive strain and excellent durability than the comparative ones. It can be seen that the resilience is excellent (the loss factor is small and the change in resilience due to temperature is small).
  • the block polymer (X) for shoe soles of the present invention can be suitably used as a raw material resin for various shoe soles (outsoles, midsoles). Further, the shoe sole (Z) using the block polymer (X) for shoe sole has a small compressive strain, excellent durability, and excellent resilience, and thus is useful as a midsole and an outsole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、圧縮歪みが小であるシューズソールを提供することを目的とする。 本発明は、下記ポリオレフィン(a)のブロックと、下記ポリアルキレングリコール(b)のブロックとを構成単位として有するシューズソール用ブロックポリマー(X)に関する。 ポリオレフィン(a):プロピレンとエチレンとを構成単量体として含み、プロピレンとエチレンとの重量比(プロピレン/エチレン)が90/10~99.5/0.5である; ポリアルキレングリコール(b):炭素数3~4のアルキレングリコールを構成単量体として含む。

Description

シューズソール用ブロックポリマー、シューズソール用樹脂組成物及びシューズソール
本発明は、シューズソール用ブロックポリマー、シューズソール用樹脂組成物及びシューズソールに関する。
シューズソール用樹脂としては、EVA樹脂(エチレン酢酸ビニル樹脂)が、一般的に用いられている。例えば、EVA樹脂を用いた複数部材からなるスポーツシューズ用ソールが提案されている(特許文献1等)。
特開2008-093412号公報
しかしながら、EVA樹脂を用いたソールは安価ながら、圧縮歪みが大きいため耐久性に劣り、さらに反発性にも劣るため、これらの問題を解決することが求められていた。
本発明の目的は、圧縮歪みが小であるシューズソールを提供することにある。
本発明者らは、上記課題を解決するため鋭意検討した結果、本発明に到達した。即ち本発明は、下記ポリオレフィン(a)のブロックと、下記ポリアルキレングリコール(b)のブロックとを構成単位として有するシューズソール用ブロックポリマー(X);
ポリオレフィン(a):プロピレンとエチレンとを構成単量体として含み、プロピレンとエチレンとの重量比(プロピレン/エチレン)が90/10~99.5/0.5である;
ポリアルキレングリコール(b):炭素数3~4のアルキレングリコールを構成単量体として含む;当該シューズソール用ブロックポリマー(X)とシューズソール用ブロックポリマー(X)以外の熱可塑性樹脂(E)とを含有するシューズソール用樹脂組成物(Y);当該シューズソール用ブロックポリマー(X)又はシューズソール用樹脂組成物(Y)の発泡成形体であるシューズソール(Z)である。
本発明のシューズソール用ブロックポリマー(X)又はシューズソール用樹脂組成物(Y)を用いたシューズソール(Z)は、圧縮歪みが小であり、耐久性に優れ、また、反発性にも優れるという効果を奏する。
<ポリオレフィン(a)>
本発明におけるポリオレフィン(a)としては、カルボキシル基又はカルボン酸無水物基をポリマーの両末端に有するポリオレフィン(a1-1)、水酸基をポリマーの両末端に有するポリオレフィン(a1-2)、アミノ基をポリマーの両末端に有するポリオレフィン(a1-3)、イソシアネート基をポリマーの両末端に有するポリオレフィン(a1-4)、カルボキシル基及び水酸基の両方をポリマーの両末端に有するポリオレフィン(a1-5)、カルボキシル基又はカルボン酸無水物基をポリマーの片末端に有するポリオレフィン(a2-1)、水酸基をポリマーの片末端に有するポリオレフィン(a2-2)、アミノ基をポリマーの片末端に有するポリオレフィン(a2-3)、イソシアネート基をポリマーの片末端に有するポリオレフィン(a2-4)、及びカルボキシル基及び水酸基の両方をポリマーの片末端に有するポリオレフィン(a2-5)等が挙げられる。
上記ポリオレフィン(a1-1)~(a2-5)は、公知の製造方法で得られる。
これらの内で、変性の容易さ及び成形時の耐熱性の観点から好ましいのは、末端にカルボキシル基又はカルボン酸無水物基を有するポリオレフィン(a1-1)及びポリオレフィン(a2-1)である。
なお、本明細書における「末端」とは、ポリマーを構成するモノマー単位の繰り返し構造が途切れる終端部を意味する。また、「両末端」とは、ポリマーの主鎖における両方の末端を意味し、片末端とは、ポリマーの主鎖におけるいずれか一方の末端を意味する。
ポリオレフィン(a)は、例えば、両末端が変性可能なポリオレフィンを主成分とするポリオレフィン(a1-0)の両末端に、カルボキシル基、カルボン酸無水物基、水酸基、アミノ基又はイソシアネート基を導入することによって得ることができる。
なお、ここでの「主成分」とは、ポリオレフィン全体の重量に占める両末端が変性可能なポリオレフィンの重量が、ポリオレフィン全体の重量の50重量%以上(好ましくは50重量%超)であることを意味する。
ただし、両末端が変性可能なポリオレフィンの重量がポリオレフィン全体の重量の50重量%未満であっても、両末端が変性可能なポリオレフィンの重量と後述する片末端が変性可能なポリオレフィンの重量の合計がポリオレフィン全体の重量の50重量%以上であり、両末端が変性可能なポリオレフィンの重量が、片末端が変性可能なポリオレフィンの重量以上である場合には、このポリオレフィンをポリオレフィン(a1-0)であるとする。
ポリオレフィン(a1-0)には、重合法によって得られるものや、減成法によって得られるものが含まれる。
重合法によって得られるポリオレフィンとしては、炭素数2~30(好ましくは2~12、更に好ましくは2~10)のオレフィンの1種又は2種以上の混合物の(共)重合[「(共)重合」は、重合又は共重合を意味する。以下同様。]によって得られ、プロピレンに由来する構成単位をポリオレフィン中に30モル%以上含有するポリオレフィンが挙げられる。
減成法によって得られるポリオレフィンとしては、高分子量[好ましくは数平均分子量(以下Mnと略記)10,000~150,000]のポリオレフィンを機械的、熱的又は化学的に減成してなるポリオレフィンが挙げられる。
これらの内、カルボキシル基、カルボン酸無水物基、水酸基、アミノ基又はイソシアネート基を導入する際の変性のし易さ及び入手のし易さの観点から、好ましいのは、減成法によって得られるポリオレフィンであり、更に好ましいのは熱減成によって得られるポリオレフィンである。熱減成によれば、1分子当たりの末端二重結合数が1~2個の低分子量ポリオレフィンが容易に得られこの低分子量ポリオレフィンは、末端に炭素-炭素二重結合を有することから、カルボキシル基、カルボン酸無水物基、水酸基、アミノ基又はイソシアネート基等を導入して変性することが容易である。
本発明におけるポリマーの数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定することができる。
・装置:「HLC-8120」[東ソー(株)製]
・カラム:「TSKgelGMHXL」[東ソー(株)製](2本)、及び、「TSKgelMultiporeHXL-M」[東ソー(株)製](1本)
・試料溶液:0.3重量%のオルトジクロロベンゼン溶液
・溶液注入量:100μl
・流量:1ml/分
・測定温度:135℃
・検出装置:屈折率検出器
・基準物質:標準ポリスチレン(TSKstandardPOLYSTYRENE)
12点(分子量:500、1,050、2,800、5,970、9,100、18,100、37,900、96,400、190,000、355,000、1,090,000、2,890,000)[東ソー(株)製]
熱減成によって得られるポリオレフィンとしては特に限定されないが、高分子量ポリオレフィンを、不活性ガス中で加熱して得られたもの(例えば特開平3-62804号公報に記載の方法で、300~450℃で0.5~10時間加熱して得られたもの)及び空気中で加熱することにより熱減成されたもの等が挙げられる。
熱減成法に用いられる高分子量ポリオレフィンとしては、炭素数2~30(好ましくは2~12、更に好ましくは2~10)のオレフィンの1種又は2種以上の混合物の(共)重合体[Mnは好ましくは12,000~100,000、更に好ましくは15,000~70,000;メルトフローレート(以下MFRと略記。単位はg/10min)は好ましくは0.5~150、更に好ましくは1~100]であって、好ましくはプロピレンに由来する構成単位をポリオレフィン中に30モル%以上有するもの等が挙げられる。
ここでMFRとは、樹脂の溶融粘度を表す数値であり、数値が大きいほど溶融粘度が低いことを表す。MFRの測定には、JIS K6760で定められた押出し形プラストメータを用い、測定方法はJIS K7210-1(2014)で規定した方法に準拠する。例えばポリプロピレンの場合は、230℃、荷重2.16kgfの条件で測定される。
炭素数2~30のオレフィンとしては、炭素数2~30のα-オレフィン及び炭素数4~30のジエンが挙げられる。
炭素数2~30のα-オレフィンとしては、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-イコセン及び1-テトラコセン等が挙げられる。
炭素数4~30のジエンとしては、ブタジエン、イソプレン、シクロペンタジエン及び1,11-ドデカジエン等が挙げられる。
炭素数2~30のオレフィンの内、分子量制御の観点から好ましいのは、エチレン、プロピレン、炭素数4~12のα-オレフィン、ブタジエン、イソプレン及びこれらの混合物であり、更に好ましいのは、エチレン、プロピレン、炭素数4~10のα-オレフィン、ブタジエン及びこれらの混合物であり、特に好ましいのはエチレン、プロピレン及びこれらの混合物である。
ポリオレフィン(a1-0)のMnは、圧縮歪み及び反発性の観点から、好ましくは800~10,000であり、更に好ましくは1,000~8,000、特に好ましくは1,200~6,000である。
ポリオレフィン(a1-0)の中でも、両末端に炭素-炭素二重結合を有するものが好ましく、そのようなポリオレフィン(a1-0)の1分子当たりの末端二重結合の平均数は、圧縮歪み及び反発性の観点から、好ましくは1.1~2.5個であり、更に好ましくは1.3~2.2個、特に好ましくは1.5~2.0個である。
熱減成法により低分子量ポリオレフィンを得る方法を用いると、Mn800~10,000の範囲で、1分子当たりの末端二重結合の平均数が1.1~2.0個のポリオレフィン(a1-0)が容易に得られる。熱減成の条件は、所望のMn及び末端二重結合の平均数が得られるように適宜選択する。
片末端が変性可能なポリオレフィンを主成分とするポリオレフィン(a2-0)は、前述の重合法や減成法によって得ることができる。ポリオレフィン(a2-0)のMnは、圧縮歪み及び反発性の観点から、好ましくは800~10,000であり、更に好ましくは1,000~10,000、特に好ましくは1,200~6,000である。
なお、ここでの「主成分」とは、ポリオレフィン全体の重量に占める片末端が変性可能なポリオレフィンの重量が、ポリオレフィン全体の重量の50重量%以上(好ましくは50重量%超)であることを意味する。ただし、片末端が変性可能なポリオレフィンの重量がポリオレフィン全体の重量の50重量%未満であっても、片末端が変性可能なポリオレフィンの重量と両末端が変性可能なポリオレフィンの重量の合計がポリオレフィン全体の重量の50重量%以上であり、片末端が変性可能なポリオレフィンの重量が、両末端が変性可能なポリオレフィンの重量以上である場合には、このポリオレフィンをポリオレフィン(a2-0)であるとする。
ポリオレフィン(a2-0)の中でも、片末端に炭素-炭素二重結合を有するものが好ましく、そのようなポリオレフィン(a2-0)の1分子当たりの末端二重結合の平均数は、圧縮歪み及び反発性の観点から、好ましくは0.5~1.4個であり、更に好ましくは0.6~1.3個、特に好ましくは0.7~1.2個、最も好ましくは0.8~1.1個である。
熱減成法により低分子量ポリオレフィンを得る方法を用いると、Mnが800~10,000の範囲で、1分子当たりの末端二重結合の平均数が0.5~1.4個のポリオレフィン(a2-0)が容易に得られる。
この低分子量ポリオレフィンは、末端に炭素-炭素二重結合を有することから、カルボキシル基、カルボン酸無水物基、水酸基、アミノ基又はイソシアネート基等を導入して変性することが容易である。熱減成の条件は、所望のMn及び末端二重結合の平均数が得られるように適宜選択する。
ポリオレフィン(a1-0)及びポリオレフィン(a2-0)は、一般的にこれらの混合物として得られるが、混合物をそのまま使用してもよく、精製分離してから使用してもよい。これらの内、製造コスト等の観点から好ましいのは、混合物である。
以下、ポリマーの両末端にカルボキシル基、カルボン酸無水物基、水酸基、アミノ基又はイソシアネート基を有するポリオレフィン(a1-1)~(a1-5)について説明するが、ポリマーの片末端にこれらの基を有するポリオレフィン(a2-1)~(a2-5)については、ポリオレフィン(a1-0)をポリオレフィン(a2-0)に置き換えて、上記各ポリオレフィン(a1-1)~(a1-5)と同様にして得ることができる。
ポリオレフィン(a1-1)としては、ポリオレフィン(a1-0)の末端をα,β-不飽和カルボン酸(無水物)で変性した構造を有するポリオレフィン(a1-1-1)、該ポリオレフィン(a1-1-1)をラクタム又はアミノカルボン酸で二次変性した構造を有するポリオレフィン(a1-1-2)、ポリオレフィン(a1-0)を酸化又はヒドロホルミル化により変性した構造を有するポリオレフィン(a1-1-3)、該ポリオレフィン(a1-1-3)をラクタム又はアミノカルボン酸で二次変性した構造を有するポリオレフィン(a1-1-4)及びこれらの2種以上の混合物等が使用できる。
なお、「α,β-不飽和カルボン酸(無水物)」は、α,β-不飽和カルボン酸又はその無水物を意味する。
ポリオレフィン(a1-1-1)は、ポリオレフィン(a1-0)をα,β-不飽和カルボン酸(無水物)で変性することにより得ることができる。
変性に用いられるα,β-不飽和カルボン酸(無水物)としては、モノカルボン酸、ジカルボン酸及びこれらの無水物が挙げられ、具体的には(メタ)アクリル酸、マレイン酸(又はその無水物)、フマル酸、イタコン酸(又はその無水物)及びシトラコン酸(又はその無水物)等が挙げられる。
これらの内、変性の容易さの観点から好ましいのは、ジカルボン酸及びモノ又はジカルボン酸の無水物であり、更に好ましいのは、マレイン酸(又はその無水物)及びフマル酸であり、特に好ましいのはマレイン酸(又はその無水物)である。
なお、「(メタ)アクリル酸」は、アクリル酸又はメタクリル酸を意味する。
変性に使用するα,β-不飽和カルボン酸(無水物)の量は、ポリオレフィン(a1-0)の重量に基づき、圧縮歪み及び反発性の観点から、好ましくは0.5~20重量%であり、更に好ましくは1~15重量%、特に好ましくは2~10重量%である。
α,β-不飽和カルボン酸(無水物)による変性は、例えば、ポリオレフィン(a1-0)の末端二重結合に、溶液法又は溶融法のいずれかの方法で、α,β-不飽和カルボン酸(無水物)を付加反応(エン反応)させることにより行うことができ、反応温度は、好ましくは170~230℃である。
また、ポリオレフィン(a1-1-1)をラクタム又はアミノカルボン酸で二次変性した構造を有するポリオレフィン(a1-1-2)において、二次変性に用いるラクタムとしては、炭素数6~12のラクタム、例えば、カプロラクタム、ラウロラクタムが挙げられ、アミノカルボン酸としては、炭素数6~12のアミノカルボン酸、例えば、ω-アミノカプロン酸、ω-アミノカプリル酸、ω-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸が挙げられる。
これらのうち好ましいのは、カプロラクタム及び12-アミノドデカン酸である。
また、ポリオレフィン(a1-1)の酸価(単位:mgKOH/g)は、ポリアルキレングリコール(b)との反応性及びシューズソール用ブロックポリマー(X)[以下、ブロックポリマー(X)と略記することがある]の構造制御の容易さの観点から、好ましくは4~100mgKOH/g、更に好ましくは4~50mgKOH/g、特に好ましくは10~50mgKOH/gである。
なお、本発明における酸価は、指示薬としてフェノールフタレインを含むKOH/メタノール溶液を用いた滴定によって測定され、酸基がカルボン酸無水物基の場合、メタノールによりハーフエステル化された後のハーフエステル化酸価として測定される。
ポリオレフィン(a1-2)としては、ポリオレフィン(a1-1)を、水酸基を有するアミンで変性したヒドロキシル基を有するポリオレフィン及びこれらの2種以上の混合物が使用できる。
変性に使用できる水酸基を有するアミンとしては、炭素数2~10の水酸基を有するアミンが挙げられ、具体的には2-アミノエタノール、3-アミノプロパノール、1-アミノ-2-プロパノール、4-アミノブタノール、5-アミノペンタノール、6-アミノヘキサノール及び3-アミノメチル-3,5,5-トリメチルシクロヘキサノール等が挙げられる。
これらの内、変性の容易さの観点から好ましいのは、炭素数2~6の水酸基を有するアミン(2-アミノエタノール、3-アミノプロパノール、4-アミノブタノール、5-アミノペンタノール及び6-アミノヘキサノール等)であり、更に好ましいのは2-アミノエタノール及び4-アミノブタノール、特に好ましいのは2-アミノエタノールである。
変性に用いる水酸基を有するアミンの量は、ポリオレフィン(a1-1)の重量に基づいて、圧縮歪み及び反発性の観点から、好ましくは、0.5~20重量%であり、更に好ましくは1~15重量%、特に好ましくは2~10重量%である。
ポリオレフィン(a1-2)の水酸基価は、ポリアルキレングリコール(b)との反応性及びブロックポリマー(X)の構造制御の容易さの観点から、好ましくは10~120mgKOH/gであり、更に好ましくは15~110mgKOH/g、特に好ましくは20~100mgKOH/gである。
ポリオレフィン(a1-3)としては、ポリオレフィン(a1-1)を、ジアミンで変性したアミノ基を有するポリオレフィン及びこれらの2種以上の混合物が使用できる。
ジアミンとしては、炭素数2~12の脂肪族のジアミン[直鎖ジアミン(エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-、1,3-又は2,3-ジアミノブタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン及び1,10-ジアミノデカン等)及び分岐アルキル鎖を有するジアミン(1,5-ジアミノ-3-メチルペンタン、1,3-ジアミノ-2,2-ジエチルプロパンジアミン等)等]及び炭素数6~20の脂環式のジアミン[1,4-ジアミノシクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン及び2,2-ビス(4-アミノシクロヘキシル)プロパン等]等が挙げられる。
これらの内、変性の容易さの観点から好ましいのは、炭素数2~8のジアミン、更に好ましいのはエチレンジアミン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン及び1,8-ジアミノオクタン、特に好ましいのはエチレンジアミン及び1,6-ジアミノヘキサン、最も好ましいのはエチレンジアミンである。
ポリオレフィン(a1-1)の変性に用いるジアミンの量は、圧縮歪み及び反発性の観点から、ポリオレフィン(a1-1)の重量に基づいて、好ましくは0.5~20重量%であり、更に好ましくは1~15重量%、特に好ましくは2~10重量%である。なお、ジアミンによるポリオレフィン(a1-1)の変性は、ポリマー分子間の架橋反応を防止する観点から、ポリオレフィン(a1-1)の重量に基づいて、好ましくは0.5~1,000重量%、更に好ましくは1~500重量%、特に好ましくは2~300重量%のジアミンを使用した後、未反応のジアミンを減圧下、120~230℃で除去する方法が好ましい。
ポリオレフィン(a1-3)のアミン価は、圧縮歪み及び反発性の観点から、好ましくは10~120mgKOH/gであり、更に好ましくは15~110mgKOH/g、特に好ましくは20~100mgKOH/gである。
ポリオレフィン(a1-4)としては、ポリオレフィン(a1-2)をポリイソシアネート(イソシアネート(NCO)基を2個以上有する化合物)で変性したイソシアネート基を有するポリオレフィン及びこれらの2種以上の混合物が挙げられる。
ポリイソシアネートとしては、炭素数(イソシアネート基中の炭素原子を除く。以下同様。)6~20の芳香族ポリイソシアネート、炭素数2~18の脂肪族ポリイソシアネート、炭素数4~15の脂環式ポリイソシアネート、炭素数8~15の芳香脂肪族ポリイソシアネート、これらのポリイソシアネートの変性体及びこれらの2種以上の混合物が含まれる。
芳香族ポリイソシアネートとしては、1,3-又は1,4-フェニレンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート(TDI)、粗製TDI、2,4’-又は4,4’-ジフェニルメタンジイソシアネート(MDI)、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン及び1,5-ナフチレンジイソシアネート等が挙げられる。
脂肪族ポリイソシアネートとしては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート及び2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート等が挙げられる。
脂環式ポリイソシアネートとしては、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水添TDI)、ビス(2-イソシアナトエチル)-4-シクロヘキセン-1,2-ジカルボキシレート及び2,5-又は2,6-ノルボルナンジイソシアネート等が挙げられる。
芳香脂肪族ポリイソシアネートとしては、m-又はp-キシリレンジイソシアネート(XDI)及びα,α,α’,α’-テトラメチルキシリレンジイソシアネート(TMXDI)等が挙げられる。
ポリイソシアネートの変性体としては、ウレタン変性体、ウレア変性体、カルボジイミド変性体及びウレトジオン変性体等が挙げられる。
ポリイソシアネートの内好ましいのは、TDI、MDI及びHDIであり、更に好ましいのはHDIである。
ポリイソシアネートとポリオレフィン(a1-2)との反応は、一般的なウレタン化反応と同様の方法で行うことができる。
ポリイソシアネートのイソシアネート基とポリオレフィン(a1-2)の水酸基との当量比(NCO:OH)は、好ましくは1.8:1~3:1であり、更に好ましくは2:1である。
ウレタン化反応を促進するために、必要によりウレタン化反応に一般的に用いられる触媒を使用してもよい。触媒としては、金属触媒{錫触媒[ジブチルチンジラウレート及びスタナスオクトエート等]、鉛触媒[2-エチルヘキサン酸鉛及びオクテン酸鉛等]、その他の金属触媒[ナフテン酸金属塩(ナフテン酸コバルト等)及びフェニル水銀プロピオン酸塩等]};アミン触媒{トリエチレンジアミン、ジアザビシクロアルケン〔1,8-ジアザビシクロ[5,4,0]ウンデセン-7等〕、ジアルキルアミノアルキルアミン(ジメチルアミノエチルアミン及びジメチルアミノオクチルアミン等)、複素環式アミノアルキルアミン[2-(1-アジリジニル)エチルアミン及び4-(1-ピペリジニル)-2-ヘキシルアミン等]の炭酸塩又は有機酸(ギ酸等)塩、N-メチル又はエチルモルホリン、トリエチルアミン及びジエチル-又はジメチルエタノールアミン等};及びこれらの2種以上の併用系が挙げられる。
触媒の使用量は、ポリイソシアネート及びポリオレフィン(a1-2)の合計重量に基づいて、好ましくは3重量%以下であり、更に好ましくは0.001~2重量%である。
ポリオレフィン(a1-5)としては、ポリオレフィン(a1-0)の両末端のそれぞれをα,β-不飽和カルボン酸無水物で変性した構造を有するポリオレフィンを、さらにジオールアミンで二次変性した構造を有するポリオレフィン(a1-5-1)が使用できる。
二次変性に用いるジオールアミンとしては、例えば、ジエタノールアミンが挙げられる。
ポリオレフィン(a)のMnは、圧縮歪み及び反発性の観点から、好ましくは1,000~10,000であり、更に好ましくは1,500~8,500、特に好ましくは2,000~7,000である。
ポリオレフィン(a)は、プロピレンとエチレンとを構成単量体として含み、プロピレンとエチレンとの重量比(プロピレン/エチレン)が90/10~99.5/0.5、好ましくは96/4~98/2である。上記重量比(プロピレン/エチレン)が90/10未満の場合及び99.5/0.5を超える場合、反発性が劣る。
上記重量比(プロピレン/エチレン)は、上記高分子量ポリオレフィンの構成単量体や、前述の重合法で使用する構成単量体の重量比をそのまま反映する傾向があるため、当該構成単量体の重量比を適宜調整することで所望の重量比を得ることができる。
また、ポリオレフィン(a)としては、反発性の観点から、好ましいのはプロピレン/エチレン共重合体である。
上記ポリオレフィン(a)のうち、工業上、圧縮歪み及び反発性の観点から、好ましいのはポリオレフィン(a1-1)、更に好ましいのはポリオレフィン(a1-1-2)である。
<ポリアルキレングリコール(b)>
本発明におけるポリアルキレングリコール(b)は、炭素数が3~4のアルキレングリコールを構成単量体として含む。アルキレングリコールの炭素数が4であることが好ましい。
ポリアルキレングリコール(b)としては、例えば、ポリテトラメチレングリコール、ポリプロピレングリコール、それらの末端変性物(アミノ基変性物、グリシジルエーテル化物)が挙げられる。
これらのうち、ブロックポリマー(X)の生産性の観点から、ポリマー主鎖の少なくとも一方の末端に水酸基を有するものが好ましい。
ポリアルキレングリコール(b)は、公知の製造方法(触媒下でテロラヒドロフラン、プロピレンオキサイドを重合)で得られる。また、その変性物も公知の製造方法で得られる。ポリアルキレングリコール(b)は、上記方法で得ても、市販品を使用してもよい。
ポリアルキレングリコール(b)の数平均分子量(Mn)は、圧縮歪み及び反発性の観点から、好ましくは500~4,000であり、更に好ましくは750~3,000、特に好ましくは1,000~3,000である。
<シューズソール用ブロックポリマー(X)>
本発明のシューズソール用ブロックポリマー(X)は、上記ポリオレフィン(a)と、ポリアルキレングリコール(b)とを構成単位として有する。ブロックポリマー(X)を構成するポリオレフィン(a)及びポリアルキレングリコール(b)は、それぞれ1種でも2種以上でもよい。
ポリオレフィン(a)のブロックのMnは、圧縮歪み及び反発性の観点から、好ましくは1,000~10,000であり、更に好ましくは1,500~8,500、特に好ましくは2,000~7,000である。
ポリアルキレングリコール(b)のブロックのMnは、圧縮歪み及び反発性の観点から、好ましくは500~4,000であり、更に好ましくは750~3,000、特に好ましくは1,000~3,000である。
ブロックポリマー(X)を構成するポリオレフィン(a)のブロックと、ポリアルキレングリコール(b)のブロックとが結合した構造には、(a)-(b)型、(a)-(b)-(a)型、(b)-(a)-(b)型及び[(a)-(b)]型(nは平均繰り返し数を表す。)が含まれる。
ブロックポリマー(X)は、例えば、上記ポリオレフィン(a1-1)とポリアルキレングリコール(b)とを反応させて製造できる。
ブロックポリマー(X)が、ポリオレフィン(a)のブロックとポリアルキレングリコール(b)のブロックとが、アミド結合、イミド結合又はエステル結合を介して結合した構造を有するものである場合、例えば、ポリオレフィン(a)とポリアルキレングリコール(b)とを反応容器に投入し、撹拌下、反応温度100~250℃、圧力0.1MPa以下で、アミド化反応、イミド化反応又はエステル化反応で生成する水を反応系外に除去しながら、1~50時間反応させる方法で製造することができる。
また、圧縮歪み及び反発性の観点から、ブロックポリマー(X)が、後述の架橋剤(K)を構成単位とすることが好ましい。その場合、ブロックポリマー(X)は、ポリオレフィン(a)及び/又はポリアルキレングリコール(b)を架橋剤(K)で架橋した構造を有する。ブロックポリマー(X)は、ポリオレフィン(a)及び/又はポリアルキレングリコール(b)の末端の官能基と反応し得る官能基を少なくとも3個有する架橋剤(K)で架橋した構造を有することが好ましい。
ブロックポリマー(X)を構成するポリオレフィン(a)のブロックとポリアルキレングリコール(b)のブロックとの重量比[(a)/(b)]は、圧縮歪み及び反発性の観点から、好ましくは20/80~80/20、更に好ましくは25/75~75/25、特に好ましくは30/70~70/30である。
ブロックポリマー(X)のMnは、好ましくは5,000~150,000、更に好ましくは10,000~100,000、特に好ましくは20,000~80,000である。
本発明のシューズソール用ブロックポリマー(X)は、種々のシューズソール(アウトソール、ミッドソール)の原料樹脂として好適に使用できる。
<架橋剤(K)>
本発明における架橋剤(K)は、ポリオレフィン(a)及び/又はポリアルキレングリコール(b)を架橋し得る化合物であり、ポリオレフィン(a)及び/又はポリアルキレングリコール(b)の末端の官能基と反応し得る官能基を少なくとも3個有する化合物であることが好ましい。
架橋剤(K)としては、水酸基及び/又はカルボキシル基と反応し得る官能基(例えば、カルボキシル基、アミノ基、エポキシ基、水酸基)を少なくとも3個有する化合物が好ましい。これらの官能基のうち、反応性の観点から好ましいのは、カルボキシル基である。
架橋剤(K)は、例えば、3価以上のポリカルボン酸(K1)、3価以上のポリエポキシド(K2)、3価以上のポリアミン(K3)、3価以上のポリオール(K4)が挙げられる。
3価以上のポリカルボン酸(K1)としては、例えば、トリメシン酸、トリメリット酸、ピロメリット酸、ヘキサントリカルボン酸、デカントリカルボン酸及びそれらの酸無水物とそれらのアルキル(アルキルの炭素数1~2)エステルが挙げられる。
3価以上のポリエポキシド(K2)としては、例えば、トリメチロールプロパンのトリグリシジルエーテルが挙げられる。
3価以上のポリアミン(K3)としては、例えば、トリエチレンテトラミンが挙げられる。
3価以上のポリオール(K4)としては、例えば、トリエタノールアミンが挙げられる。
上記架橋剤(K)のうち、反応性及び圧縮歪みの観点から、好ましいのは3価以上のポリカルボン酸(K1)、更に好ましいのは、無水トリメリット酸である。
ブロックポリマー(X)に架橋構造を導入する際は、架橋剤(K)を、ポリオレフィン(a)とポリアルキレングリコール(b)との反応前、反応中、反応後のいずれのタイミングで加えてもよい。
架橋剤(K)の量は、圧縮歪み及び反発性の観点から、架橋剤(K)と、ポリオレフィン(a)及びポリアルキレングリコール(b)の合計とのモル比{(K)/[(a)+(b)]}が、好ましくは3/97~35/65、更に好ましくは5/95~15/85である。
<シューズソール用樹脂組成物(Y)>
本発明のシューズソール用樹脂組成物(Y)[以下、樹脂組成物(Y)と略記することがある]は、本発明のシューズソール用ブロックポリマー(X)と上記ブロックポリマー(X)以外の熱可塑性樹脂(E)とを含有する。
熱可塑性樹脂(E)としては、例えば、ポリオレフィン樹脂(E1)、ポリスチレン樹脂(E2)、アクリル樹脂(E3)、ポリアミド樹脂(E4)、ポリエステル樹脂(E5)、ポリアセタール樹脂(E6)、ポリカーボネート樹脂(E7)、ポリウレタン樹脂(E8)が挙げられる。
上記熱可塑性樹脂(E)のうち、圧縮歪み及び反発性の観点から、好ましいのはポリオレフィン樹脂(E1)である。
熱可塑性樹脂(E)の数平均分子量(Mn)は、好ましくは7,000~500,000、さらに好ましくは10,000~200,000である。
また、シューズソール用ブロックポリマー(X)と上記ブロックポリマー(X)以外の熱可塑性樹脂(E)との重量比[(X)/(E)]は、好ましくは60/40~95/5、更に好ましくは75/25~90/10である。
シューズソール用ブロックポリマー(X)、シューズソール用樹脂組成物(Y)には、本発明の効果を阻害しない範囲で、着色剤(D1)(アゾ顔料等)、離型剤(D2)(流動パラフィン等)、酸化防止剤(D3)(トリフェニルホスファイト等)、難燃剤(D4)(三酸化アンチモン等)、紫外線吸収剤(D5)(フェニルサリチレート等)、抗菌剤(D6)(ベンズイミダゾール等)、相溶化剤(D7)(変性ビニル共重合体等)、充填剤(D8)(炭化カルシウム等)及びエステル交換防止剤(D9)(モノオクタデシルホスフェート等)等の添加剤(D)を含有させることができる。各添加剤はそれぞれ1種又は2種以上併用のいずれでもよい。
シューズソール用ブロックポリマー(X)、シューズソール用樹脂組成物(Y)の重量に基づく添加剤(D)の合計含有量は、一般的に45重量%以下、各添加剤の効果及び成形品の機械的強度の観点から好ましくは0.001~40重量%、更に好ましくは0.01~35重量%;各添加剤(D)の含有量は、同様の観点から着色剤(D1)は好ましくは0.1~3重量%、更に好ましくは0.2~2重量%;離型剤(D2)は好ましくは0.01~3重量%、更に好ましくは0.05~1重量%;酸化防止剤(D3)は好ましくは0.01~3重量%、更に好ましくは0.05~1重量%;難燃剤(D4)は好ましくは0.5~20重量%、更に好ましくは1~10重量%;紫外線吸収剤(D5)は好ましくは0.01~3重量%、更に好ましくは0.05~1重量%;抗菌剤(D6)は好ましくは0.5~20重量%、更に好ましくは1~10重量%;相溶化剤(D7)は好ましくは0.5~10重量%、更に好ましくは1~5重量%;充填剤(D8)は好ましくは0.5~10重量%、更に好ましくは1~5重量%;エステル交換防止剤(D9)は好ましくは0.01~3重量%、更に好ましくは0.05~1重量%である。
<シューズソール(Z)>
本発明のシューズソール(Z)は、上記シューズソール用ブロックポリマー(X)又は上記シューズソール用樹脂組成物(Y)の発泡成形体である。
シューズソール(Z)の密度は、好ましくは0.20~0.90g/cmであり、更に好ましくは0.30~0.80g/cmである。
本発明において、密度は、ASTMD1505に従い、23℃で測定した値である。
本発明のシューズソール(Z)は、上記シューズソール用ブロックポリマー(X)又はシューズソール用樹脂組成物(Y)を、例えば、オープンロールで混合した後、発泡成形することにより製造できる。発泡成形後、必要により、さらに加工を行ってもよい。
発泡成形時の成形温度は、例えば、150℃~220℃である。
また、発泡成形に際しては、発泡剤(C)を使用してもよい。発泡剤(C)としては、例えば、アゾジカルボンアミド(ADCA)、アゾビスイソブチロニトリル(AIBN)、ジニトロソペンタメチレンテトラミン(DPT)が挙げられる。
ブロックポリマー(X)と発泡剤(C)との重量比[(X)/(C)]及び樹脂組成物(Y)と発泡剤(C)との重量比[(Y)/(C)]は、所望の密度によって異なるが、いずれも好ましくは90/10~99/1、更に好ましくは93/7~99/2である。
本発明のシューズソール用ブロックポリマー(X)は、種々のシューズソール(アウトソール、ミッドソール)の原料樹脂として好適に使用できる。また、シューズソール用ブロックポリマー(X)を用いたシューズソール(Z)は、圧縮歪みが小であり、耐久性に優れ、さらに反発性に優れる(損失係数が小さく、温度による反発性の変化が小さい)ため、ミッドソール、アウトソールとして有用である。
本明細書には以下の事項が開示されている。
〔1〕下記ポリオレフィン(a)のブロックと、下記ポリアルキレングリコール(b)のブロックとを構成単位として有するシューズソール用ブロックポリマー(X)。
ポリオレフィン(a):プロピレンとエチレンとを構成単量体として含み、プロピレンとエチレンとの重量比(プロピレン/エチレン)が90/10~99.5/0.5である;
ポリアルキレングリコール(b):炭素数3~4のアルキレングリコールを構成単量体として含む。
〔2〕上記ポリオレフィン(a)のブロックの数平均分子量が、1,000~10,000である〔1〕に記載のシューズソール用ブロックポリマー(X)。
〔3〕上記ポリアルキレングリコール(b)のブロックの数平均分子量が、500~4,000である〔1〕又は〔2〕に記載のシューズソール用ブロックポリマー(X)。
〔4〕上記ポリオレフィン(a)のブロックと上記ポリアルキレングリコール(b)のブロックとの重量比[(a)/(b)]が20/80~80/20である〔1〕~〔3〕のいずれかに記載のシューズソール用ブロックポリマー(X)。
〔5〕ポリオレフィン(a)及び/又はポリアルキレングリコール(b)の末端の官能基と反応し得る官能基を少なくとも3個有する架橋剤(K)で架橋した構造を有する〔1〕~〔4〕のいずれかに記載のシューズソール用ブロックポリマー(X)。
〔6〕数平均分子量が5,000~150,000である〔1〕~〔5〕のいずれかに記載のシューズソール用ブロックポリマー(X)。
〔7〕〔1〕~〔6〕のいずれかに記載のシューズソール用ブロックポリマー(X)と上記シューズソール用ブロックポリマー(X)以外の熱可塑性樹脂(E)とを含有するシューズソール用樹脂組成物(Y)。
〔8〕〔1〕~〔6〕のいずれかに記載のシューズソール用ブロックポリマー(X)又は〔7〕に記載のシューズソール用樹脂組成物(Y)の発泡成形体であるシューズソール(Z)。
〔9〕密度が0.20~0.90g/cmである〔8〕に記載のシューズソール(Z)。
以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、部は重量部を示す。
<製造例1>[ポリオレフィン(a-1)の製造]
反応容器に、プロピレン98重量%、エチレン2重量%を構成単位とするポリオレフィン[商品名「サンアロマーPZA20A」、サンアロマー(株)製、Mn100,000、以下同じ。]1000部を仕込み、液相に窒素を通気しながら、マントルヒーターにて加熱溶融し、撹拌しながら380℃で70分間の条件で、熱減成を行い、両末端に炭素-炭素二重結合を有するポリオレフィン(a1-0-1)[Mn:2,500]を得た。
次に、反応容器に、ポリオレフィン(a1-0-1)100部を160℃で溶融し、無水マレイン酸14.1部を仕込み、窒素下200℃で10時間反応を行い、過剰量の無水マレイン酸を減圧除去した。
次いで12-アミノドデカン酸15.5部を仕込み、200℃で1時間反応を行い、ポリオレフィン(a-1)を得た。ポリオレフィン(a-1)の酸価は33.0、Mnは3,000であった。
<製造例2>[ポリオレフィン(a-2)の製造]
製造例1において、12-アミノドデカン酸の仕込み量を12.4部に変更したこと以外は製造例1と同様に反応を行い、ポリオレフィン(a-2)を得た。ポリオレフィン(a-2)の酸価は33.4、Mnは3,000であった。
<製造例3>[ポリオレフィン(a-3)の製造]
製造例1において、12-アミノドデカン酸の仕込み量を9.3部に変更したこと以外は製造例1と同様に反応を行い、ポリオレフィン(a-3)を得た。ポリオレフィン(a-3)の酸価は34.2、Mnは2,900であった。
<製造例4>[ポリオレフィン(a-4)の製造]
反応容器に、プロピレン98重量%、エチレン2重量%を構成単位とするポリオレフィン[上記「サンアロマーPZA20A」]1000部を仕込み、液相に窒素を通気しながら、マントルヒーターにて加熱溶融し、撹拌しながら380℃で90分間の条件で、熱減成を行い、両末端に炭素-炭素二重結合を有するポリオレフィン(a1-0-2)[Mn:1,500]を得た。
次に、反応容器に、ポリオレフィン(a1-0-2)100部を160℃で溶融し、無水マレイン酸23.5部を仕込み、窒素下200℃で10時間反応を行い、過剰量の無水マレイン酸を減圧除去した。次いで12-アミノドデカン酸20.7部を仕込み、200℃1時間反応を行い、ポリオレフィン(a-4)を得た。ポリオレフィン(a-4)の酸価は51.5、Mnは2,000であった。
<製造例5>[ポリオレフィン(a-5)の製造]
反応容器に、プロピレン98重量%、エチレン2重量%を構成単位とするポリオレフィン[上記「サンアロマーPZA20A」]1000部を仕込み、液相に窒素を通気しながら、マントルヒーターにて加熱溶融し、撹拌しながら370℃で40分間の条件で、熱減成を行い、両末端に炭素-炭素二重結合を有するポリオレフィン(a1-0-3)[Mn:6,100]を得た。
次に、反応容器に、ポリオレフィン(a1-0-3)100部を160℃で溶融し、無水マレイン酸5.3部を仕込み、窒素下200℃で10時間反応を行い、過剰量の無水マレイン酸を減圧除去した。次いで12-アミノドデカン酸5.8部を仕込み、200℃1時間反応を行い、ポリオレフィン(a-5)を得た。ポリオレフィン(a-5)の酸価は14.1、Mnは6,600であった。
<製造例6>[ポリオレフィン(a-6)の製造]
反応容器に、プロピレン96重量%、エチレン4重量%を構成単位とするポリオレフィン[商品名「ウィンテックWFX6」、日本ポリプロ(株)製、Mn150,000、以下同じ。]1000部を仕込み、液相に窒素を通気しながら、マントルヒーターにて加熱溶融し、撹拌しながら370℃で100分間の条件で、熱減成を行い、両末端に炭素-炭素二重結合を有するポリオレフィン(a1-0-4)[Mn:2,800]を得た。
次に、反応容器に、ポリオレフィン(a1-0-4)100部を160℃で溶融し、無水マレイン酸12.2部を仕込み、窒素下200℃で10時間反応を行い、過剰量の無水マレイン酸を減圧除去した。次いで12-アミノドデカン酸13.4部を仕込み、200℃で1時間反応を行い、ポリオレフィン(a-6)を得た。ポリオレフィン(a-6)の酸価は29.5、Mnは3,300であった。
<製造例7>[ポリオレフィン(a-7)の製造]
反応容器に、プロピレン96重量%、エチレン4重量%を構成単位とするポリオレフィン[上記「ウィンテックWFX6」]1000部を仕込み、液相に窒素を通気しながら、マントルヒーターにて加熱溶融し、撹拌しながら370℃で40分間の条件で、熱減成を行い、両末端に炭素-炭素二重結合を有するポリオレフィン(a1-0-5)[Mn:6,700]を得た。
次に、反応容器に、ポリオレフィン(a1-0-5)100部を160℃で溶融し、無水マレイン酸4.9部を仕込み、窒素下200℃で10時間反応を行い、過剰量の無水マレイン酸を減圧除去した。次いで12-アミノドデカン酸5.4部を仕込み、200℃1時間反応を行い、ポリオレフィン(a-7)を得た。ポリオレフィン(a-7)の酸価は13.1、Mnは7,200であった。
<実施例1>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-1)159部、ポリテトラメチレングリコール(b-1)(PTMG、Mn:3,000)140部、酸化防止剤[商品名「イルガノックス1010」、BASFジャパン(株)製]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-1)(Mn:37,000)を得た。
<実施例2>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-2)157部、ポリテトラメチレングリコール(b-1)142部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-2)(Mn:46,000)を得た。
<実施例3>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-3)155部、ポリテトラメチレングリコール(b-1)144部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-3)(Mn:65,000)を得た。
<実施例4>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-1)153部、ポリテトラメチレングリコール(b-1)142部、無水トリメリット酸4.3部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-4)(Mn:51,000)を得た。
<実施例5>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-4)157部、ポリテトラメチレングリコール(b-2)(PTMG、Mn:2,000)142部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-5)(Mn:41,000)を得た。
<実施例6>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-4)127部、ポリテトラメチレングリコール(b-1)173部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-6)(Mn:47,000)を得た。
<実施例7>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-2)206部、ポリテトラメチレングリコール(b-3)(PTMG、Mn:1,500)93部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-7)(Mn:47,000)を得た。
<実施例8>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-1)146部、ポリテトラメチレングリコール(b-1)152部、無水トリメリット酸0.9部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-8)(Mn:41,000)を得た。
<実施例9>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-1)133部、ポリテトラメチレングリコール(b-1)164部、無水トリメリット酸1.9部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-9)(Mn:46,000)を得た。
<実施例10>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-5)207部、ポリテトラメチレングリコール(b-1)91部、無水トリメリット酸0.6部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-10)(Mn:40,000)を得た。
<実施例11>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-5)231部、ポリテトラメチレングリコール(b-2)68部、無水トリメリット酸0.6部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-11)(Mn:36,000)を得た。
<実施例12>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-6)167部、ポリテトラメチレングリコール(b-1)132部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-12)(Mn:37,000)を得た。
<実施例13>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-6)155部、ポリテトラメチレングリコール(b-1)143部、無水トリメリット酸0.9部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-13)(Mn:39,000)を得た。
<実施例14>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-6)143部、ポリテトラメチレングリコール(b-1)155部、無水トリメリット酸1.8部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-14)(Mn:47,000)を得た。
<実施例15>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-6)129部、ポリテトラメチレングリコール(b-1)167部、無水トリメリット酸2.8部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-15)(Mn:53,000)を得た。
<実施例16>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-7)212部、ポリテトラメチレングリコール(b-1)87部、無水トリメリット酸0.5部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-16)(Mn:34,000)を得た。
<実施例17>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-1)146部、ポリプロピレングリコール(b-4)(PPG、Mn:3,000)152部、無水トリメリット酸0.9部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-17)(Mn:40,000)を得た。
<実施例18>
撹拌機、温度計、加熱冷却装置、窒素導入管及び減圧装置を備えたステンレス製耐圧反応容器に、ポリオレフィン(a-1)221部、ポリプロピレングリコール(b-5)(PPG、Mn:1,000)77部、無水トリメリット酸1.4部、酸化防止剤[上記「イルガノックス1010」]0.3部、ジブチルスズオキシド0.6部を投入し、撹拌しながら220℃、0.13kPa以下の減圧下で6時間重合させて、シューズソール用ブロックポリマー(X-18)(Mn:37,000)を得た。
<実施例19>
実施例1で得られたブロックポリマー(X-1)90部とポリオレフィン樹脂(E-1)[プロピレンホモポリマー、商品名「PM801A」、サンアロマー(株)製]10部を190℃、滞留時間30秒の条件で二軸押し出し機によって混練し、ペレット化してシューズソール用樹脂組成物(Y-19)を得た。
<実施例20>
実施例1で得られたブロックポリマー(X-1)70部とポリオレフィン樹脂(E-1)30部を190℃、滞留時間30秒の条件で二軸押し出し機によって混練し、ペレット化して、シューズソール用樹脂組成物(Y-20)を得た。
<実施例21>
実施例1で得られたブロックポリマー(X-1)90部とポリオレフィン樹脂(E-2)[プロピレン96重量%、エチレン4重量%を構成単位とするポリオレフィン、上記「ウィンテックWFX6」]10部を190℃、滞留時間30秒の条件で二軸押し出し機によって混練し、ペレット化して、シューズソール用樹脂組成物(Y-21)を得た。
<実施例22>
実施例1で得られたブロックポリマー(X-1)70部とポリオレフィン樹脂(E-2)30部を190℃、滞留時間30秒の条件で二軸押し出し機によって混練し、ペレット化して、シューズソール用樹脂組成物(Y-22)を得た。
<実施例23>
実施例8で得られたブロックポリマー(X-8)70部とポリオレフィン樹脂(E-1)30部を190℃、滞留時間30秒の条件で二軸押し出し機によって混練し、ペレット化して、シューズソール用樹脂組成物(Y-23)を得た。
<実施例24>
実施例13で得られたブロックポリマー(X-13)70部とポリオレフィン樹脂(E-2)30部を190℃、滞留時間30秒の条件で二軸押し出し機によって混練し、ペレット化して、シューズソール用樹脂組成物(Y-24)を得た。
<比較例1>
比較のためのブロックポリマーとして市販のEVA樹脂(三井化学株式会社製、商品名「エバフレックス270」)を使用した。
<実施例31>
シューズソール用ブロックポリマー(X-1)100部、発泡剤(C-1)4部とをオープンロールで混合した後、160℃、15MPaの条件で発泡成形して、シューズソール(Z-1)を得た。得られたシューズソール(Z-1)について、評価を行った。
<実施例32~54、比較例2>
表1又は表2の原料組成(部)に従った以外は、実施例31と同様にして、各シューズソール(Z-2)~(Z-24)及び(比Z-1)を得た。なお、比較例2では、比較例1のEVA樹脂を使用した。結果を表1及び表2に示す。
<評価>
(1)密度
密度(g/cm)は、ASTMD1505に従い、23℃にて求めた。
(2)圧縮歪み
得られたソール(タテ5cm×ヨコ5cm×高さ5cm)に、50℃の条件下、10kgf/cmで20時間荷重をかけ、4時間開放する試験を1回として、試験を合計5回行った。試験前の高さをL0、試験後の高さをL5として、下記式により、圧縮歪みを求めて、以下の評価基準で評価した。
圧縮歪み(%)=(L0-L5)×100/L0
[評価基準]
◎:圧縮歪みが10%未満
〇:圧縮歪みが10%以上~15%未満
△:圧縮歪みが15%以上~20%未満
×:圧縮歪みが20%以上
(3)反発性
得られたソールから試料を採取し、JIS K7244-4に準拠して下記測定条件で動的粘弾性を測定し、23℃における損失係数(tanδ)を求めて、以下の評価基準で評価した。
[測定条件]
・測定機器:(株)ユービーエム製、動的粘弾性測定装置Rheogel-E4000
・サンプル形状:長さ40±3mm、幅5±0.3mm、厚さ3±0.3mmの短冊状
・測定モード:正弦波歪みの引張モード
・チャック間距離:30±0.2mm
・温度:-50~200℃
・周波数:10Hz
・荷重:自動静荷重
・動歪み:3μm
[評価基準]
◎:0.08未満
〇:0.08以上0.1未満
△:0.1以上0.15未満
×:0.15以上
(4)温度による反発性の変化(-20℃[tanδ]/25℃[tanδ])
上記(3)と同様に、動的粘弾性の測定データから、-20℃における損失係数(-20℃[tanδ])と、25℃における損失係数(25℃[tanδ])を求めて、-20℃[tanδ]/25℃[tanδ]を、以下の評価基準で評価した。
[評価基準]
◎:0.75以上~1.25未満
〇:0.6以上0.75未満、または1.25以上1.4未満
△:0.4以上0.6未満、または1.4以上1.6未満
×:0.4未満、または1.6以上
(5)ソール反発の温度依存性
得られたソールを(タテ25cm×ヨコ10cm×厚さ3cm)に裁断して試験片を得た。試験片を20℃、50%RH(相対湿度)の室内に載置し、24時間温度調節した。
試験片の上部から、50cmの高さから直径2cmのアルミニウム球を落下させて、最も反発した時の試験片からアルミニウム球の底部までの距離を測定し、反発した距離をL20とした。
また、試験片を-20℃、50%RHの室内に載置し、24時間温度調節したのちに同様の試験を行い、反発した距離をL-20とした。
上記で測定したL20と、L-20とから、下記式でソール反発の温度依存性を算出し、以下の評価基準で評価した。
ソール反発の温度依存性=L-20×100/L20
[評価基準]
◎:90以上
〇:80以上、90未満
△:70以上、80未満
×:70未満
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表1及び表2中、各原料は以下の通り。
EVA樹脂:三井化学(株)製、商品名「エバフレックス270」
架橋剤:ジクミルパーオキサイド(DCP)[日油(株)製、商品名「パークミルD」]
発泡剤(C-1):アゾジカルボンアミド[永和化成工業(株)製、商品名「ビニホールDW♯6」]
表1及び表2の結果から、本発明のシューズソール用ブロックポリマー(X)を用いたシューズソール(Z)は、比較のものと比べて、圧縮歪みが小であり、耐久性に優れ、さらに反発性に優れる(損失係数が小さく、温度による反発性の変化が小さい)ことが分かる。
本発明のシューズソール用ブロックポリマー(X)は、種々のシューズソール(アウトソール、ミッドソール)の原料樹脂として好適に使用できる。また、シューズソール用ブロックポリマー(X)を用いたシューズソール(Z)は、圧縮歪みが小であり、耐久性に優れ、さらに反発性に優れるため、ミッドソール、アウトソールとして有用である。

Claims (9)

  1. 下記ポリオレフィン(a)のブロックと、下記ポリアルキレングリコール(b)のブロックとを構成単位として有するシューズソール用ブロックポリマー(X)。
    ポリオレフィン(a):プロピレンとエチレンとを構成単量体として含み、プロピレンとエチレンとの重量比(プロピレン/エチレン)が90/10~99.5/0.5である;
    ポリアルキレングリコール(b):炭素数3~4のアルキレングリコールを構成単量体として含む。
  2. 前記ポリオレフィン(a)のブロックの数平均分子量が、1,000~10,000である請求項1記載のシューズソール用ブロックポリマー(X)。
  3. 前記ポリアルキレングリコール(b)のブロックの数平均分子量が、500~4,000である請求項1記載のシューズソール用ブロックポリマー(X)。
  4. 前記ポリオレフィン(a)のブロックと前記ポリアルキレングリコール(b)のブロックとの重量比[(a)/(b)]が20/80~80/20である請求項1~3のいずれか記載のシューズソール用ブロックポリマー(X)。
  5. ポリオレフィン(a)及び/又はポリアルキレングリコール(b)の末端の官能基と反応し得る官能基を少なくとも3個有する架橋剤(K)で架橋した構造を有する請求項1~3のいずれか記載のシューズソール用ブロックポリマー(X)。
  6. 数平均分子量が5,000~150,000である請求項1~3のいずれか記載のシューズソール用ブロックポリマー(X)。
  7. 請求項1記載のシューズソール用ブロックポリマー(X)と前記シューズソール用ブロックポリマー(X)以外の熱可塑性樹脂(E)とを含有するシューズソール用樹脂組成物(Y)。
  8. 請求項1記載のシューズソール用ブロックポリマー(X)又は請求項7記載のシューズソール用樹脂組成物(Y)の発泡成形体であるシューズソール(Z)。
  9. 密度が0.20~0.90g/cmである請求項8記載のシューズソール(Z)。
PCT/JP2022/040873 2021-11-09 2022-11-01 シューズソール用ブロックポリマー、シューズソール用樹脂組成物及びシューズソール WO2023085172A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-182591 2021-11-09
JP2021182591 2021-11-09
JP2022-035192 2022-03-08
JP2022035192 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023085172A1 true WO2023085172A1 (ja) 2023-05-19

Family

ID=86335973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040873 WO2023085172A1 (ja) 2021-11-09 2022-11-01 シューズソール用ブロックポリマー、シューズソール用樹脂組成物及びシューズソール

Country Status (1)

Country Link
WO (1) WO2023085172A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362804A (ja) 1989-07-28 1991-03-18 Sanyo Chem Ind Ltd 低分子ポリオレフィンの製造法
JP2002284880A (ja) * 2001-01-10 2002-10-03 Sanyo Chem Ind Ltd 樹脂組成物及び帯電防止剤
JP2002332355A (ja) * 2001-05-11 2002-11-22 Sanyo Chem Ind Ltd ブロックポリマー及びこれからなる熱可塑性樹脂組成物
JP2005272828A (ja) * 2004-02-27 2005-10-06 Sanyo Chem Ind Ltd 帯電防止性粘着シート
JP2008093412A (ja) 2006-10-16 2008-04-24 Stilflex Srl スポーツシューズ用インソール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362804A (ja) 1989-07-28 1991-03-18 Sanyo Chem Ind Ltd 低分子ポリオレフィンの製造法
JP2002284880A (ja) * 2001-01-10 2002-10-03 Sanyo Chem Ind Ltd 樹脂組成物及び帯電防止剤
JP2002332355A (ja) * 2001-05-11 2002-11-22 Sanyo Chem Ind Ltd ブロックポリマー及びこれからなる熱可塑性樹脂組成物
JP2005272828A (ja) * 2004-02-27 2005-10-06 Sanyo Chem Ind Ltd 帯電防止性粘着シート
JP2008093412A (ja) 2006-10-16 2008-04-24 Stilflex Srl スポーツシューズ用インソール

Similar Documents

Publication Publication Date Title
CN108602928A (zh) 环烯烃共聚物及其制备方法
EA011404B1 (ru) Пенополиуретаны низкой плотности, способ их получения, их применение для изготовления подошв обуви и полиуретановая система для получения пенополиуретанов
US7193011B2 (en) Method of preparing water-dispersible poly (urethane-urea) having aromatic-aliphatic isocyanate
TW201109379A (en) Antistastic resin composition
JP6404635B2 (ja) 硬化性組成物
CN105283482B (zh) 热塑性聚氨酯及相关方法和制品
KR20150119898A (ko) 텔레켈릭 n-알킬화 폴리아미드로부터 제조된 폴리머
CN103261261B (zh) 聚氨酯树脂制造用多元醇组合物及使用该组合物的聚氨酯树脂的制造方法
CN113105608B (zh) 一种具有高力学强度的自愈性超支化聚氨酯及其制备方法与应用
WO2023085172A1 (ja) シューズソール用ブロックポリマー、シューズソール用樹脂組成物及びシューズソール
US20040102601A1 (en) Curable resin, curable resin material, curable film, and insulator
US20230323173A1 (en) Oil resistant adhesive composition
CN106795268B (zh) 不含nco的化合物及其在可固化组合物中的用途
JP2023103299A (ja) ポリカーボネートジオール組成物
JP2011213867A (ja) 熱可塑性ポリウレタン樹脂、成形品、および、熱可塑性ポリウレタン樹脂の製造方法
JP2015040263A (ja) ポリウレタン発泡止水材
KR102297539B1 (ko) 에폭시 접착제 조성물을 위한 트리블록 구조의 폴리우레탄 강인화제
WO2023080109A1 (ja) シューズソール用ブロックポリマー、シューズソール用樹脂組成物及びシューズソール
JP2011213866A (ja) 鎖伸長剤およびその製造方法、および、熱可塑性ポリウレタン樹脂
JP2021017525A (ja) 接着用樹脂改質剤
TW202037590A (zh) 製備含五碳環氧氮苯并環己烷聚胺酯阻尼材料
WO2019146591A1 (ja) 樹脂改質剤、樹脂組成物、成形品及び成形物品
CN100439432C (zh) 含有氢化共聚物的聚合物泡沫
CN118234781A (zh) 鞋底用嵌段聚合物、鞋底用树脂组合物及鞋底
JP2012246410A (ja) 導光性ポリウレタン樹脂および導光部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023559582

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022892671

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022892671

Country of ref document: EP

Effective date: 20240610