WO2023083019A1 - 一种基于导电mof材料修饰的电磁屏蔽纸及其制备方法 - Google Patents

一种基于导电mof材料修饰的电磁屏蔽纸及其制备方法 Download PDF

Info

Publication number
WO2023083019A1
WO2023083019A1 PCT/CN2022/128096 CN2022128096W WO2023083019A1 WO 2023083019 A1 WO2023083019 A1 WO 2023083019A1 CN 2022128096 W CN2022128096 W CN 2022128096W WO 2023083019 A1 WO2023083019 A1 WO 2023083019A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic shielding
modified
fiber
paper
mof material
Prior art date
Application number
PCT/CN2022/128096
Other languages
English (en)
French (fr)
Inventor
王士华
张如强
陶明东
龙柱
郭涛
詹永振
唐行龙
苗岭
孙昌
Original Assignee
江苏奥神新材料股份有限公司
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏奥神新材料股份有限公司, 江南大学 filed Critical 江苏奥神新材料股份有限公司
Publication of WO2023083019A1 publication Critical patent/WO2023083019A1/zh
Priority to US18/325,422 priority Critical patent/US20230323599A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/12Organo-metallic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/28Halides of elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • D06M13/335Amines having an amino group bound to a carbon atom of a six-membered aromatic ring
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked

Definitions

  • the invention relates to an electromagnetic shielding paper modified based on a conductive MOF material and a preparation method thereof, belonging to the technical field of electromagnetic shielding.
  • plant fiber paper-based electromagnetic shielding material has poor mechanical properties, water resistance and temperature resistance, and is easy to burn. These defects make the traditional plant fiber paper-based electromagnetic shielding material unable to meet the use in some special environments, such as aerospace, automotive, etc. Industrial and commercial fields.
  • CN111286174A Chinese patent application discloses a kind of electromagnetic shielding plant fiber composite material prepared by dopamine reducing metal ions on the surface of plant fiber
  • CN109610229A Chinese patent application discloses a kind of chemical nickel plating with plant fiber as the base material The self-fluffy electromagnetic shielding paper prepared by processing; but the above-mentioned electromagnetic shielding papers have poor temperature resistance and mechanical properties, and are not suitable for applications in high temperature environments.
  • high-performance fibers such as chemical synthetic fibers and inorganic fibers can improve the mechanical properties, temperature resistance, and water resistance of paper-based materials
  • the technical problem to be solved by the present invention is to provide a kind of electromagnetic shielding paper modified based on conductive MOF material, which still has high absorption and low reflection characteristics under ultra-thin, light weight and low filling degree, so it has Good electromagnetic shielding performance.
  • polyimide fiber As a kind of chemical synthetic fiber, polyimide fiber has excellent physical and mechanical properties and is expected to be used in the field of paper-based composite materials. However, due to the characteristics of chemical synthetic fibers, polyimide fiber-based paper-based composite materials There are no mature commercial products yet. Based on the characteristics of polyimide fibers, overcoming its surface inertia, introducing wave-absorbing materials (conductive polymers, carbon nanotubes, graphene, etc.) for functional modification can broaden the application fields of polyimide fibers. Therefore, based on the characteristics of light weight and controllable shape of paper-based sheets, PI fiber paper is combined with conductive MOFs materials and polypyrrole to prepare a light-weight, shape-controllable structure-functional composite material-paper-based electromagnetic shielding material.
  • this material can meet the development trend of lightweight electromagnetic shielding materials, overcome the defects of traditional fiber paper-based electromagnetic shielding materials, and can replace the traditional thick and heavy metal plates, ceramic bases, etc., which are heavy and difficult to process. paper-based electromagnetic shielding material.
  • the invention provides an ultra-thin, light-weight, strong-absorbing electromagnetic shielding paper based on conductive MOF material modification and a preparation method thereof.
  • a method for preparing electromagnetic shielding paper modified based on conductive MOF materials comprising the steps of:
  • the mass ratio of nickel chloride hexahydrate, 2,3,6,7,10,11-hexaaminotriphenylene and PI fiber in step (1) is (6 ⁇ 12): (2 ⁇ 6): 20.
  • the mass ratio (1-6) of nickel chloride hexahydrate to 2,3,6,7,10,11-hexaaminotriphenylene in step (1) 1; preferably ( 2.5-3):1.
  • the reaction temperature of the in situ modification reaction in step (1) is room temperature (20-30° C.).
  • the drying temperature in step (1) is 100-110°C.
  • the mass ratio of PI fiber modified by MOF material to aramid pulp in step (2) is (60-80):(20-40).
  • the mass ratio of MOF modified PI fibers to aramid pulp in step (2) is preferably (60-70):(30-40).
  • the weight of the PI fiber paper-based conductive framework modified based on the MOF material in step (2) is 60 g/m 2 .
  • the pressing pressure in step (2) is 0.3-0.5 MPa.
  • the drying temperature in step (2) is 100-120°C.
  • the mass concentration of the FeCl solution in step (3) is 100-150 g/L.
  • step (3) the conductive polymer (polypyrrole) is generated in situ by gas phase polymerization.
  • the mass concentration of the pyrrole aqueous solution in step (3) is 10-15 g/L.
  • the vacuum degree of vacuuming in step (3) is -0.05 ⁇ -0.1 MPa.
  • the temperature of the polymerization reaction in step (3) is 0° C., and the reaction time is 2-6 hours.
  • the drying temperature in step (3) is 100-115°C.
  • the present invention provides an electromagnetic shielding paper based on a conductive MOF material based on the above preparation method.
  • the present invention also provides the application of the above-mentioned electromagnetic shielding paper modified based on conductive MOF materials in the fields of electromagnetic shielding and conduction.
  • the electromagnetic shielding paper modified based on conductive MOF materials of the present invention has good electromagnetic wave shielding efficiency, can reduce the secondary pollution of electromagnetic radiation, and maintain its flexibility, ultra-thin, light It still has high absorption, low reflection characteristics, high temperature resistance and flame retardancy for electromagnetic waves under high-quality conditions, which solves the problems of traditional metal electromagnetic shielding materials being thick and difficult to process, and also solves the problem that traditional paper-based electromagnetic shielding materials cannot be used in harsh environments. work problem.
  • the preparation method of the electromagnetic shielding paper modified based on MOF derivative materials is simple, low in cost, and suitable for industrial mass production, which provides the possibility of mass production for electromagnetic shielding paper with a cumbersome preparation process.
  • Fig. 1 is a SEM photo of the electromagnetic shielding paper modified based on conductive MOF material prepared in Example 1 of the present invention.
  • Fig. 2 is the electromagnetic shielding performance spectrum of the electromagnetic shielding paper PPy/Ni-MOF/PI modified based on conductive MOF materials prepared in Examples 1, 2, and 3 of the present invention, respectively.
  • Fig. 3 is the TG curve of the electromagnetic shielding paper modified based on conductive MOF material prepared in Example 1 of the present invention.
  • Fig. 4 is a device for in-situ generation of polypyrrole by the gas phase polymerization method of the present invention.
  • the preparation method of the electromagnetic shielding paper modified based on conductive MOF material of the present invention comprises the following steps:
  • Step (1) add nickel chloride hexahydrate and 2,3,6,7,10,11-hexaaminotriphenylene into deionized water, then add PI fiber, react and dry at room temperature to obtain PI modified by MOF material fiber;
  • step (2) the PI fiber and aramid pulp modified by the MOF material are dispersed in water, and the PI fiber paper-based conductive skeleton modified by the MOF material is obtained by stirring, sheeting, pressing, and drying;
  • step (3) the pyrrole aqueous solution is placed on the bottom of the vacuum glass desiccator (without immersing the porcelain plate), and then the PI fiber paper-based conductive skeleton material modified by the MOF material is immersed in the FeCl solution to saturation, taken out, and placed Above the ceramic plate of the vacuum glass drier, vacuumize, and through pyrrole volatilization, pyrrole polymerization reaction occurs inside and on the surface of the PI fiber paper-based conductive skeleton material modified by MOF material. After the reaction is completed, it is washed and dried to obtain a conductive Electromagnetic shielding paper modified by MOF materials.
  • the mass ratio of nickel chloride hexahydrate, 2,3,6,7,10,11-hexaaminotriphenylene and PI fiber described in step (1) is (6 ⁇ 12):(2 ⁇ 6) :20.
  • the reaction temperature of the conductive MOF material in step (1) is room temperature 25°C, and the drying temperature is 100-110°C.
  • the mass ratio of the PI fiber modified by the MOF material to the aramid pulp in step (2) is (60-80):(20-40).
  • the basis weight of the PI fiber paper-based conductive framework modified based on MOF material in step (2) is 60 g/m 2 .
  • the pressing pressure of the MOF-based modified PI fiber paper-based conductive skeleton is 0.3-0.5 MPa, and the drying temperature is 100-120°C.
  • the mass concentration of the FeCl solution in step (3) is 100-150 g/L.
  • the mass concentration of the pyrrole aqueous solution in step (3) is 10-15 g/L.
  • the reaction temperature of the polymerization reaction in step (3) is 0° C., and the reaction time is 2 to 6 hours.
  • the drying temperature of the electromagnetic shielding paper modified based on the conductive MOF material in step (3) is 100-115°C.
  • the tensile strength tester under the condition of constant speed loading, the tensile strength tester stretches the sample of specified size until it breaks, and measures its tensile strength. From the obtained results and the sample Quantitatively, the tensile index can be calculated.
  • the electrical conductivity of the electromagnetic shielding paper was tested with a ST2263-four-probe tester.
  • the waveguide method is used to measure the shielding effect of electromagnetic shielding paper on electromagnetic waves.
  • thermogravimetric analyzer test the temperature index of the sample at the time of thermal weight loss of 10% to characterize the thermal stability of the electromagnetic shielding paper.
  • Ni-MOF/PI fibers were added 1.0g of nickel chloride hexahydrate and 0.4g of 2,3,6,7,10,11-hexaaminotriphenylene into 40ml of deionized water to dissolve completely, then add 2g of PI fiber (3mm, purchased from Jiangsu Ao Shenxin Materials Co., Ltd.) was added to the mixture for in-situ synthesis for 24 hours, filtered and washed 5 times with water, and dried at 65°C to obtain Ni-MOF/PI fibers.
  • PI fiber purchased from Jiangsu Ao Shenxin Materials Co., Ltd.
  • the prepared 1.32g Ni-MOF/PI fiber and 0.56g aramid pulp (moisture content 84.2%, beating degree 27°SR, 0.3-0.6mm, purchased from Shenzhen Fiber Valley Co., Ltd.) were dispersed in 400g Stir in water for 5 minutes, make sheets on a sheet machine, press for 5 minutes under a pressure of 0.4 MPa, and dry at 105°C for 10 minutes to obtain a PI fiber paper-based conductive skeleton modified with MOF materials.
  • the tensile index of the electromagnetic shielding paper modified based on the conductive MOF material obtained in Example 1 is 26.3N m/g; the temperature at 10% thermal weight loss is 445°C; the conductivity is 16.1S/cm; in the entire X-band
  • the electromagnetic shielding effectiveness is 41.0-44.5dB.
  • Ni-MOF@PI fibers Add 1.2g of nickel chloride hexahydrate and 0.6g of 2,3,6,7,10,11-hexaaminotriphenylene into 40ml of deionized water to dissolve completely, then add 2g of PI fiber into the mixture for in situ Synthesized for 12 h, filtered and washed 5 times with water, and dried at 65 °C to obtain Ni-MOF@PI fibers.
  • Ni-MOF/PI fiber and 0.56g of aramid pulp were dispersed in 400g of water, stirred for 5min, sheeted on a sheet machine, and then pressed for 5min under a pressure of 0.4MPa, at 105°C After drying for 10 minutes, the PI fiber paper-based conductive skeleton modified by MOF material was obtained.
  • the tensile index of the electromagnetic shielding paper modified based on the conductive MOF material obtained in Example 2 is 24.5N m/g; the temperature at 10% thermal weight loss is 440°C; the conductivity is 15.0S/cm; in the entire X-band The electromagnetic shielding effectiveness is 34.0-37.5dB.
  • Ni-MOF@PI fibers Add 1g of nickel chloride hexahydrate and 0.4g of 2,3,6,7,10,11-hexaaminotriphenylene into 40ml of deionized water to dissolve completely, then add 2g of PI fiber into the mixture for in situ synthesis After 24 h, it was filtered and washed with water for 5 times, and dried at 65 °C to obtain Ni-MOF@PI fibers.
  • Ni-MOF/PI fibers and 0.56g of aramid pulp were dispersed in 400g of water, stirred for 5min, sheeted on a sheet machine, and then pressed for 5min under a pressure of 0.4MPa. Dry for 10 minutes to obtain a PI fiber paper-based conductive skeleton modified by MOF materials;
  • the tensile index of the electromagnetic shielding paper modified based on the conductive MOF material obtained in Example 3 is 21.0N m/g; the temperature at the time of thermal weight loss of 10% is 450°C; the conductivity is 12.1S/cm; in the entire X-band
  • the electromagnetic shielding effectiveness is 27.5-29.0dB.
  • Ni-MOF/PI fibers Add 1.0g of nickel chloride hexahydrate and 0.4g of 2,3,6,7,10,11-hexaaminotriphenylene into 40ml of deionized water to dissolve completely, then add 2g of PI fibers into the mixture for in situ Synthesize for 24h, filter and wash with water for 5 times, and dry at 65°C to obtain Ni-MOF/PI fibers.
  • Ni-MOF/PI fiber and 0.56g of aramid pulp were dispersed in 400g of water, stirred for 5min, sheeted on a sheet machine, and then pressed for 5min under a pressure of 0.4MPa, at 105°C Dry for 10 minutes to obtain Ni-MOF/PI fiber paper.
  • the tensile index of the Ni-MOF/PI fiber paper obtained in this comparative example 1 is 16.2N m/g; the temperature at the time of thermal weight loss of 10% is 470°C; the electrical conductivity is 2.0S/cm; electromagnetic shielding in the entire X-band The efficacy is 11.2-13.5dB.
  • PI fiber paper Disperse 1.32g of PI fiber and 0.56g of aramid pulp in 400g of water, stir for 5min, and make a sheet on a sheet machine, then press for 5min under a pressure of 0.4MPa, and finally dry at 105°C for 10min to obtain PI fiber paper .
  • the tensile index of the PPy/PI fiber paper obtained in this comparative example 2 is 19N m/g; the temperature at the time of thermal weight loss of 10% is 440°C; the electrical conductivity is 11.0S/cm; the electromagnetic shielding efficiency in the whole X-band is 20.0 -21.7dB.
  • the modification of the conductive MOF material and the introduction of PPy make the electromagnetic shielding performance of the electromagnetic shielding paper significantly better than that of the electromagnetic shielding paper modified by a single material.
  • the obtained Electromagnetic shielding paper also has good mechanical properties and high heat resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及一种基于导电MOF材料修饰的电磁屏蔽纸及其制备方法,属于电磁屏蔽技术领域。本发明方法通过将聚酰亚胺纤维放入导电MOF材料的前驱液中反应,得到MOF材料修饰的PI纤维;将该修饰后的纤维与芳纶浆粕混合,经抄造、压榨和干燥得到纸基前驱体:采用气相聚合法原位生成导电聚合物(聚吡咯),最终得到基于导电MOF材料修饰的电磁屏蔽纸。本发明所得电磁屏蔽纸不仅具有良好的导电性和电磁屏蔽性能,还具有良好的机械性能和热稳定性能。

Description

一种基于导电MOF材料修饰的电磁屏蔽纸及其制备方法 技术领域
本发明涉及一种基于导电MOF材料修饰的电磁屏蔽纸及其制备方法,属于电磁屏蔽技术领域。
背景技术
电子产品的广泛应用,给我们的日常生活带来极大便利的同时,但随之而来的电磁污染问题越发严重,不仅严重影响我们的身体健康,同样也会影响精密电子设备的运转,我们不得不对此引起重视。因此电磁屏蔽材料的应用市场巨大,特别是当下5G通信技术中高频电磁波的使用,使得对电磁屏蔽材料的性能要求越来越高,促使电磁屏蔽材料向超薄、轻质、耐高温、机械强度高、宽频吸收的方向发展。
目前报道的电磁屏蔽材料主要包括植物纤维纸基电磁屏蔽材料、高性能纤维(例如化学合成纤维和无机纤维)。其中,植物纤维纸基电磁屏蔽材料机械性能、耐水性能和耐温性能较差,易燃烧,这些缺陷使得传统植物纤维纸基电磁屏蔽材料无法满足某些特殊环境下的使用,例如航空航天、汽车工业以及商业领域。例如:CN111286174A中国专利申请中公开了一种在植物纤维表面通过多巴胺还原金属离子制备的电磁屏蔽植物纤维复合材料;CN109610229A中国专利申请中公开了一种以植物纤维为基材对其进行化学镀镍处理制备的自蓬松电磁屏蔽纸;但是上述这些电磁屏蔽纸的共同点是耐温性能以及机械性能较差,不适用于高温环境下的应用。高性能纤维例如化学合成纤维和无机纤维虽然可改善纸基材料的机械性能、耐温性能、耐水性能,为解决传统植物纤维纸基电磁屏蔽材料的缺陷提供了可能;然而化学合成纤维表面几乎没有活性基团,纤维间很难产生氢键结合,使得化学合成纤维湿法造纸存在较大的技术难题。此外,由于化学合成纤维的表面特性,对化学合成纤维进行功能化改性也存在一定的难度。
发明内容
技术问题:本发明所要解决的技术问题是提供一种基于导电MOF材料修饰的电磁屏蔽纸,该电磁屏蔽纸在超薄、轻质和低填充度下仍具有高吸收、低反射特性,从而具有良好的电磁屏蔽效能。
技术方案:
聚酰亚胺纤维作为化学合成纤维的一种,具有优异的物理机械性能,有望应用于纸基复合材料领域,然而由于化学合成纤维的特性,导致聚酰亚胺纤维纸基复合材料在国内外还没有成熟的商业化产品。基于聚酰亚胺纤维的特性,克服其表面惰性,引入吸波材料(导电聚合物、碳纳米管、石墨烯等)进行功能化改性,可拓宽聚酰亚胺纤维的应用领域。因此基于纸基片材轻质、形状可控等特性,将PI纤维纸与导电MOFs材料和聚吡咯结合,制备一种轻质、形状可控的结构功能一体化复合材料-纸基电磁屏蔽材料,该材料即可满足电磁屏蔽材料轻量化的发展趋势,克服传统纤维纸基电磁屏蔽材料的缺陷,又能够代替传统的厚重金属板、陶瓷基等厚重、难加工的问题,是极具发展前景的纸基电磁屏蔽材料。本发明提供了一种超薄、轻质、强吸收的基于导电MOF材料修饰的电磁屏蔽纸及其制备方法。
本发明的目的是通过以下技术方案实现的:一种基于导电MOF材料修饰的电磁屏蔽纸的制备方法,包括如下步骤:
(1)将六水合氯化镍和2,3,6,7,10,11-六氨基三亚苯分散在水中,随后加入PI纤维发生原位修饰反应,反应结束后,取纤维、干燥,得到MOF材料修饰的PI纤维;
(2)然后将MOF材料修饰的PI纤维和芳纶浆粕分散在水中,经混匀、抄片、压榨、干燥得到MOF材料修饰的PI纤维纸基导电骨架材料;
(3)将吡咯水溶液放置在真空玻璃干燥器中的底部(不浸过瓷板),然后将MOF材料修饰的PI纤维纸基导电骨架材料在FeCl 3溶液中浸渍至饱和取出,并放置在真空玻璃干燥器的瓷板上方,抽真空,通过吡咯挥发,在MOF材料修饰的PI纤维纸基导电骨架材料的内部和表面发生吡咯聚合反应,反应结束后,洗涤、干燥,即得基于导电MOF材料修饰的电磁蔽纸。
在本发明的一种实施方式中,步骤(1)中六水合氯化镍、2,3,6,7,10,11-六氨基三亚苯和PI纤维的质量比为(6~12):(2~6):20。
在本发明的一种实施方式中,步骤(1)中六水合氯化镍与2,3,6,7,10,11-六氨基三亚苯的质量比(1-6):1;优选(2.5-3):1。
在本发明的一种实施方式中,步骤(1)中原位修饰反应的反应温度为室温(20-30℃)。
在本发明的一种实施方式中,步骤(1)中干燥的温度100~110℃。
在本发明的一种实施方式中,步骤(2)中MOF材料修饰的PI纤维和芳纶浆粕的质量比为(60~80):(20~40)。
在本发明的一种实施方式中,步骤(2)中MOF材料修饰的PI纤维和芳纶浆粕的质量比优选(60-70):(30-40)。
在本发明的一种实施方式中,步骤(2)中基于MOF材料修饰的PI纤维纸基导电骨架的 定量为60g/m 2
在本发明的一种实施方式中,步骤(2)中压榨的压力为0.3~0.5MPa。
在本发明的一种实施方式中,步骤(2)中干燥的温度为100~120℃。
在本发明的一种实施方式中,步骤(3)中FeCl 3溶液的质量浓度100~150g/L。
在本发明的一种实施方式中,步骤(3)中,采用气相聚合法原位生成导电聚合物(聚吡咯)。
在本发明的一种实施方式中,步骤(3)中吡咯水溶液的质量浓度为10~15g/L。
在本发明的一种实施方式中,步骤(3)中抽真空的真空度为-0.05~-0.1MPa。
在本发明的一种实施方式中,步骤(3)中聚合反应的温度为0℃,反应时间2~6h。
在本发明的一种实施方式中,步骤(3)中干燥的温度为100~115℃。
本发明基于上述制备方法制备提供了一种基于导电MOF材料的电磁屏蔽纸。
本发明还提供了上述基于导电MOF材料修饰的电磁屏蔽纸在电磁屏蔽、导电领域中的应用。
有益效果:
与现有的传统纸基电磁屏蔽材料相比,本发明的基于导电MOF材料修饰的电磁屏蔽纸具有良好的电磁波屏蔽效能,可减少电磁辐射的二次污染,在保持其柔性、超薄、轻质条件下对电磁波仍具有高吸收、低反射特性以及耐高温和阻燃性,解决了传统金属电磁屏蔽材料厚重以及难加工的问题,同时也解决了传统纸基电磁屏蔽材料不可在苛刻环境下工作的问题。除此之外,该基于MOF衍生材料修饰的电磁屏蔽纸的制备方法简单,成本低,且适用于工业化大量生产,为具有繁琐制备工艺的电磁屏蔽纸来说,提供了批量生产的可能性。
附图说明
图1为本发明实施例1制得的基于导电MOF材料修饰的电磁屏蔽纸的SEM照片。
图2为本发明实施例1、2、3分别制得的基于导电MOF材料修饰的电磁屏蔽纸PPy/Ni-MOF/PI的电磁屏蔽性能图谱。
图3为本发明实施例1制得的基于导电MOF材料修饰的电磁屏蔽纸的TG曲线。
图4为本发明气相聚合法原位生成聚吡咯的装置。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
本发明的基于导电MOF材料修饰的电磁屏蔽纸的制备方法,包括如下步骤:
步骤(1),将六水合氯化镍和2,3,6,7,10,11-六氨基三亚苯加入去离子水中,随后加入PI纤维,室温下,反应、干燥得到MOF材料修饰的PI纤维;
步骤(2),之后将MOF材料修饰的PI纤维和芳纶浆粕分散在水中,经搅拌、抄片、压榨、干燥得到MOF材料修饰的PI纤维纸基导电骨架;
步骤(3),将吡咯水溶液放置在真空玻璃干燥器中的底部(不浸过瓷板),然后将MOF材料修饰的PI纤维纸基导电骨架材料在FeCl 3溶液中浸渍至饱和取出,并放置在真空玻璃干燥器的瓷板上方,抽真空,通过吡咯挥发,在MOF材料修饰的PI纤维纸基导电骨架材料的内部和表面发生吡咯聚合反应,反应结束后,洗涤、干燥,即得基于导电MOF材料修饰的电磁蔽纸。
优选地,步骤(1)中所述六水合氯化镍、2,3,6,7,10,11-六氨基三亚苯和PI纤维的质量比为(6~12):(2~6):20。
优选地,步骤(1)中导电MOF材料的反应温度为室温25℃,干燥温度100~110℃。
优选地,步骤(2)中所述MOF材料修饰的PI纤维和芳纶浆粕的质量比为(60~80):(20~40)。
优选地,步骤(2)中基于MOF材料修饰的PI纤维纸基导电骨架的定量为60g/m 2
优选地,步骤(2)中基于MOF材料修饰的PI纤维纸基导电骨架的压榨压力为0.3~0.5MPa,干燥温度为100~120℃。
优选地,步骤(3)中FeCl 3溶液的质量浓度100~150g/L。
优选地,步骤(3)中吡咯水溶液的质量浓度为10~15g/L。
优选地,步骤(3)中聚合反应的反应温度为0℃,反应时间2~6h。
优选地,步骤(3)中基于导电MOF材料修饰的电磁屏蔽纸的干燥温度为100~115℃。
测试方法:
1、抗张指数:
根据GB/T 12914-2008恒速加荷法,抗张强度试验仪在恒速加荷的条件下,把规定尺寸的试样拉伸至断裂,测定其抗张力,从获得的结果和试样的定量,可以计算出抗张指数。
2、导电性测试:
采用ST2263-四探针测试仪测试电磁屏蔽纸的电导率。
3、电磁屏蔽性能测试:
采用E5061A型矢量网络分析仪,波导法测量电磁屏蔽纸对电磁波的屏蔽效果。
4、热稳定性测试:
使用Q500型热重分析仪,测试试样在热失重10%时的温度指标来表征电磁屏蔽纸的热稳定性。
实施例1
将1.0g六水合氯化镍和0.4g 2,3,6,7,10,11-六氨基三亚苯加入到40ml去离子水使其完全溶,随后将2g PI纤维(3mm,购置于江苏奥申新材料有限公司)加入混合液中进行原位合成24h,经过滤用水洗涤5次,在65℃下干燥,得到Ni-MOF/PI纤维。
随后将制得的1.32g Ni-MOF/PI纤维和0.56g芳纶浆粕(水分含量84.2%,打浆度为27°SR,0.3~0.6mm,购置于深圳市纤谷有限公司)分散于400g水中,搅拌5min,在抄片器上进行抄片,然后在0.4MPa压力下压榨5min,在105℃下干燥10min,得到MOF材料修饰的PI纤维纸基导电骨架。
将MOF材料修饰的PI纤维纸基导电骨架在110g/L的FeCl 3溶液中浸渍至饱和取出,随后将其放置在真空玻璃干燥器的瓷板上方,在真空玻璃干燥器的底部放入15g/L的吡咯水溶液(保证不没过瓷板),-0.09MPa真空度下抽真空,在0℃条件下反应12h,经3次洗涤、105℃干燥得到基于导电MOF材料修饰的电磁蔽纸。
本实施例1得到的基于导电MOF材料修饰的电磁蔽纸的抗张指数为26.3N·m/g;热失重10%时的温度为445℃;电导率为16.1S/cm;在整个X波段电磁屏蔽效能为41.0-44.5dB。
实施例2
将1.2g六水合氯化镍和0.6g 2,3,6,7,10,11-六氨基三亚苯加入到40ml去离子水使其完全溶解,随后将2g PI纤维加入混合液中进行原位合成12h,经过滤用水洗涤5次,在65℃下干燥,得到Ni-MOF@PI纤维。
随后将将制得的1.32gNi-MOF/PI纤维和0.56g芳纶浆粕分散于400g水中,搅拌5min,在抄片器上进行抄片,然后在0.4MPa压力下压榨5min,在105℃下干燥10min,得到MOF材料修饰的PI纤维纸基导电骨架。
将MOF材料修饰的PI纤维纸基导电骨架在110g/L的FeCl 3溶液中浸渍至饱和取出,随后将其放置在真空玻璃干燥器的瓷板上方,在真空玻璃干燥器的底部放入15g/L的吡咯水溶液(保证不没过瓷板),-0.09MPa真空度下抽真空,在0℃条件下反应12h,经3次洗涤、105℃干燥得到基于导电MOF材料的电磁蔽纸。
本实施例2得到的基于导电MOF材料修饰的电磁蔽纸的抗张指数为24.5N·m/g;热失重10%时的温度为440℃;电导率为15.0S/cm;在整个X波段电磁屏蔽效能为34.0-37.5dB。
实施例3
将1g六水合氯化镍和0.4g 2,3,6,7,10,11-六氨基三亚苯加入到40ml去离子水使其完全溶 解,随后将2g PI纤维加入混合液中进行原位合成24h,经过滤用水洗涤5次,在65℃下干燥,得到Ni-MOF@PI纤维。
随后将制得的1.32g Ni-MOF/PI纤维和0.56g芳纶浆粕分散于400g水中,搅拌5min,在抄片器上进行抄片,然后在0.4MPa压力下压榨5min,在105℃下干燥10min,得到MOF材料修饰的PI纤维纸基导电骨架;
将MOF材料修饰的PI纤维纸基导电骨架在110g/L的FeCl 3溶液中浸渍至饱和取出,随后将其放置在真空玻璃干燥器的瓷板上方,在真空玻璃干燥器的底部放入12g/L的吡咯水溶液(保证不没过瓷板),-0.09MPa真空度下抽真空,在0℃条件下反应12h,经3次洗涤、105℃干燥得到基于导电MOF材料的电磁蔽纸。
本实施例3得到的基于导电MOF材料修饰的电磁蔽纸的抗张指数为21.0N·m/g;热失重10%时的温度为450℃;电导率为12.1S/cm;在整个X波段电磁屏蔽效能为27.5-29.0dB。
实施例4不同MOF材料修饰的PI纤维纸基导电骨架制备电磁蔽纸
(一)优化六水合氯化镍与2,3,6,7,10,11-六氨基三亚苯的质量比:
参照实施例1,仅仅改变六水合氯化镍的用量来调整六水合氯化镍与2,3,6,7,10,11-六氨基三亚苯的质量比,其他不变,制得相应的电磁蔽纸。
所得电磁蔽纸具体结果如表1所示:
表1不同MOF材料修饰的PI纤维所得电磁蔽纸的性能结果
Figure PCTCN2022128096-appb-000001
结果发现:综合电磁屏蔽纸的力学性能以及电磁屏蔽效能可知,六水合氯化镍与2,3,6,7,10,11-六氨基三亚苯的质量比为5:2时,得到的基于导电MOF材料修饰的电磁蔽纸的性能最优。
(二)不同Ni-MOF/PI纤维与芳纶浆粕的质量比制备电磁蔽纸:
参照实施例1,仅仅改变芳纶浆粕的添加量来调整Ni-MOF/PI纤维与芳纶浆粕的质量比,其他不变,制得相应的电磁蔽纸。具体结果如表2所示:
表2不同Ni-MOF/PI纤维与芳纶浆粕的质量比所得电磁蔽纸的性能结果
Ni-MOF/PI纤维与芳纶 抗张指数 热失重10%时 电导率 整个X波段电磁屏蔽
浆粕的质量比 (N·m/g) 的温度(℃) (S/cm) 效能(dB)
7:3(实施例1) 26.5 445 16.0 41.0-44.5
6:4 25.4 441 16.4 45.5-47.3
8:2 21.2 450 15.8 37.0-40.1
9:1 17.5 452 15.3 30.1-31.7
结果发现:综合电磁屏蔽纸的力学性能以及电磁屏蔽效能可知,Ni-MOF/PI纤维与芳纶浆粕的质量比为7:3时,得到的基于导电MOF材料修饰的电磁蔽纸的性能最优。
对比例1
将1.0g六水合氯化镍和0.4g 2,3,6,7,10,11-六氨基三亚苯加入到40ml去离子水使其完全溶解,随后将2g PI纤维加入混合液中进行原位合成24h,经过滤用水洗涤5次,在65℃下干燥,得到Ni-MOF/PI纤维。
随后将将制得的1.32gNi-MOF/PI纤维和0.56g芳纶浆粕分散于400g水中,搅拌5min,在抄片器上进行抄片,然后在0.4MPa压力下压榨5min,在105℃下干燥10min,得到Ni-MOF/PI纤维纸。
本对比例1得到的Ni-MOF/PI纤维纸的抗张指数为16.2N·m/g;热失重10%时的温度为470℃;电导率为2.0S/cm;在整个X波段电磁屏蔽效能为11.2-13.5dB。
对比例2
将1.32g PI纤维和0.56g芳纶浆粕分散于400g水中,搅拌5min,在抄片器上进行抄片,然后在0.4MPa压力下压榨5min,最后在105℃下干燥10min,得到PI纤维纸。
将PI纤维纸基导电骨架在110g/L的FeCl 3溶液中浸渍至饱和取出,随后将其放置在真空玻璃干燥器的瓷板上方,在真空玻璃干燥器的底部放入15g/L的吡咯水溶液(保证不没过瓷板),-0.09MPa真空度下抽真空,在0℃条件下反应12h,经3次洗涤、105℃干燥得到PPy/PI纤维纸。
本对比例2得到的PPy/PI纤维纸的抗张指数为19N·m/g;热失重10%时的温度为440℃;电导率为11.0S/cm;在整个X波段电磁屏蔽效能为20.0-21.7dB。
结合对比例1、2和实施例1来看,导电MOF材料的修饰以及PPy的引入使得电磁屏蔽纸的电磁屏蔽性能要明显优于单一材料修饰的电磁屏蔽纸的电磁屏蔽性能,此外,得到的电磁屏蔽纸还具有良好的力学性能和高耐热性能。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的技术和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

  1. 一种基于导电MOF材料修饰的电磁屏蔽纸的制备方法,其特征在于,包括如下步骤:
    (1)将六水合氯化镍和2,3,6,7,10,11-六氨基三亚苯分散在水中,随后加入PI纤维发生原位修饰反应,反应结束后,取纤维、干燥,得到MOF材料修饰的PI纤维;
    (2)然后将MOF材料修饰的PI纤维和芳纶浆粕分散在水中,经混匀、抄片、压榨、干燥得到MOF材料修饰的PI纤维纸基导电骨架材料;
    (3)将吡咯水溶液放置在真空玻璃干燥器中的底部,然后将MOF材料修饰的PI纤维纸基导电骨架材料在FeCl 3溶液中浸渍至饱和取出,并放置在真空玻璃干燥器的瓷板上方,抽真空,通过吡咯挥发,在MOF材料修饰的PI纤维纸基导电骨架材料的内部和表面发生吡咯聚合反应,反应结束后,洗涤、干燥,即得基于导电MOF材料修饰的电磁蔽纸。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中六水合氯化镍、2,3,6,7,10,11-六氨基三亚苯和PI纤维的质量比为(6~12):(2~6):20。
  3. 根据权利要求1所述的方法,其特征在于,步骤(1)中六水合氯化镍与2,3,6,7,10,11-六氨基三亚苯的质量比为(2.5-3):1。
  4. 根据权利要求1所述的方法,其特征在于,步骤(2)中MOF材料修饰的PI纤维和芳纶浆粕的质量比为(60~80):(20~40)。
  5. 根据权利要求1所述的方法,其特征在于,步骤(2)中MOF材料修饰的PI纤维和芳纶浆粕的质量比优选(60-70):(30-40)。
  6. 根据权利要求1所述的方法,其特征在于,步骤(3)中FeCl 3溶液的质量浓度100~150g/L。
  7. 根据权利要求1所述的方法,其特征在于,步骤(3)中吡咯水溶液的质量浓度为10~15g/L。
  8. 根据权利要求1所述的方法,其特征在于,步骤(3)中聚合反应的温度为0℃,反应时间2~6h。
  9. 权利要求1-8任一项所述制备方法制备得到的一种基于导电MOF材料的电磁屏蔽纸。
  10. 权利要求9所述的基于导电MOF材料修饰的电磁屏蔽纸在电磁屏蔽、导电领域中的应用。
PCT/CN2022/128096 2021-11-11 2022-10-28 一种基于导电mof材料修饰的电磁屏蔽纸及其制备方法 WO2023083019A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/325,422 US20230323599A1 (en) 2021-11-11 2023-05-30 Electromagnetic Shielding Paper Based on Modification of Conductive MOF Material and Preparation Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111331937.3A CN114164708B (zh) 2021-11-11 2021-11-11 一种基于导电mof材料修饰的电磁屏蔽纸及其制备方法
CN202111331937.3 2021-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/325,422 Continuation US20230323599A1 (en) 2021-11-11 2023-05-30 Electromagnetic Shielding Paper Based on Modification of Conductive MOF Material and Preparation Method Thereof

Publications (1)

Publication Number Publication Date
WO2023083019A1 true WO2023083019A1 (zh) 2023-05-19

Family

ID=80478812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128096 WO2023083019A1 (zh) 2021-11-11 2022-10-28 一种基于导电mof材料修饰的电磁屏蔽纸及其制备方法

Country Status (3)

Country Link
US (1) US20230323599A1 (zh)
CN (1) CN114164708B (zh)
WO (1) WO2023083019A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164708B (zh) * 2021-11-11 2022-08-02 江南大学 一种基于导电mof材料修饰的电磁屏蔽纸及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130274087A1 (en) * 2010-08-25 2013-10-17 Cornell University Metal organic framework modified materials, methods of making and methods of using same
CN106750470A (zh) * 2016-11-09 2017-05-31 中国科学院长春应用化学研究所 一种金属有机框架复合材料、其制备方法及应用
CN107871541A (zh) * 2016-09-23 2018-04-03 北京化工大学 一种轻质耐高温、高比表面积的聚酰亚胺导电浆粕及其制备方法
CN109158094A (zh) * 2018-11-12 2019-01-08 青岛科技大学 一种基于mof材料的纸基吸附材料的制备方法
JP2019018175A (ja) * 2017-07-20 2019-02-07 住友ベークライト株式会社 複合体、複合体の製造方法、吸着材、および液体の清浄化方法
CN111111459A (zh) * 2019-12-24 2020-05-08 西安交通大学 一种聚酰亚胺/表面改性金属有机骨架混合基质膜及其制备方法和应用
CN111554936A (zh) * 2020-05-18 2020-08-18 齐鲁工业大学 一种锂硫电池用导电mof修饰碳纤维纸插层材料
CN111636239A (zh) * 2020-06-04 2020-09-08 东华大学 一种聚酰亚胺沉析纤维电磁屏蔽纸的制备方法
CN112663380A (zh) * 2020-12-11 2021-04-16 华南理工大学 一种高性能电磁屏蔽复合纸基材料及其制备方法与应用
CN112726264A (zh) * 2020-12-25 2021-04-30 烟台民士达特种纸业股份有限公司 一种透波蜂窝用聚酰亚胺纸基材料及其制备方法
CN113574731A (zh) * 2019-03-25 2021-10-29 福特切尔国际有限公司 用于电化学装置的金属-有机框架(mof)涂覆的复合材料隔膜及其应用
CN114164708A (zh) * 2021-11-11 2022-03-11 江南大学 一种基于导电mof材料修饰的电磁屏蔽纸及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1235473B1 (en) * 2001-02-27 2008-12-31 Seiren Co., Ltd. Gasket material for shielding electromagnetic waves and method for producing same
CN101436644B (zh) * 2008-12-08 2010-11-17 电子科技大学 一种柔性有机光电子器件用基板及其制备方法
CN106120458B (zh) * 2016-06-28 2017-10-20 江南大学 一种聚酰亚胺导电纸的制备方法
CN112359595B (zh) * 2020-10-14 2021-11-16 江南大学 一种多组分柔性纸基电磁屏蔽材料及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130274087A1 (en) * 2010-08-25 2013-10-17 Cornell University Metal organic framework modified materials, methods of making and methods of using same
CN107871541A (zh) * 2016-09-23 2018-04-03 北京化工大学 一种轻质耐高温、高比表面积的聚酰亚胺导电浆粕及其制备方法
CN106750470A (zh) * 2016-11-09 2017-05-31 中国科学院长春应用化学研究所 一种金属有机框架复合材料、其制备方法及应用
JP2019018175A (ja) * 2017-07-20 2019-02-07 住友ベークライト株式会社 複合体、複合体の製造方法、吸着材、および液体の清浄化方法
CN109158094A (zh) * 2018-11-12 2019-01-08 青岛科技大学 一种基于mof材料的纸基吸附材料的制备方法
CN113574731A (zh) * 2019-03-25 2021-10-29 福特切尔国际有限公司 用于电化学装置的金属-有机框架(mof)涂覆的复合材料隔膜及其应用
CN111111459A (zh) * 2019-12-24 2020-05-08 西安交通大学 一种聚酰亚胺/表面改性金属有机骨架混合基质膜及其制备方法和应用
CN111554936A (zh) * 2020-05-18 2020-08-18 齐鲁工业大学 一种锂硫电池用导电mof修饰碳纤维纸插层材料
CN111636239A (zh) * 2020-06-04 2020-09-08 东华大学 一种聚酰亚胺沉析纤维电磁屏蔽纸的制备方法
CN112663380A (zh) * 2020-12-11 2021-04-16 华南理工大学 一种高性能电磁屏蔽复合纸基材料及其制备方法与应用
CN112726264A (zh) * 2020-12-25 2021-04-30 烟台民士达特种纸业股份有限公司 一种透波蜂窝用聚酰亚胺纸基材料及其制备方法
CN114164708A (zh) * 2021-11-11 2022-03-11 江南大学 一种基于导电mof材料修饰的电磁屏蔽纸及其制备方法

Also Published As

Publication number Publication date
CN114164708A (zh) 2022-03-11
CN114164708B (zh) 2022-08-02
US20230323599A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
Xie et al. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding
CN105062064B (zh) 一种石墨烯/聚吡咯电磁屏蔽膜及其制备方法
CN103805144B (zh) 一种石墨烯导热膜及其制备方法
CN107415420B (zh) 电磁屏蔽tpu薄膜的制备方法
CN107877893B (zh) 一种电磁屏蔽pp薄膜的制备方法
WO2023083019A1 (zh) 一种基于导电mof材料修饰的电磁屏蔽纸及其制备方法
Huang et al. Porous, magnetic carbon derived from bamboo for microwave absorption
Sun et al. Broadband absorption of macro pyramid structure based flame retardant absorbers
CN108611918B (zh) 碳纳米复合导电纸及其制备方法
Ding et al. Layered cotton/rGO/NiWP fabric prepared by electroless plating for excellent electromagnetic shielding performance
CN111235944B (zh) 一种芳纶纳米纤维涂布芳纶纸及其制备方法
CN111636239B (zh) 一种聚酰亚胺沉析纤维电磁屏蔽纸的制备方法
CN110241613A (zh) 一种柔性超薄高导热电磁屏蔽薄膜及其制备方法
Heng et al. Raw cellulose/polyvinyl alcohol blending separators prepared by phase inversion for high-performance supercapacitors
CN110628215B (zh) 一种聚苯胺/芳纶纳米纤维导电复合薄膜及其制备方法
Mao et al. Enhancement of bonding strength of polypyrrole/cellulose fiber (PPy/CF) hybrid through lignosulfonate doping
US20230304224A1 (en) Paper-based Electromagnetic Shielding Composite with Flame Retardant Properties and Its Preparation Method and Application
Zhang et al. Flexible Ni-Fe-P/PPy@ PI fiber paper-based composites with three-layer structure for 5 G electromagnetic shielding applications
Wang et al. Lightweight, Flexible, and Thermal Insulating Carbon/SiO2@ CNTs Composite Aerogel for High‐Efficiency Microwave Absorption
CN107801367A (zh) 一种疏水多孔聚合物导电材料、制备方法及应用
Chen et al. Nickel-reduced graphene oxide-cellulose nanofiber composite papers for electromagnetic interference shielding
CN115521635B (zh) 一种双隔离网络结构导热屏蔽复合材料及其制备方法
CN112359595A (zh) 一种多组分柔性纸基电磁屏蔽材料及其制备方法
CN111615318A (zh) 一种石墨烯/碳纳米管复合多孔膜的制备方法及其应用
CN110041565A (zh) 一种生物基阻燃剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891815

Country of ref document: EP

Kind code of ref document: A1