WO2023082736A1 - 低介电损耗的玻璃纤维组合物 - Google Patents

低介电损耗的玻璃纤维组合物 Download PDF

Info

Publication number
WO2023082736A1
WO2023082736A1 PCT/CN2022/111308 CN2022111308W WO2023082736A1 WO 2023082736 A1 WO2023082736 A1 WO 2023082736A1 CN 2022111308 W CN2022111308 W CN 2022111308W WO 2023082736 A1 WO2023082736 A1 WO 2023082736A1
Authority
WO
WIPO (PCT)
Prior art keywords
sno
glass
dielectric loss
glass fiber
low dielectric
Prior art date
Application number
PCT/CN2022/111308
Other languages
English (en)
French (fr)
Inventor
唐志尧
李永艳
王加芳
张艳萍
Original Assignee
泰山玻璃纤维有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰山玻璃纤维有限公司 filed Critical 泰山玻璃纤维有限公司
Priority to EP22891544.3A priority Critical patent/EP4431476A1/en
Priority to KR1020237041212A priority patent/KR20240004753A/ko
Priority to JP2023574328A priority patent/JP2024520955A/ja
Publication of WO2023082736A1 publication Critical patent/WO2023082736A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the invention belongs to the technical field of glass fibers, in particular to a glass fiber composition with low dielectric loss.
  • Chinese patent CN 102503153A discloses a low dielectric constant glass fiber, including: 48wt%-58wt% SiO 2 ; 10wt%-18wt% Al 2 O 3 ; 18wt%-28wt% B 2 O 3 ; 0-6wt% % CaO; 0 ⁇ 6wt% MgO; 0.5wt% ⁇ 8wt% Y 2 O 3 ; 0.2wt% ⁇ 0.6wt% CeO 2 ; 0 ⁇ 3wt% F 2 ; 0 ⁇ 1wt% Na 2 O , K 2 O and Li 2 O; 0-0.45 wt% TiO 2 ; 0-0.5 wt% Fe 2 O 3 .
  • the glass fiber has a dielectric constant of 4.1 to 4.5 and a dielectric loss of 6 ⁇ 10 -4 to 9 ⁇ 10 -4 at room temperature and a frequency of 1 MHz.
  • Chinese patent CN 104556710A discloses a special-shaped glass fiber and its preparation method.
  • the special-shaped glass fiber includes the following components in molar percentage: SiO 2 52%-58%; B 2 O 3 16%-24%; Al 2 O 3 13% ⁇ 19%; CaO 1% ⁇ 5%; MgO 4.2% ⁇ 8%; F 2 0.4% ⁇ 2%; Li 2 O 0 ⁇ 0.5%; Fe 2 O 3 0 ⁇ 0.4%; K 2 O 0-0.2%; Na 2 O 0-0.2%.
  • the special-shaped glass fiber has a dielectric constant of less than 4.7 and a dielectric loss factor of less than 10 -3 when the frequency is 1 MHz at room temperature.
  • Chinese patent CN 103482876A discloses a low dielectric constant glass fiber for printed circuit boards, including the following components in mass percentage: SiO 2 48%-53%; Al 2 O 3 13%-16%; B 2 O 3 19% ⁇ 25%; P 2 O 5 0.5% ⁇ 2%; CaO 5.0% ⁇ 8.5%; La 2 O 3 0.5% ⁇ 8%; ZnO 0.5% ⁇ 2.5%; TiO 2 0.5% ⁇ 2 %; O, K 2 O and Li 2 O are less than 1%; SO 3 is less than 0.45%; Fe 2 O 3 is less than 0.45%. It has very low dielectric constant and dielectric loss. At room temperature, when the frequency is 1MHz, the dielectric constant is 4.8-5.5, and the dielectric loss is 4-8 ⁇ 10 -4 .
  • the glass fiber in the above-mentioned patent has a relatively low viscosity, its dielectric properties are tested at 1 MHz, and the dielectric loss of the glass will increase as the frequency increases.
  • the tan ⁇ of silicate glass is 9 ⁇ 10 -4 , and at 3000 MHz, it is 36 ⁇ 10 -4 . Therefore, the dielectric loss of the above-mentioned patent is relatively low only when it is tested under the conditions of normal temperature and 1MHz.
  • Chinese patent CN 113135666A discloses a low dielectric glass fiber, including SiO 2 : 50-58%; Al 2 O 3 : 10-16%; B 2 O 3 : 20-28%; MgO: 1-4%; CaO : 1 ⁇ 4%; Li 2 O: 0.05 ⁇ 0.5%; Na 2 O: 0.05 ⁇ 0.6%; K 2 O: 0.05 ⁇ 0.8%; TiO 2 : 0.2 ⁇ 1.5%; CeO 2 : 0 ⁇ 1%; SnO 2 : 0.01 to 1.5%; Fe 2 O 3 : 0 to 0.1%.
  • the dielectric constant of the glass fiber is 4.2-4.5 when the frequency is 10 GHz at room temperature, and the dielectric loss is 2.5 ⁇ 10 -3 -4.4 ⁇ 10 -3 .
  • the dielectric constant and dielectric loss in this patent are high.
  • the object of the present invention is to provide a glass fiber composition with low dielectric constant, low dielectric loss, low viscosity and zero air bubbles.
  • each component content is as follows:
  • SiO 2 50-60%
  • the glass fiber composition with low dielectric loss in terms of mass percentage, has the following components:
  • SiO 2 50-60%
  • the glass fiber composition with low dielectric loss in terms of mass percentage, has the following components:
  • SiO 2 50-60%
  • the glass fiber composition with low dielectric loss in terms of mass percentage, has the following components:
  • SiO 2 50-60%
  • the mass percent content of SnO 2 and Li 2 O satisfies the range of SnO 2 /Li 2 O being 0.2-3.
  • the mass percent content of F 2 and SnO 2 satisfies that the range of F 2 /SnO 2 is 1-5.
  • the mass percent content of P 2 O 5 , F 2 and SnO 2 satisfies the range of P 2 O 5 /(F 2 +SnO 2 ) of 2-5.
  • the raw materials for preparing the glass fiber composition in the present invention are respectively quartz powder, boric anhydride, aluminum oxide, wollastonite, magnesium oxide, tin oxide, fluorite, aluminum metaphosphate, and spodumene.
  • SiO 2 forms an irregular continuous network structure with a silicon-oxygen tetrahedral structure.
  • This structure has a high bond strength and a compact structure.
  • a high content can significantly reduce the dielectric constant and dielectric loss of glass, and enhance the mechanical strength.
  • increasing the content will increase the viscosity and increase the difficulty of melting.
  • quartz glass has a very low dielectric loss of 0.0001, but its high viscosity makes it difficult to melt.
  • the present invention limits the SiO2 content range to 50%-60%.
  • B 2 O 3 At high temperature, boron exists as a boron-oxygen triangle, which can reduce the viscosity, but when the boron content reaches a certain value, it will increase the viscosity instead, so the boron content should not be too high, which is not conducive to production. And if the content of B 2 O 3 is too high, it is easy to precipitate SiO 2 grids, resulting in phase separation. In addition, the addition of B 2 O 3 introduces B 3+ to form BO. The bond energy of this bond is larger than that of Si-O bond, which can stabilize the glass network structure and limit the polarization of oxygen ions in the glass. Therefore, the addition of B 2 O 3 can reduce the dielectric constant and dielectric loss. The present invention limits the content range of B 2 O 3 to 20%-30%.
  • Al 2 O 3 can effectively inhibit the devitrification of glass.
  • Al 2 O 3 can play a role in connecting the broken network, making the network structure tighter and increasing the strength of the glass, but the Al-O bond energy is weaker than the Si-O bond energy, which increases the free oxygen, which makes the Loss increases.
  • the present invention limits the content range of Al 2 O 3 to 8%-18%.
  • CaO belongs to the outer body of the network, and the coordination number of calcium ions is generally 6. It has very little mobility in the structure, and is generally not easy to be precipitated from the glass, and it is more mobile at high temperature. Ca 2+ has the function of polarizing bridge oxygen and weakening the silicon-oxygen bond, which makes it have the effect of reducing viscosity and shortening the material property, while the loss caused by free oxygen may increase.
  • the present invention limits the CaO content range from 1% to 6%.
  • the present invention can also add MgO on the basis of adding SnO2 and F2 .
  • MgO can reduce the viscosity of the glass in the glass system, but the content is too high to increase the dielectric constant and dielectric loss.
  • the present invention limits the content of MgO Range MgO ⁇ 2.0.
  • P 2 O 5 always exists in the form of phosphorus-oxygen tetrahedron in the glass structure, and it is a glass former.
  • DSC was used to test the expansion and softening point temperature of glass. It was found that after the introduction of P, the softening point temperature of the glass was higher than that before the introduction, which was beneficial to improve the temperature resistance of the subsequent products.
  • a single P2O5 raw material is easy to absorb moisture, and is easy to agglomerate during the batching process, which makes the uniformity of the batch material worse, and requires high storage conditions.
  • the present invention uses aluminum metaphosphate or condensed aluminum phosphate raw material to introduce P2O 5. Make P 2 O 5 uniformly dispersed in the batch material.
  • the melting speed of B 2 O 3 is fast, and it is partially wrapped by evenly distributed P 2 O 5 , which reduces the volatilization and gas emission.
  • the amount introduced is too much, the low-temperature viscosity will increase significantly, and if the P content is too high, it will easily compete with B for free oxygen, causing devitrification of the glass and crystallization.
  • the present invention finds that when the content of Al 2 O 3 is > 8 , the phase separation caused by the introduction of high B and P can be effectively suppressed. crystal, the present invention controls the P 2 O 5 content in the range of 0.05%-5%.
  • Li 2 O, K 2 O, and Na 2 O can quickly reduce the viscosity of the glass, which is beneficial to the melting and clarification of the glass, but the bond formed by the alkali metal and oxygen is easily polarized, which will cause a significant dielectric loss. increase.
  • the invention adds a small amount of Li 2 O to reduce the viscosity on the premise of ensuring dielectric loss, which is beneficial to glass melting.
  • the invention strictly controls the content of K 2 O and Na 2 O in the raw material, and a small amount is introduced as impurities in the raw material without adding.
  • the present invention limits the range of Li 2 O to 0.05-0.5%, and K 2 O+Na 2 O ⁇ 0.05%, so as to ensure that glass with low dielectric loss can be obtained at a relatively low melting temperature.
  • SnO 2 decomposes at high temperature to generate O 2 , which reduces the partial pressure of the gas and facilitates the discharge of bubbles.
  • the SnO 2 +Li 2 O of the present invention acts as a composite clarifying agent, which is disturbed by the outer electron layer of Sn 4+ , resulting in enhanced polarization of Li + , effectively improving the beneficial effect of Li 2 O, During the glass clarification process, the surface tension of the glass liquid is reduced, the bubbles are efficiently discharged, the uniformity of the glass is improved, and the zero bubble rate required by the production of low-dielectric glass fibers is realized. And the melting temperature of the batch material is greatly reduced, thereby reducing the volatilization of B and F.
  • the present invention controls the content of SnO 2 to be in the range of 0.05-0.5%, and the ratio SnO/Li 2 O in weight percent is in the range of 0.2-3.
  • the F atomic radius is small, and it is not easy to be polarized compared to the O atom. It forms a Si-F bond with Si, partially replaces Si-O, and plays a role in breaking the network in the glass network, and the Si-F, BF, Al- The bond strength of F is stronger than that of Si-O, BO, and Al-O bonds. This dual effect will reduce the melting temperature of the glass, reduce the viscosity, and reduce the surface tension of the glass, which is conducive to reducing the difficulty of the glass forming process. And the formed Si-F bond is not easy to be polarized, which reduces the dielectric loss.
  • the present invention controls the F2 content range of 0.2%-1.5%.
  • the ratio of the content of F2 and SnO2 in the present invention has a great influence on the dielectric loss of the glass.
  • the ratio F 2 /SnO 2 in weight percent is in the range of 1-5, and the effect is obvious. Experiments have shown that adding F 2 or SnO 2 alone or when the range of F 2 /SnO 2 is not in the range of 1-5 will not achieve the purpose of the present invention.
  • F 2 is dispersed around SnO 2 to form Sn-F bonds, and work together with Si-F, BF, and Al-F to further reduce the melting temperature of the glass, reduce the viscosity, and reduce the surface of the glass. tension.
  • the present invention adds SnO 2 and F 2 at the same time, and controls the ratio of F 2 /SnO 2 , not only makes the glass fiber have a lower dielectric constant and dielectric loss, but also reduces the viscosity of the glass fiber, making the glass fiber The number of bubbles in is zero.
  • the present invention can also add P 2 O 5 on the basis of adding SnO 2 and F 2 , and control the ratio range of P 2 O 5 /(F 2 +SnO 2 ) to 2-5, further reducing the glass Dielectric constant and dielectric loss of fibers.
  • the various components of the invention interact with each other, so that the obtained glass fiber composition has low dielectric constant and low dielectric loss, low air bubbles, low viscosity and excellent glass performance.
  • composition of the glass fiber composition with low dielectric loss in Examples 1-7 is shown in Table 1.
  • each component According to the content of each component, mix each compound according to a certain ratio. After mixing evenly, put the batch material in a platinum crucible, then melt it at 1550-1600°C, and draw it at less than 1350°C to make glass fiber .
  • the modulus strength test is carried out: the glass is cut into 20*20*15mm (length*width*thick) glass blocks, the test surface is smooth and flat, and the ultrasonic thickness gauge is used according to [The actual unit of sound velocity measured by the thickness gauge is mm/us, so the sound velocity value (cm/s) in the following formula is: measured value * 10 5 , density unit: g/cm 3 , and substitute it in to calculate the required data can].
  • V T sound velocity of transverse wave (cm/s)
  • V L sound velocity of longitudinal wave (cm/s).
  • V L sound velocity of longitudinal wave (cm/s)
  • density (g/cm 3 )
  • Poisson's ratio
  • compositions of the glass fiber compositions in Comparative Examples 1-6 are shown in Table 2.
  • the Ig3.0 temperature, liquidus temperature, ⁇ T, dielectric constant, dielectric loss, modulus, and number of bubbles of the glass fiber composition are listed in Table 2 for data.
  • Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Comparative example 5 Comparative example 6 SiO 2 55 55 60 60 55 55 55 B 2 O 3 22.2 22.5 20.8 20.8 22.5 22.5 Al 2 O 3 13.87 14.07 14.08 14.33 14.67 14.87 CaO 3.5 3.5 2.1 2.1 3.5 3.5 MgO 0 0 0 0 0 0 P 2 O 5 4 4 2 1.5 4 4 F 2 0.8 0.8 0.6 0.6 0 0 SnO2 0.5 0 0.1 0.35 0.2 0
  • lg3.0 refers to the temperature when the viscosity of the glass liquid is 1000 poise, which is the forming temperature of the glass, that is, the drawing temperature; the liquidus temperature is the upper limit of the crystallization temperature or phase separation temperature, which is the upper limit temperature of the devitrification of the glass; the forming temperature The bigger the difference from the liquidus temperature, the better the wire drawing.
  • the ratio of SnO 2 /Li 2 O in Comparative Example 1 is 5.00, not in the range of 0.2-3; the ratio of F 2 /SnO 2 in Comparative Example 3 is 6.00, not in 1 In the range of -5; the ratio of P 2 O 5 /(F 2 +SnO 2 ) in Comparative Example 4 is 1.58, which is not in the range of 2-5.
  • the viscosity of the glass fiber increases, and the number of bubbles in the glass fiber also increases to varying degrees.
  • Example 1 By comparing Example 1 with Comparative Examples 2, 5, and 6, it can be seen that compared with Example 1 of the present invention, SnO 2 was not added in Comparative Example 2, F 2 was not added in Comparative Example 5, and SnO 2 and F 2 were not added in Comparative Example 6. 2 , both will cause the viscosity of the glass fiber to increase, resulting in an increase in the number of bubbles in the glass fiber.
  • the present invention adds SnO 2 and F 2 at the same time, and controls the ratio of F 2 /SnO 2 , not only makes the glass fiber have a lower dielectric constant and dielectric loss, but also reduces the viscosity of the glass fiber, so that the air bubbles in the glass fiber count is zero.
  • the present invention also adds P 2 O 5 , and controls the ratio range of P 2 O 5 /(F 2 +SnO 2 ) to be 2-5, further reducing the dielectric constant and dielectric loss of the glass fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

本发明属于玻璃纤维技术领域,具体涉及一种低介电损耗的玻璃纤维组合物。所述组合物各组分含量如下:SiO 2:50-60%;B 2O 3:20-30%;Al 2O 3:8-18%;CaO:1-6%;F 2:0.2-1.50%;SnO 2:0.05-0.5%;Li 2O:0.05-0.5%;K 2O+Na 2O≤0.05%。本发明同时添加SnO 2和F 2,并控制F 2/SnO 2的比值,不仅使玻璃纤维具有较低的介电常数和介电损耗,而且降低了玻璃纤维的粘度,使得玻璃纤维中气泡的个数为零。本发明各种组分之间相互作用,使得到的玻璃纤维组合物具有低介电常数和低介电损耗,低气泡,低粘度,玻璃性能优异。

Description

低介电损耗的玻璃纤维组合物 技术领域
本发明属于玻璃纤维技术领域,具体涉及一种低介电损耗的玻璃纤维组合物。
背景技术
随着5G通讯的发展,对低介电材料的性能要求更加严格。5G最大的优点是传播速度快,随之带来的最大缺点就是穿透力差、衰减大,玻璃在高频的电磁场中使部分电能转化为热能而产生损耗,这就要求传播介质的材料具有介电常数低,介电损耗小的特点,这样可实现信号传输越快,信号延迟越低,信号保真度越高。
中国专利CN 102503153A公开一种低介电常数玻璃纤维,包括:48wt%~58wt%的SiO 2;10wt%~18wt%的Al 2O 3;18wt%~28wt%的B 2O 3;0~6wt%的CaO;0~6wt%的MgO;0.5wt%~8wt%的Y 2O 3;0.2wt%~0.6wt%的CeO 2;0~3wt%的F 2;0~1wt%的Na 2O、K 2O和Li 2O;0~0.45wt%的TiO 2;0~0.5wt%的Fe 2O 3。该玻璃纤维在室温下,频率为1MHz时,其介电常数为4.1~4.5,介电损耗为6×10 -4~9×10 -4
中国专利CN 104556710A公开一种异形玻璃纤维及其制备方法,所述异形玻璃纤维以摩尔百分数计,包括以下组分:SiO 2 52%~58%;B 2O 3 16%~24%;Al 2O 313%~19%;CaO 1%~5%;MgO 4.2%~8%;F 2 0.4%~2%;Li 2O 0~0.5%;Fe 2O 3 0~0.4%;K 2O 0~0.2%;Na 2O 0~0.2%。该异形玻璃纤维室温下频率为1MHz时介电常数小于4.7,介电损耗因子小于10 -3
中国专利CN 103482876A公开一种用于印刷电路板的低介电常数玻璃纤维,包括以下质量百分比的组分:SiO 2 48%~53%;Al 2O 3 13%~16%;B 2O 319%~25%;P 2O 5 0.5%~2%;CaO 5.0%~8.5%;La 2O 3 0.5%~8%;ZnO 0.5%~2.5%;TiO 2 0.5%~2%;Na 2O、K 2O和Li 2O小于1%;SO 3小于0.45%;Fe 2O 3小于0.45%。它具有很低的介电常数和介电损耗,室温下,频率为1MHz时介电常数为4.8~5.5,介电损耗为4~8×10 -4
上述专利中玻璃纤维虽有较低的粘度,但其介电性能是在1MHz条件下检测的,玻璃的介电损耗会随着频率的增加而增大。例如,在常温、1MHz时,硅酸盐玻璃的tanδ=9×10 -4,而在3000MHz时,则为36×10 -4。所以上述专利仅在常温及1MHz条件下检测时,介电损耗才会相对来说较低。
中国专利CN 113135666A公开一种低介电玻璃纤维,包括SiO 2:50~58%;Al 2O 3:10~16%;B 2O 3:20~28%;MgO:1~4%;CaO:1~4%;Li 2O:0.05~0.5%;Na 2O:0.05~0.6%;K 2O:0.05~0.8%;TiO 2:0.2~1.5%;CeO 2:0~1%;SnO 2:0.01~1.5%;Fe 2O 3:0~0.1%。通过合理设置氧化硅、氧化铝和氧化硼的比例,使得玻璃纤维具有较低的介电常数和介电损 耗,并适当调节了玻璃粘度。所述玻璃纤维室温下频率为10GHz时介电常数为4.2-4.5,介质损耗为2.5×10 -3-4.4×10 -3。该专利中的介电常数和介电损耗较高。
基于以上问题,亟需研发一种在高频下适合规模化生产的低介电常数、低介电损耗、低粘度、零气泡的玻璃纤维组合物。
发明内容
本发明的目的是提供一种低介电常数、低介电损耗、低粘度、零气泡的玻璃纤维组合物。
本发明所述的低介电损耗的玻璃纤维组合物,以质量百分比计,各组分含量如下:
SiO 2:50-60%;
B 2O 3:20-30%;
Al 2O 3:8-18%;
CaO:1-6%;
F 2:0.2-1.50%;
SnO 2:0.05-0.5%;
Li 2O:0.05-0.5%;
K 2O+Na 2O≤0.05%。
优选地,所述的低介电损耗的玻璃纤维组合物,以质量百分比计,各组分含量如下:
SiO 2:50-60%;
B 2O 3:20-30%;
Al 2O 3:8-18%;
CaO:1-6%;
F 2:0.2-1.50%;
P 2O 5:0.05-5%;
SnO 2:0.05-0.5%;
Li 2O:0.05-0.5%;
K 2O+Na 2O≤0.05%。
优选地,所述的低介电损耗的玻璃纤维组合物,以质量百分比计,各组分含量如下:
SiO 2:50-60%;
B 2O 3:20-30%;
Al 2O 3:8-18%;
CaO:1-6%;
F 2:0.2-1.50%;
SnO 2:0.05-0.5%;
Li 2O:0.05-0.5%;
K 2O+Na 2O≤0.05%;
0<MgO<2.0。
优选地,所述的低介电损耗的玻璃纤维组合物,以质量百分比计,各组分含量如下:
SiO 2:50-60%;
B 2O 3:20-30%;
Al 2O 3:8-18%;
CaO:1-6%;
F 2:0.2-1.50%;
P 2O 5:0.05-5%;
SnO 2:0.05-0.5%;
Li 2O:0.05-0.5%;
K 2O+Na 2O≤0.05%;
0<MgO<2.0。
其中:
SnO 2与Li 2O的质量百分含量满足SnO 2/Li 2O的范围为0.2-3。
F 2与SnO 2的质量百分含量满足F 2/SnO 2的范围为1-5。
P 2O 5、F 2与SnO 2的质量百分含量满足P 2O 5/(F 2+SnO 2)的范围为2-5。
本发明制备玻璃纤维组合物的原料分别是石英粉、硼酐、氧化铝、硅灰石、氧化镁、氧化锡、萤石、偏磷酸铝、锂辉石。
本发明的有益效果如下:
SiO 2以硅氧四面体的结构组成不规则的连续网络结构,该结构具有较高的键强,结构紧密,在外电场的作用下不易极化,也不易产生电导和松弛等损失,所以SiO 2含量高可以明显降低玻璃介电常数和介电损耗,增强机械强度。但含量增多会使粘度升高,增大熔制难度,例如石英玻璃,其介电损耗非常低,为0.0001,但其粘度高,难以熔解。本发明限定SiO 2含量范围为50%-60%。
B 2O 3在高温下,硼以硼氧三角体存在,可以降低粘度,但硼含量达到一定的值时,反而会增加粘度,所以硼含量不能太高,不利于生产。并且B 2O 3含量太高容易析出SiO 2网格,产生分相。另外B 2O 3的添加引入B 3+形成B-O,该键的键能较Si-O键能大,在玻璃中可以起到稳定玻璃网络结构并且限制氧离子极化的作用。因此B 2O 3的添加可以降低介电常数和介电 损耗。本发明限定B 2O 3含量范围为20%-30%。
Al 2O 3的添加可以有效地抑制玻璃的析晶。在多组分玻璃中Al 2O 3能起到连接断裂网络的作用,使网络结构紧密,玻璃强度提高,但Al-O键能比Si-O键能弱,使游离氧增多,从而会使损耗增大。本发明限定Al 2O 3含量范围8%-18%。
CaO属于网络外体,钙离子配位数一般为6,在结构中活动性很小,一般不易从玻璃中析出,在高温时活动性较大。Ca 2+有极化桥氧和减弱硅氧键的作用,这使它具有降低粘度的作用,并且可以缩短料性,同时游离氧带来的损耗可能会增多。本发明限定CaO含量范围1%-6%。
本发明还可以在添加SnO 2和F 2的基础上,再添加MgO,MgO在玻璃体系中可以降低玻璃的粘度,但含量太高会使介电常数和介电损耗增高,本发明限定MgO含量范围MgO<2.0。
P 2O 5在玻璃结构中总以磷氧四面体的形式存在,是玻璃形成体,既可以作为玻璃的骨架,提高玻璃的分相温度,增强玻璃的耐温性能,也可以缩短玻璃的料性,技术研究中使用DSC对玻璃的膨胀软化点温度测试,发现引入P后,较未引入前玻璃的软化点温度升高,有利于提高后道制品的耐温性。另外,单一的P 2O 5原料易吸潮,且在配料过程中易团聚,使配合料均匀性变差,且存储条件要求高,本发明以偏磷酸铝或缩合磷酸铝原料引入P 2O 5,使P 2O 5均匀分散在配合料中,配合料熔化过程中B 2O 3的熔化速度快,被均匀分布的P 2O 5局部包裹,降低了挥发量,减少了气体的排放。但引入量过多,使低温粘度大幅上升,且P含量太高容易与B争夺游离氧,引起玻璃的失透,产生析晶。本发明发现Al 2O 3含量>8时可有效抑制因引入高B、P产生的分相,通过控制Al 2O 3、P 2O 5、B 2O 3比例降低玻璃的成型温度,抑制析晶,本发明控制P 2O 5含量范围0.05%-5%。
作为碱金属氧化物Li 2O、K 2O、Na 2O可使玻璃粘度特性快速下降,有利于玻璃熔化与澄清,但碱金属与氧形成的键极易极化,会使介电损耗明显增大。本发明少量添加Li 2O,在保证介电损耗的前提下降低粘度,利于玻璃熔化,本发明严格控制原料中K 2O、Na 2O含量,少量存在为原料中的杂质引进,无需添加,本发明限定Li 2O的范围为0.05-0.5%,K 2O+Na 2O≤0.05%,以保证在较低熔制温度下获得低介电损耗的玻璃。
SnO 2高温下分解产生O 2,降低气体分压,有利于气泡排出。更重要的是,本发明SnO 2+Li 2O起到复合澄清剂的作用,受Sn 4+外电子层的干扰,致使Li +的极化作用增强,有效地提升Li 2O的有益效果,在玻璃澄清过程中玻璃液的表面张力降低,高效排出气泡,提高玻璃均匀性,实现低介电玻璃纤维生产要求的零气泡率。并且配合料的熔化温度大幅降低,从而减少了B、F挥发。本发明控制SnO 2含量范围为0.05-0.5%,并且重量百分比的比值SnO/Li 2O的范围为0.2-3。
F原子半径小,相对O原子不易被极化,与Si形成Si-F键,部分替代Si-O,在玻璃网络中起断网作用,并且在玻璃中形成的Si-F、B-F、Al-F键强比Si-O、B-O、Al-O键的键强弱,这种双重作用会降低玻璃的熔化温度、降低粘度、降低玻璃的表面张力,有利于降低玻璃的成型工艺难度。且形成的Si-F键不易被极化,降低了介电损耗。本发明控制F 2含量范围0.2%-1.5%。
另外,本发明F 2与SnO 2的含量之比对玻璃的介电损耗影响很大,当引入少量SnO 2后,两者相互协同,使介电损耗降低更加明显。本发明重量百分比的比值F 2/SnO 2的范围在1-5时效果明显。实验表明,单独添加F 2或SnO 2或者F 2/SnO 2的范围不在1-5时,均达不到本发明的目的。F 2和SnO 2共同使用时,F 2分散于SnO 2周围,形成Sn-F键,与Si-F、B-F、Al-F共同作用,进一步降低玻璃的熔化温度、降低粘度、降低玻璃的表面张力。
综上,本发明同时添加SnO 2和F 2,并控制F 2/SnO 2的比值,不仅使玻璃纤维具有较低的介电常数和介电损耗,而且降低了玻璃纤维的粘度,使得玻璃纤维中气泡的个数为零。
另外,本发明还可以在添加SnO 2和F 2的基础上,再添加P 2O 5,并控制P 2O 5/(F 2+SnO 2)的比值范围为2-5,进一步降低了玻璃纤维的介电常数和介电损耗。
本发明各种组分之间相互作用,使得到的玻璃纤维组合物具有低介电常数和低介电损耗,低气泡,低粘度,玻璃性能优异。
具体实施方式
以下结合实施例对本发明做进一步描述。
实施例1-7
实施例1-7中低介电损耗的玻璃纤维组合物的组成见表1。
(1)根据各组份的含量,将各化合物按一定的配比混合,混合均匀后将配合料放在铂金坩埚中,然后在1550-1600℃进行熔化,小于1350℃进行拉丝制成玻璃纤维。
为确保玻璃有足够的强度,适应拉丝工艺,进行模量强度检测:将玻璃切成20*20*15mm(长*宽*厚)的玻璃块,测试面光滑平整,利用超声测厚仪,根据[测厚仪测出的实际声速单位为mm/us,所以下面公式中的声速值(cm/s)均为:实测值*10 5,密度单位:g/cm 3,代入计算出需要的数据即可]。
(1)泊松比
Figure PCTCN2022111308-appb-000001
其中,V T=横波声速(cm/s),V L=纵波声速(cm/s)。
(2)杨氏模量
Figure PCTCN2022111308-appb-000002
其中,V L=纵波声速(cm/s),ρ=密度(g/cm 3),ν=泊松比。
(2)介电性能检测,将混合均匀后的配合料放在铂金坩埚中熔化,熔化后的样品在600℃进行退火消除应力,然后切成Φ50*2mm的样品,用网络矢量分析仪在10GHz下进行测试。
玻璃纤维组合物的lg3.0温度、液相温度、△T、介电常数、介电损耗、模量、气泡数各项指标,数据见表1。
对比例1-6
对比例1-6中玻璃纤维组合物的组成见表2。
该玻璃纤维组合物的lg3.0温度、液相温度、△T、介电常数、介电损耗、模量、气泡数各项指标,数据见表2。
表1 实施例1-7的数据表
Figure PCTCN2022111308-appb-000003
表2 对比例1-6的数据表
  对比例1 对比例2 对比例3 对比例4 对比例5 对比例6
SiO 2 55 55 60 60 55 55
B 2O 3 22.2 22.5 20.8 20.8 22.5 22.5
Al 2O 3 13.87 14.07 14.08 14.33 14.67 14.87
CaO 3.5 3.5 2.1 2.1 3.5 3.5
MgO 0 0 0 0 0 0
P 2O 5 4 4 2 1.5 4 4
F 2 0.8 0.8 0.6 0.6 0 0
SnO 2 0.5 0 0.1 0.35 0.2 0
Li 2O 0.1 0.1 0.3 0.3 0.1 0.1
K 2O+Na 2O 0.03 0.03 0.02 0.02 0.03 0.03
F 2/SnO 2 1.60 0.00 6.00 1.71 0 0
P 2O 5/(F 2+SnO 2) 3.08 5.00 2.86 1.58 20 0
SnO 2/Li 2O 5.00 0.00 0.33 1.17 2 0
lg3.0/℃ 1360 1375 1365 1392 1384 1398
液相温度/℃ 1079 1100 1110 1200 1153 1164
△T/℃ 281 275 255 192 231 234
10GHz介电常数 4.55 4.52 4.55 4.58 4.59 4.65
10GHz介电损耗 0.0035 0.0033 0.0028 0.0030 0.0029 0.0031
模量/GPa 54 55 58 60 52 51
气泡数(个/10克) 10 22 25 12 20 30
表格中lg3.0是指玻璃液粘度为1000泊时的温度,为玻璃的成型温度即拉丝温度;液相温度即析晶温度或分相温度的上限,为玻璃的失透上限温度;成型温度与液相温度之差越大越有利于拉丝。
分析表1-2中的数据,对比例1中的SnO 2/Li 2O的比值为5.00,不在0.2-3的范围内;对比例3中的F 2/SnO 2的比值为6.00,不在1-5的范围内;对比例4中的P 2O 5/(F 2+SnO 2)的比值为1.58,不在2-5的范围内。导致了玻璃纤维的粘度升高,玻璃纤维中气泡的个数也有不同程度的增加。
通过对比实施例1与对比例2、5、6可知,与本发明实施例1相比,对比例2中没有添加SnO 2、对比例5没有添加F 2、对比例6没有添加SnO 2和F 2,均会导致玻璃纤维的粘度升高,致使玻璃纤维中气泡的个数增加。本发明同时添加SnO 2和F 2,并控制F 2/SnO 2的比值,不仅使玻璃纤维具有较低的介电常数和介电损耗,而且降低了玻璃纤维的粘度,使得玻璃纤维中气泡的个数为零。另外本发明还添加了P 2O 5,并控制P 2O 5/(F 2+SnO 2)的比值范围为2-5,进一步降低了玻璃纤维的介电常数和介电损耗。

Claims (4)

  1. 一种低介电损耗的玻璃纤维组合物,其特征在于:以质量百分比计,各组分含量如下:
    SiO 2:50-60%;
    B 2O 3:20-30%;
    Al 2O 3:8-18%;
    CaO:1-6%;
    F 2:0.2-1.50%;
    SnO 2:0.05-0.5%;
    Li 2O:0.05-0.5%;
    K 2O+Na 2O≤0.05%;
    SnO 2与Li 2O的质量百分含量满足SnO 2/Li 2O的范围为0.2-3;
    F 2与SnO 2的质量百分含量满足F 2/SnO 2的范围为1-5。
  2. 一种低介电损耗的玻璃纤维组合物,其特征在于:以质量百分比计,各组分含量如下:
    SiO 2:50-60%;
    B 2O 3:20-30%;
    Al 2O 3:8-18%;
    CaO:1-6%;
    F 2:0.2-1.50%;
    P 2O 5:0.05-5%;
    SnO 2:0.05-0.5%;
    Li 2O:0.05-0.5%;
    K 2O+Na 2O≤0.05%;
    SnO 2与Li 2O的质量百分含量满足SnO 2/Li 2O的范围为0.2-3;
    F 2与SnO 2的质量百分含量满足F 2/SnO 2的范围为1-5;
    P 2O 5、F 2与SnO 2的质量百分含量满足P 2O 5/(F 2+SnO 2)的范围为2-5。
  3. 一种低介电损耗的玻璃纤维组合物,其特征在于:以质量百分比计,各组分含量如下:
    SiO 2:50-60%;
    B 2O 3:20-30%;
    Al 2O 3:8-18%;
    CaO:1-6%;
    F 2:0.2-1.50%;
    SnO 2:0.05-0.5%;
    Li 2O:0.05-0.5%;
    K 2O+Na 2O≤0.05%;
    0<MgO<2.0;
    SnO 2与Li 2O的质量百分含量满足SnO 2/Li 2O的范围为0.2-3;
    F 2与SnO 2的质量百分含量满足F 2/SnO 2的范围为1-5。
  4. 一种低介电损耗的玻璃纤维组合物,其特征在于:以质量百分比计,各组分含量如下:
    SiO 2:50-60%;
    B 2O 3:20-30%;
    Al 2O 3:8-18%;
    CaO:1-6%;
    F 2:0.2-1.50%;
    P 2O 5:0.05-5%;
    SnO 2:0.05-0.5%;
    Li 2O:0.05-0.5%;
    K 2O+Na 2O≤0.05%;
    0<MgO<2.0;
    SnO 2与Li 2O的质量百分含量满足SnO 2/Li 2O的范围为0.2-3;
    F 2与SnO 2的质量百分含量满足F 2/SnO 2的范围为1-5;
    P 2O 5、F 2与SnO 2的质量百分含量满足P 2O 5/(F 2+SnO 2)的范围为2-5。
PCT/CN2022/111308 2021-11-10 2022-08-10 低介电损耗的玻璃纤维组合物 WO2023082736A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22891544.3A EP4431476A1 (en) 2021-11-10 2022-08-10 Glass fiber composition with low dielectric loss
KR1020237041212A KR20240004753A (ko) 2021-11-10 2022-08-10 저유전 손실의 유리 섬유 조성물
JP2023574328A JP2024520955A (ja) 2021-11-10 2022-08-10 誘電損失の低いガラス繊維組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111323970.1A CN113880441B (zh) 2021-11-10 2021-11-10 低介电损耗的玻璃纤维组合物
CN202111323970.1 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023082736A1 true WO2023082736A1 (zh) 2023-05-19

Family

ID=79017133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111308 WO2023082736A1 (zh) 2021-11-10 2022-08-10 低介电损耗的玻璃纤维组合物

Country Status (5)

Country Link
EP (1) EP4431476A1 (zh)
JP (1) JP2024520955A (zh)
KR (1) KR20240004753A (zh)
CN (1) CN113880441B (zh)
WO (1) WO2023082736A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880441B (zh) * 2021-11-10 2022-08-16 泰山玻璃纤维有限公司 低介电损耗的玻璃纤维组合物
CN114956584B (zh) * 2022-04-21 2023-07-21 河南光远新材料股份有限公司 一种高频工况用低介电玻璃纤维组合物及其应用
CN116143404B (zh) * 2022-11-23 2024-09-10 河北光兴半导体技术有限公司 玻璃及其制备方法和玻璃基板

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594987A (zh) * 2006-10-26 2009-12-02 Agy控股公司 低介电玻璃纤维
CN102503153A (zh) 2011-10-19 2012-06-20 重庆国际复合材料有限公司 低介电常数玻璃纤维
CN103351102A (zh) * 2013-06-25 2013-10-16 巨石集团有限公司 一种玻璃纤维组合物及由其制成的具有低介电常数的玻璃纤维
CN103482876A (zh) 2013-09-18 2014-01-01 重庆理工大学 一种用于印刷电路板的玻璃纤维及其制备方法
CN104556710A (zh) 2015-02-03 2015-04-29 重庆国际复合材料有限公司 一种异形玻璃纤维及其制备方法
CN104909578A (zh) * 2015-05-28 2015-09-16 重庆国际复合材料有限公司 一种玻璃纤维
CN110719897A (zh) * 2017-09-08 2020-01-21 日东纺绩株式会社 玻璃纤维用玻璃组合物、玻璃纤维及使用该玻璃纤维的玻璃纤维强化树脂组合物
CN110770182A (zh) * 2017-05-26 2020-02-07 日本板硝子株式会社 玻璃组合物、玻璃纤维、玻璃布以及玻璃纤维的制造方法
US20200181004A1 (en) * 2016-12-28 2020-06-11 Agy Holding Corporation Low dielectric glass composition, fibers, and article
CN112047626A (zh) * 2019-12-31 2020-12-08 富乔工业股份有限公司 低气泡数、低介电常数的玻璃组成物及由其制得的玻璃纤维
CN113135666A (zh) 2020-11-18 2021-07-20 南京玻璃纤维研究设计院有限公司 低介电玻璃纤维及制备方法、玻璃纤维制品、复合材料及应用
CN113880441A (zh) * 2021-11-10 2022-01-04 泰山玻璃纤维有限公司 低介电损耗的玻璃纤维组合物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594987A (zh) * 2006-10-26 2009-12-02 Agy控股公司 低介电玻璃纤维
CN102503153A (zh) 2011-10-19 2012-06-20 重庆国际复合材料有限公司 低介电常数玻璃纤维
CN103351102A (zh) * 2013-06-25 2013-10-16 巨石集团有限公司 一种玻璃纤维组合物及由其制成的具有低介电常数的玻璃纤维
CN103482876A (zh) 2013-09-18 2014-01-01 重庆理工大学 一种用于印刷电路板的玻璃纤维及其制备方法
CN104556710A (zh) 2015-02-03 2015-04-29 重庆国际复合材料有限公司 一种异形玻璃纤维及其制备方法
CN104909578A (zh) * 2015-05-28 2015-09-16 重庆国际复合材料有限公司 一种玻璃纤维
US20200181004A1 (en) * 2016-12-28 2020-06-11 Agy Holding Corporation Low dielectric glass composition, fibers, and article
CN110770182A (zh) * 2017-05-26 2020-02-07 日本板硝子株式会社 玻璃组合物、玻璃纤维、玻璃布以及玻璃纤维的制造方法
CN110719897A (zh) * 2017-09-08 2020-01-21 日东纺绩株式会社 玻璃纤维用玻璃组合物、玻璃纤维及使用该玻璃纤维的玻璃纤维强化树脂组合物
CN112047626A (zh) * 2019-12-31 2020-12-08 富乔工业股份有限公司 低气泡数、低介电常数的玻璃组成物及由其制得的玻璃纤维
CN113135666A (zh) 2020-11-18 2021-07-20 南京玻璃纤维研究设计院有限公司 低介电玻璃纤维及制备方法、玻璃纤维制品、复合材料及应用
CN113880441A (zh) * 2021-11-10 2022-01-04 泰山玻璃纤维有限公司 低介电损耗的玻璃纤维组合物

Also Published As

Publication number Publication date
KR20240004753A (ko) 2024-01-11
CN113880441B (zh) 2022-08-16
EP4431476A1 (en) 2024-09-18
JP2024520955A (ja) 2024-05-27
CN113880441A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2023082736A1 (zh) 低介电损耗的玻璃纤维组合物
CN110028249B (zh) 一种低介电玻璃纤维组分及其制造方法
CN112047626B (zh) 低气泡数、低介电常数的玻璃组成物及由其制得的玻璃纤维
JPS62226839A (ja) 低誘電率ガラス繊維
US11643360B2 (en) Electronic-grade glass fiber composition, and glass fiber and electronic fabric thereof
TW201811698A (zh) 低介電玻璃及玻璃纖維
WO2020011167A1 (zh) 一种可快速进行离子交换的含锂铝硅酸盐玻璃
CN113135666B (zh) 低介电玻璃纤维及制备方法、玻璃纤维制品、复合材料及应用
WO2020011171A1 (zh) 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃
EP4276080A1 (en) Glass fiber with low thermal expansion coefficient
CN110171929B (zh) 低气泡低介电玻璃纤维组合物及其生产工艺
WO2020177271A1 (zh) 一种低软化点含锂玻璃
CN104909578A (zh) 一种玻璃纤维
CN105481247A (zh) 一种铝硅酸盐玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
CN117985936A (zh) 一种高稳定中性硼硅玻璃调味瓶及其制备方法
TW202118743A (zh) 低介電玻璃組成物、低介電玻璃及低介電玻璃纖維
CN114230175B (zh) 具有低热膨胀系数的玻璃组成物及玻璃纤维
CN115028358A (zh) 用于制备高液相线黏度的化学强化玻璃的组合物、化学强化玻璃及其应用
CN114988699A (zh) 低介电玻璃组成物、低介电玻璃、低介电玻璃纤维及制品
CN113105118A (zh) 低热膨胀系数的玻璃组合物及其制造的玻璃纤维
CN115093123B (zh) 一种低膨胀高模量玻璃纤维组合物以及玻璃纤维
CN115043593B (zh) 一种低介电玻璃纤维组合物及其应用
CN114956584B (zh) 一种高频工况用低介电玻璃纤维组合物及其应用
TWI792109B (zh) 低熱膨脹係數的玻璃組合物及其玻璃纖維
CN102976610A (zh) 一种触屏盖板用玻璃配方

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317074558

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237041212

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023574328

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023024377

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 523451932

Country of ref document: SA

WWE Wipo information: entry into national phase

Ref document number: 2022891544

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891544

Country of ref document: EP

Effective date: 20240610

ENP Entry into the national phase

Ref document number: 112023024377

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231122