WO2023080207A1 - 蓄電デバイス電極用分散剤組成物 - Google Patents

蓄電デバイス電極用分散剤組成物 Download PDF

Info

Publication number
WO2023080207A1
WO2023080207A1 PCT/JP2022/041220 JP2022041220W WO2023080207A1 WO 2023080207 A1 WO2023080207 A1 WO 2023080207A1 JP 2022041220 W JP2022041220 W JP 2022041220W WO 2023080207 A1 WO2023080207 A1 WO 2023080207A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
storage device
mass
less
acrylic polymer
Prior art date
Application number
PCT/JP2022/041220
Other languages
English (en)
French (fr)
Inventor
井樋昭人
代田協一
隠岐一雄
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to KR1020247015316A priority Critical patent/KR20240095236A/ko
Priority to CN202280074188.7A priority patent/CN118202491A/zh
Priority to EP22890027.0A priority patent/EP4432400A1/en
Publication of WO2023080207A1 publication Critical patent/WO2023080207A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/18Homopolymers or copolymers of nitriles
    • C09D133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dispersant composition for electricity storage device electrodes.
  • Patent Document 1 discloses a mixture of fine carbon fibers, a dispersion medium that is an amide-based organic solvent, a polymer-based dispersant, and an organic basic agent having a pKa of 7.5 or more in water.
  • a fine carbon fiber dispersion comprising a compound is disclosed.
  • Nitrogen-containing organic compounds having primary to tertiary amino groups are used as organic basic compounds having a pKa of 7.5 or more, and methyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, etc. are used as polymer dispersants.
  • Patent Document 2 discloses a carbon nanotube dispersion for electrodes containing carbon nanotubes, polyvinylpyrrolidone, N-methyl-2-pyrrolidone, and an amine compound.
  • US 2019/0372121 Patent Document 3 describes a mixture of carbonaceous particles such as carbon black, a cellulose-based dispersant, poly(methyl vinyl ether maleic anhydride), poly(isobutylene maleic anhydride), poly(ethylene maleic anhydride), ), and a polymer containing maleic anhydride moieties such as poly(styrene co-maleic anhydride), an amine compound having a boiling point of 200° C.
  • Patent Document 4 discloses an acrylic polymer containing a structural unit having a hydrocarbon group with 8 to 30 carbon atoms as a copolymer contained in a positive electrode paste for an electricity storage device.
  • the present disclosure contains an acrylic polymer (A), an amine compound (B) having a boiling point of 200° C. or less, and an organic solvent (C), and the acrylic polymer (A) is represented by the following formula (1) and the compound (B) is at least one amine compound selected from secondary aliphatic amines, tertiary aliphatic amines, aromatic amines and heterocyclic amines. , relates to a dispersant composition for electricity storage device electrodes.
  • R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group, X 1 represents a nitrogen atom or an oxygen atom, and R 4 represents the number of carbon atoms. It represents a hydrocarbon group of 8 or more and 30 or less.
  • the present disclosure relates to a carbon material-based conductive material slurry containing a carbon material-based conductive material (D) and the dispersant composition of the present disclosure.
  • the present disclosure relates to a positive electrode paste for an electricity storage device containing the dispersant composition of the present disclosure.
  • the present disclosure relates to a method for producing a positive electrode coating film, including applying the positive electrode paste for an electricity storage device of the present disclosure to a current collector, and then drying the current collector.
  • the present disclosure is a method for producing a positive electrode for an electricity storage device that includes a current collector and a positive electrode coating film formed on the current collector, wherein the positive electrode paste for an electricity storage device of the present disclosure is applied to the current collector. It relates to a method for producing a positive electrode for an electricity storage device, including drying after coating.
  • the resistance value of the positive electrode coating film and the DC resistance value of the power storage device are increased. It is desired to provide dispersants and additives that can reduce the viscosity of conductive material slurries and positive electrode pastes containing carbon material-based conductive materials such as carbon nanotubes.
  • a carbon material-based conductive material slurry and a positive electrode paste that are low in viscosity and easy to handle, and it is possible to reduce the resistance value of the positive electrode coating film and the DC resistance value of the power storage device.
  • a dispersant composition for an electricity storage device electrode it is possible to prepare a carbon material-based conductive material slurry and a positive electrode paste that are low in viscosity and easy to handle, and it is possible to reduce the resistance value of the positive electrode coating film and the DC resistance value of the power storage device.
  • Dispersant composition for electricity storage device electrode The present disclosure provides a carbon material system having low viscosity and good handling properties by using a specific acrylic polymer (A) and a specific amine compound (B) (hereinafter also referred to as “compound (B)”) in combination. It is based on the knowledge that a dispersant composition for electricity storage device electrodes (hereinafter also referred to as “dispersant composition of the present disclosure”) that enables preparation of a conductive material slurry and a positive electrode paste can be provided.
  • the present disclosure is a dispersant composition containing an acrylic polymer (A), a compound (B), and an organic solvent (C), wherein the acrylic polymer (A) is represented by the following formula (1) At least one amine compound containing the represented structural unit a, wherein the compound (B) is selected from the group consisting of secondary aliphatic amines, tertiary aliphatic amines, aromatic amines and heterocyclic amines and its boiling point is 200° C. or less.
  • a dispersant composition for electricity storage device electrodes that enables the preparation of a carbon material-based conductive material slurry with low viscosity and good handling properties and a positive electrode paste for electricity storage device electrodes.
  • the carbon material-based conductive material slurry of the present disclosure (hereinafter also referred to as “conductive material slurry of the present disclosure”) having low viscosity and good handling properties and the power storage of the present disclosure
  • a positive electrode paste for devices hereinafter also referred to as "positive electrode paste of the present disclosure" can be provided.
  • a positive electrode coating film having a low coating film resistance value, a positive electrode for an electricity storage device containing the positive electrode coating film, and a DC resistance are improved. Low power storage devices can be manufactured.
  • the acrylic polymer (A) is adsorbed to the carbon material-based conductive material by the hydrocarbon groups having 8 to 30 carbon atoms to exhibit dispersibility.
  • the acrylic polymer (A) does not cover the entire surface of the carbon material-based conductive material, and there are exposed portions on the surface of the carbon material-based conductive material.
  • Adjacent carbon material-based conductive materials agglomerate in an organic solvent due to ⁇ - ⁇ interaction and hydrogen bonding between polar groups present on part of the surface of the carbon material-based conductive material.
  • the compound (B) interacts with the polar group (neutralization reaction or dipole interaction) to suppress hydrogen bonding between the carbon material-based conductive materials. Furthermore, the amine (cation) interacts with the ⁇ electrons on the carbon material-based conductive material and the cation- ⁇ interaction to suppress the ⁇ - ⁇ interaction between the carbon material-based conductive materials. By suppressing the hydrogen bonding and suppressing the ⁇ - ⁇ interaction, the dispersibility of the carbon material-based conductive material is improved, and as a result, the viscosity is reduced compared to the case where the compound (B) is not added.
  • the polar group neutralization reaction or dipole interaction
  • the mechanism by which the resistance value of the positive electrode coating film and the direct current resistance of the electricity storage device are lowered is presumed as follows.
  • the acrylic polymer (A) and the compound (B) each interact with the carbon material-based conductive material, that is, both are adsorbed on the surface of the carbon material-based conductive material. It is presumed that the acrylic polymer (A) is adsorbed in a mottled manner on the surface of the carbon material-based conductive material. Competitive adsorption to the surface of the material occurs, and the adsorbed acrylic polymer (A) and compound (B) are each localized on the surface of the carbon material-based conductive material.
  • the adsorption portion area of the acrylic polymer (A) is reduced as compared with the case where the compound (B) is not present.
  • the compound (B) volatilizes together with the organic solvent during the process of applying and drying the positive electrode paste, the surface portion of the carbon material-based conductive material to which the compound (B) was adsorbed is exposed, and this exposed portion becomes the carbon material-based conductive material. It becomes a conductive contact between conductive materials.
  • the exposed portion is larger than when the compound (B) is not coexistent, so the formation of the conductive path is facilitated, and as a result, the resistance value of the positive electrode coating film and the DC resistance value of the electricity storage device are reduced.
  • the compound (B) capable of exhibiting the above effect in the present invention needs to volatilize together with the solvent contained in the positive electrode paste when the positive electrode paste is dried. (202 ° C.) and is required to be difficult to covalently bond with carboxyl groups, hydroxyl groups, etc. present on the surface of the carbon material-based conductive material.
  • Tertiary amines are preferred, aromatic amines having a bulkier structure than aliphatic amines, and heterocyclic amines are more preferred.
  • the present disclosure should not be construed as being limited to these mechanisms.
  • the acrylic polymer (A) contained in the dispersant composition of the present disclosure contains a structural unit a described below.
  • the acrylic polymer (A) is at least one selected from structural units b1 and b2 described later (hereinafter collectively referred to as " It is preferable to contain a structural unit b'), and more preferably to contain a structural unit c.
  • the acrylic polymer (A) in one or more embodiments, a polymer containing a structural unit a, a copolymer containing a structural unit a and a structural unit b, a structural unit a, a structural unit b, and a structural unit c A copolymer containing and the like.
  • the acrylic polymer (A) may be used alone or in combination of two or more.
  • Structural unit a is a structural unit represented by the following formula (1). Structural unit a may be one type or a combination of two or more types. In the present disclosure, the structural unit a is a component of the acrylic polymer (A) that adsorbs onto the surface of the carbon material-based conductive material.
  • R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group, X 1 represents a nitrogen atom or an oxygen atom, and R 4 has 8 or more carbon atoms. Indicates a hydrocarbon group of 30 or less.
  • R 1 and R 2 are preferably hydrogen atoms
  • R 3 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of improving adsorptivity to the surface of the carbon material-based conductive material
  • X 1 is preferably an oxygen atom.
  • the hydrocarbon group of R 4 is preferably an alkyl group or an alkenyl group, more preferably an alkyl group, from the viewpoint of improving adsorptivity to the surface of the carbon material-based conductive material. From the same viewpoint, the number of carbon atoms in R 4 is 8 or more, preferably 10 or more, more preferably 12 or more, still more preferably 14 or more, further preferably 16 or more.
  • R 4 includes octyl group, 2-ethylhexyl group, decyl group, lauryl group, myristyl group, cetyl group, stearyl group, oleyl group and behenyl group.
  • Monomers that give structural unit a include, in one or more embodiments, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) ) Ester compounds such as acrylate, isostearyl (meth)acrylate, and behenyl (meth)acrylate; 2-ethylhexyl (meth)acrylamide, octyl (meth)acrylamide, lauryl (meth)acrylamide, stearyl (meth)acrylamide, behenyl (meth) Amide compounds such as acrylamide are included.
  • the monomer a can be lauryl (meth) acrylate, stearyl (meth) acrylate and behenyl (meth) acrylate.
  • ) is preferably at least one selected from acrylates, more preferably at least one selected from stearyl (meth)acrylate and behenyl (meth)acrylate, and at least one selected from stearyl methacrylate (SMA) and behenyl acrylate (BeA) More preferred, stearyl methacrylate is even more preferred.
  • the content of the structural unit a in all the structural units of the acrylic polymer (A) is preferably 10% by mass or more from the viewpoint of improving the adsorptivity to the surface of the carbon material-based conductive material and the dispersibility of the carbon material-based conductive material. , More preferably 15% by mass or more, still more preferably 20% by mass or more, still more preferably 25% by mass or more, still more preferably 30% by mass or more, and from the same viewpoint, preferably 80% by mass or less, more It is preferably 75% by mass or less, more preferably 70% by mass or less, still more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the content of the structural unit a is their total content.
  • the content of the structural unit a in all the structural units of the acrylic polymer (A) can be regarded as the ratio of the amount of monomer a used to the total amount of monomers used for polymerization.
  • Structural unit b is at least one structural unit selected from structural unit b1 represented by formula (2) below and structural unit b2 represented by formula (3) below. Structural unit b may be one type or a combination of two or more types.
  • the structural unit b is a component of the acrylic polymer (A) that does not adsorb to the surface of the carbon material-based conductive material and is responsible for steric repulsion. From the standpoint of improving dispersibility due to steric repulsion, the acrylic polymer (A) preferably contains structural unit b2 as structural unit b.
  • R 5 , R 6 and R 7 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group
  • X 2 represents a nitrogen atom or an oxygen atom
  • R 8 has 2 carbon atoms. 4 or less alkylene groups
  • p is 1 or more and 8 or less
  • R 9 is a hydrogen atom or a methyl group.
  • R 5 and R 6 are preferably hydrogen atoms
  • R 7 is preferably a hydrogen atom or a methyl group, more preferably a methyl group
  • X 2 is an oxygen Atoms are preferred
  • p is preferably 1 or more and preferably 5 or less, more preferably 3 or less.
  • R 10 , R 11 and R 12 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group
  • X 3 is a cyano group or a hydrocarbon group having 1 to 4 carbon atoms. represents a pyridinyl group which may have
  • the structural unit b1 represented by the formula (2) may be of one type or a combination of two or more types.
  • Examples of the structural unit b1 include a structure derived from a nonionic monomer, a structure obtained by introducing a nonionic group after polymerization, and the like.
  • Monomers that give structural unit b1 include 2-hydroxyethyl methacrylate, methoxyethyl methacrylate, methoxypolyethylene glycol (meth)acrylate, methoxypoly(ethylene glycol/propylene glycol) mono(meth)acrylate.
  • ethoxypoly(ethylene glycol/propylene glycol) mono(meth)acrylate polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate and the like.
  • 2-hydroxyethyl methacrylate (HEMA), methoxypolyethylene glycol (meth)acrylate (PEGMA), and methoxyethyl methacrylate (MEA) are At least one selected from 2-hydroxyethyl methacrylate (HEMA), methoxypolyethylene glycol methacrylate (PEGMA (EO1-3)) having an average added mole number of ethylene oxide of 1 or more and 3 or less, average added mole of ethylene oxide At least one selected from methoxypolyethylene glycol methacrylate (PEGMA (EO2)) and methoxyethyl methacrylate (MEA) having a number of 2 is more preferable, and 2-hydroxyethyl methacrylate (HEMA) and an average number of added moles of
  • the structural unit b2 represented by the formula (3) may be of one type or a combination of two or more types.
  • the monomer that gives the structural unit b2 represented by the formula (3) (hereinafter also referred to as "monomer b2") is an acrylic polymer (A ), from the viewpoint of the solubility of 4-vinylpyridine (4-Vpy), 2-vinylpyridine (2-Vpy), acrylonitrile (AN) and methacrylonitrile (MAN) is preferably at least one selected from, 4- At least one selected from vinylpyridine (4-Vpy) and acrylonitrile (AN) is more preferred, and acrylonitrile (AN) is more preferred.
  • Monomer b2 may be one type or a combination of two or more types.
  • Structural unit c is a structural unit represented by the following formula (4). Structural unit c may be one type or a combination of two or more types. In the present disclosure, the structural unit c is a component of the acrylic polymer (A) of the present disclosure that does not adsorb to the surface of the carbon material-based conductive material and is responsible for solubility.
  • R 13 , R 14 and R 15 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group.
  • the monomer that provides the structural unit c (hereinafter also referred to as "monomer c") is at least selected from acrylamide (AAm) and methacrylamide (MAAm) from the viewpoint of the solubility of the acrylic polymer (A) in organic solvents.
  • monomer c is at least selected from acrylamide (AAm) and methacrylamide (MAAm) from the viewpoint of the solubility of the acrylic polymer (A) in organic solvents.
  • acrylamide (AAm) and methacrylamide (MAAm) is preferred.
  • the content of the structural unit b in all the structural units of the acrylic polymer (A) is 20% by mass from the viewpoint of improving dispersibility due to steric repulsion. is preferably 25% by mass or more, more preferably 30% by mass or more, and from the same viewpoint, preferably 80% by mass or less, more preferably 70% by mass or less, more preferably 60% by mass or less, 50% by mass or less is more preferable.
  • the structural unit b is a combination of two or more, the content of the structural unit b is their total content.
  • the monomer b is a monomer that gives the structural unit b in synthesizing the acrylic polymer (A), and the content of the structural unit b in all the structural units of the acrylic polymer (A) is It can be regarded as the ratio of the amount of monomer b used to the total amount of monomers used.
  • the content of the structural unit c in all the structural units of the acrylic polymer (A) is, from the viewpoint of the solubility of the acrylic polymer (A), 5% by mass or more is preferable, 10% by mass or more is more preferable, 15% by mass or more is more preferable, and 20% by mass or more is still more preferable, and from the same viewpoint, 50% by mass or less is preferable, and 40% by mass or less is More preferably, 30% by mass or less is even more preferable.
  • the structural unit c is a combination of two or more, the content of the structural unit c is their total content.
  • the content of the structural unit c in all the structural units of the acrylic polymer (A) of the present disclosure can be regarded as the ratio of the amount of monomer c used to the total amount of monomers used for polymerization.
  • the acrylic polymer (A) of the present disclosure may further contain structural units other than the structural unit a, the structural unit b, and the structural unit c as long as the effects of the present disclosure are exhibited.
  • the total content of the structural unit a and the structural unit b in all the structural units of the acrylic polymer (A) is preferably 30% by mass or more, and 45% by mass or more, from the viewpoint of improving the dispersibility of the carbon material-based conductive material. is more preferably 60% by mass or more, and even more preferably 70% by mass or more, and from the viewpoint of improving the dispersibility of the carbon material-based conductive material, it is preferably 100% by mass or less, and more preferably 95% by mass or less. , 90% by mass or less, and more preferably 85% by mass or less.
  • the acrylic polymer (A) of the present disclosure is a copolymer containing structural unit a, structural unit b, and structural unit c
  • a preferred combination of structural unit a, structural unit b, and structural unit c is a carbon material-based
  • SMA/HEMA/MAAm SMA/HEMA/AAm SMA/PEGMA(EO1)/MAAm SMA/PEGMA(EO2)/MAAm SMA/2-Vpy/MAAm SMA/4-Vpy/MAAm SMA/4-Vpy/AAm SMA/AN/MAAm BeA/AN/MAAm
  • the acrylic polymer (A) of the present disclosure is a copolymer containing structural unit a, structural unit b and structural unit c
  • the arrangement of structural unit a, structural unit b and structural unit c is random, block or Any graft is fine.
  • the method for synthesizing the acrylic polymer (A) of the present disclosure is not particularly limited, and methods used for polymerization of ordinary (meth)acrylic acid esters and vinyl monomers are used.
  • methods for synthesizing the acrylic polymer (A) include free radical polymerization, living radical polymerization, anionic polymerization, and living anionic polymerization.
  • a free radical polymerization method it can be obtained by a known method such as polymerizing a monomer component containing a monomer a and optionally monomers b and c by a solution polymerization method.
  • Solvents used in the polymerization include, for example, hydrocarbons (hexane, heptane), aromatic hydrocarbons (toluene, xylene, etc.), lower alcohols (ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone), ethers (tetrahydrofuran, Diethylene glycol dimethyl ether), N-methylpyrrolidone and other organic solvents can be used.
  • the amount of the solvent is preferably 0.5 times or more and 10 times or less in mass ratio with respect to the total amount of the monomers.
  • the polymerization initiator used in the polymerization known radical polymerization initiators can be used, such as azo polymerization initiators, hydroperoxides, dialkyl peroxides, diacyl peroxides, ketone peroxides. etc.
  • the amount of the polymerization initiator is preferably 0.01 mol% or more, more preferably 0.05 mol% or more, still more preferably 0.1 mol% or more, and preferably 5 mol% or less, relative to the total amount of the monomer components, 4 mol % or less is more preferable, and 3 mol % or less is even more preferable.
  • the polymerization reaction is preferably carried out at a temperature of 40° C. or higher and 180° C.
  • Chain transfer agents include, for example, isopropyl alcohol and mercapto compounds such as mercaptoethanol.
  • the content of structural unit a in all structural units of the acrylic polymer (A) can be regarded as the ratio of the amount of monomer a used to the total amount of monomer used for polymerization.
  • the content of the structural unit b in all the structural units of the acrylic polymer (A) can be regarded as the ratio of the amount of the monomer b used to the total amount of the monomer used for polymerization.
  • the total content of structural unit a and structural unit b in all structural units of the acrylic polymer (A) can be regarded as the ratio of the total amount of monomer a and monomer b to the total amount of monomer used for polymerization.
  • the weight average molecular weight of the acrylic polymer (A) of the present disclosure is preferably 5000 or more, more preferably 7000 or more, from the viewpoint of improving the dispersibility of the carbon material-based conductive material and the solubility of the acrylic polymer in organic solvents. 10,000 or more is more preferable, and from the same viewpoint, 1,000,000 or less is preferable, 500,000 or less is more preferable, 300,000 or less is even more preferable, 200,000 or less is even more preferable, 100,000 or less is even more preferable, and 5 10,000 or less is even more preferable.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography), and the details of the measurement conditions are as shown in Examples.
  • the content of the acrylic polymer (A) in the dispersant composition of the present disclosure is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably, from the viewpoint of improving the dispersibility of the carbon material-based conductive material. is 15% by mass or more, and from the viewpoint of the solubility of the acrylic polymer (A) in an organic solvent, it is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 30% by mass or less. .
  • the acrylic polymer (A) is a combination of two or more, the content of the acrylic polymer (A) is their total content.
  • the boiling point of the compound (B) of the present disclosure is 200° C. or lower, but preferably not higher than the boiling point of the solvent for the positive electrode paste, and the boiling point of N-methylpyrrolidone (NMP) ( A boiling point of 202° C.
  • the lower limit of the boiling point of the compound (B) of the present disclosure is preferably 100°C or higher, more preferably 120°C or higher, from the viewpoint of handleability.
  • the amine compound blocks the ⁇ - ⁇ interaction between the carbon material-based conductive materials due to the “cation- ⁇ ” interaction on the surface of the carbon material-based conductive material, and reduces the viscosity of the conductive material slurry. If an electrically insulating amine compound remains in the battery, the resistance value of the positive electrode coating film and the DC resistance value of an electricity storage device such as a lithium ion battery are increased. Therefore, in the present disclosure, as the amine compound (B), a tertiary aliphatic amine, an aromatic Amines, heterocyclic amines, or secondary aliphatic amines, aromatic amines, or heterocyclic amines that are difficult to amidate due to large steric hindrance are used.
  • the secondary aliphatic amine is preferably an amine compound having no hydroxyl group, and the tertiary aliphatic amine preferably has a hydroxyl group.
  • Aromatic amines are amine compounds without hydroxyl groups, and heterocyclic amines are amine compounds without hydroxyl groups.
  • Examples of the compound (B) of the present disclosure include dibutylamine (the boiling point in parentheses below is 159° C.), dihexylamine (boiling point 193° C.), N-methylcyclohexylamine (boiling point 148° C.), N-ethylcyclohexylamine ( tertiary aliphatic amines such as tripropylamine (156°C), dimethyloctylamine (195°C), dimethylcyclohexylamine (160°C) primary aromatic amines such as benzylamine (at 185°C); secondary aromatic amines such as N-methylbenzylamine (at 186°C) and N-monomethylaniline (at 196°C); N, Tertiary aromatic amines such as N-dimethylbenzylamine (183°C), N,N-dimethylaniline (194°C), N,N-dimethyl-o-toluidine (186°C); N-
  • At least one selected from butylamine, dihexylamine, tripropylamine, N-methylcyclohexylamine, benzylamine, N-methylbenzylamine, N,N-dimethylbenzylamine, N-methylmorpholine and N-ethylmorpholine is preferred, At least one selected from tripropylamine, dihexylamine, N,N-dimethylbenzylamine, N-methylbenzylamine, benzylamine and N-ethylmorpholine is more preferred, and tripropylamine, dihexylamine, benzylamine and N- At least one selected from ethylmorpholine is more preferred, and at least one selected from dihexylamine, benzylamine and N- At least one selected from ethylmorpholine is more preferred, and at least one selected from dihexylamine, benzylamine and N- At least one selected from ethylmorpholine is more preferred, and at least
  • the content of the compound (B) of the present disclosure in the dispersant composition of the present disclosure is, from the viewpoint of the effect of reducing the viscosity of the conductive material slurry and the positive electrode paste, the acrylic polymer (A ) with respect to 100 parts by mass, preferably 10 parts by mass or more, more preferably 20 parts by mass or more, still more preferably 30 parts by mass or more, still more preferably 50 parts by mass or more, and still more preferably 70 parts by mass or more.
  • the solubility of the acrylic polymer (A) it is preferably 300 parts by mass or less, more preferably 250 parts by mass or less, and still more preferably 200 parts by mass with respect to 100 parts by mass of the acrylic polymer (A).
  • 150 parts by mass or less more preferably 150 parts by mass or less.
  • the mass ratio of the acrylic polymer (A) of the present disclosure to the compound (B) of the present disclosure in the dispersant composition of the present disclosure is a carbon material-based conductive material From the viewpoint of improving the dispersibility of, it is preferably 0.1 or more, more preferably 0.3 or more, still more preferably 0.5 or more, still more preferably 0.7 or more, and from the viewpoint of high conductivity, 10 or less is preferred, 5 or less is more preferred, 3 or less is even more preferred, and 1.5 or less is even more preferred.
  • the dispersant composition of the present disclosure can further contain an organic solvent (C).
  • an organic solvent (C) one capable of dissolving the binder (binder resin) contained in the positive electrode paste is preferable.
  • the organic solvent (C) include amide-based polar organic solvents such as dimethylformamide (DMF), diethylformamide, dimethylacetamide (DMAc), and N-methylpyrrolidone (NMP); alcohols such as hexanol, heptanol, and octanol.
  • glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, or hexylene glycol; glycerin, trimethylolpropane, penta Polyhydric alcohols such as erythritol or sorbitol; ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol monoethyl ether, Glycol ethers such as tetraethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, or tetraethylene glycol monobutyl ether; Ke
  • the organic solvent (C) may be one kind or a combination of two or more kinds. Among them, N-methylpyrrolidone (NMP), dimethylformamide (DMF), and dimethylsulfoxide (DMSO) are preferred, and N-methylpyrrolidone (NMP) is more preferred, from the viewpoint of solubility of the binder resin.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DMSO dimethylsulfoxide
  • the content of the organic solvent (C) in the dispersant composition of the present disclosure is preferably 30% by mass or more, from the viewpoint of the solubility of the acrylic polymer (A) of the present disclosure. More preferably 50% by mass or more, more preferably 55% by mass or more, and from the viewpoint of uniform solubility of the acrylic polymer (A) and the compound (B) of the present disclosure, preferably 80% by mass or less, more It is preferably 78% by mass or less, more preferably 75% by mass or less.
  • the dispersant composition of the present disclosure may further contain other components as long as the effects of the present disclosure are not hindered.
  • Other components include, for example, antioxidants, neutralizers, antifoaming agents, preservatives, dehydrating agents, rust inhibitors, plasticizers, binders (binder resins having a structure different from that of the acrylic polymer (A) ) and the like.
  • the present disclosure relates to a conductive material slurry (hereinafter also referred to as “conductive material slurry of the present disclosure”) containing a carbon material-based conductive material (D) and the dispersant composition of the present disclosure.
  • conductive material slurry of the present disclosure includes the acrylic polymer (A) of the present disclosure, the amine compound (B) of the present disclosure, the organic solvent (C), and the carbon material-based conductive material described later ( D) (hereinafter also referred to as “carbon material-based conductive material (D) of the present disclosure”).
  • the carbon material-based conductive material (D) of the present disclosure includes carbon nanotubes (hereinafter sometimes referred to as “CNT”), carbon black, graphite, graphene, and the like. Among these, at least one selected from carbon black, carbon nanotubes, and graphene is preferable from the viewpoint of realizing high conductivity, carbon nanotubes or graphene are more preferable from the same viewpoint, and carbon nanotubes are more preferable.
  • the carbon material-based conductive material (D) may be of one type or a combination of two or more types.
  • the average diameter of the carbon nanotube (CNT) that can be used as the carbon material-based conductive material (D) of the present disclosure is not particularly limited, but from the viewpoint of improving the dispersibility of CNT, it is preferably 2 nm or more, more preferably 3 nm or more, and further The thickness is preferably 5 nm or more, and from the viewpoint of improving conductivity, it is preferably 100 nm or less, more preferably 70 nm or less, and even more preferably 50 nm or less.
  • the average diameter of CNTs can be measured by Scanning Electron Microscopy (SEM) or Atomic Force Microscopy (AFM).
  • Carbon nanotubes (CNT) that can be used as the carbon material-based conductive material (D) of the present disclosure may have two or more different diameters in order to achieve both conductivity and dispersibility.
  • the average diameter of the relatively thin CNTs is preferably 2 nm or more, more preferably 3 nm or more, and still more preferably 5 nm or more, from the viewpoint of dispersibility, and From the viewpoint of conductivity, the thickness is preferably 29 nm or less, more preferably 25 nm or less, and even more preferably 20 nm or less.
  • the average diameter of relatively thick CNTs is preferably 30 nm or more, more preferably 35 nm or more, and still more preferably 40 nm or more from the viewpoint of dispersibility, and preferably 100 nm or less or more from the viewpoint of improving conductivity. It is preferably 70 nm or less, more preferably 50 nm or less.
  • carbon nanotube means an entity including multiple carbon nanotubes.
  • the form of the carbon nanotubes used in the preparation of the conductive material slurry of the present disclosure is not particularly limited. It may be in any form or in a form in which these forms are mixed.
  • the carbon nanotubes may be carbon nanotubes of various wall numbers or diameters.
  • Carbon nanotubes can contain impurities from the process in which the carbon nanotubes are manufactured, such as catalysts and amorphous carbon.
  • a carbon nanotube (CNT) that can be used as the carbon material-based conductive material (D) of the present disclosure in one or more embodiments, has a cylindrical shape by winding one sheet of graphite.
  • Single-walled, double-walled, multi-walled carbon nanotubes and mixtures thereof can be used depending on the properties required for the positive electrode coating film formed using the positive electrode paste for an electricity storage device containing carbon nanotubes.
  • the positive electrode coating film is a film-like layer obtained by applying a positive electrode paste for an electricity storage device to an electrode substrate (current collector).
  • CNTs that can be used as the carbon material-based conductive material (D) of the present disclosure include, for example, Nanocyl's NC-7000 (the numerical values below are average diameters of 9.5 nm), NX7100 (10 nm), Cnano's FT6100 (9 nm), FT-6110(9nm), FT-6120(9nm), FT-7000(9nm), FT-7010(9nm), FT-7320(9nm), FT-9000(12.5nm), FT-9100(12.5nm) , FT-9110 (12.5nm), FT-9200 (19nm), FT-9220 (19nm), Cabot Performance material (Shenzhen) HCNTs4 (4.5nm), CNTs5 (7.5nm), HCNTs5 (7.5nm), GCNTs5 (7.5nm), HCNTs10 (15nm), CNTs20 (25nm), CNTs40 (40nm), Korean CNT CTUBE1
  • CNTs when using a combination of two types of carbon nanotubes, for example, a combination of CNTs40 (40 nm) and HCNTs4 (4.5 nm) or HCNTs5 (7.5 nm) from Cabot Performance Material (Shenzhen), CNTs40 (40 nm) and Combination with GCNTs5 (7.5nm), Combination of CNTs40 (40nm) and Cnano's FT-7010 (9nm), Combination of CNTs40 (40nm) and FT-9100 (12.5nm), CNTs40 (40nm) and LG Chem A combination with BT-1003M (12.5 nm) of the same company is mentioned.
  • Carbon black Various carbon blacks such as furnace black, channel black, thermal black, acetylene black, and ketjen black can be used as the carbon material-based conductive material (D) of the present disclosure.
  • carbon black or hollow carbon that has undergone a conventional oxidation treatment can also be used. Oxidation treatment of carbon is carried out by subjecting carbon to high temperature treatment in the air, or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., to remove, for example, phenol groups, quinone groups, carboxyl groups, and carbonyl groups. This is a treatment that directly introduces (covalently bonds) oxygen-containing polar functional groups to the carbon surface. This treatment is generally performed to improve the dispersibility of carbon. However, since the conductivity of carbon generally decreases as the amount of functional groups introduced increases, it is preferable to use carbon that has not been oxidized.
  • the specific surface area of carbon black that can be used as the carbon material-based conductive material (D) of the present disclosure the more points of contact between carbon black particles, which is advantageous for lowering the internal resistance of the electrode.
  • the specific surface area (BET) determined from the nitrogen adsorption amount is preferably 20 m 2 /g or more, more preferably 50 m 2 /g or more, still more preferably 100 m 2 /g or more, and preferably is 1500 m 2 /g or less, more preferably 1000 m 2 /g or less, still more preferably 800 m 2 /g or less.
  • the primary particle size (diameter) of carbon black that can be used as the carbon material-based conductive material (D) of the present disclosure is preferably 5 nm or more, more preferably 10 nm or more, and preferably 1000 nm or less, and 200 nm, from the viewpoint of conductivity. The following are more preferred.
  • the primary particle size of carbon black is the average of particle sizes measured with an electron microscope or the like.
  • Examples of carbon black that can be used as the carbon material-based conductive material (D) of the present disclosure include, for example, Toka Black #4300, #4400, #4500, #5500 (manufactured by Tokai Carbon Co., Ltd., Furnace Black), Printex L, etc. ( Furnace black manufactured by Degussa), Raven7000, 5750, 5250, 5000ULTRAIII, 5000ULTRA, etc., Conductex SC ULTRA, Conductex 975 ULTRA, etc. (manufactured by Columbian, furnace black), #2350, #2400B, #30050B, #3030B, #3230B , #3350B, #3400B, #5400B, etc.
  • graphene that can be used as the carbon material-based conductive material (D) of the present disclosure generally refers to a sheet of sp 2 -bonded carbon atoms with a thickness of one atom (single-layer graphene), but in the present disclosure, single-layer graphene Graphene also includes a substance with a flaky morphology in which is laminated.
  • the thickness of graphene that can be used as the carbon material-based conductive material (D) of the present disclosure, it is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 20 nm or less.
  • the size in the direction parallel to the graphene layer is not particularly limited, but if it is too small, the conductive path per graphene will be shortened, resulting in poor conductivity due to the contact resistance between graphenes. Therefore, it is preferable that the graphene in the present disclosure is larger than a certain amount.
  • the size in the direction parallel to the graphene layer is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the size in the direction parallel to the graphene layer means the average of the maximum diameter and the minimum diameter when observed from the direction perpendicular to the plane direction of the graphene.
  • the content of the carbon material-based conductive material (D) in the conductive material slurry of the present disclosure is preferably 1% by mass or more, more preferably 2% by mass or more, from the viewpoint of improving the convenience of adjusting the concentration of the positive electrode paste. It is more preferably 10% by mass or less, more preferably 8% by mass or less, and even more preferably 7% by mass or less, from the viewpoint of making the viscosity of the conductive material slurry easy to handle.
  • the content of the acrylic polymer (A) in the conductive material slurry of the present disclosure is preferably based on 100 parts by mass of the carbon material-based conductive material (D) from the viewpoint of improving the dispersibility of the carbon material-based conductive material (D). is 0.1 parts by mass or more, more preferably 1 part by mass or more, still more preferably 5 parts by mass or more, and even more preferably 10 parts by mass or more, and from the viewpoint of high conductivity, preferably 200 parts by mass or less , more preferably 100 parts by mass or less, still more preferably 50 parts by mass or less, and even more preferably 30 parts by mass or less.
  • the content of the compound (B) in the conductive material slurry of the present disclosure is 0.5 parts by mass with respect to 100 parts by mass of the carbon material-based conductive material (D) from the viewpoint of improving the dispersibility of the carbon material-based conductive material.
  • 1.0 parts by mass or more is preferable, 5 parts by mass or more is even more preferable, and 10 parts by mass or more is even more preferable, and from the viewpoint of high conductivity, 500 parts by mass or less is preferable, and 100 parts by mass.
  • the following is more preferable, 50 parts by mass or less is even more preferable, and 30 parts by mass or less is even more preferable.
  • the conductive material slurry of the present disclosure is prepared by mixing and dispersing a mixture containing the dispersant composition of the present disclosure, the carbon material-based conductive material (D), and, if necessary, an additional solvent.
  • the additional solvent include those similar to the organic solvent (C) that can be used in the preparation of the dispersant composition of the present disclosure described above.
  • Examples of the mixing and dispersing machine include at least one selected from ultrasonic homogenizers, vibration mills, jet mills, ball mills, bead mills, sand mills, roll mills, homogenizers, high-pressure homogenizers, ultrasonic devices, attritors, desolvers, and paint shakers. seeds.
  • a part of the components of the conductive material slurry can be mixed and then mixed with the rest. good too.
  • the carbon material-based conductive material (D) may be in a dry state or in a solvent-containing state.
  • the viscosity of the conductive material slurry of the present disclosure at 25°C is preferably as low as possible. From the viewpoint of sedimentation, when the content of the carbon material-based conductive material (D) is 5% by mass, for example, it is preferably 0.05 Pa s or more, more preferably 0.1 Pa s or more, and 0.2 Pa s or more. s or more is more preferable. In addition, the viscosity of the conductive material slurry at 25 ° C. is preferably 50 Pa s or less, and 20 Pa when the content of the carbon material-based conductive material (D) is 5% by mass, from the viewpoint of improving handling properties when preparing the positive electrode paste. ⁇ s or less, and more preferably 10 Pa ⁇ s or less.
  • the present disclosure relates to a positive electrode paste for an electrical storage device (hereinafter also referred to as "positive electrode paste of the present disclosure") containing the dispersant composition of the present disclosure.
  • positive electrode paste of the present disclosure includes the acrylic polymer (A) of the present disclosure, the compound (B) of the present disclosure, the organic solvent (C), and the carbon material-based conductive material (D) including.
  • the positive electrode paste of the present disclosure can further contain a positive electrode active material and a binder in one or more embodiments.
  • the positive electrode paste of the present disclosure may further contain a conductive material other than the carbon material-based conductive material (D).
  • a conductive material other than the carbon material-based conductive material (D) include conductive polymers such as polyaniline.
  • the positive electrode active material is not particularly limited as long as it is an inorganic compound, and for example, a compound having an olivine structure or a lithium transition metal composite oxide can be used.
  • a compound having an olivine structure a compound represented by the general formula Li x M1 S PO 4 (where M1 is a 3d transition metal, 0 ⁇ X ⁇ 2, 0.8 ⁇ S ⁇ 1.2) can be exemplified.
  • a compound having an olivine structure may be coated with amorphous carbon or the like.
  • Lithium-transition metal composite oxides include lithium-manganese oxides having a spinel structure; ⁇ ⁇ ⁇ 0.5), and the like.
  • the transition metal M may contain Co, Ni or Mn.
  • the lithium-transition metal composite oxide may further contain one or more elements selected from Al, Mn, Fe, Ni, Co, Cr, Ti, Zn, P, and B.
  • the content of the positive electrode active material in the positive electrode paste of the present disclosure is not particularly limited as long as it can be adjusted according to the viscosity suitable for applying the positive electrode paste to the current collector, but from the viewpoint of energy density and From the viewpoint of the stability of the positive electrode paste and further from the viewpoint of productivity, it is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass or more, and preferably 90% by mass or less. It is more preferably 85% by mass or less, still more preferably 80% by mass or less.
  • the content of the positive electrode active material in the total solid content of the positive electrode paste of the present disclosure may be the same as that in the total solid content of the conventionally known positive electrode paste. 0% by mass or more is preferable, and 99.9% by mass or less is preferable from the viewpoint of ensuring the conductivity of the composite material layer (coating film) and adhesion of the coating film.
  • Binder resin polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyacrylonitrile, etc.
  • PVDF polyvinylidene fluoride
  • styrene-butadiene rubber polyacrylonitrile, etc.
  • the content of the binder in the positive electrode paste of the present disclosure is preferably 0.1% by mass or more from the viewpoint of the coating film adhesion of the composite material layer (coating film) and the binding property with the current collector. 0.5% by mass or more is more preferable, and 1% by mass or more is more preferable. From the viewpoint of keeping the energy density of the electricity storage device high, it is preferably 9.95% by mass or less, more preferably 5% by mass or less.
  • the content of the acrylic polymer (A) of the present disclosure in the positive electrode paste of the present disclosure is preferably 0.01% by mass or more, more preferably 0.01% by mass or more, from the viewpoint of reducing the viscosity of the positive electrode paste and further smoothing the coating film. 05% by mass or more, more preferably 0.07% by mass or more, and from the viewpoint of reducing coating film resistance, it is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and still more preferably 0.05% by mass or less. It is 5% by mass or less, and more preferably 0.3% by mass or less.
  • the content of the compound (B) of the present disclosure in the positive electrode paste of the present disclosure is preferably 0.012% by mass or more, more preferably 0.012% by mass or more, from the viewpoint of increasing the solid content concentration of the positive electrode paste and reducing the viscosity. It is 0.02% by mass or more, and from the viewpoint of the solubility of the binder (binder resin) and the stability of the positive electrode paste, it is preferably 0.191% by mass or less, more preferably 0.1% by mass or less. be.
  • the content of the carbon material-based conductive material (D) in the positive electrode paste of the present disclosure is preferably 0.01% by mass or more, more preferably 0.05% by mass, from the viewpoint of the conductivity of the composite layer (coating film). Above, more preferably 0.1% by mass or more, and from the viewpoint of keeping the energy density of the electricity storage device at a high level, preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 2% by mass or less. is.
  • the positive electrode paste of the present disclosure contains a positive electrode active material, a conductive material slurry of the present disclosure, a binder (binder resin) solution, a solvent (additional solvent) for adjusting the solid content, etc. , mixing and stirring.
  • a solvent additional solvent
  • dispersants other than the acrylic polymer (A) of the present disclosure, functional materials, and the like may be added.
  • the solvent additional solvent
  • non-aqueous solvents such as N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) and dimethylsulfoxide (DMSO), water, and the like can be used.
  • a non-aqueous solvent as the solvent (additional solvent), and among them, it is more preferable to use NMP.
  • a planetary mixer, a bead mill, a jet mill, or the like can be used for mixing and stirring, and these can also be used in combination.
  • the positive electrode paste of the present disclosure can also be obtained by premixing a part of all the components used for preparing the positive electrode paste and then mixing it with the remainder. Also, each component may be added in multiple batches instead of adding the entire amount at once. As a result, the mechanical load on the stirrer can be reduced.
  • the solid content concentration of the positive electrode paste of the present disclosure, the amount of the positive electrode active material, the amount of the binder, the amount of the conductive material slurry, the amount of the additive component added, and the amount of the solvent are can be adjusted according to the viscosity suitable for From the viewpoint of dryness, the smaller the amount of the solvent, the better.
  • the viscosity of the positive electrode paste is not too high.
  • the viscosity of the positive electrode paste is not too low from the viewpoint of drying suppression and obtaining a sufficient thickness of the composite material layer (coating film).
  • the positive electrode paste of the present disclosure can be adjusted to a high concentration, but a significant increase in viscosity is not preferable from the viewpoint of workability. Additives can keep the preferred viscosity range while keeping the concentration high.
  • the method for producing the positive electrode paste of the present disclosure can include a step of mixing the carbon material-based conductive material slurry of the present disclosure, a binder, a solvent, and a positive electrode active material. Each component may be mixed in any order. Further, in one or more embodiments, the conductive material slurry of the present disclosure, a solvent, and a binder are mixed and dispersed until they are homogeneous, and then mixed with the positive electrode active material until they are homogeneous. There is a method of obtaining a positive electrode paste by stirring, but the order of addition of these components is not limited to this. may be added at
  • the conductive material slurry and the positive electrode paste of the present disclosure may each further contain other components as long as the effects of the present disclosure are not hindered.
  • Other components include, for example, antioxidants, neutralizers, antifoaming agents, preservatives, dehydrating agents, rust preventives, plasticizers, binders, and the like.
  • the present disclosure relates to a method for manufacturing a positive electrode coating film or a positive electrode for an electricity storage device using the positive electrode paste of the present disclosure.
  • a positive electrode for an electricity storage device includes a current collector and a positive electrode coating film formed on the current collector. This aspect includes drying after coating the positive electrode paste of the present disclosure on a current collector.
  • preferred forms of the positive electrode paste of the present disclosure are as described above.
  • the positive electrode coating film or the positive electrode for the electricity storage device can be produced by a conventionally known method, except that the positive electrode paste of the present disclosure is used.
  • a positive electrode coating film or a positive electrode for an electricity storage device is produced, for example, by coating the above positive electrode paste on a current collector such as an aluminum foil and drying it. That is, the positive electrode coating film is a dry body of the applied positive electrode paste of the present disclosure.
  • compaction can also be performed using a press.
  • a die head, a comma reverse roll, a direct roll, a gravure roll, or the like can be used for coating the positive electrode paste. Drying after coating can be carried out by heating, air flow, infrared irradiation, etc. alone or in combination.
  • the drying temperature is not particularly limited as long as it is equal to or lower than the thermal decomposition temperature of the binder resin under the environment (atmospheric pressure) in which the drying is performed. It is a temperature below the boiling point of C). Specifically, under normal pressure, the temperature is preferably 60° C. or higher, more preferably 80° C. or higher, and preferably 220° C. or lower, more preferably 200° C. or lower.
  • the drying time is preferably 10 minutes or more, more preferably 20 minutes or more, and preferably 90 minutes or less, more preferably 60 minutes or less.
  • the positive electrode can be pressed using a roll press machine or the like.
  • the present application further discloses the following dispersant composition for electricity storage device electrodes, a carbon material-based conductive material slurry, a positive electrode paste for electricity storage devices, a method for producing a positive electrode coating film, and (a method for producing) a positive electrode for electricity storage devices.
  • the acrylic polymer (A) contains a structural unit a represented by the following formula (1),
  • the compound (B) is at least one compound selected from secondary aliphatic amines, tertiary aliphatic amines, aromatic amines, secondary aromatic amines, tertiary aromatic amines and heterocyclic amines.
  • a dispersant composition for electricity storage device electrodes which is an amine compound.
  • R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group, X 1 represents a nitrogen atom or an oxygen atom, and R 4 represents the number of carbon atoms It represents a hydrocarbon group of 8 or more and 30 or less.
  • the monomer that provides the structural unit a is at least one selected from lauryl (meth)acrylate, stearyl (meth)acrylate and behenyl (meth)acrylate;
  • the compound (B) is selected from dibutylamine, dihexylamine, tripropylamine, N-methylcyclohexylamine, benzylamine, N-methylbenzylamine, N,N-dimethylbenzylamine, N-methylmorpholine and N-ethylmorpholine;
  • the acrylic polymer (A) comprises a structural unit a represented by the following formula (1) and a structural unit b2 represented by the following formula (3), the monomer that provides the structural unit a is at least one selected from lauryl (meth)acrylate, stearyl (meth)acrylate and behenyl (meth)acrylate; the compound (B) is selected from dibutylamine, dihexylamine, tripropylamine, N-methylcyclohexylamine, benzylamine, N-methylbenzylamine, N,N-dimethylbenzylamine, N-methylmorpholine and N-ethylmorpholine; A dispersant composition for electricity storage device electrodes, which is at least one selected amine compound.
  • R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group
  • X 1 represents a nitrogen atom or an oxygen atom
  • R 4 represents the number of carbon atoms It represents a hydrocarbon group of 8 or more and 30 or less.
  • R 10 , R 11 and R 12 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group
  • X 3 is a cyano group or a hydrocarbon having 1 to 4 carbon atoms represents a pyridinyl group which may have a group.
  • the acrylic polymer (A) comprises a structural unit a represented by the following formula (1), a structural unit b2 represented by the following formula (3), and a structural unit c represented by the following formula (4), the monomer that provides the structural unit a is at least one selected from lauryl (meth)acrylate, stearyl (meth)acrylate and behenyl (meth)acrylate; the compound (B) is selected from dibutylamine, dihexylamine, tripropylamine, N-methylcyclohexylamine, benzylamine, N-methylbenzylamine, N,N-dimethylbenzylamine, N-methylmorpholine and N-ethylmorpholine; A dispersant composition for electricity storage device electrodes, which is at least one selected amine compound.
  • R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group
  • X 1 represents a nitrogen atom or an oxygen atom
  • R 4 represents the number of carbon atoms It represents a hydrocarbon group of 8 or more and 30 or less.
  • R 10 , R 11 and R 12 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group
  • X 3 is a cyano group or a hydrocarbon having 1 to 4 carbon atoms represents a pyridinyl group which may have a group.
  • R 13 , R 14 and R 15 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group.
  • R 13 , R 14 and R 15 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group.
  • the acrylic polymer (A) comprises a structural unit a represented by the following formula (1), a structural unit b2 represented by the following formula (3), and a structural unit c represented by the following formula (4), A monomer that provides the structural unit a is stearyl (meth)acrylate, A monomer that provides the structural unit b2 is acrylonitrile, A monomer that provides the structural unit c is methacrylamide,
  • the electricity storage device wherein the compound (B) is at least one amine compound selected from dihexylamine, tripropylamine, benzylamine, N-methylbenzylamine, N,N-dimethylbenzylamine, and N-ethylmorpholine.
  • R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group
  • X 1 represents a nitrogen atom or an oxygen atom
  • R 4 represents the number of carbon atoms It represents a hydrocarbon group of 8 or more and 30 or less.
  • R 10 , R 11 and R 12 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group
  • X 3 is a cyano group or a hydrocarbon having 1 to 4 carbon atoms represents a pyridinyl group which may have a group.
  • R 13 , R 14 and R 15 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group.
  • the content of the structural unit a in all the structural units of the acrylic polymer (A) is 30% by mass or more and 50% by mass or less, and the content of the structural unit b2 is 30% by mass or more and 50% by mass or less.
  • ⁇ 7> The dispersant composition for an electricity storage device electrode according to any one of ⁇ 1> to ⁇ 6>, wherein the acrylic polymer (A) has a weight average molecular weight of 10,000 or more and 100,000 or less.
  • a positive electrode paste for an electricity storage device containing the dispersant composition for an electricity storage device electrode according to any one of ⁇ 1> to ⁇ 7>.
  • a method for producing a positive electrode coating film including applying the positive electrode paste for an electricity storage device according to ⁇ 9> above to a current collector, and then drying the current collector.
  • a method for producing a positive electrode for an electric storage device comprising a current collector and a positive coating film formed on the current collector, wherein the positive electrode paste for an electric storage device according to ⁇ 9> is applied to the current collector.
  • a method for producing a positive electrode for an electricity storage device comprising drying after coating.
  • Viscosity measurement of positive electrode paste The viscosity of the positive electrode paste (25 ° C.) was measured by attaching a cone plate (diameter 50 mm) to Anton Paar's MCR302 rheometer, increasing the shear rate from 0.1 s -1 to 1000 s -1 (forward pass), and then shearing The speed was returned from 1000 s -1 to 0.1 s -1 (return trip), and the viscosity was measured at a shear rate of 1 s -1 on the return trip.
  • the inside of the separable flask equipped with a reflux tube, a stirrer, a thermometer, a nitrogen inlet tube, and a dropping funnel was replaced with nitrogen for 1 hour or more.
  • the monomer solution for dropping and the initiator solution for dropping were each dropped into the tank at 65° C. over 160 minutes. After the dropwise addition was completed, the mixture was further stirred for 1 hour while maintaining the inside of the tank at 65°C. After that, the temperature inside the tank was raised to 80° C., and the mixture was further stirred for 2 hours.
  • 42.6 g of NMP (solvent) was added and diluted to obtain acrylic polymer (A) solutions for preparing dispersant compositions 1-5 and 10-15.
  • the non-volatile content was 40% by mass, and the weight average molecular weight was 37,000.
  • Dispersant Compositions 1 to 17 The acrylic polymer (A) shown in Table 3 or PVP as a comparison target thereof, the compound (B) shown in Tables 2 and 3 and a comparison target thereof, and the organic solvent (C) (NMP) shown in Table 3 are uniformly mixed. to obtain dispersant compositions 1-17.
  • the content (% by mass) of each component in each dispersant composition is as shown in Table 3.
  • Example 1 [Preparation example of conductive material slurry] (Example 1) 5 g of the conductive material N described in Table 4 (MW carbon nanotubes as fibrous carbon nanostructures, multi-walled carbon nanotubes HCNTs10 manufactured by Cabot, average length 5 to 12 ⁇ m (catalog value)) and 5 g of dispersant composition 1 and 90 g of NMP (additional solvent) were mixed to obtain a crude dispersion.
  • the obtained coarse dispersion is filled into a high-pressure homogenizer (manufactured by Mitsuyu Co., Ltd., product name "BERYU MINI") having a multistage pressure control device (multistage pressure reducer) that applies back pressure during dispersion, and is subjected to a pressure of 100 MPa. Distributed processing was performed. Specifically, while applying a back pressure, a shear force is applied to the coarse dispersion to disperse the MW carbon nanotubes, and as a fibrous carbon nanostructure dispersion, the conductive material slurry 1 of Example 1 (carbon nanotube dispersion liquid) was obtained.
  • the dispersion treatment was performed while circulating the dispersion by discharging it from the high-pressure homogenizer and reinjecting it into the high-pressure homogenizer, and the circulation was performed 20 times.
  • the discharge and injection rate of the dispersion was 30 g/min.
  • the viscosity of the obtained conductive material slurry 1 was measured at a temperature of 25° C., the viscosity was 830 mPa ⁇ s.
  • Example 2 to 10 Comparative Examples 1 to 7 were carried out in the same manner as in Example 1 above, except that the types and contents of the dispersant composition, the conductive material, and the additional solvent were as shown in Tables 3 to 5.
  • Conductive material slurries 2 to 17 carbon nanotube dispersions were prepared.
  • Table 5 shows the blending amount (% by mass) of each component in each prepared conductive material slurry and the viscosity of the conductive material slurry.
  • the conductive material slurries of Examples 1-5 and the conductive material slurries of Comparative Examples 1-5 contain a common dispersant, but Examples 1-5 containing compound (B)
  • the conductive material slurry of is lower in viscosity than the conductive material slurry of Comparative Example 1 which does not contain the compound (B), and it can be seen that the dispersibility of the carbon nanotubes is improved.
  • Example 1 and Comparative Example 7 it can be seen that the combined use of the acrylic polymer (A) and the compound (B) significantly reduces the viscosity.
  • a positive electrode paste (Example 11) having a content of each agent of 0.096% by mass and a content of the binder resin of 1.42% by mass was obtained.
  • the mass ratio of the positive electrode active material, binder (PVDF), conductive material (carbon nanotube) and dispersant (acrylic polymer (A)) is 97.24:1.97:0.66:0.13 ( solid content), and the solid content (mass%) of the positive electrode paste was 72.29 mass%.
  • the total solid content of the positive electrode paste is the total mass of the dispersant (acrylic polymer (A)), positive electrode active material, conductive material and binder contained in the positive electrode paste.
  • Examples 12-17, Comparative Examples 8-14 Positive electrode pastes (Examples 12 to 17, Comparative Examples 8 to 14) were prepared in the same manner as in Example 11 above, except that the type of conductive material slurry was changed to the conductive material slurry shown in Table 6.
  • Table 6 shows the compounding amount (% by mass) of each component in each prepared positive electrode paste, and Table 7 shows the viscosity of each positive electrode paste at 25°C.
  • the viscosities of the positive electrode pastes of Examples 11 to 17 prepared using the dispersant compositions 1 to 7 each containing the acrylic polymer (A) and the compound (B) were The viscosities were lower than those of the positive electrode pastes of Comparative Examples 8-14. Further, it can be seen that the positive electrode coating films prepared using the positive electrode pastes of Examples 11-17 have volume resistance values and the DC resistance values of the electric storage devices are significantly lower than those of Comparative Examples 8-14.
  • the dispersant composition of the present disclosure can reduce the viscosity of carbon material-based conductive material slurry and positive electrode paste.
  • the dispersant composition of the present disclosure for preparing the positive electrode paste of the present disclosure, it is possible to reduce the resistance value of the positive electrode coating film and the DC resistance value of the electricity storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

本開示は、一態様において、アクリル系ポリマー(A)と、沸点が200℃以下のアミン化合物(B)と有機溶剤(C)を含有し、前記アクリル系ポリマー(A)が下記式(1)で表される構成単位aを含み、前記アミン化合物(B)が、第2級脂肪族アミン、第3級脂肪族アミン、芳香族アミンおよび複素環式アミンから選ばれる少なくとも1種のアミン化合物である、蓄電デバイス電極用分散剤組成物に関する。 

Description

蓄電デバイス電極用分散剤組成物
 本発明は、蓄電デバイス電極用分散剤組成物に関する。
 近年、地球温暖化抑制の観点から二酸化炭素を排出しない電気自動車の開発が盛んに行われている。電気自動車には、ガソリン車に比べて、走行距離が短く、バッテリーの充電に時間がかかるという課題がある。充電時間を短くするためには、正極中での電子の移動速度を速める必要がある。現在、非水電解質蓄電デバイス用の正極には、導電助剤(導電材)として、炭素材料が使用されているが、導電材スラリーや正極ペーストの粘度が高くなり、ハンドリング性に問題があり、スラリーやペーストの粘度低下化が望まれている。
 特開2014-181140号公報(特許文献1)には、微細炭素繊維と、アミド系有機溶媒である分散媒と、ポリマー系分散剤と、水中でのpKaが7.5以上である有機塩基性化合物からなる微細炭素繊維分散液が開示されている。pKaが7.5以上である有機塩基性化合物としては1~3級アミノ基を有する含窒素有機化合物が使用されており、ポリマー系分散剤としてはメチルセルロース、ポリビニルピロリドン、ポリビニルアルコールなどが使用されている。
 特許6531926号公報(特許文献2)には、カーボンナノチューブと、ポリビニルピロリドンと、N-メチル-2-ピロリドンと、アミン系化合物を含有する電極用カーボンナノチューブ分散液について開示されている。
 US2019/0372121号(特許文献3)には、カーボンブラック等の炭素質粒子と、セルロース系分散剤と、ポリ(メチルビニルエーテル無水マレイン酸)、ポリ(イソブチレン無水マレイン酸)、ポリ(エチレン無水マレイン酸)、およびポリ(スチレンコ無水マレイン酸)等の無水マレイン酸部分を含むポリマーと、共分散剤として沸点が200℃以下のアミン化合物と、分散媒とを含む組成物が開示されている。
 WO2013/151062号(特許文献4)には、蓄電デバイス正極用ペーストに含まれる共重合体として、炭素数8~30の炭化水素基を有する構成単位を含むアクリル系ポリマーが開示されている。
 本開示は、一態様において、アクリル系ポリマー(A)と、沸点が200℃以下のアミン化合物(B)と有機溶剤(C)を含有し、前記アクリル系ポリマー(A)が下記式(1)で表される構成単位aを含み、前記化合物(B)が、第2級脂肪族アミン、第3級脂肪族アミン、芳香族アミンおよび複素環式アミンから選ばれる少なくとも1種のアミン化合物である、蓄電デバイス電極用分散剤組成物に関する。
Figure JPOXMLDOC01-appb-C000005
 上記式(1)中、R1、R2およびR3は、互いに同一または異なり、水素原子、メチル基またはエチル基を示し、X1は窒素原子または酸素原子を示し、R4は、炭素数8以上30以下の炭化水素基を示す。
 本開示は、一態様において、炭素材料系導電材(D)と、本開示の分散剤組成物とを含有する、炭素材料系導電材スラリーに関する。
 本開示は、一態様において、本開示の分散剤組成物を含有する、蓄電デバイス用正極ペーストに関する。
 本開示は、一態様において、本開示の蓄電デバイス用正極ペーストを集電体に塗工した後、乾燥することを含む、正極塗膜の製造方法に関する。
 本開示は、一態様において、集電体と、集電体上に形成された正極塗膜とを含む蓄電デバイス用正極の製造方法であり、本開示の蓄電デバイス用正極ペーストを、集電体に塗工した後、乾燥することを含む、蓄電デバイス用正極の製造方法に関する。
 本開示によれば、一態様において、低粘度でハンドリング性が良好な炭素材料系導電材スラリーおよび正極ペーストの調製を可能とし、正極塗膜の抵抗値や蓄電デバイスの直流抵抗値の低下を可能とする蓄電デバイス電極用分散剤組成物を提供できる。
 また、本開示によれば、一態様において、低粘度でハンドリング性が良好な炭素材料系導電材スラリーおよび正極ペーストを提供できる。
 また、本開示によれば、一態様において、塗膜抵抗値が低い正極塗膜および当該正極塗膜を含む蓄電デバイス用正極を提供できる。
 上記特許文献1や特許文献2の技術では、正極塗膜の抵抗値や蓄電デバイスの直流抵抗値が高くなるため、より良質な導電パスを有し低抵抗の正極塗膜の形成のために、カーボンナノチューブ等の炭素材料系導電材料を含む導電材スラリーや正極ペーストを低粘度化できる分散剤や添加剤の提供が望まれている。
 そこで、本開示は、一態様において、低粘度でハンドリング性が良好な、炭素材料系導電材スラリーおよび正極ペーストの調製を可能とし、正極塗膜の抵抗値や蓄電デバイス直流抵抗値の低下を可能とする蓄電デバイス電極用分散剤組成物を提供する。
 [蓄電デバイス電極用分散剤組成物]
 本開示は、特定のアクリル系ポリマー(A)と特定のアミン化合物(B)(以下、「化合物(B)」とも言う)とを併用することにより、低粘度でハンドリング性が良好な炭素材料系導電材スラリーおよび正極ペーストの調製を可能とする蓄電デバイス電極用分散剤組成物(以下、「本開示の分散剤組成物」とも言う)を提供できる、という知見に基づく。
 本開示は、一態様において、アクリル系ポリマー(A)と、化合物(B)と有機溶剤(C)を含有する分散剤組成物であり、前記アクリル系ポリマー(A)が下記式(1)で表される構成単位aを含み、前記化合物(B)が、第2級脂肪族アミン、第3級脂肪族アミン、芳香族アミンおよび複素環式アミンからなる群から選ばれる少なくとも1種のアミン化合物であり、その沸点が200℃以下である。
 本開示によれば、一態様において、低粘度でハンドリング性が良好な炭素材料系導電材スラリーおよび蓄電デバイス電極用正極ペーストの調製を可能とする、蓄電デバイス電極用分散剤組成物を提供できる。また、本開示の分散剤組成物を用いることで、低粘度でハンドリング性が良好な本開示の炭素材料系導電材スラリー(以下、「本開示の導電材スラリー」ともいう)および本開示の蓄電デバイス用正極ペースト(以下、「本開示の正極ペースト」ともいう)を提供できる。また、本開示の分散剤組成物を用いて調製された本開示の正極ペーストを用いることで、塗膜抵抗値の低い正極塗膜や、当該正極塗膜を含む蓄電デバイス用正極、直流抵抗が低い蓄電デバイスを製造できる。
 本開示の効果発現のメカニズムの詳細については明らかではないが、以下のように推察される。
 アクリル系ポリマー(A)は、炭素数8以上30以下の炭化水素基により炭素材料系導電材に吸着し分散性を発現すると考えられる。アクリル系ポリマー(A)は炭素材料系導電材の表面全体を覆うことなく、炭素材料系導電材の表面には露出した部位が存在する。隣接する炭素材料系導電材は、π-π相互作用および炭素材料系導電材表面の一部に存在する極性基同士の水素結合により、有機溶媒中において凝集する。しかし、本開示では、化合物(B)が前記極性基と相互作用(中和反応や双極子相互作用)することによって炭素材料系導電材間の水素結合を抑制する。更に、アミン(カチオン)が炭素材料系導電材上のπ電子とカチオン-π相互作用することにより炭素材料系導電材間のπ-π相互作用を抑制する。前記水素結合の抑制と前記π-π相互作用の抑制によって、炭素材料系導電材の分散性が向上し、結果、化合物(B)を添加しない場合と比較して、粘度が低下しているものと推察される。
 また、正極塗膜の抵抗値や蓄電デバイスの直流抵抗が低くなるメカニズムとしては次のように推察される。アクリル系ポリマー(A)と化合物(B)がそれぞれ炭素材料系導電材と相互作用し、つまりは、これら両方が炭素材料系導電材の表面に吸着している。アクリル系ポリマー(A)は、炭素材料系導電材表面でまだら状に吸着していると推定されるが、アクリル系ポリマー(A)と化合物(B)とが併存すると、両者の炭素材料系導電材の表面に対する競争吸着が生じ、炭素材料系導電材の表面において、吸着したアクリル系ポリマー(A)と化合物(B)は、各々、局在する。化合物(B)が併存しない場合に比べ、アクリル系ポリマー(A)の吸着部面積は減少する。正極ペーストが塗布され乾燥される過程で、化合物(B)が有機溶剤とともに揮発すると、化合物(B)が吸着していた炭素材料系導電材の表面部分が露出し、この露出部分が炭素材料系導電材同士の導電性接点となる。本開示では、化合物(B)が併存しない場合よりも当該露出部分が多く、そのため、導電パスの形成が容易化しており、その結果、正極塗膜の抵抗値や蓄電デバイスの直流抵抗値の低下を可能としているものと推察される。
 本発明において上記効果を発現しうる化合物(B)は、正極ペーストの乾燥時に正極ペースに含まれる溶剤とともに揮散する必要性から、前記溶剤として主に使用されるN-メチル-2-ピロリドンの沸点(202℃)よりも低い沸点を有するとともに、炭素材料系導電材表面に存在するカルボキシル基、水酸基などと共有結合しにくいことが求められることから、脂肪族では1級アミンよりも2級アミン、3級アミンが好ましく、脂肪族よりバルキーな構造を有する芳香族系アミン、更には複素環式アミンが好ましい。
 ただし、本開示はこれらのメカニズムに限定して解釈されない。
 <アクリル系ポリマー(A)>
 本開示の分散剤組成物に含まれるアクリル系ポリマー(A)(以下、「本開示のアクリル系ポリマー(A)」ともいう)は、後述する構成単位aを含む。アクリル系ポリマー(A)は、一又は複数の実施形態において、炭素材料系導電材の分散性向上の観点から、後述する構成単位b1およびb2から選ばれる少なくとも1種(以下これらを総称して「構成単位b」ともいう)を含有することが好ましく、更に構成単位cを含有することがより好ましい。アクリル系ポリマー(A)としては、一又は複数の実施形態において、構成単位aを含む重合体、構成単位aと構成単位bとを含む共重合体、構成単位aと構成単位bと構成単位cとを含む共重合体等が挙げられる。アクリル系ポリマー(A)は、1種でもよいし、2種以上の組合せでもよい。
 (構成単位a)
 構成単位aは、下記式(1)で表される構成単位である。構成単位aは、1種でもよいし、2種以上の組合せでもよい。本開示において、構成単位aは、アクリル系ポリマー(A)のうちの、炭素材料系導電材表面に吸着する成分である。
Figure JPOXMLDOC01-appb-C000006
 式(1)中、R1、R2およびR3は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X1は窒素原子または酸素原子を示し、R4は炭素数8以上30以下の炭化水素基を示す。
 式(1)において、炭素材料系導電材の表面に対する吸着性向上の観点から、R1およびR2は、水素原子が好ましく、R3は水素原子又はメチル基が好ましく、メチル基がより好ましく、X1は、酸素原子が好ましい。
 R4の炭化水素基は、炭素材料系導電材表面に対する吸着性向上の観点から、アルキル基又はアルケニル基が好ましく、アルキル基が好ましい。同様の観点から、R4の炭素数は、8以上であり、10以上が好ましく、12以上がより好ましく、14以上が更に好ましく、16以上が更に好ましく、そして、同様の観点から、30以下であり、24以下が好ましく、22以下がより好ましく、20以下が更に好ましい。R4としては、同様の観点から、オクチル基、2-エチルヘキシル基、デシル基、ラウリル基、ミリスチル基、セチル基、ステアリル基、オレイル基、ベヘニル基等が挙げられる。
 構成単位aを与えるモノマー(以下、「モノマーa」ともいう)としては、一又は複数の実施形態において、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート等のエステル化合物;2-エチルヘキシル(メタ)アクリルアミド、オクチル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミド等のアミド化合物が挙げられる。中でも、炭素材料系導電材の分散性向上の観点およびアクリル系ポリマーへの構成単位aの導入の容易性の観点から、モノマーaは、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートおよびベヘニル(メタ)アクリレートから選ばれる少なくとも1種が好ましく、ステアリル(メタ)アクリレートおよびベヘニル(メタ)アクリレートから選ばれる少なくとも1種がより好ましく、ステアリルメタクリレート(SMA)およびベヘニルアクリレート(BeA)から選ばれる少なくとも1種が更に好ましく、ステアリルメタクリレートが更に好ましい。
 アクリル系ポリマー(A)の全構成単位中における構成単位aの含有量は、炭素材料系導電材の表面に対する吸着性および炭素材料系導電材の分散性向上の観点から、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、更に好ましくは25質量%以上、更に好ましくは30質量%以上であり、そして、同様の観点から、好ましくは80質量%以下、より好ましくは75質量%以下、更に好ましくは70質量%以下、更に好ましくは60質量%以下、更に好ましくは50質量%以下である。構成単位aが2種以上の組合せである場合、構成単位aの含有量はそれらの合計含有量である。
 本開示において、アクリル系ポリマー(A)の全構成単位中における構成単位aの含有量は、重合に用いるモノマー全量に対するモノマーaの使用量の割合とみなすことができる。
 (構成単位b)
 構成単位bは、下記式(2)で表される構成単位b1および下記式(3)で表される構成単位b2から選ばれる少なくとも1種の構成単位である。構成単位bは、1種でもよいし、2種以上の組合せでもよい。本開示において、構成単位bは、アクリル系ポリマー(A)のうちの炭素材料系導電材表面に吸着せず、立体反発を担う成分である。アクリル系ポリマー(A)は、立体反発による分散性向上の観点から、好ましくは構成単位bとして構成単位b2を含む。
Figure JPOXMLDOC01-appb-C000007
 上記式(2)中、R5、R6、R7は、互いに同一又は異なり、水素原子、メチル基又はエチル基を示し、X2は窒素原子又は酸素原子を示し、R8は炭素数2以上4以下のアルキレン基を示し、pは1以上8以下を示し、R9は水素原子又はメチル基を示す。
 式(2)において、立体反発による分散性向上の観点から、R5およびR6は、水素原子が好ましく、R7は水素原子又はメチル基が好ましく、メチル基がより好ましく、X2は、酸素原子が好ましく、pは、好ましくは1以上であり、そして、好ましくは5以下、より好ましくは3以下である。
Figure JPOXMLDOC01-appb-C000008
 上記式(3)中、R10、R11およびR12は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X3は、シアノ基又は炭素数1以上4以下の炭化水素基を有していてもよいピリジニル基を示す。
 前記式(2)で表される構成単位b1は、1種でもよいし、2種以上の組合せでもよい。構成単位b1としては、非イオン性モノマー由来の構造、又は重合後に非イオン性基を導入した構造等が挙げられる。構成単位b1を与えるモノマー(以下、「モノマーb1」ともいう)としては、2-ヒドロキシエチルメタクリレート、メトキシエチルメタクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリ(エチレングリコール/プロピレングリコール)モノ(メタ)アクリレート、エトキシポリ(エチレングリコール/プロピレングリコール)モノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等が挙げられる。これらの中でも、立体反発と有機溶媒に対するアクリル系ポリマー(A)の溶解性の観点から、2-ヒドロキシエチルメタクリレート(HEMA)、メトキシポリエチレングリコール(メタ)アクリレート(PEGMA)、およびメトキシエチルメタクリレート(MEA)から選ばれる少なくとも1種が好ましく、2-ヒドロキシエチルメタクリレート(HEMA)、エチレンオキサイドの平均付加モル数が1以上3以下のメトキシポリエチレングリコールメタクリレート(PEGMA(EO1~3))、エチレンオキサイドの平均付加モル数が2のメトキシポリエチレングリコールメタクリレート(PEGMA(EO2))およびメトキシエチルメタクリレート(MEA)から選ばれる少なくとも1種がより好ましく、2-ヒドロキシエチルメタクリレート(HEMA)およびエチレンオキサイドの平均付加モル数が2のエメトキシポリエチレングリコールメタクリレート(PEGMA(EO2))から選ばれる少なくとも1種が更に好ましい。モノマーb1は、1種でもよいし、2種以上の組合せでもよい。
 (構成単位b2)
 前記式(3)で表される構成単位b2は、1種でもよいし、2種以上の組合せでもよい。アクリル系ポリマー(A)を合成するにあたり、前記式(3)で表される構成単位b2を与えるモノマー(以下、「モノマーb2」ともいう)としては、立体反発と有機溶媒に対するアクリル系ポリマー(A)の溶解性の観点から、4-ビニルピリジン(4-Vpy)、2-ビニルピリジン(2-Vpy)、アクリロニトリル(AN)およびメタクリロニトリル(MAN)から選ばれる少なくとも1種が好ましく、4-ビニルピリジン(4-Vpy)およびアクリロニトリル(AN)から選ばれる少なくとも1種がより好ましく、アクリロニトリル(AN)がより好ましい。モノマーb2は、1種でもよいし、2種以上の組合せでもよい。
 (構成単位c)
 構成単位cは、下記式(4)で表される構成単位である。構成単位cは、1種でもよいし、2種以上の組合せでもよい。本開示において、構成単位cは、本開示のアクリル系ポリマー(A)のうちの炭素材料系導電材表面に吸着せず、溶解性を担う成分である。
Figure JPOXMLDOC01-appb-C000009
 上記式(4)中、R13、R14、R15は、互いに同一又は異なり、水素原子、メチル基又はエチル基を示す。構成単位cを与えるモノマー(以下、「モノマーc」ともいう)としては、有機溶媒に対するアクリル系ポリマー(A)の溶解性の観点から、アクリルアミド(AAm)、およびメタクリルアミド(MAAm)から選ばれる少なくとも1種が好ましく、メタクリルアミド(MAAm)が好ましい。
 本開示のアクリル系ポリマー(A)が構成単位bを含む場合、アクリル系ポリマー(A)の全構成単位中における構成単位bの含有量は、立体反発による分散性向上の観点から、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上が更に好ましく、そして、同様の観点から、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。構成単位bが2種以上の組合せである場合、構成単位bの含有量は、それらの合計含有量である。
 本開示において、モノマーbは、アクリル系ポリマー(A)を合成するにあたり、構成単位bを与えるモノマーであり、アクリル系ポリマー(A)の全構成単位中における構成単位bの含有量は、重合に用いるモノマー全量に対するモノマーbの使用量の割合とみなすことができる。
 本開示のアクリル系ポリマー(A)が構成単位cを含む場合、アクリル系ポリマー(A)の全構成単位中における構成単位cの含有量は、アクリル系ポリマー(A)の溶解性の観点から、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がより好ましく、20質量%以上が更に好ましく、そして、同様の観点から、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましい。構成単位cが2種以上の組合せである場合、構成単位cの含有量は、それらの合計含有量である。
 本開示のアクリル系ポリマー(A)の全構成単位中における構成単位cの含有量は、重合に用いるモノマー全量に対するモノマーcの使用量の割合とみなすことができる。
 本開示のアクリル系ポリマー(A)は、本開示の効果が奏される限り、構成単位a、構成単位bおよび構成単位c以外の構成単位を更に含んでいてもよい。アクリル系ポリマー(A)の全構成単位中における構成単位aと構成単位bとの合計含有量は、炭素材料系導電材の分散性向上の観点から、30質量%以上が好ましく、45質量%以上がより好ましく、60質量%以上が更に好ましく、70質量%以上が更により好ましく、そして、炭素材料系導電材の分散性向上の観点から、100質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がより好ましく、85質量%以下がより好ましい。
 本開示のアクリル系ポリマー(A)が、構成単位a、構成単位bおよび構成単位cを含む共重合体である場合、構成単位a、構成単位b、構成単位cの好ましい組み合わせは、炭素材料系導電材の分散性向上の観点から、例えば、下記が挙げられる。
 SMA/HEMA/MAAm
 SMA/HEMA/AAm
 SMA/PEGMA(EO1)/MAAm
 SMA/PEGMA(EO2)/MAAm
 SMA/2-Vpy/MAAm
 SMA/4-Vpy/MAAm
 SMA/4-Vpy/AAm
 SMA/AN/MAAm
 BeA/AN/MAAm
 本開示のアクリル系ポリマー(A)が構成単位a、構成単位bおよび構成単位cを含む共重合体である場合、構成単位a、構成単位bおよび構成単位cの配列は、ランダム、ブロック、又はグラフトのいずれでも良い。
 <アクリル系ポリマーの製造方法>
 本開示のアクリル系ポリマー(A)の合成方法は特に限定されず、通常の(メタ)アクリル酸エステル類、およびビニルモノマーの重合に使用される方法が用いられる。アクリル系ポリマー(A)の合成方法としては、例えば、フリーラジカル重合法、リビングラジカル重合法、アニオン重合法、リビングアニオン重合法等が挙げられる。例えば、フリーラジカル重合法を用いる場合は、モノマーaおよび必要に応じてモノマーb,cを含むモノマー成分を溶液重合法で重合させる等の公知の方法で得ることができる。
 前記重合に用いられる溶媒としては、例えば炭化水素(ヘキサン、ヘプタン)、芳香族系炭化水素(トルエン、キシレン等)、低級アルコール(エタノール、イソプロパノール等)、ケトン(アセトン、メチルエチルケトン)、エーテル(テトラヒドロフラン、ジエチレングリコールジメチルエーテル)、N-メチルピロリドン等の有機溶媒を使用することができる。溶媒量は、モノマー全量に対する質量比で、0.5倍量以上10倍量以下が好ましい。前記重合に用いられる重合開始剤としては、公知のラジカル重合開始剤を用いることができ、例えばアゾ系重合開始剤、ヒドロ過酸化物類、過酸化ジアルキル類、過酸化ジアシル類、ケトンぺルオキシド類等が挙げられる。重合開始剤量は、モノマー成分全量に対し、0.01モル%以上が好ましく、0.05モル%以上がより好ましく、0.1モル%以上が更に好ましく、そして、5モル%以下が好ましく、4モル%以下がより好ましく、3モル%以下が更に好ましい。重合反応は、窒素気流下、40℃以上180℃以下の温度範囲で行うのが好ましく、反応時間は0.5時間以上20時間以下が好ましい。
 また、前記重合の際、公知の連鎖移動剤を用いることができる。連鎖移動剤としては、例えば、イソプロピルアルコールや、メルカプトエタノール等のメルカプト化合物が挙げられる。
 本開示において、アクリル系ポリマー(A)の全構成単位中の構成単位aの含有量は、重合に用いるモノマー全量に対する、モノマーaの使用量の比と見なすことができる。アクリル系ポリマー(A)の全構成単位中の構成単位bの含有量は、重合に用いるモノマー全量に対する、モノマーbの使用量の比と見なすことができる。アクリル系ポリマー(A)の全構成単位中の構成単位aおよび構成単位bの合計含有量は、重合に用いるモノマー全量に対する、モノマーaおよびモノマーbの合計使用量の比と見なすことができる。
 本開示のアクリル系ポリマー(A)の重量平均分子量は、炭素材料系導電材の分散性向上と有機溶媒に対するアクリル系ポリマーの溶解性の観点から、5000以上が好ましく、7000以上がより好ましく、1万以上が更に好ましく、そして、同様の観点から、100万以下が好ましく、50万以下がより好ましく、30万以下が更に好ましく、20万以下が更により好ましく、10万以下が更により好ましく、5万以下が更により好ましい。本開示において、重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)により測定した値であり、測定条件の詳細は実施例に示す通りである。
 本開示の分散剤組成物中のアクリル系ポリマー(A)の含有量は、炭素材料系導電材の分散性向上の観点から、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、有機溶媒に対するアクリル系ポリマー(A)の溶解性の観点から、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。アクリル系ポリマー(A)が2種以上の組合せである場合、アクリル系ポリマー(A)の含有量はそれらの合計含有量である。
 <化合物(B)>
 本開示の分散剤組成物に含まれる沸点が200℃以下のアミン化合物(B)(以下、「本開示の化合物(B)」ともいう)は、炭素材料系導電材に対する相互作用、吸着性の観点から、塩基性の強い、2級の脂肪族アミン、3級の脂肪族アミン、芳香族アミンおよび複素環式アミンから選ばれる少なくとも1種である。本開示の化合物(B)の沸点は、200℃以下であるが、正極ペーストの溶媒の沸点以下であることが好ましく、正極ペーストの溶媒として多用されているN-メチルピロリドン(NMP)の沸点(沸点202℃)以下であることがより好ましく、NMPの再利用の観点から、190℃以下が更に好ましい。本開示の化合物(B)の沸点の下限は、取り扱い性の観点から100℃以上が好ましく、120℃以上がより好ましい。
 アミン化合物は、炭素材料系導電材表面において"カチオン‐π"相互作用により、炭素材料系導電材同士のπ-π相互作用を遮断し、導電材スラリーの粘度を低減するが、正極塗膜中に電気絶縁性のアミン化合物が残留すると、正極塗膜の抵抗値や、リチウムイオン電池等の蓄電デバイスの直流抵抗値を上昇させてしまう。そのため、本開示では、アミン化合物(B)として、正極ペーストで主に使用される溶剤NMP(沸点202℃)よりも低沸点であり、且つ、アミド化しない、第3級脂肪族アミン、芳香族アミン、または複素環式アミン、或いは、大きな立体障害によりアミド化しにくい、第2級の脂肪族アミンや、芳香族アミンまたは複素環式アミンを使用しており、これにより、塗膜の乾燥時に溶剤とともにアミン化合物(B)も良好に揮発され、アミド化合物の添加に起因する上記抵抗値の上昇が抑制されているものと推察される。"カチオン‐π"相互作用が効果的に発現する観点から、第2級の脂肪族アミンは、好ましくは、水酸基を有しないアミン化合物であり、第3級の脂肪族アミンは、好ましくは水酸基を有しないアミン化合であり、芳香族アミンは、水酸基を有しないアミン化合物であり、複素環式アミンは水酸基を有しないアミン化合物である。
 本開示の化合物(B)としては、ジブチルアミン(以下カッコ内の数値は沸点:159℃)、ジヘキシルアミン(同193℃)、N-メチルシクロヘキシルアミン(同148℃)、N-エチルシクロヘキシルアミン(同164℃)等の第2級の脂肪族アミン;トリプロピルアミン(同156℃)、ジメチルオクチルアミン(同195℃)、ジメチルシクロへキシルアミン(同160℃)等の第3級の脂肪族アミン;ベンジルアミン(同185℃)等の第1級の芳香族アミン;N-メチルベンジルアミン(同186℃)、N-モノメチルアニリン(同196℃)等の第2級の芳香族アミン;N,N-ジメチルベンジルアミン(同183℃)、N,N-ジメチルアニリン(同194℃)、N,N-ジメチル-o-トルイジン(同186℃)等の第3級の芳香族アミン;N-メチルモルホリン(同116℃)、N-エチルモルホリン(同135℃)、4-イソブチルモルホリン(同167℃)等の複素環式アミン等から選ばれる1種以上のアミン化合物が挙げられる。これらの中でも、炭素材料系導電材の分散性向上と、導電性スラリーや正極ペーストの低粘度化と、正極塗膜の抵抗値および蓄電デバイスの直流抵抗値の低下との両立の観点から、ジブチルアミン、ジヘキシルアミン、トリプロピルアミン、N-メチルシクロヘキシルアミン、ベンジルアミン、N-メチルベンジルアミン、N,N-ジメチルベンジルアミン、N-メチルモルホリンおよびN-エチルモルホリンから選ばれる少なくとも1種が好ましく、トリプロピルアミン、ジヘキシルアミン、N,N-ジメチルベンジルアミン、N-メチルベンジルアミン、ベンジルアミンおよびN-エチルモルホリンから選ばれる少なくとも1種がより好ましく、トリプロピルアミン、ジヘキシルアミン、ベンジルアミンおよびN-エチルモルホリンから選ばれる少なくとも1種が更に好ましく、ジヘキシルアミン、ベンジルアミンおよびN-エチルモルホリンから選ばれる少なくとも1種が更により好ましい。
 本開示の分散剤組成物中の本開示の化合物(B)の含有量は、一又は複数の実施形態において、導電材スラリー及び正極ペーストの低粘度化の効果の観点から、アクリル系ポリマー(A)100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、更に好ましくは30質量部以上、更により好ましくは50質量部以上、更により好ましくは70質量部以上であり、そして、アクリル系ポリマー(A)の溶解性の観点から、アクリル系ポリマー(A)100質量部に対して、好ましくは300質量部以下、より好ましくは250質量部以下、更に好ましくは200質量部以下、更に好ましくは150質量部以下である。
 本開示の分散剤組成物中における本開示のアクリル系ポリマー(A)と本開示の化合物(B)との質量比(アクリル系ポリマー(A)/化合物(B))は、炭素材料系導電材の分散性向上の観点から、0.1以上が好ましく、0.3以上がより好ましく、0.5以上が更に好ましく、0.7以上が更に好ましく、そして、高導電性の観点から、10以下が好ましく、5以下がより好ましく、3以下が更に好ましく、1.5以下が更に好ましい。
 <有機溶媒(C)>
 本開示の分散剤組成物は、一又は複数の実施形態において、有機溶媒(C)を更に含有することができる。有機溶媒(C)としては、正極ペーストに含まれる結着剤(バインダー樹脂)を溶解できるものが好ましい。有機溶媒(C)としては、例えば、ジメチルホルムアミド(DMF)、ジエチルホルムアミド、ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)等のアミド系極性有機溶媒;ヘキサノール、ヘプタノール、またはオクタノール等のアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、またはヘキシレングリコール等のグリコール類;グリセリン、トリメチロールプロパン、ペンタエリスリトール、またはソルビトール等の多価アルコール類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、またはテトラエチレングリコールモノブチルエーテル等のグリコールエーテル類;アセトン、メチルエチルケトン、メチルプロピルケトン、またはシクロペンタノン等のケトン類;酢酸エチル、γ-ブチルラクトン、またはε-プロピオラクトン等のエステル類;ジメチルスルホキシド(DMSO)等が挙げられる。有機溶媒(C)は1種でもよいし、2種以上の組合せでもよい。中でも、バインダー樹脂の溶解性の観点から、N-メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)が好ましく、N-メチルピロリドン(NMP)がより好ましい。
 本開示の分散剤組成物中の有機溶媒(C)の含有量は、一又は複数の実施形態において、本開示のアクリル系ポリマー(A)の溶解性の観点から、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは55質量%以上であり、そして、アクリル系ポリマー(A)と本開示の化合物(B)の均一溶解性の観点から、好ましくは80質量%以下、より好ましくは78質量%以下、更に好ましくは75質量%以下である。
 本開示の分散剤組成物は、本開示の効果が妨げられない範囲で、その他の成分を更に含んでもよい。その他の成分としては、例えば、酸化防止剤、中和剤、消泡剤、防腐剤、脱水剤、防錆剤、可塑剤、結着剤(アクリル系ポリマー(A)とは異なる構造のバインダー樹脂)等が挙げられる。
 [導電材スラリー]
 本開示は、一態様において、炭素材料系導電材(D)と、本開示の分散剤組成物とを含有する、導電材スラリー(以下、「本開示の導電材スラリー」ともいう)に関する。本態様における本開示の分散剤組成物の好ましい形態は上述のとおりである。本開示の導電材スラリーは、一又は複数の実施形態において、本開示のアクリル系ポリマー(A)、本開示のアミン化合物(B)、有機溶媒(C)、および後述する炭素材料系導電材(D)(以下、「本開示の炭素材料系導電材(D)」ともいう)を含む。
 <炭素材料系導電材(D)>
 本開示の炭素材料系導電材(D)としては、一又は複数の実施形態において、カーボンナノチューブ(以下、「CNT」と表記することもある)、カーボンブラック、グラファイト、グラフェン等が挙げられ、これらの中でも、高い導電性を実現する観点から、カーボンブラック、カーボンナノチューブ、およびグラフェンから選ばれる少なくとも1種が好ましく、同様の観点から、カーボンナノチューブ又はグラフェンがより好ましく、カーボンナノチューブがより好ましい。炭素材料系導電材(D)は、1種でもよいし、2種以上の組合せでもよい。
 (カーボンナノチューブ)
 本開示の炭素材料系導電材(D)として使用できるカーボンナノチューブ(CNT)の平均直径は、特に限定されないが、CNTの分散性向上の観点から、好ましくは2nm以上、より好ましくは3nm以上、更に好ましくは5nm以上であり、そして、導電性向上の観点から、好ましくは100nm以下、より好ましくは70nm以下、更に好ましくは50nm以下である。本開示において、CNTの平均直径は、走査型電子顕微鏡(SEM)や原子間力顕微鏡(AFM)により測定できる。
 本開示の炭素材料系導電材(D)として使用できるカーボンナノチューブ(CNT)は、導電性と分散性を両立するために、2種以上の直径の異なるものを使用してもよい。2種以上の直径の異なるCNTを使用する場合、相対的に細いCNTの平均直径は、分散性の観点から、好ましくは2nm以上、より好ましくは3nm以上、更に好ましくは5nm以上であり、そして、導電性の観点から、好ましくは29nm以下、より好ましくは25nm以下、更に好ましくは20nm以下である。相対的に太いCNTの平均直径は、分散性の観点から、好ましくは30nm以上、より好ましくは35nm以上、更に好ましくは40nm以上であり、そして、導電性向上の観点から、好ましくは100nm以下、より好ましくは70nm以下、更に好ましくは50nm以下である。
 本開示において、カーボンナノチューブ(CNT)とは、複数のカーボンナノチューブを含む総体を意味する。本開示の導電材スラリーの調製に用いられるカーボンナノチューブの形態は、特に限定されないが、例えば、複数のカーボンナノチューブがそれぞれ独立していてもよいし、複数のカーボンナノチューブが束状あるいは絡まり合うなどの形態でもよいし、これらの形態が混合した形態でもよい。カーボンナノチューブは、種々の層数または直径のカーボンナノチューブであってもよい。カーボンナノチューブは、カーボンナノチューブの製造におけるプロセス由来の不純物(例えば、触媒やアモルファスカーボン)を含み得る。
 本開示の炭素材料系導電材(D)として使用できるカーボンナノチューブ(CNT)は、一又は複数の実施形態において、グラファイトの1枚面を巻いて筒状にした形状を有するものであり、1層に巻いた単層カーボンナノチューブ(SWカーボンナノチューブ)、2層に巻いた2層カーボンナノチューブ(DWカーボンナノチューブ)、3層以上に巻いた多層カーボンナノチューブ(MWカーボンナノチューブ)を含む。カーボンナノチューブを含む蓄電デバイス用正極ペーストを用いて形成される正極塗膜に求められる特性に応じて、単層、2層、多層のいずれのカーボンナノチューブおよびそれらの混合物を用いることができる。正極塗膜は、電極基板(集電体)に蓄電デバイス用正極ペーストを塗工して得られた膜状の層である。
 本開示の炭素材料系導電材(D)として使用できるCNTとしては、例えば、Nanocyl社のNC-7000(以下数値は平均直径、9.5nm)、NX7100(10nm)、Cnano社のFT6100(9nm)、FT-6110(9nm)、FT-6120(9nm)、FT-7000(9nm)、FT-7010(9nm)、FT-7320(9nm)、FT-9000(12.5nm)、FT-9100(12.5nm)、FT-9110(12.5nm)、FT-9200(19nm)、FT-9220(19nm)、Cabot Performance material(Shenzhen)社のHCNTs4(4.5nm)、CNTs5(7.5nm)、HCNTs5(7.5nm)、GCNTs5(7.5nm)、HCNTs10(15nm)、CNTs20(25nm)、CNTs40(40nm)、韓国CNT社のCTUBE170(13.5nm)、CTUBE199(8nm)、CTUBE298(10nm)、Kumho社のK-Nanos100P(11.5nm)、LG Chem社のCP-1001M(12.5nm)、BT-1003M(12.5nm)、Nano Tech Port社の3003(10nm)、3021(20nm)等が挙げられる。
 カーボンナノチューブを2種類組み合わせて使用する場合のCNTとしては、例えば、Cabot Performance material(Shenzhen)社のCNTs40(40nm)とHCNTs4(4.5nm)又はHCNTs5(7.5nm)との組合せ、CNTs40(40nm)とGCNTs5(7.5nm)との組合せ、CNTs40(40nm)とCnano社のFT-7010(9nm)との組合せ、CNTs40(40nm)とFT-9100(12.5nm)との組合せ、CNTs40(40nm)とLG Chem社のBT-1003M(12.5nm)との組合せ等が挙げられる。
 (カーボンブラック)
 本開示の炭素材料系導電材(D)として使用できるカーボンブラックとしては、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、ケッチェンブラックなど各種のものを用いることができる。また、通常行われている酸化処理がなされたカーボンブラックや、中空カーボン等も使用できる。カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理である。この処理は、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。
 本開示の炭素材料系導電材(D)として使用できるカーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)が、好ましくは20m2/g以上、より好ましくは50m2/g以上、更に好ましくは100m2/g以上であり、そして、好ましくは1500m2/g以下、より好ましくは1000m2/g以下、更に好ましくは800m2/g以下である。
 本開示の炭素材料系導電材(D)として使用できるカーボンブラックの一次粒子径(直径)は、導電性の観点から、5nm以上が好ましく、10nm以上がより好ましく、そして、1000nm以下が好ましく、200nm以下がより好ましい。本開示において、カーボンブラックの一次粒子径とは、電子顕微鏡などで測定された粒子径を平均したものである。
 本開示の炭素材料系導電材(D)として使用できるカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、#5500等(東海カーボン社製、ファーネスブラック)、プリンテックスL等(デグサ社製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRA等、Conductex SC ULTRA、Conductex 975 ULTRA等(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#30050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000等(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、SuperP-Li(TIMCAL社製)、ケッチェンブラックEC-300J、EC-600JD(アクゾ社製)、デンカブラック、デンカブラックHS-100、FX-35、Li-100、Li-250、Li-400、Li-435(電気化学工業社製、アセチレンブラック)等が挙げられるが、これらに限定されるものではない。
 (グラフェン)
 本開示の炭素材料系導電材(D)として使用できるグラフェンとは、一般には1原子の厚さのsp2結合炭素原子のシート(単層グラフェン)を指すが、本開示においては、単層グラフェンが積層した薄片状の形態を持つ物質も含めてグラフェンと呼ぶことにする。
 本開示の炭素材料系導電材(D)として使用できるグラフェンの厚みには特に制限は無いが、好ましくは100nm以下、より好ましくは50nm以下、更に好ましくは20nm以下である。グラフェン層に平行な方向の大きさには特に制限は無いが、小さすぎるとグラフェン一個あたりの導電パスが短くなるため、グラフェン間の接触抵抗の影響で導電性が悪くなる。そのため、本開示におけるグラフェンはある程度以上大きいことが好ましい。グラフェン層に平行な方向の大きさは、好ましくは0.5μm以上、より好ましくは0.7μm以上、更に好ましくは1μm以上である。ここで、グラフェン層に平行な方向の大きさとは、グラフェンの面方向に垂直な方向から観察したときの最大径と最小径の平均を言う。
 本開示の導電材スラリー中の炭素材料系導電材(D)の含有量は、正極ペーストの濃度調整の利便性向上の観点から、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が更に好ましく、そして、導電材スラリーを取り扱いやすい粘度とする観点から、10質量%以下が好ましく、8質量%以下がより好ましく、7質量%以下が更に好ましい。
 <導電材スラリー中のアクリル系ポリマー(A)>
 本開示の導電材スラリー中のアクリル系ポリマー(A)の含有量は、炭素材料系導電材(D)の分散性向上の観点から、炭素材料系導電材(D)100質量部に対し、好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは5質量部以上、更により好ましくは10質量部以上であり、そして、高導電性の観点から、好ましくは200質量部以下、より好ましくは100質量部以下、更に好ましくは50質量部以下、更により好ましくは30質量部以下である。
 <導電材スラリー中の化合物(B)>
 本開示の導電材スラリー中の化合物(B)の含有量は、炭素材料系導電材の分散性向上の観点から、炭素材料系導電材(D)100質量部に対して、0.5質量部以上が好ましく、1.0質量部以上がより好ましく、5質量部以上が更に好ましく、10質量部以上が更により好ましく、そして、高導電性の観点から、500質量部以下が好ましく、100質量部以下がより好ましく、50質量部以下が更に好ましく、30質量部以下が更により好ましい。
 <導電材スラリーの製造方法>
 本開示の導電材スラリーは、一又は複数の実施形態において、本開示の分散剤組成物と炭素材料系導電材(D)、および必要に応じて追加溶媒を含む混合物を混合分散機で調製することができる。前記追加溶媒としては、上述した本開示の分散剤組成物の調製に用いることができる有機溶媒(C)と同様のものが挙げられる。前記混合分散機としては、例えば、超音波ホモジナイザー、振動ミル、ジェットミル、ボールミル、ビーズミル、サンドミル、ロールミル、ホモジナイザー、高圧ホモジナイザー、超音波装置、アトライター、デゾルバー、およびペイントシェーカー等から選ばれる少なくとも1種が挙げられる。導電材スラリーの構成成分のうちの一部成分を混合してから、それを残余と混合することもできるし、各成分は、全量を一度に投入せずに、複数回に分けて投入してもよい。炭素材料系導電材(D)の状態は、乾燥状態でもよいし、溶媒を含んだ状態であってもよい。
 本開示の導電材スラリーの25℃における粘度は、低い方が好ましい。沈降性などの観点から、炭素材料系導電材(D)の含有量が5質量%の場合、例えば、0.05Pa・s以上が好ましく、0.1Pa・s以上がより好ましく、0.2Pa・s以上が更に好ましい。また、導電材スラリーの25℃における粘度は、正極ペースト調製時のハンドリング性向上の観点から、炭素材料系導電材(D)の含有量が5質量%の場合、50Pa・s以下が好ましく、20Pa・s以下より好ましく、10Pa・s以下が更に好ましい。
 [正極ペースト]
 本開示は、一態様において、本開示の分散剤組成物を含有する、蓄電デバイス用正極ペースト(以下、「本開示の正極ペースト」ともいう)に関する。本態様における本開示の分散剤組成物の好ましい形態は上述のとおりである。すなわち、本開示の正極ペーストは、一又は複数の実施形態において、本開示のアクリル系ポリマー(A)、本開示の化合物(B)、有機溶媒(C)、および炭素材料系導電材(D)を含む。
 本開示の正極ペーストは、一又は複数の実施形態において、正極活物質および結着剤を更に含むことができる。
 本開示の正極ペーストは、一又は複数の実施形態において、炭素材料系導電材(D)以外の導電材が更に含まれていてもよい。炭素材料系導電材(D)以外の導電材としては、ポリアニリン等の導電性ポリマー等が挙げられる。
 <正極活物質>
 正極活物質としては、無機化合物であれば特に制限はなく、例えば、オリビン構造を有する化合物やリチウム遷移金属複合酸化物を用いることができる。オリビン構造を有する化合物としては、一般式LiXM1SPO4(但し、M1は3d遷移金属、0≦X≦2、0.8≦S≦1.2)で表される化合物を例示できる。オリビン構造を有する化合物には、非晶質炭素等を被覆して用いてもよい。リチウム遷移金属複合酸化物としては、スピネル構造を有するリチウムマンガン酸化物、層状構造を有し一般式LiXMO2-δ(但し、Mは遷移金属、0.4≦X≦1.2、0≦δ≦0.5)で表されるリチウム遷移金属複合酸化物等が挙げられる。前記遷移金属Mとしては、Co、Ni又はMnを含むものとすることができる。前記リチウム遷移金属複合酸化物は、更に、Al、Mn、Fe、Ni、Co、Cr、Ti、Zn、P、Bから選ばれる一種又は二種以上の元素を含有していてもよい。
 本開示の正極ペースト中の正極活物質の含有量は、正極ペーストが集電体に塗布するのに適した粘度に応じて調整することができる限り、特に制限はないが、エネルギー密度の観点と正極ペーストの安定性の観点、更には生産性の観点から、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上であり、そして、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。
 本開示の正極ペーストの全固形分における正極活物質の含有量について、特に制限はない。本開示の正極ペーストの全固形分における正極活物質の含有量は、従来公知の正極ペーストの全固形分におけるそれと同じであってもよく、蓄電デバイスのエネルギー密度を高度に保つ観点から、90.0質量%以上が好ましく、合材層(塗膜)の導電性や塗膜接着性の担保の観点から、99.9質量%以下が好ましい。
 <結着剤(バインダー樹脂)>
 結着剤(バインダー樹脂)としては、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレン-ブタジエンゴム、ポリアクリロニトリル等単独で、あるいは混合して用いることができる。中でも、ポリフッ化ビニリデン(PVDF)又はスチレン-ブタジエンゴムが好ましく、ポリフッ化ビニリデン(PVDF)がより好ましい。
 本開示の正極ペースト中の結着剤の含有量は、合材層(塗膜)の塗膜接着性や集電体との結着性の観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、更には1質量%以上が好ましい。蓄電デバイスのエネルギー密度を高度に保つ観点からは9.95質量%以下が好ましく、5質量%以下がより好ましい。
 <正極ペースト中のアクリル系ポリマー(A)>
 本開示の正極ペースト中の本開示のアクリル系ポリマー(A)の含有量は、正極ペーストの粘度低減、更に塗膜平滑性の観点から、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.07質量%以上であり、塗膜抵抗の低減の観点から、好ましくは2.0質量%以下、より好ましくは1.0質量%以下、更に好ましくは0.5質量%以下、更により好ましくは0.3質量%以下である。
 <正極ペースト中の化合物(B)>
 本開示の正極ペースト中の本開示の化合物(B)の含有量は、正極ペーストの固形分濃度を高くする観点、および、粘度低下の観点から、好ましくは0.012質量%以上、より好ましくは0.02質量%以上であり、そして、結着剤(バインダー樹脂)の溶解性と正極ペーストの安定性の観点から、好ましくは0.191質量%以下、より好ましくは0.1質量%以下である。
 <正極ペースト中の炭素材料系導電材(D)>
 本開示の正極ペーストの炭素材料系導電材(D)の含有量は、合材層(塗膜)の導電性の観点から、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、そして、蓄電デバイスのエネルギー密度を高度に保つ観点から、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下である。
 本開示の正極ペーストは、一又は複数の実施形態において、正極活物質、本開示の導電材スラリー、結着剤(バインダー樹脂)溶液、および固形分調整等のための溶媒(追加溶媒)等を、混合および攪拌して、作製することができる。このほか、本開示のアクリル系ポリマー(A)以外の分散剤や機能性材料等を添加しても良い。上記溶媒(追加溶媒)としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の非水系溶媒あるいは水等が使用できる。また、本開示の正極ペーストの調製においては、上記溶媒(追加溶媒)としては非水系溶媒を使用することが好ましく、中でも、NMPを使用することがより好ましい。混合や攪拌にはプラネタリミキサー、ビーズミル、ジェットミル等を用いることができ、また、これらを併用することもできる。
 本開示の正極ペーストは、正極ペーストの調製に用いる全成分のうちの一部成分をプレミックスしてから、それを残余と混合することもできる。また、各成分は、全量を一度に投入せずに、複数回に分けて投入しても良い。これにより、攪拌装置の機械的な負荷を抑えることができる。
 本開示の正極ペーストの固形分濃度や、正極活物質の量、結着剤の量、導電材スラリーの量、添加剤成分の添加量、溶媒の量は、正極ペーストが集電体に塗布するのに適した粘度に応じて調整することができる。乾燥性の観点からは溶媒の量が小さいほうが好ましいが、正極合材層(塗膜)の均一性や表面の平滑性の観点から、正極ペーストの粘度が高すぎないことが好ましい。一方で、乾燥抑制の観点、および合材層(塗膜)の充分な膜厚を得る観点から、正極ペーストの粘度が低すぎないことが好ましい。
 本開示の正極ペーストは、製造効率の観点からは高濃度に調整できることが好ましいが、著しい粘度の増加は作業性の観点から好ましくない。添加剤により、高濃度を保ちつつ、好ましい粘度範囲を保つことができる。
 <正極ペーストの製造方法>
 本開示の正極ペーストの製造方法は、一又は複数の実施形態において、本開示の炭素材料系導電材スラリーと結着剤と溶媒と正極活物質とを混合する工程を含むことができる。各成分は任意の順に混合してもよい。また、一又は複数の実施形態において、本開示の導電材スラリーと溶媒と結着剤とを混合し、これらが均質になるまで分散したのち、正極活物質を混合し、これらが均質になるまで攪拌することにより正極ペーストを得る方法が挙げられるが、これら成分の添加順序はこの限りではなく、本開示の化合物(B)を本開示のアクリル系ポリマー(A)とは別に正極ペースト調製の段階で添加してもよい。
 尚、本開示の導電材スラリー及び正極ペーストは、各々、本開示の効果が妨げられない範囲で、その他の成分を更に含んでもよい。その他の成分としては、例えば、酸化防止剤、中和剤、消泡剤、防腐剤、脱水剤、防錆剤、可塑剤、結着剤等が挙げられる。
 [正極塗膜又は蓄電デバイス用正極の製造方法]
 本開示は、一態様において、本開示の正極ペーストを用いた正極塗膜又は蓄電デバイス用正極の製造方法に関する。蓄電デバイス用正極は、集電体と、集電体上に形成された正極塗膜とを含む。本態様は、本開示の正極ペーストを、集電体に塗工した後、乾燥することを含む。本態様において、本開示の正極ペーストの好ましい形態は上述のとおりである。本開示の正極塗膜又は蓄電デバイス用正極の製造方法において、本開示の正極ペーストを用いること以外は、従来から公知の方法により正極塗膜又は蓄電デバイス用正極を製造できる。
 正極塗膜又は蓄電デバイス用正極は、例えば、上記の正極ペーストをアルミニウム箔等の集電体に塗工し、これを乾燥して作製する。すなわち、正極塗膜は、塗工された本開示の正極ペーストの乾燥体である。正極塗膜の密度を上げるために、プレス機により圧密化を行うこともできる。正極ペーストの塗工には、ダイヘッド、コンマリバースロール、ダイレクトロール、グラビアロール等を用いることができる。塗工後の乾燥は、加温、エアフロー、赤外線照射等を単独あるいは組み合わせて行うことができる。塗工後の乾燥は、乾燥時間を経ることにより、正極ペースト中の化合物(B)および有機溶媒(C)が正極ペースト中に存在できなくなる温度で行う。乾燥温度は、乾燥が行われる環境下(気圧下)において、バインダー樹脂の熱分解温度以下であれば特に制限はないが、好ましくは化合物(B)の沸点以上の温度、より好ましくは有機溶媒(C)の沸点以下の温度である。具体的には、常圧下で、好ましくは60℃以上、より好ましくは80℃以上であり、そして、好ましくは220℃以下、より好ましくは200℃以下である。乾燥時間は、好ましくは10分以上、より好ましくは20分以上であり、そして、好ましくは90分以下、より好ましくは60分以下である。正極のプレスは、ロールプレス機等により、行うことができる。
 本願は、さらに以下の蓄電デバイス電極用分散剤組成物、炭素材料系導電材スラリー、蓄電デバイス用正極ペースト、正極塗膜の製造方法、および蓄電デバイス用正極(の製造方法)を開示する。
 <1> アクリル系ポリマー(A)と、沸点が200℃以下のアミン化合物(B)と有機溶剤(C)を含有し、
 前記アクリル系ポリマー(A)が下記式(1)で表される構成単位aを含み、
 前記化合物(B)が、第2級脂肪族アミン、第3級脂肪族アミン、芳香族アミン、第2級芳香族アミン、第3級芳香族アミンおよび複素環式アミンから選ばれる少なくとも1種のアミン化合物である、蓄電デバイス電極用分散剤組成物。
Figure JPOXMLDOC01-appb-C000010
 上記式(1)中、R1、R2、R3は、互いに同一又は異なり、水素原子、メチル基又はエチル基を示し、X1は窒素原子または酸素原子を示し、R4は、炭素数8以上30以下の炭化水素基を示す。
 <2> 前記構成単位aを与えるモノマーが、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートおよびベヘニル(メタ)アクリレートから選ばれる少なくとも1種であり、
 前記化合物(B)が、ジブチルアミン、ジヘキシルアミン、トリプロピルアミン、N-メチルシクロヘキシルアミン、ベンジルアミン、N-メチルベンジルアミン、N,N-ジメチルベンジルアミン、N-メチルモルホリンおよびN-エチルモルホリンから選ばれる少なくとも1種のアミン化合物である、前記<1>に記載の蓄電デバイス電極用分散剤組成物。
 <3> アクリル系ポリマー(A)と、沸点が200℃以下のアミン化合物(B)と有機溶剤(C)を含有し、
 前記アクリル系ポリマー(A)が下記式(1)で表される構成単位a及び下記式(3)で表される構成単位b2を含み、
 前記構成単位aを与えるモノマーが、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートおよびベヘニル(メタ)アクリレートから選ばれる少なくとも1種であり、
 前記化合物(B)が、ジブチルアミン、ジヘキシルアミン、トリプロピルアミン、N-メチルシクロヘキシルアミン、ベンジルアミン、N-メチルベンジルアミン、N,N-ジメチルベンジルアミン、N-メチルモルホリンおよびN-エチルモルホリンから選ばれる少なくとも1種のアミン化合物である、蓄電デバイス電極用分散剤組成物。
Figure JPOXMLDOC01-appb-C000011
 上記式(1)中、R1、R2、R3は、互いに同一又は異なり、水素原子、メチル基又はエチル基を示し、X1は窒素原子または酸素原子を示し、R4は、炭素数8以上30以下の炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000012
 上記式(3)中、R10、R11およびR12は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X3は、シアノ基、又は炭素数1以上4以下の炭化水素基を有していてもよいピリジニル基を示す。
 <4> アクリル系ポリマー(A)と、沸点が200℃以下のアミン化合物(B)と有機溶剤(C)を含有し、
 前記アクリル系ポリマー(A)が下記式(1)で表される構成単位a、下記式(3)で表される構成単位b2、及び下記式(4)で表される構成単位cを含み、
 前記構成単位aを与えるモノマーが、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートおよびベヘニル(メタ)アクリレートから選ばれる少なくとも1種であり、
 前記化合物(B)が、ジブチルアミン、ジヘキシルアミン、トリプロピルアミン、N-メチルシクロヘキシルアミン、ベンジルアミン、N-メチルベンジルアミン、N,N-ジメチルベンジルアミン、N-メチルモルホリンおよびN-エチルモルホリンから選ばれる少なくとも1種のアミン化合物である、蓄電デバイス電極用分散剤組成物。
Figure JPOXMLDOC01-appb-C000013
 上記式(1)中、R1、R2、R3は、互いに同一又は異なり、水素原子、メチル基又はエチル基を示し、X1は窒素原子または酸素原子を示し、R4は、炭素数8以上30以下の炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000014
 上記式(3)中、R10、R11およびR12は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X3は、シアノ基、又は炭素数1以上4以下の炭化水素基を有していてもよいピリジニル基を示す。
Figure JPOXMLDOC01-appb-C000015
 上記式(4)中、R13、R14、R15は、互いに同一又は異なり、水素原子、メチル基又はエチル基を示す。
 <5> アクリル系ポリマー(A)と、沸点が200℃以下のアミン化合物(B)と有機溶剤(C)を含有し、
 前記アクリル系ポリマー(A)が下記式(1)で表される構成単位a、下記式(3)で表される構成単位b2、及び下記式(4)で表される構成単位cを含み、
 前記構成単位aを与えるモノマーが、ステアリル(メタ)アクリレートであり、
 前記構成単位b2を与えるモノマーがアクリロニトリルであり、
 前記構成単位cを与えるモノマーがメタクリルアミドであり、
 前記化合物(B)が、ジヘキシルアミン、トリプロピルアミン、ベンジルアミン、N-メチルベンジルアミン、N,N-ジメチルベンジルアミン、およびN-エチルモルホリンから選ばれる少なくとも1種のアミン化合物である、蓄電デバイス電極用分散剤組成物。
Figure JPOXMLDOC01-appb-C000016
 上記式(1)中、R1、R2、R3は、互いに同一又は異なり、水素原子、メチル基又はエチル基を示し、X1は窒素原子または酸素原子を示し、R4は、炭素数8以上30以下の炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000017
 上記式(3)中、R10、R11およびR12は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X3は、シアノ基、又は炭素数1以上4以下の炭化水素基を有していてもよいピリジニル基を示す。
Figure JPOXMLDOC01-appb-C000018
 上記式(4)中、R13、R14、R15は、互いに同一又は異なり、水素原子、メチル基又はエチル基を示す。
<6> アクリル系ポリマー(A)の全構成単位中における構成単位aの含有量が30質量%以上50質量%以下であり、構成単位b2の含有量が30質量%以上50質量%以下である、前記<3>~<5>のいずれかに記載の蓄電デバイス電極用分散剤組成物。
<7> アクリル系ポリマー(A)の重量平均分子量が1万以上10万以下である、前記<1>~<6>のいずれかに記載の蓄電デバイス電極用分散剤組成物。
<8> 前記<1>~<7>のいずれかに記載の蓄電デバイス電極用分散剤組成物と炭素材料系導電材(D)とを含有する、炭素材料系導電材スラリー。
<9> 前記<1>~<7>のいずれかに記載の蓄電デバイス電極用分散剤組成物を含有する、蓄電デバイス用正極ペースト。
<10> 前記<9>に記載の蓄電デバイス用正極ペーストを、集電体に塗工した後、乾燥することを含む、正極塗膜の製造方法。
<11> 集電体と、集電体上に形成された正極塗膜とを含む蓄電デバイス用正極の製造方法であり、前記<9>に記載の蓄電デバイス用正極ペーストを、集電体に塗工した後、乾燥することを含む、蓄電デバイス用正極の製造方法。
 以下、本開示の実施例および比較例を示すが、本開示はこれに限定されるものではない。
 1.各パラメータの測定方法
 [ポリマーの重量平均分子量の測定]
 ポリマーの重量平均分子量は、GPC法により測定した。詳細な条件は以下の通りである。
測定装置:HLC-8320GPC(東ソー社製)
カラム:α-M + α-M(東ソー社製)
カラム温度:40℃
検出器:示差屈折率
溶離液:60mmol/LのH3PO4および50mmol/LのLiBrのN,N-ジメチルホルムアミド(DMF)溶液
流速:1mL/min
検量線に用いる標準試料:ポリスチレン
試料溶液:共重合体の固形分を0.5wt%含有するDMF溶液
試料溶液の注入量:100μL
 [導電材スラリーの粘度測定]
 導電材スラリーの粘度(25℃)は、Anton Paar社のMCR302レオメーターに、パラレルプレートPP50を装着し、せん断速度を0.1s-1から1000s-1まで上げた後(往路)、せん断速度を1000s-1から0.1s-1まで戻し(復路)、復路のせん断速度1s-1における粘度を測定し、それを表5に示した。
 [正極ペーストの粘度測定]
 正極ペースト(25℃)の粘度は、Anton Paar社のMCR302レオメーターに、コーンプレート(直径50mm)を装着し、せん断速度を0.1s-1から1000s-1まで上げた後(往路)、せん断速度を1000s-1から0.1s-1まで戻し(復路)、復路のせん断速度1s-1における粘度を測定し、それを表7に示した。
 [正極塗膜の抵抗値の測定]
 正極ペーストを、ポリエステルフィルムに垂らし、100μmのアプリケータで均一に塗工した。この塗工したポリエステルフィルムを100℃で1時間乾燥し、厚み40μmの正極塗膜を得た。
 PSPプローブを装着したLoresta-GP(三菱ケミカルアナリテック製)にて限界電圧10vにて体積抵抗値を測定した。その結果は表7に示した。
 [電極(正極)および蓄電デバイスの作製]
 実施例11~17、比較例8~14の正極ペーストを、厚さ20μmのAl箔上に、正極容量が3mAh/cm2となるように塗工し、乾燥器を用いて100℃で60分乾燥し、集電体上に合材層(正極塗膜)が形成された電極材料を作製した。この正極材料を直径13mmに打ち抜きプレスして電極(正極)を得た。当該正極上に、直径19mmのセパレータ、直径15mm厚さ0.5のコイン状金属リチウムを配置して、2032型コインセル(試験用ハーフセル)を作製した。電解液には、1M LiPF6 EC/DEC(体積比)=3/7を用いた。
 [直流抵抗(DCR)の測定]
 試験用ハーフセルを30℃恒温槽内で温調した状態で、次に記載する充放電条件で3サイクル充放電試験を行った。
 (充放電条件)
 30℃、0.2C、充電4.45V CC/CV 1/10Cカットオフ
 放電CC3.0Vカットオフ
 次いで、0.2Cで2.5時間充電を行い、0.2C~8C放電における10秒間の電圧降下から直流抵抗(DCR)を算出した。
 2.分散剤組成物の調製
 [使用原料]
 表3に示す分散剤組成物1~17の調製に用いたアクリル系ポリマー(A)およびその原料、化合物(B)等の詳細は、表1、表2および下記の通りである。
[アクリル系ポリマー(A)の原料]
(モノマーa)
SMA:ステアリルメタクリレート(新中村化学工業社製、品番:NK-エステルS)
(モノマーb1)
HEMA:2-ヒドロキシエチルメタクリレート(富士フイルム和光純薬株式会社製)
PEGMA(EO2):メトキシポリエチレングリコールメタクリレート(新中村化学工業社製、品番:NK-エステルM-20G、エチレンオキサイドの平均付加モル数=2)
(モノマーb2)
AN:アクリロニトリル
(モノマーc)
MAAm:メタクリルアミド(東京化成工業社製)
[アクリル系ポリマー(A)の比較対象]
PVP:ポリビニルピロリドン(富士フイルム和光純薬株式会社製、K-30)
[溶媒]
NMP:N-メチル-2-ピロリドン(富士フイルム和光純薬株式会社製)
[重合開始剤]
V-65B:2,2'-アゾビス(2,4-ジメチルバレロニトリル)(富士フイルム和光純薬株式会社製)
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 [分散剤組成物1~5、10~15調製用のアクリル系ポリマー(A)の合成例]
 滴下用モノマー溶液として、40gのSMA(モノマーa1)と、40gのアクリロニトリル(モノマーb21)と、20gのMAAm(モノマーc1)と、59.5gのNMP(溶媒)とからなる混合溶液を、滴下用開始剤溶液として、1.28gのV-65B(重合開始剤)と12.8gのNMP(溶媒)とからなる混合溶液を作製した。
 還流管、攪拌機、温度計、窒素導入管、および滴下漏斗を取り付けたセパラブルフラスコ内を1時間以上窒素置換した。滴下用モノマー溶液、および滴下用開始剤溶液を、各々、65℃の槽内に160分かけて槽内に滴下した。滴下終了後、更に槽内を65℃に維持しながら1時間撹拌した。その後、槽内を80℃まで昇温し、更に2時間撹拌した。次いで、42.6gのNMP(溶媒)を追加し、希釈を行うことで、分散剤組成物1~5、10~15調製用のアクリル系ポリマー(A)溶液を得た。その不揮発分は40質量%であり、重量平均分子量は3.7万であった。
 [分散剤組成物6~7調製用のアクリル系ポリマー(A)の合成例]
 滴下用モノマー溶液の調製において、分散剤組成物6~7のアクリル系ポリマー(A)の合成に使用される各モノマーの質量比を、各々、表3に記載の値としたこと以外は、[分散剤組成物1~5、10~15調製用のアクリル系ポリマー(A)の合成例]と同様にして、分散剤組成物6~7調製用のアクリル系ポリマー(A)溶液を得た。
 [分散剤組成物8~9調製用のアクリル系ポリマー(A)の合成例]
 分散剤組成物8のアクリル系ポリマー(A)の合成においてV-65Bの量を3.90g、分散剤組成物9のアクリル系ポリマー(A)の合成においてV-65Bの量を0.49gとしたこと以外は、[分散剤組成物1~5、10~15調製用のアクリル系ポリマー(A)の合成例]と同様にして、分散剤組成物8~9調製用のアクリル系ポリマー(A)溶液を得た。
 [分散剤組成物1~17の調製例]
 表3に示すアクリル系ポリマー(A)又はその比較対象としてのPVPと、表2および3に示す化合物(B)およびその比較対象と、表3に示す有機溶媒(C)(NMP)とを均一に混合し、分散剤組成物1~17を得た。各分散剤組成物中の各成分の含有量(質量%)は、表3に示すとおりである。
Figure JPOXMLDOC01-appb-T000021
 3.導電材スラリー1~17(実施例1~10、比較例1~7)の調製
 [導電材スラリー1~17の調製に用いた導電材]
 表5に示す導電材スラリー1~17の調製に用いた導電材の詳細は、表4に示す通りである。
Figure JPOXMLDOC01-appb-T000022
 [導電材スラリーの調製例]
 (実施例1)
 表4に記載の導電材N(繊維状炭素ナノ構造体としてのMWカーボンナノチューブ、Cabot社製 多層カーボンナノチューブHCNTs10、平均長さ5~12μm(カタログ値))5gと、分散剤組成物1を5gと、NMP(追加溶媒)90gとを混合し、粗分散液を得た。得られた粗分散液を、分散時に背圧を負荷する多段圧力制御装置(多段降圧器)を有する高圧ホモジナイザー(株式会社美粒製、製品名「BERYU  MINI」)に充填し、100MPaの圧力で分散処理を行った。具体的には、背圧を負荷しつつ、粗分散液にせん断力を与えてMWカーボンナノチューブを分散させ、繊維状炭素ナノ構造体分散液として、実施例1の導電材スラリー1(カーボンナノチューブ分散液)を得た。なお、分散処理は、分散液を高圧ホモジナイザーから排出させて再び高圧ホモジナイザーに注入するという循環をさせながら行い、当該循環は20回行った。分散液の排出および注入速度は30g/分とした。
 得られた導電材スラリー1の温度25℃における粘度を測定したところ、粘度は830mPa・sであった。
 (実施例2~10、比較例1~7)
 分散剤組成物、導電材、追加溶媒の種類及び含有量を表3~表5に示すとおりとしたこと以外は、上記実施例1と同様にして、実施例2~10及び比較例1~7の導電材スラリー2~17(カーボンナノチューブ分散液)を調製した。
 調製した各導電材スラリー中の各成分の配合量(質量%)および導電材スラリーの粘度は、表5に示すとおりである。
Figure JPOXMLDOC01-appb-T000023
 表5に示されるように、実施例1~5の導電材スラリーと比較例1~5の導電材スラリーは、共通の分散剤を含んでいるが、化合物(B)を含む実施例1~5の導電材スラリーは、化合物(B)を含まない比較例1の導電材スラリーよりも粘度が低く、カーボンナノチューブの分散性が向上していることがわかる。
 また、実施例1と比較例7との比較から、アクリル系ポリマー(A)と、化合物(B)との併用により粘度低下の効果が顕著であることがわかる。
 4.正極ペースト(実施例11~17、比較例8~14)の調製
 (実施例11)
 上記導電材スラリー1(実施例1)2.04gと、NMP(追加溶媒)0.50gと、PVDFのNMP溶液(固形分8% KFポリマーL#7208、株式会社クレハ製、バインダー樹脂溶液)3.8gとを、50mlのサンプルビンに秤取り、スパーテルで均一にかき混ぜた。その後、正極活物質としてLCO(コバルト酸リチウム 北京当升社製、「GSL-5D」)15gを添加し、再度スパーテルで均一になるまでかき混ぜた。更に自転公転ミキサー(AR-100 株式会社 シンキー製)にて、10分間撹拌し、正極活物質の含有量が70.29質量%、導電材の含有量が0.478質量%、アミン化合物と分散剤の含有量が各々0.096質量%、バインダー樹脂の含有量が1.42質量%の正極ペースト(実施例11)を得た。
 なお、正極活物質、結着剤(PVDF)、導電材(カーボンナノチューブ)および分散剤(アクリル系ポリマー(A))の質量比率は97.24:1.97:0.66:0.13(固形分換算)とし、正極ペーストの固形分量(質量%)は、72.29質量%とした。正極ペーストの全固形分量は、正極ペーストが含有する、分散剤(アクリル系ポリマー(A))、正極活物質、導電材および結着剤の合計質量である。得られた正極ペーストの温度25℃における粘度を測定したところ、粘度は6.2Pa・sであった。
 (実施例12~17、比較例8~14)
 導電材スラリーの種類を表6に示す導電材スラリーに変更したこと以外は、上記実施例11と同様にして、正極ペースト(実施例12~17、比較例8~14)を調製した。調製した各正極ペースト中の各成分の配合量(質量%)は表6に示すとおりであり、各正極ペーストの25℃における粘度は表7に示す通りである。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 表7に示されるように、アクリル系ポリマー(A)と、化合物(B)とを含む分散剤組成物1~7を各々使用して調整された実施例11~17の正極ペーストの粘度は、比較例8~14の正極ペーストの粘度よりも低かった。また、実施例11~17の正極ペーストを用いて作成した正極塗膜の体積抵抗値および蓄電デバイスの直流抵抗値は比較例8~14のそれよりも顕著に低いことがわかる。
 本開示の分散剤組成物は、炭素材料系導電材スラリーや正極ペーストの低粘度化が可能である。そして、本開示の分散剤組成物を本開示の正極ペーストの調製に用いれば、正極塗膜の抵抗値や蓄電デバイスの直流抵抗値の低下が可能である。

Claims (13)

  1.  アクリル系ポリマー(A)と、沸点が200℃以下のアミン化合物(B)と有機溶剤(C)を含有し、
     前記アクリル系ポリマー(A)が下記式(1)で表される構成単位aを含み、
     前記化合物(B)が、第2級脂肪族アミン、第3級脂肪族アミン、芳香族アミン、第2級芳香族アミン、第3級芳香族アミンおよび複素環式アミンから選ばれる少なくとも1種のアミン化合物である、蓄電デバイス電極用分散剤組成物。
    Figure JPOXMLDOC01-appb-C000001
     上記式(1)中、R1、R2、R3は、互いに同一又は異なり、水素原子、メチル基又はエチル基を示し、X1は窒素原子または酸素原子を示し、R4は、炭素数8以上30以下の炭化水素基を示す。
  2.  前記アクリル系ポリマー(A)中の前記式(1)で表される構成単位aの含有量が10質量%以上80質量%以下である、請求項1に記載の蓄電デバイス電極用分散剤組成物。
  3.  前記アクリル系ポリマー(A)が、更に下記式(2)で表される構成単位b1または下記式(3)で表される構成単位b2から選ばれる少なくとも1種の構成単位bを含有する、請求項1または2に記載の蓄電デバイス電極用分散剤組成物。
    Figure JPOXMLDOC01-appb-C000002
     上記式(2)中、R5、R6およびR7は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X2は窒素原子又は酸素原子を示し、R8は炭素数2以上4以下のアルキレン基を示し、pは1以上8以下を示し、R9は水素原子又はメチル基を示す。
    Figure JPOXMLDOC01-appb-C000003
     上記式(3)中、R10、R11およびR12は、同一又は異なって、水素原子、メチル基又はエチル基を示し、X3は、シアノ基、又は炭素数1以上4以下の炭化水素基を有していてもよいピリジニル基を示す。
  4.  前記アクリル系ポリマー(A)が、更に下記式(4)で表される構成単位cを含有する、請求項1~3のいずれかに記載の蓄電デバイス電極用分散剤組成物。
    Figure JPOXMLDOC01-appb-C000004
     上記式(4)中、R13、R14、R15は、互いに同一又は異なり、水素原子、メチル基又はエチル基を示す。
  5.  前記アクリル系ポリマー(A)の重量平均分子量が、5000以上100万以下である、請求項1から4のいずれかに記載の蓄電デバイス電極用分散剤組成物。
  6.  前記化合物(B)の沸点が、100℃以上200℃以下である、請求項1から5のいずれかに記載の蓄電デバイス電極用分散剤組成物。
  7.  前記化合物(B)が、トリプロピルアミン、ジヘキシルアミン、ジメチルベンジルアミン、ベンジルアミン、N-メチルベンジルアミンおよびN-エチルモルホリンから選ばれる少なくとも1種である、請求項1から6のいずれかに記載の蓄電デバイス電極用分散剤組成物。
  8.  前記化合物(B)の含有量が、前記アクリル系ポリマー(A)100質量部に対して10質量部以上300質量部以下である、請求項1から7のいずれかに記載の蓄電デバイス電極用分散剤組成物。
  9.  請求項1から8のいずれかに記載の蓄電デバイス電極用分散剤組成物と炭素材料系導電材(D)とを含有する、炭素材料系導電材スラリー。
  10.  前記炭素材料系導電材(D)が、カーボンブラック、カーボンナノチューブおよびグラフェンから選ばれる少なくとも1種である、請求項9に記載の炭素材料系導電材スラリー。
  11.  請求項1から8のいずれかに記載の蓄電デバイス電極用分散剤組成物を含有する、蓄電デバイス用正極ペースト。
  12.  請求項11に記載の蓄電デバイス用正極ペーストを、集電体に塗工した後、乾燥することを含む、正極塗膜の製造方法。
  13.  集電体と、集電体上に形成された正極塗膜とを含む蓄電デバイス用正極の製造方法であり、
     請求項11に記載の蓄電デバイス用正極ペーストを、集電体に塗工した後、乾燥することを含む、蓄電デバイス用正極の製造方法。
PCT/JP2022/041220 2021-11-08 2022-11-04 蓄電デバイス電極用分散剤組成物 WO2023080207A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247015316A KR20240095236A (ko) 2021-11-08 2022-11-04 축전 디바이스 전극용 분산제 조성물
CN202280074188.7A CN118202491A (zh) 2021-11-08 2022-11-04 蓄电设备电极用分散剂组合物
EP22890027.0A EP4432400A1 (en) 2021-11-08 2022-11-04 Dispersant composition for electricity storage device electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-182056 2021-11-08
JP2021182056A JP7339311B2 (ja) 2021-11-08 2021-11-08 蓄電デバイス電極用分散剤組成物

Publications (1)

Publication Number Publication Date
WO2023080207A1 true WO2023080207A1 (ja) 2023-05-11

Family

ID=86241573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041220 WO2023080207A1 (ja) 2021-11-08 2022-11-04 蓄電デバイス電極用分散剤組成物

Country Status (5)

Country Link
EP (1) EP4432400A1 (ja)
JP (1) JP7339311B2 (ja)
KR (1) KR20240095236A (ja)
CN (1) CN118202491A (ja)
WO (1) WO2023080207A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151062A1 (ja) 2012-04-03 2013-10-10 株式会社Gsユアサ 電池用正極ペースト
JP2014181140A (ja) 2013-03-18 2014-09-29 Ube Ind Ltd 微細炭素繊維分散液およびその製造方法
JP2017228413A (ja) * 2016-06-22 2017-12-28 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
JP6531926B1 (ja) 2018-04-26 2019-06-19 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
US20190372121A1 (en) 2018-06-05 2019-12-05 Cabot Corporation Compositions useful for producing electrodes and related methods
JP2022063854A (ja) * 2020-10-12 2022-04-22 花王株式会社 蓄電デバイス電極用分散剤組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020189770A (ja) * 2019-05-23 2020-11-26 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151062A1 (ja) 2012-04-03 2013-10-10 株式会社Gsユアサ 電池用正極ペースト
JP2014181140A (ja) 2013-03-18 2014-09-29 Ube Ind Ltd 微細炭素繊維分散液およびその製造方法
JP2017228413A (ja) * 2016-06-22 2017-12-28 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
JP6531926B1 (ja) 2018-04-26 2019-06-19 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
JP2019192537A (ja) * 2018-04-26 2019-10-31 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
US20190372121A1 (en) 2018-06-05 2019-12-05 Cabot Corporation Compositions useful for producing electrodes and related methods
JP2022063854A (ja) * 2020-10-12 2022-04-22 花王株式会社 蓄電デバイス電極用分散剤組成物

Also Published As

Publication number Publication date
JP7339311B2 (ja) 2023-09-05
CN118202491A (zh) 2024-06-14
EP4432400A1 (en) 2024-09-18
KR20240095236A (ko) 2024-06-25
JP2023069875A (ja) 2023-05-18

Similar Documents

Publication Publication Date Title
EP3348582B1 (en) Carbon nanotube dispersion liquid and manufacturing method thereof
JP6765685B2 (ja) カーボンナノチューブ分散液およびその製造方法
EP3324468B1 (en) Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
EP3355392B1 (en) Carbon nanotube dispersion liquid and manufacturing method thereof
JP7005811B1 (ja) 蓄電デバイス電極用分散剤組成物
WO2013081152A1 (ja) 非水二次電池電極用バインダ樹脂、非水二次電池電極用バインダ樹脂組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極、非水二次電池
JP2020194625A (ja) 電池用カーボンナノチューブ分散組成物の製造方法
JP2011181229A (ja) 電極用導電性組成物
CN113748143B (zh) 碳纳米管用分散剂组合物
WO2021201003A1 (ja) 正極組成物
JP7339311B2 (ja) 蓄電デバイス電極用分散剤組成物
EP3925931A1 (en) Carbon material-resin composite material, composite body and method for producing same, and electrode material for electricity storage devices
JP7339404B2 (ja) 蓄電デバイス電極用分散剤組成物
JP7339422B2 (ja) 蓄電デバイス電極用分散剤
JP7265581B2 (ja) 蓄電デバイス電極用分散剤
WO2023127917A1 (ja) 蓄電デバイス電極用分散剤組成物
JP2024067508A (ja) 蓄電デバイス電極用分散剤組成物
CN118476057A (zh) 蓄电设备电极用分散剂组合物
CN118476056A (zh) 蓄电设备电极用分散剂
JP2024518915A (ja) 導電材分散液、これを用いて製造された電極およびリチウム二次電池
KR20230113282A (ko) 전기 화학 소자용 페이스트, 전기 화학 소자 전극용 슬러리, 전기 화학 소자용 전극 및 전기 화학 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280074188.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022890027

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022890027

Country of ref document: EP

Effective date: 20240610