WO2023080182A1 - 積層体、及び積層体の製造方法 - Google Patents

積層体、及び積層体の製造方法 Download PDF

Info

Publication number
WO2023080182A1
WO2023080182A1 PCT/JP2022/041093 JP2022041093W WO2023080182A1 WO 2023080182 A1 WO2023080182 A1 WO 2023080182A1 JP 2022041093 W JP2022041093 W JP 2022041093W WO 2023080182 A1 WO2023080182 A1 WO 2023080182A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thin film
molecular bonding
laminate
layer
Prior art date
Application number
PCT/JP2022/041093
Other languages
English (en)
French (fr)
Inventor
香 溝端
達也 鈴木
香織 赤松
哲士 本田
繁樹 石黒
拳也 山本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023080182A1 publication Critical patent/WO2023080182A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties

Definitions

  • the present invention relates to a laminate and a method for manufacturing the laminate.
  • one material is melted by heat and pressure by hot press or the like, and the roughened portion of the other material or the insulating resin material is melted.
  • a method has been used in which strong adhesion is realized by an anchor effect by making the material bite into the roughened portion and the void portion.
  • adhesion of dissimilar materials requires application of a primer solution, and prior to application of the primer solution, various surface treatments such as sandblasting, corona treatment, and plasma treatment are required as pretreatments.
  • Patent Document 1 the surface of a solid adhesive base material made of resin or rubber, which is difficult to adhere to, is treated and adhered to a different type of solid adherend base material to be easily integrated.
  • the adhesive group is formed by a covalent bond between a molecular adhesive molecule graft-copolymerized via an active group on the surface of an adhesive base material and a functional group on the surface of the base material to be adhered.
  • Patent Document 1 describes an adhesion technique by hot pressing using a molecular adhesive, no consideration is given to lamination of thin films.
  • an object of the present invention is to provide a laminate having excellent bonding strength and high adhesion, in which a thin film and a substrate are bonded by molecular bonding, and a method for manufacturing the laminate. do.
  • Laminate [2] The laminate according to [1], wherein the thin film is at least one selected from a hard coat layer, a sputtered metal layer, and a plated metal layer. [3] The laminate according to [1], wherein the thin film contains at least one selected from acrylic, urethane, silicone, epoxy, copper, silver, gold, chromium, nickel, palladium, platinum, and alloys of these metals. body.
  • the molecular bonding agent forming the molecular bonding layer contains a molecular bonding compound having a reactive group A and a reactive group B, wherein the reactive group A is an amino group, an azide group, a mercapto group, an isocyanate group, or a ureido group.
  • a method for producing a laminate comprising a second step and a third step of forming the thin film on the molecular junction layer.
  • a layered product in which a thin film and a substrate are firmly bonded by molecular bonding, which has excellent bonding strength and high adhesion, and a method for manufacturing the layered product.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminate according to an embodiment of the invention.
  • a laminate according to an embodiment of the present invention is a laminate having a substrate, a molecular bonding layer, and a thin film in this order, wherein the thickness of the thin film is 10 ⁇ m or less, and the substrate and the thin film are separated from each other. It is a laminate bonded by chemical bonding via the molecular bonding layer.
  • FIG. 1 is a schematic cross-sectional view showing a laminate 10 according to an embodiment of the invention.
  • the layered product 10 according to this embodiment has a substrate 40, a molecular bonding layer 30, and a thin film 20 in this order.
  • the base material and the thin film are chemically bonded because they are chemically bonded via the molecular bonding layer. Therefore, even if the base material and the thin film are made of different materials or are difficult to bond, a laminate with excellent bonding strength and high adhesion can be formed. Also, by setting the thickness of the thin film to 10 ⁇ m or less, a thin laminate can be obtained. Furthermore, the molecular bonding layer can be composed of a single molecule of the compound that constitutes the molecular bonding layer, and theoretically, it is possible to strongly bond with a thickness of one molecule. It is possible to join to Here, chemical bonds refer to covalent bonds, ionic bonds, hydrogen bonds, and coordinate bonds.
  • the material used for the base material is not particularly limited, and resins, rubbers, metals, glass, ceramics, etc. can be mentioned, and can be selected according to the application.
  • the material used for the substrate is preferably resin (resin material).
  • resin material resin
  • high-frequency wiring boards and multilayer wiring boards used in electronic devices generally require materials with a low dielectric constant, so it is preferable to use a resin material with a low dielectric constant.
  • resin materials include resins such as curable resins (eg, thermosetting resins, photocurable resins, etc.) and thermoplastic resins.
  • curable resins examples include polycarbonate resins, thermosetting polyimide resins, thermosetting fluorinated polyimide resins, epoxy resins, phenol resins, urea resins, melamine resins, diallyl phthalate resins, silicone resins, thermosetting urethane resins, Examples thereof include fluororesins (polymers of fluorine-containing olefins (specifically, polytetrafluoroethylene (PTFE), etc.)), liquid crystal polymers (LCP), and the like. These can be used singly or in combination of two or more.
  • fluororesins polymers of fluorine-containing olefins (specifically, polytetrafluoroethylene (PTFE), etc.)
  • LCP liquid crystal polymers
  • thermoplastic resins include olefin resins such as polyethylene resins and polypropylene resins, acrylic resins, polystyrene resins, polyester resins, polyacrylonitrile resins, maleimide resins, polyvinyl acetate resins, ethylene-vinyl acetate copolymers, and polyvinyl alcohol resins.
  • olefin resins such as polyethylene resins and polypropylene resins, acrylic resins, polystyrene resins, polyester resins, polyacrylonitrile resins, maleimide resins, polyvinyl acetate resins, ethylene-vinyl acetate copolymers, and polyvinyl alcohol resins.
  • polyamide resin polyvinyl chloride resin, polyacetal resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyarylsulfone resin, thermoplastic polyimide resin, thermoplastic polyimide fluoride resin , thermoplastic urethane resins, polyetherimide resins, polymethylpentene resins, cellulose resins, liquid crystal polymers, ionomers, and the like. These can be used singly or in combination of two or more.
  • the substrate is preferably a resin substrate containing at least one selected from fluororesin, silicone resin, polyethylene resin, and polypropylene resin.
  • the resin material is preferably a curable resin, more preferably a thermosetting polyimide resin, a thermosetting polyimide fluoride resin, or a fluororesin, and still more preferably a fluororesin.
  • a fluorine-based resin is a resin material with a low dielectric constant and a low dielectric loss material, and is therefore suitable for use as a high-frequency communication antenna substrate.
  • the curable resin is a difficult-to-adhere resin, has poor compatibility with other materials, and is difficult to laminate with a thin film. For example, due to the low surface free energy of fluororesin, it is difficult to bond with other materials. It was difficult to get a body.
  • the fluororesin is a polymer containing a fluoromonomer as a repeating unit, and may be a resin composition in which the fluororesin and another resin are blended. It may be a copolymer obtained by polymerization.
  • fluororesins examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer Polymer (ETFE), polychlorotrifluoroethylene (PCTFE) and the like can be mentioned, among which PTFE and PFA are more preferred.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer Polymer
  • PCTFE polychlorotrifluoroethylene
  • Fluororesins include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer ( ETFE), and at least one selected from the group consisting of polychlorotrifluoroethylene.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • fluorine-based monomers examples include fluorine-based ethylene monomers such as vinylidene fluoride, hexafluoropropylene, tetrafluoroethylene, and chlorotrifluoroethylene.
  • the fluororesin may contain no components other than the fluororesin, or may contain substantially no components other than the fluororesin.
  • substantially free means that the content is less than 0.1% by mass, preferably less than 0.01% by mass.
  • the shape of the substrate is not particularly limited, and may be, for example, a plate-like shape having a flat surface, a plate-like shape having a curved surface, a sheet-like shape, a film-like shape, or a molded body of the material used for the substrate.
  • the thin film includes, for example, a coating film, a hard coat layer, a metal plating layer, a metal sputter layer, a metal foil, and combinations thereof. It is preferably at least one selected from a layer and a metal plating layer.
  • the thin film according to the embodiment of the present invention may have a plurality of layers, a plurality of layers of one type, or a plurality of layers of two or more types.
  • the material of the thin film is not particularly limited, and resin, rubber, metal, glass, ceramics, etc. can be mentioned, and can be selected according to the application.
  • the coating film is formed by, for example, paint.
  • paint There are no particular restrictions on the coating method of the paint, and general methods such as brush coating, roller coating, spray coating, and various coater coatings can be used, and the coating amount is not particularly limited. Also, the time and temperature for heating the paint can be appropriately determined depending on the paint used, the amount of application, and the like.
  • the coating film is not particularly limited, and examples thereof include various coating films such as epoxy-based, polyester-melamine-based, alkyd-melamine-based, acrylic-melamine-based, acrylic-urethane-based, and acrylic-polyacid curing agent-based coatings. .
  • the thickness of the coating film is not particularly limited, preferably 0.001 to 10 ⁇ m, more preferably 0.01 to 8 ⁇ m.
  • the coating method of the coating film there are no particular restrictions on the coating method of the coating film, and general methods such as brush coating, roller coating, spray coating, and various coater coatings can be used, and the coating amount is not particularly limited.
  • the time and temperature for heating the coating film can be appropriately determined depending on the coating material to be used, the coating amount, and the like.
  • the hard coat layer can be formed, for example, from a composition for forming a hard coat layer.
  • the composition for forming a hard coat layer is applied to the surface of the substrate on which the molecular bonding layer is provided, and if necessary, curing treatment (for example, ultraviolet irradiation, heat treatment, etc.) is performed, A hard coat layer can be formed.
  • the hard coat layer may be subjected to surface treatment such as corona treatment or plasma treatment.
  • any appropriate method can be adopted as the method of applying the composition for forming the hard coat layer, as long as the effects of the present invention are not impaired.
  • coating methods include bar coating, gravure roll coating, die coating, rod coating, slot orifice coating, curtain coating, fountain coating and comma coating.
  • the heating temperature of the coating layer formed by applying the hard coat layer-forming composition can be set to any appropriate temperature depending on the composition of the hard coat layer-forming composition.
  • Such heating temperature is preferably set to the glass transition temperature of the resin contained in the base material layer or lower. By heating at a temperature equal to or lower than the glass transition temperature of the resin contained in the base material layer, it is possible to obtain a laminate with a hard coat layer in which deformation due to heating is suppressed.
  • the heating temperature is preferably 60°C to 140°C, more preferably 60°C to 100°C. By heating in such a range, a hard coat layer having excellent adhesion to the base material layer can be formed.
  • Typical curing treatments include ultraviolet irradiation, heat treatment, and the like.
  • the cumulative amount of UV irradiation is preferably 200 mJ to 400 mJ.
  • the composition for forming a hard coat layer may contain any suitable monomer or resin (at least one selected from the group consisting of oligomers, prepolymers and polymers) within a range that does not impair the effects of the present invention.
  • the composition for forming a hard coat layer contains a thermosetting or photosetting curable compound.
  • the curable compound is, for example, at least one selected from the group consisting of monomers and resins (at least one selected from the group consisting of oligomers, prepolymers and polymers).
  • curable compound preferably at least one selected from the group consisting of polyfunctional monomers and oligomers can be employed.
  • curable compounds include monomers or oligomers having two or more (meth)acryloyl groups, urethane (meth)acrylates or oligomers of urethane (meth)acrylates, epoxy monomers or oligomers, silicone monomers or oligomers, Among these, urethane (meth)acrylates or oligomers of urethane (meth)acrylates are preferable as the curable compound in that the effects of the present invention can be exhibited more effectively.
  • the composition for forming a hard coat layer may contain any appropriate additive as long as it does not impair the effects of the present invention.
  • additives include, for example, polymerization initiators, leveling agents, antiblocking agents, dispersion stabilizers, thixotropic agents, antioxidants, UV absorbers, antifoaming agents, thickeners, dispersants, surfactants, agents, catalysts, fillers, lubricants, antistatic agents, and the like. Only one kind of such additives may be used, or two or more kinds thereof may be used.
  • the type, combination, content, and the like of additives that can be contained in the composition for forming a hard coat layer can be appropriately set according to the purpose and desired properties.
  • the composition for forming a hard coat layer may contain fine particles as an additive. Anti-glare function can be imparted by using a composition for forming a hard coat layer containing fine particles.
  • the fine particles may be inorganic fine particles or organic fine particles. Examples of inorganic fine particles include silicon oxide fine particles, titanium oxide fine particles, aluminum oxide fine particles, zinc oxide fine particles, tin oxide fine particles, calcium carbonate fine particles, barium sulfate fine particles, talc fine particles, kaolin fine particles, and calcium sulfate fine particles.
  • organic fine particles examples include polymethyl methacrylate resin powder (PMMA fine particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, and polyester resin powder. , polyamide resin powder, polyimide resin powder, polyethylene fluoride resin powder, and the like.
  • PMMA fine particles polymethyl methacrylate resin powder
  • silicone resin powder silicone resin powder
  • polystyrene resin powder polycarbonate resin powder
  • acrylic styrene resin powder benzoguanamine resin powder
  • melamine resin powder polyolefin resin powder
  • polyester resin powder polyester resin powder
  • polyamide resin powder polyimide resin powder
  • polyethylene fluoride resin powder polyethylene fluoride resin powder
  • the composition for forming a hard coat layer may contain a solvent.
  • solvents include dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, acetone, and methyl ethyl ketone (MEK).
  • Only one kind of solvent may be contained in the composition for forming a hard coat layer, or two or more kinds thereof may be used.
  • the type, combination, content, etc. of solvents that can be contained in the composition for forming a hard coat layer can be appropriately set according to the purpose and desired properties.
  • a metal plating layer is a metal-containing layer formed by a plating method.
  • metals that can be contained in the metal plating layer include metals belonging to Groups 8 to 15 of the periodic table and Periods 4 to 6 of the IUPAC periodic table (iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, zinc, cadmium, mercury, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth), chromium, and manganese; ruthenium, cobalt, rhodium , nickel, palladium, platinum, copper, silver, gold, cadmium, indium, tin, lead, antimony, and bismuth are preferable, and copper is more preferable from the viewpoint of low electric resistance and cost reduction.
  • a metal sputter layer is a metal-containing layer formed by a sputtering method.
  • materials that can be used for the metal sputtered layer it is preferable to use, for example, metals belonging to Group 11 of the periodic table and Periods 4 and 5 of the IUPAC periodic table.
  • a metal foil is a foil (thin film) made of a metal material. Examples of metal materials include materials containing metals selected from gold, silver, copper, aluminum, iron, titanium, alloys containing one or more of these, and the like. Among these, materials containing copper or chromium are preferable, and materials containing copper are preferable.
  • the thin film preferably contains at least one selected from acrylic, urethane, silicone, epoxy, copper, silver, gold, chromium, nickel, palladium, platinum, and alloys of these metals.
  • the thin film 20 may consist of either a single layer or multiple layers.
  • the thickness of the thin film is not particularly limited, and from the viewpoint of facilitating the formation of a uniform and stable thin film, it is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and 0.5 ⁇ m or more. is more preferred. From the viewpoint of weight reduction and cost reduction of the member, the thickness is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the thickness of the thin film can be measured using, for example, a film thickness meter (dial gauge).
  • the molecular bonding layer in the laminate according to the embodiment of the present invention is a layer that chemically bonds the substrate and the thin film via the molecular bonding layer.
  • the layer that joins the substrate and the thin film is not bonded by the intermolecular force of the adhesive, but by chemical bonding through the molecular bonding layer, so that the substrate and the thin film are chemically bonded. bind to Therefore, even if the base material and the thin film are made of different materials or are difficult to bond, a laminate having excellent bonding strength and high adhesion can be formed.
  • the molecular bonding layer can be formed using a molecular bonding agent.
  • the molecular bonding agent that forms the molecular bonding layer according to the embodiment of the present invention chemically bonds the substrate and the thin film via the molecular bonding layer. It preferably contains a compound having a reactive group that chemically bonds with the thin film. That is, the molecular bonding agent forming the molecular bonding layer according to the embodiment of the present invention contains a compound having a reactive group that chemically bonds with the substrate and a reactive group that chemically bonds with the thin film. is preferred.
  • the reactive group that chemically bonds with the base material can be appropriately selected according to the material that constitutes the base material.
  • the reactive group that chemically bonds with the thin film can be appropriately selected according to the material that constitutes the thin film.
  • the substrate according to the embodiment of the present invention is a thermosetting resin such as a thermosetting polyimide resin, a thermosetting fluorinated polyimide resin, or a fluororesin
  • the compound contained in the molecular bonding agent As the reactive group for chemical bonding, for example, a silanol group, a group capable of generating a silanol group by a hydrolysis reaction, and the like are preferable.
  • a resin material or the like having a reactive group such as a hydroxyl group on the surface is used as the base material, it can be reacted with the reactive group of the molecular bonding layer without washing treatment or surface treatment.
  • the surface of the base material is subjected to surface treatment, etc., the number of hydroxy groups on the surface of the base material can be increased. It can be improved further.
  • the thin film according to the embodiment of the present invention is at least one selected from a coating film, a hard coat layer, a metal plating layer, a metal sputter layer, a metal foil, and a combination thereof
  • the thin film and chemical Preferred examples of the reactive group that bonds to are amino group, azide group, mercapto group, isocyanate group, ureido group and epoxy group.
  • a molecular bonding agent includes, for example, at least one reactive group A selected from the group consisting of an amino group, an azide group, a mercapto group, an isocyanate group, a ureido group and an epoxy group, and a silanol group. , and a group that generates a silanol group by hydrolysis reaction.
  • the molecular bonding layer 30 and the thin film 20 are molecularly bonded firmly by chemical bonding.
  • the molecular bonding layer 30 and the base material 40 are strongly molecularly bonded by chemical bonding. be. Then, the substrate 40 and the thin film 20 in the laminate are chemically bonded via the molecular bonding layer 30 .
  • Examples of compounds having the reactive group A and the reactive group B include compounds represented by the following formula (1).
  • RA represents a reactive group A or a monovalent substituent having one or more reactive groups A
  • RB represents a reactive group B
  • Z represents a divalent organic group.
  • the divalent organic group represented by Z in formula (1) includes an optionally substituted alkylene group having 1 to 20 carbon atoms, and an optionally substituted alkylene group having 2 to 20 carbon atoms. an alkenylene group, an alkynylene group having 2 to 20 carbon atoms which may have a substituent, an arylene group having 6 to 20 carbon atoms which may have a substituent; and the like.
  • Examples of the alkylene group having 1 to 20 carbon atoms represented by Z include methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group and the like. A propylene group is preferred, and a propylene group is more preferred.
  • the alkenylene group having 2 to 20 carbon atoms represented by Z includes vinylene group, propenylene group, butenylene group, pentenylene group and the like.
  • Examples of the alkynylene group having 2 to 20 carbon atoms represented by Z include an ethynylene group and a propynylene group.
  • the arylene group having 6 to 20 carbon atoms represented by Z includes o-phenylene group, m-phenylene group, p-phenylene group, 2,6-naphthylene group, 1,5-naphthylene group and the like.
  • substituents that the alkylene group, alkenylene group, and alkynylene group may have include halogen atoms such as a fluorine atom and a chlorine atom; alkoxy groups such as a methoxy group and an ethoxy group; alkylthio groups such as a methylthio group and an ethylthio group; groups; alkoxycarbonyl groups such as a methoxycarbonyl group and an ethoxycarbonyl group; and the like.
  • substituents that the arylene group may have include a cyano group; a nitro group; a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; an alkyl group such as a methyl group and an ethyl group; a methoxy group, an ethoxy group and the like. alkoxy group; alkylthio group such as methylthio group and ethylthio group; and the like. These substituents may be bonded to any position in a group such as an alkylene group, an alkenylene group, an alkynylene group, and an arylene group. good too.
  • the reactive group A represented by RA in formula (1) includes an amino group, an azide group, a mercapto group, an isocyanate group, a ureido group, an epoxy group, a thiol group, and R 3 and R 4 in the following formula (2) are hydrogen.
  • R 3 and R 4 in the following formula (2) are hydrogen atoms It is more preferably at least one selected from the group consisting of groups, and more preferably at least one selected from the group consisting of amino groups, azide groups, mercapto groups, isocyanate groups, ureido groups and epoxy groups. , an amino group or an azide group.
  • the thin film is an organic substance such as a hard coat layer
  • the reactive group A represented by RA in formula (1) is an amino group or an azide group
  • the molecular bonding layer and the thin film are bonded more firmly. Therefore, it is preferable.
  • Examples of the “monovalent group having at least one reactive group A” represented by R 1 A in formula (1) include groups represented by the following formulas (2) to (4).
  • R 2 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 , R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 5 and R 6 each independently represent a reactive group A or a group represented by the above formula (2) (this in formula (2), * represents a bond with a carbon atom constituting the triazine ring in formula (4).
  • R 7 is a single bond or —N(R 8 )— R 8 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • the divalent hydrocarbon group having 1 to 10 carbon atoms represented by R 2 is preferably a divalent hydrocarbon group having 2 to 6 carbon atoms.
  • R 2 include an alkylene group having 1 to 10 carbon atoms or an arylene group, and specific examples include an alkylene group such as an ethylene group, a trimethylene group and a propylene group; an o-phenylene group and an m-phenylene group. , an arylene group such as a p-phenylene group;
  • R 3 and R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms represented by R 3 and R 4 include an alkyl group, an alkenyl group, an alkynyl group, or an aryl group having 1 to 20 carbon atoms, and specifically, a methyl group.
  • R 5 and R 6 are each independently a reactive group A or a group represented by the above formula (2) (in this case, in formula (2), * represents a carbon atom constituting an aromatic ring represents a bond with an atom.). R 5 and R 6 are preferably the same reactive group A.
  • R 7 represents a single bond or a divalent group represented by -N(R 8 )-.
  • R 8 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. Examples of the hydrocarbon group for R 8 include the same hydrocarbon groups as those described above for R 3 and R 4 .
  • R 7 preferably represents -NH-.
  • R A in formula (1) is preferably a group represented by formula (4) among the groups represented by formulas (2) to (4) above, and a group represented by formula (4) and R 5 or R 6 preferably represents an azide group or a group represented by the above formula (2).
  • RA is a group represented by formula (4) and R 5 or R 6 represents a group represented by formula (2)
  • RA is, for example, represented by the following formula (5) group.
  • R 7 represents a single bond or a divalent group represented by —N(R 8 )—.
  • R 8 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, each R 2 independently represents a divalent hydrocarbon group having 1 to 10 carbon atoms, and R 3 and R 4 are Each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 may be the same or different.
  • R 7 examples include those similar to those shown in formula (4).
  • R 2 , R 3 and R 4 include the same as R 2 , R 3 and R 4 in formula (2).
  • the reactive group B represented by RB is a silanol group or a group that generates a silanol group by hydrolysis reaction, and may be, for example, a group represented by the following formula (6).
  • X represents a hydroxy group or an alkoxy group having 1 to 10 carbon atoms
  • Y represents a hydrocarbon group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 3.
  • the alkoxy group having 1 to 10 carbon atoms represented by X includes methoxy group, ethoxy group, n-propoxy group, isopropoxy group and the like, and ethoxy group is preferred.
  • the hydrocarbon group having 1 to 20 carbon atoms represented by Y includes the same hydrocarbon groups as R 3 and R 4 in formula (2).
  • X represents a hydroxy group or an alkoxy group having 1 to 10 carbon atoms, preferably a represents 3, X represents a hydroxy group or an ethoxy group, and a represents 3 more preferred.
  • the molecular bonding agent forming the molecular bonding layer contains a molecular bonding compound having a reactive group A and a reactive group B, wherein the reactive group A is an amino group, At least one selected from the group consisting of an azide group, a mercapto group, an isocyanate group, a ureido group and an epoxy group, and the reactive group B is selected from a silanol group and a group that generates a silanol group by hydrolysis reaction. At least one is preferred.
  • the following compounds can be exemplified as compounds having a reactive group A and a reactive group B.
  • Molecular bonding compounds in which RA is an amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, 3-aminopropyldiethoxymethylsilane, [3-( N,N-dimethylamino)propyl]trimethoxysilane, [3-(phenylamino)propyl]trimethoxysilane, trimethyl[3-(triethoxysilyl)propyl]ammonium chloride, trimethyl[3-(trimethoxysilyl)propyl ] and ammonium chloride.
  • Molecular bonding compounds in which RA is an azide group include (11-azidoundecyl)trimethoxysilane, (11-azidoundecyl)triethoxysilane, and the like.
  • Molecular bonding compounds in which RA is a mercapto group include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyldimethoxymethylsilane, and the like.
  • Molecular bonding compounds in which RA is an isocyanate group include 3-(trimethoxysilyl)propylisocyanate, 3-(triethoxysilyl)propylisocyanate, and the like.
  • Molecular bonding compounds in which RA is a ureido group include 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, and the like.
  • Molecular bonding compounds in which RA is an epoxy group include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyl diethoxysilane and the like.
  • Examples of compounds in which R A is a monovalent group having one or more reactive groups A include 3-(2-aminoethylamino)propyltrimethoxysilane and 3-(2-aminoethylamino)propyltriethoxysilane. , 3-(2-aminoethylamino)propyldimethoxymethylsilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and the following compounds (11) to (19).
  • the compounds (11) to (19) are preferable, and among them, (11) N,N'-bis(2-aminoethyl)-6 -(3-trihydroxysilylpropyl)amino-1,3,5-triazine-2,4-diamine or (19) 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2, Compounds of 4-diazide are preferred.
  • the thickness of the molecular bonding layer can be compared with that of the adhesive layer when using a general adhesive. and can be formed very thin. Therefore, in the laminate according to the embodiment of the present invention, the thin film laminated on the substrate can be strongly bonded by the extremely thin molecular bonding layer.
  • the thickness of the molecular bonding layer is preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 30 nm or more in order to exhibit stable bonding strength.
  • the thickness is preferably 300 nm or less, more preferably 200 nm or less, and even more preferably 100 nm or less.
  • the total light transmittance of the laminate according to the embodiment of the present invention can be set according to the purpose and mode of use, so it is not limited to a specific range. From the viewpoint of, it is preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, even more preferably 85% or more, and 90% or more Especially preferred.
  • Such a light-transmitting layered body can adjust the appearance through the layered body, for example, by suppressing unevenness in the appearance of a member using the layered body. In addition, it is possible to impart a design property in which the light transmittance is moderately restricted.
  • the total light transmittance of the laminate according to the embodiment of the present invention can be measured using a haze meter according to JIS K7136. Specifically, it can be measured by the method described in Examples below.
  • the total light transmittance of the laminate can be adjusted by adjusting the types and amounts of materials and additives (for example, the types and amounts of particles such as pigments used) that constitute the base material and the thin film.
  • Method for manufacturing laminate Although there is no particular limitation on the method for producing the laminate, it can be produced by, for example, the following production method according to an embodiment of the present invention.
  • a manufacturing method is a method for manufacturing a laminate having a base material, a molecular bonding layer, and a thin film in this order, wherein the base material and the thin film are composed of the molecules
  • a first step of activating the surface of the base material by surface treatment which is a laminate bonded by chemical bonding via a bonding layer, applying a molecular bonding agent to the surface of the activated base material.
  • a second step of forming the molecular junction layer and a third step of forming the thin film on the molecular junction layer are included.
  • the first step is to activate the surface of the substrate 40 by surface treatment.
  • the substrate 40 is prepared, and the surface of the substrate 40 is activated by surface treatment before the second step.
  • Examples of surface treatment include Na treatment, corona treatment, sputter etching treatment, plasma treatment, and the like.
  • the first step can further improve the adhesive force between the thin film and the substrate 40 that requires strong bonding.
  • reactive groups are generated by the first step such as surface treatment, thereby chemically bonding with the molecular bonding layer 30. be able to.
  • the Na treatment is a surface treatment using a treatment liquid containing metallic sodium (hereinafter referred to as "Na treatment").
  • the Na treatment of the base material 40 may be performed, for example, on the surface to be bonded to the thin film when the laminate 10 is formed.
  • Reactive groups are generated by surface modification by Na treatment, and the base material and the molecular bonding layer are strongly bonded by chemical bonding.
  • the Na treatment can be performed, for example, by immersing the substrate in a treatment liquid containing metallic sodium.
  • the treatment liquid used for Na treatment is, for example, an ammonia solution of metallic sodium and a tetrahydrofuran solution of metallic sodium/naphthalene complex.
  • a commercially available treatment liquid for example, Fluorobonder (registered trademark) manufactured by Technos) can also be used.
  • corona treatment for example, there is a method of discharging in normal pressure air using a corona treatment machine.
  • the corona treatment is carried out by irradiating the surface of the substrate with electric discharge using a corona surface treatment apparatus with a high frequency power supply.
  • the discharge output intensity is preferably 0.5 kW or more, more preferably 0.8 kW or more, and still more preferably 0.10 kW or more.
  • a sputter etching process for example, bombards the surface of a substrate with energetic particles from a gas. At the part of the substrate that the particles collide with, atoms or molecules present on the surface of the substrate are released to form reactive groups, thereby improving adhesion.
  • the sputter etching process can be performed, for example, by placing the base material in a chamber, depressurizing the chamber, and applying a high-frequency voltage while introducing an atmospheric gas.
  • Atmospheric gas is, for example, at least one selected from the group consisting of rare gases such as helium, neon, argon and krypton, nitrogen gas and oxygen gas.
  • the frequency of the high frequency voltage to be applied is, for example, 1 to 100 MHz, preferably 5 to 50 MHz.
  • the pressure in the chamber when applying the high-frequency voltage is, for example, 0.05 to 200 Pa, preferably 1 to 100 Pa.
  • the sputter etching energy (product of processing time and applied power) is, for example, 1 to 1000 J/cm 2 , preferably 2 to 200 J/cm 2 .
  • Plasma treatment includes, for example, a method of discharging in normal pressure air using a plasma discharger. It can be carried out by setting the substrate in a plasma apparatus and irradiating it with a predetermined gas.
  • the plasma processing conditions can be set to any appropriate conditions as long as the effects of the present invention can be obtained.
  • the plasma treatment may be a plasma treatment performed under atmospheric pressure or a plasma treatment performed under reduced pressure.
  • the pressure (degree of vacuum) during plasma processing is, for example, 0.05 Pa to 200 Pa, preferably 0.5 Pa to 100 Pa.
  • the frequency of the high frequency power source used for plasma processing is, for example, 1 MHz to 100 MHz, preferably 5 MHz to 50 MHz.
  • the amount of energy during plasma treatment is preferably 0.1 J/cm 2 to 100 J/cm 2 , more preferably 1 J/cm 2 to 20 J/cm 2 .
  • the plasma treatment time is preferably 1 second to 5 minutes, more preferably 5 seconds to 3 minutes.
  • the amount of gas supplied during plasma processing is preferably 1 sccm to 150 sccm, more preferably 10 sccm to 100 sccm.
  • reactive gases used in the plasma treatment include gases such as water vapor, air, oxygen, nitrogen, hydrogen, ammonia, and alcohols (eg, ethanol, methanol, isopropyl alcohol).
  • gases such as water vapor, air, oxygen, nitrogen, hydrogen, ammonia, and alcohols (eg, ethanol, methanol, isopropyl alcohol).
  • alcohols eg, ethanol, methanol, isopropyl alcohol.
  • inert gases such as helium, neon, and argon may be used in combination with the reaction gas.
  • the type of surface treatment can be appropriately selected according to the material that constitutes the base material.
  • a surface-treated commercially available film substrate or the like can also be used as the substrate.
  • the second step is a step of forming the molecular bonding layer by applying a molecular bonding agent to the surface of the activated substrate.
  • a molecular bonding agent contains a molecular bonding compound, and can be prepared, for example, by dissolving a molecular bonding compound (preferably a compound having a reactive group A and a reactive group B) in a solvent.
  • the molecular bonding layer 30 can be formed by drying the applied molecular bonding agent.
  • the applied solution contains a compound having an azide group, it is preferable to irradiate ultraviolet rays (UV: ultraviolet).
  • UV ultraviolet
  • the solution contains a compound having an amino group
  • the heating temperature is preferably 60.degree. C. or higher, more preferably 70.degree.
  • the temperature is preferably 150°C or lower, more preferably 100°C or lower, and even more preferably 90°C or lower.
  • the process of applying and drying a molecular bonding agent containing a compound having an azide group or a compound having an amino group may be repeated multiple times. Thereby, the concentration of the reactive group A and the reactive group B in the molecular bonding layer 30 can be increased.
  • Different types of molecular bonding agents molecular bonding compounds
  • a molecular bonding agent containing a compound having an amino group may be applied and dried one or more times.
  • the third step is to form the thin film on the molecular junction layer.
  • the thin film includes, for example, a coating film, a hard coat layer, a metal plating layer, a metal sputter layer, a metal foil, and a combination thereof, such as a hard coat layer, a metal plating layer, and a metal sputter layer. is preferred.
  • the thin film the above description can be used as it is.
  • the laminate according to the embodiment of the present invention is not particularly limited in its manufacturing method, and can be produced by the laminate manufacturing method according to the embodiment of the present invention. You may manufacture by methods other than the manufacturing method of a body. For example, when a base material having a reactive group capable of reacting with the molecular bonding layer on the surface is used as the base material 40, the surface treatment according to the embodiment of the present invention can be performed without performing the surface treatment in the first step. It is possible to produce laminates.
  • the reactivity of the molecular bonding layer 30 may be reduced if hydroxyl groups are present on the surface without performing the first step such as cleaning treatment or molecular bonding treatment. can be reacted with groups.
  • the first step such as cleaning treatment or molecular bonding treatment.
  • the base material 40 when a resin material or the like having a reactive group such as a hydroxyl group on the surface is used as the base material 40, it can be reacted with the reactive group of the molecular bonding layer without washing treatment or surface treatment. .
  • the first step such as surface treatment is carried out, it is possible to increase the number of hydroxyl groups appearing on the surface, which makes it easier to react with the reactive groups of the molecular bonding layer 30, thereby further improving the bonding strength. can.
  • Laminate [2] The laminate according to [1], wherein the thin film is at least one selected from a hard coat layer, a sputtered metal layer, and a plated metal layer. [3] The laminate according to [1], wherein the thin film contains at least one selected from acrylic, urethane, silicone, epoxy, copper, silver, gold, chromium, nickel, palladium, platinum, and alloys of these metals. body.
  • the molecular bonding agent forming the molecular bonding layer contains a molecular bonding compound having a reactive group A and a reactive group B, wherein the reactive group A is an amino group, an azide group, a mercapto group, an isocyanate group, or a ureido group.
  • the laminate according to any one of items.
  • a method for producing a laminate comprising a second step and a third step of forming the thin film on the molecular junction layer.
  • ⁇ Base material> ⁇ Sputter-etched product: Single-sided sputter-etched product No. manufactured by Nitto Denko Corporation. 901W (thickness: 0.05 mm) was used. Corona-treated product: PTFE No. manufactured by Nitto Denko Corporation. About 900UL (thickness 0.05 mm), corona treatment was performed using KASUGA's corona treatment machine AGF-0121 under the conditions of 0.18 kW and 20 m / min Na-treated product: Na-treated product manufactured by Nitto Denko Co., Ltd. No. 901UL (thickness 0.05mm) is used
  • molecular bonding agent A The following molecular conjugate compound (11) N,N'-bis(2-aminoethyl)-6-(3-trihydroxysilylpropyl)amino-1,3,5-triazine-2,4-diamine (Io Chemical Co., Ltd. Laboratory Co., Ltd.) 0.5% by mass aqueous solution was used as the molecular bonding agent A.
  • Molecular bonding agent B The following molecular junction compound (19) 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-diazide (manufactured by Io Kagaku Kenkyusho Co., Ltd.) 0.1 wt% ethanol solution A molecular bonding agent B was used.
  • Example 1 The molecular bonding agent A prepared above was applied to the sputter-etched surface of a PTFE film (base material: fluorine-based resin film No. 901W (thickness: 0.05 mm, single-sided sputter-etched product) manufactured by Nitto Denko Corporation)). It was coated using #14 and dried in an oven at 120° C. for 10 minutes to form a molecular junction layer with a thickness of 30 nm.
  • base material fluorine-based resin film No. 901W (thickness: 0.05 mm, single-sided sputter-etched product) manufactured by Nitto Denko Corporation)
  • a urethane-based hard coat reagent was applied onto the molecular bonding layer prepared on the sputter-etched surface of the PTFE film using a #4 wire bar, dried at 80°C for 60 seconds, and irradiated with UV (350-400 mJ).
  • a laminate of Example 1 was obtained in which a hard coat layer (HC) having a thickness of 1 ⁇ m was formed, and the hard coat layer (thin film) and the fluororesin film (substrate) were chemically bonded via a molecular bonding layer. rice field.
  • Example 2 The molecular bonding agent B prepared above was applied to the sputter-etched surface of a PTFE film (base material: No. 901W manufactured by Nitto Denko Corporation (thickness: 0.05 mm, single-sided sputter-etched product)) using a wire bar #14. After drying (drying conditions: 80° C. for 3 minutes), UV irradiation was performed (UV irradiation conditions: 254 nm, 100 mJ). Thereafter, the wire bar #14 was used again to apply the molecular bonding agent B, and after drying (drying conditions: 80° C. for 3 minutes), UV irradiation was performed (UV irradiation conditions: 254 nm, 100 mJ). A 30 nm-thick molecular bonding layer was formed on the sputter-etched surface of the substrate by the above operation.
  • a hard coat layer (HC) having a thickness of 1 ⁇ m was formed on the molecular bonding layer formed on the sputter-etched surface of the base material in the same manner as in Example 1, and the hard coat layer (thin film) and the fluororesin film (base material) were formed.
  • a laminate of Example 2 was obtained in which the material) was chemically bonded via the molecular bonding layer.
  • Example 3 As in Example 1, using the molecular bonding agent A prepared above, a molecular bonding layer having a thickness of 30 nm was formed on the sputter-etched surface of the PTFE film.
  • a Pd—Sn catalyst manufactured by Rohm & Haas Co., Ltd. was used to support a catalyst on the molecular bonding layer formed on the sputter-etched surface of the substrate by a colloid method (pre-dip/catalyst/accelerator).
  • a colloid method pre-dip/catalyst/accelerator.
  • the PTFE coated with the molecular bonding layer was immersed in the pre-dip at 25°C for 1 minute, the catalyst was immersed in the catalyst at 50°C for 1 minute, washed with deionized water, and then the accelerator was placed at 25°C for 3 minutes. immersion was performed. After that, by washing with ion-exchanged water, a Pd—Sn catalyst carrier was obtained.
  • a copper plating layer having a thickness of 10 ⁇ m or less was formed by immersing the Pd—Sn catalyst carrier at 30° C. for 5 minutes using Surcup PEA (copper plating solution) manufactured by Uyemura Kogyo Co., Ltd. as an electroless plating bath.
  • Surcup PEA copper plating solution manufactured by Uyemura Kogyo Co., Ltd. as an electroless plating bath.
  • a laminate (copper-plated fluorine film) of Example 3 was obtained in which the copper-plated layer (thin film) and the fluorine-based resin film (substrate) were chemically bonded via the molecular bonding layer.
  • Example 4 In the same manner as in Example 3, using the molecular bonding agent A prepared above, a molecular bonding layer having a thickness of 30 nm was formed on the sputter-etched surface of the PTFE film to obtain a Pd—Sn catalyst carrier.
  • Example 5 A PTFE film (base material: Nitto Denko Corporation fluororesin film No. 900UL (thickness 0.05 mm) was treated with a corona treatment machine AGF-0121 manufactured by KASUGA under the conditions of 0.18 kW and 20 m / min. processed.
  • the molecular bonding agent B prepared above was applied to the corona-treated surface of the PTFE film using a wire bar #14, dried (drying conditions: 80° C. for 3 minutes), and then irradiated with UV (UV irradiation conditions: 254 nm, 100 mJ). Thereafter, the wire bar #14 was used again to apply the molecular bonding agent B, and after drying (drying conditions: 80° C.
  • UV irradiation was performed (UV irradiation conditions: 254 nm, 100 mJ).
  • a 30 nm-thick molecular bonding layer was formed on the corona-treated surface of the substrate by the above operation.
  • a urethane-based hard coat reagent was applied onto the molecular bonding layer formed on the corona-treated surface of the PTFE film using a #4 wire bar, dried at 80°C for 60 seconds, and irradiated with UV (350 to 400 mJ).
  • a laminate of Example 5 was obtained in which a hard coat layer (HC) having a thickness of 1 ⁇ m was formed, and the hard coat layer (thin film) and the fluororesin film (substrate) were chemically bonded via a molecular bonding layer. .
  • Example 6 The molecular bonding agent B prepared above was applied to the Na-treated surface of a PTFE film (base material: fluorine-based resin film No. 901UL (thickness: 0.05 mm, Na-treated product) manufactured by Nitto Denko Corporation)) with a wire bar #14. After drying (drying conditions: 80° C. for 3 minutes), UV irradiation was performed (UV irradiation conditions: 254 nm, 100 mJ). Thereafter, the wire bar #14 was used again to apply the molecular bonding agent B, and after drying (drying conditions: 80° C. for 3 minutes), UV irradiation was performed (UV irradiation conditions: 254 nm, 100 mJ). A 30 nm-thick molecular bonding layer was formed on the Na-treated surface of the substrate by the above operation.
  • base material fluorine-based resin film No. 901UL (thickness: 0.05 mm, Na-treated product) manufactured by Nitto Denko Corporation)
  • a urethane-based hard coat reagent was applied onto the molecular bonding layer prepared on the Na-treated surface of the PTFE film using a wire bar #4, dried at 80° C. for 60 seconds, and irradiated with UV (350-400 mJ).
  • a laminate of Example 6 was obtained in which a hard coat layer (HC) having a thickness of 1 ⁇ m was formed, and the hard coat layer (thin film) and the fluororesin film (substrate) were chemically bonded via a molecular bonding layer. .
  • Comparative Example 1 Hard coating was performed in the same manner as in Example 1 except that the base material was changed to an untreated PTFE film (base material: fluororesin film No. 900UL (thickness 0.05 mm) manufactured by Nitto Denko Corporation).
  • base material fluororesin film No. 900UL (thickness 0.05 mm) manufactured by Nitto Denko Corporation.
  • a laminate of Comparative Example 1 was obtained in which a layer (thin film: thickness 1 ⁇ m) and a fluororesin film (substrate) were bonded with a molecular bonding layer (thickness 30 nm).
  • the PTFE film since the PTFE film was not pretreated, reactive groups were not excited on the surface of the PTFE film, and the substrate and the thin film were not chemically bonded via the molecular bonding layer. rice field.
  • a PTFE film (base material: Nitto Denko Corporation fluororesin film No. 900UL (thickness 0.05 mm) was treated with a corona treatment machine AGF-0121 manufactured by KASUGA under the conditions of 0.18 kW and 20 m / min. processed.
  • a urethane-based hard coat reagent was applied to the corona-treated surface of the PTFE film using a #4 wire bar, dried at 80°C for 60 seconds, and irradiated with UV (350 to 400 mJ) to form a 1 ⁇ m thick hard coat layer ( HC) was formed to obtain a laminate of Comparative Example 2 in which a hard coat layer (thin film) and a fluororesin film (substrate) were laminated.
  • Example 7 A PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) sheet (thickness: 0.05 mm) was set in a sputter etching treatment apparatus, the pressure inside the apparatus was reduced to 10 -6 Torr, and then argon gas was introduced. Under this flow, the sheet was adjusted and held at 8 ⁇ 10 ⁇ 3 Torr, and a high frequency power of 13.56 MHz, 400 W was applied to generate glow discharge, and the sheet was sputter-etched for 1 minute. A molecular bonding agent A and a hard coat layer (HC) were formed by the method described in Example 1. The total light transmittance (%) of the formed laminate was measured using a haze meter Hz-1 manufactured by SUGA TEST INSTRUMENTS.

Abstract

本発明は、基材と、分子接合層と、薄膜とをこの順に有する積層体であって、前記薄膜の厚みが10μm以下であり、前記基材と前記薄膜とが前記分子接合層を介して化学結合により接合された、積層体に関する。

Description

積層体、及び積層体の製造方法
 本発明は、積層体、及び積層体の製造方法に関する。
 近年、鉄道車両、航空機、船舶、自動車等の輸送機器、電子機器、住宅設備等の部材には、様々な材料が用いられている。例えば、樹脂、ゴム、金属、ガラス、セラミックス等の異種の材料を組み合わせた複合材料が検討されている。
 そして、これらの複合材料には、高い水準の接合強度が求められる。
 このため、異種の材料や難接着材料を用いて、積層体を形成する場合、熱プレス等により熱と圧力で一方の材料を溶融させ、もう一方の材料の粗化処理部や絶縁樹脂材料の粗化部および空孔部分に食い込ませて、アンカー効果による強固な接着を実現させる方法が用いられていた。
 また、異種材料の接着にはプライマー溶液の塗布や、プライマー溶液の塗布に先立ち、下処理としてサンドブラスト処理、コロナ処理、プラズマ処理などの各種表面処理が必要となる。
 例えば、十分な接着強度を得るための手段として、樹脂部材の表面を改質するために適切なプライマー溶液を塗布する技術があるが、耐溶剤性の高い樹脂の場合、十分な接着強度を発現できないという問題がある。そして、このような表面処理方法においては、表面処理工程および乾燥工程を設けなければならず、工程が増え、生産性が低下するためコスト面にも問題がある。
 このように、異種材料を接合する際には、様々な接合技術が用いられているが、強固に接合するのは困難であった。
 そこで、分子接着化合物を用いた化学結合による接合が検討されている。例えば、特許文献1には、接着し難い樹脂製やゴム製の固体の接着基材表面を処理して異種で固体の被接着基材と接着して簡易に一体化し、汎用性の高い接着体を提供することを目的として、接着基材の表面の活性基を介してグラフト共重合された分子接着剤の分子と、被接着基材の表面に有する官能性基とによる共有結合によって、接着基材と被接着基材とを接着して一体化する技術が記載されている。
日本国特開2018-168218号公報
 しかしながら、薄膜を他の部材に接合させる場合、薄膜が溶融するほど加熱すると薄膜に破れが生じる等アンカー効果を得るのは難しい。また、特許文献1に記載の技術においては分子接着剤を用いて加熱プレスすることによる接着技術が記載されているが、薄膜の積層については検討がされていない。
 このように、従来の技術では、薄膜を他の部材に接合させるのは難しく、十分な接合強度や密着性が得られないという課題があった。さらに、薄膜は厚みが非常に薄い場合は薄膜単体として存在できないため、加熱プレスを用いた接着による積層はできず、他の部材上に成膜することにより積層する必要があった。
 以上のような問題を鑑みて、本発明は、薄膜と基材とが分子接合により接合した、接合強度に優れ、密着性の高い積層体、及び積層体の製造方法を提供することを目的とする。
 前記課題を解決するための手段は、以下の通りである。
〔1〕
 基材と、分子接合層と、薄膜とをこの順に有する積層体であって、前記薄膜の厚みが10μm以下であり、前記基材と前記薄膜とが前記分子接合層を介して化学結合により接合された、積層体。
〔2〕
 前記薄膜がハードコート層、金属スパッタ層、又は金属めっき層から選択される少なくとも1種である、〔1〕に記載の積層体。
〔3〕
 前記薄膜が、アクリル、ウレタン、シリコーン、エポキシ、銅、銀、金、クロム、ニッケル、パラジウム、白金、及びこれらの金属の合金から選択される少なくとも1種を含有する、〔1〕に記載の積層体。
〔4〕
 前記基材がフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂から選択される少なくとも1種を含有する樹脂基材である、〔1〕~〔3〕のいずれか一項に記載の積層体。
〔5〕
 前記分子接合層を形成する分子接合剤が、反応性基Aと、反応性基Bとを有する分子接合化合物を含有し、反応性基Aがアミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基及びエポキシ基からなる群から選択された少なくとも1種であり、反応性基Bがシラノール基、及び加水分解反応によりシラノール基を生成させる基から選択される少なくとも1種である、〔1〕~〔3〕のいずれか一項に記載の積層体。
〔6〕
 全光線透過率が80%以上である、〔1〕~〔3〕のいずれか一項に記載の積層体。
〔7〕
 基材と、分子接合層と、薄膜とをこの順に有する積層体の製造方法であって、前記積層体は、前記基材と前記薄膜とが前記分子接合層を介して化学結合により接合された積層体であり、前記基材の表面を、表面処理により活性化する第一の工程、活性化した前記基材の表面に、分子接合組成物を塗布することにより前記分子接合層を形成する第二の工程、前記分子接合層上に、前記薄膜を形成する第三の工程を含む、積層体の製造方法。
 本発明の実施形態によれば、薄膜と基材とが分子接合により強固に接合した、接合強度に優れ、密着性の高い積層体、及び積層体の製造方法の提供が可能である。
図1は、本発明の実施形態に係る積層体の一例を示す概略断面図である。
 以下、本発明の実施形態について、詳細に説明する。
<積層体>
 本発明の実施形態に係る積層体は、基材と、分子接合層と、薄膜とをこの順に有する積層体であって、前記薄膜の厚みが10μm以下であり、前記基材と前記薄膜とが前記分子接合層を介して化学結合により接合された、積層体である。
 図1は、本発明の実施形態に係る積層体10を示す概略断面図である。図1に示すように、本実施形態に係る積層体10は、基材40と、分子接合層30と、薄膜20とをこの順に有する。
 このように構成された本発明の実施形態に係る積層体の詳細については後述するが、本発明の実施形態に係る積層体は、基材と薄膜とが、接着剤による分子間力で接着されたものではなく、分子接合層を介して化学結合により接合されたものであるため、基材と薄膜とが化学的に結合する。そのため、基材と薄膜とが異種の材料であったり、難接着材料あっても、接合強度に優れ、密着性の高い積層体を形成することができる。また、薄膜の厚みを10μm以下とすることにより、厚みの薄い積層体を得ることができる。さらに、分子接合層は、分子接合層を構成する化合物を単分子とすることができ、理論上は1分子の厚みで強固に接着が可能なため、極めて薄い厚みで基材と薄膜とを強固に接合することが可能である。
 ここで、化学結合とは、共有結合、イオン結合、水素結合、配位結合をいう。
 〔基材〕
 本発明の実施形態に係る積層体において、基材に用いる材料に特に制限はなく、樹脂、ゴム、金属、ガラス、セラミックス等が挙げられ、用途に応じて選択が可能である。
 例えば、電子技術の発達により、高周波帯域を使用するコンピュータや移動通信機器等の電子機器が増加しつつある。本発明の実施形態に係る積層体をこのような電子機器に用いる場合、基材に用いる材料は、樹脂(樹脂材料)であることが好ましい。中でも、電子機器に用いられる高周波用配線基板や多層配線基板には、一般的に低比誘電率材料が求められるため、低比誘電率の樹脂材料を用いることが好ましい。
 樹脂材料としては、例えば、硬化性樹脂(例えば、熱硬化性樹脂、光硬化性樹脂等)、熱可塑性樹脂などの樹脂が挙げられる。
 硬化性樹脂としては、例えば、ポリカーボネート樹脂、熱硬化性ポリイミド樹脂、熱硬化性フッ化ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、熱硬化性ウレタン樹脂、フッ素樹脂(含フッ素オレフィンの重合体(具体的には、ポリテトラフルオロエチレン(PTFE)など))、液晶ポリマー(LCP)などが挙げられる。これらは、単独使用または2種以上併用することができる。
 熱可塑性樹脂としては、例えば、ポリエチレン樹脂やポリプロピレン樹脂等のオレフィン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリアクリロニトリル樹脂、マレイミド樹脂、ポリ酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリルスルホン樹脂、熱可塑性ポリイミド樹脂、熱可塑性フッ化ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリエーテルイミド樹脂、ポリメチルペンテン樹脂、セルロース樹脂、液晶ポリマー、アイオノマーなどが挙げられる。これらは、単独使用または2種以上併用することができる。
 本発明の実施形態に係る積層体において、基材がフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂から選択される少なくとも1種を含有する樹脂基材であることが好ましい。
 樹脂材料としては、硬化性樹脂が好ましく、熱硬化性ポリイミド樹脂、熱硬化性フッ化ポリイミド樹脂、フッ素樹脂がより好ましく、フッ素樹脂が更に好ましい。
 フッ素系樹脂は、低比誘電率の樹脂材料であり、低誘電損失の材料でもあるため、高周波通信アンテナ基板の用途に適している。
 しかしながら、硬化性樹脂は難接着樹脂であり、他の材料とのなじみが悪く、薄膜との積層が困難であった。例えば、フッ素系樹脂は表面自由エネルギーが小さいため他の材料との接合が難しく、フッ素系樹脂を含有する樹脂基材に他の材料を積層しても剥がれが生じやすく、密着性に優れた積層体を得るのは困難であった。
 ここでフッ素系樹脂は、フッ素系モノマーを繰り返し単位として含むポリマーであり、フッ素樹脂と他の樹脂とをブレンドした樹脂組成物であってもよく、フッ素系モノマーと共重合可能な他のモノマーを重合して得られる共重合体であってもよい。
 フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)、及びポリクロロトリフルオロエチレン(PCTFE)等が挙げられ、中でも、PTFE、PFAがより好ましい。
 フッ素樹脂が、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)、及びポリクロロトリフルオロエチレンからなる群より選択される少なくとも1種であることが好ましい。
 フッ素系モノマーとしては、例えば、フッ化ビニリデン、ヘキサフルオロプロピレン、テトラフルオロエチレン、クロロトリフルオロエチレンなどのフッ素系エチレンモノマー等が挙げられる。
 フッ素系樹脂は、フッ素樹脂以外の成分を含んでいなくてもよいし、フッ素樹脂以外の成分を実質的に含まなくてもよい。本明細書において「実質的に含まない」とは、含有率が0.1質量%未満、好ましくは0.01質量%未満であることを意味する。
 基材の形状は、特に限定はなく、例えば、平面を有する板状、曲面を有する板状、シート状、フィルム状、基材に用いる材料の成型体等であってもよい。
 〔薄膜〕
 本発明の実施形態に係る積層体において、薄膜としては、例えば、塗膜、ハードコート層、金属めっき層、金属スパッタ層、金属箔、及びこれらの組み合わせ等が挙げられ、ハードコート層、金属スパッタ層、又は金属めっき層から選択される少なくとも1種であることが好ましい。
 本発明の実施形態に係る薄膜は、複数の層であってもよく、1種の層を複数設けてもよく、2種以上の層を複数設けてもよい。
 また、薄膜の材料に特に制限はなく、樹脂、ゴム、金属、ガラス、セラミックス等が挙げられ、用途に応じて選択が可能である。
 塗膜は、例えば、塗料により形成される。塗料の塗装方法に特に制限は無く、刷毛塗り、ローラー塗装、スプレー塗装、各種コーター塗装などの一般的な方法を用いることができ、その塗布量は特に限定されるものではない。また、塗料を加熱する時間や温度等も、用いる塗料、塗布量等によって適宜決定することができる。
 塗膜としては、特に制限されず、例えば、エポキシ系、ポリエステル・メラミン系、アルキド・メラミン系、アクリル・メラミン系、アクリル・ウレタン系、アクリル・多酸硬化剤系などの各種塗膜が挙げられる。
 塗膜の厚みは、特に制限は無く、好ましくは0.001~10μmであり、より好ましくは0.01~8μmである。
 塗膜の塗装方法に特に制限は無く、刷毛塗り、ローラー塗装、スプレー塗装、各種コーター塗装などの一般的な方法を用いることができ、その塗布量は特に限定されるものではない。また、塗膜を加熱する時間や温度等も、用いる塗料、塗布量等によって適宜決定することができる。
 ハードコート層は、例えば、ハードコート層形成用組成物から形成され得る。具体的には、例えば、基材上の分子接合層を設けた面にハードコート層形成用組成物を塗布して、必要に応じて硬化処理(例えば、紫外線照射や加熱処理など)を行い、ハードコート層を形成することができる。なお、ハードコート層を形成した後に、該ハードコート層にコロナ処理、プラズマ処理等の表面処理を施してもよい。
 ハードコート層形成用組成物の塗布方法としては、本発明の効果を損なわない範囲で、任意の適切な方法を採用し得る。このような塗布方法としては、例えば、バーコート法、グラビアロールコート法、ダイコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法などが挙げられる。
 ハードコート層形成用組成物の塗布によって形成される塗布層の加熱温度は、ハードコート層形成用組成物の組成に応じて、任意の適切な温度に設定され得る。このような加熱温度は、好ましくは、基材層に含まれる樹脂のガラス転移温度以下に設定される。基材層に含まれる樹脂のガラス転移温度以下の温度で加熱すれば、加熱による変形が抑制されたハードコート層付の積層体を得ることができる。
 加熱温度は、好ましくは、60℃~140℃であり、より好ましくは60℃~100℃である。このような範囲で加熱することにより、基材層との密着性に優れるハードコート層を形成することができる。
 硬化処理としては、本発明の効果を損なわない範囲で、任意の適切な硬化処理を採用され得る。硬化処理としては、代表的には、紫外線照射、加熱処理などが挙げられる。紫外線照射の積算光量は、好ましくは200mJ~400mJである。
 ハードコート層形成用組成物は、本発明の効果を損なわない範囲で、任意の適切なモノマーや樹脂(オリゴマー、プレポリマー、ポリマーからなる群から選ばれる少なくとも1種)を含み得る。1つの実施形態においては、ハードコート層形成用組成物は、熱硬化型または光硬化型の硬化性化合物を含む。硬化性化合物は、例えば、モノマー、樹脂(オリゴマー、プレポリマー、ポリマーからなる群から選ばれる少なくとも1種)からなる群から選ばれる少なくとも1種である。
 硬化性化合物としては、好ましくは、多官能モノマーおよびオリゴマーからなる群から選ばれる少なくとも1種を採用し得る。このような硬化性化合物としては、2個以上の(メタ)アクリロイル基を有するモノマーまたはオリゴマー、ウレタン(メタ)アクリレートまたはウレタン(メタ)アクリレートのオリゴマー、エポキシ系モノマーまたはオリゴマー、シリコーン系モノマーまたはオリゴマー、などが挙げられ、これらの中でも、本発明の効果をより発現させ得る点で、硬化性化合物としては、好ましくは、ウレタン(メタ)アクリレートまたはウレタン(メタ)アクリレートのオリゴマーである。
 ハードコート層形成用組成物は、本発明の効果を損なわない範囲で、任意の適切な添加剤を含み得る。このような添加剤としては、例えば、重合開始剤、レベリング剤、ブロッキング防止剤、分散安定剤、揺変剤、酸化防止剤、紫外線吸収剤、消泡剤、増粘剤、分散剤、界面活性剤、触媒、フィラー、滑剤、帯電防止剤などが挙げられる。このような添加剤は、1種のみであってもよいし、2種以上であってもよい。ハードコート層形成用組成物に含み得る添加剤の種類、組み合わせ、含有量などは、目的や所望の特性に応じて適切に設定され得る。
 ハードコート層形成用組成物は、添加剤として、微粒子を含んでいてもよい。微粒子を含むハードコート層形成用組成物を用いれば、アンチグレア機能を付与し得る。微粒子としては、無機微粒子であってもよいし、有機微粒子であってもよい。
 無機微粒子としては、例えば、酸化ケイ素微粒子、酸化チタン微粒子、酸化アルミニウム微粒子、酸化亜鉛微粒子、酸化錫微粒子、炭酸カルシウム微粒子、硫酸バリウム微粒子、タルク微粒子、カオリン微粒子、硫酸カルシウム微粒子などが挙げられる。
 有機微粒子としては、例えば、ポリメタクリル酸メチル樹脂粉末(PMMA微粒子)、シリコーン樹脂粉末、ポリスチレン樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン樹脂粉末、ポリオレフィン樹脂粉末、ポリエステル樹脂粉末、ポリアミド樹脂粉末、ポリイミド樹脂粉末、ポリフッ化エチレン樹脂粉末などが挙げられる。
 ハードコート層形成用組成物に含み得る微粒子は、1種のみであってもよいし、2種以上であってもよい。ハードコート層形成用組成物に含み得る微粒子の種類、組み合わせ、含有量などは、目的や所望の特性に応じて適切に設定され得る。
 ハードコート層形成用組成物は、溶媒を含んでいてもよい。溶媒としては、例えば、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4-ジオキサン、1,3-ジオキソラン、1,3,5-トリオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン(CPN)、シクロヘキサノン、メチルシクロヘキサノン、蟻酸エチル、蟻酸プロピル、蟻酸n-ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酢酸n-ペンチル、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、アセト酢酸エチル、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、シクロヘキサノール、イソプロピルアルコール(IPA)、酢酸イソブチル、メチルイソブチルケトン(MIBK)、2-オクタノン、2-ペンタノン、2-ヘキサノン、2-ヘプタノン、3-ヘプタノン、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルなどが挙げられる。
 ハードコート層形成用組成物に含み得る溶媒は、1種のみであってもよいし、2種以上であってもよい。ハードコート層形成用組成物に含み得る溶媒の種類、組み合わせ、含有量などは、目的や所望の特性に応じて適切に設定され得る。
 金属めっき層は、めっき法により形成した金属含有層である。
 金属めっき層に含有し得る金属としては、例えば、周期表第8族~第15族かつIUPAC周期表の第4周期~第6周期に属する金属(鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛、カドニウム、水銀、ガリウム、インジウム、タリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス)、クロム、及びマンガンが挙げられ、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、銀、金、カドニウム、インジウム、スズ、鉛、アンチモン、ビスマスが好ましく、電気抵抗が低く及びコスト抑制の観点から銅がより好ましい。
 金属スパッタ層は、スパッタリング法により形成した金属含有層である。
 金属スパッタ層に用い得る材料としては、例えば、周期表第11族、かつ、IUPAC周期表の第4周期および第5周期に属する金属を用いるのが好ましい。
 金属箔は、金属材料からなる箔(薄膜)である。金属材料としては、例えば、金、銀、銅、アルミニウム、鉄、チタン、これらのうちの1以上を含む合金等より選択される金属を含む材料が挙げられる。これらの中でも、銅、又はクロムを含む材料が好ましく、銅を含む材料が好ましい。
 薄膜は、アクリル、ウレタン、シリコーン、エポキシ、銅、銀、金、クロム、ニッケル、パラジウム、白金、及びこれらの金属の合金から選択される少なくとも1種を含有することが好ましい。
 薄膜20は、単層および複層のいずれの層からなっていてもよい。
 薄膜の厚みは、特に制限は無く、均一で安定した薄膜を形成し易くする観点から0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.5μm以上であることがさらに好ましい。また、部材の軽量化及び低コスト化の観点から10μm以下であることが好ましく、8μm以下であることがより好ましく、5μm以下であることがさらに好ましい。薄膜の厚みは、例えば、膜厚計(ダイアルゲージ)を用いて測定することができる。
 〔分子接合層〕
 本発明の実施形態に係る積層体における分子接合層は、基材と薄膜とを分子接合層を介して化学結合により接合する層である。
 基材と薄膜とを接合する層が接着剤による分子間力で接着されたものではなく、分子接合層を介して化学結合により接合されたものであることにより、基材と薄膜とが化学的に結合する。このため、基材と薄膜とが異種の材料であったり、難接着材料あっても、接合強度に優れ、密着性の高い積層体を形成することができる。
 本発明の実施形態に係る積層体において、分子接合層は分子接合剤により形成することができる。
 本発明の実施形態に係る分子接合層を形成する分子接合剤は、分子接合層を介して基材と薄膜とを化学的に結合させるため、基材と化学的に結合する反応性基、及び薄膜と化学的に結合する反応性基を有する化合物を含有することが好ましい。
 すなわち、本発明の実施形態に係る分子接合層を形成する分子接合剤は、基材と化学的に結合する反応性基、及び薄膜と化学的に結合する反応性基を有する化合物を含有することが好ましい。
 基材と化学的に結合する反応性基は、基材を構成する材料に応じて適宜選択することができる。また、薄膜と化学的に結合する反応性基は、薄膜を構成する材料に応じて適宜選択することができる。
 例えば、本発明の実施形態に係る基材が、熱硬化性ポリイミド樹脂、熱硬化性フッ化ポリイミド樹脂、フッ素樹脂等の熱硬化性樹脂である場合、分子接合剤が含む化合物における、基材と化学的に結合する反応性基としては、例えば、シラノール基、及び加水分解反応によりシラノール基を生成させる基等が好ましい。基材として表面にヒドロキシ基等の反応性基が存在する樹脂材料等を用いる場合は、洗浄処理又は表面処理をすることなく、分子接合層の反応性基と反応させることができる。ただし、後述するように基材の表面に対し表面処理等を実施すると、基材表面のヒドロキシ基を増加させることができるため、分子接合剤が有する反応性基と反応しやすくなり、接合力をより一層向上させることができる。
 また、例えば、本発明の実施形態に係る薄膜が塗膜、ハードコート層、金属めっき層、金属スパッタ層、金属箔、及びこれらの組み合わせから選択される少なくとも1種である場合、薄膜と化学的に結合する反応性基としては、例えば、アミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基及びエポキシ基等が好ましい。
 本発明の実施形態に係る分子接合剤は、例えば、アミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基及びエポキシ基からなる群から選択された少なくとも1種の反応性基Aと、シラノール基、及び加水分解反応によりシラノール基を生成させる基からなる群から選択された少なくとも1種の反応性基Bを有する化合物を含有することが好ましい。
 薄膜を構成する材料に含まれる化合物が、上記反応性基Aと強固に化学結合する部分構造を有していると、分子接合層30と薄膜20とが化学結合により強固に分子接合される。
 基材を構成する材料に含まれる化合物が、上記反応性基Bと強固に化学結合する部分構造を有していると、分子接合層30と基材40とが化学結合により強固に分子接合される。
 そして、積層体における基材40と薄膜20とが分子接合層30を介して化学結合により接合される。
 上記反応性基Aと反応性基Bを有する化合物としては、例えば、下記式(1)で表される化合物が挙げられる。
-Z-R    (1)
 (式(1)中、Rは反応性基A又は反応性基Aを1以上有する1価の置換基を表し、Rは反応性基Bを表し、Zは2価の有機基を表す。)
 式(1)におけるZで表される2価の有機基としては、置換基を有していてもよい炭素数1~20のアルキレン基、置換基を有していてもよい炭素数2~20のアルケニレン基、置換基を有していてもよい炭素数2~20のアルキニレン基、置換基を有していてもよい炭素数6~20のアリーレン基;等が挙げられる。
 Zで表される炭素数1~20のアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられ、メチレン基、エチレン基、プロピレン基が好ましく、プロピレン基がより好ましい。
 Zで表される炭素数2~20のアルケニレン基としては、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。
 Zで表される炭素数2~20のアルキニレン基としては、エチニレン基、プロピニレン基等が挙げられる。
 Zで表される炭素数6~20のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、2,6-ナフチレン基、1,5-ナフチレン基等が挙げられる。
 上記アルキレン基、アルケニレン基、及びアルキニレン基が有していてもよい置換基としては、フッ素原子、塩素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基、エチルチオ基等のアルキルチオ基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;等が挙げられる。
 上記アリーレン基が有していてもよい置換基としては、シアノ基;ニトロ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基、エチルチオ基等のアルキルチオ基;等が挙げられる。
 これらの置換基は、アルキレン基、アルケニレン基、アルキニレン基及びアリーレン基等の基において任意の位置に結合していればよく、同一の元素又は互いに異なる元素に複数個の置換基が結合していてもよい。
 式(1)におけるRが表す反応性基Aは、アミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基、エポキシ基、チオール基、及び下記式(2)におけるR及びRが水素原子である基からなる群から選ばれる少なくとも1種を表し、アミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基及びエポキシ基及び下記式(2)におけるR及びRが水素原子である基からなる群から選ばれる少なくとも1種であることがより好ましく、アミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基及びエポキシ基からなる群から選択された少なくとも1種であることが更に好ましく、アミノ基又はアジド基であることがより更に好ましい。
 特に、薄膜がハードコート層等の有機物である場合、式(1)におけるRが表す反応性基Aがアミノ基又はアジド基であると、分子接合層と薄膜とがより強固に接合されるため好ましい。
 式(1)におけるRが表す「反応性基Aを1以上有する1価の基」としては、例えば、下記式(2)~(4)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 (式(2)~(4)中、*は、式(1)におけるZとの結合手を表す。Rは、炭素数1~10の2価の炭化水素基を表す。R、Rは、それぞれ独立に、水素原子、又は炭素数1~20の炭化水素基を表す。R、Rは、それぞれ独立に、反応性基A又は上記式(2)で示される基(この場合、式(2)中、*は、式(4)におけるトリアジン環を構成する炭素原子との結合手を表す)を表す。Rは、単結合、又は、-N(R)-で表される2価の基を表す。Rは、水素原子、又は炭素数1~20の炭化水素基を表す。
 式(2)中、Rが表す炭素数1~10の2価の炭化水素基としては、炭素数2~6の2価の炭化水素基が好ましい。Rとしては、例えば、炭素数1~10のアルキレン基、又はアリーレン基が挙げられ、具体的には、エチレン基、トリメチレン基、プロピレン基等のアルキレン基;o-フェニレン基、m-フェニレン基、p-フェニレン基等のアリーレン基;が挙げられる。
 式(2)中、R、Rは、それぞれ独立に、水素原子、又は炭素数1~20の炭化水素基を表し、水素原子、又は炭素数1~10の炭化水素基が好ましい。
 R、Rが表す炭素数1~20の炭化水素基としては、例えば、炭素数1~20のアルキル基、アルケニル基、アルキニル基、又はアリール基が挙げられ、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、3-ブテニル基、4-ペンテニル基、5-ヘキセニル基等のアルケニル基;エチニル基、プロパルギル基、ブチニル基等のアルキニル基;フェニル基、1-ナフチル基、2-ナフチル基等のアリール基;等が挙げられる。
 式(4)中、R、Rは、それぞれ独立に、反応性基A又は上記式(2)で示される基(この場合、式(2)中、*は、芳香環を構成する炭素原子との結合手を表す。)を表す。R及びRは同一の反応性基Aであることが好ましい。
 式(4)中、Rは、単結合、又は、-N(R)-で表される2価の基を表す。Rは、水素原子、又は炭素数1~20の炭化水素基を表す。Rの炭化水素基としては、上記R、Rの炭化水素基として示したものと同様のものが挙げられる。
 式(4)中、Rは、-NH-を表すことが好ましい。
 式(1)におけるRは、上記式(2)~(4)で表される基のうち、式(4)で表される基であることが好ましく、式(4)で表される基であって、R、又はRがアジド基、又は上記式(2)で示される基を表すことが好ましい。
 Rが、式(4)で表される基であり、R、又はRが式(2)で示される基を表す場合、Rとしては、例えば、下記式(5)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 (式(5)中、*は、式(1)におけるZとの結合手を表す。Rは、単結合、又は、-N(R)-で表される2価の基を表す。Rは、水素原子、又は炭素数1~20の炭化水素基を表す。Rは、それぞれ独立に、炭素数1~10の2価の炭化水素基を表す。R、Rは、それぞれ独立に、水素原子、又は炭素数1~20の炭化水素基を表し、R、R、及びRはそれぞれ同一でも異なるものでもよい。)
 Rとしては、式(4)で示したものと同様のものが挙げられる。
 R、R、及びRとしては、式(2)におけるR、R、及びRと同様のものが挙げられる。
 Rが表す反応性基Bは、シラノール基又は加水分解反応によりシラノール基を生成させる基であり、例えば、下記式(6)で表される基であってもよい。
-Si(X)(Y)3-a    (6)
 (式(6)中、Xは、ヒドロキシ基、炭素数1~10のアルコキシ基を表し、Yは、炭素数1~20の炭化水素基を表す。aは、1~3の整数を表す。)
 式(6)中、Xで表される炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等が挙げられ、エトキシ基が好ましい。
 式(6)中、Yで表される炭素数1~20の炭化水素基としては、式(2)におけるR、Rの炭化水素基として示したものと同様のものが挙げられる。
 式(6)中、Xがヒドロキシ基、又は炭素数1~10のアルコキシ基を表し、aが3を表すものが好ましく、Xがヒドロキシ基、又はエトキシ基を表し、aが3を表すものがより好ましい。
 本発明の実施形態に係る積層体において、分子接合層を形成する分子接合剤が、反応性基Aと、反応性基Bとを有する分子接合化合物を含有し、反応性基Aがアミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基及びエポキシ基からなる群から選択された少なくとも1種であり、反応性基Bがシラノール基、及び加水分解反応によりシラノール基を生成させる基から選択される少なくとも1種であることが好ましい。
 反応性基Aと反応性基Bを有する化合物として、より具体的には、下記の化合物を例示することができる。
 Rがアミノ基である分子接合化合物としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、3-アミノプロピルジエトキシメチルシラン、[3-(N,N-ジメチルアミノ)プロピル]トリメトキシシラン、[3-(フェニルアミノ)プロピル]トリメトキシシラン、トリメチル[3-(トリエトキシシリル)プロピル]アンモニウムクロリド、トリメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロリド等が挙げられる。
 Rがアジド基である分子接合化合物としては、(11-アジドウンデシル)トリメトキシシラン、(11-アジドウンデシル)トリエトキシシラン等が挙げられる。
 Rがメルカプト基である分子接合化合物としては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン等が挙げられる。
 Rがイソシアネート基である分子接合化合物としては、3-(トリメトキシシリル)プロピルイソシアネート、3-(トリエトキシシリル)プロピルイソシアネート等が挙げられる。
 Rがウレイド基である分子接合化合物としては、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン等が挙げられる。
 Rがエポキシ基である分子接合化合物としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。
 Rが反応性基Aを1以上有する1価の基である化合物としては、例えば、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルジメトキシメチルシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、下記(11)~(19)の化合物が挙げられる。
(11):N,N’-ビス(2-アミノエチル)-6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(12):N,N’-ビス(2-アミノエチル)-6-(3-トリメトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(13):N,N’-ビス(2-アミノエチル)-6-(3-トリエトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(14):N,N’-ビス(2-アミノメチル)-6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(15):N,N’-ビス(2-アミノメチル)-6-(3-トリメトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(16):N,N’-ビス(2-アミノメチル)-6-(3-トリエトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(17):6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアジド
(18):6-(3-トリメトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアジド
(19):6-(3-トリエトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアジド
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 反応性基Aと反応性基Bを有する分子接合化合物としては、上記(11)~(19)の化合物が好ましく、その中でも、(11)N,N’-ビス(2-アミノエチル)-6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン又は(19)6-(3-トリエトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアジドの化合物が好ましい。
 なお、本発明の実施形態においては、分子接合層を構成する化合物を単分子とすることができるため、分子接合層の厚さは、一般的な接着剤を利用する場合の接着剤層と比較して、極めて薄く形成することができる。したがって、本発明の実施形態に係る積層体においては、基材上に積層する薄膜を極めて薄い分子接合層により強固に接合することができる。
 分子接合層の厚さは、例えば、安定した接合力を発揮するためには5nm以上であることが好ましく、10nm以上であることがより好ましく、30nm以上であることがさらに好ましい。また、厚くなりすぎることによる接合力の低下を抑制する観点から300nm以下であることが好ましく、200nm以下であることがより好ましく、100nm以下であることがさらに好ましい。
(積層体の全光線透過率)
 本発明の実施形態に係る積層体の全光線透過率は、使用目的や使用態様に応じて設定され得るので、特定の範囲に限定されるものではないが、上記全光線透過率は、外観特性の観点から70%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることがさらに好ましく、85%以上であることがよりさらに好ましく、90%以上であることが特に好ましい。
 このような光透過性を有する積層体は、例えば積層体を用いた部材の外観ムラの抑制など、積層体越しに外観を調整することができる。また、光透過性が適度に制限された意匠性を付与することができる。
 本発明の実施形態に係る積層体の全光線透過率は、ヘイズメータを用いて、JIS K7136に準じて測定することができる。具体的には、後述の実施例に記載の方法で測定することができる。積層体の全光線透過率は、基材、及び薄膜を構成する材料及び添加剤の種類や使用量(例えば顔料等の粒子の種類や使用量)等によって調節することができる。
<積層体の製造方法>
 上記積層体の製造方法に特に限定はないが、例えば、下記に示す本発明の実施形態に係る製造方法により製造することができる。
 本発明の実施形態に係る製造方法は、基材と、分子接合層と、薄膜とをこの順に有する積層体の製造方法であって、前記積層体は、前記基材と前記薄膜とが前記分子接合層を介して化学結合により接合された積層体であり、前記基材の表面を、表面処理により活性化する第一の工程、活性化した前記基材の表面に、分子接合剤を塗布することにより前記分子接合層を形成する第二の工程、前記分子接合層上に、前記薄膜を形成する第三の工程を含む。
 第一の工程は、基材40の表面を、表面処理により活性化する工程である。
 第一の工程においては、まず、基材40を準備し、第二の工程の前に基材40の表面を、表面処理により活性化する。
 表面処理としては、例えば、Na処理、コロナ処理、スパッタエッチング処理、プラズマ処理等が挙げられる。
 第一の工程により薄膜と、強固な接合が要求される基材40との接着力を更に向上させることができる。
 例えば、基材40として、フッ素系樹脂を含有するPTFEやPFAを用いた場合には、PTFEやPFAの表面には反応性基が存在しない、又は少ないため、分子接合層と化学結合させることが難しい。
 このように、基材の表面に反応性基が存在しない、又は少ない材質の場合には、表面処理等の第一の工程により反応性基を生成させることにより、分子接合層30と化学結合させることができる。
 Na処理は、金属ナトリウムを含む処理液を用いた表面処理(以下、「Na処理」と記載する)である。
 基材40に対するNa処理は、例えば、積層体10としたときに薄膜と接合させる面に対して実施すればよい。Na処理による表面の改質により反応性基が生じ、基材と分子接合層とが化学結合により強固に接合される。
 Na処理は、例えば、金属ナトリウムを含む処理液に基材を浸漬することで実施できる。
 Na処理に使用する処理液は、例えば、金属ナトリウムのアンモニア溶液、金属ナトリウム・ナフタレン錯体のテトラヒドロフラン溶液である。処理液として、市販の処理液(例えば、テクノス製フロロボンダー(登録商標))を使用することもできる。
 コロナ処理としては、例えば、コロナ処理機により常圧空気中で放電する方式が挙げられる。例えば、コロナ処理は、高周波電源のコロナ表面処理装置を用いて、基材の表面に放電照射することにより実施される。放電出力強度は、好ましくは0.5kW以上であり、より好ましくは0.8kW以上であり、さらに好ましくは0.10kW以上である。
 スパッタエッチング処理は、例えば、ガスに由来するエネルギー粒子を基材の表面に衝突させる。基材における当該粒子が衝突した部分において、基材の表面に存在する原子または分子が放出されて反応性基が形成され、これにより接着性が向上する。
 スパッタエッチング処理は、例えば、基材をチャンバーに収容し、次いでチャンバー内を減圧した後、雰囲気ガスを導入しながら高周波電圧を印加することによって実施できる。
 雰囲気ガスは、例えば、ヘリウム、ネオン、アルゴン、クリプトン等の希ガス、窒素ガスおよび酸素ガスからなる群より選ばれる少なくとも1種である。
 印加する高周波電圧の周波数は、例えば1~100MHz、好ましくは5~50MHzである。
 高周波電圧を印加する際のチャンバー内の圧力は、例えば0.05~200Pa、好ましくは1~100Paである。スパッタエッチングのエネルギー(処理時間と印加した電力との積)は、例えば1~1000J/cm、望ましくは2~200J/cmである。
 プラズマ処理は、例えば、プラズマ放電機により常圧空気中で放電する方式が挙げられる。基材をプラズマ装置内にセットし、所定のガスでプラズマ照射することにより行われ得る。
 プラズマ処理の条件は、本発明の効果が得られる限りにおいて、任意の適切な条件に設定され得る。
 上記プラズマ処理は、大気圧下で行われるプラズマ処理であってもよく、減圧下で行われるプラズマ処理であってもよい。プラズマ処理時の圧力(真空度)は、例えば0.05Pa~200Paであり、好ましくは0.5Pa~100Paである。
 プラズマ処理に用いる高周波電源の周波数は、例えば1MHz~100MHzであり、好ましくは5MHz~50MHzである。
 プラズマ処理時のエネルギー量は、好ましくは0.1J/cm~100J/cmであり、より好ましくは1J/cm~20J/cmである。
 プラズマ処理時間は、好ましくは1秒~5分であり、より好ましくは5秒~3分である。
 プラズマ処理時のガス供給量は、好ましくは1sccm~150sccmであり、より好ましくは10sccm~100sccmである。
 上記プラズマ処理に用いる反応ガスとしては、例えば、水蒸気、空気、酸素、窒素、水素、アンモニア、アルコール(例えば、エタノール、メタノール、イソプロピルアルコール)等のガスが挙げられる。このような反応ガスを用いれば、基材と薄膜とが分子接合層により強固に接合された接合体を得ることができる。また、反応ガスと併用して、例えば、ヘリウム、ネオン、アルゴン等の不活性ガスが用いられ得る。
 表面処理の種類は、基材を構成する材料に応じて適宜選択することができる。また、表面処理済みの市販のフィルム基材等を基材として使用することもできる。
(第二の工程)
 第二の工程は、活性化した前記基材の表面に、分子接合剤を塗布することにより前記分子接合層を形成する工程である。
 分子接合剤は、分子接合化合物を含有し、例えば、分子接合化合物(好ましくは、反応性基Aと、反応性基Bとを有する化合物)を溶媒に溶解することにより調製することができる。次に、塗布した分子接合剤を乾燥させることにより、分子接合層30を形成することができる。
 なお、塗布した溶解液がアジド基を有する化合物を含有する場合には、紫外線(UV:ultraviolet)を照射することが好ましい。また、溶解液がアミノ基を有する化合物を含有する場合には、例えば、40~150℃の温度で加熱することが好ましい。加熱の温度は、シランカップリングの水素結合を生成しやすくする観点から60℃以上であることが好ましく、70℃以上であることがより好ましく、80℃以上であることがさらに好ましい。また、反応性基失活を抑制する観点から150℃以下であることが好ましく、100℃以下であることがより好ましく、90℃以下であることがさらに好ましい。
 さらに、アジド基を有する化合物を含有する分子接合剤、又はアミノ基を有する化合物を含有する分子接合剤を、塗布し、乾燥させる工程を複数回繰り返してもよい。これにより、分子接合層30における反応性基A及び反応性基Bの濃度を高めることができる。
 また、異なる種類の分子接合剤(分子接合化合物)を用いることもできる。例えば、アジド基を有する化合物を含有する分子接合剤を1回又は複数回塗布・乾燥した後、アミノ基を有する化合物を含有する分子接合剤を1回又は複数回塗布・乾燥することもできる。
 このように、同一の、又は互いに異なる分子接合化合物を含有する分子接合剤を積層し、反応性基A及び反応性基Bの濃度を高めると、分子接合層と基材との間、及び分子接合層と薄膜との間の接着力をより一層向上させることができる。
(第三の工程)
 第三の工程は、前記分子接合層上に、前記薄膜を形成する工程である。
 薄膜としては、上述したとおり、例えば、塗膜、ハードコート層、金属めっき層、金属スパッタ層、金属箔、及びこれらの組み合わせ等が挙げられ、ハードコート層、金属めっき層、金属スパッタ層であることが好ましい。
 薄膜については、上述の説明をそのまま援用し得る。
 本発明の実施形態に係る積層体は、その製造方法に特に限定はなく、上記本発明の実施形態に係る積層体の製造方法によっても製造することができるが、本発明の実施形態に係る積層体の製造方法以外の方法により製造してもよい。
 例えば、基材40として、表面に分子接合層と反応し得る反応性基を有する基材を用いる場合は、上記第一の工程による表面処理を実施しなくても、本発明の実施形態に係る積層体を製造することが可能である。
 たとえば、基材40として、金属材料を用いる場合に、洗浄処理又は分子接合処理等の第一の工程を実施しなくても、表面にヒドロキシ基が存在する場合は、分子接合層30の反応性基と反応させることできる。ただし、基材の表面を洗浄により清浄化し、アルカリ脱脂処理を実施することにより、表面に現れるヒドロキシ基を増加させることができるため、分子接合層30の反応性基と反応しやすくなり、接合力をより一層向上させることができる。
 また、基材40として、表面にヒドロキシ基等の反応性基が存在する樹脂材料等を用いる場合は、洗浄処理又は表面処理をすることなく、分子接合層の反応性基と反応させることができる。ただし、表面処理等の第一の工程を実施すると、表面に現れるヒドロキシ基を増加させることができるため、分子接合層30の反応性基と反応しやすくなり、接合力をより一層向上させることができる。
 以上説明したように、本明細書には次の事項が開示されている。
〔1〕
 基材と、分子接合層と、薄膜とをこの順に有する積層体であって、前記薄膜の厚みが10μm以下であり、前記基材と前記薄膜とが前記分子接合層を介して化学結合により接合された、積層体。
〔2〕
 前記薄膜がハードコート層、金属スパッタ層、又は金属めっき層から選択される少なくとも1種である、〔1〕に記載の積層体。
〔3〕
 前記薄膜が、アクリル、ウレタン、シリコーン、エポキシ、銅、銀、金、クロム、ニッケル、パラジウム、白金、及びこれらの金属の合金から選択される少なくとも1種を含有する、〔1〕に記載の積層体。
〔4〕
 前記基材がフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂から選択される少なくとも1種を含有する樹脂基材である、〔1〕~〔3〕のいずれか一項に記載の積層体。
〔5〕
 前記分子接合層を形成する分子接合剤が、反応性基Aと、反応性基Bとを有する分子接合化合物を含有し、反応性基Aがアミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基及びエポキシ基からなる群から選択された少なくとも1種であり、反応性基Bがシラノール基、及び加水分解反応によりシラノール基を生成させる基から選択される少なくとも1種である、〔1〕~〔4〕のいずれか一項に記載の積層体。
〔6〕
 全光線透過率が80%以上である、〔1〕~〔5〕のいずれか一項に記載の積層体。
〔7〕
 基材と、分子接合層と、薄膜とをこの順に有する積層体の製造方法であって、前記積層体は、前記基材と前記薄膜とが前記分子接合層を介して化学結合により接合された積層体であり、前記基材の表面を、表面処理により活性化する第一の工程、活性化した前記基材の表面に、分子接合組成物を塗布することにより前記分子接合層を形成する第二の工程、前記分子接合層上に、前記薄膜を形成する第三の工程を含む、積層体の製造方法。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。
<基材>
・スパッタエッチング処理品:日東電工(株)製 片面スパッタエッチング処理品 No.901W (厚み0.05mm)を使用
・コロナ処理品:日東電工(株)製 PTFE No.900UL (厚み 0.05mm)について、KASUGA製コロナ処理機AGF-0121を使用し、0.18kW、20m/minの条件でコロナ処理を行った
・Na処理品:日東電工(株)製 Na処理品 No.901UL (厚み0.05mm)を使用
<分子接合剤の調製>
(分子接合剤A)
 下記分子接合化合物(11)N,N’-ビス(2-アミノエチル)-6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン(株式会社いおう化学研究所製)0.5質量%の水溶液を分子接合剤Aとした。
Figure JPOXMLDOC01-appb-C000005
(分子接合剤B)
 下記分子接合化合物(19)6-(3-トリエトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアジド(株式会社いおう化学研究所製)0.1質量%のエタノール溶液を分子接合剤Bとした。
Figure JPOXMLDOC01-appb-C000006
〔実施例1〕
 上記で調製した分子接合剤Aを、PTFEフィルム(基材:日東電工(株)製 フッ素系樹脂フィルム No.901W(厚み0.05mm、片面スパッタエッチング処理品))のスパッタエッチング処理面にワイヤーバー#14を用いて塗工し、120℃のオーブンで10分乾燥し、厚み30nmの分子接合層を形成した。
 PTFEフィルムのスパッタエッチング処理面に作製した分子接合層上に、ウレタン系ハードコート試薬を、ワイヤーバー#4を使用して塗工し、80℃で60秒乾燥、UV照射し(350~400mJ)、厚み1μmのハードコート層(HC)を形成し、ハードコート層(薄膜)とフッ素系樹脂フィルム(基材)が分子接合層を介して化学結合により接合された実施例1の積層体を得た。
〔実施例2〕
 上記で調製した分子接合剤Bを、PTFEフィルム(基材:日東電工(株)製 No.901W(厚み0.05mm、片面スパッタエッチング処理品))のスパッタエッチング処理面にワイヤーバー#14を用いて塗工し、乾燥後(乾燥条件:80℃3分)、UV照射した(UV照射条件:254nm、100mJ)。その後、再びワイヤーバー#14を用いて、分子接合剤Bを塗工し、乾燥後(乾燥条件:80℃3分)UV照射した(UV照射条件:254nm,100mJ)。上記の操作により基材のスパッタエッチング処理面に厚み30nmの分子接合層を形成した。
 基材のスパッタエッチング処理面に形成した分子接合層上に、実施例1と同様の操作により厚み1μmのハードコート層(HC)を形成し、ハードコート層(薄膜)とフッ素系樹脂フィルム(基材)が分子接合層を介して化学結合により接合された実施例2の積層体を得た。
〔実施例3〕
 実施例1と同様に、上記で調製した分子接合剤Aを用いて、PTFEフィルムのスパッタエッチング処理面に厚み30nmの分子接合層を形成した。
 基材のスパッタエッチング処理面に形成した分子接合層上に、コロイド法(プレディップ/キャタリスト/アクセラレーター)によりローム&ハース株式会社製のPd-Sn触媒を使用し触媒担持を行った。
 触媒担持の処理としては、分子接合層を塗布したPTFEに対して、プレディプ25℃で1分間浸漬し、キャタリスト50℃で1分間浸漬し、イオン交換水で洗浄後、アクセレレータ25℃で3分間浸漬を行った。その後、イオン交換水で洗浄することでPd-Sn触媒担持体を得た。
 その後、上村工業(株)製スルカップPEA(銅めっき液)を無電解めっき浴として、そのまま使用し、Pd-Sn触媒担持体を30℃で5分間浸漬することで厚み10μm以下の銅めっき層を形成し、銅めっき層(薄膜)とフッ素系樹脂フィルム(基材)が分子接合層を介して化学結合により接合された実施例3の積層体(銅めっきフッ素フィルム)が得られた。
〔実施例4〕
 実施例3と同様に、上記で調製した分子接合剤Aを用いて、PTFEフィルムのスパッタエッチング処理面に厚み30nmの分子接合層を形成し、Pd-Sn触媒担持体を得た。
 その後、クッペライト(日本化学産業(株)製)を光沢剤とする硫酸銅めっき浴として使用し、Pd-Sn触媒担持体を30℃で5分間浸漬することで銅めっき層を形成し銅メッキフィルムを得た。更に、得られた銅めっきフィルムを150℃,20min加熱後、電気めっき浴に浸し、1.14A/dmの電流密度で20℃にて3時間処理することで、厚み10μm以下の銅めっき層(薄膜)とフッ素系樹脂フィルム(基材)が分子接合層を介して化学結合により接合された実施例4の積層体(銅めっきフッ素フィルム)が得られた。
〔実施例5〕
 PTFEフィルム(基材:日東電工(株)製 フッ素系樹脂フィルム No.900UL(厚み0.05mm)について、KASUGA製コロナ処理機AGF-0121を使用し、0.18kW、20m/minの条件でコロナ処理を行った。
 上記で調製した分子接合剤Bを、PTFEフィルムのコロナ処理面にワイヤーバー#14を用いて塗工し、乾燥後(乾燥条件:80℃3分間)、UV照射した(UV照射条件:254nm、100mJ)。その後、再びワイヤーバー#14を用いて、分子接合剤Bを塗工し、乾燥後(乾燥条件:80℃3分間)UV照射した(UV照射条件:254nm,100mJ)。上記の操作により基材のコロナ処理面に厚み30nmの分子接合層を形成した。
 PTFEフィルムのコロナ処理面に形成した分子接合層上に、ウレタン系ハードコート試薬を、ワイヤーバー#4を使用して塗工し、80℃で60秒乾燥、UV照射し(350~400mJ)、厚み1μmのハードコート層(HC)を形成し、ハードコート層(薄膜)とフッ素系樹脂フィルム(基材)が分子接合層を介して化学結合により接合された実施例5の積層体を得た。
〔実施例6〕
 上記で調製した分子接合剤Bを、PTFEフィルム(基材:日東電工(株)製 フッ素系樹脂フィルム No.901UL(厚み0.05mm、Na処理品))のNa処理面にワイヤーバー#14を用いて塗工し、乾燥後(乾燥条件:80℃3分間)、UV照射した(UV照射条件:254nm、100mJ)。その後、再びワイヤーバー#14を用いて、分子接合剤Bを塗工し、乾燥後(乾燥条件:80℃3分間)UV照射した(UV照射条件:254nm,100mJ)。上記の操作により基材のNa処理面に厚み30nmの分子接合層を形成した。
 PTFEフィルムのNa処理面に作製した分子接合層上に、ウレタン系ハードコート試薬を、ワイヤーバー#4を使用して塗工し、80℃で60秒乾燥、UV照射し(350~400mJ)、厚み1μmのハードコート層(HC)を形成し、ハードコート層(薄膜)とフッ素系樹脂フィルム(基材)が分子接合層を介して化学結合により接合された実施例6の積層体を得た。
〔比較例1〕
 基材を、前処理を未処理のPTFEフィルム(基材:日東電工(株)製 フッ素系樹脂フィルム No.900UL(厚み0.05mm)に変更した以外は実施例1と同様にして、ハードコート層(薄膜:厚み1μm)とフッ素系樹脂フィルム(基材)が分子接合層(厚み30nm)で接合された比較例1の積層体を得た。
 比較例1の積層体においては、PTFEフィルムに前処理を施していないためPTFEフィルムの表面に反応性基が励起されず、基材と薄膜とが分子接合層を介して化学結合により接合されなかった。
〔比較例2〕
 PTFEフィルム(基材:日東電工(株)製 フッ素系樹脂フィルム No.900UL(厚み0.05mm)について、KASUGA製コロナ処理機AGF-0121を使用し、0.18kW、20m/minの条件でコロナ処理を行った。
 PTFEフィルムのコロナ処理面に、ウレタン系ハードコート試薬を、ワイヤーバー#4を使用して塗工し、80℃で60秒乾燥、UV照射し(350~400mJ)、厚み1μmのハードコート層(HC)を形成し、ハードコート層(薄膜)とフッ素系樹脂フィルム(基材)が積層された比較例2の積層体を得た。
<碁盤目試験>
 実施例及び比較例で作製した積層体を、JIS K5600-5-6記載のクロスカット法に準じて下記の条件にて碁盤目試験を実施し、薄膜のハガレ枚数をカウントし、ハガレ面積を算出し、下記に示す判定基準に従い評価した。
(条件)
  ・カットの間隔:2mm
  ・クロスカット個数:100マス
  ・剥離テープ:(ニチバン)セロハンテープ(登録商標)24mm幅
(判定基準)
JIS ASTM
 0   5B カットの縁がなめらかで、剥がれない
 1   4B 剥がれ面積が5%以下、又は剥がれないがカットの縁がなめらかでない
 2   3B 剥がれ面積が5%超~15%
 3   2B 剥がれ面積が15%超~35%
 4   1B 剥がれ面積が35%超~65%
 5   0B 剥がれ面積が65%より大きい
 実施例及び比較例について、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000007
<実施例7>
 PFA(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体)シート(厚さ0.05mm)をスパッタエッチング処理装置内にセットし、装置内を10-6Torrまで減圧したのち、アルゴンガスを導入し、この流通下8×10-3Torrに調整保持し、13.56MHz、400Wの高周波電力を与えグロー放電を発生させ、シートを1分間スパッタエッチング処理した。
 実施例1に記載の方法で分子接合剤A、ハードコート層(HC)を形成した。
 形成した積層体をSUGA TEST INSTRUMENTS製のヘイズメーターHz-1を用いて全光線透過率(%)を測定した。
Figure JPOXMLDOC01-appb-T000008
 薄膜と基材とが分子接合により強固に接合した、接合強度に優れ、密着性の高い積層体、及び積層体の製造方法が提供できる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2021年11月5日出願の日本特許出願(特願2021-181507)に基づくものであり、その内容はここに参照として取り込まれる。
10  積層体
20  薄膜
30  分子接合層
40  基材

Claims (7)

  1.  基材と、分子接合層と、薄膜とをこの順に有する積層体であって、前記薄膜の厚みが10μm以下であり、前記基材と前記薄膜とが前記分子接合層を介して化学結合により接合された、積層体。
  2.  前記薄膜がハードコート層、金属スパッタ層、又は金属めっき層から選択される少なくとも1種である、請求項1に記載の積層体。
  3.  前記薄膜が、アクリル、ウレタン、シリコーン、エポキシ、銅、銀、金、クロム、ニッケル、パラジウム、白金、及びこれらの金属の合金から選択される少なくとも1種を含有する、請求項1に記載の積層体。
  4.  前記基材がフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂から選択される少なくとも1種を含有する樹脂基材である、請求項1~3のいずれか一項に記載の積層体。
  5.  前記分子接合層を形成する分子接合剤が、反応性基Aと、反応性基Bとを有する分子接合化合物を含有し、反応性基Aがアミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基及びエポキシ基からなる群から選択された少なくとも1種であり、反応性基Bがシラノール基、及び加水分解反応によりシラノール基を生成させる基から選択される少なくとも1種である、請求項1~3のいずれか一項に記載の積層体。
  6.  全光線透過率が80%以上である、請求項1~3のいずれか一項に記載の積層体。
  7.  基材と、分子接合層と、薄膜とをこの順に有する積層体の製造方法であって、前記積層体は、前記基材と前記薄膜とが前記分子接合層を介して化学結合により接合された積層体であり、前記基材の表面を、表面処理により活性化する第一の工程、活性化した前記基材の表面に、分子接合組成物を塗布することにより前記分子接合層を形成する第二の工程、前記分子接合層上に、前記薄膜を形成する第三の工程を含む、積層体の製造方法。
PCT/JP2022/041093 2021-11-05 2022-11-02 積層体、及び積層体の製造方法 WO2023080182A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021181507 2021-11-05
JP2021-181507 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023080182A1 true WO2023080182A1 (ja) 2023-05-11

Family

ID=86241525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041093 WO2023080182A1 (ja) 2021-11-05 2022-11-02 積層体、及び積層体の製造方法

Country Status (1)

Country Link
WO (1) WO2023080182A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368942A (en) * 1993-01-15 1994-11-29 The United States Of America As Represented By The Secreatary Of Commerce Method of adhering substrates
JP2006054357A (ja) * 2004-08-13 2006-02-23 Nippon Steel Chem Co Ltd フレキシブルプリント配線板用積層体及びその製造方法
JP2009098465A (ja) * 2007-10-17 2009-05-07 Seiko Epson Corp 偏光板、画像表示装置
JP2013074193A (ja) * 2011-09-28 2013-04-22 Fujifilm Corp 金属層を有する積層体およびその製造方法
JP2017001119A (ja) * 2015-06-08 2017-01-05 株式会社朝日Fr研究所 マイクロ化学チップ及びその製造方法
JP2017013287A (ja) * 2015-06-29 2017-01-19 株式会社朝日Fr研究所 弾性基材接着体
JP2018126922A (ja) * 2017-02-08 2018-08-16 東洋紡株式会社 積層体
US20190198421A1 (en) * 2017-12-27 2019-06-27 Kabushiki Kaisha Toshiba Heat radiating plate-lined ceramics substrate
JP2019161054A (ja) * 2018-03-14 2019-09-19 株式会社東芝 フレキシブルプリント配線板、及び電子機器
KR20200049085A (ko) * 2018-10-31 2020-05-08 주식회사 두산 전자파 차폐 필름 및 이를 포함하는 전자파 차폐형 연성 인쇄회로기판
WO2022172755A1 (ja) * 2021-02-09 2022-08-18 大倉工業株式会社 偏光板
WO2022181380A1 (ja) * 2020-09-13 2022-09-01 Jsr株式会社 表面処理方法、表面処理剤、結合体の製造方法、導体被覆を有する物質の製造方法、塗膜が形成された物質の製造方法、導体被覆樹脂基材の製造方法、導波管の製造方法、回路基板又はアンテナの製造方法、及び化合物
JP2022141112A (ja) * 2021-03-15 2022-09-29 大日本印刷株式会社 金属張積層板及び配線基板、並びにそれらの製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368942A (en) * 1993-01-15 1994-11-29 The United States Of America As Represented By The Secreatary Of Commerce Method of adhering substrates
JP2006054357A (ja) * 2004-08-13 2006-02-23 Nippon Steel Chem Co Ltd フレキシブルプリント配線板用積層体及びその製造方法
JP2009098465A (ja) * 2007-10-17 2009-05-07 Seiko Epson Corp 偏光板、画像表示装置
JP2013074193A (ja) * 2011-09-28 2013-04-22 Fujifilm Corp 金属層を有する積層体およびその製造方法
JP2017001119A (ja) * 2015-06-08 2017-01-05 株式会社朝日Fr研究所 マイクロ化学チップ及びその製造方法
JP2017013287A (ja) * 2015-06-29 2017-01-19 株式会社朝日Fr研究所 弾性基材接着体
JP2018126922A (ja) * 2017-02-08 2018-08-16 東洋紡株式会社 積層体
US20190198421A1 (en) * 2017-12-27 2019-06-27 Kabushiki Kaisha Toshiba Heat radiating plate-lined ceramics substrate
JP2019161054A (ja) * 2018-03-14 2019-09-19 株式会社東芝 フレキシブルプリント配線板、及び電子機器
KR20200049085A (ko) * 2018-10-31 2020-05-08 주식회사 두산 전자파 차폐 필름 및 이를 포함하는 전자파 차폐형 연성 인쇄회로기판
WO2022181380A1 (ja) * 2020-09-13 2022-09-01 Jsr株式会社 表面処理方法、表面処理剤、結合体の製造方法、導体被覆を有する物質の製造方法、塗膜が形成された物質の製造方法、導体被覆樹脂基材の製造方法、導波管の製造方法、回路基板又はアンテナの製造方法、及び化合物
WO2022172755A1 (ja) * 2021-02-09 2022-08-18 大倉工業株式会社 偏光板
JP2022141112A (ja) * 2021-03-15 2022-09-29 大日本印刷株式会社 金属張積層板及び配線基板、並びにそれらの製造方法

Similar Documents

Publication Publication Date Title
JP5302309B2 (ja) 積層体及び回路配線基板
CN1088006C (zh) 具有汽相淀积处理层和粘合促进层的金属体
Kang et al. Surface modification of fluoropolymers via molecular design
KR101994855B1 (ko) 고박리강도의 연성 동박 적층판 및 그의 제조방법
JP5313671B2 (ja) 湿気防湿バリアコーティング
KR101452680B1 (ko) 가스 배리어성 필름, 가스 배리어성 필름의 제조 방법 및 전자 디바이스
JP5808747B2 (ja) 成形体、その製造方法、電子デバイス用部材及び電子デバイス
WO2013035432A1 (ja) 変性ポリシラザンフィルム、および、ガスバリアフィルムの製造方法
CN1481448A (zh) 在聚合物表面镀金属膜的方法
CN101911844B (zh) 覆有金属箔的基板及其制造方法
CN101103138A (zh) 金属膜和金属膜的形成方法
JPWO2012090665A1 (ja) ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス
WO2010045152A2 (en) Multi-layer fluoropolymer film
JP5636725B2 (ja) モールディング成形用離型フィルム及びその製造方法
JP6411707B2 (ja) ガスバリア性積層体
EP3337848B1 (en) Composite article including a multilayer barrier assembly and methods of making the same
TW202244301A (zh) 表面處理方法、表面處理劑、結合體的製造方法、具有導體被覆的物質的製造方法、形成有塗膜的物質的製造方法、樹脂基材的表面處理方法、導體被覆樹脂基材的製造方法、波導管的製造方法、電路基板或天線的製造方法、及化合物
WO2023080182A1 (ja) 積層体、及び積層体の製造方法
JP5034059B2 (ja) 積層体の形成方法
JP3262748B2 (ja) 銀メッキ層を備える積層品及びその製造方法
EP3337847B1 (en) Composite article and methods of making the same
JP5751027B2 (ja) 透明導電性フィルム
JP5750009B2 (ja) 積層体の製造方法
EP2022625B1 (en) Laminated body for resin glass and method for manufacturing such laminated body
Yang et al. Thermal and electroless deposition of copper on poly (tetrafluoroethylene-co-hexafluoropropylene) films modified by surface graft copolymerization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890002

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023558065

Country of ref document: JP