WO2023080124A1 - 芯鞘型ポリエステル複合繊維、及びその製造方法 - Google Patents

芯鞘型ポリエステル複合繊維、及びその製造方法 Download PDF

Info

Publication number
WO2023080124A1
WO2023080124A1 PCT/JP2022/040830 JP2022040830W WO2023080124A1 WO 2023080124 A1 WO2023080124 A1 WO 2023080124A1 JP 2022040830 W JP2022040830 W JP 2022040830W WO 2023080124 A1 WO2023080124 A1 WO 2023080124A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheath
core
conductive
forming composition
fiber
Prior art date
Application number
PCT/JP2022/040830
Other languages
English (en)
French (fr)
Inventor
和博 高宮
武史 西山
悠太 天満
Original Assignee
日本エステル株式会社
ユニチカトレーディング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エステル株式会社, ユニチカトレーディング株式会社 filed Critical 日本エステル株式会社
Priority to CN202280055704.1A priority Critical patent/CN117813425A/zh
Priority to JP2023528066A priority patent/JP7340183B1/ja
Publication of WO2023080124A1 publication Critical patent/WO2023080124A1/ja
Priority to JP2023132698A priority patent/JP2023153257A/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/292Conjugate, i.e. bi- or multicomponent, fibres or filaments
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/533Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads antistatic; electrically conductive
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads

Definitions

  • the present invention relates to a conductive conjugate fiber composed of a conductive component and a non-conductive component.
  • the present invention relates to a core-sheath type polyester composite fiber that can be widely used in various industrial materials and products, and a method for producing the same.
  • Fibers made of hydrophobic polymers such as polyester, polyamide, and polyolefin have many advantages such as mechanical properties, chemical resistance, and weather resistance, and are widely used not only for clothing but also for industrial materials.
  • these fibers generate a lot of static electricity due to friction, etc., so they attract dust in the air and reduce the appearance, give an electric shock to the human body and cause discomfort, and even cause damage to electronic equipment due to sparks. In some cases, it may cause problems such as failure of flammable substances and ignition explosion of flammable substances.
  • Patent Documents 1 and 2 disclose a core-sheath type composite fiber in which a conductive component is completely wrapped in a non-conductive component, or a type in which the conductive component is partially exposed on the fiber surface. Composite fibers are disclosed.
  • the conjugate fibers described in these patent documents have improved spinnability and therefore improved strength and elongation. Therefore, the conductive performance was insufficient. In particular, the durability of the conductive performance was inferior.
  • Patent Document 3 describes a core-sheath type composite fiber in which a conductive component in which carbon black is kneaded is arranged in the sheath for the purpose of improving the conductive performance.
  • a conductive component in which carbon black is kneaded is arranged in the sheath for the purpose of improving the conductive performance.
  • the spinnability tends to be deteriorated. is within a range that satisfies, it is possible to obtain a conductive fiber that has good passageability in the spinning process and the post-process, and also has excellent conductive durability.
  • the conductive fiber described in Patent Document 3 is excellent in the durability of the conductive performance to some extent, but the strength is insufficient, and the durability of the conductive performance is not sufficiently satisfactory. rice field. As the durability of the conductive performance, it is required that the conductive performance after washing 100 times does not significantly decrease compared to the initial conductive performance in work clothes. The conductive fiber described in Patent Document 3 was particularly inferior in conductive performance after washing 100 times. Thus, until now, no conductive fiber has been proposed that has sufficient conductive performance and strength and is also excellent in conductive performance after being washed 100 times.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a core-sheath type polyester conjugate fiber that has sufficient electrical conductivity and strength and is also excellent in electrical conductivity after being washed 100 times. is. Another object of the present invention is to provide a production method for obtaining a core-sheath type polyester composite fiber having the above properties with good workability.
  • the present inventors have made intensive studies to solve the above problems and arrived at the present invention. That is, the gist of the present invention is as follows.
  • a core-sheath polyester composite fiber comprising a core and a sheath
  • the core is composed of a core-forming composition that mainly contains a polyester resin containing ethylene terephthalate as a main repeating unit and containing 1 to 15 mol % of isophthalic acid per 100 mol % of the acid component
  • the sheath mainly contains polybutylene terephthalate and is composed of a sheath-forming composition containing 20 to 35% by mass of a conductive component,
  • the area ratio of the core portion to the sheath portion (core portion/sheath portion) in a cross section perpendicular to the longitudinal direction of the yarn is 60/40 to 90/10
  • a core-sheath type polyester conjugate fiber that satisfies all of the following physical properties (a) to (c).
  • breaking strength of the composite fiber is 3.0 cN/dtex or more
  • crystallinity of the composite fiber is 27 to 37%
  • the initial electrical resistance of the conjugate fiber is 5.0 ⁇ 10 8 ⁇ /cm or less.
  • the core-sheath type polyester conjugate fiber according to Item 1 which satisfies the following physical properties (d).
  • the electrical resistance value after washing 100 times is 1.0 ⁇ 10 9 ⁇ /cm or less Item 3.
  • Item 3. A woven or knitted fabric comprising the sheath-core polyester conjugate fiber according to item 1 or 2. Section 4. 3.
  • Step (1) A step (2) of cooling the undrawn yarn melt-spun from the spinneret nozzle by blowing a cooling air at a position 100 to 150 mm downward from the lower surface of the spinneret nozzle.
  • Step of winding the cooled undrawn yarn at 2000 to 3000 m/min (3): The step of drawing the wound undrawn yarn by 1.2 to 2.0 times while heating at 50 to 100 ° C.
  • the core-sheath type polyester conjugate fiber of the present invention has sufficient electrical conductivity and strength, and the degree of crystallinity is within a specific range, so that separation between the core and the sheath is less likely to occur. Therefore, it is excellent in conductive performance (has durability) after being washed 100 times.
  • Such a core-sheath type polyester composite fiber of the present invention can be widely used for clothing products such as antistatic work clothes and uniforms, interior products such as carpets and curtains, various industrial material products, and the like.
  • the core-sheath type polyester conjugate fiber of the present invention that satisfies a specific strength, a specific degree of crystallinity, and a specific initial electrical resistance value is operated. It is possible to get it easily.
  • FIG. 2 is a schematic view showing an example of a composite form in a cross section perpendicular to the yarn longitudinal direction of the core-sheath type polyester composite fiber of the present invention. 1 shows the texture of the conductive fabric obtained in Example 1. FIG.
  • the core-sheath type polyester composite fiber of the present invention (hereinafter sometimes referred to as a conductive composite fiber) is a core-sheath type composite fiber comprising a core portion and a sheath portion.
  • the core is composed of a core-forming composition that mainly contains a polyester resin that has ethylene terephthalate as a main repeating unit and contains 1 to 15 mol % of isophthalic acid per 100 mol % of the acid component.
  • a polyester resin that has ethylene terephthalate as a main repeating unit and contains 1 to 15 mol % of isophthalic acid per 100 mol % of the acid component.
  • having ethylene terephthalate as a main repeating unit means that the repeating unit of ethylene terephthalate accounts for 50 mol% or more of all repeating units constituting the polyester resin.
  • mainly containing a polyester resin means that the core forming composition contains 50% by mass or more of a polyester resin.
  • the polyester resin has ethylene terephthalate as a main repeating unit and contains 1 to 15 mol % of isophthalic acid per 100 mol % of the acid component.
  • the content of repeating units of ethylene terephthalate is preferably 70 mol % or more, more preferably 80 mol % or more, still more preferably 85 mol % or more, and even more preferably 90 mol % or more.
  • Isophthalic acid is contained as a copolymer component, and the content of isophthalic acid is preferably 2 to 12 mol%, more preferably 4 to 12 mol%, and still more preferably 6 to 10 mol% per 100 mol% of the acid component. %.
  • the reaction temperature during the polycondensation reaction and the temperature during spinning can be lowered. That is, the difference in melt viscosity from the sheath-forming composition constituting the sheath described later can be reduced, the conjugate spinning process can be performed smoothly, and the crystallinity of the conductive conjugate fiber is within the range specified by the present invention. easier to adjust.
  • the content of isophthalic acid contained in the polyester resin is less than 1 mol % per 100 mol % of the acid component, the melting point is lowered as compared with polyethylene terephthalate (PET) contained in the sheath-forming composition.
  • PET polyethylene terephthalate
  • the polyester resin may contain other copolymer components as long as they do not impair the effects of the present invention.
  • Other copolymerization components include, for example, cyclohexanedimethanol (CHDM) and cyclohexanedicarboxylic acid (CHDA).
  • the content of the polyester resin containing 1 to 15 mol% of isophthalic acid in the core-forming composition is 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 85% by mass. % or more, more preferably 90 mass % or more, particularly preferably 95 mass % or more, most preferably 100 mass %.
  • the sheath exhibiting conductive performance is composed of a sheath-forming composition that mainly contains polybutylene terephthalate and contains 20 to 35% by mass of a conductive component.
  • a sheath-forming composition that mainly contains polybutylene terephthalate and contains 20 to 35% by mass of a conductive component.
  • "mainly containing polybutylene terephthalate” means that the sheath-forming composition contains 50% by mass or more of polybutylene terephthalate.
  • the content of the conductive component in the sheath-forming composition is preferably 22-33% by mass, more preferably 22-30% by mass, and still more preferably 23-27% by mass.
  • Examples of conductive components used in the present invention include conductive carbon black, metal powders (silver, nickel, copper, iron, tin, alloys thereof, etc.), copper sulfide, copper iodide, zinc sulfide, and cadmium sulfide. metal compounds such as In addition, conductive particles obtained by adding a small amount of antimony oxide to tin oxide or adding a small amount of aluminum oxide to zinc oxide can also be used. Furthermore, it is also possible to use titanium oxide coated with tin oxide, mixed with antimony oxide and fired to form conductive particles. Among them, conductive carbon black (e.g., acetylene black, ketjen black, etc.) is generally used to improve the performance of conductive fibers, and is less likely to inhibit polymer fluidity than metal particles. preferable.
  • metal powders silver, nickel, copper, iron, tin, alloys thereof, etc.
  • copper sulfide copper iodide
  • zinc sulfide zinc
  • the specific resistance value of the conductive component is preferably 1 ⁇ 10 4 ⁇ cm or less, more preferably 1 ⁇ 10 2 ⁇ cm or less. If the specific resistance value exceeds 1 ⁇ 10 4 ⁇ cm, it may be necessary to disperse a large amount of conductive particles in the polymer in order to obtain the desired conductive performance. Not only does this have an adverse effect on the physical properties of the fiber, but also yarn breakage may occur during spinning and drawing, causing problems in workability.
  • the conductive carbon black used preferably has an average particle size of 1 ⁇ m or less, more preferably 0.5 ⁇ m or less. If the average particle size exceeds 1 ⁇ m, the dispersibility of the conductive carbon black in the resin tends to deteriorate, and the conductive performance and strength and elongation properties of the conductive conjugate fiber tend to deteriorate.
  • polybutylene terephthalate is mainly used as the resin that constitutes the sheath. Since PBT is a resin with high crystallinity, the contained conductive components are easily arranged uniformly in PBT, and therefore the resulting conductive composite fiber has excellent conductivity (low electrical resistance). , the fiber has uniform conductivity in the longitudinal direction.
  • PBT may contain a copolymer component as long as it does not impair the effects of the present invention, but preferably does not contain a copolymer component.
  • copolymer components include ethylene glycol (EG), cyclohexanedimethanol (CHDM), cyclohexanedicarboxylic acid (CHDA), isophthalic acid (IPA), 1,3-propanediol, sebacic acid, dimer acid, and dodecanedioic acid. , xylylene glycol, polytetramethylene glycol, polyethylene glycol, epsilon caprolactam and the like.
  • the content of PBT in the sheath-forming composition is 50% by mass or more, preferably 55% by mass or more, more preferably 60% by mass or more, still more preferably 65% by mass or more, and even more preferably 70% by mass. above, and particularly preferably at least 75% by mass.
  • the resin constituting the sheath may contain polyethylene terephthalate and copolymerized polyester resin as polyester resins other than PBT as long as the effects of the present invention are not impaired. However, in the present invention, it is preferable to use only PBT as the resin constituting the sheath.
  • the core-forming composition and the sheath-forming composition may contain waxes, polyalkylene oxides, various surfactants, dispersants such as organic electrolytes, antioxidants, etc., depending on the purpose, as long as the effects of the present invention are not impaired. agents, stabilizers such as UV absorbers, colorants, pigments, fluidity improvers, and other additives.
  • the sheath is arranged so as to cover at least part of the surface of the core.
  • the covering ratio of the sheath to the surface of the core is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, and most preferably 98% or more of the surface area of the core. 100%. That is, the sheath is most preferably arranged to cover the entire surface of the core.
  • FIG. 1 is a schematic diagram showing an example of a composite form in a cross section perpendicular to the yarn longitudinal direction of the core-sheath type polyester composite fiber of the present invention.
  • the sheath 1 shows a state in which the conductive sheath 1 covers the entire surface of the non-conductive core 2 (that is, the sheath covers the core surface at 100%). Moreover, as shown in FIG. 1, it is preferable that the sheath 1 is formed with a substantially uniform thickness and width without having a protrusion or the like that protrudes toward the center of the cross section. If the covering ratio of the sheath to the surface of the core is less than 90% of the surface area of the core, the conductive performance tends to be insufficient, and the durability of the conductive performance tends to be poor.
  • the area ratio (core/sheath) between the core and the sheath in a cross section perpendicular to the longitudinal direction of the fiber (cross section when cut vertically) is 60/40 to 90/10.
  • the area ratio of the core part to the sheath part is preferably 65/35 to 85/15, more preferably 70/30 to 85/15, even more preferably 75/25 to 85/15. . If the area ratio of the sheath containing the conductive component is less than 10%, the proportion of the polyester resin of the core exposed on the fiber surface increases, and the workability deteriorates, and the conductive composite fiber obtained has poor conductive performance.
  • the conductive performance between the seams is inferior because the electric current is insufficient at the contact points between the conductive composite fibers between the stitches. .
  • repeated use further deteriorates the conductive performance, making it insufficient for practical use.
  • the area ratio of the sheath exceeds 40%, yarn breakage occurs during spinning or drawing, resulting in deterioration of workability.
  • a conjugate fiber is obtained, it will be inferior in filament performance such as strength and elongation properties.
  • the conductive conjugate fiber of the present invention preferably has a single fiber fineness of 3.0 to 6.0 dtex, more preferably 4.0 to 5.5 dtex, and more preferably 4.5 to 5.5 dtex. It is even more preferable to have The total fineness of the multifilament yarn is preferably 15 to 40 dtex, more preferably 20 to 35 dtex, even more preferably 25 to 32 dtex.
  • a conductive conjugate fiber having a relatively small single fiber fineness as described above can be a conductive composite fiber having fiber strength.
  • the single fiber fineness and total fineness of the conductive composite fiber in the present invention are values measured based on "A method" of JISL1013:2010 Chemical fiber filament yarn test method "8.3.1 Regular fineness". be.
  • the conductive conjugate fiber of the present invention in order to sufficiently exhibit the conductive performance of the conductive conjugate fiber of the present invention, the conductive It is preferable that the ratio of the composite fiber and the other fiber (conductive composite fiber/other fiber) is 5/95 to 75/25. Also, at this time, it is preferable to expose as much of the conductive conjugate fiber of the present invention as possible on the surface.
  • the conductive conjugate fiber of the present invention satisfies all of the following physical properties (a) to (c). (a) breaking strength of the composite fiber is 3.0 cN/dtex or more (b) crystallinity of the composite fiber is 27 to 37% (c)
  • the electrical resistance value of the composite fiber is 5.0 ⁇ 10 8 ⁇ /cm or less By satisfying all of these characteristics, it has high strength, excellent conductive performance, and conductive performance after 100 washings. It can be a conductive composite fiber having excellent durability. A conductive conjugate fiber that satisfies all of these properties can be obtained by the production method of the present invention, which will be described later.
  • the conductive conjugate fiber of the present invention has a breaking strength of 3.0 cN/dtex or more.
  • the breaking strength is preferably 3.1 cN/dtex or more, more preferably 3.15 cN/dtex or more, still more preferably 3.2 cN/dtex or more, and 3.3 cN/dtex or more. is particularly preferred.
  • the upper limit of the breaking strength of the conductive composite fiber is not particularly limited in the present invention, it is about 6.5 cN/dtex. It is 0 cN/dtex or less.
  • the breaking strength is less than 3.0 cN / dtex, when the clothing made partially using the conductive composite fiber is used in applications where the frequency of use and the number of washings are high (e.g., uniforms, etc.), during repeated use Since thread breakage is likely to occur, the clothing becomes inferior in durability of conductive performance. In addition, problems such as thread breakage occur in processing steps such as weaving, knitting, and false twisting, resulting in poor process passability.
  • the core-forming composition is used as a constituent material of the core
  • the sheath-forming composition is used as a constituent material of the sheath
  • the area ratio of the core and the sheath is adjusted to the above specific range.
  • the breaking strength of the conductive conjugate fiber can be adjusted within the above range.
  • the breaking strength of the conductive composite fiber in the present invention is a value measured according to JIS-L-1013:2010 Chemical fiber filament yarn test method 8.5 "Tensile strength and elongation" 8.5.1 "Standard time test” is. Specifically, it is a value obtained by measuring the strength when a conductive conjugate fiber is used as a sample and the sample is stretched and broken using a tensile tester under the conditions of a sample thread length of 10 cm and a tensile speed of 10 cm/min.
  • the conductive composite fiber of the present invention has a degree of crystallinity of 27 to 37%.
  • the degree of crystallinity is preferably 28 to 36%, more preferably 29 to 35%, even more preferably 30 to 35%.
  • the conductive component can sufficiently exhibit conductivity, so that the initial electrical resistance value of (c) described later is satisfied.
  • the crystallinity is within this numerical range, even if the sheath is composed of a sheath-forming composition containing 20 to 35% by mass of a conductive component, separation between the core and the sheath occurs.
  • a conductive conjugate fiber that becomes less difficult, has high strength, and has excellent durability of conductive performance can be obtained. Furthermore, when the crystallinity is within this numerical range, when subjected to a false twisting process or a knitting and weaving process, yarn breakage is less likely to occur, and process passability is improved. If the degree of crystallinity is less than 27%, the conductive performance of the conductive composite fiber is lowered. The reason for this is presumed to be that the amorphous portion in the fiber increases, making it difficult to uniformly disperse the conductive component in the resin. On the other hand, if the degree of crystallinity is less than 27%, the strength of the fiber is lowered, resulting in a fiber with poor durability in conductive performance.
  • the fiber is inferior in the durability of the conductive performance.
  • the conductive conjugate fiber satisfies the above range of crystallinity. Not only is it excellent, but it is also excellent in durability of strength and conductive performance.
  • the core-forming composition is used as a constituent material of the core
  • the sheath-forming composition is used as a constituent material of the sheath
  • the area ratio of the core and the sheath is adjusted to the above specific range.
  • the conductive conjugate fiber of the present invention has an initial electric resistance value of 5.0 ⁇ 10 8 ⁇ /cm or less.
  • the initial electrical resistance value means the electrical resistance value before washing 100 times.
  • the initial electrical resistance value is preferably 1.0 ⁇ 10 8 ⁇ /cm or less, more preferably 9.0 ⁇ 10 7 ⁇ /cm or less, and 8.0 ⁇ 10 7 ⁇ /cm or less. more preferably 7.0 ⁇ 10 7 ⁇ /cm or less, even more preferably 6.0 ⁇ 10 7 ⁇ /cm or less, and 5.0 ⁇ 10 7 ⁇ /cm or less. cm or less, more preferably 4.0 ⁇ 10 7 ⁇ /cm or less, and particularly preferably 3.0 ⁇ 10 7 ⁇ /cm or less.
  • the initial electrical resistance value exceeds 5.0 ⁇ 10 8 ⁇ /cm, the electrical conductivity will be insufficient depending on the intended use. If the initial electric resistance value is 5.0 ⁇ 10 8 ⁇ /cm or less, the surface leak resistance value of the woven or knitted fabric obtained by using the conductive composite fiber at least in part is low. , and charging can be almost eliminated. On the other hand, the lower limit of the initial electric resistance value is not particularly limited, but is preferably about 1.0 ⁇ 10 4 ⁇ /cm.
  • the core-forming composition is used as a constituent material of the core
  • the sheath-forming composition is used as a constituent material of the sheath
  • the area ratio of the core and the sheath is adjusted to the above specific range
  • the conductive conjugate fiber of the present invention preferably has a breaking elongation of 40 to 70%, more preferably 45 to 66%, even more preferably 50 to 60%.
  • a breaking elongation in the above range, for example, a woven or knitted fabric obtained by partially using conductive conjugate fibers is resistant to rubbing between fibers and is difficult to break, and has excellent conductive performance and durability of conductive performance. It is possible to make it excellent in terms of performance.
  • the core-forming composition is used as a constituent material of the core
  • the sheath-forming composition is used as a constituent material of the sheath
  • the area ratio of the core and the sheath is adjusted to the above specific range.
  • the elongation at break of the conductive conjugate fiber can be adjusted within the above range.
  • the breaking elongation of the conductive composite fiber in the present invention is measured according to JIS-L-1013:2010 Chemical fiber filament yarn test method 8.5 "Tensile strength and elongation" 8.5.1 "Standard time test” value. Specifically, using the obtained conductive conjugate fiber as a sample, using a tensile tester, the elongation of the sample is measured under the conditions of a sample yarn length of 10 cm and a tensile speed of 10 cm / min. value.
  • the core-forming composition is used as a constituent material of the core
  • the sheath-forming composition is used as a constituent material of the sheath
  • the area ratio of the core and the sheath is adjusted to the above specific range.
  • the boiling water shrinkage of the conductive conjugate fiber can be adjusted within the above range.
  • the boiling water shrinkage of the conductive conjugate fiber in the present invention is a value measured and calculated by the following method. Conductive conjugate fibers are weighed 20 times with a measuring machine, the yarn length L0 is measured under a load of 0.03 (cN/dtex), and then placed in boiling water under no load for treatment for 30 minutes.
  • Boiling water shrinkage (%) [(L0-L1) / L0] ⁇ 100
  • the woven or knitted fabric of the present invention is a woven or knitted fabric containing at least a portion of the conductive composite fiber of the present invention.
  • the content of the conductive conjugate fiber contained in the woven or knitted fabric of the present invention is preferably 0.1% by mass or more, more preferably 0.5% by mass or more.
  • the upper limit of the content of the conductive conjugate fiber varies depending on the use of the woven or knitted fabric.
  • the woven or knitted fabric of the present invention is used, for example, for clothing applications (work clothes, dustproof clothing, clean room clothing, etc.), or industrial material applications (smartphone gloves, smart textiles, charging brushes used for electronic devices, etc.). .
  • the texture of the woven or knitted fabric of the present invention is not particularly limited, but from the viewpoint of conductive performance, it is preferable to make the texture such that the conductive conjugate fibers are exposed on the surface of the fabric, or to use the conductive conjugate fibers for both the warp and the weft. preferable.
  • woven fabrics plain weaves, twill weaves, satin weaves, dobby weaves, double weaves, and the like can be mentioned. It is preferable to use the conjugate fibers arranged at intervals of 10 mm or less, preferably 8 to 1 mm.
  • any of circular knitting, weft knitting, and warp knitting may be used.
  • the woven or knitted fabric of the present invention has an initial surface leakage resistance value of 5.0 ⁇ 10 8 ⁇ /cm or less in the vertical direction, the horizontal direction, and between seams, as an index showing that the conductive performance is excellent. preferably 9.0 ⁇ 10 7 ⁇ /cm or less, even more preferably 8.0 ⁇ 10 7 ⁇ /cm or less, and 7.0 ⁇ 10 7 ⁇ /cm or less It is more preferably 6.0 ⁇ 10 7 ⁇ /cm or less, and even more preferably 5.0 ⁇ 10 7 ⁇ /cm or less.
  • the initial surface leakage resistance value means the surface leakage resistance value before washing 100 times.
  • the surface leakage resistance value of the woven or knitted fabric of the present invention after being washed 100 times is measured according to IEC61340-5-1 in the same manner as described above, and the measurement conditions are also as described above.
  • melt viscosity difference between the core-forming composition and the sheath-forming composition at a shear rate of 1000 s ⁇ 1 at the spinning temperature (melt viscosity of the sheath-forming composition ⁇ the core-forming composition
  • the melt viscosity of the composition is adjusted to 300 dPa ⁇ s ⁇ 1 or less (absolute value), and the core-forming composition and the sheath-forming composition are supplied to a composite spinning device to perform melt spinning, as shown below. It is important to perform steps (1) to (4) in order.
  • Step (1) A step (2) of cooling the undrawn yarn melt-spun from the spinneret nozzle by blowing a cooling air at a position 100 to 150 mm downward from the lower surface of the spinneret nozzle.
  • Step of winding the cooled undrawn yarn at 2000 to 3000 m/min (3): The step of drawing the wound undrawn yarn by 1.2 to 2.0 times while heating at 50 to 100 ° C.
  • the polyester resin contained in the core-forming composition constituting the core can be obtained by purchasing a commercially available polyester resin or by producing it by a known method for producing copolyester.
  • a method for obtaining the sheath-forming composition that constitutes the sheath in a known PBT production method, a method of adding a conductive component at the polymerization stage, or a commercially available or known production method A method of adding a conductive component or a master chip containing a conductive component to PBT and melt-kneading the mixture may be used.
  • the core-forming composition and the sheath-forming composition thus obtained are subjected to a treatment such as drying to form chips, which are then spun into chips using an ordinary composite spinning device, such as an extruder.
  • the mixture is kneaded, melted, and extruded through a core-sheath type spinneret for melt spinning to obtain an undrawn yarn.
  • melt viscosity difference between the core-forming composition and the sheath-forming composition at a shear rate of 1000 s ⁇ 1 at the spinning temperature (melt viscosity of the sheath-forming composition ⁇ It is important to adjust the melt viscosity) to 300 dPa ⁇ s -1 or less (absolute value), and melt spinning is performed by supplying the core forming composition and the sheath forming composition to a composite spinning device.
  • the melt viscosity of the core forming composition is preferably 1000 to 2000 dPa ⁇ s -1 , more preferably 1200 to 1800 dPa ⁇ s -1 , and still more preferably 1200 to 1500 dPa ⁇ s -1 .
  • the melt viscosity of the sheath-forming composition is preferably 800 to 1800 dPa ⁇ s ⁇ 1 , more preferably 1000 to 1600 dPa ⁇ s ⁇ 1 , and more preferably 1200 to 1600 dPa ⁇ s ⁇ 1 . More preferred.
  • the spinning temperature is preferably 250-310°C, more preferably 260-290°C, even more preferably 260-280°C. If the spinning temperature is too high, the resin in the core and sheath will be thermally decomposed, making smooth spinning difficult, and the physical properties such as strength and elongation of the resulting conductive conjugate fiber and conductive performance will tend to deteriorate. On the other hand, if the spinning temperature is too low, undissolved matter tends to remain, which tends to cause yarn breakage during spinning.
  • step (1) it is preferable to bundle the cooled undrawn filaments and perform oiling. Further, after the oiling, entangling treatment may be performed using an interlace nozzle or the like, if necessary.
  • entangling treatment may be performed using an interlace nozzle or the like, if necessary.
  • Mineral oil can be mentioned as an oil used for oiling, and if necessary, an antistatic agent or the like can be added.
  • the amount of oil applied to the fiber surface is preferably in the range of 0.3 to 2% by weight with respect to the weight of the fiber.
  • step (2) the undrawn yarn that has passed through step (1) is wound at 2000-3000 m/min.
  • the winding speed is preferably 2400-2900 m/min, more preferably 2600-2800 m/min. If the take-up speed is less than 2000 m/min, the resulting conjugate fiber will have a low fiber orientation. Therefore, it is necessary to draw at a high draw ratio in the subsequent drawing step (3), and the finally obtained conductive conjugate fiber is inferior in strength and conductive performance.
  • the winding speed exceeds 3000 m/min, the orientation and crystallization of the fibers will proceed too much, and the conductive layer will easily break when drawing is performed in the subsequent step (3), and yarn breakage will occur during drawing. easier. Moreover, even if a conductive conjugate fiber can be obtained, it will be inferior in strength and durability of conductive performance.
  • the temperature during stretching is less than 50°C, the stretching cannot be performed with a sufficient amount of heat, making uniform stretching difficult. As a result, the obtained conductive conjugate fiber is inferior in strength and conductive performance. On the other hand, if the temperature during drawing exceeds 100° C., the undrawn yarn becomes slack, roller winding or the like occurs, and yarn breakage during drawing tends to occur. As a result, the resulting conductive conjugate fiber is inferior in strength.
  • step (4) the drawn yarn is heat-treated at 130 to 150° C. and then wound up.
  • the heat treatment is preferably performed at 135-145°C.
  • the crystallinity of the conductive conjugate fiber in the hot drawing step of step (3), can be set within the range defined by the present invention by performing heat treatment at a temperature within the above range. Also, boiling water shrinkage can be reduced. If the temperature in the heat treatment is less than 130°C, the resulting conductive composite fiber will have a low degree of crystallinity and a high boiling water shrinkage. On the other hand, if it exceeds 150° C., the crystallinity of the obtained conductive conjugate fiber becomes too high, and the durability of the conductive performance becomes inferior.
  • a method of stretching by changing the rotation speed between the first roller and the second roller can be adopted, and a heat plate is provided between the first roller and the second roller. Heat treatment at 130 to 150° C. is preferred.
  • the breaking strength of the present invention is 3.0 cN/dtex or more, the degree of crystallinity is 27 to 37%, and the initial electrical resistance value is 5.0 ⁇ 10 8 ⁇ /cm or less.
  • a conductive composite fiber can be obtained with good workability.
  • the measuring method or evaluation method of each physical property is as follows.
  • (1) Melt viscosity of core-forming composition and sheath-forming composition The core-forming composition and the sheath-forming composition were dried in a vacuum dryer at 130°C for 12 hours before measurement. After drying, using a flow tester (manufactured by Shimadzu Corporation, model "CFT-500D") under the conditions of a measurement temperature of 270 ° C., a nozzle diameter of 0.5 mm, and a nozzle length of 2.0 mm, the shear rate dependence of the melt viscosity (flow curve ) was measured.
  • a flow tester manufactured by Shimadzu Corporation, model "CFT-500D
  • Breaking strength and breaking elongation are JIS-L-1013: 2010 Chemical fiber filament yarn test method 8.5 "Tensile strength and elongation" 8.5.1 "Standard time test” Measured according to Specifically, using the obtained conductive composite fiber as a sample, Tensilon RTC-1210 (manufactured by Orientec) was used, and the sample was stretched and broken under the conditions of a sample yarn length of 10 cm and a tensile speed of 10 cm / min. And the elongation was measured and obtained.
  • the resulting conductive composite fiber was cut lengthwise into 15 cm pieces, and 10 samples were taken. Apply keratin cream to the surface of both ends of the sample, connect the surface parts coated with keratin cream to metal terminals, apply a direct current of 50 V at a measurement length of 10 cm of the sample, and measure the current value with a micro current meter ( 5451) manufactured by ADCMT, and the electric resistance value was calculated by the following formula. The arithmetic mean value of the electrical resistance values of the calculated 10 samples was taken as the initial electrical resistance value.
  • Electrical resistance value E/(I x L) E: voltage (V) I: measurement current (A) L: measurement length (cm) (5) Electrical resistance value of the conductive composite fiber after washing 100 times The electrical resistance value of the conductive composite fiber after washing 100 times is measured as follows according to the AATCC76 method (Test Method for Electrical Surface Resistivity of Fabrics). bottom. Polyester filament (manufactured by Unitika Trading Co., Ltd., 167dtex/48f) was covered with the obtained conductive composite fiber at 520 T/M in the Z direction to obtain a conductive fiber covered yarn.
  • a tubular knitted fabric was knitted using a knitting machine (manufactured by Koike Kikai Seisakusho, number of needles: 300, hook diameter: 3.5 inches). The obtained tubular knitted fabric was washed 100 times, dried, and then the covering yarn obtained by tubular knitting was cut into 15 cm lengthwise. The cut covering yarn was used as a sample of the conductive composite fiber after washing 100 times, and 10 samples were collected. Keratin cream is applied to the surface of both ends of the sample, the surface part coated with keratin cream is connected to a metal terminal, and a direct current of 50 V is applied to the sample at a measurement length of 10 cm to measure the current value.
  • sample preparation Two types of samples (a) and (b) were prepared by cutting the conductive fabric into rectangles with a long side of 35 cm and a short side of 30 cm under the following conditions. (a) The long side is vertical and the short side is horizontal (b) The long side is horizontal and the short side is vertical , (a), and (b) were sewn to each other in the long side direction with double stitches to obtain a sample (c). [Measurement of surface leakage resistance] The surface leakage resistance value was measured using a resistance measuring device (Prostat Corporation, USA, resistance measurement system PRS-801) for each sample (a) placed on an insulating plate of 1.0 ⁇ 10 12 ⁇ or more.
  • a resistance measuring device Prostat Corporation, USA, resistance measurement system PRS-801
  • Two electrodes were placed on the surface of (c) in the following directions and distances between measurements, a constant voltage was applied, and the electric resistance was measured from the current flowing between the electrodes.
  • the measurement conditions are 23° C., 12% RH, and an applied voltage of 100V.
  • the surface leakage resistance value in the vertical direction was measured using the sample (a) at a distance of 25 cm between measurements in the long side direction.
  • the surface leakage resistance value in the horizontal direction was measured using the sample (b) at a distance of 25 cm between measurements in the long side direction.
  • the surface leakage resistance value between seams was measured using sample (c), two electrodes were installed so as to include one seam sewn with one-sided double stitching, and the distance between measurements was 30 cm in the short side direction. was measured.
  • Boiling water shrinkage (%) [(L0-L1) / L0] ⁇ 100 (8) Single fiber fineness and total fineness Single fiber fineness and total fineness were measured based on "A method" of JISL1013:2010 Chemical fiber filament yarn test method "8.3.1 Regular fineness”. (9) Workability The state of yarn breakage during melt spinning and drawing when obtaining a conductive composite fiber is as follows, depending on the number of yarn breakages per spindle when melt spinning is performed continuously for 24 hours. was evaluated in three stages. Good: The number of yarn breakages was 10 or less. ⁇ : The number of yarn breakages was 11 to 19 times. x: The number of yarn breakages was 20 or more. (10) Observation of cross-sectional shape A cross-section perpendicular to the longitudinal direction of the obtained conductive composite fiber was observed using a digital microscope "VHX-600" manufactured by Keyence Corporation (magnification: 1000 times).
  • Example 1 Production of core-forming composition
  • a slurry of terephthalic acid (TPA) and ethylene glycol (EG) was supplied to an esterification reactor and reacted under the conditions of a temperature of 250°C and a pressure of 50 hPa to obtain an esterification reaction rate of 95. % reaction product was obtained.
  • a slurry of isophthalic acid (IPA) and ethylene glycol was charged into another esterification reactor, and an esterification reaction was carried out at a temperature of 200° C. for 3 hours to obtain a reaction solution of isophthalic acid and ethylene glycol.
  • a reaction product of TPA and EG, a reaction solution of isophthalic acid and ethylene glycol, and a polymerization catalyst were added, and the reactor was evacuated to carry out a melt polymerization reaction. (melting point 234° C., melt viscosity 1340 dPa ⁇ s ⁇ 1 ).
  • a core-forming composition containing only the copolymerized polyester resin was obtained.
  • (2) Production of sheath-forming composition A sheath-forming composition having a melting point of 223°C and a melt viscosity of 1450 dPa ⁇ s ⁇ 1 was prepared by kneading conductive carbon black into PBT so that its content was 25% by mass. Obtained.
  • the core-forming composition and the sheath-forming composition are prepared, supplied to a composite spinning device, and a spinneret designed so that the cross-sectional shape of the fiber is as shown in FIG. Melt spinning was performed using At this time, the area ratio between the core and the sheath (core/sheath) was 85/15, and the sheath was arranged to cover the entire surface of the core. Further, the melt viscosity difference between the core-forming composition and the sheath-forming composition at a spinning temperature of 270° C.
  • melt viscosity of the sheath-forming composition ⁇ melt of the core-forming composition viscosity was 110 dPa ⁇ s -1 .
  • Cooling air 28°C, wind speed 0.4 m/s is blown to the yarn melt-spun from the spinneret nozzle at a position of 120 mm downward from the lower surface of the spinneret nozzle to cool it, and after convergence and oiling, it is stretched by a take-up roller at a distance of 2700 m/s. to obtain a partially undrawn yarn.
  • the obtained conductive conjugate fiber (28 dtex/6 f) was covered with a polyester filament (manufactured by Unitika Trading Co., Ltd., 340 dtex/96 f) at 400 T/M in the Z direction to obtain a conductive fiber covering yarn for weft.
  • the prepared beam was set on a rapier loom, and the weft was driven so that the arrangement of the polyester filament (manufactured by Unitika Trading Co., Ltd., 340 dtex/96 f) and the conductive fiber covering yarn for the weft was 11:1.
  • Weaving was performed with the warp double plain weave structure shown to obtain a conductive woven fabric.
  • the obtained gray fabric is scouring and dyeing in a conventional manner, and the conductive fiber covering yarn is heat set so that one yarn is arranged at intervals of 5 mm in both the warp and weft directions of the fabric.
  • a conductive fabric (duplex fabric) was obtained with a density of 84 threads/2.54 cm and a weft density of 56 threads/2.54 cm.
  • Examples 9-10, Comparative Examples 2-3 Melt spinning and drawing were carried out in the same manner as in Example 1, except that the cooling air blowing position in step (1) was changed to that shown in Table 1, to obtain a 28 dtex/6 f conductive conjugate fiber.
  • a conductive woven fabric was obtained in the same manner as in Example 1 using the obtained conductive conjugate fiber.
  • Examples 11-12, Comparative Examples 4-5 Melt spinning and drawing were carried out in the same manner as in Example 1, except that the winding speed in step (2) was changed to that shown in Table 1, to obtain a 28 dtex/6 f conductive conjugate fiber.
  • Comparative Example 5 a conductive conjugate fiber could not be obtained because yarn breakage occurred during drawing.
  • a conductive woven fabric was obtained in the same manner as in Example 1 using the obtained conductive conjugate fiber.
  • Examples 17-18, Comparative Examples 10-11 Melt spinning and drawing were carried out in the same manner as in Example 1, except that the heat treatment temperature in step (4) was changed to that shown in Table 1, to obtain a 28 dtex/6 f conductive conjugate fiber.
  • a conductive woven fabric was obtained in the same manner as in Example 1 using the obtained conductive conjugate fiber.
  • Examples 21-22, Comparative Example 16 Melt spinning and drawing were carried out in the same manner as in Example 1, except that the area ratio of the core portion and the sheath portion was changed to that shown in Table 1, to obtain a 28 dtex/6 f conductive conjugate fiber.
  • a conductive woven fabric was obtained in the same manner as in Example 1 using the obtained conductive conjugate fiber.
  • Table 1 shows the conditions in the manufacturing process of the conductive conjugate fibers in Examples 1 to 22 and Comparative Examples 1 to 16, and Table 2 shows the physical property values and evaluation results of the obtained conductive conjugate fibers and conductive fabrics.
  • conductive composite fibers could be obtained with good workability.
  • the resulting conductive conjugate fiber satisfied the breaking strength, crystallinity, and initial electrical resistance specified in the present invention, and was excellent in durability of conductive performance.
  • the woven fabric using the obtained conductive conjugate fiber has low surface leakage resistance values in the vertical direction, the horizontal direction, and between seams both at the initial stage and after washing 100 times, and has excellent conductive performance and conductive performance. It was excellent in durability.
  • Comparative Examples 1 to 11 the conductive composite fibers were produced by a production method that did not satisfy at least one of the conditions of steps (1) to (4). A conductive conjugate fiber satisfying all initial electrical resistance values could not be obtained. Therefore, fabrics using these conductive conjugate fibers are inferior in conductive performance and durability of conductive performance.
  • Comparative Examples 12 to 16 at least one of the type of polyester resin that is the resin component of the core or the sheath, the content of the conductive component in the sheath-forming composition, and the area ratio of the core to the sheath Since it did not satisfy the numerical range specified in the present invention, it was not possible to obtain a conductive conjugate fiber that satisfies all of the breaking strength, crystallinity, and initial electrical resistance value specified in the present invention. Therefore, fabrics using these conductive conjugate fibers are inferior in conductive performance and durability of conductive performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Multicomponent Fibers (AREA)
  • Knitting Of Fabric (AREA)
  • Woven Fabrics (AREA)

Abstract

本発明は、十分な導電性能と強度を有し、かつ100回洗濯後の導電性能にも優れる芯鞘型ポリエステル複合繊維を提供する。本発明の芯鞘型ポリエステル複合繊維は、芯部と鞘部とからなり、前記芯部は、エチレンテレフタレートを主たる繰り返し単位とし、かつ酸成分100モル%当たりイソフタル酸を1~15モル%含むポリエステル樹脂を主として含む芯部形成組成物で構成されており、前記鞘部は、ポリブチレンテレフタレートを主として含み、かつ導電性成分を20~35質量%含む鞘部形成組成物で構成されており、糸条長手方向に対して垂直な断面における前記芯部と前記鞘部の面積比(芯部/鞘部)が60/40~90/10であり、下記の(a)~(c)の物性をすべて満足するものである。 (a)前記複合繊維の破断強度が3.0cN/dtex以上 (b)前記複合繊維の結晶化度が27~37% (c)前記複合繊維の初期の電気抵抗値が5.0×108Ω/cm以下

Description

芯鞘型ポリエステル複合繊維、及びその製造方法
 本発明は、導電性成分と非導電性成分とからなる導電性を有する複合繊維に関するものであり、具体的には、制電作業服、ユニフォームなどの衣料製品、カーペット、カーテンなどのインテリア製品、各種産業資材製品などに広く使用することができる芯鞘型ポリエステル複合繊維、及びその製造方法に関するものである。
 ポリエステル、ポリアミド、ポリオレフィン等の疎水性ポリマーからなる繊維は機械特性、耐薬品性、耐候性等の多くの長所を有しており、衣料用のみならず、産業資材用途等にも広く用いられている。しかし、これらの繊維は摩擦等による静電気の発生が著しいため、空気中の塵埃を吸引して美観を低下させたり、人体に電撃を与えて不快感を与えたり、さらには、スパークによる電子機器への障害や、引火性物質への引火爆発等の問題を引き起こす場合があり、そのため、導電性を付与するための多くの研究がなされてきた。
 これまで、導電性カーボンブラックや金属粉等の導電性粒子を熱可塑性ポリマー全体に分散させた繊維が提案されているが、このような繊維は、導電性を満足する程度に導電性粒子を分散させると、曳糸性や強伸度の低下が著しく、実用性に乏しいものであった。
 この問題を解決するものとして、特許文献1や特許文献2では、導電性成分を非導電性成分で完全に包みこんだ芯鞘型複合繊維あるいは導電性成分が繊維表面に一部露出したタイプの複合繊維が開示されている。
 これらの特許文献に記載された複合繊維は、曳糸性が改善されたため、強伸度も向上したものとなったが、導電性成分が繊維表面に存在していない、もしくは一部のみ存在しているものであるため、導電性能は不十分なものであった。特に、導電性能の耐久性には劣るものであった。
 一方、導電性能を向上させる目的で、カーボンブラックを練り込んだ導電性成分を鞘部に配した芯鞘型複合繊維が特許文献3に記載されている。一般に、導電性成分が繊維表面全体に露出していると、曳糸性の低下が生じやすいが、特許文献3においては、横断面形状における導電性成分と非導電性成分の配置を特定の条件を満足する範囲内のものとすることで、紡糸工程および後工程の通過性が良好な導電性繊維であって、導電性の耐久性にも優れる導電性繊維を得ることができることが記載されている。
 近年、特に、エレクトロニクス産業をはじめ、各種の業務で使用される作業用衣服は、着用や洗濯の頻度が高く、着用や洗濯を繰り返しても導電性能の低下が少ない、耐洗濯性(耐久性)に優れると同時に強度にも優れたものが求められている。特許文献3記載の導電性繊維は、ある程度の導電性能の耐久性には優れたものであったが、強度が不十分であり、導電性能の耐久性においても十分に満足できる性能のものではなかった。導電性能の耐久性として、作業用衣服においては、100回洗濯後の導電性能が初期の導電性能に比べて大きく低下していないことが求められる。特許文献3記載の導電性繊維は、特に100回洗濯後の導電性能に劣るものであった。
 このように、これまで、十分な導電性能と強度を有し、かつ100回洗濯後の導電性能にも優れる導電性繊維は未だ提案されていない。
特開平09-143821号公報 特開平09-279416号公報 特許第4916460号公報
 本発明の目的は、上記のような問題点を解決するものであり、十分な導電性能と強度を有し、かつ100回洗濯後の導電性能にも優れる芯鞘型ポリエステル複合繊維を提供することである。また、本発明の他の目的は、前記特性の芯鞘型ポリエステル複合繊維を操業性よく得るための製造方法を提供することである。
 本発明者等は、前記課題を解決すべく鋭意検討を行い、本発明に到達した。すなわち、本発明は、以下を要旨とするものである。
項1.芯部と、鞘部とからなる芯鞘型ポリエステル複合繊維であって、
 前記芯部は、エチレンテレフタレートを主たる繰り返し単位とし、かつ酸成分100モル%当たりイソフタル酸を1~15モル%含むポリエステル樹脂を主として含む芯部形成組成物で構成されており、
 前記鞘部は、ポリブチレンテレフタレートを主として含み、かつ導電性成分を20~35質量%含む鞘部形成組成物で構成されており、
 糸条長手方向に対して垂直な断面における前記芯部と前記鞘部の面積比(芯部/鞘部)が60/40~90/10であり、
 下記の(a)~(c)の物性をすべて満足する、芯鞘型ポリエステル複合繊維。
(a)前記複合繊維の破断強度が3.0cN/dtex以上
(b)前記複合繊維の結晶化度が27~37%
(c)前記複合繊維の初期の電気抵抗値が5.0×108Ω/cm以下
項2.さらに、下記の(d)の物性を満足する、項1に記載の芯鞘型ポリエステル複合繊維。
(d)100回洗濯後の電気抵抗値が1.0×109Ω/cm以下
項3.項1または2に記載の芯鞘型ポリエステル複合繊維を含む、織編物。
項4.項1または2に記載の芯鞘型ポリエステル複合繊維の製造方法であって、紡糸温度でのせん断速度1000s-1における前記芯部形成組成物と前記鞘部形成組成物の溶融粘度差(前記鞘部形成組成物の溶融粘度-前記芯部形成組成物の溶融粘度)を300dPa・s-1以下(絶対値)に調整し、複合紡糸装置に前記芯部形成組成物と前記鞘部形成組成物を供給して溶融紡糸を行い、以下に示す工程(1)~(4)を順に行うことを特徴とする、芯鞘型ポリエステル複合繊維の製造方法。
工程(1):口金ノズルから溶融紡糸された未延伸糸条に、口金ノズル下面から下方向に100~150mmの位置で冷却風を吹き付けることにより、前記未延伸糸条を冷却する
工程(2):冷却した未延伸糸条を2000~3000m/minで巻き取る
工程(3):巻き取った未延伸糸条を50~100℃で加熱しながら、1.2~2.0倍に延伸する
工程(4):延伸した糸条を130~150℃で熱処理した後、巻き取る
 本発明の芯鞘型ポリエステル複合繊維は、十分な導電性能と強度を有しており、結晶化度が特定範囲のものであるため、芯部と鞘部の剥離が生じにくいものである。このため、100回洗濯後の導電性能にも優れる(耐久性を有する)ものである。
 このような本発明の芯鞘型ポリエステル複合繊維は、制電作業服、ユニフォームなどの衣料製品、カーペット、カーテンなどのインテリア製品、各種産業資材製品などに広く使用することが可能となる。
 また、本発明の芯鞘型ポリエステル複合繊維の製造方法によれば、特定の強度、特定の結晶化度、及び特定の初期の電気抵抗値を満足する本発明の芯鞘型ポリエステル複合繊維を操業性よく得ることが可能となる。
本発明の芯鞘型ポリエステル複合繊維の糸条長手方向に対して垂直な断面における複合形態の一例を示す模式図である。 実施例1で得た導電性織物の織組織である。
1.芯鞘型ポリエステル複合繊維
 本発明の芯鞘型ポリエステル複合繊維(以下、導電性複合繊維と表記することがある)は、芯部と、鞘部とからなる芯鞘型の複合繊維である。
 前記芯部は、エチレンテレフタレートを主たる繰り返し単位とし、かつ酸成分100モル%当たりイソフタル酸を1~15モル%含むポリエステル樹脂を主として含む芯部形成組成物で構成されている。ここで、「エチレンテレフタレートを主たる繰り返し単位とし」とは、ポリエステル樹脂を構成する全繰り返し単位に対してエチレンテレフタレートの繰り返し単位が50モル%以上であることを意味する。また、「ポリエステル樹脂を主として含む」とは、芯部形成組成物中にポリエステル樹脂を50質量%以上含むことを意味する。
 前記ポリエステル樹脂は、エチレンテレフタレートを主たる繰り返し単位とし、かつ酸成分100モル%当たりイソフタル酸を1~15モル%含むものである。エチレンテレフタレートの繰り返し単位の含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは85モル%以上、より更に好ましくは90モル%以上である。イソフタル酸は共重合成分として含まれており、イソフタル酸の含有量は、酸成分100モル%当たり、好ましくは2~12モル%、より好ましくは4~12モル%、更に好ましくは6~10モル%である。イソフタル酸を前記含有量にて共重合したポリエステル樹脂とすることにより、重縮合反応時の反応温度や、紡糸時の温度を下げることができる。すなわち、後述する鞘部を構成する鞘部形成組成物との溶融粘度差を小さくし、複合紡糸工程をスムーズに行うことができ、導電性複合繊維の結晶化度を本発明で規定する範囲内に調整することが容易になる。
 前記ポリエステル樹脂中に含まれるイソフタル酸の含有量が、酸成分100モル%当たり1モル%未満の場合には、鞘部形成組成物に含まれるポリエチレンテレフタレート(PET)と比較して融点を下げることができず、重縮合反応温度、紡糸温度を低下させることができないため、複合紡糸工程をスムーズに行うことが困難となる。一方、イソフタル酸の含有量が15モル%を超えると、繊維中の非晶領域が多くなるため、紡糸時の操業性が悪くなりやすく、導電性複合繊維を得ることができたとしても、得られた導電性複合繊維の強度および導電性能の耐久性が低下する。また、沸水収縮率の制御が困難となり、沸水収縮率が高くなりやすい。
 前記ポリエステル樹脂中には、本発明の効果を損なわない範囲であれば、他の共重合成分が含まれていてもよい。他の共重合成分としては、例えば、シクロヘキサンジメタノール(CHDM)、シクロヘキサンジカルボン酸(CHDA)等が挙げられる。
 芯部形成組成物中のイソフタル酸を1~15モル%含むポリエステル樹脂の含有量は、50質量%以上であり、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは85質量%以上、より更に好ましくは90質量%以上、特に好ましくは95質量%以上、最も好ましくは100質量%である。
 次に、鞘部について説明する。導電性能を示す鞘部は、ポリブチレンテレフタレートを主として含み、かつ導電性成分を20~35質量%含む鞘部形成組成物で構成されている。ここで、「ポリブチレンテレフタレートを主として含み」とは、鞘部形成組成物中にポリブチレンテレフタレートを50質量%以上含むことを意味する。
 鞘部形成組成物中の導電性成分の含有量は、好ましくは22~33質量%、より好ましくは22~30質量%、更に好ましくは23~27質量%である。導電性成分の含有量を前記範囲内に調整することにより、導電性複合繊維の初期の電気抵抗値を本発明で規定する範囲内に調整することが容易になる。導電性成分の含有量が20質量%未満であると、十分な導電性能を付与することができない。一方、導電性成分の含有量が35質量%を超えると、導電性成分を鞘部形成組成物中に均一に分散させることが難しくなり、芯部と鞘部との剥離や紡糸延伸工程での糸切れが生じやすくなり、得られる導電性複合繊維は、強度や導電性能の耐久性に劣るものとなる。また、十分な導電性能が得られない場合もある。
 本発明で用いる導電性成分としては、例えば、導電性カーボンブラックや、金属粉末(銀、ニッケル、銅、鉄、錫あるいはこれらの合金等)や、硫化銅、沃化銅、硫化亜鉛、硫化カドミウム等の金属化合物が挙げられる。また、酸化錫に酸化アンチモンを少量添加したり、酸化亜鉛に酸化アルミニウムを少量添加したりして導電性粒子としたものも挙げられる。さらには、酸化チタンの表面に酸化錫をコーティングし、酸化アンチモンを混合焼成して導電性粒子としたものも用いることができる。中でも、導電性繊維の性能向上として汎用的に使用されており、金属粒子と比較してポリマーの流動性を阻害しにくい観点から、導電性カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック等)が好ましい。
 導電性成分の比抵抗値は、1×104Ω・cm以下のものが好ましく、1×102Ω・cm以下のものがより好ましい。比抵抗値が1×104Ω・cmを超えるものを用いると、所望の導電性能を得るために、多量の導電性粒子をポリマー中に分散させることが必要な場合があり、導電性複合繊維の物性に悪影響を及ぼすだけでなく、紡糸、延伸時に糸切れが生じ、操業性に問題を生じる可能性がある。
 導電性成分としては、導電性カーボンブラックを使用することが好ましい。導電性カーボンブラックは、平均粒径が1μm以下のものを用いることが好ましく、0.5μm以下のものがより好ましい。平均粒径が1μmを超えると、導電性カーボンブラックの樹脂中への分散性が悪くなりやすく、導電性複合繊維の導電性能や強伸度特性が低下しやすくなる。
 本発明において、鞘部を構成する樹脂としては主としてポリブチレンテレフタレート(PBT)を使用する。PBTは結晶性の高い樹脂であることから、含有された導電性成分がPBT中に均一に配列されやすく、このため、得られる導電性複合繊維は、導電性に優れ(電気抵抗値が低く)、繊維長手方向に均一な導電性能を有するものとなる。
 PBT中には、本発明の効果を損なわない範囲であれば、共重合成分が含まれていてもよいが、共重合成分を含まないことが好ましい。共重合成分としては、例えば、エチレングリコール(EG)、シクロヘキサンジメタノール(CHDM)、シクロヘキサンジカルボン酸(CHDA)、イソフタル酸(IPA)、1,3-プロパンジオール、セバシン酸、ダイマー酸、ドデカン二酸、キシリレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール、イプシロンカプロラクタム等が挙げられる。
 鞘部形成組成物中のPBTの含有量は、50質量%以上であり、好ましくは55質量%以上、より好ましくは60質量%以上、更に好ましくは65質量%以上、より更に好ましくは70質量%以上、特に好ましくは75質量%以上である。なお、鞘部を構成する樹脂としては、本発明の効果を損なわない範囲であれば、PBT以外のポリエステル樹脂として、ポリエチレンテレフタレートや共重合ポリエステル樹脂を含有していてもよい。ただし、本発明においては、鞘部を構成する樹脂としてPBTのみを用いることが好ましい。
 芯部形成組成物及び鞘部形成組成物は、本発明の効果を損なわない範囲で、目的に応じて、ワックス類、ポリアルキレンオキシド類、各種界面活性剤、有機電解質等の分散剤、酸化防止剤、紫外線吸収剤等の安定剤、着色剤、顔料、流動性改善剤、その他の添加剤を含有していてもよい。
 本発明の導電性複合繊維において、鞘部は、芯部の表面の少なくとも一部を覆うように配置されている。鞘部の芯部表面に対する被覆率は、導電性能を向上させる観点から、芯部の表面積の90%以上であることが好ましく、より好ましくは95%以上、更に好ましくは98%以上、最も好ましくは100%である。つまり、鞘部は、芯部の全表面を覆うように配置されていることが最も好ましい。
 図1は、本発明の芯鞘型ポリエステル複合繊維の糸条長手方向に対して垂直な断面における複合形態の一例を示す模式図である。図1では、導電性の鞘部1が、非導電性の芯部2の表面を全て覆っている状態を示している(つまり、鞘部の芯部表面に対する被覆率が100%である)。また、図1に示すように、鞘部1は、前記断面の中心部に向かって突出する突起部などを有さず、実質的に一様の厚さ幅で形成されていることが好ましい。鞘部の芯部表面に対する被覆率が、芯部の表面積の90%未満である場合には、導電性能が不十分となりやすく、また、導電性能の耐久性も乏しいものとなりやすい。
 そして、本発明の導電性複合繊維は、繊維の糸条長手方向に対して垂直な断面(垂直に切断したときの断面)における、芯部と鞘部の面積比(芯部/鞘部)が60/40~90/10である。芯部と鞘部の面積比は、65/35~85/15であることが好ましく、70/30~85/15であることがより好ましく、75/25~85/15であることが更に好ましい。導電性成分を含有する鞘部の面積割合が10%を下回ると、繊維表面に芯部のポリエステル樹脂が露出する割合が多くなり、操業性が悪化するとともに、得られる導電性複合繊維は導電性能に劣るものとなる。また、導電性複合繊維を織編物の一部に使用した場合に、縫目間の導電性複合繊維同士の接点での通電が不十分になるため、縫目間における導電性能に劣るものとなる。また、繰り返し使用することで導電性能がさらに悪化するため、実用に不十分なものとなる。一方で、鞘部の面積割合が40%を超えると、紡糸や延伸時に糸切れが発生し、操業性が悪化する。また、複合繊維が得られたとしても、強伸度特性などの糸質性能に劣るものとなる。
 また、本発明の導電性複合繊維は、単繊維繊度が3.0~6.0dtexであることが好ましく、4.0~5.5dtexであることがより好ましく、4.5~5.5dtexであることが更に好ましい。また、マルチフィラメント糸とした際の総繊度は、15~40dtexであることが好ましく、20~35dtexであることがより好ましく、25~32dtexであることが更に好ましい。導電性複合繊維の単繊維繊度やマルチフィラメント糸の総繊度を上記範囲とすることで、当該導電性複合繊維を一部に用いて得られた織編物は、繊維の鞘部に含まれる導電性成分の色が目立ちにくくなり、外観に優れたものとなる。なお、本発明においては、後述する導電性複合繊維の製造方法を採用することにより、上記のような単繊維繊度が比較的小さい導電性複合繊維を得ることが可能であり、かつ上記のような繊維強度を有する導電性複合繊維とすることができる。
 本発明における導電性複合繊維の単繊維繊度及び総繊度は、それぞれ、JISL1013:2010化学繊維フィラメント糸試験方法 「8.3.1正量繊度」の「A法」に基づいて測定される値である。
 本発明の導電性複合繊維は、織編物を構成する繊維の少なくとも一部に用いることが好ましいものであるが、導電性複合繊維をそのまま用いてもよいし、導電性複合繊維を他の繊維と合撚、カバーリング、混繊したものを用いてもよい。なお、導電性能の耐久性を考慮すると、導電性複合繊維を他の繊維と合撚、カバーリング、混繊して用いることが好ましい。他の繊維としては特に限定されるものではなく、ポリアミド、ポリエステル、ポリエチレン等の合成繊維やレーヨン等の再生繊維、綿、麻、ウール等の天然繊維等が挙げられるが、本発明の導電性複合繊維はポリエステル樹脂で構成されるものであるため、ポリエステル繊維が好ましい。
 本発明の導電性複合繊維を他の繊維と合撚、カバーリング、混繊して用いる場合において、本発明の導電性複合繊維の導電性能を十分に発揮させるためには、本発明の導電性複合繊維と他の繊維の割合(導電性複合繊維/他の繊維)は、5/95~75/25とすることが好ましい。また、この際に、本発明の導電性複合繊維が出来るだけ表面に多く露出するようにすることが好ましい。
2.芯鞘型ポリエステル複合繊維の物性
 本発明の導電性複合繊維は、下記の(a)~(c)の物性をすべて満足するものである。
(a)前記複合繊維の破断強度が3.0cN/dtex以上
(b)前記複合繊維の結晶化度が27~37%
(c)前記複合繊維の電気抵抗値が5.0×108Ω/cm以下
 これらの特性をすべて満足することによって、高強度であり、導電性能にも優れ、かつ100回洗濯後の導電性能にも優れる耐久性を有する導電性複合繊維とすることができる。これらの特性をすべて満足する導電性複合繊維は、後述する本発明の製造方法により得ることが可能である。
 (a)の物性として、本発明の導電性複合繊維は、破断強度が3.0cN/dtex以上である。破断強度は、3.1cN/dtex以上であることが好ましく、3.15cN/dtex以上であることがより好ましく、3.2cN/dtex以上であることが更に好ましく、3.3cN/dtex以上であることが特に好ましい。本発明において導電性複合繊維の破断強度の上限値は特に限定されないが、6.5cN/dtex程度であり、一実施態様として、5.5cN/dtex以下、4.5cN/dtex以下、又は4.0cN/dtex以下である。破断強度が3.0cN/dtex未満であると、導電性複合繊維を一部に用いて作製した衣料を使用頻度や洗濯回数が多くなる用途(例えば、ユニフォーム用途など)に使用すると、繰り返し使用時に糸切れが生じやすくなるため、当該衣料は導電性能の耐久性に劣るものとなる。また、製織、製編、仮撚りなどの加工工程においても糸切れなどの問題が生じ、工程通過性が不良となる。本発明では、芯部の構成材料として前記芯部形成組成物を用い、鞘部の構成材料として前記鞘部形成組成物を用い、そして芯部と鞘部の面積比を上記特定範囲に調整し、さらに後述する導電性複合繊維の製造方法を採用することにより、導電性複合繊維の破断強度を上記範囲に調整することができる。
 本発明における導電性複合繊維の破断強度は、JIS-L-1013:2010 化学繊維フィラメント糸試験方法 8.5「引張強さ及び伸び率」8.5.1「標準時試験」に従って測定される値である。具体的には、導電性複合繊維を試料とし、引張試験機を用い、試料糸長10cm、引張り速度10cm/minの条件で試料が伸長破断したときの強度を測定して得られる値である。
 (b)の物性として、本発明の導電性複合繊維は、結晶化度が27~37%である。結晶化度は、28~36%であることが好ましく、29~35%であることがより好ましく、30~35%であることが更に好ましい。結晶化度がこの数値範囲内にあることにより、導電性成分が十分に導電性を発現させることができるため、後述する(c)の初期の電気抵抗値を満足するものとなる。また、結晶化度がこの数値範囲内にあることにより、鞘部が、導電性成分を20~35質量%含む鞘部形成組成物から構成されていても、芯部と鞘部の剥離が生じにくくなり、強度が高く、導電性能の耐久性に優れる導電性複合繊維が得られると推測される。さらに、結晶化度がこの数値範囲内にあることにより、仮撚り工程や製編織工程に供した場合に、糸切れが生じにくくなり、工程通過性が良好となる。
 結晶化度が27%未満の場合には、導電性複合繊維の導電性能が低下する。その理由としては、繊維中の非晶部分が多くなり、導電性成分が樹脂中に均一に分散されにくくなるためと推測される。また、結晶化度が27%未満の場合には、繊維強度が低下し、導電性能の耐久性に劣る繊維となる。一方、結晶化度が37%を超えると、洗濯をした際に芯部と鞘部の剥離が生じやすくなり、また、鞘部に含まれるカーボンブラック等の導電性成分の脱落が生じやすくなるため、導電性能の耐久性に劣る繊維となる。
 本発明においては、導電性複合繊維が、上記範囲の結晶化度を満足することが重要であり、このような範囲の結晶化度を有することで、得られる導電性複合繊維は、導電性能に優れるだけでなく、強度や導電性能の耐久性にも優れたものとなる。本発明では、芯部の構成材料として前記芯部形成組成物を用い、鞘部の構成材料として前記鞘部形成組成物を用い、そして芯部と鞘部の面積比を上記特定範囲に調整し、さらに後述する導電性複合繊維の製造方法を採用することにより、導電性複合繊維の結晶化度を上記範囲に調整することができる。
 なお、本発明における結晶化度とは、導電性複合繊維を用いて、後述する測定方法により測定して得られる、導電性複合繊維の結晶化度をいう。
 本発明における結晶化度は、下記計算式により、結晶化度(Xc)を算出することにより得られる。具体的には、示差走査熱量計を用いて、導電性複合繊維8.5mgを25℃から280℃まで20℃/minにて昇温し、得られた下記各熱量の値と下記式を用いて算出する。
結晶化度(Xc)={(ΔHm-ΔHc)}/140.2}×100(%)
  (ΔHmは融点の熱量、ΔHcは昇温結晶化での熱量をそれぞれ示す)
 (c)の物性として、本発明の導電性複合繊維は、初期の電気抵抗値が5.0×108Ω/cm以下である。初期の電気抵抗値とは、100回洗濯前の電気抵抗値を意味する。初期の電気抵抗値は、1.0×108Ω/cm以下であることが好ましく、9.0×107Ω/cm以下であることがより好ましく、8.0×107Ω/cm以下であることが更に好ましく、7.0×107Ω/cm以下であることが更に好ましく、6.0×107Ω/cm以下であることがより更に好ましく、5.0×107Ω/cm以下であることが一層好ましく、4.0×107Ω/cm以下であることがより一層好ましく、3.0×107Ω/cm以下であることが特に好ましい。初期の電気抵抗値が5.0×108Ω/cmを超えると、使用する用途によっては、導電性能が不十分となる。初期の電気抵抗値が5.0×108Ω/cm以下であると、該導電性複合繊維を少なくとも一部に用いて織編物を得た場合に、織編物の表面漏洩抵抗値を低いものとすることが可能となり、帯電をほとんどなくすことができる。一方、初期の電気抵抗値の下限値は特に制限されないが、1.0×104Ω/cm程度であることが好ましい。本発明では、芯部の構成材料として前記芯部形成組成物を用い、鞘部の構成材料として前記鞘部形成組成物を用い、芯部と鞘部の面積比を上記特定範囲に調整し、導電性複合繊維の結晶化度を上記特定範囲に調整し、さらに後述する導電性複合繊維の製造方法を採用することにより、導電性複合繊維の初期の電気抵抗値を上記範囲に調整することができる。
 本発明における導電性複合繊維の初期の電気抵抗値は、AATCC76法(Test Method for Electrical Surface Resistivity of Fabrics)に従って測定される値である。具体的には、得られた導電性複合繊維を長さ方向に15cmにカットして、サンプルを10個採取する。サンプルの両端の表面にケラチンクリームを塗布し、ケラチンクリームを塗布した表面部分を金属端子にそれぞれ接続し、サンプルの測定長10cmにて、50Vの直流電流を印加して電流値を測定し、下記式で電気抵抗値を算出する。算出した10個のサンプルの電気抵抗値の相加平均値を初期の電気抵抗値とする。
  電気抵抗値=E/(I×L)
  E:電圧(V) I:測定電流(A) L:測定長(cm)
 (d)の物性として、本発明の導電性複合繊維は、100回洗濯後の電気抵抗値が1.0×109Ω/cm以下であることが好ましく、5.0×108Ω/cm以下であることがより好ましく、2.0×108Ω/cm以下であることが更に好ましく、7.0×107Ω/cm以下であることがより更に好ましく、5.0×107Ω/cm以下であることが一層好ましく、4.0×107Ω/cm以下であることがより一層好ましく、3.0×107Ω/cm以下であることが特に好ましい。
 本発明における100回洗濯後の電気抵抗値は、下記の方法で測定される電気抵抗値である。
 本発明の導電性複合繊維をポリエステルフィラメントにZ方向520T/Mでカバーリングし、導電性繊維カバーリング糸を得る。前記導電性繊維カバーリング糸のみを用いて、編機を用いて筒編地を編成する。得られた筒編地を100回洗濯し、乾燥させた後、筒編解編することで得られるカバーリング糸を長さ方向に15cmにカットする。カットしたカバーリング糸を100回洗濯後の導電性複合繊維のサンプルとし、サンプルを10個採取する。サンプルの両端の表面にケラチンクリームを塗布し、ケラチンクリームを塗布した表面部分を金属端子にそれぞれ接続し、サンプルの測定長10cmにて、50Vの直流電流を印加して電流値を測定し、下記式で電気抵抗値を算出する。算出した10個のサンプルの電気抵抗値の相加平均値を100回洗濯後の電気抵抗値とする。なお洗濯試験は、JIS L 1930:2014 繊維製品の家庭洗濯試験方法 「C形基準洗濯機の洗濯方法」の「C4M法」に従って行い、乾燥方法は、A法(吊干し乾燥)にて行う。
  電気抵抗値=E/(I×L)
  E:電圧(V) I:測定電流(A) L:測定長(cm)
 本発明の導電性複合繊維は、破断伸度が40~70%であることが好ましく、45~66%であることがより好ましく、50~60%であることが更に好ましい。破断伸度を前記範囲とすることで、例えば、導電性複合繊維を一部に用いて得られた織編物は、繊維同士のこすれに対して強く、破れにくくなり、導電性能および導電性能の耐久性に優れたものとすることが可能である。本発明では、芯部の構成材料として前記芯部形成組成物を用い、鞘部の構成材料として前記鞘部形成組成物を用い、そして芯部と鞘部の面積比を上記特定範囲に調整し、さらに後述する導電性複合繊維の製造方法を採用することにより、導電性複合繊維の破断伸度を上記範囲に調整することができる。
 本発明における導電性複合繊維の破断伸度は、JIS-L-1013:2010 化学繊維フィラメント糸試験方法 8.5「引張強さ及び伸び率」8.5.1「標準時試験」に従って測定される値である。具体的には、得られた導電性複合繊維を試料とし、引張試験機を用い、試料糸長10cm、引張り速度10cm/minの条件で試料が伸長破断したときの伸度を測定して得られる値である。
 本発明の導電性複合繊維は、沸水収縮率が10%以下であることが好ましく、9%以下であることがより好ましく、8%以下であることが更に好ましく、7.5%以下であることがより更に好ましく、7%以下であることが特に好ましい。沸水収縮率が10%を超えると、織編物とした際の熱セットによる収縮で導電性能のバラツキが大きくなる場合がある。本発明の導電性複合繊維の沸水収縮率の下限値は特に限定されないが、他の繊維の沸水収縮率との差が大きくならないようにすればよく、概ね3%以上であることが好ましい。本発明では、芯部の構成材料として前記芯部形成組成物を用い、鞘部の構成材料として前記鞘部形成組成物を用い、そして芯部と鞘部の面積比を上記特定範囲に調整し、さらに後述する導電性複合繊維の製造方法を採用することにより、導電性複合繊維の沸水収縮率を上記範囲に調整することができる。
 本発明における導電性複合繊維の沸水収縮率は、下記の方法で測定、算出される値である。
 導電性複合繊維を検尺機で20回かせ取りを行い、0.03(cN/dtex)の荷重下で糸長L0を測定し、次いで無荷重下で沸水中に入れ30分間処理する。その後、風乾し、再度0.03(cN/dtex)の荷重下で収縮後の長さL1を測定し、下記式にて沸水収縮率を算出する。
  沸水収縮率(%)=〔(L0-L1)/L0〕×100
3.織編物
 本発明の織編物は、本発明の導電性複合繊維を少なくとも一部に含む織物または編物である。本発明の織編物中に含まれる導電性複合繊維の含有量は、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。なお、導電性複合繊維の含有量の上限値は織編物を使用する用途により異なるが、例えば、衣料用途であれば概ね30質量%以下であることが好ましい。
 本発明の織編物は、例えば、衣料用途(作業服、防塵衣料、クリーンルーム用衣料など)、もしくは産業資材用途(スマートフォン用手袋、スマートテキスタイル、電子機器等に用いる帯電用ブラシなど)などに用いられる。
 本発明の織編物は、特に組織など限定されないが、導電性複合繊維が生地表面に露出するような組織にしたり、経糸と緯糸の両方に導電性複合繊維を用いることが、導電性能の観点で好ましい。
 織物の場合は、平織、綾織(ツイル)、朱子織、ドビー織、二重織などが挙げられ、経糸と緯糸のどちらか一方もしくは両方に本発明の導電性複合繊維を用い、織物中に導電性複合繊維を10mm以下の間隔、好ましくは8~1mmの間隔で配置されるように用いることが好ましい。
 編物の場合は、丸編、緯編、経編のいずれでもよく、丸編、緯編の場合は、10mm以下の間隔で本発明の導電性複合繊維を挿入することが好ましく、好ましくは8~1mmの間隔である。
 また、本発明の織編物は、導電性能に優れることを示す指標として、タテ方向、ヨコ方向および縫目間の初期の表面漏洩抵抗値がいずれも5.0×108Ω/cm以下であることが好ましく、9.0×107Ω/cm以下であることがより好ましく、8.0×107Ω/cm以下であることが更に好ましく、7.0×107Ω/cm以下であることがより更に好ましく、6.0×107Ω/cm以下であることが一層好ましく、5.0×107Ω/cm以下であることがより一層好ましい。本発明において、初期の表面漏洩抵抗値とは、100回洗濯前の表面漏洩抵抗値を意味する。
 本発明における織編物の初期の表面漏洩抵抗値は、IEC61340-5-1に従って測定されるものである。具体的には、絶縁板の上に置いた織編物の表面(タテ方向、ヨコ方向又は縫目間)に2つの電極を設置して一定電圧を加え、この電極間に流れる電流より電気抵抗を測定する。測定条件は、23℃、12%RH、測定間距離25cm(タテ方向、ヨコ方向の場合)又は30cm(縫目間の場合)、電圧100Vである。
 さらに、本発明の織編物は、導電性能の耐久性にも優れることを示す指標として、100回洗濯後のタテ方向、ヨコ方向および縫目間の表面漏洩抵抗値がいずれも1.0×109Ω/cm以下であることが好ましい。タテ方向、ヨコ方向の表面漏洩抵抗値は1.0×108Ω/cm以下であることがより好ましく、8.0×107Ω/cm以下であることが更に好ましく、6.0×107Ω/cm以下であることがより更に好ましい。縫目間の表面漏洩抵抗値は5.0×108Ω/cm以下であることがより好ましく、3.0×108Ω/cm以下であることが更に好ましく、1.0×108Ω/cm以下であることがより更に好ましい。
 本発明における織編物の100回洗濯後の表面漏洩抵抗値は、上記と同様にIEC61340-5-1により測定されるものであり、測定条件も上記の通りである。
 なお、100回洗濯は、JIS L 0217:1995 繊維製品の取扱いに関する表示記号及びその表示方法 「付表1 記号別の試験方法-洗い方(水洗い)」の「番号103」に従って、織編物の洗濯試験を100回行い、乾燥方法は、F法(タンブル乾燥)にて行う。
 一般に、織編物に洗濯を繰り返すと、繊維表面に擦れや摩擦などの力が加わると同時に、織編物の組織間の空隙が詰まり、導電性繊維は織編物の内部に埋没しやすくなる。しかしながら、本発明の織編物は、優れた導電性能と導電性能の耐久性を有しており、100回洗濯後も優れた導電性能を有する。
4.芯鞘型ポリエステル複合繊維の製造方法
 以下、本発明の導電性複合繊維の製造方法について説明する。
 本発明の製造方法においては、紡糸温度でのせん断速度1000s-1における前記芯部形成組成物と前記鞘部形成組成物の溶融粘度差(前記鞘部形成組成物の溶融粘度-前記芯部形成組成物の溶融粘度)を300dPa・s-1以下(絶対値)に調整し、複合紡糸装置に前記芯部形成組成物と前記鞘部形成組成物を供給して溶融紡糸を行い、以下に示す工程(1)~(4)を順に行うことが重要である。
工程(1):口金ノズルから溶融紡糸された未延伸糸条に、口金ノズル下面から下方向に100~150mmの位置で冷却風を吹き付けることにより、前記未延伸糸条を冷却する
工程(2):冷却した未延伸糸条を2000~3000m/minで巻き取る
工程(3):巻き取った未延伸糸条を50~100℃で加熱しながら、1.2~2.0倍に延伸する
工程(4):延伸した糸条を130~150℃で熱処理した後、巻き取る
 溶融紡糸工程について、以下に述べる。
 まず、芯部を構成する前記芯部形成組成物に含まれる前記ポリエステル樹脂は、市販のポリエステル樹脂を購入するか、公知の共重合ポリエステルの製造方法で製造することにより得ることができる。
 次に、鞘部を構成する前記鞘部形成組成物を得る方法としては、公知のPBTの製造方法において、重合段階で導電性成分を添加する方法や、市販もしくは公知の製造方法により得られたPBTに導電性成分または導電性成分を含むマスターチップを添加して溶融混練する方法等が挙げられる。
 このようにして得られた前記芯部形成組成物および前記鞘部形成組成物を用い、必要に応じて乾燥等の処理を行ってチップ化し、通常の複合紡糸装置を用いて、例えばエクストルーダーで混練、溶融し、芯鞘型の紡糸口金より押し出して溶融紡糸を行い、未延伸糸を得る。
 複合紡糸に際しては、紡糸温度でのせん断速度1000s-1における前記芯部形成組成物と前記鞘部形成組成物の溶融粘度差(前記鞘部形成組成物の溶融粘度-前記芯部形成組成物の溶融粘度)を300dPa・s-1以下(絶対値)に調整することが重要であり、複合紡糸装置に前記芯部形成組成物と前記鞘部形成組成物を供給して溶融紡糸を行う。すなわち、前記芯部形成組成物と前記鞘部形成組成物の溶融粘度差を小さく(300dPa・s-1以下(絶対値))して複合紡糸を行うことで、紡糸時の芯部と鞘部の樹脂同士の密着性が向上し、先端ノズルからの吐出がスムーズとなり、また得られた未延伸糸(導電性複合繊維)も芯部と鞘部の剥離が生じにくいものとなる。よって、得られる導電性複合繊維は強度や、導電性能の耐久性に優れたものとなる。
 紡糸温度でのせん断速度1000s-1における前記芯部形成組成物と前記鞘部形成組成物の溶融粘度差(前記鞘部形成組成物の溶融粘度-前記芯部形成組成物の溶融粘度)は、絶対値で300dPa・s-1以下とするものであり、260dPa・s-1以下であることが好ましく、240dPa・s-1以下であることがより好ましく、200dPa・s-1以下であることが更に好ましく、170dPa・s-1以下であることがより更に好ましく、120dPa・s-1以下であることが特に好ましい。
 前記芯部形成組成物の溶融粘度は1000~2000dPa・s-1とすることが好ましく、1200~1800dPa・s-1とすることがより好ましく、1200~1500dPa・s-1とすることが更に好ましい。一方、前記鞘部形成組成物の溶融粘度は800~1800dPa・s-1とすることが好ましく、1000~1600dPa・s-1とすることがより好ましく、1200~1600dPa・s-1とすることが更に好ましい。前記芯部形成組成物および前記鞘部形成組成物の溶融粘度は、芯部および鞘部を構成する樹脂の種類や、樹脂の重合時の熱処理温度、熱処理時間、圧力等を適宜調整したり、コンパウンド時の温度や混練機の回転数等を適宜調整することにより上記範囲内に調整することができる。前記溶融粘度は、溶融紡糸時の紡糸温度でのせん断速度1000s-1における値であり、定荷重細管押出し式レオメータを用いて測定する。
 紡糸温度は250~310℃であることが好ましく、260~290℃であることがより好ましく、260~280℃であることが更に好ましい。紡糸温度が高すぎると芯部や鞘部の樹脂が熱分解を起こし、スムーズな紡糸が困難になるとともに得られる導電性複合繊維の強度、伸度等の物性値や導電性能が悪くなりやすい。一方、紡糸温度が低すぎると未溶解物等が残存しやすく、紡糸時の糸切れの原因となりやすい。
 次に、溶融紡糸を行った後の工程(1)~(4)について述べる。
 まず、工程(1)では、口金ノズルから溶融紡糸された未延伸糸条に、口金ノズル下面から下方向に100~150mmの位置で冷却風を吹き付けることにより、前記未延伸糸条を冷却することが必要である。冷却風を吹き付ける位置は、口金ノズル下面から下方向に110~130mmの位置であることがより好ましい。本発明の製造方法では、口金ノズル下面から下方向に上記範囲の位置で冷却風を吹き付けることにより、紡糸された糸条が適度に結晶化されると考えられ、本発明で規定する結晶化度を満足する導電性複合繊維を得ることが可能となる。すなわち、前記した口金ノズル下面からの位置で冷却風の吹き付けを行わないと、本発明で規定する結晶化度を満足する導電性複合繊維を得ることが困難となり、本発明で規定する破断強度を有する導電性複合繊維を得ることも困難となる。
 冷却風の温度は0~50℃が好ましく、10~40℃がより好ましい。冷却温度をあまり低くすると温度管理および作業性等に困難をきたし、高すぎると冷却不足となり最終的に得られる導電性複合繊維の糸質物性が劣ったものとなる。冷却風の風速は0.2~0.6m/sが好ましく、0.3~0.5m/sがより好ましい。風速が小さすぎると冷却不足となり最終的に得られる導電性複合繊維の糸質物性が劣ったものとなり、風速が大きすぎると冷却風により糸の揺れが発生し、糸の長手方向における太さ斑や切糸れの原因となる。
 工程(1)の後、冷却した未延伸糸条を集束させオイリングを行うことが好ましい。また、オイリングを行った後にさらに必要に応じてインターレースノズルなどを用いて交絡処理を行ってもよい。本発明の製造方法においては、集束させてオイリングを行うことにより、紡糸張力が低くなり、導電性複合繊維の紡糸性が向上する。
 オイリングに用いる油剤としては鉱物油が挙げられ、さらに必要に応じて帯電防止剤などを添加したものを使用できる。繊維表面に付与する油剤の量としては繊維重量に対して0.3~2重量%の範囲であることが好ましい。
 工程(2)では、工程(1)を通過した冷却した未延伸糸条を2000~3000m/minで巻き取る。巻き取り速度は、2400~2900m/minであることが好ましく、2600~2800m/minであることがより好ましい。巻き取り速度が2000m/min未満であると、得られた複合繊維は繊維の配向が低いものとなる。このため、その後の工程(3)の延伸工程において高い倍率で延伸を行う必要があり、最終的に得られる導電性複合繊維は、強度や導電性能に劣るものとなる。また、巻き取り速度が3000m/minを超えると、繊維の配向や結晶化が進みすぎ、その後の工程(3)で延伸を行った際に導電層の切断が生じやすく、延伸時に糸切れが生じやすくなる。また導電性複合繊維を得ることができたとしても、強度や導電性能の耐久性に劣るものとなる。
 工程(3)では、巻き取った未延伸糸条を50~100℃で加熱しながら、1.2~2.0倍に延伸する。中でも、70~100℃で加熱しながら、1.4~1.8倍に延伸することが好ましく、85~98℃で加熱しながら、1.4~1.8倍に延伸することが最も好ましい。上記のような温度、倍率で延伸をすると、導電性成分が繊維の長さ方向に均一に配置され、導電性能や強度により優れた導電性複合繊維を得ることができる。
 延伸時の温度が50℃未満であると、十分な熱量で延伸を行うことができず、均一な延伸が困難となる。その結果、得られる導電性複合繊維は、強度や導電性能に劣るものとなる。
 一方、延伸時の温度が100℃を超えると、未延伸糸が弛み、ローラー巻き付き等が生じ、延伸時の糸切れが生じやすくなる。その結果、得られる導電性複合繊維は強度に劣るものとなる。
 また、延伸倍率が1.2倍未満であると、未延伸糸が十分に延伸されず、得られる導電性複合繊維の結晶化度が上記範囲を満足しないものとなる。また、得られる繊維に伸度が残りすぎるため、実用する上で十分な強度、伸度を有する導電性複合繊維が得られにくくなる傾向がある。一方、延伸倍率が2.0倍を超えると、得られる導電性複合繊維の結晶化度が大きいものとなり、導電性に劣るものとなる。また、延伸時に糸切れが生じて導電性複合繊維を得ることが困難となりやすい。
 本発明の製造方法においては、第一ローラと第二ローラ間で回転速度を変更することにより延伸を行う方法を採用することができ、第一ローラの温度を50~100℃に設定することが好ましい。
 工程(4)では、延伸した糸条を130~150℃で熱処理した後、巻き取る。熱処理は、135~145℃で行うことが好ましい。本発明の製造方法においては、工程(3)の熱延伸工程において、上記範囲の温度で熱処理を行うことで、導電性複合繊維の結晶化度を本発明で規定する範囲のものとすることができ、また、沸水収縮率を低くすることができる。熱処理における温度が130℃未満であると、得られる導電性複合繊維の結晶化度が低くなり、沸水収縮率も高いものとなる。一方、150℃を超えると得られる導電性複合繊維の結晶化度が高くなりすぎ、また導電性能の耐久性にも劣るものとなる。
 本発明の製造方法においては、第一ローラと第二ローラ間で回転速度を変更することにより延伸を行う方法を採用することができ、第一ローラと第二ローラの間にヒートプレートを設けて130~150℃の熱処理を行うことが好ましい。
 上記の本発明の製造方法により、破断強度が3.0cN/dtex以上、結晶化度が27~37%、かつ初期の電気抵抗値が5.0×108Ω/cm以下である本発明の導電性複合繊維を操業性よく得ることができる。
 以下に実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は、以下の実施例に限定されない。
 なお、それぞれの物性の測定方法または評価方法は以下の通りである。
(1)芯部形成組成物と鞘部形成組成物の溶融粘度
 芯部形成組成物および鞘部形成組成物を測定前に130℃の真空乾燥機にて12時間乾燥した。乾燥後、測定温度270℃、ノズル径0.5mm、ノズル長2.0mmの条件でフローテスター(島津製作所製、型式「CFT-500D」)を用いて、溶融粘度のせん断速度依存性(フローカーブ)を測定した。測定で得られたフローカーブから、せん断速度1000s-1における溶融粘度を算出した。
(2)破断強度および破断伸度
 破断強度および破断伸度は、JIS-L-1013:2010 化学繊維フィラメント糸試験方法 8.5「引張強さ及び伸び率」8.5.1「標準時試験」に従って測定した。具体的には、得られた導電性複合繊維を試料とし、テンシロンRTC-1210(オリエンテック社製)を用い、試料糸長10cm、引張り速度10cm/minの条件で試料が伸長破断したときの強度および伸度を測定して求めた。
(3)結晶化度
 結晶化度は、示差走査熱量計(パーキンエルマー社製 Diamond DSC)を用いて、導電性複合繊維8.5mgを25℃から280℃まで20℃/minにて昇温し、得られた下記各熱量の値と下記式を用いて算出した。
 結晶化度(Xc)={(ΔHm-ΔHc)}/140.2}×100(%)
 (ΔHmは融点の熱量、ΔHcは昇温結晶化での熱量をそれぞれ示す)
(4)初期の導電性複合繊維の電気抵抗値
 導電性複合繊維の初期の電気抵抗値は、AATCC76法(Test Method for Electrical Surface Resistivity of Fabrics)に従って測定した。得られた導電性複合繊維を長さ方向に15cmにカットして、サンプルを10個採取した。サンプルの両端の表面にケラチンクリームを塗布し、ケラチンクリームを塗布した表面部分を金属端子にそれぞれ接続し、サンプルの測定長10cmにて、50Vの直流電流を印加して電流値を微小電流計(ADCMT社製、5451)で測定し、下記式で電気抵抗値を算出した。算出した10個のサンプルの電気抵抗値の相加平均値を初期の電気抵抗値とした。
  電気抵抗値=E/(I×L)
  E:電圧(V) I:測定電流(A) L:測定長(cm)
(5)100回洗濯後の導電性複合繊維の電気抵抗値
 100回洗濯後の導電性複合繊維の電気抵抗値は、AATCC76法(Test Method for Electrical Surface Resistivity of Fabrics)により以下のようにして測定した。
 得られた導電性複合繊維をポリエステルフィラメント(ユニチカトレーディング社製、167dtex/48f)にZ方向520T/Mでカバーリングし、導電性繊維カバーリング糸を得た。前記導電性繊維カバーリング糸のみを用いて、編機(小池機械製作所製、針本数:300本、釜径:3.5インチ)を用いて筒編地を編成した。得られた筒編地を100回洗濯し、乾燥させた後、筒編解編することで得られるカバーリング糸を長さ方向に15cmにカットした。カットしたカバーリング糸を100回洗濯後の導電性複合繊維のサンプルとし、サンプルを10個採取した。サンプルの両端の表面にケラチンクリームを塗布し、ケラチンクリームを塗布した表面部分を金属端子に接続し、サンプルの測定長10cmにて、50Vの直流電流を印加して電流値を測定し、上記の『(4)初期の導電性複合繊維の電気抵抗値』に記載の数式より電気抵抗値を算出した。算出した10個のサンプルの電気抵抗値の相加平均値を100回洗濯後の電気抵抗値とした。なお、100回洗濯は、JIS L 1930:2014 繊維製品の家庭洗濯試験方法 「C形基準洗濯機の洗濯方法」の「C4M法」に従って、筒編地の洗濯試験を100回行った。乾燥方法は、A法(吊干し乾燥)にて行った。
(6)導電性複合繊維を用いた織物(導電性織物)の表面漏洩抵抗値
 得られた導電性織物について、IEC61340-5-1に従ってタテ方向、ヨコ方向、縫目間のそれぞれについて、初期(100回洗濯前)と100回洗濯後の表面漏洩抵抗値を測定した。測定には以下の(a)~(c)のサンプルを用いた。
[サンプルの準備]
 下記に示す条件で、導電性織物を長辺方向が35cm、短辺方向が30cmの長方形にカットし、2種類のサンプル(a)(b)を用意した。
(a)長辺方向がタテ方向、短辺方向がヨコ方向
(b)長辺方向がヨコ方向、短辺方向がタテ方向
 そして、(a)、(b)の順で横に並べて載置し、(a)、(b)の長辺方向同士を片倒しダブルステッチで縫製し、サンプル(c)を得た。
[表面漏洩抵抗値の測定]
 表面漏洩抵抗値は、抵抗測定器(米国プロスタットコーポレーション社製、抵抗測定システムPRS-801)を用いて、1.0×1012Ω以上の絶縁板の上に置いた各サンプル(a)~(c)の表面に、下記の方向及び測定間距離にて2つの電極を設置して一定電圧を加え、この電極間に流れる電流より電気抵抗を測定した。測定条件は、23℃、12%RH、印加電圧100Vである。
 タテ方向の表面漏洩抵抗値は、サンプル(a)を使用し、長辺方向、測定間距離25cmにて測定を行った。
 ヨコ方向の表面漏洩抵抗値は、サンプル(b)を使用し、長辺方向、測定間距離25cmにて測定を行った。
 縫目間の表面漏洩抵抗値は、サンプル(c)を使用し、片倒しダブルステッチで縫製した1か所の縫目を含むように2つの電極を設置し、短辺方向、測定間距離30cmで測定を行った。
 なお、100回洗濯は、JIS L 0217:1995 繊維製品の取扱いに関する表示記号及びその表示方法 「付表1 記号別の試験方法-洗い方(水洗い)」の「番号103」に従って、導電性織物の洗濯試験を100回行い、乾燥方法は、F法(タンブル乾燥)にて行った。
(7)沸水収縮率
 得られた導電性複合繊維を検尺機で20回かせ取りを行い、0.03(cN/dtex)の荷重下で糸長L0を測定し、次いで無荷重下で沸水中に入れ30分間処理した。その後、風乾し、再度0.03(cN/dtex)の荷重下で収縮後の長さL1を測定し、下記式にて沸水収縮率を算出した。
  沸水収縮率(%)=〔(L0-L1)/L0〕×100
(8)単繊維繊度及び総繊度
 JISL1013:2010化学繊維フィラメント糸試験方法 「8.3.1正量繊度」の「A法」に基づいて、単繊維繊度及び総繊度を測定した。
(9)操業性
 導電性複合繊維を得る際の、溶融紡糸、延伸時の糸切れの状況を、24時間連続して溶融紡糸を行った際の1錘あたりの糸切れ回数により、以下のように3段階で評価した。
 ○・・糸切れ回数が10回以下であった。
 △・・糸切れ回数が11~19回であった。
 ×・・糸切れ回数が20回以上であった。
(10)断面形状の観察
 得られた導電性複合繊維の長手方向に対して垂直な断面を、キーエンス社製のデジタルマイクロスコープ「VHX-600」を用いて観察した(倍率;1000倍)。
実施例1
(1)芯部形成組成物の製造
 エステル化反応器に、テレフタル酸(TPA)とエチレングリコール(EG)のスラリーを供給し、温度250℃、圧力50hPaの条件で反応させ、エステル化反応率95%の反応生成物を得た。
 別のエステル化反応缶に、イソフタル酸(IPA)とエチレングリコールとからなるスラリーを仕込み、温度200℃で3時間エステル化反応を行い、イソフタル酸とエチレングリコールの反応溶液を得た。
 TPAとEGの反応生成物とイソフタル酸とエチレングリコールの反応溶液、重合触媒を加え、反応器を減圧にして溶融重合反応を行い、共重合ポリエステル樹脂(酸成分としてIPAを8モル%共重合したもの、融点234℃、溶融粘度1340dPa・s-1)を得た。該共重合ポリエステル樹脂のみを含む芯部形成組成物を得た。
(2)鞘部形成組成物の製造
 PBTに、導電性カーボンブラックをその含有量が25質量%になるように練り込み、融点223℃、溶融粘度1450dPa・s-1の鞘部形成組成物を得た。
(3)導電性複合繊維の製造
 上記芯部形成組成物および鞘部形成組成物を用意し、これらを複合紡糸装置に供給し、繊維の断面形状が図1となるよう設計された紡糸口金を用いて溶融紡糸を行った。このとき、芯部と鞘部の面積比(芯部/鞘部)が85/15、鞘部が芯部の全表面を覆うように配置した。また、紡糸温度270℃でのせん断速度1000s-1における前記芯部形成組成物と前記鞘部形成組成物の溶融粘度差(前記鞘部形成組成物の溶融粘度-前記芯部形成組成物の溶融粘度)は110dPa・s-1であった。口金ノズルから溶融紡糸した糸条に口金ノズル下面から下方向に120mmの位置で冷却風(28℃、風速0.4m/s)を吹き付けて冷却し、集束、オイリングした後、引取ローラで2700m/分の速度で巻き取り、部分未延伸糸条を得た。得られた部分未延伸糸条を、第一ローラ(温度90℃)と第二ローラ(室温)との間に140℃のヒータープレートを設置し、第一ローラと第二ローラ間で熱処理しながら、延伸倍率1.7倍で延伸を行い、導電性複合繊維(28dtex/6f)を巻き取った。
(4)導電性織物の製造
 次いで、得られた導電性複合繊維(28dtex/6f)をポリエステルフィラメント(ユニチカトレーディング社製、167dtex/48f)にZ方向520T/Mでカバーリングし、経糸用導電性繊維カバーリング糸を得た。
 また、得られた導電性複合繊維(28dtex/6f)をポリエステルフィラメント(ユニチカトレーディング社製、340dtex/96f)にZ方向400T/Mでカバーリングし、緯糸用導電性繊維カバーリング糸を得た。
 織物の表側に配する経糸として、ポリエステルフィラメント(ユニチカトレーディング社製、167dtex/48f)と先述した経糸用導電性繊維カバーリング糸との配列が15:1(経糸16本中に経糸用導電性繊維カバーリング糸が1本の割合)になるように配し、また織物の裏側に配する経糸として、ポリエステルフィラメント(ユニチカトレーディング社製、95dtex/48f)を準備し、表側に配する経糸と裏側に配する経糸との配列が4:1になるように配列して整経を行い、ビームを準備した。
 準備したビームをレピア織機に仕掛け、ポリエステルフィラメント(ユニチカトレーディング社製、340dtex/96f)と前述の緯糸用導電性繊維カバーリング糸との配列が11:1になるように緯糸を打ち込み、図2に示す経二重平織組織で製織を行い、導電性織物生機を得た。
 得られた生機を常法にて精練と染色を行い、導電性繊維カバーリング糸が織物の経方向と緯方向の両方において、5mm間隔に1本の配列となるように熱セットを行い、経糸密度84本/2.54cm、緯糸密度56本/2.54cmの導電性織物(二重織物)を得た。
実施例2~6、比較例1
 芯部形成組成物および鞘部形成組成物の溶融粘度を表1に示すものに変更した以外は、実施例1と同様にして、溶融紡糸、延伸を行い、28dtex/6fの導電性複合繊維を得た。
 得られた導電性複合繊維を用いて、実施例1と同様にして導電性織物を得た。
実施例7~8、比較例14~15
 鞘部形成組成物中に含まれる導電性カーボンブラックの量を表1に示すものに変更した以外は、実施例1と同様にして、溶融紡糸、延伸を行い、28dtex/6fの導電性複合繊維を得た。
 得られた導電性複合繊維を用いて、実施例1と同様にして導電性織物を得た。
実施例9~10、比較例2~3
 工程(1)における、冷却風の吹き付け位置を表1に示すものに変更した以外は、実施例1と同様にして、溶融紡糸、延伸を行い、28dtex/6fの導電性複合繊維を得た。
 得られた導電性複合繊維を用いて、実施例1と同様にして導電性織物を得た。
実施例11~12、比較例4~5
 工程(2)における、巻き取り速度を表1に示すものに変更した以外は、実施例1と同様にして、溶融紡糸、延伸を行い、28dtex/6fの導電性複合繊維を得た。
 なお、比較例5においては、延伸時に糸切れが生じたため、導電性複合繊維を得ることができなかった。
 得られた導電性複合繊維を用いて、実施例1と同様にして導電性織物を得た。
実施例13~14、比較例6~7
 工程(3)における、延伸温度を表1に示すものに変更した以外は、実施例1と同様にして、溶融紡糸、延伸を行い、28dtex/6fの導電性複合繊維を得た。
 得られた導電性複合繊維を用いて、実施例1と同様にして導電性織物を得た。
実施例15~16、比較例8~9
 工程(3)における、延伸倍率を表1に示すものに変更した以外は、実施例1と同様にして、溶融紡糸、延伸を行い、28dtex/6fの導電性複合繊維を得た。
 なお、比較例9においては、延伸時に糸切れが生じたため、導電性複合繊維を得ることができなかった。
 得られた導電性複合繊維を用いて、実施例1と同様にして導電性織物を得た。
実施例17~18、比較例10~11
 工程(4)における、熱処理温度を表1に示すものに変更した以外は、実施例1と同様にして、溶融紡糸、延伸を行い、28dtex/6fの導電性複合繊維を得た。
 得られた導電性複合繊維を用いて、実施例1と同様にして導電性織物を得た。
実施例19~20、比較例12
 芯部形成組成物が含有する共重合ポリエステル樹脂中のイソフタル酸の共重合量を表1に示すものに変更し、紡糸温度、溶融粘度差を表1に示すものに変更した以外は、実施例1と同様にして、溶融紡糸、延伸を行い、28dtex/6fの導電性複合繊維を得た。
 得られた導電性複合繊維を用いて、実施例1と同様にして導電性織物を得た。
実施例21~22、比較例16
 芯部と鞘部の面積比率を表1に示すものに変更した以外は、実施例1と同様にして、溶融紡糸、延伸を行い、28dtex/6fの導電性複合繊維を得た。
 得られた導電性複合繊維を用いて、実施例1と同様にして導電性織物を得た。
比較例13
 実施例1の鞘部形成組成物の製造において、PBTに代えてポリエチレンテレフタレート(PET)を用い、PETに導電性カーボンブラックをその含有量が25質量%になるように練り込み、融点255℃、溶融粘度1980dPa・s-1の鞘部形成組成物を得た。
 上記の鞘部形成組成物を用い、紡糸温度、溶融粘度差を表1に示すものに変更した以外は、実施例1と同様にして、溶融紡糸、延伸を行い、28dtex/6fの導電性複合繊維を得た。
 得られた導電性複合繊維を用いて、実施例1と同様にして導電性織物を得た。
 実施例1~22、比較例1~16における導電性複合繊維の製造工程での条件を表1に、得られた導電性複合繊維および導電性織物の物性値と評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2から明らかなように、実施例1~22では導電性複合繊維を操業性よく得ることができた。また、得られた導電性複合繊維は、本発明で規定する破断強度、結晶化度、初期の電気抵抗値を満足するものであり、導電性能の耐久性にも優れるものであった。
 そして、得られた導電性複合繊維を用いた織物は、タテ方向、ヨコ方向、縫目間のいずれの表面漏洩抵抗値も初期、100回洗濯後ともに低いものであり、導電性能及び導電性能の耐久性に優れるものであった。
 一方、比較例1~11では、工程(1)~(4)のうち少なくともいずれかの条件を満足しない製造方法で導電性複合繊維を製造したため、本発明で規定する破断強度、結晶化度、初期の電気抵抗値の全てを満足する導電性複合繊維を得ることができなかった。
 このため、これらの導電性複合繊維を用いた織物は、導電性能や導電性能の耐久性に劣るものであった。
 比較例12~16では、芯部又は鞘部の樹脂成分であるポリエステル樹脂の種類、鞘部形成組成物中の導電性成分の含有量、芯部と鞘部の面積比のうち少なくともいずれかが本発明で規定する数値範囲を満足しないものであったため、本発明で規定する破断強度、結晶化度、初期の電気抵抗値の全てを満足する導電性複合繊維を得ることができなかった。
 このため、これらの導電性複合繊維を用いた織物は、導電性能や導電性能の耐久性に劣るものであった。
1 鞘部
2 芯部

Claims (4)

  1.  芯部と、鞘部とからなる芯鞘型ポリエステル複合繊維であって、
     前記芯部は、エチレンテレフタレートを主たる繰り返し単位とし、かつ酸成分100モル%当たりイソフタル酸を1~15モル%含むポリエステル樹脂を主として含む芯部形成組成物で構成されており、
     前記鞘部は、ポリブチレンテレフタレートを主として含み、かつ導電性成分を20~35質量%含む鞘部形成組成物で構成されており、
     糸条長手方向に対して垂直な断面における前記芯部と前記鞘部の面積比(芯部/鞘部)が60/40~90/10であり、
     下記の(a)~(c)の物性をすべて満足する、芯鞘型ポリエステル複合繊維。
    (a)前記複合繊維の破断強度が3.0cN/dtex以上
    (b)前記複合繊維の結晶化度が27~37%
    (c)前記複合繊維の初期の電気抵抗値が5.0×108Ω/cm以下
  2.  さらに、下記の(d)の物性を満足する、請求項1に記載の芯鞘型ポリエステル複合繊維。
    (d)100回洗濯後の電気抵抗値が1.0×109Ω/cm以下
  3.  請求項1または2に記載の芯鞘型ポリエステル複合繊維を含む、織編物。
  4.  請求項1または2に記載の芯鞘型ポリエステル複合繊維の製造方法であって、紡糸温度でのせん断速度1000s-1における前記芯部形成組成物と前記鞘部形成組成物の溶融粘度差(前記鞘部形成組成物の溶融粘度-前記芯部形成組成物の溶融粘度)を300dPa・s-1以下(絶対値)に調整し、複合紡糸装置に前記芯部形成組成物と前記鞘部形成組成物を供給して溶融紡糸を行い、以下に示す工程(1)~(4)を順に行うことを特徴とする、芯鞘型ポリエステル複合繊維の製造方法。
    工程(1):口金ノズルから溶融紡糸された未延伸糸条に、口金ノズル下面から下方向に100~150mmの位置で冷却風を吹き付けることにより、前記未延伸糸条を冷却する
    工程(2):冷却した未延伸糸条を2000~3000m/minで巻き取る
    工程(3):巻き取った未延伸糸条を50~100℃で加熱しながら、1.2~2.0倍に延伸する
    工程(4):延伸した糸条を130~150℃で熱処理した後、巻き取る
PCT/JP2022/040830 2021-11-02 2022-10-31 芯鞘型ポリエステル複合繊維、及びその製造方法 WO2023080124A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280055704.1A CN117813425A (zh) 2021-11-02 2022-10-31 芯鞘型聚酯复合纤维及其制造方法
JP2023528066A JP7340183B1 (ja) 2021-11-02 2022-10-31 芯鞘型ポリエステル複合繊維、及びその製造方法
JP2023132698A JP2023153257A (ja) 2021-11-02 2023-08-16 芯鞘型ポリエステル複合繊維、及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-179681 2021-11-02
JP2021179681 2021-11-02
JP2022112537 2022-07-13
JP2022-112537 2022-07-13

Publications (1)

Publication Number Publication Date
WO2023080124A1 true WO2023080124A1 (ja) 2023-05-11

Family

ID=86241121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040830 WO2023080124A1 (ja) 2021-11-02 2022-10-31 芯鞘型ポリエステル複合繊維、及びその製造方法

Country Status (2)

Country Link
JP (2) JP7340183B1 (ja)
WO (1) WO2023080124A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002374A (ja) * 2005-06-27 2007-01-11 Nippon Ester Co Ltd 導電性複合繊維及び導電性布帛
JP2007162168A (ja) * 2005-12-14 2007-06-28 Nippon Ester Co Ltd 耐湿熱性導電性複合繊維
JP2007177356A (ja) * 2005-12-27 2007-07-12 Nippon Ester Co Ltd 耐湿熱性導電性複合繊維
WO2007105494A1 (ja) * 2006-03-10 2007-09-20 Kuraray Co., Ltd. 導電性複合繊維及びその製造方法
JP2010285708A (ja) * 2009-06-10 2010-12-24 Unitika Trading Co Ltd ユニフォーム用織物及び衣料
CN104711704A (zh) * 2013-12-13 2015-06-17 东丽纤维研究所(中国)有限公司 一种抗静电聚酯复合纤维及其应用
JP2020165044A (ja) * 2019-03-29 2020-10-08 日本エステル株式会社 導電性複合繊維、およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002374A (ja) * 2005-06-27 2007-01-11 Nippon Ester Co Ltd 導電性複合繊維及び導電性布帛
JP2007162168A (ja) * 2005-12-14 2007-06-28 Nippon Ester Co Ltd 耐湿熱性導電性複合繊維
JP2007177356A (ja) * 2005-12-27 2007-07-12 Nippon Ester Co Ltd 耐湿熱性導電性複合繊維
WO2007105494A1 (ja) * 2006-03-10 2007-09-20 Kuraray Co., Ltd. 導電性複合繊維及びその製造方法
JP2010285708A (ja) * 2009-06-10 2010-12-24 Unitika Trading Co Ltd ユニフォーム用織物及び衣料
CN104711704A (zh) * 2013-12-13 2015-06-17 东丽纤维研究所(中国)有限公司 一种抗静电聚酯复合纤维及其应用
JP2020165044A (ja) * 2019-03-29 2020-10-08 日本エステル株式会社 導電性複合繊維、およびその製造方法

Also Published As

Publication number Publication date
JP2023153257A (ja) 2023-10-17
JP7340183B1 (ja) 2023-09-07
JPWO2023080124A1 (ja) 2023-05-11

Similar Documents

Publication Publication Date Title
JP4902545B2 (ja) 導電性複合繊維及びその製造方法
JP4923174B2 (ja) 導電性複合糸及び導電性布帛
US5318845A (en) Conductive composite filament and process for producing the same
JP4367038B2 (ja) 繊維および布帛
JP7332693B2 (ja) 導電性複合繊維およびそれを用いた繊維構造物
JP5220673B2 (ja) 導電ミシン糸及び織編物
JP4280546B2 (ja) 導電性複合繊維及び導電性織編物
JP2007002374A (ja) 導電性複合繊維及び導電性布帛
WO2023080124A1 (ja) 芯鞘型ポリエステル複合繊維、及びその製造方法
JP2004225214A (ja) 導電性複合繊維
US20230323572A1 (en) Electroconductive fiber, clothing including electroconductive fiber, and electrical/electronic instrument including electroconductive fiber
JP2004204395A (ja) 導電性混繊糸および布帛
CN117813425A (zh) 芯鞘型聚酯复合纤维及其制造方法
JP2020165044A (ja) 導電性複合繊維、およびその製造方法
JP6752755B2 (ja) ポリアミド系導電性複合繊維
JPS6240444B2 (ja)
JP2007092199A (ja) 耐湿熱性導電性複合繊維及び耐湿熱性導電性布帛
JP7394439B2 (ja) 導電性マルチフィラメント、導電性マルチフィラメントの製造方法、織編物およびブラシ
JP3210787B2 (ja) 導電性混繊糸
JP2010285708A (ja) ユニフォーム用織物及び衣料
JP4917492B2 (ja) 制電生地およびその製法
JP2007092200A (ja) 耐湿熱性導電性複合繊維及び耐湿熱性導電性布帛
JP4298675B2 (ja) ポリトリメチレンテレフタレートマルチフィラメント糸
JP2016194170A (ja) 芯鞘型複合繊維
KR950000723B1 (ko) 3성분계 도전성 복합섬유

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023528066

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280055704.1

Country of ref document: CN