WO2023079693A1 - 補強された半導体チップの製造方法、フィルム付き半導体チップ、半導体チップの補強方法、補強用フィルム、及び半導体装置 - Google Patents

補強された半導体チップの製造方法、フィルム付き半導体チップ、半導体チップの補強方法、補強用フィルム、及び半導体装置 Download PDF

Info

Publication number
WO2023079693A1
WO2023079693A1 PCT/JP2021/040819 JP2021040819W WO2023079693A1 WO 2023079693 A1 WO2023079693 A1 WO 2023079693A1 JP 2021040819 W JP2021040819 W JP 2021040819W WO 2023079693 A1 WO2023079693 A1 WO 2023079693A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
semiconductor chip
layer
thermosetting resin
resin layer
Prior art date
Application number
PCT/JP2021/040819
Other languages
English (en)
French (fr)
Inventor
孝博 黒田
紘平 谷口
裕貴 橋本
義信 尾崎
奎佑 大河原
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2021/040819 priority Critical patent/WO2023079693A1/ja
Priority to TW111139757A priority patent/TW202320250A/zh
Publication of WO2023079693A1 publication Critical patent/WO2023079693A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to a method for manufacturing a reinforced semiconductor chip, a semiconductor chip with a film, a method for reinforcing a semiconductor chip, a reinforcing film, and a semiconductor device.
  • a three-dimensional NAND memory for example, is known as a memory semiconductor package to which stacked MCPs are applied (eg, Patent Document 1).
  • the main object of the present disclosure is to provide a novel reinforced semiconductor chip manufacturing method.
  • the method for manufacturing a reinforced semiconductor chip includes the step of placing a film having at least a thermosetting resin layer on the surface of a single-layer or multi-layer semiconductor chip. According to such a manufacturing method, it is possible to easily obtain a reinforced semiconductor chip.
  • the film may be a multilayer film.
  • a multilayer film may be a film having a thermoset layer and a stiffener layer having a higher stiffness than the thermoset layer.
  • a multilayer film may be, for example, a film having a first thermosetting resin layer, a stiffener layer, and a second thermosetting resin layer in that order.
  • the rigid material layer has higher rigidity than the first thermosetting resin layer and the second thermosetting resin layer.
  • stiffness refers to the ability of an object to resist fracture in bending or torsion. Since the thermosetting resin layer has adhesiveness to other members (for example, semiconductor chips), it is not necessary to separately provide an adhesive layer or the like on the film.
  • the rigidity after thermosetting of the thermosetting resin layer, the first thermosetting resin layer, and the second thermosetting resin layer may be lower or higher than the rigidity of the rigid material layer.
  • the rigid material layer may be a resin rigid material layer having rigidity higher than that of the thermosetting resin layer or a metal layer having rigidity higher than that of the thermosetting resin layer.
  • the rigid layer may be, for example, a polyimide layer.
  • the total thickness of the film (total thickness of all layers constituting the film) may be 5 to 180 ⁇ m.
  • the film-attached semiconductor chip includes a single-layer or multilayer semiconductor chip and a film having at least a thermosetting resin layer disposed on the surface of the semiconductor chip. According to such a film-attached semiconductor chip, it is possible to suppress problems such as warping and cracking that may occur in the semiconductor chip.
  • the method for reinforcing a semiconductor chip includes the step of disposing a film having at least a thermosetting resin layer on the surface of a single-layer or multilayer semiconductor chip. According to such a semiconductor chip reinforcement method, it is possible to easily reinforce the semiconductor chip.
  • the reinforcing film is a multilayer film having a first thermosetting resin layer, a rigid material layer, and a second thermosetting resin layer in this order.
  • the rigid material layer has higher rigidity than the first thermosetting resin layer and the second thermosetting resin layer.
  • the semiconductor device includes a substrate, a single-layer or multi-layer semiconductor chip disposed on the substrate, and a cured film having at least a thermosetting resin layer disposed on the surface of the semiconductor chip.
  • a novel reinforced semiconductor chip manufacturing method is provided. Further, according to the present disclosure, there is provided a film-attached semiconductor chip capable of suppressing problems such as warping and cracking that may occur in the semiconductor chip. Further, according to the present disclosure, a novel method for reinforcing a semiconductor chip is provided, which can easily reinforce a semiconductor chip. Further, according to the present disclosure, there is provided a reinforcing film used in such a semiconductor chip reinforcing method. Furthermore, according to the present disclosure, a semiconductor device including a semiconductor chip is provided.
  • FIG. 1 is a cross-sectional view schematically showing a first embodiment of a semiconductor device.
  • FIG. 2(a) is a cross-sectional view schematically showing one embodiment of the film
  • FIG. 2(b) is a cross-sectional view schematically showing another embodiment of the film
  • FIG. 2(c) 1] is a cross-sectional view schematically showing another embodiment of a film.
  • FIG. 3(a) is a plan view schematically showing an embodiment of a laminated film comprising a film raw fabric for producing a film piece
  • FIG. 2(b) is b- of FIG. 2(a) It is sectional drawing in a b line.
  • FIG. 4(a), 4(b), 4(c), and 4(d) are cross-sectional views schematically showing the production process of the film piece.
  • FIG. 5 is a cross-sectional view schematically showing a state in which a film is arranged on the surface of a semiconductor chip.
  • FIG. 6 is a cross-sectional view schematically showing one aspect of the second embodiment of the semiconductor device.
  • FIG. 7 is a cross-sectional view schematically showing another aspect of the second embodiment of the semiconductor device.
  • (meth)acrylic acid means acrylic acid or methacrylic acid
  • (meth)acrylate means acrylate or its corresponding methacrylate
  • a or B may include either A or B, or may include both.
  • the term “layer” includes not only a shape structure formed over the entire surface but also a shape structure formed partially when observed as a plan view.
  • the term “step” as used herein refers not only to an independent step, but also to the term if the desired action of the step is achieved even if it cannot be clearly distinguished from other steps. included. Further, a numerical range indicated using “-” indicates a range including the numerical values described before and after "-" as the minimum and maximum values, respectively.
  • each component in the composition refers to the total amount of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified. means.
  • the exemplified materials may be used singly or in combination of two or more.
  • the upper limit or lower limit of the numerical range at one stage may be replaced with the upper limit or lower limit of the numerical range at another stage.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • FIG. 1 is a cross-sectional view schematically showing a first embodiment of a semiconductor device.
  • the first embodiment of the semiconductor device is a semiconductor device provided with a single-layer semiconductor chip.
  • a semiconductor device 100 shown in FIG. 1 includes a substrate 12 , a single-layer semiconductor chip 11 arranged on the substrate 12 , and a reinforcing member 16 arranged on a surface S ⁇ b>1 of the semiconductor chip 11 .
  • the reinforcing member 16 may be composed of a cured film 10c having at least a thermosetting resin layer. Reinforcing member 16 is arranged to cover at least a partial region of surface S ⁇ b>1 of semiconductor chip 11 .
  • the reinforcing member 16 be arranged so as to cover a partial region (region including a portion where problems are likely to occur) of the surface S1 of the semiconductor chip 11 .
  • the semiconductor chip 11 and the substrate 12 are bonded via an adhesive member 15 provided between the semiconductor chip 11 and the substrate 12 .
  • the bonding member 15 is generally composed of a cured adhesive composition. Connection terminals (not shown) of the semiconductor chip 11 are electrically connected to external connection terminals (not shown) via wires 13 and sealed with a sealing material 14 .
  • the substrate 12 may be an organic substrate or a metal substrate such as a lead frame.
  • the thickness of the substrate 12 is, for example, 90-300 ⁇ m, and may be 90-210 ⁇ m.
  • the semiconductor chip 11 is adhered to the substrate 12 via an adhesive member 15 (hardened adhesive composition).
  • the shape of the semiconductor chip 11 in plan view may be, for example, a rectangle (square or rectangle).
  • the length of one side of the semiconductor chip 11 is, for example, 20 mm or less, and may be 4 to 20 mm or 4 to 12 mm.
  • the thickness of the semiconductor chip 11 is, for example, 10-170 ⁇ m, and may be 20-120 ⁇ m.
  • the reinforcing member 16 is arranged on the surface S1 of the semiconductor chip 11 and serves to suppress the occurrence of defects such as warping and cracking in the semiconductor chip 11 .
  • the reinforcing member 16 may be composed of a cured film 10c (or a cured film piece described later) having at least a thermosetting resin layer.
  • the film is a reinforcing film placed on the surface of the semiconductor chip to reinforce the semiconductor chip.
  • Such films have at least a thermosetting resin layer.
  • FIG. 2(a) is a cross-sectional view schematically showing one embodiment of the film
  • FIG. 2(b) is a cross-sectional view schematically showing another embodiment of the film
  • FIG. 2(c) 1] is a cross-sectional view schematically showing another embodiment of a film.
  • the film 10B shown in FIG. 2(b) is a two-layer film having a thermosetting resin layer 5 and a rigid material layer 6 having higher rigidity than the thermosetting resin layer 5.
  • thermosetting resin layer 5 includes a first thermosetting resin layer (thermosetting resin layer 5), a rigid material layer 6, and a second thermosetting resin layer (thermosetting resin layer 5) in that order.
  • the rigid material layer 6 has higher rigidity than the first thermosetting resin layer and the second thermosetting resin layer.
  • the first thermosetting resin layer and the second thermosetting resin layer may be the same or different.
  • the film may be a multilayer film (film 10B or film 10C) or may be a film having the configuration of film 10C. For example, when the films are the films 10A to 10C, the cured film 10c is obtained after the thermosetting resin layer 5 included in the films 10A to 10C is cured.
  • thermosetting resin composition that constitutes the thermosetting resin layer 5 can go through a semi-cured (B stage) state and then become a fully cured (C stage) state by a subsequent curing treatment.
  • the thermosetting resin composition contains an epoxy resin, an epoxy resin curing agent, and an elastomer, and if necessary, may further contain an inorganic filler, a curing accelerator, and the like.
  • Epoxy resin The epoxy resin is not particularly limited as long as it cures and has an adhesive action.
  • epoxy resins include bifunctional epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol S type epoxy resins; novolac type epoxy resins such as phenol novolac type epoxy resins and cresol novolak type epoxy resins; mentioned.
  • epoxy resins such as polyfunctional epoxy resins, glycidylamine type epoxy resins, heterocycle-containing epoxy resins, and alicyclic epoxy resins can also be applied. These may be used individually by 1 type, and may use 2 or more types together.
  • epoxy resin curing agent examples include phenol resins, ester compounds, aromatic amines, aliphatic amines, acid anhydrides, and the like.
  • the epoxy resin curing agent may be a phenol resin.
  • Commercially available phenolic resins include, for example, LF-4871 (trade name, BPA novolak type phenolic resin) manufactured by DIC Corporation, HE-100C-30 (trade name, phenylarachyl type phenol resin manufactured by Air Water Co., Ltd.). resin), Phenolite KA and TD series manufactured by DIC Corporation, Millex XLC and XL series manufactured by Mitsui Chemicals, Inc.
  • the compounding ratio of the epoxy resin and the phenol resin is such that the equivalent ratio of the epoxy equivalent to the hydroxyl group equivalent is 0.6 to 1.5, 0.7 to 1.4, or 0.5. It is preferable to adjust the ratio to 8 to 1.3. When the compounding ratio is within such a range, it tends to be easy to achieve sufficiently high levels of both curability and fluidity.
  • the total content of the epoxy resin and the epoxy resin curing agent may be 5-40% by mass or 10-30% by mass based on the total amount of the thermosetting resin composition.
  • elastomers examples include acrylic resins, polyester resins, polyamide resins, polyimide resins, silicone resins, polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified acrylonitrile.
  • the elastomer may be an acrylic resin from the viewpoint of achieving high adhesive strength.
  • the acrylic resin may be an epoxy group-containing (meth)acrylic copolymer obtained by polymerizing a functional monomer having an epoxy group (or glycidyl group) such as glycidyl (meth)acrylate as a crosslinkable functional group.
  • the acrylic resin may also be an epoxy group-containing acrylic rubber.
  • Epoxy-group-containing acrylic rubber is a rubber having an epoxy group, which is mainly composed of an acrylic acid ester and is mainly composed of a copolymer such as butyl acrylate and acrylonitrile, a copolymer such as ethyl acrylate and acrylonitrile, and the like.
  • the acrylic resin may have a crosslinkable functional group such as an alcoholic or phenolic hydroxyl group or a carboxyl group in addition to the epoxy group.
  • acrylic resins examples include SG-70L, SG-708-6, WS-023 EK30, SG-280 EK23, SG-P3 solvent-changed products (trade name, acrylic rubber, Weight average molecular weight: 800,000, Tg: 12°C, solvent is cyclohexanone) and the like.
  • the glass transition temperature (Tg) of the elastomer (acrylic resin) may be -50 to 50°C or -30 to 30°C from the viewpoint of achieving high adhesive strength.
  • the glass transition temperature (Tg) means a value measured using a DSC (differential scanning calorimeter) (for example, "Thermo Plus 2" manufactured by Rigaku Corporation).
  • the weight average molecular weight (Mw) of the elastomer (acrylic resin) may be 100,000 to 3,000,000 or 500,000 to 2,000,000 from the viewpoint of achieving high adhesive strength.
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
  • a highly elastic film can be formed by using an elastomer (acrylic resin) with a narrow molecular weight distribution.
  • the content of the elastomer (acrylic resin) may be 50 to 400 parts by mass or 100 to 400 parts by mass with respect to the total of 100 parts by mass of the epoxy resin and epoxy resin curing agent.
  • inorganic fillers examples include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, boron nitride, and crystals. crystalline silica, amorphous silica, and the like. These may be used individually by 1 type, and may use 2 or more types together.
  • the average particle size of the inorganic filler may be 0.005 ⁇ m to 1.0 ⁇ m or 0.05 to 0.5 ⁇ m from the viewpoint of achieving high adhesive strength.
  • the surface of the inorganic filler may be chemically modified from the viewpoint of achieving high adhesive strength.
  • Materials for chemically modifying the surface of the inorganic filler include, for example, silane coupling agents.
  • the functional group of the silane coupling agent include vinyl group, acryloyl group, epoxy group, mercapto group, amino group, diamino group, alkoxy group and ethoxy group.
  • the content of the inorganic filler may be 1 to 100 parts by mass or 3 to 50 parts by mass with respect to 100 parts by mass of the resin component of the thermosetting resin composition.
  • Curing accelerators include, for example, imidazoles and their derivatives, organophosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts and the like.
  • the curing accelerator may be imidazoles and derivatives thereof from the viewpoint of achieving high adhesive strength.
  • Examples of imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used individually by 1 type, and may use 2 or more types together.
  • the content of the curing accelerator is 0.04 to 3 parts by mass or 0.04 to 0.2 parts by mass with respect to a total of 100 parts by mass of the epoxy resin and the epoxy resin curing agent, from the viewpoint of achieving high adhesive strength. It can be.
  • thermosetting resin layer can be obtained, for example, by molding a thermosetting resin composition into a film.
  • a varnish of a thermosetting resin composition may be used.
  • an epoxy resin, an epoxy resin curing agent, an elastomer, and optional components are mixed or kneaded in a solvent to prepare a resin varnish, and the resulting resin varnish is applied to a support film.
  • a thermosetting resin layer can be obtained by coating the solution on the surface and removing the solvent by heating and drying.
  • the support film is not particularly limited as long as it can withstand the heat drying described above. It's okay.
  • the support film may be a multi-layer film in which two or more types are combined, or the surface thereof may be treated with a release agent such as a silicone-based or silica-based release agent.
  • Mixing or kneading can be carried out by using a dispersing machine such as a normal stirrer, squeegee machine, triple roll, ball mill, etc., and combining them appropriately.
  • a dispersing machine such as a normal stirrer, squeegee machine, triple roll, ball mill, etc., and combining them appropriately.
  • a known method can be used, for example, a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method, or the like can be used. can be done.
  • Heat drying is not particularly limited as long as the solvent used is sufficiently volatilized, but it can be carried out in the range of 50 to 150° C. for 1 to 30 minutes. Heat drying can be performed in stages at different heating temperatures and for different heating times.
  • the thickness of the thermosetting resin layer is arbitrarily adjusted so that the total thickness of the film (total thickness of all layers constituting the film) is 5 to 180 ⁇ m.
  • the thickness of the thermosetting resin layer may be, for example, 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, or 30 ⁇ m or more, and may be 180 ⁇ m or less, 150 ⁇ m or less, 120 ⁇ m or less, 100 ⁇ m or less, or 80 ⁇ m or less.
  • the rigid material layer may be a resin rigid material layer or a metal layer.
  • the resin rigid material layer is a layer made of a resin having higher rigidity than the thermosetting resin layer. By having such a resin rigid material layer in the multilayer film, the rigidity of the film itself can be ensured. Excellent pick-up properties can be achieved without hardening treatment.
  • the type of resin constituting the resin rigid material layer is not particularly limited and can be arbitrarily selected.
  • the type of resin may be, for example, a polyimide resin, and the resin rigid material layer may be a polyimide resin layer.
  • the thickness of the resin stiffener layer may be, for example, 10-90 ⁇ m or 10-60 ⁇ m.
  • the metal layer is a layer composed of a metal having higher rigidity than the thermosetting resin layer.
  • the type of metal forming the metal layer is not particularly limited and can be arbitrarily selected.
  • the metal type may be, for example, copper, nickel, titanium, stainless steel, or aluminum, and the metal layer may be a copper layer, a nickel layer, a titanium layer, a stainless steel layer, or an aluminum layer, a copper layer or an aluminum layer. It can be layers. In films with a metal layer, the thickness of the metal layer may be, for example, 10-90 ⁇ m or 10-60 ⁇ m.
  • the rigid material layer may be a resin rigid material layer having higher rigidity than the thermosetting resin layer or a metal layer having higher rigidity than the thermosetting resin layer.
  • the rigidity can be based on various mechanical properties, and can be based on, for example, the tensile modulus.
  • the tensile modulus can be measured, for example, according to K7161-1:2014.
  • the total thickness of the film (total thickness of all layers constituting the film) is, for example, 5 to 180 ⁇ m, and may be 10 ⁇ m or more, 20 ⁇ m or more, or 30 ⁇ m or more, 150 ⁇ m or less, 120 ⁇ m or less, or 100 ⁇ m. or less, or 80 ⁇ m or less.
  • the total thickness of the film is 5 ⁇ m or more, the effect of reinforcing the semiconductor chip tends to be sufficiently exhibited. tend to be preventable.
  • there is a restriction on the height of the semiconductor device in the sealing process and it may be difficult to use reinforcing members that increase the height of the semiconductor device.
  • the total thickness of the film is 180 ⁇ m or less, there is a tendency that the height of the semiconductor device is less restricted.
  • the shape of the film in plan view is not particularly limited, but may be rectangular (square or rectangular), for example.
  • the length of one side of the film is, for example, 20 mm or less, and may be 4 to 20 mm or 4 to 12 mm.
  • the length of one side of the film is preferably smaller than the length of one side of the semiconductor chip 11 .
  • the film 10A which is a single-layer film, can use the produced thermosetting resin layer 5 as it is as a film.
  • the film 10B which is a two-layer film, can be obtained by laminating the thermosetting resin layer 5 on one surface of the rigid material layer 6, for example.
  • the film 10C which is a three-layer film, is formed by, for example, laminating the thermosetting resin layer 5 on the surface of the rigid material layer 6 opposite to the surface on which the thermosetting resin layer 5 is laminated in the film 10B. Obtainable.
  • the film may be a film piece obtained by dividing a film raw material (film substrate, film base material) into pieces.
  • the film piece manufacturing method includes, for example, the following steps (A), (B), and (C).
  • a step of preparing a laminated film 20 comprising a base film 1, an adhesive layer 2, and a raw film D having at least a thermosetting resin layer in this order (see FIG. 3).
  • C Step of picking up the film piece (film 10) from the adhesive layer 2 (see FIG. 4(d))
  • the reinforcing member 16 (cured film 10c) shown in FIG. 1 is after the thermosetting resin layer (thermosetting resin composition) contained therein has been cured.
  • the film piece (film 10) shown in FIG. 4(b) is in a state before the thermosetting resin layer (thermosetting resin composition) contained therein is completely cured.
  • Step (A) is a step of preparing the laminated film 20 .
  • the laminated film 20 includes a base film 1, an adhesive layer 2, and a raw film D having at least a thermosetting resin layer.
  • the base film 1 may be, for example, a polyethylene terephthalate film (PET film).
  • PET film polyethylene terephthalate film
  • the adhesive layer 2 is formed in a circular shape by punching or the like (see FIG. 3(a)).
  • the adhesive layer 2 may be made of a pressure sensitive adhesive or may be made of an ultraviolet curable adhesive. When the adhesive layer 2 is made of an ultraviolet-curing adhesive, the adhesive layer 2 has a property that its adhesiveness is reduced by being irradiated with ultraviolet rays.
  • the original film D is formed into a circular shape by punching or the like, and has a diameter smaller than that of the adhesive layer 2 (see FIG. 3(a)). Like the film 10, the original film D has at least a thermosetting resin layer, and has the same structure as the films 10A to 10C, for example.
  • the thickness of the laminated film 20 may be, for example, 5-270 ⁇ m or 20-210 ⁇ m.
  • the laminated film 20 includes, for example, a first laminated film having a base film 1 and an adhesive layer 2 on its surface, and a second laminated film having a cover film and a raw film D on its surface. It can be manufactured by laminating.
  • the first laminated film is obtained through a step of forming an adhesive layer on the surface of the base film 1 by coating, and a step of processing the adhesive layer into a predetermined shape (for example, circular) by punching or the like.
  • the second laminated film is produced by forming a raw film D on the surface of a cover film (for example, PET film or polyethylene film), and punching the raw film D formed through this step to a predetermined amount. It is obtained through a process of processing into a shape (for example, circular).
  • the cover film is peeled off at an appropriate timing.
  • the (B) process is a process of forming a plurality of film pieces on the surface of the adhesive layer 2 by dividing the original film D into individual pieces.
  • a dicing ring DR is attached to the laminated film 20 . That is, the dicing ring DR is attached to the adhesive layer 2 of the laminated film 20, and the original film D is placed inside the dicing ring DR.
  • the raw film D is singulated by dicing (see FIG. 4(b)).
  • a dicing machine using a dicing saw can be used for dicing. As a result, a large number of film pieces (film 10) are obtained from the original film D.
  • Step (C) is a step of picking up the film piece (film 10 ) from the adhesive layer 2 .
  • expanding the base film 1 separates the film pieces from each other.
  • the film piece is pushed up by a pushing-up jig 42 to separate the film piece from the adhesive layer 2, and the suction collet 44 sucks the film piece to pick it up.
  • the curing reaction of the thermosetting resin layer may be advanced by heating the raw film D before dicing or the film piece before picking up. Excellent pick-up property can be achieved by properly curing the film piece when picked up.
  • the manufacturing method of the semiconductor device of the first embodiment includes, for example, the following (D) process, (E) process, and (F) process.
  • the process of sealing with see FIG. 1
  • the (D) process is a process of arranging the semiconductor chip 11 on the substrate 12 .
  • the semiconductor chip 11 is arranged at a predetermined position on the substrate 12 with the bonding member 15 interposed therebetween.
  • Semiconductor chip 11 is then electrically connected to substrate 12 by wires 13 .
  • the (E) process is a process of disposing the film 10 having at least a thermosetting resin layer on the surface S ⁇ b>1 of the semiconductor chip 11 .
  • the structure 100A shown in FIG. 5 is obtained.
  • the structure 100A includes a substrate 12, a semiconductor chip 11 arranged on the surface of the substrate 12, and a film 10 arranged on the surface S1 of the semiconductor chip 11.
  • FIG. Arrangement of the film 10 can be performed, for example, by a crimping process.
  • the crimping treatment can be performed, for example, under conditions of 80 to 180° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds.
  • thermosetting resin layer contained in the film 10 is completely cured before starting the step (F) to form a cured product 10c of the film.
  • the cured film 10c can be obtained by thermocompression bonding the film 10, for example, under conditions of 80 to 180° C. and 0.01 to 1.0 MPa for 1 hour or more.
  • the (F) process is a process of sealing the semiconductor chip 11 with the sealing material 14 . Through this process, the semiconductor device 100 shown in FIG. 1 can be obtained.
  • FIG. 6 is a cross-sectional view schematically showing one aspect of the second embodiment of the semiconductor device.
  • the second embodiment of the semiconductor device is a semiconductor device provided with a multilayer (two or more layers) semiconductor chip.
  • a semiconductor device 110 shown in FIG. 7 includes a substrate 12, multilayer semiconductor chips (first-stage semiconductor chip 11a and second-stage semiconductor chip 11b) arranged on the substrate 12, and semiconductor chips arranged on the surface of the semiconductor chips. and a reinforcing member 16 . More specifically, the semiconductor device 110 includes a substrate 12, a first-stage semiconductor chip 11a arranged on the substrate 12, a second-stage semiconductor chip 11b arranged on the first-stage semiconductor chip 11a, and a second-stage semiconductor chip 11b.
  • the reinforcing member 16 may be composed of a cured film 10c having at least a thermosetting resin layer.
  • the reinforcing member 16 is arranged so as to cover at least a partial region of the surface S2 of the semiconductor chip 11b in the second stage. From the viewpoint of work efficiency, it is preferable that the reinforcing member 16 is arranged so as to cover a part of the surface S2 of the semiconductor chip 11b in the second stage (the area including a portion where problems are likely to occur).
  • the reinforcing member 16 is formed on the surface of the semiconductor chip 11a on the first stage, where the semiconductor chip 11b on the second stage is not arranged. may also be placed in In the semiconductor device 110, the semiconductor chip 11a in the first stage is bonded to the substrate 12 via the bonding member 15a, and the semiconductor chip 11a in the second stage is further bonded to the semiconductor chip 11a in the first stage via the bonding member 15b. 11b is glued.
  • the adhesive member 15a and the adhesive member 15b are usually cured adhesive compositions. Connection terminals (not shown) of the first-stage semiconductor chip 11 a and the second-stage semiconductor chip 11 b are electrically connected to external connection terminals via wires 13 and sealed with a sealing material 14 .
  • FIG. 7 is a cross-sectional view schematically showing another aspect of the second embodiment of the semiconductor device.
  • a semiconductor device 120 shown in FIG. 7 includes a substrate 12, multilayer semiconductor chips (four semiconductor chips 11a, 11b, 11c, and 11d) arranged on the substrate 12, and reinforcing chips arranged on the surface of the semiconductor chips. and a member 16 for. More specifically, the semiconductor device 120 includes a substrate 12, semiconductor chips 11a, 11b, 11c, and 11d arranged on the substrate 12, and a reinforcing member 16 arranged on the surface S3 of the semiconductor chip 11d.
  • the four semiconductor chips 11a, 11b, 11c, and 11d are offset from each other in the lateral direction (direction perpendicular to the stacking direction) for connection with connection terminals (not shown) formed on the surface of the substrate 12. (see FIG. 7).
  • the reinforcing member 16 may be composed of a cured film 10c having at least a thermosetting resin layer.
  • the reinforcing member 16 is arranged to cover at least a partial area of the surface S3 of the semiconductor chip 11d. From the viewpoint of work efficiency, the reinforcing member 16 is preferably arranged so as to partially cover the surface S3 of the semiconductor chip 11d.
  • the semiconductor chip 11d is expected to be susceptible to defects such as cracks at a portion (portion x in FIG.
  • the reinforcing member 16 is arranged in a region including part or all of the surface S3x of the semiconductor chip 11d corresponding to the portion not supported by the semiconductor chip 11c (portion x in FIG. 7). (See FIG. 7).
  • the reinforcing member 16 may be arranged on the surfaces of the semiconductor chips 11a, 11b, and 11c where no semiconductor chip is arranged. .
  • the substrate 12 and each semiconductor chip are bonded together via bonding members 15a, 15b, 15c, and 15d.
  • the adhesive members 15a, 15b, 15c, and 15d are usually cured adhesive compositions.
  • the semiconductor chips 11 a , 11 b , 11 c , 11 d are electrically connected to external connection terminals through wires 13 and sealed with a sealing material 14 .
  • the semiconductor device of the second embodiment has at least one semiconductor chip formed on the semiconductor chip 11 between the steps (D) and (E) in the method for manufacturing the semiconductor device of the first embodiment.
  • a manufacturing method further including a step of laminating ((D') step).
  • FIG. 7 illustrates a semiconductor device in which four semiconductor chips are stacked, but the number of stacked semiconductor chips is not limited to this. Further, FIG. 7 illustrates the semiconductor device in which the semiconductor chips are stacked at positions shifted in the lateral direction (direction perpendicular to the stacking direction), but the semiconductor chips are stacked in the lateral direction (direction perpendicular to the stacking direction). direction) may be stacked at positions that are not shifted from each other.
  • a method of manufacturing a reinforced semiconductor chip in one embodiment comprises placing a film having at least a thermosetting resin layer on a surface of a single-layer or multi-layer semiconductor chip. According to such a manufacturing method, it is possible to easily obtain a reinforced semiconductor chip.
  • step (E) The step of disposing a film having at least a thermosetting resin layer on the surface of a single-layer or multi-layer semiconductor chip is the same as step (E) in the method for manufacturing a semiconductor device.
  • the film and semiconductor chip used in the semiconductor chip reinforcing method are the same as the film and semiconductor chip used in the above semiconductor device. Therefore, redundant description is omitted here.
  • a film-attached semiconductor chip of one embodiment includes a single-layer or multilayer semiconductor chip, and a film having at least a thermosetting resin layer disposed on the surface of the semiconductor chip. According to such a film-attached semiconductor chip, it is possible to suppress problems such as warping and cracking that may occur in the semiconductor chip.
  • a film-attached semiconductor chip can be obtained by a manufacturing method including the same step as (E) in the method for manufacturing a semiconductor device described above.
  • the film and semiconductor chip in the semiconductor chip with film are the same as the film and semiconductor chip used in the above semiconductor device. Therefore, redundant description is omitted here.
  • a method of reinforcing a semiconductor chip includes the step of disposing a film having at least a thermosetting resin layer on a surface of a single-layer or multilayer semiconductor chip. According to such a semiconductor chip reinforcement method, it is possible to easily reinforce the semiconductor chip.
  • step (E) The step of disposing a film having at least a thermosetting resin layer on the surface of a single-layer or multi-layer semiconductor chip is the same as step (E) in the method for manufacturing a semiconductor device.
  • the film and semiconductor chip used in the semiconductor chip reinforcing method are the same as the film and semiconductor chip used in the above semiconductor device. Therefore, redundant description is omitted here.
  • the reinforcing film of one embodiment is a film used to reinforce a semiconductor chip by placing it on the surface of a single-layer or multilayer semiconductor chip.
  • the reinforcing film is a multilayer film having a first thermosetting resin layer, a rigid material layer, and a second thermosetting resin layer in this order.
  • the rigid material layer has higher rigidity than the first thermosetting resin layer and the second thermosetting resin layer.
  • the reinforcing film of this embodiment is the same as the film 10C shown in FIG. 2(c) in the semiconductor device. Therefore, redundant description is omitted here.
  • a novel reinforced semiconductor chip manufacturing method is provided. Further, according to the present disclosure, there is provided a film-attached semiconductor chip capable of suppressing problems such as warping and cracking that may occur in the semiconductor chip. Further, according to the present disclosure, a novel method for reinforcing a semiconductor chip is provided, which can easily reinforce a semiconductor chip. Further, according to the present disclosure, there is provided a reinforcing film used in such a semiconductor chip reinforcing method. Furthermore, according to the present disclosure, a semiconductor device including a semiconductor chip is provided.
  • SYMBOLS 1 Base film, 2... Adhesive layer, 5... Thermosetting resin layer, 6... Rigid layer, 10, 10A, 10B, 10C... Film, 10c... Cured product of film, 11, 11a, 11b, 11c, 11d... semiconductor chip, 12... substrate, 13... wire, 14... sealing material, 15, 15a, 15b, 15c, 15d... bonding member, 16... reinforcing member, 20... laminated film, 42... push-up jig, 44 Suction collet 100, 110, 120 Semiconductor device 100A Structure D Film material S1, S2, S3, S3x Surface.

Abstract

補強された半導体チップの製造方法が開示される。当該補強された半導体チップの製造方法は、単層又は多層の半導体チップの表面に、熱硬化性樹脂層を少なくとも有するフィルムを配置する工程を備える。

Description

補強された半導体チップの製造方法、フィルム付き半導体チップ、半導体チップの補強方法、補強用フィルム、及び半導体装置
 本開示は、補強された半導体チップの製造方法、フィルム付き半導体チップ、半導体チップの補強方法、補強用フィルム、及び半導体装置に関する。
 近年、電子機器の多機能化に伴い、複数個の半導体チップを多層化するスタックドMCP(Multi Chip Package)の適用がメモリ半導体パッケージの分野を中心に進められている。スタックドMCPが適用されたメモリ半導体パッケージとしては、例えば、三次元NAND型メモリが知られている(例えば、特許文献1)。
国際公開第2020/013250号
 上記の半導体パッケージにおいては、高速化、高密度化、及び高集積化も推し進められており、これに伴い、半導体チップの薄厚化も進行している。一方、半導体チップの薄厚化が進行するにつれて、半導体パッケージにおいて、半導体チップの反り、割れ(クラック)等の不具合が発生する場合がある。このような傾向は、複数個の半導体チップを多層化する半導体チップの最上部に配置された半導体チップにおいて顕著である。
 そこで、本開示は、新規な補強された半導体チップの製造方法を提供することを主な目的とする。
 本開示の一側面は、補強された半導体チップの製造方法に関する。当該補強された半導体チップの製造方法は、単層又は多層の半導体チップの表面に、熱硬化性樹脂層を少なくとも有するフィルムを配置する工程を備える。このような製造方法によれば、簡便に補強された半導体チップを得ることが可能となる。
 フィルムは、多層フィルムであってよい。多層フィルムは、熱硬化性樹脂層と、熱硬化性樹脂層よりも高い剛性を有する剛材層とを有するフィルムであってよい。多層フィルムは、例えば、第一の熱硬化性樹脂層と、剛材層と、第二の熱硬化性樹脂層とをこの順に有するフィルムであってもよい。この場合、剛材層は、第一の熱硬化性樹脂層及び第二の熱硬化性樹脂層よりも高い剛性を有している。ここで、剛性は、物体が曲げ又はねじれに対して破壊に耐える能力を意味する。
熱硬化性樹脂層は、他の部材(例えば、半導体チップ)に対して接着性を有するため、フィルムに接着剤層等を別途設けなくてもよい。なお、熱硬化性樹脂層、第一の熱硬化性樹脂層、及び第二の熱硬化性樹脂層の熱硬化後の剛性は、剛材層の剛性よりも低くても高くてもよい。また、剛材層は、熱硬化性樹脂層よりも高い剛性を有する樹脂剛材層又は熱硬化性樹脂層よりも高い剛性を有する金属層であってよい。剛材層は、例えば、ポリイミド樹脂層であってよい。
 フィルムの総厚(フィルムを構成するすべての層の厚さの合計)は、5~180μmであってよい。
 本開示の他の側面は、フィルム付き半導体チップに関する。当該フィルム付き半導体チップは、単層又は多層の半導体チップと、半導体チップの表面に配置された、熱硬化性樹脂層を少なくとも有するフィルムとを備える。このようなフィルム付き半導体チップによれば、半導体チップに発生し得る反り、割れ(クラック)等の不具合を抑制することが可能となる。
 本開示の他の側面は、半導体チップの補強方法に関する。当該半導体チップの補強方法は、単層又は多層の半導体チップの表面に、熱硬化性樹脂層を少なくとも有するフィルムを配置する工程を備える。このような半導体チップの補強方法によれば、簡便に半導体チップを補強することが可能となる。
 本開示の他の側面は、単層又は多層の半導体チップの表面に配置して半導体チップを補強する補強用フィルムに関する。当該補強用フィルムは、第一の熱硬化性樹脂層と、剛材層と、第二の熱硬化性樹脂層とをこの順に有する多層フィルムである。剛材層は、第一の熱硬化性樹脂層及び第二の熱硬化性樹脂層よりも高い剛性を有している。このような補強用フィルムによれば、半導体チップの反り、割れ(クラック)等の不具合の発生を抑制することが可能となる。
 本開示の他の側面は、半導体装置に関する。当該半導体装置は、基板と、基板上に配置された、単層又は多層の半導体チップと、半導体チップの表面に配置された、熱硬化性樹脂層を少なくとも有するフィルムの硬化物とを備える。
 本開示によれば、新規な補強された半導体チップの製造方法が提供される。また、本開示によれば、半導体チップに発生し得る反り、割れ(クラック)等の不具合を抑制することが可能なフィルム付き半導体チップが提供される。また、本開示によれば、簡便に半導体チップを補強することが可能な新規な半導体チップの補強方法が提供される。また、本開示によれば、このような半導体チップの補強方法に用いられる補強用フィルムが提供される。さらに、本開示によれば、半導体チップを備える半導体装置が提供される。
図1は、半導体装置の第一実施形態を模式的に示す断面図である。 図2(a)は、フィルムの一実施形態を模式的に示す断面図であり、図2(b)は、フィルムの他の実施形態を模式的に示す断面図であり、図2(c)は、フィルムの他の実施形態を模式的に示す断面図である。 図3(a)は、フィルム片を製造するためのフィルム原反を備える積層フィルムの一実施形態を模式的に示す平面図であり、図2(b)は、図2(a)のb-b線における断面図である。 図4(a)、図4(b)、図4(c)、及び図4(d)は、フィルム片の作製過程を模式的に示す断面図である。 図5は、半導体チップの表面にフィルムを配置した状態を模式的に示す断面図である。 図6は、半導体装置の第二実施形態の一態様を模式的に示す断面図である。 図7は、半導体装置の第二実施形態の他の態様を模式的に示す断面図である。
 以下、図面を参照しつつ、本開示の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はそれに対応するメタクリレートを意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、例示材料は特に断らない限り、一種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
[半導体装置]
<第一実施形態>
 図1は、半導体装置の第一実施形態を模式的に示す断面図である。なお、半導体装置の第一実施形態は、単層の半導体チップを備える半導体装置である。図1に示される半導体装置100は、基板12と、基板12上に配置された単層の半導体チップ11と、半導体チップ11の表面S1に配置された補強用部材16とを備える。補強用部材16は、熱硬化性樹脂層を少なくとも有するフィルムの硬化物10cで構成され得る。補強用部材16は、半導体チップ11の表面S1の少なくとも一部の領域を覆うように配置されている。補強用部材16は、作業効率の観点から、半導体チップ11の表面S1の一部の領域(不都合が発生し易い箇所を含む領域)を覆うように配置されていることが好ましい。半導体チップ11及び基板12は、半導体チップ11及び基板12の間に設けられた接着用部材15を介して接着されている。接着用部材15は、通常、接着剤組成物の硬化物で構成される。半導体チップ11の接続端子(図示せず)は、ワイヤ13を介して外部接続端子(図示せず)と電気的に接続され、封止材14によって封止されている。
 本実施形態においては、補強用部材16を半導体チップ11の表面S1の少なくとも一部の領域を覆うように配置することにより、半導体パッケージにおける、半導体チップ11の反り、割れ(クラック)等の不具合を抑制することができる。
 基板12は、有機基板であってもよく、リードフレーム等の金属基板であってもよい。基板12の厚さは、例えば、90~300μmであり、90~210μmであってもよい。
 半導体チップ11は、接着用部材15(接着剤組成物の硬化物)を介して基板12と接着されている。平面視における半導体チップ11の形状は、例えば、矩形(正方形又は長方形)であってよい。半導体チップ11の一辺の長さは、例えば、20mm以下であり、4~20mm又は4~12mmであってもよい。半導体チップ11の厚さは、例えば、10~170μmであり、20~120μmであってもよい。
 補強用部材16は、半導体チップ11の表面S1に配置され、半導体チップ11における反り、割れ(クラック)等の不具合の発生を抑制する役割を果たす。補強用部材16は、熱硬化性樹脂層を少なくとも有するフィルムの硬化物10c(又は後述のフィルム片の硬化物)で構成され得る。
 フィルムは、半導体チップの表面に配置して半導体チップを補強する補強用フィルムである。このようなフィルムは、熱硬化性樹脂層を少なくとも有する。図2(a)は、フィルムの一実施形態を模式的に示す断面図であり、図2(b)は、フィルムの他の実施形態を模式的に示す断面図であり、図2(c)は、フィルムの他の実施形態を模式的に示す断面図である。図2(a)に示されるフィルム10Aは、熱硬化性樹脂層5からなる単層のフィルムである。図2(b)で示されるフィルム10Bは、熱硬化性樹脂層5と、熱硬化性樹脂層5よりも高い剛性を有する剛材層6とを有する二層フィルムである。図2(c)で示されるフィルム10Cは、第一の熱硬化性樹脂層(熱硬化性樹脂層5)と、剛材層6と、第二の熱硬化性樹脂層(熱硬化性樹脂層5)とをこの順に有する三層フィルムである。フィルム10Cにおいて、剛材層6は、第一の熱硬化性樹脂層及び第二の熱硬化性樹脂層よりも高い剛性を有している。なお、第一の熱硬化性樹脂層及び第二の熱硬化性樹脂層は、互いに同一であっても異なっていてもよい。フィルムは、多層フィルム(フィルム10B又はフィルム10C)であってよく、フィルム10Cの構成を有するフィルムであってもよい。例えば、フィルムがフィルム10A~10Cである場合、フィルムの硬化物10cは、フィルム10A~10Cに含まれる熱硬化性樹脂層5が硬化した後のものである。
 熱硬化性樹脂層5を構成する熱硬化性樹脂組成物は、半硬化(Bステージ)状態を経て、その後の硬化処理によって完全硬化物(Cステージ)状態となり得るものである。熱硬化性樹脂組成物は、エポキシ樹脂と、エポキシ樹脂硬化剤と、エラストマとを含み、必要に応じて、無機フィラー、硬化促進剤等をさらに含んでいてもよい。
(エポキシ樹脂)
 エポキシ樹脂は、硬化して接着作用を有するものであれば特に限定されない。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等の二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂などが挙げられる。また、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂、脂環式エポキシ樹脂等の一般に知られているエポキシ樹脂も適用することができる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
(エポキシ樹脂硬化剤)
 エポキシ樹脂硬化剤としては、例えば、フェノール樹脂、エステル化合物、芳香族アミン、脂肪族アミン、酸無水物等が挙げられる。これらの中でも、高い接着強度を達成する観点から、エポキシ樹脂硬化剤はフェノール樹脂であってよい。フェノール樹脂の市販品としては、例えば、DIC株式会社製のLF-4871(商品名、BPAノボラック型フェノール樹脂)、エア・ウォーター株式会社製のHE-100C-30(商品名、フェニルアラキル型フェノール樹脂)、DIC株式会社製のフェノライトKA及びTDシリーズ、三井化学株式会社製のミレックスXLC及びXLシリーズ(例えば、ミレックスXLC-LL)、エア・ウォーター株式会社製のHEシリーズ(例えば、HE100C-30)、明和化成株式会社製のMEHC-7800シリーズ(例えば、MEHC-7800-4S)、JEFケミカル株式会社製のJDPPシリーズ、群栄化学工業株式会社製のPSMシリーズ(例えば、PSM-4326)等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
 エポキシ樹脂とフェノール樹脂との配合比は、高い接着強度を達成する観点から、それぞれエポキシ当量と水酸基当量との当量比が0.6~1.5、0.7~1.4、又は0.8~1.3となるように調整することが好ましい。配合比がこのような範囲内にあると、硬化性及び流動性の両方を充分に高水準に達成し易い傾向にある。
 エポキシ樹脂及びエポキシ樹脂硬化剤の合計の含有量は、熱硬化性樹脂組成物全量を基準として、5~40質量%又は10~30質量%であってよい。
(エラストマ)
 エラストマとしては、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン、カルボキシ変性アクリロニトリル等が挙げられる。
 エラストマは、高い接着強度を達成する観点から、アクリル樹脂であってよい。アクリル樹脂は、グリシジル(メタ)アクリレート等のエポキシ基(又はグリシジル基)を架橋性官能基として有する官能性モノマーを重合して得られるエポキシ基含有(メタ)アクリル共重合体であってよい。アクリル樹脂はまた、エポキシ基含有アクリルゴムであってもよい。エポキシ基含有アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレート、アクリロニトリル等の共重合体、エチルアクリレート、アクリロニトリル等の共重合体などからなる、エポキシ基を有するゴムである。なお、アクリル樹脂は、エポキシ基に加えて、アルコール性又はフェノール性の水酸基、カルボキシル基等の架橋性官能基を有していてもよい。
 アクリル樹脂の市販品としては、例えば、ナガセケムテック株式会社製のSG-70L、SG-708-6、WS-023 EK30、SG-280 EK23、SG-P3溶剤変更品(商品名、アクリルゴム、重量平均分子量:80万、Tg:12℃、溶剤はシクロヘキサノン)等が挙げられる。
 エラストマ(アクリル樹脂)のガラス転移温度(Tg)は、高い接着強度を達成する観点から、-50~50℃又は-30~30℃であってよい。ここで、ガラス転移温度(Tg)は、DSC(熱示差走査熱量計)(例えば、株式会社リガク製「Thermo Plus 2」)を用いて測定した値を意味する。エラストマ(アクリル樹脂)の重量平均分子量(Mw)は、高い接着強度を達成する観点から、10万~300万又は50万~200万であってよい。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。なお、分子量分布の狭いエラストマ(アクリル樹脂)を用いることによって、高弾性のフィルムを形成することができる。
 エラストマ(アクリル樹脂)の含有量は、高い接着強度を達成する観点から、エポキシ樹脂及びエポキシ樹脂硬化剤の合計100質量部に対して50~400質量部又は100~400質量部であってよい。
(無機フィラー)
 無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
 無機フィラーの平均粒径は、高い接着強度を達成する観点から、0.005μm~1.0μm又は0.05~0.5μmであってよい。無機フィラーの表面は、高い接着強度を達成する観点から、化学修飾されていてもよい。無機フィラーの表面を化学修飾する材料としては、例えば、シランカップリング剤等が挙げられる。シランカップリング剤の官能基の種類としては、例えば、ビニル基、アクリロイル基、エポキシ基、メルカプト基、アミノ基、ジアミノ基、アルコキシ基、エトキシ基等が挙げられる。
 無機フィラーの含有量は、高い接着強度を達成する観点から、熱硬化性樹脂組成物の樹脂成分100質量部に対して、1~100質量部又は3~50質量部であってよい。
(硬化促進剤)
 硬化促進剤としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。硬化促進剤は、高い接着強度を達成する観点から、イミダゾール類及びその誘導体であってよい。イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
 硬化促進剤の含有量は、高い接着強度を達成する観点から、エポキシ樹脂及びエポキシ樹脂硬化剤の合計100質量部に対して0.04~3質量部又は0.04~0.2質量部であってよい。
 熱硬化性樹脂層は、例えば、熱硬化性樹脂組成物をフィルム状に成形することによって得ることができる。熱硬化性樹脂層の形成においては、熱硬化性樹脂組成物のワニス(樹脂ワニス)を用いてもよい。樹脂ワニスを用いる場合は、エポキシ樹脂、エポキシ樹脂硬化剤、及びエラストマ、並びに必要に応じて添加される成分を溶剤中で混合又は混練して樹脂ワニスを調製し、得られた樹脂ワニスを支持フィルムに塗布し、溶剤を加熱乾燥して除去することによって熱硬化性樹脂層を得ることができる。
 支持フィルムは、上記の加熱乾燥に耐えるものであれば特に限定されないが、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエチレンナフタレートフィルム、ポリメチルペンテンフィルム等であってよい。支持フィルムは、2種以上を組み合わせた多層フィルムであってもよく、表面がシリコーン系、シリカ系等の離型剤などで処理されたものであってもよい。
 混合又は混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル等の分散機を用い、これらを適宜組み合わせて行うことができる。
 樹脂ワニスを支持フィルムに塗布する方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等を用いることができる。加熱乾燥は、使用した溶剤が充分に揮散する条件であれば特に制限されないが、50~150℃の範囲で、1~30分の範囲で行うことができる。加熱乾燥は、異なる加熱温度で異なる加熱時間で段階的に行うことができる。
 熱硬化性樹脂層の厚さは、フィルムの総厚(フィルムを構成するすべての層の厚さの合計)が5~180μmとなるように任意に調整される。熱硬化性樹脂層の厚さは、例えば、5μm以上、10μm以上、20μm以上、又は30μm以上であってよく、180μm以下、150μm以下、120μm以下、100μm以下、又は80μm以下であってよい。
 剛材層は、樹脂剛材層又は金属層であってよい。樹脂剛材層は、熱硬化性樹脂層よりも高い剛性を有する樹脂から構成される層である。多層フィルムがこのような樹脂剛材層を有することによって、フィルム自体の剛性を確保することができ、フィルム片を作製する際のダイシングによって個片化された後において、熱硬化性樹脂層の熱硬化処理を実施しなくても、優れたピックアップ性を達成することができる。樹脂剛材層を構成する樹脂の種類は、特に制限されず任意に選択することができる。樹脂の種類は、例えば、ポリイミド樹脂であってよく、樹脂剛材層は、ポリイミド樹脂層であってよい。樹脂剛材層を有するフィルムにおいて、樹脂剛材層の厚さは、例えば、10~90μm又は10~60μmであってよい。
 金属層は、熱硬化性樹脂層よりも高い剛性を有する金属から構成される層である。多層フィルムがこのような金属層を有することによって、フィルム自体の剛性を確保することができ、フィルム片を作製する際のダイシングによって個片化された後において、熱硬化性樹脂層の熱硬化処理を実施しなくても、優れたピックアップ性を達成することができる。金属層を構成する金属の種類は、特に制限されず任意に選択することができる。金属の種類は、例えば、銅、ニッケル、チタン、ステンレス、又はアルミニウムであってよく、金属層は、銅層、ニッケル層、チタン層、ステンレス層、又はアルミニウム層であってよく、銅層又はアルミニウム層であってもよい。金属層を有するフィルムにおいて、金属層の厚さは、例えば、10~90μm又は10~60μmであってよい。
 剛材層は、熱硬化性樹脂層よりも高い剛性を有する樹脂剛材層又は熱硬化性樹脂層よりも高い剛性を有する金属層であってよい。ここで、剛性は、各種の機械的性質を基準とすることができるが、例えば、引張弾性率を基準とすることができる。引張弾性率は、例えば、K7161-1:2014に準じて測定することができる。
 フィルムの総厚(フィルムを構成するすべての層の厚さの合計)は、例えば、5~180μmであり、10μm以上、20μm以上、又は30μm以上であってもよく、150μm以下、120μm以下、100μm以下、又は80μm以下であってもよい。フィルムの総厚が5μm以上であると、半導体チップの補強効果が充分に発現する傾向にあり、フィルムの総厚が180μm以下であると、硬化後のフィルム(熱硬化性樹脂層)の反りの発生を防ぐことができる傾向にある。また、一般に封止工程においては半導体装置の高さに制約があり、半導体装置の高さを大きくする補強用部材については使用自体が困難となることがある。フィルムの総厚が180μm以下であると、このような半導体装置の高さに制約を受け難い傾向にある。
 平面視におけるフィルムの形状は、特に制限されないが、例えば、矩形(正方形又は長方形)であってよい。フィルムの一辺の長さは、例えば、20mm以下であり、4~20mm又は4~12mmであってもよい。フィルムの一辺の長さは、半導体チップ11の一辺の長さよりも小さいことが好ましい。
 単層フィルムであるフィルム10Aは、作製した熱硬化性樹脂層5をそのままフィルムとして使用することができる。二層フィルムであるフィルム10Bは、例えば、剛材層6の一方の表面に、熱硬化性樹脂層5を積層することによって得ることができる。三層フィルムであるフィルム10Cは、例えば、フィルム10Bにおいて、剛材層6の熱硬化性樹脂層5が積層された表面とは反対側の表面に、熱硬化性樹脂層5を積層することによって得ることができる。
 フィルムは、フィルム原反(フィルム基材、フィルム母材)を個片化してなるフィルム片であってもよい。フィルム片の製造方法は、例えば、以下の(A)工程、(B)工程、及び(C)工程を含む。
(A)基材フィルム1と、粘着層2と、熱硬化性樹脂層を少なくとも有するフィルム原反Dとをこの順序で備える積層フィルム20を準備する工程(図3参照)
(B)フィルム原反Dを個片化することによって、粘着層2の表面上に複数フィルム片(フィルム10)を形成する工程(図4(b)、(c)参照)
(C)粘着層2からフィルム片(フィルム10)をピックアップする工程(図4(d)参照)
 なお、図1に示す補強用部材16(フィルムの硬化物10c)は、これに含まれる熱硬化性樹脂層(熱硬化性樹組成物)が硬化した後のものである。一方、図4(b)に示すフィルム片(フィルム10)は、これに含まれる熱硬化性樹脂層(熱硬化性樹組成物)が完全に硬化する前の状態のものである。
(A)工程
 (A)工程は、積層フィルム20を準備する工程である。積層フィルム20は、基材フィルム1と、粘着層2と、熱硬化性樹脂層を少なくとも有するフィルム原反Dとを備える。基材フィルム1は、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)であってよい。粘着層2は、パンチング等によって円形に形成されている(図3(a)参照)。粘着層2は、感圧型の粘着剤からなるものであっても、紫外線硬化型の粘着剤からなるものであってもよい。粘着層2が紫外線硬化型の粘着剤からなるものである場合、粘着層2は紫外線が照射されることによって粘着性が低下する性質を有する。フィルム原反Dは、パンチング等によって円形に形成されており、粘着層2よりも小さい直径を有する(図3(a)参照)。フィルム原反Dは、フィルム10と同様に、熱硬化性樹脂層を少なくとも有する構成であり、例えば、フィルム10A~10Cと同様の構成を有している。
 積層フィルム20の厚さは、例えば、5~270μm又は20~210μmであってよい。
 積層フィルム20は、例えば、基材フィルム1とその表面上に粘着層2とを有する第1の積層フィルムと、カバーフィルムとその表面上にフィルム原反Dとを有する第2の積層フィルムとを貼り合わせることによって作製することができる。第1の積層フィルムは、基材フィルム1の表面上に粘着層を塗工によって形成する工程と、粘着層をパンチング等によって所定の形状(例えば、円形)に加工する工程とを経て得られる。第2の積層フィルムは、カバーフィルム(例えば、PETフィルム又はポリエチレンフィルム)の表面上に、フィルム原反Dを形成する工程と、この工程を経て形成されたフィルム原反Dをパンチング等によって所定の形状(例えば、円形)に加工する工程とを経て得られる。積層フィルム20を使用するに際し、カバーフィルムは適当なタイミングで剥がされる。
(B)工程
 (B)工程は、フィルム原反Dを個片化することによって、粘着層2の表面上に複数のフィルム片を形成する工程である。図4(a)に示されるように、積層フィルム20にダイシングリングDRを貼り付ける。すなわち、積層フィルム20の粘着層2にダイシングリングDRを貼り付け、ダイシングリングDRの内側にフィルム原反Dが配置された状態にする。フィルム原反Dをダイシングによって個片化する(図4(b)参照)。ダイシングには、ダイシングソーを用いたダイシング装置を使用することができる。これによって、フィルム原反Dから多数のフィルム片(フィルム10)が得られる。
(C)工程
 (C)工程は、粘着層2からフィルム片(フィルム10)をピックアップする工程である。図4(c)に示されるように、基材フィルム1をエキスパンドすることで、フィルム片を互いに離間させる。次いで、図4(d)に示されるように、フィルム片を突き上げ治具42で突き上げることによって粘着層2からフィルム片を剥離させるとともに、吸引コレット44で吸引してフィルム片をピックアップする。なお、ダイシング前のフィルム原反D又はピックアップ前のフィルム片を加熱することによって、熱硬化性樹脂層の硬化反応を進行させておいてもよい。ピックアップする際にフィルム片が適度に硬化していることで優れたピックアップ性を達成し得る。
 第一実施形態の半導体装置の製造方法は、例えば、以下の(D)工程、(E)工程、及び(F)工程を含む。
(D)基板12上に半導体チップ11を配置する工程
(E)半導体チップ11の表面S1に、熱硬化性樹脂層を少なくとも有するフィルム10を配置する工程
(F)半導体チップ11を封止材14で封止する工程(図1参照)
(D)工程
 (D)工程は、基板12上に半導体チップ11を配置する工程である。例えば、まず、基板12上の所定の位置に接着用部材15を介して半導体チップ11を配置する。その後、半導体チップ11はワイヤ13で基板12と電気的に接続される。
(E)工程
 (E)工程は、半導体チップ11の表面S1に、熱硬化性樹脂層を少なくとも有するフィルム10を配置する工程である。この工程を経て、図5に示される構造体100Aが得られる。構造体100Aは、基板12と、基板12の表面上に配置された半導体チップ11と、半導体チップ11の表面S1上に配置されたフィルム10とを備える。フィルム10の配置は、例えば、圧着処理によって行うことができる。圧着処理は、例えば、80~180℃、0.01~0.50MPaの条件で、0.5~3.0秒にわたって実施することができる。なお、フィルム10に含まれる熱硬化性樹脂層は、(F)工程の開始前の時点で完全硬化してフィルムの硬化物10cとなっていることが好ましい。フィルムの硬化物10cは、フィルム10を、例えば、80~180℃、0.01~1.0MPaの条件で、1時間以上熱圧着することによって得ることができる。
(F)工程
 (F)工程は、半導体チップ11を封止材14で封止する工程である。この工程を経て、図1に示される半導体装置100を得ることができる。
<第二実施形態>
 図6は、半導体装置の第二実施形態の一態様を模式的に示す断面図である。なお、半導体装置の第二実施形態は、多層(二層以上)の半導体チップを備える半導体装置である。図7に示される半導体装置110は、基板12と、基板12上に配置された多層の半導体チップ(一段目の半導体チップ11a及び二段目の半導体チップ11b)と、半導体チップ上の表面に配置された補強用部材16とを備える。より詳細には、半導体装置110は、基板12と、基板12上に配置された一段目の半導体チップ11aと、一段目の半導体チップ11a上に配置された二段目の半導体チップ11bと、二段目の半導体チップ11bの表面S2に配置された補強用部材16とを備える。補強用部材16は、熱硬化性樹脂層を少なくとも有するフィルムの硬化物10cで構成され得る。補強用部材16は、二段目の半導体チップ11bの表面S2の少なくとも一部の領域を覆うように配置されている。補強用部材16は、作業効率の観点から、二段目の半導体チップ11bの表面S2の一部の領域(不都合が発生し易い箇所を含む領域)を覆うように配置されていることが好ましい。なお、補強用部材16は、最上段の二段目の半導体チップ11bの表面S2に加えて、一段目の半導体チップ11aの表面であって、二段目の半導体チップ11bが配置されていない領域にも配置されていてもよい。半導体装置110において、一段目の半導体チップ11aは、接着用部材15aを介して基板12に接着されており、一段目の半導体チップ11a上にさらに接着用部材15bを介して二段目の半導体チップ11bが接着されている。接着用部材15a及び接着用部材15bは、通常、接着剤組成物の硬化物である。一段目の半導体チップ11a及び二段目の半導体チップ11bの接続端子(図示せず)は、ワイヤ13を介して外部接続端子と電気的に接続され、封止材14によって封止されている。
 図7は、半導体装置の第二実施形態の他の態様を模式的に示す断面図である。図7に示される半導体装置120は、基板12と、基板12上に配置された多層の半導体チップ(四つの半導体チップ11a,11b,11c,11d)と、半導体チップ上の表面に配置された補強用部材16とを備える。より詳細には、半導体装置120は、基板12と、基板12上に配置された半導体チップ11a,11b,11c,11dと、半導体チップ11dの表面S3に配置された補強用部材16とを備える。四つの半導体チップ11a,11b,11c,11dは、基板12の表面に形成された接続端子(図示せず)との接続のために、横方向(積層方向と直交する方向)に互いにずれた位置に積層されている(図7参照)。補強用部材16は、熱硬化性樹脂層を少なくとも有するフィルムの硬化物10cで構成され得る。補強用部材16は、半導体チップ11dの表面S3の少なくとも一部の領域を覆うように配置されている。補強用部材16は、作業効率の観点から、半導体チップ11dの表面S3の一部の領域を覆うように配置されていることが好ましい。半導体チップ11dは、半導体チップ11cによって支持されていない部分(図7の部分x)において、割れ(クラック)等の不具合が発生し易いと予想される。そのため、補強用部材16は、半導体チップ11cによって支持されていない部分(図7の部分x)に対応する半導体チップ11dの表面S3xの一部又は全部を含む領域に配置されていることがより好ましい(図7参照)。なお、補強用部材16は、最上段の半導体チップ11dの表面S3に加えて、半導体チップ11a,11b,11cの表面であって、半導体チップが配置されていない領域にも配置されていてもよい。半導体装置120において、基板12及び各半導体チップは、接着用部材15a,15b,15c,15dを介して互いに接着されている。接着用部材15a,15b,15c,15dは、通常、接着剤組成物の硬化物である。半導体チップ11a,11b,11c,11dは、ワイヤ13を介して外部接続端子と電気的に接続され、封止材14によって封止されている。
 第二実施形態の半導体装置は、例えば、上記の第一実施形態の半導体装置の製造方法において、(D)工程と(E)工程との間に、半導体チップ11上に、少なくとも一つの半導体チップを積層する工程((D’)工程)をさらに含む製造方法によって得ることができる。
 以上、本開示の実施形態について半導体装置(パッケージ)を詳細に説明したが、本開示は上記実施形態に限定されるものではない。例えば、図7においては、四つの半導体チップが積層された態様の半導体装置を例示したが、積層する半導体チップの数はこれに限定されるものではない。また、図7においては、半導体チップが横方向(積層方向と直交する方向)に互いにずれた位置に積層されている態様の半導体装置を例示したが、半導体チップが横方向(積層方向と直交する方向)に互いにずれていない位置に積層されている態様の半導体装置であってもよい。
[補強された半導体チップの製造方法]
 一実施形態の補強された半導体チップの製造方法は、単層又は多層の半導体チップの表面に、熱硬化性樹脂層を少なくとも有するフィルムを配置する工程を備える。このような製造方法によれば、簡便に補強された半導体チップを得ることが可能となる。
 単層又は多層の半導体チップの表面に、熱硬化性樹脂層を少なくとも有するフィルムを配置する工程は、上記半導体装置の製造方法における(E)工程と同様である。なお、半導体チップの補強方法で使用されるフィルム及び半導体チップは、上記半導体装置で使用されるフィルム及び半導体チップと同様である。したがって、ここでは重複する説明を省略する。
[フィルム付き半導体チップ]
 一実施形態のフィルム付き半導体チップは、単層又は多層の半導体チップと、半導体チップの表面に配置された、熱硬化性樹脂層を少なくとも有するフィルムとを備える。このようなフィルム付き半導体チップによれば、半導体チップに発生し得る反り、割れ(クラック)等の不具合を抑制することが可能となる。
 フィルム付き半導体チップは、上記半導体装置の製造方法における(E)工程と同様の工程を含む製造方法によって得ることができる。なお、フィルム付き半導体チップにおけるフィルム及び半導体チップは、上記半導体装置で使用されるフィルム及び半導体チップと同様である。したがって、ここでは重複する説明を省略する。
[半導体チップの補強方法]
 一実施形態の半導体チップの補強方法は、単層又は多層の半導体チップの表面に、熱硬化性樹脂層を少なくとも有するフィルムを配置する工程を備える。このような半導体チップの補強方法によれば、簡便に半導体チップを補強することが可能となる。
 単層又は多層の半導体チップの表面に、熱硬化性樹脂層を少なくとも有するフィルムを配置する工程は、上記半導体装置の製造方法における(E)工程と同様である。なお、半導体チップの補強方法で使用されるフィルム及び半導体チップは、上記半導体装置で使用されるフィルム及び半導体チップと同様である。したがって、ここでは重複する説明を省略する。
[補強用フィルム]
 一実施形態の補強用フィルムは、単層又は多層の半導体チップの表面に配置して半導体チップを補強するために用いられるフィルムである。補強用フィルムは、第一の熱硬化性樹脂層と、剛材層と、第二の熱硬化性樹脂層とをこの順に有する多層フィルムである。剛材層は、第一の熱硬化性樹脂層及び第二の熱硬化性樹脂層よりも高い剛性を有している。
 本実施形態の補強用フィルムは、上記半導体装置における図2(c)で示されるフィルム10Cと同様である。したがって、ここでは重複する説明を省略する。
 本開示によれば、新規な補強された半導体チップの製造方法が提供される。また、本開示によれば、半導体チップに発生し得る反り、割れ(クラック)等の不具合を抑制することが可能なフィルム付き半導体チップが提供される。また、本開示によれば、簡便に半導体チップを補強することが可能な新規な半導体チップの補強方法が提供される。また、本開示によれば、このような半導体チップの補強方法に用いられる補強用フィルムが提供される。さらに、本開示によれば、半導体チップを備える半導体装置が提供される。
 1…基材フィルム、2…粘着層、5…熱硬化性樹脂層、6…剛材層、10,10A,10B,10C…フィルム、10c…フィルムの硬化物、11,11a,11b,11c,11d…半導体チップ、12…基板、13…ワイヤ、14…封止材、15,15a,15b,15c,15d…接着用部材、16…補強用部材、20…積層フィルム、42…突き上げ治具、44…吸引コレット、100,110,120…半導体装置、100A…構造体、D…フィルム原反、S1,S2,S3,S3x…表面。

Claims (14)

  1.  単層又は多層の半導体チップの表面に、熱硬化性樹脂層を少なくとも有するフィルムを配置する工程を備える、
     補強された半導体チップの製造方法。
  2.  前記フィルムが多層フィルムである、
     請求項1に記載の補強された半導体チップの製造方法。
  3.  前記多層フィルムが、前記熱硬化性樹脂層と、前記熱硬化性樹脂層よりも高い剛性を有する剛材層とを有するフィルムである、
     請求項2に記載の補強された半導体チップの製造方法。
  4.  前記多層フィルムが、第一の熱硬化性樹脂層と、剛材層と、第二の熱硬化性樹脂層とをこの順に有するフィルムであり、
     前記剛材層が、前記第一の熱硬化性樹脂層及び前記第二の熱硬化性樹脂層よりも高い剛性を有する、
     請求項2に記載の補強された半導体チップの製造方法。
  5.  前記剛材層がポリイミド樹脂層である、
     請求項3又は4に記載の補強された半導体チップの製造方法。
  6.  前記フィルムの総厚が5~180μmである、
     請求項1~5のいずれか一項に記載の補強された半導体チップの製造方法。
  7.  単層又は多層の半導体チップと、
     前記半導体チップの表面に配置された、熱硬化性樹脂層を少なくとも有するフィルムと、
    を備える、
     フィルム付き半導体チップ。
  8.  単層又は多層の半導体チップの表面に、熱硬化性樹脂層を少なくとも有するフィルムを配置する工程を備える、
     半導体チップの補強方法。
  9.  単層又は多層の半導体チップの表面に配置して半導体チップを補強する補強用フィルムであって、
     前記補強用フィルムが、第一の熱硬化性樹脂層と、剛材層と、第二の熱硬化性樹脂層とをこの順に有する多層フィルムであり、
     前記剛材層が、前記第一の熱硬化性樹脂層及び前記第二の熱硬化性樹脂層よりも高い剛性を有する、
     補強用フィルム。
  10.  基板と、
     前記基板上に配置された、単層又は多層の半導体チップと、
     前記半導体チップの表面に配置された、熱硬化性樹脂層を少なくとも有するフィルムの硬化物と、
    を備える、
     半導体装置。
  11.  前記フィルムが多層フィルムである、
     請求項10に記載の半導体装置。
  12.  前記多層フィルムが、前記熱硬化性樹脂層と、前記熱硬化性樹脂層よりも高い剛性を有する剛材層とを有するフィルムである、
     請求項11に記載の半導体装置。
  13.  前記多層フィルムが、第一の熱硬化性樹脂層と、剛材層と、第二の熱硬化性樹脂層とをこの順に有するフィルムであり、
     前記剛材層が、前記第一の熱硬化性樹脂層及び前記第二の熱硬化性樹脂層よりも高い剛性を有する、
     請求項11に記載の半導体装置。
  14.  前記剛材層がポリイミド樹脂層である、
     請求項12又は13に記載の半導体装置。
PCT/JP2021/040819 2021-11-05 2021-11-05 補強された半導体チップの製造方法、フィルム付き半導体チップ、半導体チップの補強方法、補強用フィルム、及び半導体装置 WO2023079693A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/040819 WO2023079693A1 (ja) 2021-11-05 2021-11-05 補強された半導体チップの製造方法、フィルム付き半導体チップ、半導体チップの補強方法、補強用フィルム、及び半導体装置
TW111139757A TW202320250A (zh) 2021-11-05 2022-10-20 補強半導體晶片之製造方法、附有膜之半導體晶片、半導體晶片之補強方法、補強用膜及半導體裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040819 WO2023079693A1 (ja) 2021-11-05 2021-11-05 補強された半導体チップの製造方法、フィルム付き半導体チップ、半導体チップの補強方法、補強用フィルム、及び半導体装置

Publications (1)

Publication Number Publication Date
WO2023079693A1 true WO2023079693A1 (ja) 2023-05-11

Family

ID=86240875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040819 WO2023079693A1 (ja) 2021-11-05 2021-11-05 補強された半導体チップの製造方法、フィルム付き半導体チップ、半導体チップの補強方法、補強用フィルム、及び半導体装置

Country Status (2)

Country Link
TW (1) TW202320250A (ja)
WO (1) WO2023079693A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200020668A1 (en) * 2018-07-13 2020-01-16 Samsung Electronics Co., Ltd. Semiconductor package including stress-equalizing chip
JP2020178139A (ja) * 2015-11-04 2020-10-29 リンテック株式会社 半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178139A (ja) * 2015-11-04 2020-10-29 リンテック株式会社 半導体装置の製造方法
US20200020668A1 (en) * 2018-07-13 2020-01-16 Samsung Electronics Co., Ltd. Semiconductor package including stress-equalizing chip

Also Published As

Publication number Publication date
TW202320250A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2010074060A1 (ja) 熱硬化型ダイボンドフィルム
JP6445315B2 (ja) ダイシングシート、ダイシング・ダイボンドフィルム及び半導体装置の製造方法
US20110159284A1 (en) Adhesive composition for semiconductor device and die attach film
JP7247733B2 (ja) ドルメン構造を有する半導体装置の製造方法
JP5976716B2 (ja) 熱硬化型ダイボンドフィルム
WO2020100998A1 (ja) 半導体装置及びその製造方法、並びに半導体装置の製造に使用される構造体
WO2023079693A1 (ja) 補強された半導体チップの製造方法、フィルム付き半導体チップ、半導体チップの補強方法、補強用フィルム、及び半導体装置
JP6328467B2 (ja) 熱硬化型ダイボンドフィルム、ダイシングシート付きダイボンドフィルム、半導体装置の製造方法、及び、半導体装置
JP6013709B2 (ja) 熱硬化型ダイボンドフィルム、ダイシング・ダイボンドフィルム、及び、半導体装置の製造方法
JP7452545B2 (ja) 支持片の製造方法、半導体装置の製造方法、及び支持片形成用積層フィルム
WO2020218523A1 (ja) ドルメン構造を有する半導体装置及びその製造方法、並びに、支持片形成用積層フィルム及びその製造方法
WO2020218526A1 (ja) ドルメン構造を有する半導体装置及びその製造方法、並びに、支持片形成用積層フィルム及びその製造方法
WO2022004849A1 (ja) 半導体装置及びその製造方法
JP7351335B2 (ja) ドルメン構造を有する半導体装置及びその製造方法、支持片の製造方法、並びに、支持片形成用積層フィルム
JP7294410B2 (ja) ドルメン構造を有する半導体装置及びその製造方法
TWI830901B (zh) 半導體裝置的製造方法
TWI833985B (zh) 支撐片的製造方法、半導體裝置的製造方法及支撐片形成用積層膜
WO2020218524A1 (ja) ドルメン構造を有する半導体装置及びその製造方法、並びに、支持片形成用積層フィルム及びその製造方法
WO2023136059A1 (ja) 個片化体形成用積層フィルム及びその製造方法、並びに半導体装置の製造方法
WO2020218530A1 (ja) ドルメン構造を有する半導体装置の製造方法及び支持片の製造方法
WO2020217405A1 (ja) ドルメン構造を有する半導体装置の製造方法、支持片の製造方法、及び支持片形成用積層フィルム
JP2021180285A (ja) 半導体装置及びその製造方法、並びに半導体装置の製造に使用される構造体
KR20210107709A (ko) 반도체 장치의 제조 방법, 필름상 접착제 및 다이싱·다이본딩 일체형 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963288

Country of ref document: EP

Kind code of ref document: A1