WO2023079679A1 - 回転電機の回転子 - Google Patents

回転電機の回転子 Download PDF

Info

Publication number
WO2023079679A1
WO2023079679A1 PCT/JP2021/040763 JP2021040763W WO2023079679A1 WO 2023079679 A1 WO2023079679 A1 WO 2023079679A1 JP 2021040763 W JP2021040763 W JP 2021040763W WO 2023079679 A1 WO2023079679 A1 WO 2023079679A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
gap
magnet
rotor core
core
Prior art date
Application number
PCT/JP2021/040763
Other languages
English (en)
French (fr)
Inventor
秀樹 久田
秀範 内田
宏明 牧野
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2022559302A priority Critical patent/JP7404557B2/ja
Priority to CN202180042113.6A priority patent/CN117280568A/zh
Priority to PCT/JP2021/040763 priority patent/WO2023079679A1/ja
Priority to US18/066,857 priority patent/US20230145591A1/en
Publication of WO2023079679A1 publication Critical patent/WO2023079679A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • Embodiments of the present invention relate to a rotor of a rotating electric machine having permanent magnets.
  • a permanent magnet type rotary electric machine includes a cylindrical stator and a cylindrical rotor rotatably supported inside the stator.
  • the rotor has a rotor core and a plurality of permanent magnets embedded within the rotor core.
  • a permanent magnet type rotating electric machine there is a rotating electric machine having a configuration in which two magnets are arranged in a V shape for each magnetic pole, and magnet slots containing the magnets are open to the surface of the rotor core. Proposed.
  • magnetic flux leakage from the magnets in the bridges of the rotor core can be reduced, and magnet torque generated per magnet weight can be increased.
  • An object of the embodiments of the present invention is to provide a rotor for a permanent magnet type rotating electrical machine that can be made smaller and lighter while maintaining strength.
  • a rotor of a rotating electrical machine has a plurality of magnetic poles arranged in a circumferential direction around a central axis, and each of the magnetic poles is arranged at intervals in the circumferential direction.
  • a plurality of magnet holding slots each having an open end opened to the outer periphery of the rotor core and a closed other end; and a first iron core portion positioned between the plurality of magnet holding slots in the circumferential direction.
  • a second core portion located between the two magnet holding slots and the central axis; and a bridge connecting the first core portion and the second core portion.
  • FIG. 1 is a cross-sectional view of a permanent magnet type rotating electric machine according to a first embodiment.
  • FIG. 2 is a cross-sectional view showing an enlarged part of the rotor of the rotating electrical machine;
  • FIG. 3 is a cross-sectional view showing an enlarged part of the rotor of the rotary electric machine according to the second embodiment;
  • FIG. 4 is a cross-sectional view showing an enlarged part of the rotor of the rotary electric machine according to the third embodiment;
  • FIG. 5 is a cross-sectional view showing an enlarged part of the rotor of the rotary electric machine according to the fourth embodiment;
  • FIG. 1 is a cross-sectional view of a permanent magnet type rotating electrical machine according to the first embodiment
  • FIG. 2 is a cross-sectional view showing an enlarged one magnetic pole portion of a rotor.
  • the rotating electrical machine 10 is configured as, for example, an inner rotor type rotating electrical machine.
  • the rotary electric machine 10 includes a ring-shaped or cylindrical stator 12 supported by a fixed frame (not shown), and a rotor rotatably supported inside the stator about a central axis C and coaxially with the stator 12 . a child 14;
  • the rotary electric machine 10 is suitably applied to a drive motor or generator in, for example, a hybrid vehicle (HEV) or an electric vehicle (EV).
  • HEV hybrid vehicle
  • EV electric vehicle
  • the stator 12 includes a cylindrical stator core 16 and armature windings (coils) 18 wound around the stator core 16 .
  • the stator core 16 is configured by concentrically laminating a large number of magnetic material, for example, annular magnetic steel plates (core pieces) such as silicon steel.
  • a plurality of slots 20 are formed in the inner peripheral portion of the stator core 16 .
  • the plurality of slots 20 are arranged at regular intervals in the circumferential direction. Each slot 20 opens in the inner peripheral surface of the stator core 16 and extends radially from the inner peripheral surface. Each slot 20 extends over the entire length of the stator core 16 in the axial direction.
  • stator teeth 21 are configured.
  • a plurality of stator teeth 21 radially extend toward the central axis C from the yoke portion 16a.
  • the armature winding 18 is inserted through a plurality of slots 20 and wound around each stator tooth 21 .
  • the rotor 14 includes a cylindrical shaft (rotating shaft) 22 rotatably supported by bearings (not shown) at both ends, a cylindrical rotor iron core 24 fixed to a substantially central portion of the shaft 22 in the axial direction, and a plurality of permanent magnets M embedded in the rotor core 24 .
  • the rotor 14 is coaxially arranged inside the stator 12 with a small gap (air gap). That is, the outer peripheral surface of the rotor 14 faces the inner peripheral surface of the stator 12 with a small gap therebetween.
  • the rotor core 24 has an inner hole 25 formed coaxially with the center axis C. As shown in FIG. The shaft 22 is inserted and fitted into the inner hole 25 and extends coaxially with the rotor core 24 .
  • the rotor core 24 is configured as a laminate in which a large number of magnetic plates, for example, annular electromagnetic steel plates (core pieces) made of silicon steel or the like are concentrically laminated.
  • the rotor core 24 has the central axis C extending in the lamination direction of the core pieces and an outer peripheral surface coaxial with the central axis C. As shown in FIG.
  • the rotor 14 has a plurality of magnetic poles, for example, 8 magnetic poles, arranged in a circumferential direction around the central axis C.
  • the axis extending in the radial direction of the rotor core 24 passing through the central axis C and the boundary between the magnetic poles adjacent in the circumferential direction is electrically 90 degrees in the circumferential direction with respect to the q-axis and the q-axis.
  • the axis separated by degrees, ie, the axis passing through the center of the magnetic pole and the central axis C, is called the d-axis.
  • the direction in which the interlinking magnetic flux formed by the stator 12 easily flows is the q-axis.
  • the d-axis and the q-axis are provided alternately in the circumferential direction of the rotor core 24 with a predetermined phase.
  • One magnetic pole portion of the rotor core 24 refers to a region between two q-axes adjacent in the circumferential direction (circumferential angle region of 1/8 circumference). Thereby, the rotor core 24 is configured to have eight poles (magnetic poles). The center of one magnetic pole in the circumferential direction is the d-axis.
  • a plurality of permanent magnets eg, two permanent magnets M
  • magnet holding slots also referred to as magnet holding cavities or magnet embedding holes
  • Two permanent magnets M are respectively loaded and arranged in magnet holding slots 34 and fixed to the rotor core 24 by, for example, an adhesive or the like.
  • each magnet holding slot 34 is formed axially through the rotor core 24 .
  • the two magnet holding slots 34 are formed and arranged line-symmetrically with respect to the d-axis, for example, arranged side by side in a substantially V shape.
  • Each magnet holding slot 34 has an open end that opens or opens to the outer circumference of the rotor core 24 and a closed end (the other end) that is located near the d-axis and is closed.
  • Each magnet holding slot 34 functioning as a flux barrier includes a rectangular magnet loading area 34a corresponding to the cross-sectional shape of the permanent magnet M, an inner peripheral side gap 34b extending from the inner peripheral side end of the magnet loading area 34a, and an outer gap 34c that extends from the outer peripheral end of the magnet loading region 34a and opens to the outer periphery of the rotor core 24.
  • the outer gap 34c extends from the magnet loading area 34a to the open end (opening 40) of the slot.
  • the rotor core 24 has a holding projection (step) 36a projecting into the magnet holding slot 34 from the inner edge 35b of the magnet holding slot 34 at the outer peripheral end of the magnet loading area 34a.
  • the magnet loading area 34a is formed between a flat inner edge (inner peripheral long side) 35b and a flat outer edge (outer peripheral long side) 35a facing parallel to and spaced from the inner edge 35b. ing.
  • the inner edge 35b and the outer edge 35a extend at an angle ⁇ smaller than 90 degrees with respect to the d-axis. That is, the magnet loading region 34a is arranged such that the distance from the d-axis gradually widens from the inner peripheral end to the outer peripheral end, and the rotor core 24 moves from the inner peripheral end to the outer peripheral end. is inclined so that the distance from the outer peripheral surface of the The angle ⁇ can be arbitrarily changed without being limited to the illustrated example.
  • the inner peripheral side air gap 34b extends from the inner peripheral side end (d-axis side end) of the magnet loading area 34a toward the d-axis.
  • the inner peripheral air gap 34d has an outer edge flush with the outer edge 35a of the magnet loading area 34a, an inner edge flush with the inner edge 35b of the magnet loading area 34a, and an outer edge extending substantially parallel to the d-axis. and an edge 35c connected to the inner edge.
  • Edge 35c constitutes the closed end of the slot.
  • the edge 35c faces the d-axis substantially parallel with a gap therebetween.
  • the outer gap 34c extends from the outer peripheral end of the magnet loading region 34a (the end on the outer peripheral surface side of the rotor core) toward the outer peripheral surface of the rotor core 24, and opens or opens to the outer periphery of the rotor core 24. ing.
  • the outer gap 34c includes an outer edge 35d extending flush with the outer edge 35a from one end of the outer edge 35a of the magnet loading area 34a to the outer periphery of the rotor core 24, and one end of the inner edge 35b of the magnet loading area 34a. , and an inner edge 35e extending substantially parallel to the outer edge 35a from the protruding end of the holding projection 36a to the outer circumference of the rotor core 24.
  • the inner edge 35e is one step higher than the inner edge 35b by the height of the retaining projection 36a, that is, it is close to the outer edge 35d and extends substantially parallel to the outer edge 35d from the projecting end of the retaining projection 36a.
  • the inner edge 35e extends to the outer circumference of the rotor core 24 after bending toward the outer edge 35d.
  • the width W2 of the opening 40 in the circumferential direction is narrower than the width W1 of the area on the side of the magnet loading area 34a (the gap between the outer edge 35d and the inner edge 35e). It's becoming The opening 40 has the width described above and extends over the entire length of the rotor core 24 in the axial direction.
  • Outer edges 35 a , 35 d and inner edges 35 b , 35 e of magnet holding slot 34 correspond to inner walls of magnet holding slot 34 .
  • the inner peripheral side gap 34b and the outer peripheral side gap 34c of the magnet holding slot 34 function as a magnetic gap (flux barrier) that suppresses magnetic flux leakage from the longitudinal ends of the permanent magnet M to the rotor core 24. It also contributes to weight reduction of the iron core 24 .
  • the permanent magnet M is formed, for example, in the shape of an elongated flat plate having a rectangular cross section, and has a length substantially equal to the axial length of the rotor core 24 .
  • Each permanent magnet M is embedded over substantially the entire axial length of the rotor core 24 .
  • the permanent magnet M may be configured by combining a plurality of magnets divided in the axial direction (longitudinal direction). In this case, the total length of the plurality of magnets is substantially equal to the axial length of the rotor core 24.
  • each permanent magnet M has a rectangular cross-sectional shape, and this cross-section has a pair of long sides parallel to each other and a pair of short sides opposed to each other.
  • the cross-sectional shape of the permanent magnet M is not limited to a rectangular shape (rectangle), and may be a parallelogram.
  • the permanent magnet M is loaded in the magnet loading area 34a of the magnet holding slot 34, with one long side adjacently facing or abutting the outer edge 35a and the other long side adjacently facing or facing the inner edge 35b. , abutting.
  • One short side of the permanent magnet M ie, one end of the short side on the outer peripheral side, is in contact with the holding projection 36a.
  • the permanent magnets M may be fixed to the rotor core 24 with an adhesive or the like.
  • Two permanent magnets M located on both sides of the d-axis are arranged side by side in a substantially V-shape.
  • the two permanent magnets M are arranged such that the distance from the d-axis gradually widens from the inner peripheral end to the outer peripheral end, and the rotor core moves from the inner peripheral end to the outer peripheral end. 24 is inclined so that the distance from the outer peripheral surface of 24 is gradually shortened.
  • Each permanent magnet M is magnetized in a direction perpendicular to its long side.
  • the two permanent magnets M located on both sides of the d-axis in the circumferential direction that is, the two permanent magnets M forming one magnetic pole, are arranged so that their magnetization directions are the same.
  • the two permanent magnets M located on both sides of each q-axis in the circumferential direction are arranged so that their magnetization directions are opposite to each other.
  • the rotary electric machine 10 constitutes an embedded permanent magnet type rotary electric machine having eight magnetic poles (four pole pairs) in which the north and south poles of the permanent magnets M are alternately arranged for each adjacent magnetic pole. ing.
  • the rotor core 24 has a fan-shaped outer peripheral region (first core portion) 24a located between the two magnet holding slots 34 and an inner peripheral region of the rotor core 24 in each magnetic pole. (region (second core portion) between magnet holding slot 34 and inner hole 25 (shaft 22)) 24b, and columnar bridge 50 connecting first core portion 24a and second core portion 24b, I have.
  • a bridge 50 is formed between the two inner gaps 34b of the two magnet holding slots 34 and extends along the d-axis.
  • the number of bridges 50 is not limited to one, and a plurality of bridges may be provided.
  • the outer gap 34c of each magnet holding slot 34 is filled with a non-magnetic filler SR to fill the outer gap 34c.
  • the filler SR joins the short sides of the permanent magnet M, the outer edge 35d and the inner edge 35e of the outer gap 34c, and closes the opening 40.
  • the filler material SR is positioned substantially flush with the outer peripheral surface of the fixed core 24 and forms part of the outer peripheral surface.
  • the filling material SR filled in the outer gap 34c is a low magnetic permeability material having a magnetic permeability lower than that of the magnetic plates forming the rotor core 24, and resin, for example, can be used.
  • the filler SR may be not only resin but also metal such as aluminum and stainless steel, carbon fiber reinforced plastic, and the like.
  • FIG. 2 exemplifies a form in which the entire outer gap 34c is filled with the filler SR, but the invention is not limited to this. It suffices if it is filled in an amount that joins the portion and part of the inner edge 35e.
  • the inner peripheral space 34b may also be filled with the filler SR.
  • one end of the magnet holding slot is open to the outer circumference of the rotor core 24, thereby It is possible to reduce the leakage magnetic flux and increase the magnet torque generated per magnet weight.
  • a filler SR such as resin
  • deformation of the magnetic plates constituting the rotor core 24 and deformation of the bridges 50 are suppressed by the filler SR.
  • the strength of the rotor core 24 and the bridge 50 can be improved.
  • the deformation of the magnetic plates and bridges is suppressed, and the outer peripheral region of the rotor core 24 is suppressed.
  • 24a can be stably supported.
  • the bridge 50 can be thinned.
  • FIG. 3 is a cross-sectional view showing a part of the rotor of the rotating electric machine according to the second embodiment.
  • the width of the magnet loading area 34a of the magnet holding slot 34 is the width of the permanent magnet M ( thickness).
  • a gap (first gap) G1 of about several millimeters is formed between the outer edge 35a and the outer long side of the permanent magnet M.
  • the gap G1 has one end communicating with the outer gap 34c and the other end adjacent to the inner gap 34b.
  • the rotor core 24 has holding projections (first protrusions) 36b projecting from the inner peripheral end of the outer edge 35a into the inner peripheral gap 34b.
  • the holding projection 36b abuts on the end of the short side of the permanent magnet M to position the permanent magnet M, and also functions as a leak stopper sealing the other end on the inner peripheral side of the gap G1.
  • the non-magnetic filler SR fills the outer gap 34c and further fills the gap G1.
  • the filling material SR filled in the gap G1 is joined to the long side portion of the permanent magnet M and the outer edge 35a of the magnet loading area 34a.
  • the filling material SR is restricted from leaking toward the inner peripheral space 34b by the holding protrusions 36b.
  • Other configurations of the rotor in the second embodiment are the same as those of the rotor in the first embodiment described above.
  • the permanent magnets M can be easily inserted into the magnet holding slots 34 when assembling the rotor. can be inserted and assembled in By also filling the gap G1 between the permanent magnet M and the magnet holding slot 34 with the filler SR, the permanent magnet M can be held without rattling.
  • the filling material SR absorbs variations in processing accuracy of the electromagnetic steel sheets forming the rotor core 24, and adverse effects on the permanent magnets M can be suppressed.
  • FIG. 4 is a cross-sectional view showing a part of the rotor of the rotating electric machine according to the third embodiment.
  • the width (thickness) of the permanent magnets M is greater than the width (the distance between the outer edge 35a and the inner edge 35b) of the magnet loading area 34a. It is formed even smaller.
  • a gap G1 of about several mm is formed between the outer edge 35a and the outer long side of the permanent magnet M, and a gap G1 of about several mm is formed between the opposite outer edge 35a and the inner long side of the permanent magnet M.
  • the gap G2 has one end communicating with the outer gap 34c and the other end adjacent to the inner gap 34b.
  • the rotor core 24 has a holding projection (first protrusion) 36b protruding from the inner peripheral end of the outer edge 35a into the inner peripheral space 34b, and also has a holding projection (first protrusion) 36b that protrudes from the inner peripheral end of the inner peripheral edge 35b to the inner peripheral edge. It has a holding protrusion (second protrusion) 36c protruding into the side gap 34b.
  • the holding projections 36b and 36c abut on the ends of the short sides of the permanent magnet M to position the permanent magnet M, and also function as leak stoppers that seal the other ends on the inner peripheral sides of the gaps G1 and G2.
  • the non-magnetic filler SR fills the outer gap 34c, and further fills the gaps G1 and G2.
  • the filling material SR filled in the gap G1 is joined to the long side portion of the permanent magnet M and the outer edge 35a of the magnet loading area 34a.
  • the filling material SR filled in the gap G2 is joined to the long side portion of the permanent magnet M and the inner edge 35b of the magnet loading area 34a.
  • the retaining protrusions 36b and 36c restrict the filling material SR from leaking toward the inner peripheral space 34b.
  • Other configurations of the rotor in the third embodiment are the same as those of the rotor in the first embodiment described above. Also in the third embodiment having the above configuration, it is possible to obtain effects similar to those of the second embodiment described above and effects similar to those of the first embodiment described above.
  • FIG. 5 is a cross-sectional view showing part of a rotor of a rotating electrical machine according to a fourth embodiment.
  • the rotor core 24 has at least one convex portion projecting into the opening 40 of the magnet retaining slot 34 .
  • the stator core 24 has a pair of convex portions 40 a and 40 b projecting into the opening 40 from both circumferential sides of the opening 40 .
  • the width of the opening 40 formed between the convex portions 40a and 40b is equal to the width of the outer gap 34c and the width of the magnet loading area 34a. It is sufficiently small compared to the width, for example, the width is about 1/3.
  • An outer edge 35d of the outer gap 34a extends from the outer edge 35a of the magnet loading area 34a flush with the outer edge 35a, and then bends toward the opening 40 near the outer periphery of the rotor core 24 to form a convex shape. It extends in the circumferential direction along the portion 40a, then bends at right angles to the outer peripheral surface and extends to the outer peripheral surface.
  • the inner edge 35e of the outer peripheral space 34c extends from the projecting end of the holding projection 36a substantially parallel to the outer edge 35d, bends halfway toward the outer edge 35d, and then forms an opening 40 near the outer periphery of the rotor core 24.
  • a non-magnetic filler RS fills the outer gap 34c and the gaps G1 and G2.
  • the filling material RS is joined to the short sides of the permanent magnet M, the outer edge 35d including the shoulder portion (the convex portion 40a), and the inner edge 35e including the shoulder portion (the convex portion 40b).
  • other configurations of the rotor are the same as those of the rotor according to the third embodiment.
  • the projections (shoulders) 40a and 40b are provided in the vicinity of the opening 40, thereby restricting the filling material RS from falling out and popping out, and allowing the filling material RS to flow into the outer space 34c. It can be held securely inside. Normally, when temperature changes are repeatedly applied to the difference in coefficient of linear expansion between the filler (resin) and the rotor core 24, peeling occurs at the interface between the filler and the rotor core 24, and the resin is dislodged by the centrifugal force that is repeatedly applied. It may crack, protrude to the outer circumference, and hinder rotation.
  • the projections 40a and 40b or the shoulders can reliably prevent the filling material from popping out, thereby improving reliability.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the present invention at the implementation stage.
  • various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Furthermore, components across different embodiments may be combined as appropriate.
  • the number of magnetic poles, size, shape, etc. of the rotor are not limited to the above-described embodiments, and can be changed in various ways according to the design.
  • the number of permanent magnets installed in each magnetic pole of the rotor is not limited to two, and can be increased as required.
  • Materials for the filler are not limited to those mentioned in the embodiments, and various other fillers can be selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

実施形態によれば、回転電機の回転子は、中心軸線を中心とする円周方向に並ぶ複数の磁極を有し、磁極の各々は、円周方向に間隔を置いて配置され、それぞれ当該回転子鉄心の外周に開口した開口端と閉塞した他端とを有する複数の磁石保持スロット34と、円周方向において複数の磁石保持スロットの相互間に位置する第1鉄心部24aと、複数の磁石保持スロットと中心軸線との間に位置する第2鉄心部24bと、第1鉄心部と第2鉄心部とを繋いだブリッジ50と、を有している回転子鉄心24と、それぞれ磁石保持スロットの内に配置された複数の永久磁石Mと、磁石保持スロットにおいて永久磁石と開口端との間の空隙に充填され、永久磁石および磁石保持スロットの内壁に接合された非磁性の充填材SRと、を備えている。

Description

回転電機の回転子
 この発明の実施形態は、永久磁石を有する回転電機の回転子に関する。
 永久磁石型の回転電機は、円筒状の固定子と、この固定子の内側に回転自在に支持された円柱形状の回転子と、を備えている。回転子は、回転子鉄心と、この回転子鉄心内に埋め込まれた複数の永久磁石と、を備えている。
 このような永久磁石型の回転電機として、1磁極当たり2枚の磁石をV字状に配置し、かつ、磁石を収容している磁石スロットを回転子鉄心の表面に開放した構成の回転電機が提案されている。上記構成の回転電機では、回転子鉄心のブリッジにおける磁石の磁束漏れを低減し、磁石重量当たりに発生する磁石トルクを増加することが可能となる。あるいは、回転電機のトルクを維持したまま磁石重量を低減することが可能となる。
 しかしながら、この構成では、大トルクを発生する状況下で、V字状に配置された磁石の内側に位置する鉄心部に加わる円周方向の電磁力により、磁極中央付近に位置するブリッジに強い曲げ応力が加わる。そのため、ブリッジの強度不足が生じる可能性がある。あるいは、耐応力のためにブリッジを太くした場合、磁束漏れが増加するため、磁石重量の低減が困難となる。
特開2014-50208号公報 特開2018-85819号公報
 この発明の実施形態の課題は、強度を維持しつつ、小型、軽量化を図ることが可能な永久磁石型の回転電機の回転子を提供することにある。
 この発明の実施形態によれば、回転電機の回転子は、中心軸線を中心とする円周方向に並ぶ複数の磁極を有し、前記磁極の各々は、前記円周方向に間隔を置いて配置され、それぞれ当該回転子鉄心の外周に開口した開口端と閉塞した他端とを有する複数の磁石保持スロットと、前記円周方向において前記複数の磁石保持スロットの相互間に位置する第1鉄心部と、前記2つの磁石保持スロットと前記中心軸線との間に位置する第2鉄心部と、前記第1鉄心部と前記第2鉄心部とを繋いだブリッジと、を有している回転子鉄心と、それぞれ前記磁石保持スロットの内に配置された複数の永久磁石と、前記磁石保持スロットにおいて前記永久磁石と前記開口端との間の空隙に充填され、前記永久磁石および前記磁石保持スロットの内壁に接合された非磁性の充填材と、を備えている。
図1は、第1実施形態に係る永久磁石型の回転電機の横断面図。 図2は、前記回転電機の回転子の一部を拡大して示す横断面図。 図3は、第2実施形態に係る回転電機の回転子の一部を拡大して示す横断面図。 図4は、第3実施形態に係る回転電機の回転子の一部を拡大して示す横断面図。 図5は、第4実施形態に係る回転電機の回転子の一部を拡大して示す横断面図。
 以下に、図面を参照しながら、この発明の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
 (第1実施形態) 
 図1は、第1実施形態に係る永久磁石型の回転電機の横断面図、図2は、回転子の1磁極部分を拡大して示す断面図である。
 図1に示すように、回転電機10は、例えば、インナーロータ型の回転電機として構成されている。回転電機10は、図示しない固定枠に支持された環状あるいは円筒状の固定子12と、固定子の内側に中心軸線Cの回りで回転自在に、かつ固定子12と同軸的に支持された回転子14と、を備えている。回転電機10は、例えば、ハイブリッド自動車(HEV)や電気自動車(EV)において、駆動モータあるいは発電機に好適に適用される。
 固定子12は、円筒状の固定子鉄心16と固定子鉄心16に巻き付けられた電機子巻線(コイル)18とを備えている。固定子鉄心16は、磁性材、例えば、ケイ素鋼などの円環状の電磁鋼板(鉄心片)を多数枚、同芯状に積層して構成されている。固定子鉄心16の内周部には、複数のスロット20が形成されている。複数のスロット20は、円周方向に等間隔を置いて並んでいる。各スロット20は、固定子鉄心16の内周面に開口し、この内周面から放射方向に延出している。また、各スロット20は、固定子鉄心16の軸方向の全長に亘って延在している。複数のスロット20を形成することにより、固定子鉄心16の外周部は円環状のヨーク部16aを構成し、固定子鉄心16の内周部は、回転子14に面する複数(例えば、本実施形態では48個)の固定子ティース21を構成している。複数の固定子ティース21は、ヨーク部16aから中心軸線Cに向かって放射方向に延出している。電機子巻線18は複数のスロット20に挿通され、各固定子ティース21に巻き付けられている。電機子巻線18に電流を流すことにより、固定子12(固定子ティース21)に所定の鎖交磁束が形成される。
 回転子14は、両端が図示しない軸受により回転自在に支持された円柱形状のシャフト(回転軸)22と、このシャフト22の軸方向ほぼ中央部に固定された円筒形状の回転子鉄心24と、回転子鉄心24に埋め込まれた複数の永久磁石Mと、を有している。回転子14は、固定子12の内側に僅かな隙間(エアギャップ)を置いて同軸的に配置されている。すなわち、回転子14の外周面は、僅かな隙間をおいて、固定子12の内周面に対向している。回転子鉄心24は中心軸線Cと同軸的に形成された内孔25を有している。シャフト22は内孔25に挿通および嵌合され、回転子鉄心24と同軸的に延在している。回転子鉄心24は、磁性体板、例えば、ケイ素鋼などの円環状の電磁鋼板(鉄心片)を多数枚、同芯状に積層した積層体として構成されている。回転子鉄心24は、鉄心片の積層方向に延びる前記中心軸線Cと、中心軸線Cと同軸の外周面と、を有している。
 本実施形態において、回転子14は、中心軸線Cを中心とする円周方向に並んだ複数の磁極、例えば、8磁極を有している。回転子鉄心24において、中心軸線Cおよび円周方向に隣合う磁極間の境界を通り回転子鉄心24の径方向に延びる軸をq軸、およびq軸に対して円周方向に電気的に90°離間した軸、つまり、磁極の中心と中心軸線Cとを通る軸、をd軸と称する。固定子12によって形成される鎖交磁束の流れ易い方向がq軸となる。d軸およびq軸は、回転子鉄心24の円周方向に交互に、かつ、所定の位相で設けられている。回転子鉄心24の1磁極分とは、円周方向に隣合う2本のq軸間の領域(1/8周の周角度領域)をいう。これにより、回転子鉄心24は、8極(磁極)に構成されている。1磁極のうちの円周方向中央がd軸となる。
 図1および図2に示すように、回転子鉄心24には、1磁極ごとに、複数の永久磁石、例えば、2つの永久磁石Mが埋設されている。回転子鉄心24の円周方向において、各d軸の両側に、永久磁石Mを装填するための磁石保持スロット(磁石保持空洞部あるいは磁石埋め込み孔と称する場合もある。)34が形成されている。2つの永久磁石Mは、それぞれ磁石保持スロット34内に装填および配置され、例えば、接着剤等により回転子鉄心24に固定されている。
 図2に示すように、各磁石保持スロット34は、回転子鉄心24を軸方向に貫通して形成されている。回転子鉄心24の中心軸線Cと直交する横断面でみた場合、2つの磁石保持スロット34は、d軸に対して線対称に形成および配置され、例えば、ほぼV字状に並んで配置されている。各磁石保持スロット34は、回転子鉄心24の外周に開口あるいは開放する開口端と、d軸の近傍に位置し閉塞した閉塞端(他端)とを有している。
 フラックスバリアとして機能する各磁石保持スロット34は、永久磁石Mの断面形状に対応した矩形状の磁石装填領域34aと、磁石装填領域34aの内周側端から延出した内周側空隙34bと、磁石装填領域34aの外周側端から延出し回転子鉄心24の外周に開放した外周側空隙34cと、を有している。外周側空隙34cは、磁石装填領域34aからスロットの開口端(開口40)まで延在している。回転子鉄心24は、磁石装填領域34aの外周側の端において磁石保持スロット34の内側縁35bから磁石保持スロット34内に突出した保持突起(段差)36aを有している。
 磁石装填領域34aは、平坦な内側縁(内周側長辺)35bと、この内側縁35bと間隔を置いて平行に対向する平坦な外側縁(外周側長辺)35aとの間に形成されている。内側縁35bおよび外側縁35aは、d軸に対して、90度よりも小さい角度θで傾斜して延在している。すなわち、磁石装填領域34aは、内周側端から外周側端に向かうに従って、d軸からの距離が徐々に広がるように、かつ、内周側端から外周側端に向かうに従って、回転子鉄心24の外周面からの距離が徐々に短くなるように、傾斜して設けられている。角度θは、図示の例に限定されることなく、任意に変更可能である。
 内周側空隙34bは、磁石装填領域34aの内周側端(d軸側の端)からd軸に向かって延出している。内周側空隙34dは、磁石装填領域34aの外側縁35aと面一に繋がる外側縁と、磁石装填領域34aの内側縁35bと面一に繋がる内側縁と、d軸とほぼ平行に延び外側縁と内側縁とに繋がる端縁35cと、で規定されている。端縁35cは、スロットの閉塞端を構成している。端縁35cは、d軸と間隔を置いてほぼ平行に対向している。
 外周側空隙34cは、磁石装填領域34aの外周側端(回転子鉄心の外周面側の端)から回転子鉄心24の外周面に向かって延出し、回転子鉄心24の外周に開放あるいは開口している。外周側空隙34cは、磁石装填領域34aの外側縁35aの一端から回転子鉄心24の外周まで外側縁35aと面一に延びる外側縁35dと、磁石装填領域34aの内側縁35bの一端、ここでは、保持突起36aの突出端から回転子鉄心24の外周まで外側縁35aとほぼ平行に延びる内側縁35eと、の間に規定されている。内側縁35eは、保持突起36aの高さ分だけ、内側縁35bよりも一段高く、すなわち、外側縁35dの側に近く、保持突起36aの突出端から外側縁35dとほぼ平行に延びている。また、内側縁35eは、途中で、外側縁35dの側に屈曲した後、回転子鉄心24の外周まで延びている。これにより、外周側空隙34cにおいて、磁石装填領域34aの側の領域の幅(外側縁35dと内側縁35eとの間の間隔)W1に対して、開口40の周方向の幅W2の方が狭くなっている。なお、開口40は、上記幅で、回転子鉄心24の軸方向の全長に亘って開口している。
 なお、磁石保持スロット34の外側縁35a、35dおよび内側縁35b、35eは、磁石保持スロット34の内壁に相当している。
 磁石保持スロット34の内周側空隙34bおよび外周側空隙34cは、永久磁石Mの長手方向両端部から回転子鉄心24への磁束漏れを抑制する磁気空隙(フラックスバリア)として機能するとともに、回転子鉄心24の軽量化にも寄与する。
 永久磁石Mは、例えば、横断面が矩形状の細長い平板状に形成され、回転子鉄心24の軸方向長さとほぼ等しい長さを有している。各永久磁石Mは回転子鉄心24の軸方向のほぼ全長に亘って埋め込まれている。永久磁石Mは、軸方向(長手方向)に複数に分割された磁石を組み合わせて構成されてもよく、この場合、複数の磁石の合計の長さが回転子鉄心24の軸方向長さとほぼ等しくなるように形成される。
 図2に示したように、各永久磁石Mは、矩形状の断面形状を有し、この断面は、互いに平行に対向する一対の長辺および互いに対向する一対の短辺を有している。永久磁石Mの断面形状は、矩形状(長方形)に限らず、平行四辺形としてもよい。
 永久磁石Mは、磁石保持スロット34の磁石装填領域34aに装填され、一方の長辺が外側縁35aに隣接対向し、あるいは、当接し、他方の長辺が内側縁35bに隣接対向し、あるいは、当接している。永久磁石Mの一方の短辺、すなわち、外周側の短辺の一端部は、保持突起36aに当接している。これにより、永久磁石Mは、長手方向の位置が位置決めされた状態で磁石装填領域34a内に保持されている。永久磁石Mは接着剤等により回転子鉄心24に固定されてもよい。d軸の両側に位置する2つの永久磁石Mは、ほぼV字状に並んで配置されている。すなわち、2つの永久磁石Mは、内周側端から外周側端に向かうに従って、d軸からの距離が徐々に広がるように、かつ、内周側端から外周側端に向かうに従って、回転子鉄心24の外周面からの距離が徐々に短くなるように、傾斜して配置されている。
 各永久磁石Mは、長辺に垂直な方向に磁化されている。d軸の円周方向の両側に位置する2つの永久磁石M、すなわち、1磁極を構成する2つの永久磁石Mは、磁化方向が同一となるように配置されている。また、各q軸の円周方向の両側に位置する2つの永久磁石Mは、磁化方向が逆向きとなるように配置されている。本実施形態では、回転電機10は、隣接する1磁極毎に永久磁石MのN極とS極の表裏を交互に配置した8磁極(4極対)の永久磁石埋め込み型の回転電機を構成している。
 図2に示すように、回転子鉄心24は、各磁極において、2つの磁石保持スロット34の相互間に位置する扇状の外周領域(第1鉄心部)24aと、回転子鉄心24の内周領域(磁石保持スロット34と内孔25(シャフト22)との間の領域(第2鉄心部))24bと、第1鉄心部24aと第2鉄心部24bとを連結した柱状のブリッジ50と、を備えている。ブリッジ50は、2つの磁石保持スロット34の2つの内周側空隙34bの間に形成され、d軸に沿って延在している。なお、ブリッジ50は、1本に限らず、複数本設ける構成としても良い。
 各磁石保持スロット34の外周側空隙34cに、非磁性の充填材SRが充填され外周側空隙34cを満たしている。充填材SRは、永久磁石Mの短辺、外周側空隙34cの外側縁35dおよび内側縁35eに接合しているとともに、開口40を閉塞している。開口40内において、充填材SRは、固定鉄心24の外周面のほぼ面一に位置し、外周面の一部を形成している。
 外周側空隙34cに充填される充填材SRは、回転子鉄心24を形成する磁性体板よりも透磁率が低い低透磁率材料であり、例えば樹脂を用いることができる。充填材SRは、樹脂の他、アルミニウム、ステンレス等の金属や、炭素繊維強化プラスチックなどであってもよい。
 図2では、外周側空隙34cの全てが充填材SRによって満たされている形態を例示しているが、これに限らず、少なくとも永久磁石Mの短辺、外周側空隙34cの外側縁35dの一部および内側縁35eの一部に接合する量だけ充填されていればよい。また、内周側空隙34bにも充填材SRを充填してもよい。
 以上のように構成された第1実施形態に係る回転電機10の回転子14によれば、磁石保持スロットの一端が回転子鉄心24の外周に開放している構成とすることにより、永久磁石の漏れ磁束を低減し、磁石重量当たりに発生する磁石トルクを増加させることが可能となる。同時に、磁石保持スロットの外周側空隙34cに樹脂などの充填材SRを充填した構成とすることにより、充填材SRにより、回転子鉄心24を構成する磁性板の変形、ブリッジ50の変形を抑制し、回転子鉄心24およびブリッジ50の強度を向上することが可能となる。そのため、大きなトルクが発生する状況下で、回転子鉄心24の外周領域24aに円周方向の電磁力が加わった場合でも、磁性体板およびブリッジの変形を抑制し、回転子鉄心24の外周領域24aを安定して支持することができる。また、ブリッジ50を細くすることが可能となる。
 以上により、第1実施形態によれば、同体格の回転電機でのトルクおよび出力が向上し、あるいは、同出力を維持したまま、回転電機の小型、軽量化を図ることが可能となる。更に、使用磁石重量の低減により回転子の低コスト化を図ることができる。
 次に、この発明の他の実施形態に係る回転電機の回転子について説明する。なお、以下に説明する他の実施形態において、前述した第1実施形態と同一の部分には、同一の参照符号を付してその詳細な説明を省略あるいは簡略化し、第1実施形態と異なる部分を中心に詳しく説明する。
 (第2実施形態)
 図3は、第2実施形態に係る回転電機の回転子の一部を示す横断面図である。
 図示のように、第2実施形態によれば、回転子鉄心24において、磁石保持スロット34の磁石装填領域34aの幅(外側縁35aと内側縁35bとの間隔)は、永久磁石Mの幅(厚さ)よりも大きく形成している。これにより、外側縁35aと永久磁石Mの外側の長辺との間に数mm程度の隙間(第1隙間)G1が形成されている。隙間G1は、外周側空隙34cに連通した一端と内周側空隙34bに隣接した他端とを有している。
 回転子鉄心24は、外側縁35aの内周側の端から内周側空隙34b内に突出する保持突起(第1凸部)36bを有している。保持突起36bは、永久磁石Mの短辺の端部に当接し永久磁石Mを位置決めするとともに、隙間G1の内周側の他端を封止した漏れ止めとしても機能する。
 非磁性の充填材SRは、外周側空隙34cに充填され、更に、隙間G1に充填されている。隙間G1に充填された充填材SRは、永久磁石Mの長辺部および磁石装填領域34aの外側縁35aに接合している。充填材SRは、保持突起36bにより内周側空隙34bの側への漏れが規制されている。
 第2実施形態において、回転子の他の構成は、前述した第1実施形態における回転子と同様である。
 上記構成の第2実施形態によれば、永久磁石Mの幅(厚さ)を磁石保持スロット34の幅よりも小さくすることにより、回転子の組立時、永久磁石Mを磁石保持スロット34に容易に挿入、組付けすることができる。永久磁石Mと磁石保持スロット34との間の隙間G1にも充填材SRを充填することにより、永久磁石Mをガタつきなく保持することができる。回転子鉄心24を構成する電磁鋼板の加工精度のバラつきを充填材SRにより吸収し、永久磁石Mへの悪影響を抑制することができる。更に、漏れ止め用の凸部36bを設けることにより、充填材SRの漏れを防止し、充填材SRを所望の部位に充填および保持することが可能となる。その他、第2実施形態においても、前述した第1実施形態と同様の作用効果を得ることができる。
 (第3実施形態)
 図4は、第3実施形態に係る回転電機の回転子の一部を示す横断面図である。
 図示のように、第3実施形態によれば、回転子鉄心24において、永久磁石Mの幅(厚さ)は、磁石装填領域34aの幅(外側縁35aと内側縁35bとの間隔)よりも一層、小さく形成している。これにより、外側縁35aと永久磁石Mの外側の長辺との間に数mm程度の隙間G1が形成され、反対側の外側縁35aと永久磁石Mの内側の長辺との間に数mm程度の隙間(第2隙間)G2が形成されている。隙間G2は、外周側空隙34cに連通した一端と内周側空隙34bに隣接した他端とを有している。
 回転子鉄心24は、外側縁35aの内周側の端から内周側空隙34b内に突出する保持突起(第1凸部)36bに加えて、内側縁35bの内周側の端から内周側空隙34b内に突出する保持突起(第2凸部)36cを有している。保持突起36b、36cは、永久磁石Mの短辺の端部にそれぞれ当接し永久磁石Mを位置決めするとともに、隙間G1、G2の内周側の他端を封止する漏れ止めとしても機能する。隙間G1、G2の一端、すなわち、外周側の端はそれぞれ外周側空隙34cに連通している。
 非磁性の充填材SRは、外周側空隙34cに充填され、更に、隙間G1および隙間G2に充填されている。隙間G1に充填された充填材SRは、永久磁石Mの長辺部および磁石装填領域34aの外側縁35aに接合している。隙間G2に充填された充填材SRは、永久磁石Mの長辺部および磁石装填領域34aの内側縁35bに接合している。充填材SRは、保持突起36b、36cにより内周側空隙34bの側への漏れが規制されている。
 第3実施形態において、回転子の他の構成は、前述した第1実施形態における回転子と同様である。
 上記構成の第3実施形態においても、前述した第2実施形態と同様の作用効果、および前述した第1実施形態と同様の作用効果を得ることができる。
 (第4実施形態)
 図5は、第4実施形態に係る回転電機の回転子の一部を示す横断面図である。
 図示のように、第4実施形態によれば、回転子鉄心24は、磁石保持スロット34の開口40に突出した少なくとも1つの凸形状部を有している。本実施形態では、固定子鉄心24は、開口40の周方向の両側から開口40内に突出した一対の凸形状部40a、40bを有している。一対の凸形状部40a、40bにより開口40の一部を塞ぐことにより、凸形状部40a、40bの間に形成された開口40の幅は、外周側空隙34cの幅、および磁石装填領域34aの幅に比較して充分に小さく、例えば、1/3程度の幅となっている。
 外周側空隙34aの外側縁35dは、磁石装填領域34aの外側縁35aから外側縁35aと面一に延出した後、回転子鉄心24の外周の近傍で開口40の側に屈曲し、凸形状部40aに沿って周方向に延び、更に、外周面に側に直角に屈曲し外周面まで延びている。外周側空隙34cの内側縁35eは、保持突起36aの突出端から外側縁35dとほぼ平行に延び、途中で、外側縁35dの側に屈曲した後、回転子鉄心24の外周の近傍で開口40の側に屈曲し、凸形状部40bに沿って周方向に延び、更に、外周面に側に直角に屈曲し外周面まで延びている。
 このように、一対の凸形状部40a、40bは、開口40の幅を小さくするとともに、開口40の近傍で周方向に延びた一対の肩部、あるいは、係止部を形成している。非磁性の充填材RSは、外周側空隙34cおよび隙間G1、G2に充填されている。外周側空隙34cにおいて、充填材RSは、永久磁石Mの短辺、肩部(凸形状部40a)を含む外側縁35d、肩部(凸形状部40b)を含む内側縁35eに接合している。
 第4実施形態において、回転子の他の構成は、前述した第3実施形態に係る回転子と同様である。
 上記構成の第4実施形態によれば、開口40の近傍に凸形状部(肩部)40a、40bを設けることにより、充填材RSの抜け、飛び出しを規制し、充填材RSを外周側空隙34c内に確実に保持しておくことが可能となる。
 通常、充填材(樹脂)と回転子鉄心24との線膨張係数の差異に温度変化が繰り返し加わる事によって、充填材と回転子鉄心との界面に剥離が生じ、繰り返し加わる遠心力によって、樹脂が割れ、外周側に飛び出し、回転を阻害する可能性がある。
 これに対して、本実施形態によれば、凸形状部40a、40bあるいは肩部により、充填材の飛び出しを確実に防止し、信頼性の向上を図ることができる。その他、第4実施形態においても、前述した第2実施形態と同様の作用効果、および前述した第1実施形態と同様の作用効果を得ることができる。
 なお、この発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 例えば、回転子の磁極数、寸法、形状等は、前述した実施形態に限定されることなく、設計に応じて種々変更可能である。回転子の各磁極における永久磁石の設置数は、2つに限らず、必要に応じて、増加可能である。充填材の材料は、実施形態で挙げたものに限定されることなく、その他、種々の充填材を選択可能である。

Claims (7)

  1.  中心軸線を中心とする円周方向に並ぶ複数の磁極を有し、前記磁極の各々は、前記円周方向に間隔を置いて配置され、それぞれ当該回転子鉄心の外周に開口した開口端と閉塞した閉塞端とを有する複数の磁石保持スロットと、前記円周方向において前記複数の磁石保持スロットの相互間に位置する第1鉄心部と、前記複数の磁石保持スロットと前記中心軸線との間に位置する第2鉄心部と、前記第1鉄心部と前記第2鉄心部とを繋いだブリッジと、を有している回転子鉄心と、
     それぞれ前記磁石保持スロットの内に配置された複数の永久磁石と、
     前記磁石保持スロットにおいて前記永久磁石と前記開口端との間の空隙に充填され、前記永久磁石および前記磁石保持スロットの内壁に接合された非磁性の充填材と、
     を備える回転電機の回転子。
  2.  前記磁石保持スロットは、外側縁と、前記外側縁に間隔を置いて対向する内側縁との間に形成され、前記円周方向の前記開口端の幅は、前記間隔よりも小さい、
     請求項1に記載の回転電機の回転子。
  3.  前記永久磁石の幅は、前記間隔よりも小さく、かつ、前記開口端の幅よりも大きく形成され、
     前記永久磁石と前記外側縁との間に第1隙間が形成され、前記第1隙間に前記充填材が充填され前記永久磁石および前記外側縁に接合している
     請求項2に記載の回転電機の回転子。
  4.  前記第1隙間は、前記開口端の側に位置し前記空隙に繋がる一端と、前記閉塞端の側に位置する他端と、を有し、
     前記回転子鉄心は、前記外側縁から前記磁石保持スロットに突出し前記第1隙間の前記他端を封止する第1凸部を有している、請求項3に記載の回転電機の回転子。
  5.  前記永久磁石と前記内側縁との間に第2隙間が形成され、前記第2隙間に前記充填材が充填され前記永久磁石および前記内側縁に接合している、請求項3に記載の回転電機の回転子。
  6.  前記第2隙間は、前記開口端の側に位置し前記空隙に繋がる一端と、前記閉塞端の側に位置する他端と、を有し、
     前記回転子鉄心は、前記内側縁から前記磁石保持スロットに突出し前記第2隙間の前記他端を封止する第2凸部を有している、請求項5に記載の回転電機の回転子。
  7.  前記回転子鉄心は、前記開口端の開口に突出し前記開口の一部を塞ぐように前記円周方向に延びる凸形状部を有している、請求項1から5のいずれか1項に記載の回転電機の回転子。
PCT/JP2021/040763 2021-11-05 2021-11-05 回転電機の回転子 WO2023079679A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022559302A JP7404557B2 (ja) 2021-11-05 2021-11-05 回転電機の回転子
CN202180042113.6A CN117280568A (zh) 2021-11-05 2021-11-05 旋转电机的转子
PCT/JP2021/040763 WO2023079679A1 (ja) 2021-11-05 2021-11-05 回転電機の回転子
US18/066,857 US20230145591A1 (en) 2021-11-05 2022-12-15 Rotor of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040763 WO2023079679A1 (ja) 2021-11-05 2021-11-05 回転電機の回転子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/066,857 Continuation US20230145591A1 (en) 2021-11-05 2022-12-15 Rotor of rotary electric machine

Publications (1)

Publication Number Publication Date
WO2023079679A1 true WO2023079679A1 (ja) 2023-05-11

Family

ID=86229282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040763 WO2023079679A1 (ja) 2021-11-05 2021-11-05 回転電機の回転子

Country Status (4)

Country Link
US (1) US20230145591A1 (ja)
JP (1) JP7404557B2 (ja)
CN (1) CN117280568A (ja)
WO (1) WO2023079679A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154978A (zh) * 2023-08-30 2023-12-01 哈尔滨理工大学 高速内置式永磁电机转子结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104962A (ja) * 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp 永久磁石式リラクタンス型回転電機
JP2013099048A (ja) * 2011-10-31 2013-05-20 Toyota Industries Corp 永久磁石式回転電機の回転子、及び永久磁石式回転電機
JP2014050208A (ja) 2012-08-31 2014-03-17 Hitachi Automotive Systems Ltd 回転電機
US20140103771A1 (en) * 2012-10-15 2014-04-17 Rbc Manufacturing Corporation Radially embedded permanent magnet rotor and methods thereof
JP2014155357A (ja) * 2013-02-12 2014-08-25 Mitsuba Corp ブラシレスモータ
JP2018085819A (ja) 2016-11-22 2018-05-31 アイシン・エィ・ダブリュ株式会社 ロータ
CN208386270U (zh) * 2018-07-16 2019-01-15 珠海格力电器股份有限公司 交替极电机转子和交替极电机
JP2021027724A (ja) * 2019-08-06 2021-02-22 株式会社デンソー ロータ及びモータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104962A (ja) * 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp 永久磁石式リラクタンス型回転電機
JP2013099048A (ja) * 2011-10-31 2013-05-20 Toyota Industries Corp 永久磁石式回転電機の回転子、及び永久磁石式回転電機
JP2014050208A (ja) 2012-08-31 2014-03-17 Hitachi Automotive Systems Ltd 回転電機
US20140103771A1 (en) * 2012-10-15 2014-04-17 Rbc Manufacturing Corporation Radially embedded permanent magnet rotor and methods thereof
JP2014155357A (ja) * 2013-02-12 2014-08-25 Mitsuba Corp ブラシレスモータ
JP2018085819A (ja) 2016-11-22 2018-05-31 アイシン・エィ・ダブリュ株式会社 ロータ
CN208386270U (zh) * 2018-07-16 2019-01-15 珠海格力电器股份有限公司 交替极电机转子和交替极电机
JP2021027724A (ja) * 2019-08-06 2021-02-22 株式会社デンソー ロータ及びモータ

Also Published As

Publication number Publication date
JPWO2023079679A1 (ja) 2023-05-11
CN117280568A (zh) 2023-12-22
US20230145591A1 (en) 2023-05-11
JP7404557B2 (ja) 2023-12-25

Similar Documents

Publication Publication Date Title
CN108075585B (zh) 旋转电机
CN109510347B (zh) 旋转电机
US7598645B2 (en) Stress distributing permanent magnet rotor geometry for electric machines
US6906444B2 (en) Permanent magnet motor
JP5240593B2 (ja) 回転電機
JP6702550B2 (ja) 回転子およびリラクタンスモータ
JP6385715B2 (ja) 回転電機
JP7293371B2 (ja) 回転電機の回転子
JP5609689B2 (ja) 回転電機
JP6813032B2 (ja) 回転電機用ロータ
US20180041080A1 (en) Rotor, rotary electric machine, and method for manufacturing rotor
CN112055931A (zh) 旋转电机的转子
US11183893B2 (en) Rotary electric device
JP2013034344A (ja) 回転電機
US11837919B2 (en) Rotary electric machine
WO2023079679A1 (ja) 回転電機の回転子
WO2019038958A1 (ja) 回転電機
JP6466612B1 (ja) 回転電機
JP6922724B2 (ja) ロータ
CN116569446A (zh) 旋转电机的转子
JPH11191939A (ja) 永久磁石を埋設したロータを用いたモータ
JP2020182358A (ja) 回転電機の回転子
JP2012244808A (ja) 回転電機のロータ
WO2023105701A1 (ja) 回転電機の回転子
JP7124247B1 (ja) 回転電機の回転子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022559302

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180042113.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944427

Country of ref document: EP

Kind code of ref document: A1