WO2023079632A1 - めっき装置および基板洗浄方法 - Google Patents

めっき装置および基板洗浄方法 Download PDF

Info

Publication number
WO2023079632A1
WO2023079632A1 PCT/JP2021/040600 JP2021040600W WO2023079632A1 WO 2023079632 A1 WO2023079632 A1 WO 2023079632A1 JP 2021040600 W JP2021040600 W JP 2021040600W WO 2023079632 A1 WO2023079632 A1 WO 2023079632A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cleaning
plating
substrate holder
plated
Prior art date
Application number
PCT/JP2021/040600
Other languages
English (en)
French (fr)
Inventor
一仁 辻
健太郎 山本
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to CN202180038910.7A priority Critical patent/CN116368268B/zh
Priority to PCT/JP2021/040600 priority patent/WO2023079632A1/ja
Priority to KR1020227039874A priority patent/KR102556645B1/ko
Priority to JP2022521687A priority patent/JP7089133B1/ja
Publication of WO2023079632A1 publication Critical patent/WO2023079632A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/004Sealing devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/08Rinsing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells

Definitions

  • This application relates to a plating apparatus and a substrate cleaning method.
  • a cup-type electroplating device is known as an example of a plating device.
  • a cup-type electroplating apparatus immerses a substrate (for example, a semiconductor wafer) held in a substrate holder with the surface to be plated facing downward in a plating solution, and applies a voltage between the substrate and the anode to A conductive film is deposited on the surface of the substrate.
  • Patent Document 1 discloses a cleaning device for cleaning a substrate after plating.
  • a cleaning apparatus a plurality of cleaning nozzles are arranged below the substrate along the radial direction of the substrate, and while the substrate is rotated, a cleaning liquid is discharged upward toward the surface to be plated, thereby cleaning the surface to be plated of the substrate. It is configured to wash away the plating solution or the like that has adhered.
  • the plating solution adhering to the surface to be plated is washed away by the cleaning solution, and part of it falls and is recovered, but the remaining part is deposited on the substrate. While adhering to the surface, it moves to the downstream side of the cleaning region as the substrate rotates. The plating solution that has moved to the downstream side of the cleaning area is not cleaned until the substrate rotates 360° and moves to the cleaning area again. Become.
  • one object of the present application is to efficiently clean the substrate.
  • a plating bath configured to contain a plating solution, a substrate holder configured to hold a substrate with a surface to be plated facing downward, and a substrate holder configured to rotate a rotating mechanism configured to tilt the substrate holder; a tilting mechanism configured to tilt the substrate holder; and a substrate cleaning member for cleaning a surface to be plated of the substrate held by the substrate holder.
  • the member is configured to discharge the cleaning liquid onto the surface to be plated of the substrate rotated by the rotation mechanism from a position corresponding to the lower end of the substrate inclined by the inclination mechanism toward a position corresponding to the upper end of the substrate.
  • FIG. 1 is a perspective view showing the overall configuration of the plating apparatus of this embodiment.
  • FIG. 2 is a plan view showing the overall configuration of the plating apparatus of this embodiment.
  • FIG. 3 is a longitudinal sectional view schematically showing the configuration of the plating module of this embodiment.
  • FIG. 4 is a perspective view schematically showing the configuration of the plating module of this embodiment.
  • FIG. 5A is a perspective view schematically showing the cover member of the plating module of this embodiment.
  • FIG. 5B is a plan view schematically showing the cover member of the plating module of this embodiment.
  • FIG. 6 is a longitudinal sectional view schematically showing the cover member of the plating module of this embodiment.
  • FIG. 7A is a perspective view schematically showing a cover member of a modification; FIG. FIG.
  • FIG. 7B is a perspective view schematically showing a cover member of a modified example
  • FIG. 8 is a plan view schematically showing the configuration of the plating module of this embodiment.
  • FIG. 9 is a plan view schematically showing the configuration of the plating module of this embodiment.
  • FIG. 10 is a longitudinal sectional view schematically showing the configuration of the plating module of this embodiment.
  • FIG. 11 is a longitudinal sectional view schematically showing an enlarged part of the configuration of the plating module of this embodiment.
  • FIG. 12A is a diagram schematically showing the relationship between the rotation direction of the substrate and the arrangement of the substrate cleaning nozzles.
  • FIG. 12B is a diagram showing a modification of the cleaning liquid discharge direction of the substrate cleaning nozzle.
  • FIG. 13 is a diagram showing the results of cleaning according to this embodiment and cleaning according to a comparative example.
  • FIG. 14 is a side view schematically showing the configuration of the plating module of the modification.
  • FIG. 15A is a plan view schematically showing the configuration of the plating module of the modification.
  • 15B is a schematic side view of the plating module shown in FIG. 15A as viewed in the direction of arrow B.
  • FIG. 16A is a plan view schematically showing the configuration of the plating module of the modification. 16B is a schematic side view of the plating module shown in FIG. 16A as viewed in the direction of arrow B.
  • FIG. FIG. 17A is a plan view schematically showing a tray member of a modification;
  • FIG. 17B is a plan view schematically showing a tray member of a modified example
  • FIG. 17C is a plan view schematically showing a tray member of a modified example
  • FIG. 18 is a diagram schematically showing cleaning of contact members by the plating module of the present embodiment.
  • FIG. 19 is a diagram schematically showing cleaning of contact members by the plating module of the present embodiment.
  • FIG. 20 is a diagram schematically showing cleaning of contact members by the plating module of the present embodiment.
  • FIG. 21 is a diagram schematically showing a modification of the contact cleaning nozzle.
  • FIG. 22 is a flow chart showing the substrate cleaning method and contact cleaning method of this embodiment.
  • FIG. 1 is a perspective view showing the overall configuration of the plating apparatus of this embodiment.
  • FIG. 2 is a plan view showing the overall configuration of the plating apparatus of this embodiment.
  • the plating apparatus 1000 includes a load port 100, a transfer robot 110, an aligner 120, a presoak module 300, a plating module 400, a spin rinse dryer 600, a transfer device 700, and a control module 800. .
  • the load port 100 is a module for loading substrates stored in cassettes such as FOUPs (not shown) into the plating apparatus 1000 and for unloading substrates from the plating apparatus 1000 to cassettes. Although four load ports 100 are arranged horizontally in this embodiment, the number and arrangement of the load ports 100 are arbitrary.
  • the transport robot 110 is a robot for transporting substrates, and is configured to transfer substrates among the load port 100 , the aligner 120 and the spin rinse dryer 600 . When transferring substrates between the transfer robot 110 and the transfer device 700, the transfer robot 110 and the transfer device 700 can transfer the substrates via a temporary placement table (not shown).
  • the aligner 120 is a module for aligning the positions of orientation flats, notches, etc. of the substrate in a predetermined direction. Although two aligners 120 are arranged horizontally in this embodiment, the number and arrangement of the aligners 120 are arbitrary.
  • the presoak module 300 for example, an oxide film having a large electric resistance existing on the surface of a seed layer formed on the surface to be plated of the substrate before plating is etched away with a processing liquid such as sulfuric acid or hydrochloric acid, and the surface of the plating substrate is cleaned.
  • a processing liquid such as sulfuric acid or hydrochloric acid
  • it is configured to perform a pre-soak process for activation.
  • two presoak modules 300 are arranged side by side in the vertical direction, but the number and arrangement of the presoak modules 300 are arbitrary.
  • the plating module 400 applies plating to the substrate.
  • the spin rinse dryer 600 is a module for drying the substrate after cleaning by rotating it at high speed. Although two spin rinse dryers are arranged vertically in this embodiment, the number and arrangement of the spin rinse dryers are arbitrary.
  • the transport device 700 is a device for transporting substrates between a plurality of modules within the plating apparatus 1000 .
  • Control module 800 is configured to control a plurality of modules of plating apparatus 1000 and may comprise, for example, a general purpose or dedicated computer with input/output interfaces to an operator.
  • a substrate stored in a cassette is loaded into the load port 100 .
  • the transport robot 110 takes out the substrate from the cassette of the load port 100 and transports the substrate to the aligner 120 .
  • the aligner 120 aligns orientation flats, notches, etc. of the substrate in a predetermined direction.
  • the transport robot 110 transfers the substrate aligned by the aligner 120 to the transport device 700 .
  • the transport device 700 transports the substrate received from the transport robot 110 to the plating module 400 .
  • the plating module 400 pre-wets the substrate.
  • the transport device 700 transports the pre-wet processed substrate to the pre-soak module 300 .
  • the presoak module 300 applies a presoak treatment to the substrate.
  • the transport device 700 transports the presoaked substrate to the plating module 400 .
  • the plating module 400 applies plating to the substrate. Furthermore, the plating module 400 cleans the plated substrate.
  • the transport device 700 transports the cleaned substrate to the spin rinse dryer 600 .
  • a spin rinse dryer 600 performs a drying process on the substrate.
  • the transport robot 110 receives the substrate from the spin rinse dryer 600 and transports the dried substrate to the cassette of the load port 100 . Finally, the cassette containing the substrates is unloaded from the load port 100 .
  • FIG. 3 is a longitudinal sectional view schematically showing the configuration of the plating module 400 of this embodiment.
  • plating module 400 includes a plating bath 410 for containing a plating solution.
  • the plating tank 410 is a container having a cylindrical side wall and a circular bottom wall, and a circular opening is formed at the top.
  • the plating module 400 also includes an overflow bath 405 arranged outside the top opening of the plating bath 410 .
  • the overflow bath 405 is a container for receiving the plating solution overflowing from the top opening of the plating bath 410 .
  • the plating module 400 includes a membrane 420 that vertically separates the interior of the plating bath 410 .
  • the interior of the plating bath 410 is partitioned into a cathode area 422 and an anode area 424 by a membrane 420 .
  • Cathode region 422 and anode region 424 are each filled with a plating solution.
  • An anode 430 is provided on the bottom surface of the plating bath 410 in the anode area 424 .
  • a resistor 450 is disposed in the cathode region 422 so as to face the membrane 420 .
  • the resistor 450 is a member for uniformizing the plating process on the surface to be plated Wf-a of the substrate Wf, and is composed of a plate-like member having a large number of holes.
  • the plating module 400 also includes a substrate holder 440 for holding the substrate Wf with the surface to be plated Wf-a facing downward.
  • the plating module 400 includes an elevating mechanism 442 for elevating the substrate holder 440 .
  • the lifting mechanism 442 can be implemented by a known mechanism such as a motor.
  • the plating module 400 also includes a rotation mechanism 446 for rotating the substrate holder 440 so that the substrate Wf rotates around a virtual rotation axis extending vertically through the center of the surface to be plated Wf-a.
  • the rotating mechanism 446 can be implemented by a known mechanism such as a motor.
  • the plating module 400 uses the elevating mechanism 442 to immerse the substrate Wf in the plating solution in the cathode region 422, and rotates the substrate Wf using the rotating mechanism 446 while applying a voltage between the anode 430 and the substrate Wf.
  • the plated surface Wf-a of the substrate Wf is configured to be plated.
  • the plating module 400 also includes a tilting mechanism 447 configured to tilt the substrate holder 440 .
  • the tilting mechanism 447 can be implemented by a known mechanism such as a tilting mechanism.
  • the plating module 400 includes a cover member 460 arranged above the plating bath 410 and a cleaning device 470 for cleaning the substrate Wf held by the substrate holder 440 .
  • the cover member 460 and the cleaning device 470 will be described below.
  • FIG. 4 is a perspective view schematically showing the configuration of the plating module of this embodiment.
  • FIG. 5A is a perspective view schematically showing the cover member of the plating module of this embodiment.
  • FIG. 5B is a plan view schematically showing the cover member of the plating module of this embodiment.
  • FIG. 6 is a longitudinal sectional view schematically showing the cover member of the plating module of this embodiment.
  • the cover member 460 has a cylindrical side wall 461 arranged above the plating bath 410 .
  • the side wall 461 is arranged to surround the elevating path of the substrate holder 440 .
  • the cover member 460 also has a bottom wall 462 connected to the lower ends of the side walls 461 .
  • the bottom wall 462 is a plate-like member that covers the outside of the side wall 461 of the upper opening of the plating bath 410 .
  • the bottom wall 462 is formed with an exhaust port 464 .
  • the exhaust port 464 communicates with the outside of the space inside the plating module 400 in which members such as the plating tank 410, the substrate holder 440, and the cover member 460 are installed. Therefore, the atmosphere (plating solution atmosphere) generated by misting the plating solution in the plating tank 410 is discharged to the outside of the plating module 400 through the exhaust port 464 .
  • the exhaust port 464 is formed in the bottom wall 462 is shown, but the present invention is not limited to this, and the exhaust port 464 may be formed in at least one of the side wall 461 and the bottom wall 462. .
  • a side wall 461 of the cover member 460 is formed with an opening 461a.
  • This opening 461 a serves as a passage for moving the cleaning device 470 between the outside and the inside of the side wall 461 .
  • Plating module 400 includes an opening and closing mechanism 467 configured to open and close opening 461a.
  • the opening/closing mechanism 467 includes a first door 468-1 and a second door 468-2 for opening and closing the opening 461a.
  • the first door 468-1 and the second door 468-2 are arranged side by side along the circumferential direction of the side wall 461. As shown in FIG.
  • the first door 468-1 is rotatably supported by a rotating shaft 468-1a provided at one side end of the opening 461a.
  • the second door 468-2 is rotatably supported by a rotary shaft 468-2a provided at the other side end of the opening 461a.
  • the opening/closing mechanism 467 includes a first door driving member 469-1 for rotating and moving the first door 468-1 toward the inside of the cover member 460, and a second door 468-2 inside the cover member 460. and a second door drive member 469-2 for rotational movement toward.
  • the first door driving member 469-1 and the second door driving member 469-2 can be realized by known mechanisms such as motors.
  • the present embodiment it is possible to both perform cleaning of the substrate Wf and prevent the atmosphere of the plating solution in the plating tank 410 from being released into the plating module 400 . That is, by providing the cover member 460 , the top opening of the plating tank 410 is covered with the bottom wall 462 , the side wall 461 and the substrate holder 440 , so that the plating solution atmosphere in the plating tank 410 can flow from the top opening of the plating tank 410 . Release is suppressed. Further, since the exhaust port 464 is formed in the bottom wall 462 , the atmosphere of the plating solution in the plating bath 410 is discharged to the outside of the plating module 400 through the exhaust port 464 . As a result, it is possible to suppress the occurrence of rust or corrosion in various parts and wiring arranged in the plating module 400 .
  • an opening 461a is formed in the side wall 461, and the opening 461a can be opened and closed by a first door 468-1 and a second door 468-2. Therefore, the first door driving member 469-1 and the second door driving member 469-2 can close the opening 461a to suppress the release of the plating solution atmosphere when the substrate Wf is not being cleaned. .
  • the first door driving member 469-1 and the second door driving member 469-2 move the cleaning device 470 inside the cover member 460 by opening the opening 461a when the substrate Wf is to be cleaned. so that the cleaning process can be performed. The details of the cleaning process using the cleaning device 470 will be described later.
  • 7A and 7B are perspective views schematically showing a cover member of a modified example. 7A and 7B show a state in which the first door 468-1 and the second door 468-2 open the opening 461a.
  • the first door 468-1 and the second door 468-2 may be attached to the side wall 461 so as to move along the circumferential direction of the side wall 461.
  • the first door driving member 469 - 1 may be configured to slide the first door 468 - 1 along the circumferential direction of the side wall 461 of the cover member 460 .
  • the second door driving member 469 - 2 may be configured to slide the second door 468 - 2 along the circumferential direction of the side wall 461 of the cover member 460 .
  • the first door 468-1 and the second door 468-2 may be attached to the side wall 461 so as to move vertically along the side wall 461.
  • the first door driving member 469 - 1 may be configured to slide the first door 468 - 1 vertically along the side wall 461 of the cover member 460 .
  • the second door drive member 469-2 may be configured to slide the second door 468-2 vertically along the side wall 461 of the cover member 460. As shown in FIG.
  • FIG. 8 is a plan view schematically showing the configuration of the plating module of this embodiment.
  • the cleaning device 470 includes a substrate cleaning member 472 for cleaning the plating surface Wf-a of the substrate Wf held by the substrate holder 440.
  • the substrate cleaning member 472 includes a plurality (four in this embodiment) of substrate cleaning nozzles 472a.
  • the plurality of substrate cleaning nozzles 472a are arranged along the radial direction of the substrate Wf or along the direction intersecting the rotation direction of the substrate Wf when the substrate cleaning member 472 is arranged at the cleaning position.
  • a pipe 471 is connected to the substrate cleaning member 472 .
  • a cleaning liquid (for example, pure water) supplied from a liquid source (not shown) is sent to the substrate cleaning member 472 through the pipe 471 and discharged from each of the plurality of substrate cleaning nozzles 472a.
  • the cleaning device 470 also includes a contact cleaning member 482 for cleaning contact members for supplying power to the substrate Wf held by the substrate holder 440 .
  • the contact cleaning member 482 includes a contact cleaning nozzle 482a for ejecting cleaning liquid.
  • a pipe 481 is connected to the contact cleaning member 482 .
  • a cleaning liquid (for example, pure water) supplied from a liquid source (not shown) is sent to the contact cleaning member 482 through the pipe 481 and discharged from the contact cleaning nozzle 482a. The details of cleaning the contact member using the contact cleaning member 482 will be described later.
  • Cleaning device 470 includes a drive mechanism 476 configured to pivot arm 474 .
  • the drive mechanism 476 can be implemented by a known mechanism such as a motor.
  • the arm 474 is a plate-shaped member extending horizontally from the drive mechanism 476 .
  • Substrate cleaning member 472 and contact cleaning member 482 are held on arm 474 .
  • Drive mechanism 476 rotates arm 474 to move substrate cleaning member 472 and contact cleaning member 482 from a cleaning position between plating bath 410 and substrate holder 440 and between plating bath 410 and substrate holder 440 . It is configured to be moved between the retracted retracted position and the retracted retracted position.
  • the solid line indicates the substrate cleaning member 472 and the contact cleaning member 482 at the retracted position
  • the broken line indicates the substrate cleaning member 472 and the contact cleaning member 482 at the cleaning position.
  • the cleaning device 470 includes a tray member 478 arranged below the substrate cleaning member 472 .
  • the tray member 478 is a container configured to receive the cleaning liquid discharged from the substrate cleaning member 472 and dropped after colliding with the surface to be plated Wf-a of the substrate Wf. Further, the tray member 478 is configured to receive the cleaning liquid discharged from the contact cleaning member 482 and dropped after colliding with the contact member.
  • the entire substrate cleaning member 472 , contact cleaning member 482 and arm 474 are housed in tray member 478 .
  • Drive mechanism 476 is configured to pivot substrate cleaning member 472, contact cleaning member 482, arm 474, and tray member 478 together between cleaning and retracted positions. However, drive mechanism 476 may be capable of separately driving substrate cleaning member 472 , contact cleaning member 482 , arm 474 and tray member 478 .
  • a fixed tray member 484 is arranged below the tray member 478 .
  • the cleaning liquid that has dropped onto the tray member 478 drops onto the fixed tray member 484 .
  • a drain tube 488 is attached to the stationary tray member 484 .
  • the cleaning liquid that has fallen onto the fixed tray member 484 is discharged through the drain pipe 488 .
  • the cleaning device 470 includes an electrical conductivity meter 486 for measuring the electrical conductivity of the cleaning liquid dropped onto the tray member 478 .
  • the electrical conductivity meter 486 is provided at a portion of the fixed tray member 484 through which the cleaning liquid flows.
  • the plating module 400 can grasp how much plating liquid is contained in the cleaning liquid, that is, how far the cleaning process has progressed. The plating module 400 may make the decision to terminate the cleaning process based on the electrical conductivity of the cleaning solution as measured by the conductivity meter 486, for example.
  • the plating module 400 raises the substrate holder 440 from the plating tank 410 by the lifting mechanism 442 and arranges the substrate holder 440 at a position surrounded by the cover member 460 (side wall 461).
  • the plating module 400 positions the substrate cleaning member 472 in the cleaning position as indicated by the dashed line in FIG. Thereby, the substrate cleaning nozzle 472a is directed toward the surface to be plated Wf-a of the substrate Wf.
  • the plating module 400 rotates the substrate holder 440 by a rotation mechanism 446 .
  • the rotating mechanism 446 is configured, for example, to rotate the substrate holder 440 at a rotational speed of 1 rpm to 20 rpm. Further, the plating module 400 cleans the surface to be plated Wf-a of the substrate Wf while the substrate holder 440 is tilted by the tilting mechanism 447 . This point will be described below.
  • FIG. 9 is a plan view schematically showing the configuration of the plating module of this embodiment.
  • FIG. 10 is a longitudinal sectional view schematically showing the configuration of the plating module of this embodiment.
  • FIG. 11 is a longitudinal sectional view schematically showing an enlarged part of the configuration of the plating module of this embodiment.
  • the substrate holder 440 includes a support mechanism 494 for supporting the outer periphery of the plated surface Wf-a of the substrate Wf, and a back plate assembly 492 for sandwiching the substrate Wf together with the support mechanism 494. , and a rotating shaft 491 extending vertically upward from the back plate assembly 492 .
  • the support mechanism 494 is an annular member having an opening in the center for exposing the surface to be plated Wf-a of the substrate Wf, and is suspended and held by a column member 496 .
  • the back plate assembly 492 includes a disk-shaped floating plate 492-2 for sandwiching the substrate Wf together with the support mechanism 494.
  • the floating plate 492-2 is arranged on the back side of the surface to be plated Wf-a of the substrate Wf. Further, the back plate assembly 492 includes a disk-shaped back plate 492-1 arranged above the floating plate 492-2.
  • the back plate assembly 492 also includes a floating mechanism 492-4 for urging the floating plate 492-2 away from the back surface of the substrate Wf, and a floating plate 492-4 against the urging force of the floating mechanism 492-4. 2 to the back surface of the substrate Wf.
  • the floating mechanism 492-4 includes a compression spring mounted between the upper end of a shaft extending upward from the floating plate 492-2 through the back plate 492-1 and the back plate 492-1.
  • the floating mechanism 492-4 is configured to lift the floating plate 492-2 upward via the shaft by the compression reaction force of the compression spring and urge it away from the back surface of the substrate Wf.
  • the pressing mechanism 492-3 is configured to press the floating plate 492-2 downward by supplying fluid to the floating plate 492-2 through a channel formed inside the back plate 492-1. be.
  • the pressing mechanism 492-3 presses the substrate Wf against the support mechanism 494 with a force stronger than the biasing force of the floating mechanism 492-4 when the fluid is supplied.
  • the support mechanism 494 includes an annular support member 494-1 for supporting the outer periphery of the plating surface Wf-a of the substrate Wf.
  • the support member 494-1 has a flange 494-1a protruding from the outer periphery of the lower surface of the back plate assembly 492 (floating plate 492-2).
  • An annular seal member 494-2 is positioned over the flange 494-1a.
  • the sealing member 494-2 is a member having elasticity.
  • the support member 494-1 supports the outer peripheral portion of the surface to be plated Wf-a of the substrate Wf via the seal member 494-2. By sandwiching the substrate Wf between the sealing member 494-2 and the floating plate 492-2, the space between the supporting member 494-1 (substrate holder 440) and the substrate Wf is sealed.
  • the support mechanism 494 includes an annular pedestal 494-3 attached to the inner peripheral surface of the support member 494-1, and an annular conductive member 494-5 attached to the upper surface of the pedestal 494-3.
  • the pedestal 494-3 is a conductive member such as stainless steel.
  • Conductive member 494-5 is an annular member having conductivity such as copper.
  • the support mechanism 494 includes a contact member 494-4 for supplying power to the substrate Wf.
  • the contact member 494-4 is annularly attached to the inner peripheral surface of the pedestal 494-3 with screws or the like.
  • Support member 494-1 holds contact member 494-4 via pedestal 494-3.
  • the contact member 494-4 is a conductive member for supplying power to the substrate Wf held by the substrate holder 440 from a power source (not shown).
  • the contact member 494-4 includes a plurality of substrate contacts 494-4a that contact the outer peripheral portion of the plated surface Wf-a of the substrate Wf, and a body portion 494-4b that extends upward from the substrate contacts 494-4a. have.
  • the seal member 494-2 and the back plate assembly 492 sandwich the substrate Wf, thereby sealing the space between the support member 494-1 and the substrate Wf.
  • the tilt mechanism 447 tilts the substrate holder 440. As shown in FIGS. 9 and 10, the tilt mechanism 447 tilts the substrate holder 440. As shown in FIGS. As a result, the substrate Wf held by the substrate holder 440 is also tilted. 9, illustration of members such as the tray member 478 is omitted for convenience of explanation.
  • the substrate cleaning member 472 is arranged to face an area having an upward rotation component of the substrate Wf tilted by the tilt mechanism 447 and rotated by the rotation mechanism 446 .
  • the substrate cleaning member 472 is rotated by the rotating mechanism 446 from the position Lo corresponding to the lower end of the substrate Wf tilted by the tilting mechanism 447 toward the position Hi corresponding to the upper end of the substrate Wf to be plated surface Wf ⁇ . It is configured to discharge a cleaning liquid to a.
  • Each of the plurality of substrate cleaning nozzles 472a is a fan-shaped nozzle configured to discharge the cleaning liquid in a fan shape that expands as the distance from the tip of the substrate cleaning nozzle 472a increases. Further, as shown in FIG. 9, the plurality of substrate cleaning nozzles 472a are configured such that the cleaning liquid discharged from the adjacent substrate cleaning nozzles 472a do not collide with each other and are partially separated in the rotation direction of the substrate Wf indicated by the arrow A in the drawing. are configured to overlap each other. As a result, the entire surface to be plated Wf-a of the substrate Wf can be cleaned.
  • FIG. 12A is a diagram schematically showing the relationship between the rotation direction of the substrate and the arrangement of the substrate cleaning nozzles.
  • the substrate cleaning member 472 and the substrate cleaning nozzle 472a can discharge the cleaning liquid toward the surface to be plated Wf-a of the substrate Wf in an inclined state similar to the inclination of the substrate Wf.
  • FIG. 12B is a diagram showing a modification of the cleaning liquid discharge direction of the substrate cleaning nozzle. As shown in FIG. 12B, the substrate cleaning nozzle 472a may eject the cleaning liquid vertically upward regardless of the tilt of the substrate Wf.
  • the substrate Wf can be efficiently cleaned. That is, when the cleaning liquid collides with the surface to be plated while the substrate Wf is horizontal, the plating liquid adhering to the surface to be plated is washed away by the cleaning liquid, and part of it falls and is recovered, but the remaining part While adhering to the surface to be plated of the substrate, it moves to the downstream side of the cleaning area as the substrate rotates. The plating solution that has moved to the downstream side of the cleaning area is not cleaned until the substrate rotates 360° and moves to the cleaning area again. Become.
  • the substrate Wf is inclined, so the plating solution swept away by the cleaning solution flows in the direction along the inclination (downward in FIG. 9) according to gravity. Further, according to the present embodiment, since the cleaning liquid is discharged to the region rotating with the upward component of the substrate, the cleaned region of the substrate Wf rotates with the upward component (arrow A direction). Therefore, when viewed from above as shown in FIG. 9, the angle between the direction of flow of the plating solution washed away by the cleaning solution and the direction of rotation of the cleaned region of the substrate Wf is about 180°. That is, since the direction in which the cleaned area of the substrate Wf rotates is opposite to the direction in which the plating solution flows, it becomes difficult for the plating solution to mix with the cleaned area of the substrate Wf. can be thoroughly washed.
  • FIG. 13 is a diagram showing the results of cleaning according to this embodiment and cleaning according to a comparative example.
  • the vertical axis indicates the amount of contamination (plating solution amount) remaining on the surface to be plated Wf-a of the substrate Wf
  • the horizontal axis indicates the cleaning time (how many times the substrate holder has been rotated).
  • graph ⁇ indicates the amount of contamination according to this embodiment
  • graph ⁇ indicates the amount of contamination according to the comparative example.
  • the comparative example shows the amount of contamination when the cleaning process is performed with the rotational speed of the substrate holder 440 unchanged (10 rpm) and the rotational direction reversed.
  • the substrate Wf can be efficiently cleaned.
  • the angle between the direction of flow of the plating solution washed away by the cleaning solution and the direction of rotation of the cleaned region of the substrate Wf is about 180°.
  • the example which becomes is shown, it is not limited to this.
  • the angle between the flow direction of the plating solution and the rotation direction of the cleaned area of the substrate Wf is 0°.
  • the direction in which the cleaned region of the substrate Wf rotates is the same as the direction in which the plating solution flows, the effect of the present embodiment cannot be obtained (the above comparative example).
  • the substrate cleaning member 472 is arranged in the B region, the angle is 90°, and if the substrate cleaning member 472 is arranged in the C region, the same angle is 270°. In this case, the effect of this embodiment is limited.
  • the substrate cleaning member 472 rotates such that the angle is larger than 90° and smaller than 270°, in other words, from the position Lo corresponding to the lower end of the inclined substrate Wf toward the position Hi corresponding to the upper end.
  • the cleaning liquid can be discharged onto the surface to be plated (the area sandwiched by the dashed-dotted line AA-AA in FIG. 9). Further, substrate cleaning member 472 discharges the cleaning liquid so that the angle is larger than 135° and smaller than 225°, in other words, to the area sandwiched by two-dot chain lines BB-BB in FIG. It is more preferable because it increases further.
  • FIG. 14 is a side view schematically showing the configuration of the plating module of the modification. Since the plating module of this modified example has the same basic configuration as the plating module of the above embodiment, the description of the similar configuration will be omitted and only the different configuration will be described.
  • the plating module 400 of this modified example is configured so that the substrate holder 440 is not tilted and the cleaning process is performed while the surface to be plated Wf-a of the substrate Wf is kept substantially horizontal.
  • the substrate cleaning member 472 is configured to discharge cleaning liquid having a velocity component in a direction opposite to the rotation direction of the substrate Wf rotated by the rotation mechanism 446 .
  • the substrate cleaning member 472 and the substrate cleaning nozzle 472a are arranged at an angle so that the cleaning liquid discharge direction is opposite to the rotation direction of the substrate Wf.
  • the substrate cleaning member 472 can efficiently clean the substrate Wf by discharging the cleaning liquid toward the surface to be plated Wf-a of the substrate Wf in this state.
  • the cleaning liquid that collides with the surface to be plated Wf-a of the substrate Wf sweeps away the plating liquid adhering to the surface to be plated Wf-a to the upstream side in the substrate rotation direction. It will drop and be collected.
  • the cleaned area of the substrate Wf rotates downstream in the substrate rotation direction. Therefore, since the direction in which the cleaned region of the substrate Wf rotates is opposite to the direction in which the plating solution flows, it becomes difficult for the plating solution to mix with the cleaned region of the substrate Wf. can be thoroughly washed.
  • all (four) substrate cleaning nozzles 472a arranged in the substrate cleaning member 472 discharge the cleaning liquid having a velocity component in the direction opposite to the rotation direction of the substrate Wf, so that the above effect can be obtained. be done. Supposing that some of the substrate cleaning nozzles 472a arranged in the substrate cleaning member 472 eject cleaning liquid having a velocity component in the direction of the rotation direction of the substrate Wf, the plating liquid swept away by the cleaning liquid would not be able to rotate the substrate. Since the plating solution flows downstream in the direction, the plating solution tends to mix with the cleaned area of the substrate Wf, and the above effects are not obtained or are reduced.
  • FIG. 15A is a plan view schematically showing the configuration of the plating module of the modification.
  • 15B is a schematic side view of the plating module shown in FIG. 15A as viewed in the direction of arrow B.
  • FIG. 15 the description of the configuration that overlaps with the embodiment of FIG. 9 is omitted.
  • the substrate cleaning member 472 includes a plurality of (four) substrate cleaning nozzles 472a and a seal cleaning nozzle 472b arranged closer to the outer circumference of the substrate than the plurality of substrate cleaning nozzles 472a. ing.
  • the seal cleaning nozzle 472b is a member for cleaning the seal member 494-2 for sealing between the substrate holder 440 and the substrate Wf.
  • the seal cleaning nozzle 472b is a fan-shaped nozzle that is configured to discharge cleaning liquid in a fan-like manner toward the substrate holder 440 that is vertically upward and tilted and located at a relatively high position.
  • the seal cleaning nozzle 472b discharges the cleaning liquid having a velocity component along the rotation direction of the seal member 494-2 rotating in the direction indicated by arrow A in FIG. 15A toward the inner peripheral surface of the seal member 494-2. is configured to
  • the seal member 494-2 can be efficiently washed. That is, in the area indicated by the dashed line 473 in FIG. 15A, the cleaning liquid discharged from the substrate cleaning nozzle 472a collides with the substrate and then drips down along the slope of the substrate. As a result, a thick liquid film of the cleaning liquid is formed on the inner peripheral surface of the seal member 494-2 in the region indicated by the dashed line 473. FIG. Therefore, if the cleaning liquid is discharged from the seal cleaning nozzle 472b toward the sealing member 494-2 downward in FIG. 15A, the cleaning liquid is impeded by the thick liquid film and hits the sealing member 494-2 with a sufficient striking force. As a result, the cleaning efficiency of the sealing member 494-2 is poor.
  • the seal cleaning nozzle 472b is configured to discharge the cleaning liquid toward the seal member 494-2 attached at a relatively high position on the inclined substrate holder 440.
  • FIG. Therefore, since a liquid film is not formed or is thin on the inner peripheral surface of the seal member 494-2 against which the cleaning liquid collides, the seal member 494-2 can be cleaned with a sufficient impact force. The member 494-2 can be efficiently cleaned.
  • the seal cleaning nozzle 472b is configured to discharge the cleaning liquid toward the inner peripheral surface of the seal member 494-2 in the area where the liquid film is less likely to accumulate. Therefore, since it is difficult to wash away the liquid film accumulated in the area indicated by the broken line 473 , the cleaning liquid is less likely to spill from the tray member 478 , and as a result, it is possible to suppress an increase in the size of the tray member 478 .
  • FIG. 16A is a plan view schematically showing the configuration of the plating module of the modification.
  • 16B is a schematic side view of the plating module shown in FIG. 16A as viewed in the direction of arrow B.
  • FIG. 16 the description of the configuration that overlaps with the modified example of FIG. 15 is omitted.
  • the seal cleaning nozzle 472b may be a linear nozzle that discharges the cleaning liquid in a straight line. According to this modified example, similarly to the modified example of FIG. 15, it is possible to efficiently clean the seal member 494-2 and prevent the size of the tray member 478 from increasing.
  • Plating module 400 may also use substrate cleaning member 472 for pre-wet processing. That is, the plating module 400 is formed on the substrate surface by using the substrate cleaning member 472 to wet the surface to be plated Wf-a of the substrate Wf before the plating treatment with a treatment liquid such as pure water or degassed water. The air inside the pattern can be replaced with the treatment liquid.
  • a treatment liquid such as pure water or degassed water
  • 17A to 17C are plan views schematically showing modified tray members.
  • the modified tray member 478A includes a substantially circular first tray 478A-1 arranged at a position corresponding to the center of the tilted substrate Wf and corresponding to the lower end of the tilted substrate Wf. and a connecting tray 478A-3 connecting the first tray 478A-1 and the second tray 478A-2. good too.
  • a drainage pipe 478A-4 is connected to the center of the first tray 478A-1 so that the cleaning solution and the plating solution flowing through the drainage pipe 478A-4 drop onto the fixed tray member 484.
  • the cleaning liquid discharged onto the surface to be plated Wf-a of the substrate Wf either flows down to the center of the substrate Wf, or It flows and falls to the lower end of the inclined substrate Wf.
  • the first tray 478A-1 is arranged at the position corresponding to the center of the substrate Wf
  • the second tray 478A-2 is arranged at the position corresponding to the lower end of the inclined substrate Wf. Therefore, the cleaning liquid can be efficiently recovered.
  • the modified tray member 478B includes an L-shaped tray 478B-1 arranged at positions corresponding to the center and lower ends of the inclined substrate Wf.
  • a drainage pipe 478B-2 is connected to the L-shaped tray 478B-1, and the cleaning solution and the plating solution flowing through the drainage pipe 478B-2 drop onto the fixed tray member 484.
  • FIG. 17B Also in this modified example, since the L-shaped trays 478B-1 are arranged at positions corresponding to the center and the lower end of the substrate Wf, the cleaning liquid can be efficiently collected.
  • the modified tray member 478C includes a plurality of (five in this modified example) triangular trays 478C-1.
  • a plurality of triangular trays 478C-1 are arranged one above the other and are rotatable around the top of each tray 478C-1.
  • a drainage pipe 478C-2 is connected to the plurality of triangular trays 478C-1, and the cleaning solution and the plating solution flowing through the drainage pipe 478C-2 drop onto the fixed tray member 484.
  • FIG. The plurality of triangular trays 478C-1 are arranged at different angles of rotation to form a fan shape as a whole when placed in the cleaning position as shown in FIG. 17C.
  • the cleaning liquid can be efficiently collected.
  • the plurality of triangular trays 478C-1 are arranged at the same rotation angle when arranged at the retracted position, thereby reducing the installation space for the tray member 478C.
  • FIG. 18 is a diagram schematically showing cleaning of contact members by the plating module of the present embodiment. Descriptions of the same components as those of the members described with reference to FIG. 11 will be omitted.
  • the substrate Wf when the substrate Wf is plated, the substrate Wf is sandwiched between the seal member 494-2 and the back plate assembly 492, so that the support member 494-1 and the substrate Wf are sealed. be done. However, if there is a slight gap between the seal member 494-2 and the substrate Wf, the plating solution may enter and adhere to the contact member 494-4. Further, when the substrate Wf is lifted after the plating process, the plating solution may drop from the substrate Wf and adhere to the contact member 494-4.
  • the contact cleaning member 482 (contact cleaning nozzle 482a) is configured to discharge the cleaning liquid from below the substrate holder 440 toward the body portion 494-4b of the contact member.
  • the back plate assembly 492 is arranged at a position higher than the position surrounded by the contact members 494-4 when cleaning the contact members 494-4, and is not shown in FIG.
  • the contact cleaning member 482 is configured to discharge cleaning liquid to the body portion 494-4b through the opening of the support mechanism 494 (support member 494-1).
  • the contact cleaning nozzle 482a is a fan-shaped nozzle configured to eject cleaning liquid in a fan shape.
  • the contact cleaning nozzle 482a ejects the cleaning liquid at an elevation angle of approximately 45° with respect to the horizontal plane
  • the ejection angle of the cleaning liquid is not limited to this.
  • the cleaning solution that has collided with the body portion 494-4b flows downward from the body portion 494-4b due to gravity. be.
  • the contact member can be cleaned with a simple structure. That is, in this embodiment, the contact cleaning member 482 is arranged at the cleaning position below the substrate holder 440 by the drive mechanism 476, and the cleaning liquid is supplied to the main body portion 494-4b through the opening of the support mechanism 494 (support member 494-1). to dispense. Therefore, it is not necessary to use a brush to clean the contact member or to dispose a nozzle on the side or above the contact member, so the contact member can be cleaned with a simple structure.
  • FIG. 19 is a diagram schematically showing cleaning of contact members by the plating module of the present embodiment.
  • the back plate assembly 492 (floating plate 492-2) is arranged at a position surrounded by the contact member 494-4 when cleaning the contact member 494-4.
  • the contact cleaning member 482 is configured to discharge the cleaning liquid toward the lower surface of the back plate assembly 492 and direct the cleaning liquid bounced back from the lower surface of the back plate assembly 492 toward the main body portion 494-4b. After hitting the lower surface of the back plate assembly 492 and rebounding, the cleaning liquid collides with the body portion 494-4b and then flows downward from the body portion 494-4b due to gravity. As a result, the plating solution adhering to the main body portion 494-4b and the substrate contact 494-4a drops together with the cleaning solution and is collected in the tray member 478.
  • the contact member can be cleaned with a simple structure similar to the above embodiment.
  • the metal member eg, the conductive member 494-5
  • the contact cleaning member 482 is arranged below the substrate holder 440 and the cleaning liquid is discharged from below the substrate holder 440 . Therefore, a space is created in the position surrounded by the contact members 494-4, and the back plate assembly 492 can be arranged in this space. As shown in FIG. 19, the back plate assembly 492 serves as a wall against the metal member (for example, the conductive member 494-5) above the contact member 494-4, so that the cleaning liquid discharged from the contact cleaning member 482 is prevented from contacting the metal member. You can suppress jumping to. As a result, according to this embodiment, the contact member 494-4 can be easily cleaned without the need to precisely control the position of the contact cleaning member 482, the cleaning liquid ejection angle, the cleaning liquid ejection strength, and the like.
  • FIG. 20 is a diagram schematically showing cleaning of contact members by the plating module of the present embodiment.
  • the contact cleaning member 482 may clean the contact member 494-4 while the substrate holder 440 is tilted by the tilting mechanism 447.
  • FIG. 20 the contact cleaning member 482 is tilted by the tilting mechanism 447 toward the body portion 494-4b of the contact member 494-4 attached to the substrate holder 440 at a relatively low position. cleaning liquid can be discharged.
  • FIG. 21 is a diagram schematically showing a modification of the contact cleaning nozzle.
  • the modified contact cleaning nozzle 482a' may be a linear nozzle that discharges cleaning liquid in a straight line.
  • the cleaning liquid can be discharged to the target position of the body portion 494-4b of the contact member 494-4.
  • FIG. 22 is a flow chart showing the substrate cleaning method and contact cleaning method of this embodiment.
  • the flowchart of FIG. 22 shows each process after the substrate Wf held by the substrate holder 440 is immersed in the plating bath 410 and plated. 22 shows a substrate cleaning method and contact cleaning method using the plating module shown in FIG. 15 or FIG.
  • the substrate holder 440 is raised from the plating tank 410 using the lifting mechanism 442, and placed at a position surrounded by the cover member 460 (side wall 461) (lifting step 102). ).
  • the substrate cleaning method moves the first door 468-1 and the second door 468-2 arranged in the opening 461a of the side wall 461 of the cover member 460 to open the opening 461a (opening step 104).
  • the opening step 104 can rotate the first door 468-1 and the second door 468-2 toward the inside of the cover member 460, as shown in FIG. 5B.
  • the opening step 104 slides the first door 468-1 and the second door 468-2 along the circumferential direction of the side wall 461 of the cover member 460 as shown in FIG. 7A.
  • the opening step 104 may slide the first door 468-1 and the second door 468-2 vertically along the side wall 461 of the cover member 460, as shown in FIG. 7B.
  • the substrate cleaning nozzle 472a is directed toward the surface to be plated Wf-a of the substrate Wf (step 106).
  • the seal cleaning nozzle 472b is directed toward the seal member 494-2 (step 107).
  • steps 106 and 107 have been described as separate steps, but steps 106 and 107 are carried out using the drive mechanism 476 to move the cleaning device 470 ( This is done by a first moving step of moving the substrate cleaning member 472 and the contact cleaning member 482).
  • the tilting mechanism 447 is used to tilt the substrate holder 440 (and the substrate Wf) (tilting step 108).
  • the substrate cleaning method rotates the substrate holder 440 (and the substrate Wf) using the rotation mechanism 446 (rotation step 110).
  • the opening step 104, the tilting step 108, and the rotating step 110 may be switched in order of execution, or may be executed simultaneously.
  • a cleaning liquid is applied to the plating surface Wf-a of the substrate Wf rotated by the rotation step 110 from the position Lo corresponding to the lower end of the substrate Wf inclined by the inclination step 108 toward the position Hi corresponding to the upper end. is discharged (substrate cleaning step 112).
  • the plating solution adhering to the surface to be plated Wf-a is cleaned by the substrate cleaning step 112 .
  • the substrate cleaning step 112 can also discharge cleaning liquid having a velocity component in a direction opposite to the rotation direction of the rotating substrate. In this case, the substrate Wf may be held horizontally, so the tilting step 108 may not be performed.
  • the cleaning liquid having a velocity component along the rotation direction of the rotating seal member 494-2 is discharged from the seal cleaning nozzle 472b toward the inner peripheral surface of the seal member 494-2 in the rotating step 110.
  • (Seal wash step 113) The plating solution adhering to the inner peripheral surface of the seal member 494-2 is cleaned by the seal cleaning step 113.
  • FIG. 112 and the seal cleaning step 113 are described as separate steps for convenience, both steps may be performed simultaneously.
  • the substrate cleaning method stops discharging the cleaning liquid onto the plating surface Wf-a of the substrate Wf based on the electrical conductivity of the cleaning liquid measured by the electrical conductivity meter 486 (stopping step 114). That is, the plating solution adhering to the surface to be plated Wf-a of the substrate Wf is washed away by the cleaning solution, drops onto the tray member 478, and is discharged through the fixed tray member 484.
  • the electrical conductivity of the cleaning liquid is measured by electrical conductivity meter 486 .
  • the measured electrical conductivity becomes sufficiently low, it is found that the amount of the plating solution contained in the cleaning solution is sufficiently reduced, that is, it is found that the cleaning process is completed. Washing can be terminated.
  • the contact cleaning method returns the substrate holder 440 (and the substrate) tilted by the tilting step 108 to the state before tilting, ie, the horizontal state (tilting canceling step 116). Subsequently, the contact cleaning method stops rotation of the substrate holder 440 rotated by the rotation step 110 (stop rotation step 118). Note that the tilt canceling step 116 and the rotation stopping step 118 may be switched in order of execution, or may be executed simultaneously.
  • step 120 the contact cleaning method directs the contact cleaning nozzle 482a toward the contact member 494-4 attached to the substrate holder 440 (step 121).
  • step 121 has been described as directing the contact cleaning nozzle 482a toward the contact member 494-4, but step 121 is executed by the first movement step described above.
  • the contact cleaning method the back plate assembly 492 is lowered and arranged at a position surrounded by the contact members 494-4 (placement step 122). Subsequently, the contact cleaning method tilts the substrate holder 440 (and the substrate Wf) using the tilt mechanism 447 (tilt step 124). Subsequently, the contact cleaning method rotates the substrate holder 440 (and the substrate Wf) using the rotation mechanism 446 (rotation step 126). Note that the placing step 122, the tilting step 124, and the rotating step 126 may be changed in order of execution, or may be executed simultaneously.
  • cleaning liquid is discharged from the contact cleaning member 482 arranged below the substrate holder 440 toward the main body portion 494-4b of the contact member 494-4 (contact cleaning step 128).
  • the contact cleaning step 128 is performed on the contact members 494 - 4 that are tilted and attached to the relatively low substrate holder 440 by the tilt step 124 .
  • the cleaning liquid is discharged toward the lower surface of the back plate assembly 492, and the cleaning liquid bounced off the lower surface of the back plate assembly 492 is directed toward the main body portion 494-4b. be able to.
  • the contact cleaning step 128 may discharge the cleaning liquid directly from the contact cleaning nozzle 482a to the main body portion 494-4b.
  • the plating solution adhering to the contact member 494-4 is cleaned by the contact cleaning step 128.
  • the contact cleaning method returns the tilted substrate holder 440 (and the substrate) to the pre-tilt state by tilting step 124 when the electrical conductivity of the cleaning liquid measured by the conductivity meter 486 is less than a predetermined threshold value. That is, it returns to the horizontal state (tilt cancellation step 130).
  • the cleaning liquid is discharged onto the body portion 494-4b of the contact member 494-4 of the substrate holder 440 which has been leveled by the tilt canceling step 130 (wetting step 132).
  • the wet step 132 is a step for uniformly wetting the entire contact member 494-4 with a cleaning liquid (pure water) so as to prevent power supply variations from occurring during the subsequent plating process.
  • the substrate cleaning method moves the cleaning device 470 (substrate cleaning member 472 and contact cleaning member 482) to the retracted position (second movement step 134). . Subsequently, the substrate cleaning method moves the first door 468-1 and the second door 468-2 to the opening 461a of the side wall 461 of the cover member 460 to close the opening 461a (close step 136).
  • the present application provides, as one embodiment, a plating bath configured to contain a plating solution, a substrate holder configured to hold a substrate with a surface to be plated facing downward, and a substrate holder configured to rotate the substrate holder.
  • a tilting mechanism configured to tilt the substrate holder; and a substrate cleaning member for cleaning a surface to be plated of the substrate held by the substrate holder;
  • the cleaning member is configured to discharge a cleaning liquid onto the surface to be plated of the substrate rotated by the rotating mechanism from a position corresponding to the lower end of the substrate tilted by the tilting mechanism toward a position corresponding to the upper end of the substrate.
  • the substrate cleaning member is disposed between a cleaning position between the plating bath and the substrate holder and a retracted position retracted from between the plating bath and the substrate holder.
  • a plating apparatus is disclosed, further including a drive mechanism configured to move at a.
  • a plating apparatus further including a tray member arranged below the substrate cleaning member and configured to receive the cleaning liquid discharged and dropped from the substrate cleaning member.
  • a plating apparatus that further includes an electrical conductivity meter for measuring the electrical conductivity of the cleaning liquid dropped onto the tray member.
  • the substrate cleaning member includes a plurality of substrate cleaning nozzles arranged along a direction intersecting the rotation direction of the substrate when the substrate cleaning member is arranged at the cleaning position.
  • a plating apparatus comprising:
  • the substrate holder includes a seal member for sealing between the substrate holder and the substrate, and the substrate cleaning member is arranged to be closer to the periphery of the substrate than the plurality of substrate cleaning nozzles. and a seal cleaning nozzle for cleaning the seal member, the seal cleaning nozzle ejecting a cleaning liquid having a velocity component in a direction along the rotation direction of the seal member rotated by the rotating mechanism.
  • a plating apparatus is disclosed that is configured to:
  • each of the plurality of substrate cleaning nozzles is configured to eject cleaning liquid in a fan shape from the tip of the substrate cleaning nozzle, and the cleaning liquid ejected from the adjacent substrate cleaning nozzle is
  • a plating apparatus is disclosed that is configured such that the substrates do not collide with each other and partially overlap in the direction of rotation of the substrate.
  • the present application discloses, as one embodiment, a plating apparatus, wherein the rotation mechanism is configured to rotate the substrate holder at a rotation speed of 1 rpm to 20 rpm.
  • the present application provides, as an embodiment, a step of directing a substrate cleaning nozzle toward a surface to be plated facing downward of a substrate held by a substrate holder, a tilting step of tilting the substrate holder, and a step of tilting the substrate holder.
  • a method of cleaning a substrate comprising: a cleaning step;
  • a step of directing a seal cleaning nozzle toward a seal member for sealing between the substrate holder and the substrate a seal cleaning step of discharging a cleaning liquid having a velocity component in the along direction from the seal cleaning nozzle.
  • a plating bath configured to contain a plating solution
  • a substrate holder configured to hold a substrate with a surface to be plated facing downward
  • a rotating substrate holder configured to hold a substrate with a surface to be plated facing downward
  • a substrate cleaning member for cleaning the surface to be plated of the substrate held by the substrate holder, wherein the substrate cleaning member rotates the substrate rotated by the rotation mechanism.
  • a plating apparatus is disclosed that is configured to dispense a cleaning liquid having a velocity component opposite to the direction.
  • Plating module 410 Plating tank 440 Substrate holder 442 Elevating mechanism 446 Rotating mechanism 447 Tilt mechanism 460 Cover member 461 Side wall 461a Opening 462 Bottom wall 464 Exhaust port 467 Opening and closing mechanism 468-1 First door 468-2 Second door 469- 1 First door driving member 469-2 Second door driving member 470 Cleaning device 472 Substrate cleaning member 472a Substrate cleaning nozzle 472b Seal cleaning nozzle 476 Drive mechanism 478 Tray member 482 Contact cleaning member 482a Contact cleaning nozzle 486 Conductivity meter 488 Drain pipe 491 Rotating shaft 492 Back plate assembly 492-1 Back plate 492-2 Floating plate 494 Support mechanism 494-1 Support member 494-2 Seal member 494-4 Contact member 494-4a Substrate contact 494-4b Body portion 1000 Plating equipment Wf Substrate Wf-a Surface to be plated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Chemically Coating (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

基板を効率よく洗浄する。 めっきモジュール400は、めっき液を収容するように構成されためっき槽410と、被めっき面Wf-aを下方に向けた基板Wfを保持するように構成された基板ホルダ440と、基板ホルダ440を回転させるように構成された回転機構446と、基板ホルダ440を傾斜させるように構成された傾斜機構447と、基板ホルダ440に保持された基板Wfの被めっき面Wf-aを洗浄するための基板洗浄部材472と、を含み、基板洗浄部材472は、傾斜機構447によって傾斜した基板Wfの下端に対応する位置から上端に対応する位置へ向けて回転機構446によって回転する基板Wfの被めっき面Wf-aに洗浄液を吐出するように構成される。

Description

めっき装置および基板洗浄方法
 本願は、めっき装置および基板洗浄方法に関する。
 めっき装置の一例としてカップ式の電解めっき装置が知られている。カップ式の電解めっき装置は、被めっき面を下方に向けて基板ホルダに保持された基板(例えば半導体ウェハ)をめっき液に浸漬させ、基板とアノードとの間に電圧を印加することによって、基板の表面に導電膜を析出させる。
 例えば特許文献1には、めっき処理後の基板を洗浄するための洗浄装置が開示されている。この洗浄装置は、基板の下方に基板の半径方向に沿って複数の洗浄ノズルを配置し、基板を回転させながら被めっき面に向けて上向きに洗浄液を吐出することによって、基板の被めっき面に付着しためっき液などを洗浄するように構成されている。
特許6934127号公報
 従来技術のめっき装置は、基板を効率よく洗浄するという点で改善の余地がある。
 すなわち、従来技術では、被めっき面に洗浄液が衝突すると、被めっき面に付着しためっき液は洗浄液に押し流されて、その一部は落下して回収されるが残りの一部は基板の被めっき面に付着したまま基板の回転に伴って洗浄領域の下流側へ移動する。洗浄領域の下流側へ移動しためっき液は、基板が360°回転して再び洗浄領域に移動するまで洗浄されないので、被めっき面の全体を十分に洗浄するためには、洗浄処理の時間が長くなる。
 そこで、本願は、基板を効率よく洗浄することを1つの目的としている。
 一実施形態によれば、めっき液を収容するように構成されためっき槽と、被めっき面を下方に向けた基板を保持するように構成された基板ホルダと、前記基板ホルダを回転させるように構成された回転機構と、前記基板ホルダを傾斜させるように構成された傾斜機構と、前記基板ホルダに保持された基板の被めっき面を洗浄するための基板洗浄部材と、を含み、前記基板洗浄部材は、前記傾斜機構によって傾斜した基板の下端に対応する位置から上端に対応する位置へ向けて前記回転機構によって回転する基板の被めっき面に洗浄液を吐出するように構成される、めっき装置が開示される。
図1は、本実施形態のめっき装置の全体構成を示す斜視図である。 図2は、本実施形態のめっき装置の全体構成を示す平面図である。 図3は、本実施形態のめっきモジュールの構成を概略的に示す縦断面図である。 図4は、本実施形態のめっきモジュールの構成を概略的に示す斜視図である。 図5Aは、本実施形態のめっきモジュールのカバー部材を模式的に示す斜視図である。 図5Bは、本実施形態のめっきモジュールのカバー部材を模式的に示す平面図である。 図6は、本実施形態のめっきモジュールのカバー部材を模式的に示す縦断面図である。 図7Aは、変形例のカバー部材を模式的に示す斜視図である。 図7Bは、変形例のカバー部材を模式的に示す斜視図である。 図8は、本実施形態のめっきモジュールの構成を概略的に示す平面図である。 図9は、本実施形態のめっきモジュールの構成を概略的に示す平面図である。 図10は、本実施形態のめっきモジュールの構成を概略的に示す縦断面図である。 図11は、本実施形態のめっきモジュールの構成の一部を拡大して概略的に示す縦断面図である。 図12Aは、基板の回転方向と基板洗浄ノズルの配置関係を模式的に示す図である。 図12Bは、基板洗浄ノズルの洗浄液吐出方向の変形例を示す図である。 図13は、本実施形態による洗浄と比較例による洗浄の結果を示す図である。 図14は、変形例のめっきモジュールの構成を概略的に示す側面図である。 図15Aは、変形例のめっきモジュールの構成を概略的に示す平面図である。 図15Bは、図15Aに示すめっきモジュールの矢印B方向から見た模式的な側面図である。 図16Aは、変形例のめっきモジュールの構成を概略的に示す平面図である。 図16Bは、図16Aに示すめっきモジュールの矢印B方向から見た模式的な側面図である。 図17Aは、変形例のトレー部材を模式的に示す平面図である。 図17Bは、変形例のトレー部材を模式的に示す平面図である。 図17Cは、変形例のトレー部材を模式的に示す平面図である。 図18は、本実施形態のめっきモジュールによるコンタクト部材の洗浄を模式的に示す図である。 図19は、本実施形態のめっきモジュールによるコンタクト部材の洗浄を模式的に示す図である。 図20は、本実施形態のめっきモジュールによるコンタクト部材の洗浄を模式的に示す図である。 図21は、コンタクト洗浄ノズルの変形例を模式的に示す図である。 図22は、本実施形態の基板洗浄方法およびコンタクト洗浄方法を示すフローチャートである。
 以下、本発明の実施形態について図面を参照して説明する。以下で説明する図面において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
<めっき装置の全体構成>
 図1は、本実施形態のめっき装置の全体構成を示す斜視図である。図2は、本実施形態のめっき装置の全体構成を示す平面図である。図1、2に示すように、めっき装置1000は、ロードポート100、搬送ロボット110、アライナ120、プリソークモジュール300、めっきモジュール400、スピンリンスドライヤ600、搬送装置700、および、制御モジュール800を備える。
 ロードポート100は、めっき装置1000に図示していないFOUPなどのカセットに収納された基板を搬入したり、めっき装置1000からカセットに基板を搬出するためのモジュールである。本実施形態では4台のロードポート100が水平方向に並べて配置されているが、ロードポート100の数および配置は任意である。搬送ロボット110は、基板を搬送するためのロボットであり、ロードポート100、アライナ120、およびスピンリンスドライヤ600の間で基板を受け渡すように構成される。搬送ロボット110および搬送装置700は、搬送ロボット110と搬送装置700との間で基板を受け渡す際には、図示していない仮置き台を介して基板の受け渡しを行うことができる。
 アライナ120は、基板のオリエンテーションフラットやノッチなどの位置を所定の方向に合わせるためのモジュールである。本実施形態では2台のアライナ120が水平方向に並べて配置されているが、アライナ120の数および配置は任意である。
 プリソークモジュール300は、例えばめっき処理前の基板の被めっき面に形成したシード層表面等に存在する電気抵抗の大きい酸化膜を硫酸や塩酸などの処理液でエッチング除去してめっき下地表面を洗浄または活性化するプリソーク処理を施すように構成される。本実施形態では2台のプリソークモジュール300が上下方向に並べて配置されているが、プリソークモジュール300の数および配置は任意である。めっきモジュール400は、基板にめっき処理を施す。本実施形態では、上下方向に3台かつ水平方向に4台並べて配置された12台のめっきモジュール400のセットが2つあり、合計24台のめっきモジュール400が設けられているが、めっきモジュール400の数および配置は任意である。
 スピンリンスドライヤ600は、洗浄処理後の基板を高速回転させて乾燥させるためのモジュールである。本実施形態では2台のスピンリンスドライヤが上下方向に並べて配置されているが、スピンリンスドライヤの数および配置は任意である。搬送装置700は、めっき装置1000内の複数のモジュール間で基板を搬送するための装置である。制御モジュール800は、めっき装置1000の複数のモジュールを制御するように構成され、例えばオペレータとの間の入出力インターフェースを備える一般的なコンピュータまたは専用コンピュータから構成することができる。
 めっき装置1000による一連のめっき処理の一例を説明する。まず、ロードポート100にカセットに収納された基板が搬入される。続いて、搬送ロボット110は、ロードポート100のカセットから基板を取り出し、アライナ120に基板を搬送する。アライナ120は、基板のオリエンテーションフラットやノッチなどの位置を所定の方向に合わせる。搬送ロボット110は、アライナ120で方向を合わせた基板を搬送装置700へ受け渡す。
 搬送装置700は、搬送ロボット110から受け取った基板をめっきモジュール400へ搬送する。めっきモジュール400は、基板にプリウェット処理を施す。搬送装置700は、プリウェット処理が施された基板をプリソークモジュール300へ搬送する。プリソークモジュール300は、基板にプリソーク処理を施す。搬送装置700は、プリソーク処理が施された基板をめっきモジュール400へ搬送する。めっきモジュール400は、基板にめっき処理を施す。さらに、めっきモジュール400は、めっき処理が施された基板に洗浄処理を施す。
 搬送装置700は、洗浄処理が施された基板をスピンリンスドライヤ600へ搬送する。スピンリンスドライヤ600は、基板に乾燥処理を施す。搬送ロボット110は、スピンリンスドライヤ600から基板を受け取り、乾燥処理を施した基板をロードポート100のカセットへ搬送する。最後に、ロードポート100から基板を収納したカセットが搬出される。
 <めっきモジュールの構成>
 次に、めっきモジュール400の構成を説明する。本実施形態における24台のめっきモジュール400は同一の構成であるので、1台のめっきモジュール400のみを説明する。図3は、本実施形態のめっきモジュール400の構成を概略的に示す縦断面図である。図3に示すように、めっきモジュール400は、めっき液を収容するためのめっき槽410を備える。めっき槽410は、円筒状の側壁と円形の底壁とを有する容器であり、上部には円形の開口が形成されている。また、めっきモジュール400は、めっき槽410の上部開口の外側に配置されたオーバーフロー槽405を備える。オーバーフロー槽405は、めっき槽410の上部開口から溢れためっき液を受けるための容器である。
 めっきモジュール400は、めっき槽410の内部を上下方向に隔てるメンブレン420を備える。めっき槽410の内部はメンブレン420によってカソード領域422とアノード領域424に仕切られる。カソード領域422とアノード領域424にはそれぞれめっき液が充填される。アノード領域424のめっき槽410の底面にはアノード430が設けられる。カソード領域422にはメンブレン420に対向して抵抗体450が配置される。抵抗体450は、基板Wfの被めっき面Wf-aにおけるめっき処理の均一化を図るための部材であり、多数の孔が形成された板状部材によって構成される。
 また、めっきモジュール400は、被めっき面Wf-aを下方に向けた状態で基板Wfを保持するための基板ホルダ440を備える。めっきモジュール400は、基板ホルダ440を昇降させるための昇降機構442を備える。昇降機構442は、例えばモータなどの公知の機構によって実現することができる。また、めっきモジュール400は、被めっき面Wf-aの中央を垂直に伸びる仮想的な回転軸周りに基板Wfが回転するように基板ホルダ440を回転させるための回転機構446を備える。回転機構446は、例えばモータなどの公知の機構によって実現することができる。
 めっきモジュール400は、昇降機構442を用いて基板Wfをカソード領域422のめっき液に浸漬し、回転機構446を用いて基板Wfを回転させながら、アノード430と基板Wfとの間に電圧を印加することによって、基板Wfの被めっき面Wf-aにめっき処理を施すように構成される。
 また、めっきモジュール400は、基板ホルダ440を傾斜させるように構成された傾斜機構447を備える。傾斜機構447は、例えばチルト機構などの公知の機構によって実現することができる。
 めっきモジュール400は、めっき槽410の上方に配置されたカバー部材460と、基板ホルダ440に保持された基板Wfの洗浄処理を行うための洗浄装置470と、を備える。以下、カバー部材460および洗浄装置470について説明する。
 <カバー部材>
 図4は、本実施形態のめっきモジュールの構成を概略的に示す斜視図である。図5Aは、本実施形態のめっきモジュールのカバー部材を模式的に示す斜視図である。図5Bは、本実施形態のめっきモジュールのカバー部材を模式的に示す平面図である。図6は、本実施形態のめっきモジュールのカバー部材を模式的に示す縦断面図である。
 図4から図6に示すように、カバー部材460は、めっき槽410の上方に配置された円筒状の側壁461を有する。側壁461は、基板ホルダ440の昇降経路を囲むように配置されている。また、カバー部材460は、側壁461の下端に接続された底壁462を有する。底壁462は、めっき槽410の上部開口の側壁461より外側を覆う板状部材である。
 図4から図6に示すように、底壁462には排気口464が形成される。図6に示すように、排気口464は、めっき槽410、基板ホルダ440、およびカバー部材460などの部材が設置されためっきモジュール400内の空間の外部に連通している。したがって、めっき槽410内のめっき液がミスト化して生成される雰囲気(めっき液雰囲気)は、排気口464を介してめっきモジュール400の外部に排出される。なお、本実施形態では排気口464が底壁462に形成されている例を示したが、これに限らず、排気口464は、側壁461および底壁462の少なくとも一方に形成されていてもよい。
 図5Aおよび図5Bに示すように、カバー部材460の側壁461には開口461aが形成されている。この開口461aは、洗浄装置470を側壁461の外部と内部との間で移動させるための通路となる。めっきモジュール400は、開口461aを開閉するように構成された開閉機構467を備える。
 開閉機構467は、開口461aを開閉するための第1の扉468-1と第2の扉468-2とを備える。第1の扉468-1と第2の扉468-2は、側壁461の周方向に沿って並べて配置されている。第1の扉468-1は、開口461aの一方の側端部に設けられた回転軸468-1aに回転可能に支持されている。第2の扉468-2は、開口461aの他方の側端部に設けられた回転軸468-2aに回転可能に支持されている。
 開閉機構467は、第1の扉468-1をカバー部材460の内部に向けて回転移動させるための第1の扉駆動部材469-1と、第2の扉468-2をカバー部材460の内部に向けて回転移動させるための第2の扉駆動部材469-2と、を含む。第1の扉駆動部材469-1および第2の扉駆動部材469-2は、例えばモータなどの公知の機構によって実現することができる。
 本実施形態によれば、基板Wfの洗浄を実行することと、めっき槽410内のめっき液雰囲気がめっきモジュール400内に放出されるのを抑制することを両立することができる。すなわち、カバー部材460を設けることによって、めっき槽410の上部開口は、底壁462、側壁461、および基板ホルダ440によって覆われるので、めっき410槽内のめっき液雰囲気がめっき槽410の上部開口から放出されるのが抑制される。また、底壁462には排気口464が形成されているので、めっき槽410内のめっき液雰囲気は、排気口464を介してめっきモジュール400外部に排出される。これにより、めっきモジュール400内に配置されている各種部品および配線などに錆または腐食が生じるのを抑制することができる。
 これに加えて、側壁461には開口461aが形成されており、開口461aは第1の扉468-1と第2の扉468-2によって開閉することができる。したがって、第1の扉駆動部材469-1および第2の扉駆動部材469-2は、基板Wfの洗浄処理が行われないときには、開口461aを閉じてめっき液雰囲気の放出を抑制することができる。一方、第1の扉駆動部材469-1および第2の扉駆動部材469-2は、基板Wfの洗浄処理が行われるときには、開口461aを開けることによって洗浄装置470をカバー部材460の内部に移動させることができるので、洗浄処理を実行することができる。洗浄装置470を用いた洗浄処理の詳細については後述する。
 なお、上記の実施形態では、第1の扉468-1および第2の扉468-2をカバー部材460の内部に向けて回転移動させる例を示したが、これに限定されない。図7Aおよび図7Bは、変形例のカバー部材を模式的に示す斜視図である。図7Aおよび図7Bは、第1の扉468-1および第2の扉468-2が開口461aを開いた状態を示している。
 図7Aに示すように、第1の扉468-1および第2の扉468-2は、側壁461の周方向に沿って移動できるように側壁461に取り付けられていてもよい。第1の扉駆動部材469-1は、第1の扉468-1をカバー部材460の側壁461の周方向に沿ってスライド移動させるように構成されていてもよい。第2の扉駆動部材469-2は、第2の扉468-2をカバー部材460の側壁461の周方向に沿ってスライド移動させるように構成されていてもよい。
 図7Bに示すように、第1の扉468-1および第2の扉468-2は、側壁461に沿って上下方向に移動できるように側壁461に取り付けられていてもよい。第1の扉駆動部材469-1は、第1の扉468-1をカバー部材460の側壁461に沿って上下方向にスライド移動させるように構成されていてもよい。第2の扉駆動部材469-2は、第2の扉468-2をカバー部材460の側壁461に沿って上下方向にスライド移動させるように構成されていてもよい。
 <洗浄装置>
 次に、洗浄装置470について説明する。図8は、本実施形態のめっきモジュールの構成を概略的に示す平面図である。図3、図4および図8に示すように、洗浄装置470は、基板ホルダ440に保持された基板Wfの被めっき面Wf-aを洗浄するための基板洗浄部材472を備える。基板洗浄部材472は、複数(本実施形態では4個)の基板洗浄ノズル472aを備える。複数の基板洗浄ノズル472aは、基板洗浄部材472が洗浄位置に配置されたときに、基板Wfの半径方向、または基板Wfの回転方向と交差する方向に沿って配置される。基板洗浄部材472には配管471が接続されている。図示していない液源から供給された洗浄液(例えば純水)は配管471を介して基板洗浄部材472に送られ、複数の基板洗浄ノズル472aのそれぞれから吐出される。
 また、洗浄装置470は、基板ホルダ440に保持された基板Wfに給電するためのコンタクト部材を洗浄するためのコンタクト洗浄部材482を備える。コンタクト洗浄部材482は、洗浄液を吐出するためのコンタクト洗浄ノズル482aを備える。コンタクト洗浄部材482には配管481が接続されている。図示していない液源から供給された洗浄液(例えば純水)は配管481を介してコンタクト洗浄部材482に送られ、コンタクト洗浄ノズル482aから吐出される。コンタクト洗浄部材482を用いたコンタクト部材の洗浄の詳細は後述する。
 洗浄装置470は、アーム474を旋回させるように構成された駆動機構476を備える。駆動機構476は、例えばモータなどの公知の機構によって実現することができる。アーム474は、駆動機構476から水平方向に伸びる板状の部材である。基板洗浄部材472およびコンタクト洗浄部材482は、アーム474上に保持されている。駆動機構476は、アーム474を旋回させることによって、基板洗浄部材472およびコンタクト洗浄部材482を、めっき槽410と基板ホルダ440との間の洗浄位置と、めっき槽410と基板ホルダ440との間から退避した退避位置と、の間で移動させるように構成されている。図8は、基板洗浄部材472およびコンタクト洗浄部材482が退避位置に配置された状態を実線で示し、基板洗浄部材472およびコンタクト洗浄部材482が洗浄位置に配置された状態を破線で示している。
 図4および図8に示すように、洗浄装置470は、基板洗浄部材472の下方に配置されたトレー部材478を備える。トレー部材478は、基板洗浄部材472から吐出されて基板Wfの被めっき面Wf-aに衝突した後に落下した洗浄液を受けるように構成された容器である。また、トレー部材478は、コンタクト洗浄部材482から吐出されてコンタクト部材に衝突した後に落下した洗浄液を受けるように構成されている。本実施形態では、基板洗浄部材472、コンタクト洗浄部材482、およびアーム474の全体がトレー部材478に収容されている。駆動機構476は、基板洗浄部材472、コンタクト洗浄部材482、アーム474、およびトレー部材478を共に、洗浄位置と退避位置との間で旋回させるように構成されている。ただし、駆動機構476は、基板洗浄部材472、コンタクト洗浄部材482、およびアーム474と、トレー部材478と、を別々に駆動できるようになっていてもよい。
 図4に示すように、トレー部材478の下方には固定トレー部材484が配置されている。トレー部材478に落下した洗浄液は、固定トレー部材484に落下する。固定トレー部材484には排液管488が取り付けられている。固定トレー部材484に落下した洗浄液は、排液管488を介して排出される。
 洗浄装置470は、トレー部材478に落下した洗浄液の電気伝導度を測定するための電気伝導度計486を備える。具体的には、電気伝導度計486は、固定トレー部材484の洗浄液が流れる箇所に設けられている。めっきモジュール400は、固定トレー部材484における洗浄液の電気伝導度を測定することによって、洗浄液にどの程度めっき液が含まれているか、すなわち洗浄処理がどの程度進んでいるか、を把握することができる。めっきモジュール400は、例えば電気伝導度計486によって測定された洗浄液の電気伝導度に基づいて、洗浄処理を終了する判断を行うことができる。
 <基板の洗浄>
 めっきモジュール400は、めっき処理が終了したら、昇降機構442によって基板ホルダ440をめっき槽410から上昇させ、基板ホルダ440を、カバー部材460(側壁461)に囲まれる位置に配置する。めっきモジュール400は、図8に破線で示すように基板洗浄部材472を洗浄位置に配置する。これにより、基板Wfの被めっき面Wf-aに対して基板洗浄ノズル472aが向けられる。また、めっきモジュール400は、回転機構446によって基板ホルダ440を回転させる。回転機構446は、例えば、基板ホルダ440を1rpm~20rpmの回転速度で回転させるように構成されている。また、めっきモジュール400は、傾斜機構447によって基板ホルダ440を傾斜させた状態で、基板Wfの被めっき面Wf-aを洗浄するようになっている。以下、この点について説明する。
 図9は、本実施形態のめっきモジュールの構成を概略的に示す平面図である。図10は、本実施形態のめっきモジュールの構成を概略的に示す縦断面図である。図11は、本実施形態のめっきモジュールの構成の一部を拡大して概略的に示す縦断面図である。
 図10に示すように、基板ホルダ440は、基板Wfの被めっき面Wf-aの外周部を支持するための支持機構494と、支持機構494とともに基板Wfを挟持するためのバックプレートアッシー492と、バックプレートアッシー492から鉛直に上に伸びる回転シャフト491と、を備える。支持機構494は、基板Wfの被めっき面Wf-aを露出させるための開口を中央に有する環状部材であり、柱部材496によって吊り下げ保持されている。
 バックプレートアッシー492は、支持機構494とともに基板Wfを挟持するための円板状のフローティングプレート492-2を備える。フローティングプレート492-2は、基板Wfの被めっき面Wf-aの裏面側に配置される。また、バックプレートアッシー492は、フローティングプレート492-2の上方に配置された円板状のバックプレート492-1を備える。また、バックプレートアッシー492は、フローティングプレート492-2を基板Wfの裏面から離れる方向に付勢するためのフローティング機構492-4と、フローティング機構492-4による付勢力に抗してフローティングプレート492-2を基板Wfの裏面に押圧するための押圧機構492-3と、を備える。
 フローティング機構492-4は、フローティングプレート492-2からバックプレート492-1を貫通して上方に伸びるシャフトの上端とバックプレート492-1との間に取り付けられた圧縮ばねを含む。フローティング機構492-4は、圧縮ばねの圧縮反力によってシャフトを介してフローティングプレート492-2を上方へ持ち上げ、基板Wfの裏面から離れる方向へ付勢させるように構成される。
 押圧機構492-3は、バックプレート492-1の内部に形成された流路を介してフローティングプレート492-2に流体を供給することにより、フローティングプレート492-2を下方に押圧するように構成される。押圧機構492-3は、流体が供給されているときには、フローティング機構492-4による付勢力よりも強い力で基板Wfを支持機構494へ押圧する。
 図11に示すように、支持機構494は、基板Wfの被めっき面Wf-aの外周部を支持するための環状の支持部材494-1を含む。支持部材494-1は、バックプレートアッシー492(フローティングプレート492-2)の下面の外周部に付き出すフランジ494-1aを有する。フランジ494-1aの上には環状のシール部材494-2が配置される。シール部材494-2は弾性を有する部材である。支持部材494-1は、シール部材494-2を介して基板Wfの被めっき面Wf-aの外周部を支持する。シール部材494-2とフローティングプレート492-2とで基板Wfを挟持することにより、支持部材494-1(基板ホルダ440)と基板Wfとの間がシールされる。
 支持機構494は、支持部材494-1の内周面に取り付けられた環状の台座494-3と、台座494-3の上面に取り付けられた環状の導電部材494-5と、を備える。台座494-3は、例えばステンレスなどの導電性を有する部材である。導電部材494-5は、例えば銅などの導電性を有する環状部材である。
 支持機構494は、基板Wfに給電するためのコンタクト部材494-4を備える。コンタクト部材494-4は、台座494-3の内周面にネジ等によって環状に取り付けられている。支持部材494-1は、台座494-3を介してコンタクト部材494-4を保持している。コンタクト部材494-4は、図示していない電源から基板ホルダ440に保持された基板Wfに給電するための導電性を有する部材である。コンタクト部材494-4は、基板Wfの被めっき面Wf-aの外周部に接触する複数の基板接点494-4aと、基板接点494-4aよりも上方に延伸する本体部494-4bと、を有する。
 基板Wfをめっき処理するときにはシール部材494-2とバックプレートアッシー492とで基板Wfを挟持することにより、支持部材494-1と基板Wfとの間がシールされる。
 図9および図10に示すように、傾斜機構447は、基板ホルダ440を傾斜させる。これにより、基板ホルダ440に保持された基板Wfも傾斜する。なお、図9においては説明の便宜上トレー部材478などの部材の図示を省略している。
 基板洗浄部材472は、傾斜機構447によって傾斜し、かつ、回転機構446によって回転する基板Wfの上向き回転成分を有する領域に対向して配置されている。言い換えると、基板洗浄部材472は、傾斜機構447によって傾斜した基板Wfの下端に対応する位置Loから上端に対応する位置Hiへ向けて回転機構446によって回転している基板Wfの被めっき面Wf-aに洗浄液を吐出するように構成される。
 複数の基板洗浄ノズル472aはそれぞれ、基板洗浄ノズル472aの先端から離れるほど広がるような扇状に洗浄液を吐出するように構成された扇形ノズルである。また、図9に示すように、複数の基板洗浄ノズル472aはそれぞれ、隣接する基板洗浄ノズル472aから吐出した洗浄液が互いに衝突せず、かつ、図中に矢印Aで示す基板Wfの回転方向において部分的に重なり合うように構成されている。これにより、基板Wfの被めっき面Wf-aの全体を洗浄することができる。
 図12Aは、基板の回転方向と基板洗浄ノズルの配置関係を模式的に示す図である。図12Aに示すように、基板洗浄部材472および基板洗浄ノズル472aは、基板Wfの傾斜と同様に傾斜した状態で、基板Wfの被めっき面Wf-aに向けて洗浄液を吐出することができる。図12Bは、基板洗浄ノズルの洗浄液吐出方向の変形例を示す図である。図12Bに示すように、基板洗浄ノズル472aは、基板Wfの傾斜に関わらず、鉛直上向きに洗浄液を吐出してもよい。
 本実施形態によれば、基板Wfを効率よく洗浄することができる。すなわち、基板Wfを水平にした状態で被めっき面に洗浄液が衝突すると、被めっき面に付着しためっき液は洗浄液に押し流されて、その一部は落下して回収されるが残りの一部は基板の被めっき面に付着したまま基板の回転に伴って洗浄領域の下流側へ移動する。洗浄領域の下流側へ移動しためっき液は、基板が360°回転して再び洗浄領域に移動するまで洗浄されないので、被めっき面の全体を十分に洗浄するためには、洗浄処理の時間が長くなる。
 これに対して本実施形態によれば、基板Wfが傾斜しているので、洗浄液に押し流されためっき液は重力にしたがって傾斜に沿った方向(図9において下方)に流れる。また、本実施形態によれば、基板の上向き成分を有して回転している領域に洗浄液を吐出するので、基板Wfの洗浄された領域は上向き成分を有して回転する(図9において矢印A方向)。したがって、図9に示すように平面視した場合に、洗浄液に押し流されためっき液の流れ方向と、基板Wfの洗浄された領域の回転方向と、のなす角度は約180°となる。つまり、基板Wfの洗浄された領域が回転する方向とめっき液が流れる方向が真逆となるので、基板Wfの洗浄された領域にめっき液が混ざり難くなり、その結果、短時間で被めっき面の全体を十分に洗浄することができる。
 図13は、本実施形態による洗浄と比較例による洗浄の結果を示す図である。図13において縦軸は基板Wfの被めっき面Wf-aに残るコンタミ量(めっき液量)を示しており、横軸は洗浄時間(基板ホルダが何回転したか)を示している。図13において、グラフαは本実施形態によるコンタミ量を示しており、グラフβは比較例によるコンタミ量を示している。比較例は、基板ホルダ440の回転速度は変えず(10rpm)、回転方向を逆向きにした状態で洗浄処理を行った場合のコンタミ量を示している。
 図13に示すように、比較例では、基板ホルダ440を2回転させた状態でまだコンタミが残っていた。一方、本実施形態は、比較例に比べてより短い時間でコンタミ量が減っており、基板ホルダ440を2回転させた状態でコンタミ量がほぼ0になっていた。このように、本実施形態によれば、基板Wfを効率よく洗浄することができる。
 なお、本実施形態では、図9に示すように平面視した場合に、洗浄液に押し流されためっき液の流れ方向と、基板Wfの洗浄された領域の回転方向と、のなす角度が約180°となる例を示したが、これに限定されない。例えば、図9において破線で示したA領域に基板洗浄部材472を配置したとしたら、めっき液の流れ方向と基板Wfの洗浄された領域の回転方向とのなす角度は0°となる。この場合、基板Wfの洗浄された領域が回転する方向とめっき液が流れる方向が同じになるので、本実施形態の効果は得られない(上記の比較例)。B領域に基板洗浄部材472を配置したとしたら、同角度は90°となり、C領域に基板洗浄部材472を配置したとしたら、同角度は270°となる。この場合、本実施形態の効果は限定的である。
 一方、同角度が90°より大きく270°より小さくなれば、基板Wfの洗浄された領域にめっき液が混ざり難くなる。したがって、基板洗浄部材472は、同角度が90°より大きく270°より小さくなるように、言い換えれば、傾斜した基板Wfの下端に対応する位置Loから上端に対応する位置Hiへ向けて回転する基板の被めっき面(図9の一点鎖線AA-AAで挟まれた領域)に、洗浄液を吐出するようにすることができる。また、基板洗浄部材472は、同角度が135°より大きく225°より小さくなるように、言い換えれば、図9の二点鎖線BB-BBで挟まれる領域に、洗浄液を吐出すると、洗浄の効率がさらに高まるので、より好ましい。
 なお、上記の実施形態では、基板Wfを傾斜させた状態で洗浄処理を行う例を示したが、これに限定されない。図14は、変形例のめっきモジュールの構成を概略的に示す側面図である。本変形例のめっきモジュールは、上記実施形態のめっきモジュールと基本的な構成は同様であるので、同様の構成については説明を省略し、異なる構成についてのみ説明する。
 図14に示すように、本変形例のめっきモジュール400は、基板ホルダ440を傾斜させず、基板Wfの被めっき面Wf-aを概略水平に保った状態で洗浄処理を行うように構成される。また、基板洗浄部材472は、回転機構446によって回転する基板Wfの回転方向とは反対方向の速度成分を有する洗浄液を吐出するように構成される。
 具体的には、基板洗浄部材472および基板洗浄ノズル472aは、洗浄液の吐出方向が基板Wfの回転方向に逆らう方向になるように傾斜して配置される。基板洗浄部材472は、この状態で基板Wfの被めっき面Wf-aに向けて洗浄液を吐出することにより、基板Wfを効率よく洗浄することができる。
 すなわち、本変形例のように洗浄液を吐出することによって、基板Wfの被めっき面Wf-aに衝突した洗浄液は、被めっき面Wf-aに付着しためっき液を基板回転方向の上流側へ押し流しながら落下して回収される。一方、基板Wfの洗浄された領域は基板回転方向の下流側へ回転する。したがって、基板Wfの洗浄された領域が回転する方向とめっき液が流れる方向が真逆となるので、基板Wfの洗浄された領域にめっき液が混ざり難くなり、その結果、短時間で被めっき面の全体を十分に洗浄することができる。
 本変形例においては、基板洗浄部材472に配置された全て(4個)の基板洗浄ノズル472aが、基板Wfの回転方向とは反対方向の速度成分を有する洗浄液を吐出するので、上記効果が得られる。仮に、基板洗浄部材472に配置された基板洗浄ノズル472aのうち一部が、基板Wfの回転方向にしたがう方向の速度成分を有する洗浄液を吐出したら、その洗浄液に押し流されためっき液は基板の回転方向の下流に流れるので、基板Wfの洗浄された領域にめっき液が混ざり易くなり、上記効果は得られないまたは低減する。
 また、上記の実施形態では、基板洗浄部材472に4個の基板洗浄ノズル472aが配列される例を示したが、これに限定されない。図15Aは、変形例のめっきモジュールの構成を概略的に示す平面図である。図15Bは、図15Aに示すめっきモジュールの矢印B方向から見た模式的な側面図である。図15においては、図9の実施形態と重複する構成については説明を省略する。
 図15Aに示すように、基板洗浄部材472は、複数(4個)の基板洗浄ノズル472aと、これら複数の基板洗浄ノズル472aよりも基板の外周側に配置されたシール洗浄ノズル472bと、を備えている。シール洗浄ノズル472bは、基板ホルダ440と基板Wfとの間をシールするためのシール部材494-2を洗浄するための部材である。
 シール洗浄ノズル472bは、鉛直上向きおよび傾斜して相対的に高い位置にある基板ホルダ440の方向へ扇状に洗浄液を吐出するように構成された扇形ノズルである。シール洗浄ノズル472bは、図15Aにおいて矢印Aで示す方向に回転するシール部材494-2の回転方向に沿う方向の速度成分を有する洗浄液をシール部材494-2の内周面に向けて吐出するように構成されている。
 本変形例によれば、シール部材494-2を効率よく洗浄することができる。すなわち、図15Aにおいて破線473で示した領域には、基板洗浄ノズル472aから吐出された洗浄液が基板に衝突した後、基板の傾斜に沿って垂れ落ちる。これにより、破線473で示した領域ではシール部材494-2の内周面に洗浄液の厚い液膜が形成される。したがって、仮にシール洗浄ノズル472bから図15Aにおいて下方向のシール部材494-2に向けて洗浄液を吐出した場合、厚い液膜に阻害されて、十分な打力でシール部材494-2に洗浄液を当てることが難しく、その結果、シール部材494-2の洗浄効率が悪い。
 これに対して、本変形例では、シール洗浄ノズル472bは、傾斜した基板ホルダ440の相対的に高い位置に取り付けられたシール部材494-2に向けて洗浄液を吐出するように構成されている。したがって、洗浄液が衝突するシール部材494-2の内周面には液膜が形成されていないかまたは薄いので、十分な打力でシール部材494-2を洗浄することができ、その結果、シール部材494-2を効率よく洗浄することができる。
 これに加えて、本変形例によれば、トレー部材478のサイズが大型化するのを抑制することができる。すなわち、仮にシール洗浄ノズル472bから図15Aにおいて下方向のシール部材494-2に向けて洗浄液を吐出した場合、吐出された洗浄液が液膜に衝突することによって、シール部材494-2の内周面に沿って、破線矢印475に示す方向に液膜が押し流される。すると、押し流された液膜がトレー部材478の先端部478aの外側へこぼれ落ちるおそれがある。トレー部材478から洗浄液がこぼれ落ちるのを防ぐためには、先端部478aを広げるなどトレー部材478のサイズを大きくすることが考えられるが、これは装置全体の大型化または他の部品との干渉などの観点から好ましくない。
 これに対して本変形例によれば、シール洗浄ノズル472bは、液膜が溜まり難い領域のシール部材494-2の内周面に向けて洗浄液を吐出するように構成されている。したがって、破線473で示した領域に溜まった液膜を押し流し難いので、トレー部材478から洗浄液がこぼれ落ち難くなり、その結果、トレー部材478のサイズが大型化するのを抑制することができる。
 なお、図15に示した変形例では、シール洗浄ノズル472bが扇形ノズルである例を示したが、これに限定されない。図16Aは、変形例のめっきモジュールの構成を概略的に示す平面図である。図16Bは、図16Aに示すめっきモジュールの矢印B方向から見た模式的な側面図である。図16においては、図15の変形例と重複する構成については説明を省略する。
 図16Aに示すように、シール洗浄ノズル472bは、直線状に洗浄液を吐出する直進ノズルであってもよい。本変形例によれば、図15の変形例と同様に、シール部材494-2を効率よく洗浄することができるとともに、トレー部材478のサイズが大型化するのを抑制することができる。
 なお、上記の説明では、めっき処理後に基板Wfの被めっき面Wf-aからめっき液を洗浄するために基板洗浄部材472を使用する例を示したが、これに限定されない。めっきモジュール400は、プリウェット処理のために基板洗浄部材472を使用することもできる。すなわち、めっきモジュール400は、基板洗浄部材472を用いて、めっき処理前の基板Wfの被めっき面Wf-aを純水または脱気水などの処理液で濡らすことで、基板表面に形成されたパターン内部の空気を処理液に置換することができる。
 また、上記の説明では、トレー部材478が、基板洗浄部材472、コンタクト洗浄部材482、およびアーム474の全体を収容するように構成される例を示したが、これに限定されない。図17Aから図17Cは、変形例のトレー部材を模式的に示す平面図である。
 図17Aに示すように、変形例のトレー部材478Aは、傾斜した基板Wfの中央に対応する位置に配置された概略円形の第1のトレー478A-1と、傾斜した基板Wfの下端に対応する位置に配置された概略円形の第2のトレー478A-2と、第1のトレー478A-1と第2のトレー478A-2とを連結する連結トレー478A-3と、を有して構成されてもよい。第1のトレー478A-1の中央には排液配管478A-4が接続されており、排液配管478A-4を流れる洗浄液およびめっき液は固定トレー部材484に落下するようになっている。
 基板ホルダ440に保持された基板Wfは撓んで中央が僅かに低くなっているので、基板Wfの被めっき面Wf-aに吐出された洗浄液は、基板Wfの中央に流れて落下するか、または傾斜した基板Wfの下端に流れて落下する。この点、本変形例では、基板Wfの中央に対応する位置に第1のトレー478A-1が配置され、傾斜した基板Wfの下端に対応する位置に第2のトレー478A-2が配置されているので、洗浄液を効率よく回収することができる。
 図17Bに示すように、変形例のトレー部材478Bは、傾斜した基板Wfの中央および下端に対応する位置に配置されたL字状のトレー478B-1を備える。L字状のトレー478B-1には排液配管478B-2が接続されており、排液配管478B-2を流れる洗浄液およびめっき液は固定トレー部材484に落下するようになっている。本変形例においても、基板Wfの中央および下端に対応する位置にL字状のトレー478B-1が配置されているので、洗浄液を効率よく回収することができる。
 図17Cに示すように、変形例のトレー部材478Cは、複数(本変形例では5枚)の三角形状のトレー478C-1を備えている。複数の三角形状のトレー478C-1はそれぞれ、上下方向に重ねて配置されており、各トレー478C-1の頂部の周りに回転可能になっている。複数の三角形状のトレー478C-1には排液配管478C-2が接続されており、排液配管478C-2を流れる洗浄液およびめっき液は固定トレー部材484に落下するようになっている。複数の三角形状のトレー478C-1は、図17Cに示すように洗浄位置に配置されたときには、それぞれが異なる回転角度で配置されて全体として扇状を形成する。これにより、基板Wfの中央および下端に対応する位置に複数の三角形状のトレー478C-1が配置されているので、洗浄液を効率よく回収することができる。一方、複数の三角形状のトレー478C-1は、退避位置に配置されたときには、それぞれが同じ回転角度で配置されることにより、トレー部材478Cの設置スペースを削減することができる。
 <コンタクト部材の洗浄>
 次に、基板ホルダ440に取り付けられたコンタクト部材の洗浄について説明する。図18は、本実施形態のめっきモジュールによるコンタクト部材の洗浄を模式的に示す図である。図11を用いて説明した部材と同様の構成については説明を省略する。
 図11を用いて説明したように、基板Wfをめっき処理するときにはシール部材494-2とバックプレートアッシー492とで基板Wfを挟持することにより、支持部材494-1と基板Wfとの間がシールされる。しかしながら、シール部材494-2と基板Wfとの間に僅かな隙間があると、めっき液が侵入してコンタクト部材494-4に付着する場合がある。また、めっき処理後に基板Wfを上昇させた際に基板Wfからめっき液が落下してコンタクト部材494-4に付着する場合もある。
 そこで、図18に示すように、コンタクト洗浄部材482(コンタクト洗浄ノズル482a)は、基板ホルダ440の下方からコンタクト部材の本体部494-4bに向けて洗浄液を吐出するように構成されている。具体的には、バックプレートアッシー492は、コンタクト部材494-4を洗浄するときに、コンタクト部材494-4に囲まれる位置より高い位置に配置され、図18には図示されていない。コンタクト洗浄部材482は、支持機構494(支持部材494-1)の開口を介して本体部494-4bに洗浄液を吐出するように構成される。コンタクト洗浄ノズル482aは、扇状に洗浄液を吐出するように構成された扇形ノズルである。図18では、コンタクト洗浄ノズル482aは、水平面に対して約45°の仰角で洗浄液を吐出する例を示したが、これに限らず洗浄液の吐出角度は任意である。本体部494-4bに衝突した洗浄液は、重力によって本体部494-4bから下方に流れるので、本体部494-4bおよび基板接点494-4aに付着しためっき液を洗浄してトレー部材478に回収される。
 本実施形態によれば、簡素な構造でコンタクト部材を洗浄することができる。すなわち、本実施形態では、駆動機構476によってコンタクト洗浄部材482を基板ホルダ440の下方の洗浄位置に配置し、支持機構494(支持部材494-1)の開口を介して本体部494-4bに洗浄液を吐出する。したがって、ブラシを用いてコンタクト部材を洗浄したり、コンタクト部材の側方または上方にノズルを配置したりする必要がないので、簡素な構造でコンタクト部材を洗浄することができる。
 上記の実施形態では、コンタクト洗浄ノズル482aから吐出された洗浄液が直接本体部494-4bに衝突する例を示したが、これに限定されない。図19は、本実施形態のめっきモジュールによるコンタクト部材の洗浄を模式的に示す図である。図19に示すように、本実施形態では、バックプレートアッシー492(フローティングプレート492-2)は、コンタクト部材494-4を洗浄するときに、コンタクト部材494-4に囲まれる位置に配置される。
 コンタクト洗浄部材482は、バックプレートアッシー492の下面に向けて洗浄液を吐出し、バックプレートアッシー492の下面に当たって跳ね返った洗浄液を本体部494-4bに向けるように構成される。バックプレートアッシー492の下面に当たって跳ね返った洗浄液は、本体部494-4bに衝突した後、重力によって本体部494-4bから下方に流れる。これにより、本体部494-4bおよび基板接点494-4aに付着しためっき液は、洗浄液とともに落下してトレー部材478に回収される。
 本実施形態によれば、上記の実施形態と同様に簡素な構造でコンタクト部材を洗浄することができる。これに加えて、本実施形態によれば、基板ホルダ440に取り付けられた金属部材(例えば導電部材494-5)に錆びが生じるのを抑制することができる。すなわち、コンタクト部材494-4を洗浄する際に、コンタクト部材494-4の上方または側方にコンタクト洗浄部材482を配置する技術では、コンタクト洗浄部材482とバックプレートアッシー492が接触するおそれがあるので、バックプレートアッシー492を高い位置に退避することになる。すると、コンタクト洗浄部材482から吐出されてコンタクト部材494-4に衝突した洗浄液が飛び跳ねて金属部材(例えば導電部材494-5)に付着し、錆びが発生するおそれがある。洗浄液の飛び跳ねが金属部材に付着しないようにするためには、コンタクト洗浄部材482の配置位置、洗浄液の吐出角度、洗浄液の吐出強度などを精密に制御する必要があるので好ましくない。
 これに対して、本実施形態では、基板ホルダ440の下方にコンタクト洗浄部材482を配置して、基板ホルダ440の下方から洗浄液を吐出する。したがって、コンタクト部材494-4に囲まれる位置にスペースができるので、このスペースにバックプレートアッシー492を配置することができる。図19に示すように、バックプレートアッシー492は、コンタクト部材494-4より上方にある金属部材(例えば導電部材494-5)に対する壁となるので、コンタクト洗浄部材482から吐出された洗浄液が金属部材に飛び跳ねるのを抑制することができる。その結果、本実施形態によれば、コンタクト洗浄部材482の配置位置、洗浄液の吐出角度、洗浄液の吐出強度などを精密に制御する必要なく、簡単にコンタクト部材494-4を洗浄することができる。
 上記では基板ホルダ440が水平になっている状態でコンタクト部材494-4を洗浄する例を示したが、これに限定されない。図20は、本実施形態のめっきモジュールによるコンタクト部材の洗浄を模式的に示す図である。
 図20に示すように、コンタクト洗浄部材482は、傾斜機構447によって基板ホルダ440を傾斜させた状態で、コンタクト部材494-4を洗浄してもよい。この場合、図20に示すように、コンタクト洗浄部材482は、傾斜機構447によって傾斜して相対的に低い位置にある基板ホルダ440に取り付けられたコンタクト部材494-4の本体部494-4bに向けて洗浄液を吐出することができる。
 また、上記の実施形態では、コンタクト洗浄ノズル482aから扇状に洗浄液を吐出する例を示したが、これに限定されない。図21は、コンタクト洗浄ノズルの変形例を模式的に示す図である。図21に示すように、変形例のコンタクト洗浄ノズル482a´は、直線状に洗浄液を吐出する直進ノズルであってもよい。直進ノズルを用いることによって、コンタクト部材494-4の本体部494-4bの狙った位置に洗浄液を吐出することができる。
 <基板洗浄方法およびコンタクト洗浄方法>
 次に、本実施形態の基板洗浄方法およびコンタクト洗浄方法を説明する。図22は、本実施形態の基板洗浄方法およびコンタクト洗浄方法を示すフローチャートである。図22のフローチャートは、基板ホルダ440に保持された基板Wfがめっき槽410に浸漬されてめっき処理された後の各処理を示している。また、図22のフローチャートは、図15または図16に示しためっきモジュールを用いた基板洗浄方法およびコンタクト洗浄方法を示している。
 基板洗浄方法は、めっき処理が終了したら、昇降機構442を用いて基板ホルダ440をめっき槽410から上昇させ、基板ホルダ440をカバー部材460(側壁461)に囲まれる位置に配置する(上昇ステップ102)。
 続いて、基板洗浄方法は、カバー部材460の側壁461の開口461aに配置された第1の扉468-1および第2の扉468-2を移動させて開口461aを開く(開ステップ104)。開ステップ104は、図5Bに示すように、第1の扉468-1および第2の扉468-2をカバー部材460の内部に向けて回転移動させることができる。ただし、これに限らず、開ステップ104は、図7Aに示すように、第1の扉468-1および第2の扉468-2をカバー部材460の側壁461の周方向に沿ってスライド移動させてもよい。また、開ステップ104は、図7Bに示すように、第1の扉468-1および第2の扉468-2をカバー部材460の側壁461に沿って上下方向にスライド移動させてもよい。
 続いて、基板洗浄方法は、基板Wfの被めっき面Wf-aに対して基板洗浄ノズル472aを向ける(ステップ106)。また、基板洗浄方法は、シール部材494-2に対してシール洗浄ノズル472bを向ける(ステップ107)。なお、便宜上、ステップ106とステップ107を別々のステップとして説明したが、ステップ106およびステップ107は、駆動機構476を用いて、開ステップ104によって開いた開口461aを介して洗浄位置に洗浄装置470(基板洗浄部材472およびコンタクト洗浄部材482)を移動させる第1の移動ステップによって実行される。
 続いて、基板洗浄方法は、傾斜機構447を用いて基板ホルダ440(および基板Wf)を傾斜させる(傾斜ステップ108)。続いて、基板洗浄方法は、回転機構446を用いて基板ホルダ440(および基板Wf)を回転させる(回転ステップ110)。なお、開ステップ104、傾斜ステップ108、および回転ステップ110は実行順序が入れ替わってもよいし、同時に実行されてもよい。
 続いて、基板洗浄方法は、傾斜ステップ108によって傾斜した基板Wfの下端に対応する位置Loから上端に対応する位置Hiへ向けて回転ステップ110によって回転する基板Wfの被めっき面Wf-aに洗浄液を吐出する(基板洗浄ステップ112)。被めっき面Wf-aに付着しためっき液は、基板洗浄ステップ112によって洗浄される。なお、基板洗浄ステップ112は、回転する基板の回転方向とは反対方向の速度成分を有する洗浄液を吐出することもできる。この場合、基板Wfは水平に保持されていてもよいので、傾斜ステップ108は実行されなくてもよい。
 また、基板洗浄方法は、回転ステップ110によって回転するシール部材494-2の回転方向に沿う方向の速度成分を有する洗浄液をシール洗浄ノズル472bからシール部材494-2の内周面に向けて吐出する(シール洗浄ステップ113)。シール部材494-2の内周面に付着しためっき液は、シール洗浄ステップ113によって洗浄される。なお、便宜上、基板洗浄ステップ112とシール洗浄ステップ113を別々のステップとして説明したが、両ステップは同時に実行されてもよい。
 続いて、基板洗浄方法は、電気伝導度計486によって測定された洗浄液の電気伝導度に基づいて基板Wfの被めっき面Wf-aへの洗浄液の吐出を停止する(停止ステップ114)。すなわち、基板Wfの被めっき面Wf-aに付着しためっき液は洗浄液に押し流されてトレー部材478に落下し、固定トレー部材484を通って排出される。ここで、洗浄液の電気伝導度が電気伝導度計486によって測定される。測定された電気伝導度が十分に低くなれば、洗浄液に含まれるめっき液の量が十分に減っていることがわかる、つまり洗浄処理が完了していることがわかるので、基板洗浄方法は、基板洗浄を終了することができる。
 続いて、コンタクト洗浄方法は、傾斜ステップ108によって傾斜した基板ホルダ440(および基板)を傾斜前の状態、つまり水平状態に戻す(傾斜解除ステップ116)。続いて、コンタクト洗浄方法は、回転ステップ110によって回転させた基板ホルダ440の回転を停止させる(回転停止ステップ118)。なお、傾斜解除ステップ116および回転停止ステップ118は、実行順序が入れ替わってもよいし、同時に実行されてもよい。
 続いて、コンタクト洗浄方法は、バックプレートアッシー492を上昇させて基板ホルダ440から基板Wfを取り出す(基板取り出しステップ120)。続いて、コンタクト洗浄方法は、基板ホルダ440に取り付けられたコンタクト部材494-4に対してコンタクト洗浄ノズル482aを向ける(ステップ121)。なお、便宜上、ステップ121においてコンタクト部材494-4に対してコンタクト洗浄ノズル482aを向けるという説明をしたが、ステップ121は、上記の第1の移動ステップによって実行される。
 続いて、コンタクト洗浄方法は、バックプレートアッシー492を下降させてコンタクト部材494-4に囲まれる位置に配置する(配置ステップ122)。続いて、コンタクト洗浄方法は、傾斜機構447を用いて基板ホルダ440(および基板Wf)を傾斜させる(傾斜ステップ124)。続いて、コンタクト洗浄方法は、回転機構446を用いて基板ホルダ440(および基板Wf)を回転させる(回転ステップ126)。なお、配置ステップ122、傾斜ステップ124、および回転ステップ126は、実行順序が入れ替わってもよいし、同時に実行されてもよい。
 続いて、コンタクト洗浄方法は、基板ホルダ440の下方に配置されたコンタクト洗浄部材482からコンタクト部材494-4の本体部494-4bに向けて洗浄液を吐出する(コンタクト洗浄ステップ128)。コンタクト洗浄ステップ128は、傾斜ステップ124によって傾斜して相対的に低い位置にある基板ホルダ440に取り付けられたコンタクト部材494-4に対して実行される。具体的には、コンタクト洗浄ステップ128は、図20に示すように、バックプレートアッシー492の下面に向けて洗浄液を吐出し、バックプレートアッシー492の下面に当たって跳ね返った洗浄液を本体部494-4bに向けることができる。ただし、これに限定されず、コンタクト洗浄ステップ128は、コンタクト洗浄ノズル482aから本体部494-4bに直接洗浄液を吐出してもよい。コンタクト部材494-4に付着しためっき液は、コンタクト洗浄ステップ128によって洗浄される。
 続いて、コンタクト洗浄方法は、電気伝導度計486によって測定された洗浄液の電気伝導度が所定の閾値より小さくなったら、傾斜ステップ124によって傾斜した基板ホルダ440(および基板)を傾斜前の状態、つまり水平状態に戻す(傾斜解除ステップ130)。続いて、コンタクト洗浄方法は、傾斜解除ステップ130によって水平になった基板ホルダ440のコンタクト部材494-4の本体部494-4bに対して洗浄液を吐出する(ウェットステップ132)。ウェットステップ132は、コンタクト部材494-4の全体を均一に洗浄液(純水)で濡らすことにより、後続のめっき処理時に給電ばらつきが生じないようにするためのステップである。
 基板Wfの洗浄、およびコンタクト部材494-4の洗浄が終了したら、基板洗浄方法は、洗浄装置470(基板洗浄部材472およびコンタクト洗浄部材482)を退避位置に移動させる(第2の移動ステップ134)。続いて、基板洗浄方法は、第1の扉468-1および第2の扉468-2をカバー部材460の側壁461の開口461aに移動させて開口461aを閉じる(閉ステップ136)。
 以上、いくつかの本発明の実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることは勿論である。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
 本願は、一実施形態として、めっき液を収容するように構成されためっき槽と、被めっき面を下方に向けた基板を保持するように構成された基板ホルダと、前記基板ホルダを回転させるように構成された回転機構と、前記基板ホルダを傾斜させるように構成された傾斜機構と、前記基板ホルダに保持された基板の被めっき面を洗浄するための基板洗浄部材と、を含み、前記基板洗浄部材は、前記傾斜機構によって傾斜した基板の下端に対応する位置から上端に対応する位置へ向けて前記回転機構によって回転する基板の被めっき面に洗浄液を吐出するように構成される、めっき装置を開示する。
 さらに、本願は、一実施形態として、前記基板洗浄部材を、前記めっき槽と前記基板ホルダとの間の洗浄位置と、前記めっき槽と前記基板ホルダとの間から退避した退避位置と、の間で移動させるように構成された駆動機構をさらに含む、めっき装置を開示する。
 さらに、本願は、一実施形態として、前記基板洗浄部材の下方に配置され、前記基板洗浄部材から吐出されて落下した洗浄液を受けるように構成されたトレー部材をさらに含む、めっき装置を開示する。
 さらに、本願は、一実施形態として、前記トレー部材に落下した洗浄液の電気伝導度を測定するための電気伝導度計をさらに含む、めっき装置を開示する。
 さらに、本願は、一実施形態として、前記基板洗浄部材は、前記基板洗浄部材が前記洗浄位置に配置されたときに前記基板の回転方向と交差する方向に沿って配置された複数の基板洗浄ノズルを含む、めっき装置を開示する。
 さらに、本願は、一実施形態として、前記基板ホルダは、前記基板ホルダと前記基板との間をシールするためのシール部材を含み、基板洗浄部材は、前記複数の基板洗浄ノズルよりも基板の外周側に配置され、前記シール部材を洗浄するためのシール洗浄ノズルをさらに含み、前記シール洗浄ノズルは、前記回転機構によって回転する前記シール部材の回転方向に沿う方向の速度成分を有する洗浄液を吐出するように構成される、めっき装置を開示する。
 さらに、本願は、一実施形態として、前記複数の基板洗浄ノズルはそれぞれ、前記基板洗浄ノズルの先端から扇状に洗浄液を吐出するように構成されており、かつ、隣接する基板洗浄ノズルから吐出した洗浄液が互いに衝突せず基板の回転方向において部分的に重なり合うように構成されている、めっき装置を開示する。
 さらに、本願は、一実施形態として、前記回転機構は、前記基板ホルダを1rpm~20rpmの回転速度で回転させるように構成される、めっき装置を開示する。
 さらに、本願は、一実施形態として、基板ホルダに保持された基板の下方に向いた被めっき面に対して基板洗浄ノズルを向けるステップと、前記基板ホルダを傾斜させる傾斜ステップと、前記基板ホルダを回転させる回転ステップと、前記傾斜ステップによって傾斜した基板の下端に対応する位置から上端に対応する位置へ向けて前記回転ステップによって回転する基板の被めっき面に前記基板洗浄ノズルから洗浄液を吐出する基板洗浄ステップと、を含む、基板洗浄方法を開示する。
 さらに、本願は、一実施形態として、前記基板ホルダと前記基板との間をシールするためのシール部材に対してシール洗浄ノズルを向けるステップと、前記回転ステップによって回転する前記シール部材の回転方向に沿う方向の速度成分を有する洗浄液を前記シール洗浄ノズルから吐出するシール洗浄ステップと、をさらに含む、基板洗浄方法を開示する。
 さらに、本願は、一実施形態として、めっき液を収容するように構成されためっき槽と、被めっき面を下方に向けた基板を保持するように構成された基板ホルダと、前記基板ホルダを回転させるように構成された回転機構と、前記基板ホルダに保持された基板の被めっき面を洗浄するための基板洗浄部材と、を含み、前記基板洗浄部材は、前記回転機構によって回転する基板の回転方向とは反対方向の速度成分を有する洗浄液を吐出するように構成される、めっき装置を開示する。
400 めっきモジュール
410 めっき槽
440 基板ホルダ
442 昇降機構
446 回転機構
447 傾斜機構
460 カバー部材
461 側壁
461a 開口
462 底壁
464 排気口
467 開閉機構
468-1 第1の扉
468-2 第2の扉
469-1 第1の扉駆動部材
469-2 第2の扉駆動部材
470 洗浄装置
472 基板洗浄部材
472a 基板洗浄ノズル
472b シール洗浄ノズル
476 駆動機構
478 トレー部材
482 コンタクト洗浄部材
482a コンタクト洗浄ノズル
486 電気伝導度計
488 排液管
491 回転シャフト
492 バックプレートアッシー
492-1 バックプレート
492-2 フローティングプレート
494 支持機構
494-1 支持部材
494-2 シール部材
494-4 コンタクト部材
494-4a 基板接点
494-4b 本体部
1000 めっき装置
Wf 基板
Wf-a 被めっき面

Claims (11)

  1.  めっき液を収容するように構成されためっき槽と、
     被めっき面を下方に向けた基板を保持するように構成された基板ホルダと、
     前記基板ホルダを回転させるように構成された回転機構と、
     前記基板ホルダを傾斜させるように構成された傾斜機構と、
     前記基板ホルダに保持された基板の被めっき面を洗浄するための基板洗浄部材と、
     を含み、
     前記基板洗浄部材は、前記傾斜機構によって傾斜した基板の下端に対応する位置から上端に対応する位置へ向けて前記回転機構によって回転する基板の被めっき面に洗浄液を吐出するように構成される、
     めっき装置。
  2.  前記基板洗浄部材を、前記めっき槽と前記基板ホルダとの間の洗浄位置と、前記めっき槽と前記基板ホルダとの間から退避した退避位置と、の間で移動させるように構成された駆動機構をさらに含む、
     請求項1に記載のめっき装置。
  3.  前記基板洗浄部材の下方に配置され、前記基板洗浄部材から吐出されて落下した洗浄液を受けるように構成されたトレー部材をさらに含む、
     請求項1または2に記載のめっき装置。
  4.  前記トレー部材に落下した洗浄液の電気伝導度を測定するための電気伝導度計をさらに含む、
     請求項3に記載のめっき装置。
  5.  前記基板洗浄部材は、前記基板洗浄部材が前記洗浄位置に配置されたときに前記基板の回転方向と交差する方向に沿って配置された複数の基板洗浄ノズルを含む、
     請求項2から4のいずれか一項に記載のめっき装置。
  6.  前記基板ホルダは、前記基板ホルダと前記基板との間をシールするためのシール部材を含み、
     基板洗浄部材は、前記複数の基板洗浄ノズルよりも基板の外周側に配置され、前記シール部材を洗浄するためのシール洗浄ノズルをさらに含み、
     前記シール洗浄ノズルは、前記回転機構によって回転する前記シール部材の回転方向に沿う方向の速度成分を有する洗浄液を吐出するように構成される、
     請求項5に記載のめっき装置。
  7.  前記複数の基板洗浄ノズルはそれぞれ、前記基板洗浄ノズルの先端から扇状に洗浄液を吐出するように構成されており、かつ、隣接する基板洗浄ノズルから吐出した洗浄液が互いに衝突せず基板の回転方向において部分的に重なり合うように構成されている、
     請求項5または6に記載のめっき装置。
  8.  前記回転機構は、前記基板ホルダを1rpm~20rpmの回転速度で回転させるように構成される、
     請求項1から7のいずれか一項に記載のめっき装置。
  9.  基板ホルダに保持された基板の下方に向いた被めっき面に対して基板洗浄ノズルを向けるステップと、
     前記基板ホルダを傾斜させる傾斜ステップと、
     前記基板ホルダを回転させる回転ステップと、
     前記傾斜ステップによって傾斜した基板の下端に対応する位置から上端に対応する位置へ向けて前記回転ステップによって回転する基板の被めっき面に前記基板洗浄ノズルから洗浄液を吐出する基板洗浄ステップと、
     を含む、基板洗浄方法。
  10.  前記基板ホルダと前記基板との間をシールするためのシール部材に対してシール洗浄ノズルを向けるステップと、
     前記回転ステップによって回転する前記シール部材の回転方向に沿う方向の速度成分を有する洗浄液を前記シール洗浄ノズルから吐出するシール洗浄ステップと、
     をさらに含む、請求項9に記載の基板洗浄方法。
  11.  めっき液を収容するように構成されためっき槽と、
     被めっき面を下方に向けた基板を保持するように構成された基板ホルダと、
     前記基板ホルダを回転させるように構成された回転機構と、
     前記基板ホルダに保持された基板の被めっき面を洗浄するための基板洗浄部材と、
     を含み、
     前記基板洗浄部材は、前記回転機構によって回転する基板の回転方向とは反対方向の速度成分を有する洗浄液を吐出するように構成される、
     めっき装置。
PCT/JP2021/040600 2021-11-04 2021-11-04 めっき装置および基板洗浄方法 WO2023079632A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180038910.7A CN116368268B (zh) 2021-11-04 2021-11-04 镀覆装置及基板清洗方法
PCT/JP2021/040600 WO2023079632A1 (ja) 2021-11-04 2021-11-04 めっき装置および基板洗浄方法
KR1020227039874A KR102556645B1 (ko) 2021-11-04 2021-11-04 도금 장치 및 기판 세정 방법
JP2022521687A JP7089133B1 (ja) 2021-11-04 2021-11-04 めっき装置および基板洗浄方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040600 WO2023079632A1 (ja) 2021-11-04 2021-11-04 めっき装置および基板洗浄方法

Publications (1)

Publication Number Publication Date
WO2023079632A1 true WO2023079632A1 (ja) 2023-05-11

Family

ID=82100065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040600 WO2023079632A1 (ja) 2021-11-04 2021-11-04 めっき装置および基板洗浄方法

Country Status (4)

Country Link
JP (1) JP7089133B1 (ja)
KR (1) KR102556645B1 (ja)
CN (1) CN116368268B (ja)
WO (1) WO2023079632A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102595617B1 (ko) * 2022-08-02 2023-10-31 가부시키가이샤 에바라 세이사꾸쇼 도금 방법 및 도금 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934127B1 (ja) * 2020-12-22 2021-09-08 株式会社荏原製作所 めっき装置、プリウェット処理方法及び洗浄処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671544B2 (ja) * 1990-03-26 1994-09-14 日本テクノ株式会社 液槽における液体の攪拌方法および装置
JP3860111B2 (ja) * 2002-12-19 2006-12-20 大日本スクリーン製造株式会社 メッキ装置およびメッキ方法
JP2005264245A (ja) * 2004-03-18 2005-09-29 Ebara Corp 基板の湿式処理方法及び処理装置
KR101102328B1 (ko) * 2008-08-07 2012-01-03 주식회사 케이씨텍 기판도금장치
JP5321574B2 (ja) * 2010-12-17 2013-10-23 ルネサスエレクトロニクス株式会社 半導体製造装置の動作方法及び半導体装置の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934127B1 (ja) * 2020-12-22 2021-09-08 株式会社荏原製作所 めっき装置、プリウェット処理方法及び洗浄処理方法

Also Published As

Publication number Publication date
CN116368268A (zh) 2023-06-30
CN116368268B (zh) 2024-02-13
KR102556645B1 (ko) 2023-07-18
JP7089133B1 (ja) 2022-06-21
JPWO2023079632A1 (ja) 2023-05-11
KR20230066270A (ko) 2023-05-15

Similar Documents

Publication Publication Date Title
WO2023079634A1 (ja) めっき装置および基板洗浄方法
JP2002212786A (ja) 基板処理装置
WO2023079632A1 (ja) めっき装置および基板洗浄方法
JP7114002B1 (ja) めっき装置およびコンタクト洗浄方法
TWI775670B (zh) 鍍覆裝置及基板清洗方法
TWI803048B (zh) 鍍覆裝置及基板清洗方法
TWI798928B (zh) 鍍覆裝置及接觸件清洗方法
JP7199618B1 (ja) めっき方法、及び、めっき装置
JP7162787B1 (ja) めっき装置
JP7221414B2 (ja) 基板液処理方法および基板液処理装置
TWI854050B (zh) 基板液處理方法及基板液處理裝置
JP7142812B1 (ja) リーク判定方法およびめっき装置
JP2002249896A (ja) 液処理装置、液処理方法
TWI809937B (zh) 漏液判定方法及鍍覆裝置
JP7558303B2 (ja) 基板処理装置および基板処理方法
WO2023032191A1 (ja) めっき方法及びめっき装置
TW202400855A (zh) 鍍覆裝置
TW202407163A (zh) 鍍覆方法及鍍覆裝置
JP2024050440A (ja) リフトピンの洗浄方法および基板処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022521687

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE