WO2023077305A1 - 芯片、光电转换装置、光模块和光通信系统 - Google Patents

芯片、光电转换装置、光模块和光通信系统 Download PDF

Info

Publication number
WO2023077305A1
WO2023077305A1 PCT/CN2021/128436 CN2021128436W WO2023077305A1 WO 2023077305 A1 WO2023077305 A1 WO 2023077305A1 CN 2021128436 W CN2021128436 W CN 2021128436W WO 2023077305 A1 WO2023077305 A1 WO 2023077305A1
Authority
WO
WIPO (PCT)
Prior art keywords
type doped
doped layer
layer
optical
photoelectric conversion
Prior art date
Application number
PCT/CN2021/128436
Other languages
English (en)
French (fr)
Inventor
刘磊
陈宏民
常丽敏
李秀丽
常卫杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/128436 priority Critical patent/WO2023077305A1/zh
Priority to CN202180101197.6A priority patent/CN117836589A/zh
Publication of WO2023077305A1 publication Critical patent/WO2023077305A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light

Definitions

  • the present application relates to the technical field of optical communication, and in particular to a chip, a photoelectric conversion device, an optical module and an optical communication system.
  • Detectors are the core components of optical signal-to-electrical signal conversion in optical communication systems. Improving the photoelectric conversion responsivity of detectors is of great significance to improve the performance of optical communication systems.
  • Detectors include waveguide detectors. Existing waveguide detectors will reach saturation when the optical power is high, resulting in a decrease in the photoelectric conversion responsivity of the waveguide detector, which affects the application of the waveguide detector in scenarios with high optical power.
  • the present application provides a chip, a photoelectric conversion device, an optical module and an optical communication system, which can improve the problem that the photoelectric conversion responsivity of the waveguide detector is reduced due to the saturation of the waveguide detector when the optical power is large .
  • the present application provides a chip, the chip includes a waveguide detector, and the waveguide detector includes a waveguide layer, and a photoelectric conversion layer that is in contact with the waveguide layer and is stacked.
  • the waveguide layer includes a light input end and a light transmission part.
  • the light input end protrudes from the photoelectric conversion layer;
  • the first direction is the vertical direction from the light input end to the light transmission part;
  • the photoelectric conversion layer includes a first part and a second part , the second part is arranged on the side of the first part away from the light input end; along the second direction, the width of the first part is smaller than the width of the second part and the width of the light input end; wherein, the contact surface of the waveguide layer and the photoelectric conversion layer is in the plane,
  • the direction perpendicular to the first direction is the second direction.
  • the width difference between the edge facing the light input end in the first part and the light input end is in the range of [500nm, 5 ⁇ m].
  • the second part can have a larger light absorption area under the condition that the length of the second part along the first direction remains unchanged, thereby improving the efficiency of light absorption.
  • the signal amount of the optical signal coupled from the transmission part to the second part improves the problem of low photoelectric conversion responsivity of the waveguide detector due to the low signal amount of the optical signal received by the second part.
  • the width of the first portion is smaller than the width of the light input end.
  • the light absorption area of the first part can be reduced, thereby reducing the signal amount of the optical signal coupled from the light transmission part to the first part. Therefore, the problem of saturation of the waveguide detector when the optical power is high can be improved, and the drift speed of carriers is prevented from being saturated when the optical power of the waveguide detector is high, thereby improving the photoelectric conversion bandwidth of the waveguide detector.
  • the width of the first part is smaller than the width of the first part and the width of the optical input end
  • the signal amount of the optical signal coupled to the first part by the optical transmission part can be reduced , so that more optical signals continue to transmit along the first direction.
  • the width of the second part can also be increased to make the width of the second part larger than the width of the first part, so that the optical transmission part can transmit more
  • the optical signal is coupled to the second part.
  • the photoelectric conversion responsivity of the waveguide detector be improved, but also the width of the first part can be avoided from being narrowed, resulting in a reduction in the total amount of light signals absorbed by the photoelectric conversion layer, which affects the photoelectric conversion efficiency of the waveguide detector.
  • the first part includes a first subsection and a second subsection; the second subsection is disposed between the first subsection and the second part; along the second direction, the first The width of the subsection is smaller than the width of the second subsection.
  • the orthographic projection of the first subsection on the waveguide layer is a rectangle
  • the orthographic projection of the second subsection on the waveguide layer is a trapezoid; the upper base of the trapezoid is equal to and continuous with the edge of the first subsection towards the second subsection , the lower base of the trapezoid is as long as and continuous with the edge of the second part facing the first part.
  • the second sub-section can also be used at the The first sub-part and the second part serve as a buffer to prevent the optical signal from being strongly reflected in a direction opposite to its incident direction due to a large width difference between the first sub-part and the second part.
  • the first part includes a third subsection and a fourth subsection, and the third subsection is disposed between the waveguide layer and the fourth subsection; along the second direction, the width of the third subsection is smaller than that of the first subsection.
  • the width of the four sub-sections is to further reduce the light absorption area of the third sub-section, thereby reducing the signal amount of the optical signal coupled from the light transmission part to the third sub-section. It avoids the saturation of the waveguide detector when the optical power is high, which affects the drift speed of the carriers, thereby improving the responsivity and photoelectric conversion bandwidth of the waveguide detector.
  • the width difference between the fourth sub-section and the third sub-section is (0 nm, 300 nm].
  • the waveguide detector further includes a first N-type doped layer and a first P-type doped layer; the first N-type doped layer and the first P-type doped layer are separately arranged side, the photoelectric conversion layer is also in contact with the first N-type doped layer and the first P-type doped layer; along the first direction, the light input end protrudes from the first N-type doped layer and the first P-type doped layer ; Edges of the first N-type doped layer and the first P-type doped layer toward the light input end protrude from the edge of the first part toward the light input end.
  • the part of the optical transmission part closest to the optical input end (it can also be said that the part of the optical transmission part that transmits the largest signal amount of the optical signal) will not couple the optical signal to the photoelectric conversion layer, but continue to move along the first direction. transmit optical signals. After the optical signal is transmitted to the optical transmission part and the first part, the optical transmission part starts to couple the optical signal to the first part, so that the absorption rate of the first part to the optical signal can be further reduced.
  • the distance between the edges of the first N-type doped layer and the first P-type doped layer facing the light input end and the edge of the first part facing the light input end ranges from [1 ⁇ m, 10 ⁇ m].
  • the first N-type doped layer, the first P-type doped layer and the waveguide layer are obtained through the same semiconductor process, the first N-type doped layer includes an N-type semiconductor material, and the first P-type doped layer The doped layer includes a P-type semiconductor material.
  • the preparation process of the waveguide probe is simplified, the number of mask plates used for preparing the waveguide probe is reduced, and the cost of preparing the waveguide probe is saved.
  • the first N-type doped layer has a first protrusion on the surface facing the photoelectric conversion layer
  • the first P-type doped layer has a second protrusion on the surface facing the photoelectric conversion layer. At least part of is located between the first protrusion and the second protrusion. Since the photoelectric conversion layer converts the optical signal into an electrical signal, it also has charges near the opposite sides along the second direction. Through the bias voltage provided by the first electrode and the second electrode, the opposite sides of the photoelectric conversion layer along the second direction can also form an electric field. Therefore, at least part of the photoelectric conversion layer is disposed between the first protrusion and the second protrusion.
  • the electric signal near the side opposite to the second direction in the photoelectric conversion layer be transmitted to the first electrode through the first N-type doped layer, and be transmitted to the second electrode through the first P-type doped layer, thereby improving The photoelectric conversion bandwidth of the waveguide detector.
  • the width of the second portion is smaller than the vertical distance from the first N-type doped layer to the first P-type doped layer. It can prevent the second part from extending indefinitely along the second direction during the preparation of the photoelectric conversion layer, resulting in crystal defects, high dark current flowing through the waveguide detector, poor signal-to-noise ratio, and the inability to recognize the conversion of optical signals into electrical signals generated photocurrent.
  • the waveguide detector further includes a second N-type doped layer, a second P-type doped layer, a first electrode, and a second electrode; the N-type semiconductor material in the second N-type doped layer The doping concentration is greater than the doping concentration of the N-type semiconductor material in the first N-type doped layer; the doping concentration of the P-type semiconductor material in the second P-type doped layer is greater than that of the P-type semiconductor material in the first P-type doped layer The doping concentration of the semiconductor material; the second N-type doped layer is arranged between the first N-type doped layer and the first electrode, and is in contact with the first N-type doped layer and the first electrode; the second P-type doped layer The mixed layer is disposed between the first P-type doped layer and the second electrode, and is in contact with the first P-type doped layer and the second electrode.
  • Preventing the first N-type doped layer from directly contacting the first electrode and the first P-type doped layer from directly contacting the second electrode to form a potential barrier can reduce the contact resistance between the first N-type doped layer and the first electrode, And the contact resistance between the first P-type doped layer and the second electrode.
  • the waveguide probe may further include a contact layer.
  • the contact layers are respectively disposed between the second N-type doped layer and the first electrode, and between the second P-type doped layer and the second electrode. Also, the orthographic projection of the contact layer on the substrate overlaps the orthographic projection of the via hole on the substrate.
  • the waveguide layer includes two light input ends disposed opposite to each other. Compared with the waveguide detector including one optical input end, the waveguide detector including two optical input ends can save the number of waveguide detectors in the chip, thereby saving the layout area of the chip.
  • the chip further includes an optical beam splitting group, the optical beam splitting group includes at least one beam splitter, and the optical beam splitting group is used to divide a beam of light into multiple beams of light, and each beam of light is received by the waveguide detector.
  • One optical input receives. In this way, the optical power input to a single detector can be reduced, reducing the problem of optical power saturation.
  • a photoelectric conversion device in a second aspect, includes the chip described in the first aspect.
  • the implementation manner of the second aspect corresponds to any implementation manner of the first aspect.
  • technical effects corresponding to the implementation of the second aspect reference may be made to the above-mentioned first aspect and the technical effects corresponding to any one of the implementations of the first aspect, which will not be repeated here.
  • an optical module in a third aspect, includes a clock, a power supply, and the photoelectric conversion device described in the second aspect; the power supply is used to supply power to the photoelectric conversion device; and the clock is used to provide a clock signal for the photoelectric conversion device.
  • the implementation manner of the third aspect corresponds to any implementation manner of the first aspect.
  • technical effects corresponding to the implementation of the third aspect reference may be made to the above-mentioned first aspect and the technical effects corresponding to any one of the implementations of the first aspect, which will not be repeated here.
  • an optical communication system which includes the optical module described in the third aspect.
  • the implementation manner of the fourth aspect corresponds to any implementation manner of the first aspect.
  • technical effects corresponding to the implementation of the fourth aspect reference may be made to the above-mentioned first aspect and the technical effects corresponding to any one of the implementations of the first aspect, which will not be repeated here.
  • FIG. 1 is an application scenario of an optical communication system provided by an embodiment of the present application
  • FIG. 2 is another application scenario of the optical communication system provided by the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a waveguide detector provided in an embodiment of the present application.
  • Fig. 4a is a top view of the waveguide detector provided by the embodiment of the present application.
  • Fig. 4b is another top view of the waveguide detector provided by the embodiment of the present application.
  • Fig. 4c is another top view of the waveguide detector provided by the embodiment of the present application.
  • Figure 5a is a schematic cross-sectional view of A1-A2 in Figure 4c;
  • Figure 5b is a schematic cross-sectional view of B1-B2 in Figure 4c;
  • Fig. 6 is a graph showing the variation of light absorptivity at various positions of the photoelectric conversion layer
  • Figure 7a is a schematic cross-sectional view of A1-A2 in Figure 4c;
  • Figure 7b is a schematic cross-sectional view of A1-A2 in Figure 4c;
  • Figure 7c is a schematic cross-sectional view of A1-A2 in Figure 4c;
  • Fig. 8 is another top view of the waveguide detector provided by the embodiment of the present application.
  • Figure 9a is a diagram of the preparation process of the waveguide probe provided by the embodiment of the present application.
  • Fig. 9b is a diagram of the preparation process of the waveguide probe provided by the embodiment of the present application.
  • Fig. 9c is a diagram of the preparation process of the waveguide probe provided by the embodiment of the present application.
  • Fig. 10 is another top view of the waveguide probe provided by the embodiment of the present application.
  • Figure 11 is a schematic cross-sectional view of C1-C2 in Figure 10;
  • Fig. 12a is a side view of the waveguide probe provided by the embodiment of the present application.
  • Fig. 12b is a side view of the waveguide detector provided by the embodiment of the present application.
  • Fig. 13 is another top view of the waveguide probe provided by the embodiment of the present application.
  • Fig. 14 is a schematic cross-sectional view of D1-D2 in Fig. 10;
  • Fig. 15 is a side view of the waveguide probe provided by the embodiment of the present application.
  • Fig. 16 is another top view of the waveguide detector provided by the embodiment of the present application.
  • Fig. 17a is a diagram of the coupling relationship between the beam splitter and the waveguide detector provided by the embodiment of the present application.
  • Fig. 17b is a diagram of the coupling relationship between the beam splitter and the waveguide detector provided by the embodiment of the present application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than describing a specific order of the target objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • the optical communication system may include a local optical communication device 100 , an optical transmission device 200 , and a peer optical communication device 300 .
  • the local optical communication device 100 and the peer optical communication device 300 may include optical modules.
  • the optical module of the local optical communication device 100 may include a first optical transmitter 101 and a first optical receiver 102 .
  • the optical module of the peer optical communication device 300 may include a second optical transmitter 301 and a second optical receiver 302 .
  • the optical modules of the local optical communication device 100 and the remote optical communication device 300 may further include an amplifier, a digital circuit, a clock, and a power supply.
  • the power supply can supply power to other devices in the optical module.
  • the clock can provide clock signals for other devices in the optical module.
  • the optical transmission device 200 may include an optical fiber.
  • the optical transmission device 200 may further include an optical splitter, a connector, and the like.
  • the first optical transmitter 101 can be connected to the second optical receiver 302 through an optical fiber, so as to send an optical signal to the second optical receiver 302 through an optical fiber.
  • the second optical transmitter 301 may be connected to the first optical receiver 102 through an optical fiber, so as to send an optical signal to the first optical receiver 102 through an optical fiber.
  • the process for the first optical transmitter 101 of the local optical communication device 100 to send a signal to the second optical receiver 302 of the peer optical communication device 300 through an optical fiber may include:
  • the first optical transmitter 101 receives the data packet, modulates the data packet into an optical signal, and outputs the optical signal.
  • the optical fiber receives the optical signal sent by the first optical transmitter 101 and inputs the optical signal to the second optical receiver 302 .
  • the second optical receiver 302 receives the optical signal, converts the optical signal into an electrical signal, and outputs it. At this point, the optical signal is converted into an electrical signal.
  • the amplifier of the peer optical communication device 300 may also receive the electrical signal output by the second photoelectric receiver, and amplify the electrical signal.
  • the digital circuit of the optical communication device 300 at the opposite end may also receive the amplified electrical signal output by the amplifier, restore the amplified electrical signal to a target bit stream, and output the amplified electrical signal. At this point, the electrical signal is converted into a digital signal.
  • the waveguide detector can be a photodiode, and the waveguide detector can include a waveguide layer 20, a first N-type doped layer 31, a first P-type doped layer 32, a photoelectric conversion layer 40, and a first electrode 51 and the second electrode 52.
  • the optical waveguide 20 includes an optical input end 21 and an optical transmission portion 22 .
  • the optical input end 21 may be connected to an optical fiber for receiving optical signals transmitted by the optical fiber. After the optical input terminal 21 receives the optical signal, it can transmit the optical signal to the optical transmission part 22 .
  • the optical transmission part 22 can also couple the optical signal to the photoelectric conversion layer 40 .
  • the photoelectric conversion layer 40 can convert the received optical signal into an electrical signal, generate charges in the photoelectric conversion layer 40 , and form an electric field in the photoelectric conversion layer 40 through the bias voltage provided by the first electrode 51 and the second electrode 52 .
  • the electrical signal converted by the photoelectric conversion layer 40 can be transmitted to the first electrode 51 through the first N-type doped layer 31, transmitted to the second electrode 52 through the first P-type doped layer 32, and then transmitted through the first P-type doped layer 32
  • the first electrode 51 and the second electrode 52 output electrical signals.
  • the waveguide detector will reach saturation when the optical power is high.
  • the inventors found that the existing waveguide detector is saturated when the optical power is high, because the optical signal passes through the optical transmission part 22 closer to the optical receiving end 21 during the process of transmitting from the optical input end 21 to the optical transmission part 22.
  • the front end passes through the rear end of the optical transmission part 22.
  • the optical signal To be transmitted to the rear end of the optical transmission part 22, the optical signal always passes through the front end of the optical transmission part 22. Therefore, the amount of optical signals passing through the front end of the optical transmission section 22 is larger than the amount of optical signals passing through the rear end of the optical transmission section 22 .
  • the optical signal can be coupled to the photoelectric conversion layer 40 while being transmitted from the front end to the rear end of the optical transmission part 22 , so that the part of the photoelectric conversion layer 40 close to the optical input end 21 absorbs more optical signals. Therefore, the carrier concentration in the part of the photoelectric conversion layer 40 close to the light input end 21 is too high, and it is more likely to generate heat, thereby limiting the drift velocity of this part of the carrier, resulting in a decrease in the responsivity and photoelectric conversion bandwidth of the waveguide detector. .
  • the photoelectric conversion bandwidth of the waveguide detector refers to the corresponding frequency bandwidth (3dB bandwidth) when the electrical signal amplitude of the waveguide detector is equal to twice the root of half of the maximum value, corresponding to the half power point.
  • an embodiment of the present application provides a chip, and the chip may include a waveguide detector.
  • the photoelectric conversion layer 40 and the waveguide layer 20 in the waveguide detector are improved to solve the problem that the waveguide detector reaches saturation when the optical power is high, thereby improving the photoelectric conversion responsivity and photoelectricity of the waveguide detector. Convert bandwidth.
  • waveguide detectors can be integrated on the chip; or, the chip can also integrate waveguide detectors and other circuits in the photoelectric conversion device except waveguide detectors; or, the chip can also integrate The waveguide detector and other circuits in the optical module except the waveguide detector. Certainly, the chip may also integrate other circuits, which is not limited in this embodiment of the present application.
  • the optical input end 21 protrudes from the photoelectric conversion layer 40 to expose the optical input end 21, so that the optical input end 21 is connected to the optical transmission device 200, and receives the transmission of the optical transmission device 200.
  • the first direction may be a direction from the light input end 21 to the light transmission part 22 .
  • the photoelectric conversion layer 40 may include a first portion 41 and a second portion 42 .
  • the second portion 42 is disposed on a side of the first portion 41 away from the light input end 21 .
  • the present application can solve the aforementioned technical problems by adjusting the structural relationship between the first part 41 and the second part 42 , and the structural relationship between the first part 41 and the light input end 21 . Specifically, the following three embodiments can be seen:
  • a first embodiment as shown in FIG. 4 a - FIG. 4 c , along the second direction, the width w2 of the first portion 41 is smaller than the width w1 of the light input end 21 .
  • the direction perpendicular to the first direction is the second direction.
  • the first part 41 can be When the length in one direction remains unchanged, the light absorption area of the first portion 41 is reduced, thereby reducing the signal amount of the optical signal coupled from the light transmission portion 22 to the first portion 41 .
  • FIG. 6 shows the variation curves of the absorptivity of the photoelectric conversion layer 40 in the related art and the present application as the distance along the first direction between each position of the photoelectric conversion layer 40 and the light input end 21 gradually increases.
  • the first peak of the curve reflects the absorptivity of the part of the photoelectric conversion layer 40 that is close to the light input end 21 and has the largest signal amount of the absorbed light signal. It can be seen that in the present application, by making the width w2 of the first portion 41 smaller than the width w1 of the light input end 21 , the absorptivity can be reduced from 50% to 30%. While the total signal amount of the optical signal received by the optical waveguide layer 20 remains unchanged, the signal amount of the optical signal absorbed by the first portion 41 is greatly reduced. Therefore, the problem of saturation of the waveguide detector when the optical power is high can be improved, and the drift speed of carriers is prevented from being saturated when the optical power of the waveguide detector is high, thereby improving the photoelectric conversion bandwidth of the waveguide detector.
  • an optical signal may be coupled into the photoelectric conversion layer 40 through evanescent wave coupling.
  • the light wave of the optical signal is coupled into the photoelectric conversion layer 40 during the transmission along the first direction in the waveguide layer 20; the light wave coupled into the photoelectric conversion layer 40 is transmitted along the first direction in the photoelectric conversion layer 40 , coupled into the waveguide layer 20 again, in this way, the optical signal can be coupled back and forth between the waveguide layer 20 and the photoelectric conversion layer 40 .
  • the embodiment of the present application does not limit the materials of the waveguide layer 20 and the photoelectric conversion layer 40, as long as the waveguide layer 20 can function as an optical waveguide, and the photoelectric conversion layer 40 can convert optical signals into electrical signals That's it.
  • the material of the waveguide layer 20 may include silicon (Si); the material of the photoelectric conversion layer 40 may include germanium (Ge) or germanium tin oxide (GeSn).
  • the embodiment of the present application does not limit the width w1 of the optical input end 21 and the width w2 of the first part 41, and the width w1 of the optical input end 21 and the width w2 of the first part 41 are related to the size of the waveguide detector.
  • the width difference between the light input end 21 and the first portion 41 may be [500 nm, 5 ⁇ m].
  • the width difference between the light input end 21 and the first portion 41 may be 500 nm, or 800 nm, or 1.25 ⁇ m, or 3 ⁇ m, or 5 ⁇ m, etc.
  • the width difference range can be applied to waveguide detectors of various sizes, for example, the width difference range can be applied to waveguide detectors that convert optical signals with a wavelength of 1310 nm or 1550 nm into electrical signals.
  • the width of the first portion 41 may also be smaller than the width of the second portion 42 .
  • the second part 42 can be made to have a larger light absorption area, thereby increasing the signal amount of the optical signal coupled from the light transmission part 22 to the second part 42 to improve the problem that the photoelectric conversion responsivity of the waveguide detector is low due to the low signal amount of the optical signal received by the second part 42 .
  • FIG. 4a-FIG. 4c the width of the first portion 41 may also be smaller than the width of the second portion 42 .
  • the absorption rate of the present application is greater than that of the related art.
  • the absorption rate increases the signal amount of the optical signal absorbed by the second portion 42 while the total signal amount of the optical signal received by the optical waveguide layer 20 remains unchanged.
  • the embodiment of the present application does not limit the width of the first part 41 and the width of the second part 42, and the width of the first part 41 and the width of the second part 42 are related to the size of the waveguide detector, as long as the first part It is sufficient that the width of the part 41 is smaller than the width of the second part 42 .
  • the width of the first portion 41 may be smaller than the width of the second portion 42 by reducing the width of the first portion 41 and/or increasing the width of the second portion 42 .
  • the embodiment of the present application does not limit the structure of the first portion 41 , as long as the width of each position of the first portion 41 is smaller than the width of the second portion 42 .
  • the width of the first portion 41 may gradually become larger.
  • the widths at various positions in the first portion 41 may also be the same.
  • the scheme that the width of the first part 41 gradually increases along the first direction has a buffering effect, avoiding the large difference in width at the junction of the first part 41 and the second part 42. , resulting in a strong reflection of the optical signal in the direction opposite to its incident direction.
  • the width difference between the aforementioned light input end 21 and the first part 41 ranges from [500nm, 5 ⁇ m ], which may be the width difference between the edge of the first portion 41 facing the light input end 21 and the light input end 21 along the first direction.
  • the first portion 41 may include a first sub-portion 411 and a second sub-portion 412 .
  • the second subsection 412 is disposed between the first subsection 411 and the second section 42 .
  • the width of the first subsection 411 is smaller than the width of the second subsection 412 .
  • the width of the part of the first part 41 farther from the light input end 21 is always greater than the width of the part of the first part 41 closer to the light input end 21 .
  • the orthographic projection of the first subsection 411 on the waveguide layer 20 may be a rectangle
  • the orthographic projection of the second subsection 412 on the waveguide layer 20 Orthographic projections may be trapezoidal (eg, isosceles trapezoidal).
  • the upper base of the trapezoid is equal in length and continuous to the edge of the first subsection 411 facing the second subsection 412
  • the lower base of the trapezoid is equal in length and continuous to the edge of the second part 42 facing the first part 41 .
  • the scheme in which the width of the first subsection 411 is smaller than the width of the second subsection 412 can, on the one hand, ensure that the first subsection in the photoelectric conversion layer 40 closest to the light input end 21 411 has the smallest width to minimize the peak value of the first peak in the absorptivity curve;
  • the width difference between the first sub-section 411 and the second section 42 is relatively large, resulting in strong reflection of the optical signal in a direction opposite to its incident direction.
  • the bottom of the trapezoid and the The edge of the second portion 42 facing the first portion 41 has the same length, which does not affect the width of the first portion 41 being smaller than the width of the second portion 42 .
  • orthographic projection refers to the vertical projection of a certain structure along a certain direction.
  • the orthographic projection of the first subsection 411 on the waveguide layer 20 may be a rectangle, which means that along the third direction, the shape of the vertical projection area of the first subsection 411 on the waveguide layer 20 may be a rectangle.
  • the third direction may be a vertical direction from the waveguide layer 20 to the photoelectric conversion layer 40 .
  • the present application does not limit the length of the first portion 41 along the first direction and the length of the second portion 42 along the first direction.
  • the length range of the first portion 41 may be [0.5 ⁇ m, 10 ⁇ m]
  • the length range of the second portion 42 may be (0 ⁇ m, 200 ⁇ m].
  • the length of the first portion 41 may be 0.5 ⁇ m, or 3 ⁇ m, or 7.5 ⁇ m, or 10 ⁇ m, etc.
  • the length of the second portion 42 may be 1 ⁇ m, or 25 ⁇ m, or 119 ⁇ m, or 200 ⁇ m, etc.
  • a third embodiment as shown in FIG. 4 a - FIG. 4 c , along the second direction, the width of the first portion 41 is smaller than the width of the second portion 42 and also smaller than the width of the light input end 21 .
  • the width of the first portion 41 By making the width of the first portion 41 smaller than that of the optical input end 21 , the signal amount of the optical signal coupled to the first portion 41 by the optical transmission portion 22 can be reduced, so that more optical signals continue to transmit along the first direction.
  • the width of the second part 42 After the optical signal is transmitted to the area overlapping with the second part 42 in the light transmission part 22, the width of the second part 42 can also be increased so that the width of the second part 42 is greater than the width of the first part 41, so that the light transmission Part 22 can couple more optical signals to second part 42 .
  • the photoelectric conversion responsivity of the waveguide detector be improved, but also avoid the narrowing of the width of the first part 41 , resulting in a decrease in the total amount of light signals absorbed by the photoelectric conversion layer 40 and affecting the photoelectric conversion efficiency of the waveguide detector.
  • the third embodiment may also include other implementable solutions.
  • the optical signal is directed from the waveguide layer 20 to the direction of the photoelectric conversion layer 40, and is coupled from the waveguide layer 20 to the photoelectric conversion layer 40, the closer the part of the photoelectric conversion layer 40 to the aforementioned contact surface absorbs the greater the signal amount of the optical signal. .
  • the part of the first part 41 close to the contact surface from absorbing too much optical signal as shown in FIGS. 413 is disposed between the waveguide layer 20 and the fourth sub-section 414 .
  • the width of the third subsection 413 closer to the contact surface is smaller than the width of the fourth subsection 414, so as to further reduce the light absorption area of the third subsection 413, thereby reducing the coupling from the light transmission part 22 to The signal amount of the optical signal of the third subsection 413 , or even the entire first section 41 . It avoids the saturation of the waveguide detector when the optical power is high, which affects the drift speed of the carriers, thereby improving the responsivity and photoelectric conversion bandwidth of the waveguide detector.
  • the embodiment of the present application does not limit the width of the third subsection 413 and the width of the fourth subsection 414.
  • the width of the third subsection 413 and the width of the fourth subsection 414 are the same as those of the waveguide detector
  • the size is related, as long as the width of the third sub-section 413 is smaller than the width of the fourth sub-section 414 .
  • the width difference between the fourth subsection 414 and the third subsection 413 can be (0, 300nm].
  • the width difference between the fourth subsection 414 and the third subsection 413 can be 1nm, or 15nm, or 200nm, or 300nm, etc.
  • the width difference range can be applied to waveguide detectors of various sizes, for example, the width difference range can be applied to waveguide detectors that convert optical signals with a wavelength of 1310nm or 1550nm into electrical signals.
  • the embodiment of the present application does not limit the structure of the third sub-section 413 and the fourth sub-section 414, as long as the width of each position of the third sub-section 413 is smaller than the width of the fourth sub-section 414, that is, Can.
  • the width of the third sub-portion 413 may gradually become larger.
  • the widths at various positions in the third subsection 413 may also be the same.
  • the scheme that the width of the third sub-section 413 along the third direction gradually increases can reduce the number of right-angle structures in the first part 41 and avoid excessive right-angle structures.
  • the prepared photoelectric conversion layer 40 has crystal defects, the dark current flowing through the waveguide detector is relatively high, the signal-to-noise ratio is deteriorated, and the photocurrent generated by converting the optical signal into an electrical signal cannot be recognized.
  • the shape of the fourth sub-section 414 may be a cube.
  • the width difference between the fourth sub-section 414 and the third sub-section 413 may be along the third direction, the width difference between the edge of the third sub-section 413 facing the waveguide layer 20 and the width of the fourth sub-section 414 .
  • the embodiment of the present application does not limit the thickness of the third sub-section 413 and the fourth sub-section 414, and the thickness of the third sub-section 413 and the fourth sub-section 414 is related to the total thickness of the photoelectric conversion layer 40 related.
  • the thickness range of the third subsection 413 can be [50nm, 150nm]
  • the thickness range of the fourth subsection 414 can be [50nm , 250nm].
  • the total thickness of the photoelectric conversion layer 40 is 300 nm
  • the thickness of the third sub-section 413 is 50 nm
  • the thickness of the fourth sub-section 414 is 250 nm.
  • the photoelectric conversion layer 40 is also in contact with the first N-type doped layer 31 and the first P-type doped layer 32, and the first N-type doped layer 31 and the first P-type doped layer 32 They can be separately arranged on opposite sides of the waveguide layer 20 .
  • the optical input end 21 protrudes from the first N-type doped layer 31 and the first P-type doped layer 32 to expose the optical input end 21, so that the optical input end 21 is connected to the optical transmission device 200 and receives The optical signal transmitted by the optical transmission device 200 .
  • the junction of the light transmission part 22 and the light input end 21 is flush with the edges of the first N-type doped layer 31 and the first P-type doped layer 32 facing the light input end 21 .
  • the edges of the first N-type doped layer 31 and the first P-type doped layer 32 toward the light input end 21 also protrude The edge facing the light input end 21 in the first portion 41 . It can also be said that along the first direction, the edge of the light transmission part 22 facing the light input end 21 protrudes beyond the edge of the first part 41 facing the light input end 21 . In this way, the part of the optical transmission part 22 closest to the optical input end 21 (it can also be said that the part of the optical transmission part that transmits the largest signal amount of the optical signal) will not couple the optical signal to the photoelectric conversion layer 40, but continue to The optical signal is transmitted along the first direction.
  • the optical transmission part 22 After the optical signal is transmitted to the optical transmission part 22 and the first part 41 , the optical transmission part 22 starts to couple the optical signal to the first part 41 . That is, as shown in FIG. 6 , compared with the first peak of the absorptivity curve of the related art, the first peak of the absorptivity curve of the present application moves backward.
  • the part of the optical transmission part 22 that transmits the largest signal amount of the optical signal from directly coupling the optical signal to the first part 41 .
  • the amount of optical signals absorbed by the first portion 41 is greatly reduced. Further improve the saturation problem of the waveguide detector when the optical power is high, avoid the saturation of the waveguide detector when the optical power is high, and affect the drift speed of the carrier, thereby improving the responsivity and photoelectric conversion bandwidth of the waveguide detector.
  • the embodiment of the present application does not compare the edges of the first N-type doped layer 31 and the first P-type doped layer 32 toward the light input end 21 with the edge of the first part 41 toward the light input end 21
  • the distance L between the first N-type doped layer 31 and the first P-type doped layer 32 towards the light input end 21 is limited, as long as the edge towards the light input end 21 in the first part 41 is also protruded, that is Can.
  • the distance L between the edge of the first N-type doped layer 31 and the first P-type doped layer 32 facing the light input end 21 and the edge of the first part 41 facing the light input end 21 can range from [ 1 ⁇ m, 10 ⁇ m].
  • the distance L between the edge of the first N-type doped layer 31 and the first P-type doped layer 32 facing the light input end 21 and the edge of the first part 41 facing the light input end 21 can be 1 ⁇ m or 3.5 ⁇ m , or 7 ⁇ m, or 10 ⁇ m, etc.
  • the pitch range can be applied to waveguide detectors of various sizes, for example, the width difference range can be applied to waveguide detectors that convert optical signals with a wavelength of 1310 nm or 1550 nm into electrical signals.
  • the waveguide can be formed by the same semiconductor process Layer 20, the first N-type doped layer 31 and the first P-type doped layer 32, to simplify the preparation process of the waveguide detector, reduce the number of mask plates (mask) used to prepare the waveguide detector, thereby saving the preparation of the waveguide detector. The cost of the detector.
  • the process of preparing the waveguide layer 20, the first N-type doped layer 31 and the first P-type doped layer 32 may include the following steps:
  • a Si film 23 and a photoresist 81 are sequentially formed on the substrate 10 .
  • the photoresist 81 can be positive or negative.
  • the photoresist 81 is exposed and developed to obtain a photoresist pattern 811 .
  • the Si thin film 23 is etched to obtain the waveguide layer 20 , the first N-type doped pattern 311 and the first P-type doped pattern 321 .
  • the pattern of the first N-type doped pattern 311 is the same as that of the first N-type doped layer 31 to be formed.
  • the pattern of the first P-type doped pattern 321 is the same as that of the first P-type doped layer 32 to be formed.
  • the photoresist pattern 811 can also be stripped.
  • the photoelectric conversion layer 40 can be formed by using only one mask.
  • N-type doping can be performed on the first N-type doped pattern 311 .
  • Si in the first N-type doping pattern 311 may be doped with pentavalent elements.
  • Si in the first N-type doping pattern 311 may be doped with phosphorus (P) or arsenic (As).
  • the first P-type doped pattern 321 can also be doped with P-type under the protection of other photoresist patterns.
  • Si in the first P-type doping pattern 321 may be doped with a trivalent element.
  • Si in the first P-type doping pattern 321 may be doped with boron (B) or indium (In).
  • the first N-type doped layer 31 and the first P-type doped layer 32 formed in this example are arranged in the same layer as the waveguide layer 20, and the first N-type doped layer 31 and the first P-type doped layer 32 are separately arranged on The waveguide layer 20 has opposite sides.
  • the optical input terminal 21 After the optical input terminal 21 receives the optical signal, it can not only transmit the optical signal to the optical transmission part 22, but also transmit the optical signal to the first N-type doped layer 31 and the first P-type doped layer 32 through the optical transmission part 22. .
  • the photoelectric conversion layer 40 needs to contact with the first N-type doped layer 31 and the first P-type doped layer 32 respectively. In this way, the optical signals in the first N-type doped layer 31 and the first P-type doped layer 32 can also be coupled to the photoelectric conversion layer 40 .
  • first N-type doped layer 31 and the first P-type doped layer 32 couple the optical signal to the photoelectric conversion layer 40 can be the same as the aforementioned optical transmission part 22 that couples the optical signal to the photoelectric conversion
  • the method of layer 40 is the same, and will not be repeated here.
  • the waveguide layer 20 , the first N-type doped layer 31 , the first P-type doped layer 32 and the photoelectric conversion layer 40 can also be formed in other ways, which is not limited in this embodiment of the present application.
  • the waveguide layer 20 may be formed first, and then the first N-type doped layer 31 , the first P-type doped layer 32 and the photoelectric conversion layer 40 are formed respectively.
  • the photoelectric conversion layer 40 converts the optical signal into an electrical signal
  • the vicinity of the opposite side along the second direction also has charges.
  • the bias voltage provided by the first electrode 51 and the second electrode 52 the opposite sides of the photoelectric conversion layer 40 along the second direction can also form an electric field.
  • the surface of the first N-type doped layer 31 facing the photoelectric conversion layer 40 may have a first protrusion
  • the electrical signal near the opposite sides of the photoelectric conversion layer 40 along the second direction can also be transmitted to the first electrode 51 through the first N-type doped layer 31, and transmitted to the first electrode 51 through the first P-type doped layer 32.
  • the second electrode 52 thereby improving the photoelectric conversion bandwidth of the waveguide detector.
  • the photoelectric conversion layer 40 is located between the first protrusion and the second protrusion. As shown in FIG. 12a, the part of the photoelectric conversion layer 40 is located between the first protrusion and the second protrusion. between the bumps. Alternatively, as shown in FIG. 12 b , all the photoelectric conversion layers 40 are located between the first protrusion and the second protrusion. Optionally, all of the photoelectric conversion layer 40 is located between the first protrusion and the second protrusion, so that the electrical signal on the side of the photoelectric conversion layer 40 is fully transmitted to the first electrode 51 and the second electrode 52 .
  • the width of the second portion 42 may be smaller than the width of the first N-type doped layer 31 to the first P-type doped layer 32 by arranging the first protrusion and the second protrusion. vertical distance. It can prevent that when the photoelectric conversion layer 40 is prepared, the second part 42 extends indefinitely along the second direction, resulting in crystal defects, high dark current flowing through the waveguide detector, and deterioration of the signal-to-noise ratio. Photocurrent generated by an electrical signal.
  • the waveguide probe may further include a second N-type doped layer 61 , the second P-type doped layer 62 .
  • the doping concentration of the N-type semiconductor material in the second N-type doped layer 61 is greater than the doping concentration of the N-type semiconductor material in the first N-type doped layer 31 .
  • the doping concentration of the P-type semiconductor material in the second P-type doped layer 62 is greater than the doping concentration of the P-type semiconductor material in the first P-type doped layer 32 .
  • the first N-type doped layer 31 , the first P-type doped layer 32 , the second N-type doped layer 61 and the second P-type doped layer 62 all include Si.
  • the first N-type doped layer 31 and the second N-type doped layer 61 are also doped with As, wherein the doping concentration of As in the first N-type doped layer 31 is smaller than that in the second N-type doped layer 61 As doping concentration.
  • In is also doped, and the doping concentration of In in the first P-type doped layer 32 is smaller than that of In in the second P-type doped layer 62. doping concentration.
  • first N-type doped layer 31 and the second N-type doped layer 61 are doped with the same semiconductor material
  • the first P-type doped layer 32 and the second P-type doped layer 62 are doped with the same semiconductor material.
  • the semiconductor materials doped in the first N-type doped layer 31 and the second N-type doped layer 61 may also be different
  • the first P-type doped layer 32 and the second P-type doped layer 62 are doped
  • the semiconductors can also be different.
  • the second N-type doped layer 61 is disposed between the first N-type doped layer 31 and the first electrode 51 , and is in contact with the first N-type doped layer 31 and the first electrode 51 .
  • the second P-type doped layer 62 is disposed between the first P-type doped layer 32 and the second electrode 52 , and is in contact with the first P-type doped layer 32 and the second electrode 52 .
  • Preventing the first N-type doped layer 31 from being in direct contact with the first electrode 51 and the first P-type doped layer 32 from directly contacting the second electrode 52 to form potential barriers can reduce the contact between the first N-type doped layer 31 and the first electrode 52.
  • the contact resistance of the electrode 51 , and the contact resistance of the first P-type doped layer 32 and the second electrode 52 are examples of the electrode 51 , and the contact resistance of the first P-type doped layer 32 and the second electrode 52 .
  • the waveguide detector may further include an insulating layer 90, and the insulating layer 90 is disposed on the first N-type doped layer 31, the second N-type doped layer 61, the first P-type doped layer 32, Between the second P-type doped layer 62 and the photoelectric conversion layer 40 and the first electrode 51 and the second electrode 52 .
  • the present application may form a via hole in the insulating layer 90, so that the first electrode 51 contacts the second N-type doped layer 61 through the via hole, and makes the second electrode 52 contact the second P-type doped layer 62 through the via hole.
  • the waveguide probe may further include a contact layer 70 .
  • the contact layer 70 is respectively disposed between the second N-type doped layer 61 and the first electrode 51 , and between the second P-type doped layer 62 and the second electrode 52 .
  • the orthographic projection of the contact layer 70 on the substrate 10 overlaps with the orthographic projection of the via hole on the substrate 10 .
  • the orthographic projection of the via hole on the substrate 10 may all fall within the range of the orthographic projection of the contact layer 70 on the substrate 10, and the area of the orthographic projection of the contact layer 70 on the substrate 10 is larger than that of the via hole. The area of the orthographic projection on the substrate 10.
  • the orthographic projection of the contact layer 70 on the substrate 10 may all fall within the range of the orthographic projections of the second N-type doped layer 61 and the second P-type doped layer 62 on the substrate 10, and the second N-type doped layer
  • the area of the orthographic projection of the layer 61 and the second P-type doped layer 62 on the substrate 10 is respectively larger than the area of the orthographic projection of the contact layer 70 on the substrate 10 .
  • the embodiment of the present application does not limit the material of the contact layer 70 as long as it can reduce the ohmic resistance in the via hole.
  • the material of the contact layer 70 may be metal silicide.
  • the material of the contact layer 70 may include nickel silicide (Ni 2 Si), cobalt silicide (CoSi 2 ), and the like.
  • the waveguide detector may include an optical input end 21 , and the photoelectric conversion layer 40 includes a first portion 41 . While the optical signal is unidirectionally transmitted from the optical input end 21 to the optical transmission part 22 along the first direction, the optical signal is first coupled to a first part 41 and then coupled to the second part 42 .
  • the waveguide detector may include two opposite optical input ends 21 , the photoelectric conversion layer 40 includes two first parts 41 , and the two first parts 41 are respectively arranged on opposite sides of the second part 42 . While the optical signal is oppositely transmitted from the optical input end 21 to the optical transmission part 22 along the first direction, the optical signal can be coupled to the two first parts 41 first, and then coupled to the second part 42 .
  • the waveguide detector including two optical input ends 21 can save the number of waveguide detectors in the chip, thereby saving the layout area of the chip.
  • the waveguide detector is integrated in the chip.
  • the light splitting group can be coupled between the optical fiber 200 and the waveguide detector 402 .
  • the beam splitter 401 in the optical beam splitting group can divide the optical signal into multiple sub-optical signals, and each sub-optical signal is received by an optical input end 21 of the waveguide detector. In this way, the optical power input to a single detector 402 can be reduced, further reducing the problem of saturation when the optical power is high.
  • the beam splitter 401 may divide the optical signal into four beams of sub-optical signals, or six beams of sub-optical signals, or eight beams of sub-optical signals. The sum of the energy of the multiple sub-optical signals is equal to the energy of the optical signal input to the optical beam splitting group.
  • the number of beam splitters 401 in the optical beam splitting group is different, the number of beams that each beam splitter 401 can split is different, and the number of waveguide detectors coupled with the optical beam splitting group is different.
  • the optical beam splitting group includes a beam splitter 401, and the beam splitter 401 can split an optical signal into two beams of sub-optical signals.
  • the waveguide probe 402 includes an optical input end 21 .
  • the optical beam splitting group can be coupled with two parallel waveguide detectors 402, and the two output ends of the beam splitter 401 are respectively coupled with the optical input ends 21 of the two parallel connected waveguide detectors 402.
  • the optical beam splitting group includes a beam splitter 401, and the beam splitter 401 can split the optical signal into two beams of sub-optical signals.
  • the waveguide probe 402 includes two optical input ends 21 . Then the optical beam splitting group can be coupled with a waveguide detector 402 , and the two output ends of the beam splitter 401 are respectively coupled with the two optical input ends 21 of a waveguide detector 402 .
  • the optical beam splitting group includes multiple beam splitters 401 , and the waveguide detector 402 includes one or two optical input ends 21 . Then the optical beam splitting group can be coupled with a plurality of waveguide detectors 402 connected in parallel, and the two output ends of the beam splitter 401 are respectively coupled with the optical input ends 21 of the plurality of waveguide detectors 402 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种芯片(400)、光电转换装置、光模块和光通信系统,涉及光通信技术领域,可以改善因波导探测器(402)在光功率较大情况下饱和,导致波导探测器(402)的光电转换响应度降低的问题。芯片(400)包括波导探测器(402),波导探测器(402)包括波导层(20)、与波导层(20)接触且层叠设置的光电转换层(40);波导层(20)包括光输入端(21)和光传输部分(22),沿第一方向,光输入端(21)凸出于光电转换层(40);第一方向为沿光输入端(21)到光传输部分(22)的方向;光电转换层(40)包括第一部分(41)和第二部分(42),第二部分(42)设置于第一部分(41)背离光输入端(21)一侧;沿第二方向,第一部分(41)的宽度(w2)小于第二部分(42)的宽度(w1);其中,波导层(20)与光电转换层(40)的接触面所在平面中,与第一方向垂直的方向为第二方向。

Description

芯片、光电转换装置、光模块和光通信系统 技术领域
本申请涉及光通信技术领域,尤其涉及一种芯片、光电转换装置、光模块和光通信系统。
背景技术
探测器是光通信系统中实现光信号-电信号转换的核心部件,提高探测器的光电转换响应度对提升光通信系统的性能具有极其重要的意义。
探测器包括波导探测器,现有波导探测器在光功率较大的情况下会达到饱和,导致波导探测器的光电转换响应度降低,影响波导探测器在光功率较大的场景下的应用。
发明内容
为了解决上述技术问题,本申请提供一种芯片、光电转换装置、光模块和光通信系统,可以改善因波导探测器在光功率较大情况下饱和,导致波导探测器的光电转换响应度降低的问题。
第一方面,本申请提供一种芯片,芯片包括波导探测器,波导探测器包括波导层、与波导层接触且层叠设置的光电转换层。波导层包括光输入端和光传输部分,沿第一方向,光输入端凸出于光电转换层;第一方向为光输入端到光传输部分的垂直方向;光电转换层包括第一部分和第二部分,第二部分设置于第一部分背离光输入端一侧;沿第二方向,第一部分的宽度小于第二部分的宽度和光输入端的宽度;其中,波导层与光电转换层的接触面所在平面中,与第一方向垂直的方向为第二方向。例如,第一部分中朝向光输入端的边沿,与光输入端的宽度差范围为[500nm,5μm]。
本申请中,通过使第一部分的宽度小于第二部分的宽度,可以在第二部分沿第一方向的长度不变的情况下,使得第二部分具有较大的光吸收面积,从而提高从光传输部分耦合至第二部分的光信号的信号量,改善因第二部分接收的光信号的信号量较低,导致波导探测器的光电转换响应度偏低的问题。
在一些可能实现的方式中,沿第二方向,第一部分的宽度小于光输入端的宽度。可以在第一部分沿第一方向的长度不变的情况下,减小第一部分的光吸收面积,从而降低从光传输部分耦合至第一部分的光信号的信号量。从而可以改善波导探测器在光功率较大时的饱和的问题,避免因波导探测器在光功率较大时饱和,影响载流子的漂移速度,从而提高波导探测器的光电转换带宽。
在此基础上,在第一部分的宽度小于第一部分的宽度和光输入端的宽度的情况下,通过使第一部分的宽度小于光输入端的宽度,可以降低光传输部分耦合至第一部分的光信号的信号量,使得更多的光信号沿第一方向继续传输。光信号传输至光传输部分中与第二部分重叠的区域后,还可以通过增加第二部分的宽度,使得第二部分的宽度大于第 一部分的宽度,这样一来,光传输部分可以将更多的光信号耦合至第二部分。不但可以提高波导探测器的光电转换响应度,还可以避免第一部分的宽度变窄,而导致光电转换层吸收的光信号的总量减少,影响波导探测器的光电转换效率。
在一些可能实现的方式中,沿第一方向,第一部分包括第一子部分和第二子部分;第二子部分设置于第一子部分与第二部分之间;沿第二方向,第一子部分的宽度小于第二子部分的宽度。例如,第一子部分在波导层上的正投影为矩形,第二子部分在波导层上的正投影为梯形;梯形的上底与第一子部分朝向第二子部分的边沿等长且连续,梯形的下底与第二部分朝向第一部分的边沿等长且连续。
一方面,可以确保光电转换层中距离光输入端最近的第一子部分的宽度最小,最大程度降低吸收率曲线中第一个波峰的峰值;另一方面,还可以利用第二子部分在第一子部分与第二部分间起到缓冲作用,避免因第一子部分与第二部分连接处的宽度差较大,导致光信号沿与其入射方向相反的方向发生强反射。
在一些可能实现的方式中,第一部分包括第三子部分和第四子部分,第三子部分设置于波导层与第四子部分之间;沿第二方向,第三子部分的宽度小于第四子部分的宽度,以进一步降低第三子部分的光吸收面积,从而降低从光传输部分耦合至第三子部分的光信号的信号量。避免因波导探测器在光功率较大时饱和,影响载流子的漂移速度,从而提高波导探测器的响应度和光电转换带宽。例如,沿第二方向,第四子部分与第三子部分的宽度差为(0nm,300nm]。
在一些可能实现的方式中,波导探测器还包括第一N型掺杂层和第一P型掺杂层;第一N型掺杂层和第一P型掺杂层分设于波导层相对两侧,光电转换层还与第一N型掺杂层和第一P型掺杂层接触;沿第一方向,光输入端凸出于第一N型掺杂层和第一P型掺杂层;第一N型掺杂层和第一P型掺杂层中朝向光输入端的边沿,凸出于第一部分中朝向光输入端的边沿。这样一来,光传输部分中最靠近光输入端的部分(也可以说,光传输部分中传输光信号的信号量最大的部分)不会向光电转换层耦合光信号,而是继续沿第一方向传输光信号。待光信号传输至光传输部分中与第一部分后,光传输部分才开始向第一部分耦合光信号,从而可以进一步降低第一部分对光信号的吸收率。例如,第一N型掺杂层和第一P型掺杂层中朝向光输入端的边沿,与第一部分朝向光输入端的边沿间的间距范围为[1μm,10μm]。
在一些可能实现的方式中,第一N型掺杂层、第一P型掺杂层和波导层通过同一次半导体工艺得到,第一N型掺杂层包括N型半导体材料,第一P型掺杂层包括P型半导体材料。以简化波导探测器的制备工艺,减少用于制备波导探测器的掩模板的数量,从而节省制备波导探测器的成本。
在一些可能实现的方式中,第一N型掺杂层朝向光电转换层的表面具有第一凸起,第一P型掺杂层朝向光电转换层的表面具有第二凸起,光电转换层中的至少部分位于第一凸起与第二凸起之间。由于光电转换层将光信号转换为电信号后,其沿第二方向相对设置的侧面附近也具有电荷。通过第一电极和第二电极提供的偏压,光电转换层中沿第二方向相对设置的侧面也可以形成电场。因此,将光电转换层中的至少部分设置于第一凸起与第二凸起之间。可以使光电转换层中沿第二方向相对设置的侧面附近的电信号也 可以通过第一N型掺杂层传输至第一电极,通过第一P型掺杂层传输至第二电极,从而提高波导探测器的光电转换带宽。
在一些可能实现的方式中,第二部分的宽度小于第一N型掺杂层到第一P型掺杂层的垂直距离。可以防止在制备光电转换层时,第二部分无限制地沿第二方向延伸,导致晶体缺陷、流经波导探测器的暗电流偏高、信噪比变差,无法识别光信号转换为电信号产生的光电流。
在一些可能实现的方式中,波导探测器还包括第二N型掺杂层、第二P型掺杂层、第一电极和第二电极;第二N型掺杂层中N型半导体材料的掺杂浓度,大于第一N型掺杂层中N型半导体材料的掺杂浓度;第二P型掺杂层中P型半导体材料的掺杂浓度,大于第一P型掺杂层中P型半导体材料的掺杂浓度;第二N型掺杂层设置于第一N型掺杂层与第一电极之间,并与第一N型掺杂层与第一电极接触;第二P型掺杂层设置于第一P型掺杂层与第二电极之间,并与第一P型掺杂层与第二电极接触。防止第一N型掺杂层与第一电极直接接触、以及第一P型掺杂层与第二电极直接接触形成势垒,可以降低第一N型掺杂层与第一电极的接触电阻、以及第一P型掺杂层与第二电极的接触电阻。
在此基础上,为了降低过孔中的欧姆电阻,波导探测器还可以包括接触层。接触层分别设置于第二N型掺杂层与第一电极之间,以及第二P型掺杂层与第二电极之间。并且,接触层在衬底上的正投影与过孔在衬底上的正投影重叠。
在一些可能实现的方式中,波导层包括相对设置的两个光输入端。相较于波导探测器包含一个光输入端,波导探测器包含两个光输入端可以节省芯片中波导探测器的数量,从而节省芯片的版图面积。
在一些可能实现的方式中,芯片还包括光分束组,光分束组包括至少一个分束器,光分束组用于将一束光分成多束光,每束光被波导探测器的一个光输入端接收。这样一来,可以降低输入至单个探测器的光功率,减弱光功率饱和问题。
第二方面,提供一种光电转换装置,光电转换装置包括第一方面所述的芯片。
第二方面的实现方式与第一方面任意一种实现方式相对应。第二方面的实现方式所对应的技术效果可参见上述第一方面以及第一方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第三方面,提供一种光模块,光模块包括时钟、电源、以及第二方面所述的光电转换装置;电源,用于为光电转换装置供电;时钟,用于为光电转换装置提供时钟信号。
第三方面的实现方式与第一方面的任意一种实现方式相对应。第三方面的实现方式所对应的技术效果可参见上述第一方面以及第一方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第四方面,提供一种光通信系统,其特征在于,包括第三方面所述的光模块。
第四方面的实现方式与第一方面的任意一种实现方式相对应。第四方面的实现方式所对应的技术效果可参见上述第一方面以及第一方面的任意一种实现方式所对应的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的光通信系统的一种应用场景;
图2为本申请实施例提供的光通信系统的另一种应用场景;
图3为本申请实施例提供的波导探测器的结构示意图;
图4a为本申请实施例提供的波导探测器的一种俯视图;
图4b为本申请实施例提供的波导探测器的另一种俯视图;
图4c为本申请实施例提供的波导探测器的又一种俯视图;
图5a为图4c中A1-A2向的剖视示意图;
图5b为图4c中B1-B2向的剖视示意图;
图6为光电转换层各个位置的光吸收率的变化曲线图;
图7a为图4c中A1-A2向的剖视示意图;
图7b为图4c中A1-A2向的剖视示意图;
图7c为图4c中A1-A2向的剖视示意图;
图8为本申请实施例提供的波导探测器的又一种俯视图;
图9a为本申请实施例提供的波导探测器的制备过程图;
图9b为本申请实施例提供的波导探测器的制备过程图;
图9c为本申请实施例提供的波导探测器的制备过程图;
图10为本申请实施例提供的波导探测器的又一种俯视图;
图11为图10中C1-C2向的剖视示意图;
图12a为本申请实施例提供的波导探测器的侧视图;
图12b为本申请实施例提供的波导探测器的侧视图;
图13为本申请实施例提供的波导探测器的又一种俯视图;
图14为图10中D1-D2向的剖视示意图;
图15为本申请实施例提供的波导探测器的侧视图;
图16为本申请实施例提供的波导探测器的又一种俯视图;
图17a为本申请实施例提供的分束器与波导探测器的耦合关系图;
图17b为本申请实施例提供的分束器与波导探测器的耦合关系图。
附图标记:
100-本端光通信设备;101-第一光发送器;102-第一光接收器;200-光传输设备;300-对端光通信设备;301-第二光发送器;302-第二光接收器;400-芯片;401-分束器;402-波导探测器;10-衬底;20-波导层;21-光输入端;22-光传输部分;23-Si薄膜;31-第一N型掺杂层;311-第一N型掺杂图案;32-第一P型掺杂层;321-第一P型掺杂图案;40-光电转换层;41-第一部分;411-第一子部分;412-第二子部分;413-第三子部分;414-第四子部分;42-第二部分;51-第一电极;52-第二电极;61-第二N型掺杂层;62-第二P型掺杂层;70-接触层;81-光刻胶;811-光刻胶图案811。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本 申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
本申请实施例提供一种光通信系统,如图1所示,光通信系统可以包括本端光通信设备100、光传输设备200、以及对端光通信设备300。
如图2所示,本端光通信设备100和对端光通信设备300可以包括光模块。本端光通信设备100的光模块可以包括第一光发送器101和第一光接收器102。对端光通信设备300的光模块可以包括第二光发送器301和第二光接收器302。一些可能实现的方式中,本端光通信设备100和对端光通信设备300的光模块还可以包括放大器、数字电路、时钟和电源。电源可以为光模块中的其他器件供电。时钟可以为光模块中的其他器件提供时钟信号。
请继续参考图2,光传输设备200可以包括光纤。一些可能实现的方式中,光传输设备200还可以包括分光器和连接头等。
请继续参考图2,第一光发送器101可以通过光纤与第二光接收器302连接,以通过光纤向第二光接收器302发送光信号。第二光发送器301可以通过光纤与第一光接收器102连接,以通过光纤向第一光接收器102发送光信号。
示例的,本端光通信设备100的第一光发送器101通过光纤向对端光通信设备300的第二光接收器302发送信号的过程可以包括:
第一光发送器101接收数据包,并将数据包调制成光信号后,输出光信号。
接着,光纤接收第一光发送器101发送的光信号,并将光信号输入至第二光接收器302。
接着,第二光接收器302接收光信号,将光信号转换为电信号后输出。至此,光信号转换为电信号。
在此基础上,对端光通信设备300的放大器还可以接收第二光电接收器输出的电信号,并对电信号进行放大。对端光通信设备300的数字电路还可以接收放大器输出的放大后的电信号,并将放大后的电信号恢复为目标比特流,并输出。至此,电信号转换为 数字信号。
上述光信号转为电信号的过程可以由第二光接收器302的光电转换装置的波导探测器完成。如图3所示,波导探测器可以是光电二极管,波导探测器可以包括波导层20、第一N型掺杂层31、第一P型掺杂层32、光电转换层40、以及第一电极51和第二电极52。光波导20包括光输入端21和光传输部分22。光输入端21可以与光纤连接,用于接收光纤传输的光信号。光输入端21接收到光信号之后,可以将光信号传输至光传输部分22。光传输部分22接收光信号的同时,还可以将光信号耦合至光电转换层40。光电转换层40可以将接收的光信号转换为电信号,在光电转换层40中产生电荷,通过第一电极51和第二电极52提供的偏压,在光电转换层40中形成电场。在电场的作用下,光电转换层40转换的电信号可以通过第一N型掺杂层31传输至第一电极51,通过第一P型掺杂层32传输至第二电极52,进而通过第一电极51和第二电极52输出电信号。
然而,相关技术中,波导探测器在光功率较大的情况下会达到饱和。发明人发现,现有波导探测器在光功率较大时饱和,是因为光信号从光输入端21传输至光传输部分22的过程中,先经过更加靠近光接收端21的光传输部分22的前端,后经过光传输部分22的后端。光信号要传输到光传输部分22的后端,总要经过光传输部分22的前端。因此,经过光传输部分22的前端的光信号量,多于经过光传输部分22的后端的光信号量。并且,光信号可以边从光传输部分22的前端向后端传输,边向光电转换层40耦合,从而导致光电转换层40中靠近光输入端21的部分吸收了较多的光信号。因此,导致光电转换层40中靠近光输入端21的部分的载流子浓度过高、更易发热,从而限制了该部分载流子的漂移速度,导致波导探测器的响应度和光电转换带宽降低。
可以理解的是,波导探测器的光电转换带宽,是指:波导探测器的电信号幅值等于最大值的二分之根号二倍时对应的频带宽度(3dB带宽),与半功率点对应。
基于上述问题,本申请实施例提供一种芯片,该芯片可以包括波导探测器。本申请实施例通过对波导探测器中的光电转换层40与波导层20进行改进,以改善波导探测器在光功率较大时达到饱和的问题,从而提高波导探测器的光电转换响应度和光电转换带宽。
此处需要说明的是,该芯片上可以仅集成有波导探测器;或者,该芯片也可以集成波导探测器、以及光电转换装置中除波导探测器以外的其他电路;或者,该芯片也可以集成波导探测器、以及光模块中除波导探测器以外其他电路。当然,该芯片还可以集成其他电路,本申请实施例对此不作限定。
下面结合附图对波导探测器的具体结构进行详细介绍。
如图4a-5b所示,沿第一方向,光输入端21凸出于光电转换层40,以露出光输入端21,使得光输入端21与光传输设备200连接,接收光传输设备200传输的光信号。其中,第一方向可以为沿光输入端21到光传输部分22的方向。光电转换层40可以包括第一部分41和第二部分42。沿第一方向,第二部分42设置于第一部分41背离光输入端21一侧。
本申请可以通过调节第一部分41与第二部分42间的结构关系,以及第一部分41与光输入端21间的结构关系,解决前述技术问题。具体可见以下三个实施例:
第一个实施例:如图4a-图4c所示,沿第二方向,第一部分41的宽度w2小于光输入端21的宽度w1。其中,波导层20与光电转换层40的接触面所在平面中,与第一方向垂直的方向为第二方向。
本实施例中,通过减小光电转换层40中更加靠近光输入端21的第一部分41的宽度w2,使第一部分41的宽度w2小于光输入端21的宽度w1,可以在第一部分41沿第一方向的长度不变的情况下,减小第一部分41的光吸收面积,从而降低从光传输部分22耦合至第一部分41的光信号的信号量。图6示出了相关技术以及本申请的光电转换层40各个位置与光输入端21间沿第一方向的距离逐渐变大,其吸收率的变化曲线。曲线的第一个波峰反应了光电转换层40中靠近光输入端21、且吸收的光信号的信号量最大的部分的吸收率。可以看出,本申请通过使第一部分41的宽度w2小于光输入端21的宽度w1,可以使吸收率从50%降低到30%。在光波导层20接收的光信号的总信号量不变的情况下,大大降低了第一部分41吸收的光信号的信号量。从而可以改善波导探测器在光功率较大时饱和的问题,避免因波导探测器在光功率较大时饱和,影响载流子的漂移速度,从而提高波导探测器的光电转换带宽。
在一些可能实现的方式中,本申请不对光信号从光传输部分22耦合至光电转换层40的方式进行限定。可选的,光信号可以通过倏逝波耦合的方式耦合进入光电转换层40中。具体的,光信号的光波在波导层20内沿第一方向传输的过程中,耦合进入光电转换层40;耦合入光电转换层40的光波在光电转换层40中沿第一方向传输的过程中,再次耦合进入波导层20,通过该方式,可以实现光信号在波导层20和光电转换层40中来回耦合。
在一些可能实现的方式中,本申请实施例不对波导层20和光电转换层40的材料进行限定,只要波导层20可以起到光波导的作用,光电转换层40可以将光信号转换为电信号即可。例如,波导层20的材料可以包括硅(Si);光电转换层40的材料可以包括锗(Ge)或者锡化锗(GeSn)等。
在一些可能实现的方式中,本申请实施例不对光输入端21的宽度w1和第一部分41的宽度w2进行限定,光输入端21的宽度w1和第一部分41的宽度w2与波导探测器的尺寸有关,只要光输入端21的宽度w1大于第一部分41的宽度w2即可。可选的,光输入端21与第一部分41的宽度差范围可以是[500nm,5μm]。例如,光输入端21与第一部分41的宽度差可以是500nm、或800nm、或1.25μm、或3μm、或5μm等。该宽度差范围可以适用于多种尺寸的波导探测器,比如该宽度差范围可以适用于将波长为1310nm或者1550nm的光信号转换为电信号的波导探测器。
第二个实施例:如图4a-图4c所示,沿第二方向,第一部分41的宽度还可以小于第二部分42的宽度。可以在第二部分42沿第一方向的长度不变的情况下,使得第二部分42具有较大的光吸收面积,从而提高从光传输部分22耦合至第二部分42的光信号的信号量,改善因第二部分42接收的光信号的信号量较低,导致波导探测器的光电转换响应度偏低的问题。如图6所示,对于光电转换层40中距离光输入端21较远的部分,例如光电转换层40中与光输入端21间隔3.6E-5m位置处,本申请的吸收率大于相关技术的吸收率,在光波导层20接收的光信号的总信号量不变的情况下,增加了第二部分42吸收的光信号的信号量。
在一些可能实现的方式中,本申请实施例不对第一部分41的宽度和第二部分42的宽度进行限定,第一部分41的宽度和第二部分42的宽度与波导探测器的尺寸有关,只要第一部分41的宽度小于第二部分42的宽度即可。本申请可以通过减小第一部分41的宽度,和/或,增大第二部分42的宽度来实现第一部分41的宽度小于第二部分42的宽度。
在一些可能实现的方式中,本申请实施例不对第一部分41的结构进行限定,只要第一部分41各个位置处的宽度均小于第二部分42的宽度即可。如图4a和图4b所示,沿第一方向,第一部分41的宽度可以逐渐变大。或者,如图4c所示,第一部分41中各个位置处的宽度也可以均相同。相较于第一部分41中各个位置处的宽度均相同,第一部分41的宽度沿第一方向逐渐变大的方案具有缓冲作用,避免因第一部分41与第二部分42连接处的宽度差较大,导致光信号沿与其入射方向相反的方向发生强反射。
此处需要说明的是,如图4a和图4b所示,在第一部分41沿第一方向的宽度逐渐变大的情况下,前述光输入端21与第一部分41的宽度差范围[500nm,5μm],可以是沿第一方向,第一部分41中朝向光输入端21的边沿与光输入端21的宽度差。
在第一部分41的宽度逐渐变大的情况下,如图4a所示,第一部分41可以包括第一子部分411和第二子部分412。第二子部分412设置于第一子部分411与第二部分42之间。沿第二方向,第一子部分411的宽度小于第二子部分412的宽度。或者,如图4b所示,沿第一方向,第一部分41中距离光输入端21较远的部分的宽度,总是大于第一部分41中距离光输入端21较近的部分的宽度。
进一步的,对于第一部分41包括第一子部分411和第二子部分412的方案,第一子部分411在波导层20上的正投影可以为矩形,第二子部分412在波导层20上的正投影可以为梯形(例如,等腰梯形)。并且,梯形的上底与第一子部分411朝向第二子部分412的边沿等长且连续,梯形的下底与第二部分42朝向第一部分41的边沿等长且连续。相较于图4b所示的方案,采用第一子部分411的宽度小于第二子部分412的宽度的方案,一方面,可以确保光电转换层40中距离光输入端21最近的第一子部分411的宽度最小,最大程度降低吸收率曲线中第一个波峰的峰值;另一方面,还可以利用第二子部分412在第一子部分411与第二部分42间起到缓冲作用,避免因第一子部分411与第二部分42连接处的宽度差较大,导致光信号沿与其入射方向相反的方向发生强反射。
此处需要说明的是,为了使第二子部分412与第二部分42在第一方向上最大程度连续,以最大程度对第一部分41与第二部分42起到缓冲作用,梯形的下底与第二部分42朝向第一部分41的边沿等长,并不影响第一部分41的宽度小于第二部分42的宽度。
以及,正投影是指某一结构沿某一方向的垂直投影。例如,第一子部分411在波导层20上的正投影可以为矩形,是指:沿第三方向,第一子部分411在波导层20上的垂直投影区域的形状可以为矩形。下文中的正投影可参考此处的解释,下文不再赘述。其中,第三方向可以是波导层20到光电转换层40的垂直方向。
在一些可能实现的方式中,本申请不对第一部分41沿第一方向的长度,以及第二部分42沿第一方向的长度进行限定。可选的,第一部分41的长度范围可以是[0.5μm,10μm],第二部分42的长度范围可以是(0μm,200μm]。例如,第一部分41的长度可以是0.5μm、 或3μm、或7.5μm、或10μm等。第二部分42的长度可以是1μm、或25μm、或119μm、或200μm等。
第三个实施例:如图4a-图4c所示,沿第二方向,第一部分41的宽度既小于第二部分42的宽度,还小于光输入端21的宽度。
通过使第一部分41的宽度小于光输入端21的宽度,可以降低光传输部分22耦合至第一部分41的光信号的信号量,使得更多的光信号沿第一方向继续传输。光信号传输至光传输部分22中与第二部分42重叠的区域后,还可以通过增加第二部分42的宽度,使得第二部分42的宽度大于第一部分41的宽度,这样一来,光传输部分22可以将更多的光信号耦合至第二部分42。不但可以提高波导探测器的光电转换响应度,还可以避免第一部分41的宽度变窄,而导致光电转换层40吸收的光信号的总量减少,影响波导探测器的光电转换效率。
除上述说明以外,第三个实施例还可以包括其他可实现方案,具体可参考第一个实施例和第二个实施例,在此不再赘述。
此外,由于光信号是从波导层20指向光电转换层40的方向,从波导层20耦合至光电转换层40,因此,光电转换层40中越靠近前述接触面的部分吸收光信号的信号量越多。为了避免第一部分41中靠近接触面的部分吸收过多的光信号,如图7a-7c所示,本申请的第一部分41可以包括第三子部分413和第四子部分414,第三子部分413设置于波导层20与第四子部分414之间。并且,沿第二方向,更加靠近接触面的第三子部分413的宽度小于第四子部分414的宽度,以进一步降低第三子部分413的光吸收面积,从而降低从光传输部分22耦合至第三子部分413、甚至整个第一部分41的光信号的信号量。避免因波导探测器在光功率较大时饱和,影响载流子的漂移速度,从而提高波导探测器的响应度和光电转换带宽。
在一些可能实现的方式中,本申请实施例不对第三子部分413的宽度和第四子部分414的宽度进行限定,第三子部分413的宽度和第四子部分414的宽度与波导探测器的尺寸有关,只要第三子部分413的宽度小于第四子部分414的宽度即可。可选的,第四子部分414与第三子部分413的宽度差可以为(0,300nm]。例如,第四子部分414与第三子部分413的宽度差可以是1nm、或15nm、或200nm、或300nm等。该宽度差范围可以适用于多种尺寸的波导探测器,比如该宽度差范围可以适用于将波长为1310nm或者1550nm的光信号转换为电信号的波导探测器。
在一些可能实现的方式中,本申请实施例不对第三子部分413和第四子部分414的结构进行限定,只要第三子部分413各个位置处的宽度均小于第四子部分414的宽度即可。如图7a和图7b所示,沿第三方向,第三子部分413的宽度可以逐渐变大。或者,如图7c所示,第三子部分413中各个位置处的宽度也可以均相同。相较于第三子部分413中各个位置处的宽度均相同,第三子部分413沿第三方向的宽度逐渐变大的方案,可以减少第一部分41中的直角结构,避免因直角结构过多导致制备的光电转换层40具有晶体缺陷、流经波导探测器的暗电流偏高、信噪比变差,无法识别光信号转换为电信号产生的光电流。另外,第四子部分414的形状可以是正方体。
此处需要说明的是,如图7a和图7b所示,在第三子部分413沿第三方向的宽度逐 渐变大的情况下,前述第四子部分414与第三子部分413的宽度差(0,300nm],可以是沿第三方向,第三子部分413朝向波导层20的边沿与第四子部分414的宽度差。
在一些可能实现的方式中,本申请实施例不对第三子部分413和第四子部分414的厚度进行限定,第三子部分413和第四子部分414的厚度与光电转换层40的总厚度有关。可选的,在光电转换层40的总厚度为[200nm,300nm]的情况下,第三子部分413的厚度范围可以是[50nm,150nm],第四子部分414的厚度范围可以是[50nm,250nm]。例如,光电转换层40的总厚度为300nm,第三子部分413的厚度为50nm,第四子部分414的厚度为250nm。
此外,在一些实施例中,光电转换层40还与第一N型掺杂层31和第一P型掺杂层32接触,第一N型掺杂层31和第一P型掺杂层32可以分设于波导层20的相对两侧。沿第一方向,光输入端21凸出于第一N型掺杂层31和第一P型掺杂层32,以露出光输入端21,使得光输入端21与光传输设备200连接,接收光传输设备200传输的光信号。也可以认为,光传输部分22与光输入端21的交界处,与第一N型掺杂层31和第一P型掺杂层32朝向光输入端21的边沿齐平。
进一步的,为了进一步降低第一部分41对光信号的吸收率,沿第一方向,第一N型掺杂层31和第一P型掺杂层32中朝向光输入端21的边沿,还凸出于第一部分41中朝向光输入端21的边沿。也可以说,沿第一方向,光传输部分22中朝向光输入端21的边沿,凸出于第一部分41中朝向光输入端21的边沿。这样一来,光传输部分22中最靠近光输入端21的部分(也可以说,光传输部分中传输光信号的信号量最大的部分)不会向光电转换层40耦合光信号,而是继续沿第一方向传输光信号。待光信号传输至光传输部分22中与第一部分41后,光传输部分22才开始向第一部分41耦合光信号。即,如图6所示,相较于相关技术的吸收率曲线第一个波峰,本申请的吸收率曲线中第一个波峰后移。
通过上述位置关系,可以避免光传输部分22中传输光信号的信号量最大的部分,直接向第一部分41耦合光信号。在光波导层20接收的光信号的总信号量以及第一部分41的面积不变的情况下,大大降低了第一部分41吸收的光信号的信号量。进一步改善波导探测器在光功率较大时饱和的问题,避免因波导探测器在光功率较大时饱和,影响载流子的漂移速度,从而提高波导探测器的响应度和光电转换带宽。
在一些可能实现的方式中,本申请实施例不对第一N型掺杂层31和第一P型掺杂层32中朝向光输入端21的边沿,与第一部分41朝向光输入端21的边沿间的间距L进行限定,只要第一N型掺杂层31和第一P型掺杂层32中朝向光输入端21的边沿,还凸出于第一部分41中朝向光输入端21的边沿即可。可选的,第一N型掺杂层31和第一P型掺杂层32中朝向光输入端21的边沿,与第一部分41朝向光输入端21的边沿间的间距L的范围可以为[1μm,10μm]。例如,第一N型掺杂层31和第一P型掺杂层32中朝向光输入端21的边沿,与第一部分41朝向光输入端21的边沿间的间距L可以为1μm、或3.5μmμm、或7μm、或10μm等。该间距范围可以适用于多种尺寸的波导探测器,比如该宽度差范围可以适用于将波长为1310nm或者1550nm的光信号转换为电信号的波导探测器。
基于上述波导层20、第一N型掺杂层31、第一P型掺杂层32和光电转换层40的结构关系,如图7c和图8所示,可以通过同一道半导体工艺,形成波导层20、第一N型掺杂层31和第一P型掺杂层32,以简化波导探测器的制备工艺,减少用于制备波导探测器的掩模板(mask)的数量,从而节省制备波导探测器的成本。
例如,制备波导层20、第一N型掺杂层31和第一P型掺杂层32的工艺可以包括如下步骤:
如图9a所示,在衬底10上依次形成Si薄膜23和光刻胶81。光刻胶81可以是正胶,也可以是负胶。
如图9b所示,对光刻胶81进行曝光,显影后得到光刻胶图案811。
如图9c所示,对Si薄膜23进行刻蚀,得到波导层20、第一N型掺杂图案311和第一P型掺杂图案321。
此处需要说明的是,第一N型掺杂图案311的图案与待形成的第一N型掺杂层31的图案相同。第一P型掺杂图案321的图案与待形成的第一P型掺杂层32的图案相同。
此外,在对Si薄膜23进行刻蚀后,还可以剥离光刻胶图案811。
接着,对第一N型掺杂图案311进行N型掺杂,得到第一N型掺杂层31;对第一P型掺杂图案321进行P型掺杂,得到第一P型掺杂层32。
之后,可以单独利用一道mask形成光电转换层40。
在一些可能实现的方式中,还可以在其他光刻胶图案的保护下,对第一N型掺杂图案311进行N型掺杂。可选的,可以对第一N型掺杂图案311中的Si掺杂五价元素。例如,可以向第一N型掺杂图案311中的Si掺杂磷(P)或者砷(As)等。
还可以在其他光刻胶图案的保护下,对第一P型掺杂图案321进行P型掺杂。可选的,可以对第一P型掺杂图案321中的Si掺杂三价元素。例如,可以向第一P型掺杂图案321中的Si掺杂硼(B)或者铟(In)等。
通过本示例形成的第一N型掺杂层31和第一P型掺杂层32与波导层20同层设置,且第一N型掺杂层31和第一P型掺杂层32分设于波导层20相对两侧。光输入端21接收光信号之后,不但可以将光信号传输至光传输部分22,还可以通过光传输部分22将光信号传输至第一N型掺杂层31和第一P型掺杂层32。进一步的,为了使光电转换层40转换的电信号通过第一N型掺杂层31传输至第一电极51,通过第一P型掺杂层32传输至第二电极52,光电转换层40需分别与第一N型掺杂层31和第一P型掺杂层32接触。这样一来,第一N型掺杂层31和第一P型掺杂层32中的光信号,也可以耦合至光电转换层40。
此处需要说明的是,第一N型掺杂层31和第一P型掺杂层32将光信号耦合至光电转换层40的方式,可以与前述光传输部分22将光信号耦合至光电转换层40的方式相同,在此不再赘述。
当然,除了上述示例以外,还可以采用其他方式形成波导层20、第一N型掺杂层31、第一P型掺杂层32和光电转换层40,本申请实施例对此不作限定。例如,如图10和图11所示,可以先形成波导层20,之后再分别形成第一N型掺杂层31、第一P型掺杂层32和光电转换层40。
此外,应该理解的是,光电转换层40将光信号转换为电信号后,其沿第二方向相对设置的侧面附近也具有电荷。通过第一电极51和第二电极52提供的偏压,光电转换层40中沿第二方向相对设置的侧面也可以形成电场。基于此,如图12a和图12b所示,上述第一N型掺杂层31朝向光电转换层40的表面可以具有第一凸起,第一P型掺杂层32朝向光电转换层40的表面可以具有第二凸起,光电转换层40中的至少部分位于第一凸起与第二凸起之间。这样一来,光电转换层40中沿第二方向相对设置的侧面附近的电信号也可以通过第一N型掺杂层31传输至第一电极51,通过第一P型掺杂层32传输至第二电极52,从而提高波导探测器的光电转换带宽。
此处需要说明的是,光电转换层40中的至少部分位于第一凸起与第二凸起之间,可以如图12a所示,光电转换层40中的部分位于第一凸起与第二凸起之间。或者,也可以如图12b所示,光电转换层40全部位于第一凸起与第二凸起之间。可选的,光电转换层40全部位于第一凸起与第二凸起之间,从而使光电转换层40侧面的电信号充分传输至第一电极51和第二电极52。
此外,在一些可能实现的方式中,还可以通过设置第一凸起和第二凸起,使得第二部分42的宽度小于第一N型掺杂层31到第一P型掺杂层32的垂直距离。可以防止在制备光电转换层40时,第二部分42无限制地沿第二方向延伸,导致晶体缺陷、流经波导探测器的暗电流偏高、信噪比变差,无法识别光信号转换为电信号产生的光电流。
在上述波导探测器包括第一N型掺杂层31和第一P型掺杂层32的基础上,如图13和图14所示,波导探测器还可以包括第二N型掺杂层61、第二P型掺杂层62。第二N型掺杂层61中N型半导体材料的掺杂浓度,大于第一N型掺杂层31中N型半导体材料的掺杂浓度。第二P型掺杂层62中P型半导体材料的掺杂浓度,大于第一P型掺杂层32中P型半导体材料的掺杂浓度。
示例的,第一N型掺杂层31、第一P型掺杂层32、第二N型掺杂层61和第二P型掺杂层62均包括Si。第一N型掺杂层31和第二N型掺杂层61中还掺杂有As,其中第一N型掺杂层31中As的掺杂浓度,小于第二N型掺杂层61中As的掺杂浓度。第一P型掺杂层32和第二P型掺杂层62中还掺杂有In,第一P型掺杂层32中In的掺杂浓度,小于第二P型掺杂层62中In的掺杂浓度。此处第一N型掺杂层31与第二N型掺杂层61掺杂的半导体材料相同,以及第一P型掺杂层32与第二P型掺杂层62掺杂的半导体相同仅为示例。可选的,第一N型掺杂层31与第二N型掺杂层61掺杂的半导体材料也可以不同,第一P型掺杂层32与第二P型掺杂层62中掺杂的半导体也可以不同。
请继续参考图14,第二N型掺杂层61设置于第一N型掺杂层31与第一电极51之间,并与第一N型掺杂层31与第一电极51接触。第二P型掺杂层62设置于第一P型掺杂层32与第二电极52之间,并与第一P型掺杂层32与第二电极52接触。防止第一N型掺杂层31与第一电极51直接接触、以及第一P型掺杂层32与第二电极52直接接触形成势垒,可以降低第一N型掺杂层31与第一电极51的接触电阻、以及第一P型掺杂层32与第二电极52的接触电阻。
并且,如图14所示,波导探测器还可以包括绝缘层90,绝缘层90设置于第一N型掺杂层31、第二N型掺杂层61、第一P型掺杂层32、第二P型掺杂层62、以及光电转 换层40与第一电极51和第二电极52之间。本申请可以在绝缘层90中形成过孔,使得第一电极51通过过孔与第二N型掺杂层61接触,使得第二电极52通过过孔与第二P型掺杂层62接触。
在此基础上,为了降低过孔中的欧姆电阻,如图15所示,波导探测器还可以包括接触层70。接触层70分别设置于第二N型掺杂层61与第一电极51之间,以及第二P型掺杂层62与第二电极52之间。并且,接触层70在衬底10上的正投影与过孔在衬底10上的正投影重叠。
在一些可能实现的方式中,为了防止在形成第二N型掺杂层61、第二P型掺杂层62、接触层70和过孔时,因工艺原因出现对位误差,影响波导探测器的功能。可选的,过孔在衬底10上的正投影可以全部落在接触层70在衬底10上的正投影范围内,且接触层70在衬底10上的正投影的面积大于过孔在衬底10上的正投影的面积。接触层70在衬底10上的正投影可以全部落在第二N型掺杂层61和第二P型掺杂层62在衬底10上的正投影范围内,且第二N型掺杂层61和第二P型掺杂层62在衬底10上的正投影的面积分别大于接触层70在衬底10上的正投影的面积。
在一些可能实现的方式中,本申请实施例不对接触层70的材料进行限定,只要其可以降低过孔中的欧姆电阻即可。可选的,接触层70的材料可以是金属硅化物。例如,接触层70的材料可以包括硅化镍(Ni 2Si)、或硅化钴(CoSi 2)等。
此外,对于前述任一实施例的波导探测器的光输入端21,如图13所示,波导探测器可以包括一个光输入端21,光电转换层40包含一个第一部分41。光信号沿第一方向单向从光输入端21向光传输部分22传输的同时,光信号先耦合至一个第一部分41,再耦合至第二部分42。或者,如图16所示,波导探测器可以包括相对的两个光输入端21,光电转换层40包含两个第一部分41,两个第一部分41分设于第二部分42相对两侧。光信号沿第一方向相向从光输入端21向光传输部分22传输的同时,光信号可以先耦合至两个第一部分41,再耦合至第二部分42。
相较于波导探测器包含一个光输入端21,波导探测器包含两个光输入端21可以节省芯片中波导探测器的数量,从而节省芯片的版图面积。
前文描述了芯片中集成有波导探测器的实施例,除此以外,如图17a和图17b所示,芯片400中还可以集成有光分束组,光分束组包括至少一个分束器401。当芯片400应用于光通信系统时,光分束组可以耦合于光纤200与波导探测器402之间。光分束组中的分束器401可以将光信号分为多束子光信号,每束子光信号被波导探测器的一个光输入端21接收。这样一来,可以降低输入至单个探测器402的光功率,进一步减弱光功率较大时饱和的问题。例如,分束器401可以将光信号分为四束子光信号、或六束子光信号、或八束子光信号等。多束子光信号的能量之和,等于输入至光分束组的光信号的能量。
光分束组中的分束器401个数不同,每个分束器401所能分光的束数不同,与光分束组耦合的波导探测器的数量不同。
例如,如图17a所示,光分束组包括一个分束器401,且该分束器401可以将光信号分为两束子光信号。并且,波导探测器402包括一个光输入端21。则光分束组可以与两个并联的波导探测器402耦合,分束器401的两个输出端分别与两个并联的波导探测器 402的光输入端21耦合。
又例如,光分束组包括一个分束器401,且该分束器401可以将光信号分为两束子光信号。并且,波导探测器402包括两个光输入端21。则光分束组可以与一个波导探测器402耦合,分束器401的两个输出端分别与一个波导探测器402的两个光输入端21耦合。
又例如,如图17b所示,光分束组包括多个分束器401,波导探测器402包括一个或两个光输入端21。则光分束组可以与多个并联的波导探测器402耦合,分束器401的两个输出端分别与多个波导探测器402的光输入端21耦合。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (18)

  1. 一种芯片,其特征在于,所述芯片包括波导探测器,所述波导探测器包括波导层、与所述波导层接触且层叠设置的光电转换层;
    所述波导层包括光输入端和光传输部分,沿第一方向,所述光输入端凸出于所述光电转换层;所述第一方向为沿所述光输入端到所述光传输部分的方向;
    所述光电转换层包括第一部分和第二部分,所述第二部分设置于所述第一部分背离所述光输入端一侧;沿第二方向,所述第一部分的宽度小于所述第二部分的宽度;其中,所述波导层与所述光电转换层的接触面所在平面中,与所述第一方向垂直的方向为所述第二方向。
  2. 根据权利要求1所述的芯片,其特征在于,沿所述第二方向,所述第一部分的宽度小于所述光输入端的宽度。
  3. 根据权利要求1或2所述的芯片,其特征在于,沿所述第一方向,所述第一部分包括第一子部分和第二子部分;
    所述第二子部分设置于所述第一子部分与所述第二部分之间;沿所述第二方向,所述第一子部分的宽度小于所述第二子部分的宽度。
  4. 根据权利要求3所述的芯片,其特征在于,所述第一子部分在所述波导层上的正投影为矩形,所述第二子部分在所述波导层上的正投影为梯形;
    所述梯形的上底与所述第一子部分朝向第二子部分的边沿等长且连续,所述梯形的下底与所述第二部分朝向所述第一部分的边沿等长且连续。
  5. 根据权利要求1-4任一项所述的芯片,其特征在于,沿所述第二方向,所述第一部分中朝向所述光输入端的边沿,与所述光输入端的宽度差范围为[500nm,5μm]。
  6. 根据权利要求1-5任一项所述的芯片,其特征在于,所述第一部分包括第三子部分和第四子部分,所述第三子部分设置于所述波导层与所述第四子部分之间;
    沿所述第二方向,所述第三子部分的宽度小于所述第四子部分的宽度。
  7. 根据权利要求6所述的芯片,其特征在于,沿所述第二方向,所述第四子部分与所述第三子部分的宽度差为(0nm,300nm]。
  8. 根据权利要求1-7任一项所述的芯片,其特征在于,所述波导探测器还包括第一N型掺杂层和第一P型掺杂层;所述第一N型掺杂层和所述第一P型掺杂层分设于所述波导层相对两侧,所述光电转换层还与所述第一N型掺杂层和所述第一P型掺杂层接触;
    沿所述第一方向,所述光输入端凸出于所述第一N型掺杂层和所述第一P型掺杂层;所述第一N型掺杂层和所述第一P型掺杂层中朝向所述光输入端的边沿,凸出于所述第一部分中朝向所述光输入端的边沿。
  9. 根据权利要求8所述的芯片,其特征在于,所述第一N型掺杂层和所述第一P型掺杂层中朝向所述光输入端的边沿,与所述第一部分朝向所述光输入端的边沿间的间距范围为[1μm,10μm]。
  10. 根据权利要求8或9所述的芯片,其特征在于,所述第一N型掺杂层、所述第一P型掺杂层和所述波导层通过同一次半导体工艺得到,所述第一N型掺杂层包括N型半导体材料,所述第一P型掺杂层包括P型半导体材料。
  11. 根据权利要求8-10任一项所述的芯片,其特征在于,所述第一N型掺杂层朝向所述光电转换层的表面具有第一凸起,所述第一P型掺杂层朝向所述光电转换层的表面具有第二凸起,所述光电转换层中的至少部分位于所述第一凸起与所述第二凸起之间。
  12. 根据权利要求8-11任一项所述的芯片,其特征在于,所述第二部分的宽度小于所述第一N型掺杂层到所述第一P型掺杂层的垂直距离。
  13. 根据权利要求8-12任一项所述的芯片,其特征在于,所述波导探测器还包括第二N型掺杂层、第二P型掺杂层、第一电极和第二电极;
    所述第二N型掺杂层中N型半导体材料的掺杂浓度,大于所述第一N型掺杂层中N型半导体材料的掺杂浓度;所述第二P型掺杂层中P型半导体材料的掺杂浓度,大于所述第一P型掺杂层中P型半导体材料的掺杂浓度;
    所述第二N型掺杂层设置于所述第一N型掺杂层与所述第一电极之间,并与所述第一N型掺杂层与所述第一电极接触;所述第二P型掺杂层设置于所述第一P型掺杂层与所述第二电极之间,并与所述第一P型掺杂层与所述第二电极接触。
  14. 根据权利要求1-13任一项所述的芯片,其特征在于,所述波导层包括相对设置的两个光输入端。
  15. 根据权利要求1-14任一项所述的芯片,其特征在于,所述芯片还包括光分束组,所述光分束组包括至少一个分束器,所述光分束组用于将一束光分成多束光,每束光被所述波导探测器的一个光输入端接收。
  16. 一种光电转换装置,其特征在于,所述光电转换装置包括权利要求1-15任一项所述的芯片。
  17. 一种光模块,其特征在于,包括时钟、电源、以及权利要求16所述的光电转换装 置;
    所述电源,用于为所述光电转换装置供电;
    所述时钟,用于为所述光电转换装置提供时钟信号。
  18. 一种光通信系统,其特征在于,包括权利要求17所述的光模块。
PCT/CN2021/128436 2021-11-03 2021-11-03 芯片、光电转换装置、光模块和光通信系统 WO2023077305A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/128436 WO2023077305A1 (zh) 2021-11-03 2021-11-03 芯片、光电转换装置、光模块和光通信系统
CN202180101197.6A CN117836589A (zh) 2021-11-03 2021-11-03 芯片、光电转换装置、光模块和光通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128436 WO2023077305A1 (zh) 2021-11-03 2021-11-03 芯片、光电转换装置、光模块和光通信系统

Publications (1)

Publication Number Publication Date
WO2023077305A1 true WO2023077305A1 (zh) 2023-05-11

Family

ID=86240518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128436 WO2023077305A1 (zh) 2021-11-03 2021-11-03 芯片、光电转换装置、光模块和光通信系统

Country Status (2)

Country Link
CN (1) CN117836589A (zh)
WO (1) WO2023077305A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174186A (ja) * 2001-12-06 2003-06-20 Yokogawa Electric Corp 半導体受光素子
CN104238010A (zh) * 2014-09-22 2014-12-24 电子科技大学 一种方向耦合光波导探测器的前端输入波导结构
CN111211181A (zh) * 2018-11-19 2020-05-29 上海新微技术研发中心有限公司 一种波导型光电探测器及其制造方法
CN112531066A (zh) * 2020-12-29 2021-03-19 武汉邮电科学研究院有限公司 一种光电探测器及其使用方法
CN112525232A (zh) * 2020-11-27 2021-03-19 武汉云岭光电有限公司 波导探测器及其制备方法
CN113035982A (zh) * 2021-03-03 2021-06-25 中国电子科技集团公司第三十八研究所 全硅掺杂多结电场增强型锗光波导探测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174186A (ja) * 2001-12-06 2003-06-20 Yokogawa Electric Corp 半導体受光素子
CN104238010A (zh) * 2014-09-22 2014-12-24 电子科技大学 一种方向耦合光波导探测器的前端输入波导结构
CN111211181A (zh) * 2018-11-19 2020-05-29 上海新微技术研发中心有限公司 一种波导型光电探测器及其制造方法
CN112525232A (zh) * 2020-11-27 2021-03-19 武汉云岭光电有限公司 波导探测器及其制备方法
CN112531066A (zh) * 2020-12-29 2021-03-19 武汉邮电科学研究院有限公司 一种光电探测器及其使用方法
CN113035982A (zh) * 2021-03-03 2021-06-25 中国电子科技集团公司第三十八研究所 全硅掺杂多结电场增强型锗光波导探测器

Also Published As

Publication number Publication date
CN117836589A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
US7800193B2 (en) Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module
JP5232981B2 (ja) SiGeフォトダイオード
US10199525B2 (en) Light-receiving element and optical integrated circuit
US10914892B2 (en) Germanium photodetector coupled to a waveguide
JP6318468B2 (ja) 導波路型半導体受光装置及びその製造方法
KR20060130045A (ko) 실리콘계열 쇼트키 장벽 적외선 광검출기
KR20070004900A (ko) 포토 다이오드와 그 제조 방법
US20220350090A1 (en) Photodetector with resonant waveguide structure
WO2022041550A1 (zh) 一种雪崩光电探测器及其制备方法
CN112304347B (zh) 相干探测器芯片及其制备方法
US20120313210A1 (en) Light-receiving device, light receiver using same, and method of fabricating light-receiving device
CN113540063A (zh) 兼容锗硅探测器和薄膜铌酸锂调制器的硅光集成芯片
CN102112901B (zh) 用于放大、调制和检测光信号的纳米线光学块设备
JP3326418B2 (ja) 共振型光検出器
US10942315B2 (en) Reducing back reflection in a photodiode
CN114256376B (zh) 雪崩光电探测器及其制备方法
WO2023077305A1 (zh) 芯片、光电转换装置、光模块和光通信系统
US20130207140A1 (en) Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof
US9406832B2 (en) Waveguide-coupled MSM-type photodiode
KR102307789B1 (ko) 후면 입사형 애벌런치 포토다이오드 및 그 제조 방법
JP2000150923A (ja) 裏面入射型受光装置およびその作製方法
CN114815085B (zh) 一种光模块及硅光芯片的制作方法
JP3381661B2 (ja) 導波路型半導体受光素子及びその製造方法
JP2000164916A (ja) 積層型受光素子
JP7318434B2 (ja) 光半導体素子、これを用いた光トランシーバ、及び光半導体素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962824

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101197.6

Country of ref document: CN