WO2023075416A1 - 배터리 팩 및 배터리 팩을 포함하는 자동차 - Google Patents

배터리 팩 및 배터리 팩을 포함하는 자동차 Download PDF

Info

Publication number
WO2023075416A1
WO2023075416A1 PCT/KR2022/016485 KR2022016485W WO2023075416A1 WO 2023075416 A1 WO2023075416 A1 WO 2023075416A1 KR 2022016485 W KR2022016485 W KR 2022016485W WO 2023075416 A1 WO2023075416 A1 WO 2023075416A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
battery pack
pressing
active material
Prior art date
Application number
PCT/KR2022/016485
Other languages
English (en)
French (fr)
Inventor
임성철
한현규
허근회
곽서영
김국호
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2024518714A priority Critical patent/JP2024536849A/ja
Priority to CN202280056937.3A priority patent/CN117837005A/zh
Priority to EP22887612.4A priority patent/EP4372882A1/en
Publication of WO2023075416A1 publication Critical patent/WO2023075416A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery pack and an automobile including the battery pack, and more particularly, to a battery pack and a battery pack having improved cycle life characteristics of a battery cell by effectively suppressing a swelling phenomenon of a battery cell included in the battery pack. It is about cars that contain
  • Lithium secondary batteries do not have a memory effect compared to nickel-based secondary batteries, so they can be freely charged and discharged.
  • lithium secondary batteries are in the limelight due to their very low self-discharge rate and high energy density.
  • Lithium secondary batteries mainly use lithium-based oxides and carbon materials as cathode and anode active materials, respectively.
  • a lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate coated with a positive electrode active material and a negative electrode active material are disposed with a separator interposed therebetween, and an exterior material for sealing and accommodating the electrode assembly together with an electrolyte solution.
  • lithium secondary batteries may be classified into can-type secondary batteries and pouch-type secondary batteries according to the type of exterior material.
  • can-type secondary battery an electrode assembly is embedded in a metal can.
  • pouch-type secondary battery an electrode assembly is embedded in a pouch made of an aluminum laminate sheet.
  • the pouch type battery cell refers to a secondary battery in which an electrode assembly is accommodated in a pouch made of a flexible polymer material having an irregular shape.
  • the prior art method of controlling the swelling phenomenon of a battery cell was all about pressurizing the battery cell using a uniform pressing force of a pressing member without considering the characteristics of the battery cell. Accordingly, the prior art battery pack has a great limitation in controlling the swelling phenomenon according to the characteristics of the battery cell.
  • Patent Document 1 Korean Patent Publication No. 10-2020-0040975
  • Patent Document 2 Japanese Patent Publication No. 2019-091630
  • Patent Document 3 Korean Patent Publication No. 10-2018-0026210
  • Patent Document 4 Korean Patent Publication No. 10-2020-0058248
  • the present disclosure provides a battery pack having improved cycle life characteristics of a battery cell by effectively suppressing a swelling phenomenon of a battery cell included in the battery pack, and a vehicle including the battery pack.
  • At least one battery cell having a cathode, a separator, and a cathode including an anode active material having at least some silicon oxide; a module housing configured to accommodate the at least one or more battery cells therein; And when the battery cell is charged and discharged, it is configured to resiliently pressurize the battery cell to prevent a change in volume, and a pressing force for pressing the battery cell is set according to the content of the silicon oxide with respect to the total weight of the negative electrode active material.
  • the pressing unit may include an elastic member configured to press in a direction opposite to a direction in which the battery cell expands in volume.
  • the battery cells may include two or more, and may further include buffer pads interposed between the two or more battery cells and configured to buffer volume expansion of the battery cells.
  • At least one battery cell having a cathode, a separator, and a cathode including an anode active material having at least some silicon oxide; a module housing configured to accommodate the at least one or more battery cells therein; a pressing unit configured to resiliently pressurize the battery cell so as to prevent a change in volume of the battery cell during charging and discharging of the battery cell; a sensor unit configured to obtain information about the battery cell; and a battery management system controlling the pressing unit to increase or decrease the pressing force of the pressurizing unit based on the information about the battery cell obtained by the sensor unit.
  • the information about the battery cell obtained by the sensor unit may include state information of at least one of a state of health (SoH), a charge/discharge cycle, and a volume expansion coefficient of the battery cell.
  • SoH state of health
  • charge/discharge cycle charge/discharge cycle
  • volume expansion coefficient of the battery cell e.g., a volume expansion coefficient of the battery cell.
  • the acquired state information of the battery cell is a charge/discharge cycle
  • the battery management system may be configured to increase the pressing force of the pressing unit as the charge/discharge cycle increases.
  • the pressing unit further includes an electric cylinder having a cylinder shaft, and an elastic member, and the cylinder shaft advances toward the battery cell to press the elastic member by the battery management system, or the elastic member. It may be configured to reverse in a direction opposite to the direction toward the battery cell to release the pressure on the member.
  • the battery management system further includes a pressure sensor configured to sense a pressing force applied to the battery cell by the elastic member, and the battery management system determines the pressing force of the pressing unit according to the pressing force measured by the pressure sensor. It may be configured to increase or decrease the pressing force of the pressing part.
  • the module housing includes a movable outer wall configured to support the pressing portion and be movable in a direction toward the battery cell or in a direction opposite to the direction toward the battery cell, and the pressing portion includes the movable outer wall. It further includes an electric cylinder having a cylinder shaft connected to an outer wall, and an elastic member interposed between the battery cell and the movable outer wall, wherein the electric cylinder is located outside the module housing, and the cylinder shaft of the electric cylinder presses the movable outer wall.
  • the movable outer wall may move toward the battery cell, or the movable outer wall may move in a direction opposite to the direction toward the battery cell.
  • a vehicle includes at least one battery pack.
  • the battery pack of the present disclosure is configured to elastically pressurize the battery cell to prevent volume change during charging and discharging of the battery cell, and the pressing force to press the battery cell according to the content of silicon oxide with respect to the total weight of the negative electrode active material of the negative electrode
  • the swelling phenomenon can be controlled according to the swelling characteristics of the battery cell. That is, the inventors of the present disclosure have found that the change in volume varies according to the charging and discharging of the battery cell according to the content of silicon oxide provided as an anode active material of the battery cell.
  • the inventor of the present disclosure provides a pressurizing unit with a set pressing force for pressurizing the battery cell in consideration of the content of silicon oxide provided as an anode active material of the battery cell in order to control the swelling phenomenon of the battery cell mounted in the module housing.
  • a battery pack was invented. Therefore, the battery pack of the present disclosure can effectively control the swelling phenomenon of the battery cells provided therein, thereby increasing the lifespan and stability of the battery pack.
  • the battery pack of the present disclosure includes a pressurizing unit in which a pressing force is set in consideration of swelling of the battery cell according to the content of the negative electrode active material of the negative electrode, so that the battery cell may not be pressurized with excessive force unnecessarily, and conversely, swelling may occur.
  • a pressurizing unit in which a pressing force is set in consideration of swelling of the battery cell according to the content of the negative electrode active material of the negative electrode, so that the battery cell may not be pressurized with excessive force unnecessarily, and conversely, swelling may occur.
  • the pressurization part set to a higher pressurization force When the ring phenomenon is large, the amount of gas generated inside the battery cell can be effectively reduced by using the pressurization part set to a higher pressurization force.
  • FIG. 1 is a perspective view schematically illustrating a battery pack according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a side view schematically illustrating a state of a battery cell of a battery pack according to an embodiment of the present disclosure.
  • FIG. 3 is an exploded perspective view schematically showing configurations of battery cells of a battery pack according to an embodiment of the present disclosure.
  • FIG. 4 is an exploded perspective view schematically showing the appearance of a positive electrode, a separator, and a negative electrode of a battery cell of a battery pack according to an embodiment of the present disclosure.
  • FIG. 5 is a vertical cross-sectional view schematically illustrating a state in which the battery pack of FIG. 1 is cut along the line A-A'.
  • FIG. 6 is a vertical cross-sectional view schematically illustrating a battery pack according to another exemplary embodiment of the present disclosure.
  • FIG. 7 is a conceptual diagram schematically illustrating a battery pack according to an embodiment of the present disclosure.
  • FIG. 8 is a vertical cross-sectional view schematically illustrating a battery pack according to another exemplary embodiment of the present disclosure.
  • FIG. 9 is a vertical cross-sectional view schematically illustrating a battery pack according to another exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram schematically illustrating a state of an automobile according to an embodiment of the present disclosure.
  • Example 11 is a graph showing a capacity retention rate and a change in thickness according to charge/discharge cycles of a battery cell according to Example 1 of the present disclosure.
  • Example 12 is a graph showing a capacity retention rate and expansion force according to charge/discharge cycles of a battery cell according to Example 1 of the present disclosure.
  • Example 13 is a graph showing a capacity retention rate and thickness change according to charge/discharge cycles of a battery cell according to Example 2 of the present disclosure.
  • Example 14 is a graph showing a capacity retention rate and expansion force according to charge/discharge cycles of a battery cell according to Example 2 of the present disclosure.
  • expressions such as “has,” “can have,” “includes,” or “can include” indicate the existence of a corresponding feature (eg, a numerical value, function, operation, or component such as a part). indicated, and does not preclude the presence of additional features.
  • expressions such as “A or B,” “at least one of A and/and B,” or “one or more of A or/and B” may include all possible combinations of the items listed together.
  • “A or B,” “at least one of A and B,” or “at least one of A or B” (1) includes at least one A, (2) includes at least one B, or (3) It may refer to all cases including at least one A and at least one B.
  • FIG. 1 is a perspective view schematically illustrating a battery pack 100 according to an exemplary embodiment of the present disclosure.
  • 2 is a side view schematically illustrating a state of the battery cell 110 of the battery pack 100 according to an embodiment of the present disclosure.
  • 3 is an exploded perspective view schematically showing configurations of the battery cells 110 of the battery pack 100 according to an embodiment of the present disclosure.
  • FIG. 4 is an exploded perspective view schematically showing the appearance of the positive electrode 114, the separator 115, and the negative electrode 116 of the battery cell 110 of the battery pack 100 according to an embodiment of the present disclosure.
  • FIG. 5 is a vertical cross-sectional view schematically illustrating a state in which the battery pack 100 of FIG. 1 is cut along the line AA'.
  • a battery pack 100 includes at least one battery cell 110 , a module housing 120 , and a pressing part 130 .
  • the battery cell 110 includes a cell case 111, an electrode assembly 112 including an electrode tab 113, an electrode lead 117, an insulating film 118, and an electrolyte (not shown).
  • an electrode assembly 112 including an electrode tab 113, an electrode lead 117, an insulating film 118, and an electrolyte (not shown).
  • the cell case 111 may be a pouch-type cell case made of a soft material.
  • the appearance of the lithium secondary battery of the present disclosure is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch shape, or a coin shape.
  • the cell case 111 is combined with the first cell sheet 111a covering the upper portion of the electrode assembly 112 and a portion of the lower surface of the first cell sheet 111a to form the electrode assembly 112.
  • a second cell sheet 111b covering the lower portion may be provided.
  • Each of the first cell sheet 111a and the second cell sheet 111b may be a laminate sheet.
  • the laminate sheet may have a structure in which a thin metal film (eg, Al film) is laminated between a water-resistant polymer film (nylon) and a thermal bonding polymer film (eg, cast polypropylene). Since the structure of the laminate sheet and the materials constituting each layer are widely known in the art to which the present disclosure belongs, detailed descriptions thereof will be omitted.
  • a thin metal film eg, Al film
  • nylon water-resistant polymer film
  • thermal bonding polymer film eg, cast polypropylene
  • the outer peripheries of each of the first cell sheet 111a and the second cell sheet 111b may be heat-sealed to each other.
  • the heat-sealing method includes a process of pressurizing at least a portion of the outer circumference of each of the first and second cell sheets 111a and 111b facing each other with a high-temperature tool (eg, hot press) in a stacked state.
  • a high-temperature tool eg, hot press
  • the heat-sealing temperature may be 110 degrees Celsius to 150 degrees Celsius.
  • the cell case 111 may include a sealing portion formed by heat-sealing outer circumferences of each of the first cell sheet 111a and the second cell sheet 111b.
  • the cell case 111 may include an electrode assembly 112 , an electrode lead 117 , and an accommodation space S accommodating an electrolyte.
  • the accommodation space S may be a portion deformed into a cup shape by pressing a portion of at least one of the two cell sheets 111a and 111b with a high-temperature hot press.
  • the accommodation space S may be a portion P in which a portion of each of the cell sheets 111a and 111b convexly protrudes outward.
  • the accommodating space (S) of the cell case 111 may be larger than the size in which the plurality of electrodes 114 and 116, the separator 115, and the electrolyte can all be accommodated. For example, as shown in FIG.
  • the receiving space S of the cell case 111 includes a convexly protruding portion P of the first cell sheet 111a in an upward direction, and a second cell sheet 111b.
  • the portions R formed concavely in the lower direction may be formed by being coupled to each other.
  • the electrodes 114 and 116 may be at least one anode 114 and at least one cathode 116 according to electrical polarity.
  • the cathode 114 may be manufactured by forming a cathode mixture layer M1 in which a cathode active material, a conductive material, and a binder are mixed is formed on a current collector made of an aluminum alloy material.
  • the negative electrode 116 may be manufactured by forming the negative electrode mixture layer M2 in which the negative electrode active material, the conductive material, and the binder are mixed is formed on the copper alloy current collector.
  • a separator 115 may be interposed between the anode 114 and the cathode 116 .
  • the separator 115 may serve to block an internal short circuit between the positive electrode 114 and the negative electrode 116 and impregnate the electrolyte.
  • the separator 115 of the present disclosure may be used without particular limitation as long as it is a separator material commonly used in secondary batteries.
  • the separator 115 may include at least one material selected from polyethylene and polypropylene.
  • the electrode assembly 112 may be formed by sequentially stacking the positive electrode 114 , the separator 115 , and the negative electrode 116 .
  • the positive electrode 114 may be manufactured by forming the positive electrode mixture layer M1 on the positive electrode current collector.
  • the positive electrode mixture layer M1 may be formed by coating a positive electrode slurry including a positive electrode active material, a binder, a conductive material, and a solvent on a positive electrode current collector, followed by drying and rolling.
  • the cathode current collector is not particularly limited as long as it does not cause chemical change in the battery and has conductivity.
  • the cathode active material may include a lithium composite transition metal oxide having a nickel content of 50 atm% or more, preferably 70 atm% or more among transition metals, in view of improving capacity characteristics and stability of a battery.
  • the cathode active material include lithium nickel cobalt manganese oxides such as LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.5 Co 0.3 Mn 0.2 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 or LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
  • the cathode active material may include lithium nickel cocalt manganese aluminum-based oxide.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and includes lithium-manganese oxides (eg, LiMnO 2 , LiMn 2 O 4 , etc.), lithium-cobalt oxides ( For example, LiCoO 2 , etc.), lithium-nickel-based oxide (eg, LiNiO 2 , etc.), lithium-nickel-manganese-based oxide (eg, LiNi 1-Y Mn Y O 2 (where 0 ⁇ Y ⁇ 1), LiMn 2-O Ni O O 4 (where 0 ⁇ o ⁇ 2), etc.), lithium-nickel-cobalt-based oxide (eg, LiNi 1-Y1 Co Y1 O 2 (where, 0 ⁇ Y1 ⁇ 1), etc.), lithium-manganese-cobalt-based oxides (eg, LiCo 1-Y2 Mn Y2 O 2 (where 0 ⁇ Y2 ⁇ 1), LiMn 2-z1 Co z1
  • the positive electrode active material may be included in an amount of 80 wt % to 99.5 wt %, specifically, 85 wt % to 95 wt % based on the total weight of the solid content in the positive electrode slurry. At this time, when the content of the positive electrode active material is 80% by weight or less, the energy density may be lowered and the capacity may be lowered.
  • the binder is a component that assists in the binding of the active material and the conductive material and the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluorocarbons, roethylene, polyethylene, polypropylene, ethylene-propylene-diene ter monomer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluororubber, various copolymers, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene ter monomer
  • EPDM ethylene-propylene-diene ter monomer
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, or thermal black carbon powder graphite powder such as natural graphite, artificial graphite, or graphite having a highly developed crystal structure
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • at least one of conductive materials such as polyphenylene derivatives may be used.
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
  • the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that provides a desired viscosity when a cathode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the slurry containing the cathode active material and, optionally, the binder and the conductive material may have a solid concentration of 10 wt% to 70 wt%, preferably 20 wt% to 60 wt%.
  • the negative electrode 116 may be manufactured by forming the negative electrode mixture layer M2 on the negative electrode current collector.
  • the negative electrode mixture layer M2 may be formed by coating a slurry including the negative electrode active material, a binder, a conductive material, and a solvent on a negative electrode current collector, followed by drying and rolling.
  • the negative current collector generally has a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • it is made of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel.
  • a surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • fine irregularities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the negative electrode active material is a material capable of doping and undoping lithium, lithium metal, nickel metal, copper metal, SUS metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal, or these metals It may further include at least one selected from the group consisting of alloys of lithium, metal composite oxides, and transition metal oxides and transition metal oxides.
  • Materials capable of doping and undoping the lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-Y alloy (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth It is an element selected from the group consisting of elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (Y is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, a rare earth element, and It is an element selected from the group consisting of combinations thereof, but not Sn), and the like, and at least one of these and SiO 2 may be mixed and used.
  • Element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb , Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se , Te, Po, and combinations thereof.
  • the negative electrode active material includes at least some silicon oxide (SiO x (0 ⁇ x ⁇ 2)).
  • any carbon-based anode active material commonly used in lithium ion secondary batteries can be used without particular limitation, and typical examples thereof include crystalline carbon, Amorphous carbon or a combination thereof may be used.
  • the crystalline carbon include graphite such as plate-shaped, flake-shaped, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon) or hard carbon.
  • Carbon (hard carbon), mesophase pitch carbide, calcined coke, etc. are mentioned.
  • Examples of the above metals or alloys of these metals and lithium include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al And a metal selected from the group consisting of Sn or an alloy of these metals and lithium may be used.
  • metal composite oxide examples include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , LixFe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), and Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb , Ge; Me': Al, B, P, Si, Groups 1, 2, and 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) in the group consisting of Anything of your choosing can be used.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, and lithium vanadium oxide.
  • the negative electrode active material may be included in an amount of 80% to 99% by weight based on the total weight of solids in the negative electrode slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode 116 slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluorocarbons, roethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluororubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene monomer
  • sulfonated-EPDM styrene-buta
  • the conductive material as a component for further improving the conductivity of the negative electrode active material, may be added in an amount of 1 to 20% by weight based on the total weight of solids in the negative electrode slurry.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include at least one of organic solvents such as water, NMP (N-Methyl-2-pyrrolidone), and alcohol. can be used in any amount.
  • organic solvents such as water, NMP (N-Methyl-2-pyrrolidone), and alcohol.
  • the solid content of the slurry containing the anode active material, and optionally the binder and the conductive material as solid content may be included so that the solid content concentration is 50 wt% to 75 wt%, preferably 50 wt% to 65 wt%.
  • the separator 115 may serve to block internal short-circuiting of both electrodes and impregnate the electrolyte.
  • the separator 115 is a conventionally used porous polymer film, for example, a polyolefin polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • the prepared porous polymer film may be used alone or laminated thereto, or a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber or polyethylene terephthalate fiber may be used, but is not limited thereto.
  • the pore diameter of the porous separator is generally 0.01 ⁇ m to 50 ⁇ m, and the porosity may be 5% to 95%.
  • the thickness of the porous separator may generally range from 5 ⁇ m to 300 ⁇ m.
  • a mixture of an electrode active material, a conductive material, and a binder may not be applied to the electrode tab 113 .
  • the electrode tab 113 may be a path through which electrons may move.
  • the electrode tab 113 may be formed by cutting an uncoated portion not coated with the positive electrode active material, or may be separately formed by connecting a separate conductive member to an uncoated portion of an electrode by ultrasonic welding or the like.
  • electrode tabs 113 protruding from one side of each of the anode 114 and the cathode 116 may be provided.
  • a positive electrode tab 113a is formed on the positive electrode 114 to protrude in the negative direction of the X axis.
  • a negative electrode tab 113b protrudes in the positive direction of the X axis is formed on the negative electrode 116 .
  • the electrode tab 113 may be formed on at least one of a first side, a second side, a third side, and a fourth side of the electrode in each of the front, rear, left, and right directions.
  • the battery cell 110 may further include an electrode lead 117 coupled to a portion of the electrode tab 113 .
  • the electrode lead 117 may be an electrically conductive metal. As shown in FIG. 3 , the electrode lead 117 may include a positive lead connected to the positive tab 113a and a negative lead connected to the negative tab 113b.
  • the electrode lead 117 may be connected to one or more electrode tabs 113 in various ways such as welding. A portion of the electrode lead 117 may be exposed to the outside of the cell case 111 . That is, the electrode lead 117 serves as an electrode terminal of the battery cell 110 . For example, the electrode lead 117 may serve as a positive electrode terminal of the battery cell 110 when electrically connected to the positive electrode 114 .
  • the electrode lead 117 may serve as a negative electrode terminal of the battery cell 110 when electrically connected to the negative electrode 116 .
  • the battery cell 110 may include an insulating film 118 configured to cover a portion of the outer surface of the electrode lead 117 .
  • the insulating film 118 may electrically insulate between the cell case 111 and the electrode lead 117 and may be configured to be heat-sealed to the cell case 111 .
  • the electrolyte means an electrolyte in a solid state or liquid state.
  • the battery cell 110 can perform charging and discharging through ion exchange between the positive electrode 114 and the negative electrode 116 through electrolyte.
  • An electrolyte may be placed between the anode 114 and the cathode 116 to allow movement of ions between the anode 114 and the cathode 116 .
  • the electrolyte may be located on the surface and pores of the separator 115 .
  • a non-aqueous electrolyte may be typically used.
  • the module housing 120 may be configured to accommodate at least one or more battery cells 110 therein.
  • the module housing 120 may have an external appearance of a rectangular parallelepiped with an empty inside. A portion of the module housing 120 facing the battery cell 110 may be covered or coated with a non-conductive material that does not conduct electricity.
  • the module housing 120 may be made of metal or plastic, for example.
  • the module housing 120 may be made of, for example, aluminum alloy or stainless steel having excellent thermal conductivity.
  • the module housing 120 may have a front wall, a rear wall, a left wall, a right wall, an upper wall, and a lower wall.
  • the battery pack 100 may include two or more battery cells 110 . For example, as shown in FIG. 5 , 15 battery cells 110 stacked in the front-back direction (Y-axis direction) may be mounted on the lower wall of the module housing 120 .
  • the pressurizing unit 130 may be configured to elastically pressurize the battery cell 110 to prevent a volume change.
  • the battery pack 100 includes a plurality of battery cells 110 stacked in the front-back direction (Y-axis direction)
  • each of the plurality of pressing parts 130 is positioned on the front side of the plurality of battery cells 110. and each of the rear side can be elastically pressed.
  • pressing 'elastically' means pressurizing the battery cell 110 using the elastic force of the pressing unit 130 .
  • the pressurization unit 130 may elastically increase the pressing force to pressurize the battery cell 110 as the volume of the battery cell 110 increases. Conversely, as the volume of the battery cell 110 decreases, the pressure applied to the battery cell 110 by the pressing unit 130 may be reduced elastically.
  • the pressing unit 130 may be set (configured) to have a pressing force to press the battery cell 110 of an appropriate size according to the content of silicon oxide with respect to the total weight of the anode active material. For example, when the content of silicon oxide relative to the total weight of the anode active material is relatively large compared to a predetermined content, the battery pack 100 uses the pressing unit 130 with a high pressing force for pressing the battery cell 110. can include Conversely, when the content of silicon oxide relative to the total weight of the anode active material is relatively small compared to a predetermined amount, the battery pack 100 may include a pressing unit 130 with a small pressing force for pressing the battery cell 110. can
  • the pressing force of the pressing unit 130 when the content of silicon oxide is 5 wt% with respect to the total weight of the anode active material, when the battery cell 110 contracts and expands, the pressing force of the pressing unit 130 may be 250 kgf to 350 kgf. When the content of silicon oxide is 20 wt% with respect to the total weight of the anode active material, when the battery cell 110 contracts and expands, the pressing force of the pressing unit 130 may be 900 kgf to 1000 kgf. That is, as the content of silicon oxide increases with respect to the total weight of the anode active material, the pressing unit 130 may be set to have a greater pressing force. Part 130 may be set to a smaller pressing force. This is because when the content of silicon oxide in the anode active material of the battery cell 110 is relatively high, a larger change in the expanded volume of the battery cell 110 occurs during charging.
  • the pressing force applied by the pressing unit 130 may increase as the number of charge/discharge cycles increases.
  • the pressure unit 130 pressurizes the battery cell 110 during 0 to 15 charge/discharge cycles (high SoH state)
  • the pressing force of can be set to 0 kgf to 250 kgf
  • the pressing force of the pressing unit 130 can be set to 100 kgf to 400 kgf at 70 to 110 charge/discharge cycles
  • the pressurization unit at 170 to 200 charge/discharge cycles ( 130) may be set to 200 kgf to 500 kgf.
  • the battery pack 100 of the present disclosure is configured to elastically pressurize the battery cell 110 to prevent volume change during charging and discharging of the battery cell 110, and
  • the swelling phenomenon may be controlled according to the swelling characteristics of the battery cell 110 by including the pressing unit 130 having a pressing force set to pressurize the battery cell 110 according to the content of silicon oxide with respect to the total weight. That is, the battery pack 100 of the present disclosure considers that the degree of volume change varies according to the charging and discharging of the battery cell 110 according to the type and/or content of the anode active material of the battery cell 110, and the pressing force this has been set
  • the battery pack 100 of the present disclosure in order to effectively control the swelling phenomenon of the battery cell 110 mounted in the module housing 120, silicon oxide provided as the anode active material of the battery cell 110 A pressurizing unit 130 is provided with a pressurizing force set to pressurize the battery cell 110 in consideration of the content of . That is, in the battery pack 100 of the present disclosure, the battery cell 110 may not be pressurized with unnecessarily excessive force, and conversely, when the swelling phenomenon is large, the battery cell 130 is set to a higher pressing force using the pressurizing unit 130 . (110) The amount of gas generated inside can be effectively reduced.
  • the battery pack 100 includes a positive electrode 114, a negative electrode 116, and a separator 115 disposed between the positive electrode 114 and the negative electrode 116. It includes a battery cell 110 including a. Cathode 116 may be configured to include silicon oxide.
  • the negative electrode is configured to include an anode active material including silicon oxide.
  • the battery pack 100 further includes a module housing 120 accommodating the battery cells 110 and a pressing part 130 .
  • the pressing unit 130 is configured to prevent swelling of the battery cell 110 .
  • a swelling phenomenon of the battery cell 110 may be different depending on the content of silicon oxide.
  • a first battery cell may include a negative electrode including a first negative electrode active material having a first content of silicon oxide.
  • a first swelling phenomenon having a first expansion rate may occur in the first battery pack (not shown) including the first battery cells.
  • the second battery cell may include a negative electrode including a second negative electrode active material having a second content of silicon oxide.
  • a second swelling phenomenon may occur in the second battery pack (not shown) including the second battery cells having a second expansion rate.
  • the first content and the second content are different, and the first expansion rate and the second expansion rate are different.
  • the first battery pack and the second battery pack may include different pressurizing units (not shown). That is, the first battery pack and the second battery pack may include a first pressurizing unit and a second pressurizing unit, respectively.
  • the first pressing unit is configured to pressurize the first battery cell with a first pressing force.
  • the second pressing unit is configured to pressurize the second battery cell with a second pressing force.
  • the swelling phenomenon of the battery cells 110 may be effectively controlled in consideration of the content of silicon oxide, thereby increasing the lifespan and stability of the battery pack 100. there is.
  • the content of the silicon oxide may be 5wt% to 20wt% with respect to the total weight of the anode active material.
  • the content of the silicon oxide is less than 5 wt %, the content of the silicon oxide is too low compared to the rest of the negative active material, and there is a concern that the charging capacity per unit amount of the negative active material mixture may decrease.
  • the content of the silicon oxide exceeds 20wt%, the content of the silicon oxide is too high compared to the rest of the negative electrode active material, and as the content of the silicon oxide, which has a large volume change due to charging and discharging, increases, the negative electrode expands and Shrinkage increases, and as a result, electrical contact between the silicon oxide-based negative electrode active material and the graphite-based negative electrode active material may be insufficient, resulting in deterioration in cycle characteristics.
  • the battery cell 110 loaded in the battery pack 100 since the content of silicon oxide is 5wt% to 20wt% with respect to the total weight of the anode active material, the battery cell 110 loaded in the battery pack 100 ), expansion and contraction of the battery cell 110 may occur at a controllable appropriate level while having an appropriate level of energy density, so it may be easy to control the swelling phenomenon of the battery cell 110.
  • the pressing portion 130 of the battery pack 100 may include an elastic member 131 .
  • the elastic member 131 may be configured to press the battery cell 110 in a direction (F) opposite to the direction (B) in which the volume expands.
  • the elastic member 131 may be a spring having predetermined elasticity.
  • One end of the elastic member 131 in the direction in which the elastic force is exerted may be configured to support the inner surface of the module housing 120 .
  • the other end of the elastic member 131 in the direction in which the elastic force is exerted may be configured to support one side of the battery cell 110 .
  • the battery pack 100 may include a plurality of elastic members 131 inside the module housing 120 .
  • the plurality of elastic members 131 may be provided on the left and right sides of the battery cell 110, respectively.
  • Each of the plurality of elastic members 131 may be configured to contract and expand in length according to expansion and contraction of the battery cell 110 during charging and discharging.
  • the elastic member 131 may be configured such that when the battery cell 110 expands, a pressure applied to the battery cell 110 increases.
  • the elastic member 131 may be configured such that when the battery cell 110 contracts, the pressure applied to the battery cell 110 is reduced.
  • FIG. 6 is a vertical cross-sectional view schematically illustrating a battery pack 100 according to another exemplary embodiment of the present disclosure.
  • the battery pack 100 of FIG. 6 may further include a buffer pad 140 when compared to the battery pack 100 of FIG. 5 .
  • the buffer pad 140 may be, for example, a silicon pad or a sponge.
  • the buffer pad 140 is not necessarily limited to this form, and any material that can contract and expand according to the expansion and contraction of the battery cell 110 during charging and discharging can be applied.
  • the buffer pad 140 may be interposed between two or more battery cells 110 .
  • buffer pads 140 may be interposed between 15 battery cells 110 .
  • the battery pack 100 of the present disclosure further includes a buffer pad 140 interposed between two or more battery cells 110 and configured to buffer the volume expansion of the battery cells 110.
  • the two or more battery cells 110 need to be spaced apart from each other, so that the two or more battery cells in the module housing 120 ( 110) spaced apart at predetermined intervals, and in such a spaced state, the arrangement of two or more battery cells 110 is prevented from being disturbed during use of the battery pack 100, and the buffer pad 140 is a battery cell ( It may serve to prevent pressure from being concentrated on a portion of the battery cell 110 by dispersing the expansion force of the battery cell 110 .
  • FIG. 7 is a conceptual diagram schematically illustrating a battery pack 100 according to an embodiment of the present disclosure.
  • FIG. 8 is a vertical cross-sectional view schematically showing the appearance of the battery pack 100 according to another embodiment of the present disclosure.
  • the battery pack 100 may further include a battery management system (BMS) 150.
  • BMS battery management system
  • the battery management system 150 may increase or decrease the pressing force of the pressing unit 130 that presses the battery cell 110 .
  • the battery management system 150 may include a sensor unit 151 configured to detect a state of the battery cell 110 .
  • the sensor unit 151 may include one or more of a voltage sensor 151v, a current sensor 151a, and a temperature sensor 151t.
  • the voltage sensor 151v and the current sensor 151a may be electrically connected to the battery cell 110 .
  • the temperature sensor 151t may be located inside the module housing 120 .
  • the voltage sensor 151v and the current sensor 151a may be built into the battery management system 150 .
  • the battery management system 150 may measure the temperature, voltage, and current of the battery cell 110 using the current sensor 151a, the voltage sensor 151v, and the temperature sensor 151t. .
  • the battery management system 150 may be configured to acquire information about the battery cell 110 .
  • the battery management system 150 may be configured to obtain state information of at least one of a state of health (SoH), a charge/discharge cycle, and a volume expansion coefficient of the battery cell 110 .
  • SoH state of health
  • 'SoH' may be the health of the battery cell 110 indicating a deterioration state.
  • SoH can be referred to as battery capacity retention.
  • the 'charge/discharge cycle' means that the battery cell 110 is charged to a predetermined capacity and then discharged to a predetermined capacity.
  • the 'volume expansion coefficient' means a volume change rate of the battery cell 110 in a charged state and a discharged state.
  • the battery management system 150 may calculate a state of charge (SoC) using a known technique through the measured temperature, voltage, and current of the battery cell 110 .
  • SoC state of charge
  • the battery management system 150 may calculate the SoH using the following formula.
  • the battery management system 150 may be configured to increase the pressing force of the pressing unit 130 or decrease the pressing force of the pressing unit 130 based on the obtained SoH of the battery cell 110. .
  • the battery management system 150 may increase the pressing force of the pressing unit 130 as the obtained SoH decreases.
  • the battery management system 150 may decrease the pressing force of the pressing unit 130 as the obtained SoH increases.
  • factors to be considered for the battery management system 150 to change the pressing force of the pressing unit 130 are not limited to SoH only.
  • the battery management system 150 may further consider at least one of the number of charge/discharge cycles of the battery cell 110 and the volume expansion coefficient of the battery cell 110 .
  • the battery management system 150 may charge and discharge the battery cell 110 from 0 to 15 cycles (high SoH state).
  • the pressing force of the pressing unit 130 may be set to 0 kgf to 250 kgf, and the pressing force of the pressing unit 130 may be set to 100 kgf to 400 kgf at 70 to 110 charge/discharge cycles. In the to 200 times, the pressing force of the pressing unit 130 may be set to 200 kgf to 500 kgf.
  • the battery management system 150 pressurizes the battery cell 110 in consideration of SoH or the number of charge/discharge cycles.
  • the pressing force of the unit 130 may be set in the range of 0 to 1000 kgf.
  • the pressurization unit By being configured to increase or decrease the pressing force of 130), swelling of the battery cell 110 according to SoH of the battery cell 110 can be effectively controlled. That is, since the battery pack 100 of the present disclosure tends to increase the volume expansion of the battery cell 110 as the SoH of the battery cell 110 decreases, the battery management system 150 Since the pressing force of the pressing unit 130 may be increased according to the degree of volume expansion of the battery cell 110, the swelling phenomenon of the battery cell 110 may be effectively suppressed. Accordingly, the battery pack 100 of the present disclosure can effectively extend the lifespan of the battery cell 110 .
  • the cylinder shaft It may further include an electric cylinder 132 having (132a).
  • the elastic member 131 may be connected to an end of the cylinder shaft 132a.
  • the elastic member 131 may be, for example, a spring.
  • the electric cylinder 132 may include an electric motor (not shown).
  • the cylinder shaft 132a may advance toward the battery cell 110 to press the elastic member 131 by the battery management system 150 .
  • the cylinder shaft 132a may be configured to move backward in a direction opposite to the direction toward the battery cell 110 to release pressure on the elastic member 131 by the battery management system 150 . That is, when the cylinder shaft 132a advances toward the battery cell 110 under the control of the battery management system 150, the pressure applied by the elastic member 131 to the battery cell 110 may increase. . Conversely, when the cylinder shaft 132a moves backward in a direction opposite to the direction toward the battery cell 110 (away from the battery cell) under the control of the battery management system 150, the elastic member 131 moves the battery cell The pressing force for pressing the 110 may be reduced.
  • the battery pack 100 is provided at the end of the electric cylinder 132 controlled by the battery management system 150 and the cylinder shaft 132a of the electric cylinder 132.
  • the battery pack 100 of the present disclosure can appropriately control the pressing force of the pressing unit 130 in consideration of the degree of swelling (expansion) of the battery cell 110 or the SoH of the battery cell 110. there is.
  • the sensor unit 151 may further include, for example, a pressure sensor 151p.
  • the battery management system 150 may detect the degree of expansion of the battery cell 110 through the pressure sensor 151p installed inside the module housing 120 .
  • the pressure sensor 151p when the volume of the two or more battery cells 110 expands, the pressure sensor 151p is disposed on the outermost side of the plurality of battery cells 110 in the stacking direction. It may be located inside the module housing 120 to be in contact with. In this case, the pressure sensor 151p may transmit a signal indicating whether the battery cell 110 is in contact with the battery management system 150 through wired or wireless communication.
  • the battery pack 100 may further include a film-type pressure sensor 151p when compared to the battery pack 100 of FIG. 5 .
  • the battery pack 100 of FIG. 8 may have the same components as the battery pack 100 of FIG. 5 except for the temperature sensor 151t, the pressure sensor 151p, and the electric cylinder 132 .
  • the pressure sensor 151p may have a film shape.
  • the pressure sensor 151p in the form of a film may be interposed between the battery cell 110 and the elastic member 131 .
  • the pressure sensor 151p may be configured to sense a pressing force applied to the battery cell 110 by the elastic member 131 .
  • the pressure sensor 151p may include a piezoelectric element that generates electricity according to the pressure applied to the sensor.
  • the pressure sensor 151p may be connected to the battery management system 150 by wires so as to transmit an electrical signal for the pressure detected by the battery management system 150 .
  • the battery management system 150 may be configured to increase the pressing force of the pressing unit 130 or decrease the pressing force of the pressing unit 130 according to the pressing force measured by the pressure sensor 151p. For example, the battery management system 150 may adjust an appropriate pressure applied by the pressure unit 130 to the battery cell 110 based on the pressure value measured by the pressure sensor 151p. For example, the battery management system 150 measures the pressing force with which the electric cylinder 132 presses the battery cell 110 through the pressure sensor 151p, and the measured pressure determines the swelling of the battery cell 110. When lower than a predetermined pressing force capable of suppressing the phenomenon, the cylinder shaft 132a of the electric cylinder 132 may be advanced toward the battery cell 110 .
  • the battery management system 150 when the measured pressure is greater than a predetermined pressing force capable of suppressing the swelling of the battery cell 110, the cylinder shaft 132a of the electric cylinder 132 to the battery cell ( 110) and can be reversed in the direction away from it.
  • the battery pack 100 of the present disclosure further includes a pressure sensor 151p configured to sense a pressing force applied to the battery cell 110 by the elastic member 131, Under the control of the battery management system 150 , the elastic member 131 may exert a pressing force within an appropriate range capable of effectively suppressing swelling of the battery cell 110 . Accordingly, the battery pack 100 of the present disclosure can prevent failures or accidents due to swelling of the battery cells 110 in advance, and effectively increase the useful life of the battery pack 100 .
  • FIG. 9 is a vertical cross-sectional view schematically illustrating a battery pack 100 according to another exemplary embodiment of the present disclosure.
  • the battery pack 100 when compared to the battery pack 100 of FIG. 8 , the battery pack 100 according to another embodiment of the present disclosure is configured to be movable within the module housing 120 (W ), and the position of the elastic member 131 may have a difference from another.
  • Other components of the battery pack 100 of FIG. 9 may be the same as those of the battery pack 100 of FIG. 8 .
  • the movable outer wall (W) may be configured to support the elastic member 131 of the pressing unit 130 .
  • the movable outer wall W may be configured to support one side (right side) of the elastic member 131 of the pressing unit 130 .
  • the movable outer wall W may be configured to be movable in a direction toward the battery cell 110 (a direction in which the battery cell is located) or in a direction opposite to the direction toward the battery cell 110 .
  • the movable outer wall W may be a part of the side wall (right side wall) of the module housing 120 .
  • the movable outer wall (W) may be configured to be movable in an inner space accommodating the battery cells 110 of the module housing 120 .
  • the movable outer wall (W) may be configured to be movable toward the battery cell 110 within the inner space of the module housing 120 .
  • the movable outer wall (W) may be configured to be movable in a direction away from the battery cell 110 within the inner space of the module housing 120 .
  • the pressing unit 130 may further include an electric cylinder 132A configured to move the movable outer wall W.
  • the cylinder shaft 132a of the electric cylinder 132A may be connected to the movable outer wall W.
  • the electric cylinder 132A may move the cylinder shaft 132a forward or backward under the control of the battery management system 150 .
  • Electric cylinder (132A) may be located outside the module housing (120).
  • the electric cylinder 132A may be located on the left or right side of the module housing 120.
  • one side of the electric cylinder (132A) opposite to the cylinder shaft (132a) may be fixed to the wall.
  • the cylinder shaft 132a of the electric cylinder 132A may be connected to the movable outer wall W of the module housing 120.
  • the cylinder shaft 132a of the electric cylinder 132A may be configured to press the movable outer wall W so that the movable outer wall W moves toward the battery cell 110 .
  • the cylinder shaft 132a of the electric cylinder 132A may be configured to move backward so that the movable outer wall W moves in a direction opposite to the direction toward the battery cell 110 .
  • the pressing part 130 may further include an elastic member 131 interposed between the battery cell 110 and the movable outer wall (W).
  • the elastic member 131 may be pressed by the movable outer wall (W).
  • the movable outer wall W moves toward the battery cell 110. It moves, and the elastic member 131 may be compressed by the movement of the movable outer wall (W). Accordingly, the pressing force of the elastic member 131 pressing the battery cell 110 may be increased.
  • the moving outer wall W moves away from the battery cell 110. It moves in the direction, and the elastic member 131 can reduce the amount of compression by the movable outer wall (W). Accordingly, the pressing force of the elastic member 131 pressing the battery cell 110 may be reduced.
  • the battery pack 100 of the present disclosure Compared to the case where the electric cylinder 132 is located inside the module housing 120 as described above, more internal space for accommodating the battery cells 110 of the battery pack 100 can be secured. Accordingly, the battery pack 100 of the present disclosure can effectively increase energy density.
  • FIG. 10 is a schematic diagram schematically illustrating a state of an automobile 300 according to an embodiment of the present disclosure.
  • a vehicle 300 includes at least one battery pack 100 .
  • the automobile 300 of the present disclosure may include a vehicle body configured to mount the battery pack 100 thereon.
  • the vehicle 300 may be, for example, a hybrid vehicle or an electric vehicle.
  • 10 illustrates an automobile 300 as an example, it will be understood that all devices using such a battery pack 100 are included in an embodiment of the present disclosure.
  • a method of manufacturing a battery pack is a method of manufacturing a battery pack 100, and includes a positive electrode 114, a separator 115, and at least a part of the battery pack. and preparing at least one battery cell 110 having an anode 116 including the anode active material having the silicon oxide.
  • the battery pack manufacturing method of the present disclosure includes accommodating at least one battery cell 110 in an internal space formed inside the module housing 120 .
  • the battery pack manufacturing method of the present disclosure is configured to elastically pressurize the battery cell 110 to prevent a change in volume of the battery cell 110 during charging and discharging of the battery cell 110, and A step of installing a pressing unit 130 having a set pressing force for pressurizing the battery cell 110 in consideration of the content of silicon oxide relative to weight.
  • the manufactured battery pack 100 is a battery cell ( 110), the volume expansion can be suppressed according to the swelling characteristics generated during charging and discharging of the battery cell 110 by including the pressing unit 130 with a set pressing force. Compared to the battery pack, the lifespan and stability of the battery pack 100 can be more effectively increased.
  • Cathode active material (NCMA (Li[Ni, Co, Mn, Al]O 2 )
  • conductive material carbon black
  • binder polyvinylidene fluoride: PVDF
  • NMP N-methyl-2-pyrrolidone as a solvent.
  • a positive electrode active material slurry After applying and drying the cathode active material slurry to a cathode current collector (aluminum thin film) having a thickness of 15 ⁇ m, a roll press was performed to prepare a cathode.
  • Graphite, amorphous SiO X (0 ⁇ x ⁇ 2) with a content of 5 wt% of the total weight of the negative electrode active material, a conductive material (carbon black), and a binder (polyvinylidene fluoride, PVDF) were mixed with NMP as a solvent. After addition, the mixture was mixed to prepare a negative electrode active material slurry. After applying and drying the negative active material slurry on a negative electrode current collector (copper thin film) having a thickness of 10 ⁇ m, a roll press was performed to prepare a negative electrode.
  • An electrode assembly was prepared by stacking the positive electrode, the separator consisting of three layers of polypropylene/polyethylene/polypropylene (PP/PE/PP), and the negative electrode.
  • a battery cell was manufactured by placing the prepared electrode assembly in a pouch, injecting an electrolyte to impregnate the electrode assembly into the pouch receiving space, and then sealing the pouch.
  • the electrolyte solution is prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a concentration of 1.15M in an organic solvent composed of ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate (mixed volume ratio of EC / EMC / DEC 3 / 4 / 3) did
  • NCMA Li[Ni, Co, Mn, Al]O 2
  • conductive material carbon black
  • binder polyvinylidene fluoride: PVDF
  • NMP solvent N-methyl-2-pyrrolidone
  • Graphite, amorphous SiO X (0 ⁇ x ⁇ 2) whose content is 10 wt% of the total weight of the negative electrode active material, a conductive material (carbon black), and a binder (polyvinylidene fluoride, PVDF) are mixed with NMP as a solvent. After addition, the mixture was mixed to prepare a negative electrode active material slurry. After applying and drying the negative active material slurry on a negative electrode current collector (copper thin film) having a thickness of 10 ⁇ m, a roll press was performed to prepare a negative electrode.
  • An electrode assembly was prepared by stacking the prepared positive electrode, a separator made of porous polyethylene having a thickness of 14 ⁇ m, and the prepared negative electrode.
  • a battery cell was manufactured by placing the prepared electrode assembly in a pouch, injecting an electrolyte to impregnate the electrode assembly into the pouch receiving space, and then sealing the pouch.
  • the electrolyte solution is prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a concentration of 1.15M in an organic solvent composed of ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate (mixed volume ratio of EC / EMC / DEC 3 / 4 / 3) did
  • Each of the lithium secondary batteries of Example 1 and Example 2 was fixed with a torque of 4 Nm using a fixing jig, and the charge current (0.33 C) and discharge current (0.33 C) and discharge current ( 0.33 C) was subjected to 200 charge/discharge cycles.
  • a load cell was installed as a pressure measuring unit to measure the expansion force according to the swelling phenomenon of the secondary battery during charging and discharging.
  • cycle capacity retention rate (corresponding to SoH), which is the ratio of discharge capacity to initial capacity during 200 charge/discharge cycles of the lithium secondary battery, the amount of change in thickness of the battery cell due to swelling, and the expansion force are measured, and the measurement results are shown in Figures 11 to 14.
  • the thickness displacement of the charge/discharge cycle was changed from 0.31 mm to 0.15 mm, the capacity retention rate was 91.2%, and the range of expansion force was changed from 498 kgf to 233 kgf.
  • the thickness displacement of the charge/discharge cycle was changed from 0.36 mm to 0.15 mm, the capacity retention rate was 91.3%, and the range of expansion force was changed from 530 kgf to 210 kgf.
  • Example 2 in which the content of silicon oxide was 10 wt% was about 16% greater in thickness change of the battery cell based on the state of charge of 200 cycles, It can be seen that the expansion force is about 6.42% larger. That is, it was confirmed through the test results that when the content of silicon oxide in the negative electrode active material increased, the change in thickness and expansion force of the battery cell during charging were greater.
  • the pressing force of the pressing unit corresponding to the expansion force may be set in consideration of the change in the expansion force of the battery cell according to the silicon oxide content of the negative electrode active material.
  • battery pack 110 battery cell
  • 113, 113a, 113b electrode tab, positive electrode tab, negative electrode tab
  • 151p 151t, 151a, 151v pressure sensor, temperature sensor, current sensor, voltage sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 개시의 일 실시예에 따른 배터리 팩은, 양극, 분리막, 및 적어도 일부 실리콘 산화물을 갖는 음극활물질을 포함하는 음극을 구비하는 적어도 하나 이상의 배터리 셀; 상기 적어도 하나 이상의 배터리 셀을 내부에 수용하도록 구성된 모듈 하우징; 및 상기 배터리 셀의 충방전 시, 상기 배터리 셀의 부피 변화를 저지하게 탄력적으로 가압하도록 구성되고, 상기 음극활물질의 전체 중량에 대해 상기 실리콘 산화물의 함량에 따라 상기 배터리 셀을 가압하는 가압력이 설정된 가압부를 포함한다.

Description

배터리 팩 및 배터리 팩을 포함하는 자동차
관련출원과의 상호인용
본 출원은 2021년 10월 29일자 한국특허출원 제10-2021-0146721호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 개시는 배터리 팩 및 배터리 팩을 포함하는 자동차에 관한 것으로, 보다 자세하게는 배터리 팩의 구비된 배터리 셀의 스웰링 현상을 효과적으로 억제하여, 배터리 셀의 사이클 수명특성을 향상시킨 배터리 팩 및 배터리 팩을 포함하는 자동차에 관한 것이다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있다. 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충전 및 방전이 자유롭다. 또한, 리튬 이차 전지는 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극활물질과 음극활물질로 사용한다. 리튬 이차 전지는 양극활물질과 음극활물질이 각각 도포된 양극판 및 음극판이 분리막을 사이에 두고 배치된 전극 조립체 그리고 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 종류에 따라 캔형 이차 전지와 파우치형 이차 전지로 분류될 수 있다. 캔형 이차 전지는 전극 조립체가 금속 캔에 내장되어 있다. 파우치형 이차 전지는 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 자동차나 전력저장장치와 같은 중대형 장치에도 이차 전지가 널리 이용되고 있다. 이러한 중대형 장치에는 적어도 하나의 배터리 팩이 탑재될 수 있었다. 이러한, 배터리 팩의 용량 및 출력을 높이기 위해 많은 수의 배터리 셀이 팩 하우징 내부에 수용될 수 있다. 이러한 중대형 장치에는 예를 들면, 적층이 용이한 파우치형 이차 배터리 셀이 많이 이용된다. 여기서, 파우치형(Pouch Type) 배터리 셀은 형태가 일정하지 않은 연성의 폴리머 재질로 제조된 파우치에 전극 조립체를 수용한 이차전지를 말한다.
한편, 배터리 팩의 배터리 셀의 경우 반복적인 충방전시 배터리 셀이 부풀어 오르는 스웰링(swelling) 현상이 일어난다. 이러한 충방전시 발생되는 스웰링 현상을 감안하여 종래의 배터리 팩의 내부의 수용 공간에 배터리 셀의 적층 배치할 경우, 배터리 셀들을 일정 간격으로 이격 배치시켰다. 또한, 종래 기술에서는, 배터리 셀의 스웰링 현상을 억제하기 위해 배터리 셀을 가압하여 가스 생성을 억제하는 방법을 사용했다.
그러나, 배터리 셀들의 스웰링 현상이 심해질 경우, 배터리 셀의 내부 압력이 높아짐에 따라 배터리 셀의 셀 케이스이 파열되고, 배터리 셀의 내부 구성들이 외부로 유출되거나, 배터리 셀이 폭발하는 등의 사고가 발생될 수 있다. 따라서, 배터리 팩의 구비된 배터리 셀의 스웰링 현상을 억제하는 것이 배터리 팩의 수명과 안정성을 높이는데 매우 중요하다 할 수 있다.
그러나, 종래기술의 배터리 셀의 스웰링 현상을 제어하는 방법은, 이러한 배터리 셀의 특성을 고려하지 않고, 가압 부재의 획일화된 가압력을 이용해 배터리 셀을 가압하는 것이 전부였다. 이에 따라, 종래기술의 배터리 팩은, 배터리 셀의 특성에 맞게 스웰링 현상을 제어하는데 커다란 한계가 있었다.
[선행기술문헌]
(특허문헌 1) 한국특허 공개번호 제10-2020-0040975호
(특허문헌 2) 일본특허 공개번호 제2019-091630호
(특허문헌 3) 한국특허 공개번호 제10-2018-0026210호
(특허문헌 4) 한국특허 공개번호 제10-2020-0058248호
본 개시는 배터리 팩의 구비된 배터리 셀의 스웰링 현상의 효과적으로 억제하여, 배터리 셀의 사이클 수명특성을 향상시킨 배터리 팩 및 배터리 팩을 포함하는 자동차를 제공한다.
본 개시의 일 형태에 의하면, 양극, 분리막, 및 적어도 일부 실리콘 산화물을 갖는 음극활물질을 포함하는 음극을 구비하는 적어도 하나 이상의 배터리 셀; 상기 적어도 하나 이상의 배터리 셀을 내부에 수용하도록 구성된 모듈 하우징; 및 상기 배터리 셀의 충방전 시, 상기 배터리 셀의 부피 변화를 저지하게 탄력적으로 가압하도록 구성되고, 상기 음극활물질의 전체 중량에 대해 상기 실리콘 산화물의 함량에 따라 상기 배터리 셀을 가압하는 가압력이 설정된 가압부를 포함한다.
일 실시예에서, 상기 가압부는, 상기 배터리 셀이 부피 팽창하는 방향의 반대 방향으로 가압하도록 구성된 탄성 부재를 구비할 수 있다.
다른 일 실시예에서, 상기 배터리 셀은 둘 이상이 포함되고, 상기 둘 이상의 배터리 셀 사이에 개재되며 상기 배터리 셀의 부피 팽창을 완충하도록 구성된 완충 패드를 더 포함할 수 있다.
또 다른 일 실시예에서, 양극, 분리막, 및 적어도 일부 실리콘 산화물을 갖는 음극활물질을 포함하는 음극을 구비하는 적어도 하나 이상의 배터리 셀; 상기 적어도 하나 이상의 배터리 셀을 내부에 수용하도록 구성된 모듈 하우징; 상기 배터리 셀의 충방전 시, 상기 배터리 셀의 부피 변화를 저지하게 탄력적으로 가압하도록 구성된 가압부; 상기 배터리 셀에 관한 정보를 획득하도록 구성된 센서부; 및 상기 센서부가 획득한 상기 배터리 셀에 관한 정보에 기초하여 상기 가압부의 가압력을 증가시키거나, 감소시키도록 상기 가압부를 제어하는 배터리 관리 시스템을 포함한다.
또 다른 일 실시예에서, 상기 센서부가 획득한 상기 배터리 셀에 관한 정보는 상기 배터리 셀의 SoH(state of health), 충방전 사이클, 및 부피 팽창 계수 중 적어도 어느 하나의 상태 정보를 포함할 수 있다.
또 다른 일실시예에서, 상기 획득된 배터리 셀의 상태 정보는 충방전 사이클이고, 상기 배터리 관리 시스템은 상기 충방전 사이클이 증가할수록 상기 가압부의 가압력을 증가시키도록 구성될 수 있다.
또 다른 일 실시예에서, 상기 가압부는 실린더 축을 갖은 전동 실린더, 및 탄성 부재를 더 포함하고, 상기 실린더 축은 상기 배터리 관리 시스템에 의해, 상기 탄성 부재를 가압하도록 상기 배터리 셀을 향해 전진하거나, 상기 탄성 부재에 대한 가압을 해제하도록 상기 배터리 셀을 향한 방향의 반대 방향으로 후진하도록 구성될 수 있다.
또 다른 일 실시예에서, 상기 탄성 부재에 의해 상기 배터리 셀에 가해지는 가압력을 센싱하도록 구성된 압력 센서를 더 포함하고, 상기 배터리 관리 시스템은, 상기 압력 센서로부터 측정된 가압력에 따라 상기 가압부의 가압력을 증대시키거나, 또는 상기 가압부의 가압력을 감소시키도록 구성될 수 있다.
또 다른 일 형태에 의하면, 상기 모듈 하우징은, 상기 가압부를 지지하고, 상기 배터리 셀을 향한 방향 또는 상기 배터리 셀을 향한 방향의 반대 방향으로 이동 가능하게 구성된 이동 외벽을 포함하고, 상기 가압부는 상기 이동 외벽과 연결된 실린더 축을 가진 전동 실린더, 및 상기 배터리 셀과 상기 이동 외벽 사이에 개재된 탄성 부재를 더 포함하며, 상기 전동 실린더는 상기 모듈 하우징 외부에 위치하고, 상기 전동 실린더의 실린더 축은 상기 이동 외벽을 가압하여 상기 이동 외벽이 상기 배터리 셀을 향해 이동하거나, 상기 이동 외벽이 상기 배터리 셀을 향한 방향의 반대 방향으로 이동하도록 구성될 수 있다.
한편, 본 개시의 다른 일 형태에 의하면, 자동차는, 상기 배터리 팩을 적어도 하나 포함한다.
본 개시의 배터리 팩은, 배터리 셀의 충방전 시, 배터리 셀의 부피 변화를 저지하게 탄력적으로 가압하도록 구성되고, 음극의 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량에 따라 배터리 셀을 가압하는 가압력이 설정된 가압부를 포함함으로써, 배터리 셀의 스웰링 특성에 맞게 스웰링 현상을 제어할 수 있다. 즉, 본 개시의 발명자는, 배터리 셀의 음극활물질로서 구비된 실리콘 산화물의 함량에 따라, 배터리 셀의 충방전에 따라 부피 변화가 달라진다는 것을 발견하였다. 이에, 본 개시의 발명자는, 모듈 하우징에 탑재된 배터리 셀의 스웰링 현상을 제어하기 위해, 배터리 셀의 음극활물질로 구비된 실리콘 산화물의 함량을 고려하여 배터리 셀을 가압하는 가압력이 설정된 가압부를 구비한 배터리 팩을 발명하였다. 따라서, 본 개시의 배터리 팩은, 구비된 배터리 셀의 스웰링 현상을 효과적으로 제어할 수 있어, 배터리 팩의 수명과 안정성을 높일 수 있다.
즉, 본 개시의 배터리 팩은, 음극의 음극활물질의 함량에 따른 배터리 셀의 스웰링 현상을 고려하여 가압력이 설정된 가압부를 구비함으로써, 불필요하게 과도한 힘으로 배터리 셀을 가압하지 않을 수 있고, 반대로 스웰링 현상이 큰 경우 더 큰 가압력으로 설정된 가압부를 사용해 배터리 셀의 내부에 발생되는 가스 발생 량을 효과적으로 줄일 수 있다.
도 1은, 본 개시의 일 실시예에 따른 배터리 팩의 모습을 개략적으로 나타낸 사시도이다.
도 2는, 본 개시의 일 실시예에 따른 배터리 팩의 배터리 셀의 모습을 개략적으로 나타낸 측면도이다.
도 3은, 본 개시의 일 실시예에 따른 배터리 팩의 배터리 셀의 구성들의 모습을 개략적으로 나타낸 분리 사시도이다.
도 4는, 본 개시의 일 실시예에 따른 배터리 팩의 배터리 셀의 양극, 분리막, 및 음극의 모습을 개략적으로 나타낸 분리 사시도이다.
도 5는, 도 1의 배터리 팩을 A-A'선을 따라 절단한 모습을 개략적으로 나타낸 수직 단면도이다.
도 6은, 본 개시의 다른 일 실시예에 따른 배터리 팩의 모습을 개략적으로 나타낸 수직 단면도이다.
도 7은, 본 개시의 일 실시예에 따른 배터리 팩의 모습을 개략적으로 나타낸 개념도이다.
도 8은, 본 개시의 또 다른 일 실시예에 따른 배터리 팩의 모습을 개략적으로 나타낸 수직 단면도이다.
도 9는, 본 개시의 또 다른 일 실시예에 따른 배터리 팩의 모습을 개략적으로 나타낸 수직 단면도이다.
도 10은, 본 개시의 일 실시예에 따른 자동차의 모습을 개략적으로 나타낸 모식도이다.
도 11은, 본 개시의 실시예 1에 따른 배터리 셀의 충방전 사이클에 따른 용량 유지율 및 두께 변화를 나타낸 그래프이다.
도 12는, 본 개시의 실시예 1에 따른 배터리 셀의 충방전 사이클에 따른 용량 유지율 및 팽창력을 나타낸 그래프이다.
도 13은, 본 개시의 실시예 2에 따른 배터리 셀의 충방전 사이클에 따른 용량 유지율 및 두께 변화를 나타낸 그래프이다.
도 14는, 본 개시의 실시예 2에 따른 배터리 셀의 충방전 사이클에 따른 용량 유지율 및 팽창력을 나타낸 그래프이다.
이하에서는 도면을 참조하여 본 개시에 대해 상세히 설명하도록 한다. 본 개시를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대해 상세한 설명은 생략한다. 덧붙여, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 개시의 기술적 사상의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 개시의 기술적 사상을 완전하게 전달하기 위하여 제공되는 것이다.
본 개시에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 개시의 실시예의 다양한 변경(modifications), 균등물(equivalents), 및/또는 대체물(alternatives)을 포함하는 것으로 이해되어야 한다.
도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.
본 개시에서, "가진다", "가질 수 있다", "포함한다" 또는 "포함할 수 있다" 등의 표현은 해당 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다.
본 개시에서, "A 또는 B", "A 또는/및 B 중 적어도 하나" 또는 "A 또는/및 B 중 하나 또는 그 이상" 등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. 예를 들면, "A 또는 B", "A 및 B 중 적어도 하나" 또는 "A 또는 B 중 적어도 하나"는, (1) 적어도 하나의 A를 포함, (2) 적어도 하나의 B를 포함, 또는 (3) 적어도 하나의 A 및 적어도 하나의 B 모두를 포함하는 경우를 모두 지칭할 수 있다.
도 1은, 본 개시의 일 실시예에 따른 배터리 팩(100)의 모습을 개략적으로 나타낸 사시도이다. 도 2는, 본 개시의 일 실시예에 따른 배터리 팩(100)의 배터리 셀(110)의 모습을 개략적으로 나타낸 측면도이다. 도 3은, 본 개시의 일 실시예에 따른 배터리 팩(100)의 배터리 셀(110)의 구성들의 모습을 개략적으로 나타낸 분리 사시도이다. 도 4는, 본 개시의 일 실시예에 따른 배터리 팩(100)의 배터리 셀(110)의 양극(114), 분리막(115), 및 음극(116)의 모습을 개략적으로 나타낸 분리 사시도이다. 그리고, 도 5는, 도 1의 배터리 팩(100)을 A-A'선을 따라 절단한 모습을 개략적으로 나타낸 수직 단면도이다.
도 1 내지 도 5를 참조하면, 본 개시의 일 실시예에 따른 배터리 팩(100)은, 적어도 하나 이상의 배터리 셀(110), 모듈 하우징(120), 및 가압부(130)를 포함한다.
구체적으로, 배터리 셀(110)은, 셀 케이스(111), 전극 탭(113)을 구비하는 전극 조립체(112), 전극 리드(117), 절연 필름(118), 및 전해질(도시하지 않음)을 포함한다.
또한, 셀 케이스(111)는, 연성의 재질로 제조된 파우치형 셀 케이스일 수 있다. 그러나, 본 개시의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다. 예를 들면, 셀 케이스(111)는, 전극 조립체(112)의 상부를 커버하는 제1 셀 시트(111a), 및 제1 셀 시트(111a)의 하면의 일부분과 결합되고 전극 조립체(112)의 하부를 커버하는 제2 셀 시트(111b)를 구비할 수 있다. 제1 셀 시트(111a) 및 제2 셀 시트(111b) 각각은 라미네이트 시트일 수 있다. 구체적으로, 라미네이트 시트는 얇은 금속 필름(예컨대, Al 필름)이 내수성이 있는 고분자 필름(나일론)과 열접착 고분자 필름(예: Casted Polypropylene) 사이에 라미네이팅 된 구조를 가질 수 있다. 라미네이트 시트의 구조와 각 층을 구성하는 물질에 대해서는 본 개시가 속한 기술분야에서 널리 알려져 있으므로 자세한 설명은 생략하기로 한다.
셀 케이스(111)의 밀봉을 위해 제1 셀 시트(111a) 및 제2 셀 시트(111b) 각각의 외주부는 서로 열융착될 수 있다. 열융착 방법은, 제1 셀 시트(111a) 및 제2 셀 시트(111b)가 적층된 상태에서 서로 마주보고 있는 각각의 외주부의 적어도 일부를 고온의 기구(예: 핫 프레스)로 가압하는 과정을 포함할 수 있다. 이때, 열융착되는 온도는 섭씨 110도 내지 섭씨 150도일 수 있다. 예를 들면, 셀 케이스(111)는, 제1 셀 시트(111a) 및 제2 셀 시트(111b) 각각의 외주부가 서로 열융착되어 형성된 실링부가 구비될 수 있다.
셀 케이스(111)는, 전극 조립체(112), 전극 리드(117), 및 전해질을 수용하는 수용 공간(S)을 포함할 수 있다. 예를 들면, 이러한 수용 공간(S)은, 2개의 셀 시트들(111a, 111b) 중 적어도 어느 하나의 일부분을 고온의 핫 프레스로 가압하여 컵 형태로 변형된 부분일 수 있다. 수용 공간(S)은, 셀 시트들(111a, 111b) 각각의 일부분이 외측으로 볼록하게 돌출된 부분(P)일 수 있다. 셀 케이스(111)의 수용 공간(S)은, 복수의 전극들(114, 116), 분리막(115), 및 전해질이 모두 수용될 수 있는 크기 이상일 수 있다. 예를 들면, 도 3에서와 같이, 셀 케이스(111)의 수용 공간(S)은, 제1 셀 시트(111a)의 상부 방향으로 볼록하게 돌출된 부분(P)과, 제2 셀 시트(111b)의 하부 방향으로 오목하게 형성된 부분(R)이 서로 결합되어 형성될 수 있다.
전극들(114, 116)은, 전기 극성에 따라 적어도 하나 이상의 양극(114) 및 적어도 하나 이상의 음극(116)일 수 있다. 예를 들면, 양극활물질, 도전재, 및 바인더가 혼합된 양극 합제층(M1)이 알루미늄 합금 소재의 집전체 상에 형성되는 것으로 양극(114)이 제조될 수 있다. 음극활물질, 도전재, 및 바인더가 혼합된 음극 합제층(M2)이 구리 합금 소재의 집전체 상에 형성되는 것으로 음극(116)이 제조될 수 있다. 그리고, 양극(114) 및 음극(116) 사이에 분리막(115)이 개재될 수 있다. 이러한, 분리막(115)은 양극(114) 및 음극(116) 간의 내부 단락을 차단하고, 전해질을 함침하게 하는 역할을 수행할 수 있다. 본 개시의 분리막(115)은 이차 전지에서 통상적으로 사용되는 분리막 소재라면 특별한 제한 없이 사용할 수 있다. 예를 들면, 분리막(115)은, 폴리에틸렌, 및 폴리프로필렌 중 적어도 어느 하나 이상의 소재를 구비할 수 있다. 그리고, 양극(114), 분리막(115), 및 음극(116)이 순서대로 적층되어 전극 조립체(112)를 형성할 수 있다.
양극(114)은 양극 집전체 상에 양극 합제층(M1)을 형성하여 제조할 수 있다. 양극 합제층(M1)은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 전이금속 중 니켈 함유량이 50 atm% 이상, 바람직하게는 70 atm% 이상인 리튬 복합전이금속 산화물을 포함할 수 있다.
상기 양극 활물질은 그 대표적인 예로 LiNi0.5Co0.2Mn0.3O2, LiNi0.5Co0.3Mn0.2O2, LiNi0.6Co0.2Mn0.2O2 또는 LiNi0.8Co0.1Mn0.1O2 등과 같은 리튬 니켈코발트망간계 산화물을 포함할 수 있다. 또는, 상기 양극 활물질은 리튬 니켈코칼트망간알루미늄계 산화물을 포함할 수 있다.
이 외에도, 상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-ONiOO4(여기에서, 0<o<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다)) 또는 상전이 변화에 의해 충방전이 가능한 황(sulfur) 물질을 포함한 화합물을 이용할 수도 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99.5 중량%로 포함될 수 있고, 구체적으로 85 중량% 내지 95 중량%로 포함될 수 있다. 이때, 양극활물질 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 모노머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 및 폴리페닐렌 유도체 등의 도전성 소재 중 적어도 어느 하나이 사용될 수 있다.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 10 중량% 내지 70 중량%, 바람직하게 20 중량% 내지 60 중량%이 되도록 포함될 수 있다.
상기 음극(116)은 음극 집전체 상에 음극 합제층(M2)을 형성하여 제조할 수 있다. 음극 합제층(M2)은 음극 집전체 상에 상기 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 상기 음극활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극활물질은, 리튬에 도프 및 탈도프 가능한 물질, 리튬 금속, 니켈 금속, 구리 금속, SUS 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 및 전이 금속 산화물 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 더 포함할 수 있다.
상기 리튬에 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(Y는 알칼리 금속, 알칼리토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 일 실시예에서, 상기 음극 활물질은, 적어도 일부 실리콘 산화물(SiOx(0<x≤2))을 포함한다.
리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 상기 음극활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8)로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는, 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극(116) 슬러리 중 고형분의 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는, 상기 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물, NMP(N-Methyl-2-pyrrolidone), 및 알코올 등의 유기용매 중 적어도 어느 하나를 포함할 수 있으며, 상기 음극활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 상기 음극활물질, 및 선택적으로 상기 바인더 및 상기 도전재를 고형분으로 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 75 중량%, 바람직하게 50 중량% 내지 65 중량%가 되도록 포함될 수 있다.
상기 분리막(115)은 양 전극의 내부 단락을 차단하고 전해질을 함침하는 역할을 수행할 수 있다. 상기 분리막(115)은 통상적으로 사용되는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이때, 상기 다공성 분리막의 기공 직경은 일반적으로 0.01㎛ 내지 50㎛이고, 기공도는 5% 내지 95%일 수 있다.
또한, 상기 다공성 분리막의 두께는 일반적으로 5㎛ 내지 300㎛ 범위일 수 있다.
전극 탭(113)에는, 전극활물질, 도전재, 및 바인더의 혼합물이 도포되지 않을 수 있다. 전극 탭(113)은, 전자가 이동할 수 있는 경로일 수 있다. 전극 탭(113)은 양극활물질이 코팅되지 않은 무지부를 재단하여 형성되거나, 전극의 무지부에 별도의 도전성 부재를 초음파 용접 등으로 연결하여 별도 형성될 수 있다. 예를 들면, 도 3에서와 같이, 양극(114) 및 음극(116) 각각의 일측으로부터 돌출된 전극 탭(113)이 구비될 수 있다. 예를 들면, 양극(114)에는 X축의 음의 방향으로 돌출된 양극탭(113a)이 형성되어 있다. 음극(116)에는 X축의 양의 방향으로 돌출된 음극탭(113b)이 형성되어 있다. 그러나 반드시 이러한 형태로 한정되는 것은 아니다. 예를 들면, 전극 탭(113)은, 전극의 전후좌우 각각의 방향의 제1 측, 제2 측, 제3 측, 및 제4 측 중 적어도 어느 하나에 형성될 수 있다.
본 개시의 일 실시예에 따른 배터리 셀(110)은, 전극 탭(113)의 일부분과 결합된 전극 리드(117)를 더 구비할 수 있다. 전극 리드(117)는, 전기 전도성 금속일 수 있다. 도 3에서와 같이, 전극 리드(117)는, 양극 탭(113a)과 연결된 양극 리드, 및 음극 탭(113b)과 연결된 음극 리드를 구비할 수 있다. 전극 리드(117)는, 용접 등과 같은 다양한 방식으로 하나 이상의 전극 탭(113)과 연결될 수 있다. 전극 리드(117)의 일부가 셀 케이스(111)의 외부에 노출되도록 배치될 수 있다. 즉, 전극 리드(117)는, 배터리 셀(110)의 전극 단자 역할을 수행한다. 예를 들면, 상기 전극 리드(117)는, 양극(114)과 전기적으로 연결된 경우 배터리 셀(110)의 양극 단자 역할을 수행할 수 있다. 전극 리드(117)는, 음극(116)과 전기적으로 연결된 경우 배터리 셀(110)의 음극 단자 역할을 수행할 수 있다. 배터리 셀(110)은 전극 리드(117)의 일부 외면을 감싸도록 구성된 절연 필름(118)을 포함할 수 있다. 절연 필름(118)은, 셀 케이스(111)와 전극 리드(117) 사이를 전기적으로 절연하고, 셀 케이스(111)와 열융착 되도록 구성될 수 있다.
일 실시예에서, 전해질은, 고체 상태 또는 액체 상태의 전해질을 의미한다. 본 개시의 일 실시예에 따른 배터리 셀(110)은, 전해질을 통해 양극(114)과 음극(116) 사이의 이온 교환을 통해 충방전을 수행할 수 있게 된다. 전해질은, 양극(114)과 음극(116) 사이에서 이온이 이동될 수 있게 양극(114)과 음극(116) 사이에 위치될 수 있다. 또한, 전해질은 분리막(115)의 표면과 기공에 위치할 수 있다. 예를 들면, 배터리 셀(110)이 리튬 이차 전지일 경우, 통상적으로 비수 전해액이 이용될 수 있다.
한편, 모듈 하우징(120)은, 적어도 하나 이상의 배터리 셀(110)을 내부에 수용하도록 구성될 수 있다. 모듈 하우징(120)은, 내부가 비어 있는 직육면체의 외관을 가질 수 있다. 모듈 하우징(120)은, 배터리 셀(110)과 대면하는 일부분이 전기가 통하지 않는 비전도성 물질로 커버되거나 코팅될 수 있다. 모듈 하우징(120)은, 예를 들면, 금속 또는 플라스틱을 구비할 수 있다. 모듈 하우징(120)은, 예를 들면, 열전도성이 우수한 알루미늄 합금, 또는 스테인리스 강철을 구비할 수 있다. 예를 들면, 모듈 하우징(120)은, 전벽, 후벽, 좌측벽, 우측벽, 상벽, 및 하벽을 구비할 수 있다. 배터리 팩(100)은, 배터리 셀(110)을 둘 이상 포함할 수 있다. 예를 들면, 도 5에서와 같이, 전후 방향(Y축 방향)으로 적층된 15개의 배터리 셀(110)이 모듈 하우징(120)의 하벽 상에 탑재될 수 있다.
또한, 가압부(130)는, 배터리 셀(110)의 충방전 시, 배터리 셀(110)의 부피 변화를 저지하게 탄력적으로 가압하도록 구성될 수 있다. 예를 들면, 배터리 팩(100)이 전후 방향(Y축 방향)으로 적층된 복수의 배터리 셀(110)을 구비할 경우, 복수의 가압부(130) 각각이 복수의 배터리 셀(110)의 전측과 후측 각각을 탄력적으로 가압할 수 있다. 여기서, '탄력적으로' 가압한다는 것은 가압부(130)의 탄성력을 이용해 배터리 셀(110)을 가압한다는 의미이다. 예를 들면, 가압부(130)는 배터리 셀(110)의 부피가 팽창되는 양이 커질수록 배터리 셀(110)을 가압하는 가압력이 탄력적으로 증가될 수 있다. 반대로, 가압부(130)는 배터리 셀(110)의 부피가 줄어들수록 배터리 셀(110)을 가압하는 가압력이 탄력적으로 감소될 수 있다.
가압부(130)는, 상기 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량에 따라 적정한 크기의 배터리 셀(110)을 가압하는 가압력을 가지도록 설정(구성)될 수 있다. 예를 들면, 상기 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량이 일정 함량 대비 상대적으로 클 경우, 배터리 팩(100)은, 배터리 셀(110)을 가압하는 가압력을 크게 설정된 가압부(130)를 포함할 수 있다. 반대로, 상기 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량이 일정 함량 대비 상대적으로 작을 경우, 배터리 팩(100)은, 배터리 셀(110)을 가압하는 가압력을 작게 설정된 가압부(130)를 포함할 수 있다.
예를 들어, 상기 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량이 5 wt%인 경우, 배터리 셀(110)의 수축 팽창 시, 가압부(130)의 가압력이 250 kgf 내지 350 kgf일 수 있다. 상기 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량이 20 wt%인 경우, 배터리 셀(110)의 수축 팽창 시, 가압부(130)의 가압력이 900 kgf 내지 1000 kgf일 수 있다. 즉, 상기 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량이 증가할수록 가압부(130)가 더 큰 가압력으로 설정될 수 있고, 반대로, 상기 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량이 감소할수록 가압부(130)가 더 작은 가압력으로 설정될 수 있다. 이는, 배터리 셀(110)의 음극활물질의 실리콘 산화물의 함량이 상대적으로 높은 경우, 충전 시 배터리 셀(110)의 팽창되는 부피 변화가 더 크게 일어나기 때문이다.
또, 일 실시예에서, 충방전 사이클의 횟수가 증가할수록 가압부(130)가 가하는 가압력이 증가할 수 있다. 예를 들어, 상기 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량이 5 wt%인 경우 충방전 사이클이 0 내지 15회(SoH가 높은 상태)에서 배터리 셀(110)을 가압하는 가압부(130)의 가압력을 0 kgf 내지 250 kgf로 설정할 수 있고, 충방전 사이클 70 내지 110회에서는 가압부(130)의 가압력을 100 kgf 내지 400 kgf로 설정할 수 있으며, 충방전 사이클 170 내지 200회에서는 가압부(130)의 가압력을 200 kgf 내지 500 kgf로 설정할 수 있다.
본 개시의 이러한 구성에 의하면, 본 개시의 배터리 팩(100)은, 배터리 셀(110)의 충방전 시, 배터리 셀(110)의 부피 변화를 저지하게 탄력적으로 가압하도록 구성되고, 상기 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량에 따라 배터리 셀(110)을 가압하는 가압력이 설정된 가압부(130)를 포함함으로써, 배터리 셀(110)의 스웰링 특성에 맞게 스웰링 현상을 제어할 수 있다. 즉, 본 개시의 배터리 팩(100)은, 배터리 셀(110)의 상기 음극활물질의 종류 및/또는 함량에 따라, 배터리 셀(110)의 충방전에 따라 부피 변화의 정도가 달라지는 것을 고려하여 가압력이 설정되었다.
이에 따라, 본 개시의 배터리 팩(100)은, 모듈 하우징(120)에 탑재된 배터리 셀(110)의 스웰링 현상을 효과적으로 제어하기 위해, 배터리 셀(110)의 상기 음극활물질로 구비된 실리콘 산화물의 함량을 고려하여 배터리 셀(110)을 가압하는 가압력이 설정된 가압부(130)를 구비한다. 즉, 본 개시의 배터리 팩(100)은, 불필요하게 과도한 힘으로 배터리 셀(110)을 가압하지 않을 수 있고, 반대로 스웰링 현상이 큰 경우 더 큰 가압력으로 설정된 가압부(130)를 사용해 배터리 셀(110) 내부에 발생하는 가스 발생량을 효과적으로 줄일 수 있다.
한편, 다시 도 1 내지 도 3을 참조하면, 일 실시예에서, 배터리 팩(100)은 양극(114), 음극(116) 및 양극(114)과 음극(116) 사이에 배치된 분리막(115)을 포함하는 배터리 셀(110)을 포함한다. 음극(116)은 실리콘 산화물을 포함하도록 구성될 수 있다. 예를 들어, 음극은 실리콘 산화물을 포함하는 음극활물질을 포함하도록 구성된다. 배터리 팩(100)은 배터리 셀(110)을 수용하는 모듈 하우징(120) 및 가압부(130)를 더 포함한다. 가압부(130)는 배터리 셀(110)의 스웰링 현상을 방지하도록 구성된다. 배터리 셀(110)의 스웰링 현상은 실리콘 산화물의 함량에 따라 상이할 수 있다. 예를 들어, 제1 배터리 셀(도시하지 않음)은 실리콘 산화물의 제1 함량을 갖는 제1 음극활물질을 포함하는 음극을 포함할 수 있다. 이 경우, 제1 배터리 셀을 포함하는 제1 배터리 팩(도시하지 않음)은 제1 팽창율을 갖는 제1 스웰링 현상이 발생할 수 있다. 또한, 제2 배터리 셀(도시하지 않음)은 실리콘 산화물의 제2 함량을 갖는 제2 음극활물질을 포함하는 음극을 포함할 수 있다. 이 경우, 제2 배터리 셀을 포함하는 제2 배터리 팩(도시하지 않음)은 제2 팽창율을 갖는 제2 스웰링 현상이 발생할 수 있다. 여기서, 제1 함량과 제2 함량은 상이하고, 제1 팽창율과 제2 팽창율은 상이하다. 제1 배터리 팩과 제2 배터리 팩에 서로 다른 스웰링 현상이 발생하므로, 제1 배터리 팩과 제2 배터리 팩은 상이한 가압부(도시하지 않음)를 포함할 수 있다. 즉, 제1 배터리 팩과 제2 배터리 팩은 각각 제1 가압부, 제2 가압부를 포함할 수 있다. 제1 가압부는 제1 가압력을 가지고 제1 배터리 셀을 가압하도록 구성된다. 제2 가압부는 제2 가압력을 가지고 제2 배터리 셀을 가압하도록 구성된다.
따라서, 본 개시의 배터리 팩(100)은, 실리콘 산화물의 함량을 고려하여, 구비된 배터리 셀(110)의 스웰링 현상을 효과적으로 제어할 수 있어, 배터리 팩(100)의 수명과 안정성을 높일 수 있다.
상기 실리콘 산화물의 함량은 상기 음극활물질의 전체 중량에 대해 5wt% 내지 20wt%일 수 있다. 상기 실리콘 산화물의 함량이 5wt% 미만인 경우, 실리콘 산화물의 함량이 나머지 상기 음극활물질에 비해 지나치게 낮아, 단위 상기 음극활물질 합제량 당의 충전 용량이 감소할 우려가 있다. 또한, 상기 실리콘 산화물의 함량이 20wt% 초과한 경우, 상기 실리콘 산화물의 함량이 나머지 상기 음극활물질에 비해 지나치게 높아, 충방전에 의한 체적 변화가 큰 상기 실리콘 산화물의 함량이 높아짐에 따라 음극의 팽창 및 수축이 커지고, 그 결과로, 상기 실리콘 산화물계 상기 음극활물질과 흑연계 음극활물질의 전기적 접촉이 부족해져 사이클 특성이 저하될 우려가 있다.
따라서, 본 개시의 일 실시예에 따른 배터리 팩(100)은, 상기 실리콘 산화물의 함량이 상기 음극활물질의 전체 중량에 대해 5wt% 내지 20wt%이므로, 배터리 팩(100)의 탑재된 배터리 셀(110)의 적정 수준의 에너지 밀도를 가지면서도, 배터리 셀(110)의 제어 가능한 적정 수준으로 팽창 및 수축이 일어날 수 있는 바, 배터리 셀(110)의 스웰링 현상을 제어하는 것이 용이할 수 있다.
한편, 다시 도 5를 참조하면, 본 개시의 일 실시예에 따른 배터리 팩(100)의 가압부(130)는 탄성 부재(131)를 구비할 수 있다. 탄성 부재(131)는 배터리 셀(110)이 부피 팽창하는 방향(B)의 반대 방향(F)으로 가압하도록 구성될 수 있다. 예를 들면, 탄성 부재(131)는, 소정의 탄성을 가진 용수철일 수 있다. 탄성 부재(131)의 탄성력이 발휘되는 방향의 일단은, 모듈 하우징(120)의 내면을 지지하도록 구성될 수 있다. 탄성 부재(131)의 탄성력이 발휘되는 방향의 타단은, 배터리 셀(110)의 일측을 지지하도록 구성될 수 있다. 예를 들면, 도 5에 도시된 바와 같이, 배터리 팩(100)은, 모듈 하우징(120)의 내부에 복수의 탄성 부재(131)를 구비할 수 있다. 복수의 탄성 부재(131)는 배터리 셀(110)을 중심으로 좌측 및 우측 각각에 구비될 수 있다. 복수의 탄성 부재(131) 각각은, 배터리 셀(110)의 충방전에 따른 팽창 및 수축에 따라 길이가 수축과 팽창하도록 구성될 수 있다. 예를 들면, 탄성 부재(131)는, 배터리 셀(110)의 팽창 시, 배터리 셀(110)을 가압하는 가압력이 커지도록 구성될 수 있다. 반대로, 탄성 부재(131)는, 배터리 셀(110)의 수축 시, 배터리 셀(110)을 가압하는 가압력이 줄어들도록 구성될 수 있다.
도 6은, 본 개시의 다른 일 실시예에 따른 배터리 팩(100)의 모습을 개략적으로 나타낸 수직 단면도이다.
도 6을 참조하면, 본 개시의 다른 일 실시예에 따른 도 6의 배터리 팩(100)은, 도 5의 배터리 팩(100)과 비교할 경우, 완충 패드(140)를 더 포함할 수 있다. 완충 패드(140)는, 예를 들면, 실리콘 패드 또는 스펀지일 수 있다. 그러나, 완충 패드(140)가 반드시 이러한 형태로만 한정되는 것은 아니고, 배터리 셀(110)의 충방전에 따른 팽창과 수축에 따라 수축과 팽창할 수 있는 소재를 구비한 것이라면 적용 가능하다.
완충 패드(140)는, 둘 이상의 배터리 셀(110) 사이에 개재될 수 있다. 예를 들면, 도 6에서 도시된 바와 같이, 15개의 배터리 셀(110) 사이 사이에 완충 패드(140)가 개재될 수 있다.
따라서, 본 개시의 이러한 구성에 의하면, 본 개시의 배터리 팩(100)은, 둘 이상의 배터리 셀(110) 사이에 개재되며 배터리 셀(110)의 부피 팽창을 완충하도록 구성된 완충 패드(140)를 더 포함함으로써, 둘 이상의 배터리 셀(110) 각각의 충방전시 발생하는 부피 팽창을 고려하여 둘 이상의 배터리 셀(110)은 서로 이격된 배치가 필요한 바, 모듈 하우징(120) 내에서 둘 이상의 배터리 셀(110)을 소정 간격으로 이격 배치하는 것이 용이해지고, 이렇게 이격된 상태에서 배터리 팩(100) 사용 중에 둘 이상의 배터리 셀(110)의 배열이 흐트러지는 것을 방지하며, 완충 패드(140)가 배터리 셀(110)의 팽창력을 분산시켜 배터리 셀(110)의 일부분에 압력이 집중되는 방지하는 역할을 수행할 수 있다.
도 7은, 본 개시의 일 실시예에 따른 배터리 팩(100)의 모습을 개략적으로 나타낸 개념도이다. 그리고, 도 8은, 본 개시의 또 다른 일 실시예에 따른 배터리 팩(100)의 모습을 개략적으로 나타낸 수직 단면도이다.
다시 도 1 및 도 5와 함께 도 7 및 도 8을 참고하면, 본 개시의 일 실시예에 따른 배터리 팩(100)은, 배터리 관리 시스템(Battery Management System, BMS)(150)을 더 포함할 수 있다. 배터리 관리 시스템(150)은, 가압부(130)의 배터리 셀(110)을 가압하는 가압력을 증대시키거나, 또는 가압력을 감소시키도록 제어할 수 있다. 예를 들면, 배터리 관리 시스템(150)은, 배터리 셀(110)의 상태를 감지하도록 구성된 센서부(151)를 구비할 수 있다. 이때, 센서부(151)는, 전압 센서(151v), 전류 센서(151a) 및 온도 센서(151t) 중 어느 하나 이상을 구비할 수 있다. 전압 센서(151v) 및 전류 센서(151a)는 배터리 셀(110)과 전기적으로 연결될 수 있다. 온도 센서(151t)는 모듈 하우징(120)의 내부에 위치될 수 있다. 예를 들면, 전압 센서(151v) 및 전류 센서(151a)는 배터리 관리 시스템(150)의 내장될 수 있다. 예를 들면, 배터리 관리 시스템(150)은, 전류 센서(151a), 전압 센서(151v), 및 온도 센서(151t)를 이용해, 배터리 셀(110)의 온도, 전압, 및 전류를 측정할 수 있다.
상기 배터리 관리 시스템(150)은, 배터리 셀(110)에 관한 정보를 획득하도록 구성될 수 있다. 예를 들어, 배터리 관리 시스템(150)은 배터리 셀(110)의 SoH(state of health), 충방전 사이클, 및 부피 팽창 계수 중 적어도 어느 하나의 상태 정보를 획득하도록 구성될 수 있다. 그러나, 배터리 셀(110)에 관한 정보는 이에 제한되는 것은 아니다. 여기서, 'SoH'는 열화 상태를 나타내는 배터리 셀(110)의 건강도일 수 있다. 환언하면, SoH는 배터리 용량 유지율(capacity retention)이라고 할 수 있다. 여기서, '충방전 사이클'은, 배터리 셀(110)의 소정 용량까지 충전하고 소정 용량까지 방전한 것을 의미한다. 여기서, '부피 팽창 계수'는, 배터리 셀(110)의 충전 상태와 방전 상태의 부피 변화율을 의미한다.
예를 들면, 배터리 관리 시스템(150)은, 측정된 배터리 셀(110)의 온도, 전압, 및 전류를 통해 SoC(State of Charge)를 공지의 기술을 사용해 산출할 수 있다. 일 실시예에서, 배터리 관리 시스템(150)은, 하기 수식을 사용해 상기 SoH를 산출할 수 있다.
수식: 실측 용량 = 실측 누적전류 / SoC 변화량
수식을 이용하여 실측 용량을 산출하고, 산출된 실측 용량을 사용해, SoH 값을 계산하는 과정을 예를 들어 설명하면, 예를 들어 배터리의 초기 용량은 50Ah이고, 충전하기 전 대기 중 SoC는 20%이며, 충전 종료 후 대기 중 SoC는 70%이고, 소정 주기 동안 실측된 누적전류는 20Ah인 경우, 실측 용량은, 실측된 누적 전류를 SoC 변화량으로 나눠서 산출할 수 있다. 즉, 실측 용량은 20AhХ100÷(70%-20%) = 40Ah이고, 실측 SoH는 (40Ah÷50Ah)Х100 = 80%로 산출된다. 따라서, 이 경우, SoH 값은 80%로 산출된다.
또한, 배터리 관리 시스템(150)은, 획득된 배터리 셀(110)의 SoH에 기초하여 가압부(130)의 가압력을 증대시키거나, 또는 가압부(130)의 가압력을 감소시키도록 구성될 수 있다. 예를 들면, 배터리 관리 시스템(150)은 획득된 SoH가 작을수록 가압부(130)의 가압력을 증대시킬 수 있다. 반대로, 배터리 관리 시스템(150)은, 획득된 SoH가 클수록 가압부(130)의 가압력을 감소시킬 수 있다.
그러나, 배터리 관리 시스템(150)이 가압부(130)의 가압력을 변경하기 위해 고려해야하는 요소를 SoH로만 한정하는 것은 아니다. 예를 들면, 배터리 관리 시스템(150)은, 배터리 셀(110)의 충방전 사이클의 횟수, 및 배터리 셀(110)의 부피 팽창 계수 중 적어도 어느 하나를 더 고려할 수 있다.
예를 들면, 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량이 5 wt%인 경우, 배터리 관리 시스템(150)은, 충방전 사이클 0 내지 15회(SoH가 높은 상태)에서 배터리 셀(110)을 가압하는 가압부(130)의 가압력을 0 kgf 내지 250 kgf로 설정할 수 있고, 충방전 사이클 70 내지 110회에서는 가압부(130)의 가압력을 100 kgf 내지 400 kgf로 설정할 수 있으며, 충방전 사이클 170 내지 200회에서는 가압부(130)의 가압력을 200 kgf 내지 500 kgf로 설정할 수 있다. 예를 들면, 음극활물질의 전체 중량에 대해 실리콘 산화물의 함량이 20 wt%인 경우, 배터리 관리 시스템(150)은, SoH 또는 충방전 사이클의 횟수를 고려하여, 배터리 셀(110)을 가압하는 가압부(130)의 가압력을 0 내지 1000 kgf 범위로 설정할 수 있다.
따라서, 본 개시의 배터리 팩(100)은, 배터리 관리 시스템(150)이 획득된 배터리 셀(110)의 SoH, 충방전 사이클, 및 부피 팽창 계수 중 적어도 어느 하나의 상태 정보를 고려하여 가압부(130)의 가압력을 증대시키거나, 또는 가압력을 감소시키도록 구성됨으로써, 배터리 셀(110)의 SoH에 따른 배터리 셀(110)의 스웰링 현상을 효과적으로 제어할 수 있다. 즉, 본 개시의 배터리 팩(100)은, 배터리 셀(110)의 SoH가 줄어들수록 배터리 셀(110)의 부피 팽창이 증가하는 경향을 가지므로, 배터리 관리 시스템(150)이 배터리 셀(110)의 부피 팽창 정도에 맞게 가압부(130)의 가압력을 증대시킬 수 있는 바, 배터리 셀(110)의 스웰링 현상을 효과적으로 억제시킬 수 있다. 이에 따라, 본 개시의 배터리 팩(100)은, 배터리 셀(110)의 수명을 효과적으로 연장시킬 수 있다.
한편, 다시, 도 7 및 도 8을 참조하면, 본 개시의 또 다른 일 실시예에 따른 배터리 팩(100)의 가압부(130)는, 도 5의 배터리 팩(100)과 비교할 경우, 실린더 축(132a)을 갖는 전동 실린더(132)를 더 포함할 수 있다. 여기서, 탄성 부재(131)는, 실린더 축(132a)의 단부에 연결될 수 있다. 그리고, 탄성 부재(131)는, 예를 들면, 용수철일 수 있다. 여기서, 전동 실린더(132)는, 전동식 모터(도시하지 않음)을 구비할 수 있다.
실린더 축(132a)은, 배터리 관리 시스템(150)에 의해, 탄성 부재(131)를 가압하도록 배터리 셀(110)을 향해 전진할 수 있다. 반대로, 실린더 축(132a)은, 배터리 관리 시스템(150)에 의해, 탄성 부재(131)에 대한 가압을 해제하도록 배터리 셀(110)을 향한 방향의 반대 방향으로 후진하도록 구성될 수 있다. 즉, 배터리 관리 시스템(150)의 제어에 의해, 실린더 축(132a)이 배터리 셀(110)을 향해 전진할 경우, 탄성 부재(131)가 배터리 셀(110)을 가압하는 가압력이 증대될 수 있다. 반대로, 배터리 관리 시스템(150)의 제어에 의해, 실린더 축(132a)이 배터리 셀(110)을 향한 방향과 반대 방향(배터리 셀과 멀어지는 방향)으로 후진할 경우, 탄성 부재(131)가 배터리 셀(110)을 가압하는 가압력이 줄어들 수 있다.
따라서, 본 개시의 또 다른 일 실시예에 따른 배터리 팩(100)은, 배터리 관리 시스템(150)에 의해 제어되는 전동 실린더(132), 및 전동 실린더(132)의 실린더 축(132a)의 단부에 연결된 탄성 부재(131)를 포함함으로써, 배터리 관리 시스템(150)에 의해 탄성 부재(131)의 가압력을 제어하는 것이 가능할 수 있다. 이에 따라, 본 개시의 배터리 팩(100)은, 배터리 셀(110)의 스웰링(팽창) 정도나, 배터리 셀(110)의 SoH를 고려하여 가압부(130)의 가압력을 적절하게 제어할 수 있다.
한편, 도 7 및 도 8을 참조하면, 다른 일 실시예로, 센서부(151)는, 예를 들면, 압력 센서(151p)를 더 구비할 수 있다. 예를 들면, 도 8에서와 같이, 배터리 관리 시스템(150)은, 모듈 하우징(120) 내부에 설치된 압력 센서(151p)를 통해 배터리 셀(110)의 팽창 정도를 감지할 수 있다. 예를 들면, 도 8에서와 같이, 압력 센서(151p)는, 둘 이상의 배터리 셀(110)의 부피 팽창 시, 복수의 배터리 셀(110)의 적층 방향의 최외측에 배치된 배터리 셀(110)과 접촉할 수 있도록 모듈 하우징(120) 내부에 위치될 수 있다. 이때, 압력 센서(151p)는, 배터리 셀(110)의 접촉 여부를 알리는 신호를 배터리 관리 시스템(150)으로 유선 통신 또는 무선 통신을 통해 송신할 수 있다.
한편, 다시 도 8을 참조하면, 본 개시의 또 다른 일 실시예에 따른 배터리 팩(100)은, 도 5의 배터리 팩(100)과 비교할 경우, 필름 형태의 압력 센서(151p)를 더 포함할 수 있다. 도 8의 배터리 팩(100)은, 온도 센서(151t), 압력 센서(151p), 및 전동 실린더(132)를 제외한 그 외 나머지 구성들이 도 5의 배터리 팩(100)과 동일할 수 있다.
예를 들면, 압력 센서(151p)는 필름의 형태를 가질 수 있다. 이러한 필름 형태의 압력 센서(151p)는, 배터리 셀(110)과 탄성 부재(131) 사이에 개재될 수 있다. 압력 센서(151p)는 탄성 부재(131)에 의해 배터리 셀(110)에 가해지는 가압력을 센싱하도록 구성될 수 있다. 예를 들면, 압력 센서(151p)는, 센서에 가해지는 압력에 따라 전기를 발생시키는 압력 소자(Piezoelectric element)를 구비할 수 있다. 압력 센서(151p)는, 배터리 관리 시스템(150)로 감지된 압력에 대한 전기 신호를 송신할 수 있도록 배터리 관리 시스템(150)과 전선으로 연결될 수 있다.
배터리 관리 시스템(150)은, 압력 센서(151p)로부터 측정된 가압력에 따라 가압부(130)의 가압력을 증대시키거나, 또는 가압부(130)의 가압력을 감소시키도록 구성될 수 있다. 예를 들어, 배터리 관리 시스템(150)은, 압력 센서(151p)로부터 측정된 압력 값을 기초로 하여, 가압부(130)가 배터리 셀(110)을 가압하는 적정한 가압력을 조절할 수 있다. 예를 들면, 배터리 관리 시스템(150)은, 전동 실린더(132)가 배터리 셀(110)을 가압하는 가압력을 압력 센서(151p)를 통해 측정하고, 측정된 압력이 배터리 셀(110)의 스웰링 현상을 억제할 수 있는 소정의 가압력 보다 낮은 경우, 전동 실린더(132)의 실린더 축(132a)을 배터리 셀(110)을 향해 전진시킬 수 있다. 반대로, 배터리 관리 시스템(150)은, 측정된 압력이 배터리 셀(110)의 스웰링 현상을 억제할 수 있는 소정의 가압력 보다 큰 경우, 전동 실린더(132)의 실린더 축(132a)을 배터리 셀(110)과 멀어지는 방향으로 후진시킬 수 있다.
따라서, 본 개시의 이러한 구성에 의하면, 본 개시의 배터리 팩(100)은, 탄성 부재(131)에 의해 배터리 셀(110)에 가해지는 가압력을 센싱하도록 구성된 압력 센서(151p)를 더 포함함으로써, 배터리 관리 시스템(150)의 제어에 의해 탄성 부재(131)가 배터리 셀(110)의 스웰링 현상을 효과적으로 억제할 수 있는 적정 범위의 가압력을 발휘할 수 있다. 이에 따라, 본 개시의 배터리 팩(100)은, 배터리 셀(110)의 스웰링 현상으로 인한 고장 내지 사고를 미연에 방지하고, 배터리 팩(100)의 사용 수명을 효과적으로 증대시킬 수 있다.
도 9는, 본 개시의 또 다른 일 실시예에 따른 배터리 팩(100)의 모습을 개략적으로 나타낸 수직 단면도이다.
도 9를 참조하면, 본 개시의 또 다른 일 실시예에 따른 배터리 팩(100)은, 도 8의 배터리 팩(100)과 비교할 경우, 모듈 하우징(120) 내에서 이동 가능하도록 구성된 이동 외벽(W)을 포함하고, 탄성 부재(131)의 위치가 다른 것에서 차이를 가질 수 있다. 도 9의 배터리 팩(100)의 그 외 나머지 구성들은, 도 8의 배터리 팩(100)과 동일할 수 있다.
이동 외벽(W)은 가압부(130)의 탄성 부재(131)를 지지하도록 구성될 수 있다. 예를 들면, 도 9를 참조하면, 이동 외벽(W)은 가압부(130)의 탄성 부재(131)의 일측(우측)을 지지하도록 구성될 수 있다. 이동 외벽(W)은 배터리 셀(110)을 향한 방향(배터리 셀이 위치한 방향) 또는 배터리 셀(110)을 향한 방향의 반대 방향으로 이동 가능하게 구성될 수 있다. 예를 들면, 도 9에 도시된 바와 같이, 이동 외벽(W)은, 모듈 하우징(120)의 일부 측벽(우측벽)일 수 있다. 이동 외벽(W)은, 모듈 하우징(120)의 배터리 셀(110)을 수용하는 내부 공간에서 이동 가능하도록 구성될 수 있다. 예를 들면, 도 9에 도시된 바와 같이, 이동 외벽(W)은, 모듈 하우징(120)의 내부 공간 내에서 배터리 셀(110)을 향해 이동 가능하도록 구성될 수 있다. 이동 외벽(W)은, 모듈 하우징(120)의 내부 공간 내에서 배터리 셀(110)과 멀어지는 방향으로 이동 가능하도록 구성될 수 있다.
가압부(130)는, 이동 외벽(W)을 이동시키도록 구성된 전동 실린더(132A)를 더 포함할 수 있다. 전동 실린더(132A)의 실린더 축(132a)은, 이동 외벽(W)과 연결될 수 있다. 전동 실린더(132A)는, 배터리 관리 시스템(150)의 제어에 의해 실린더 축(132a)을 전진시키거나 후진시킬 수 있다.
전동 실린더(132A)는 모듈 하우징(120) 외부에 위치할 수 있다. 예를 들면, 전동 실린더(132A)는, 모듈 하우징(120)의 좌측 또는 우측에 위치할 수 있다. 예를 들면, 도 9에서와 같이, 실린더 축(132a)과 반대되는 전동 실린더(132A)의 일측이 벽에 고정될 수 있다. 이때, 전동 실린더(132A)의 실린더 축(132a)은 모듈 하우징(120)의 이동 외벽(W)과 연결될 수 있다.
전동 실린더(132A)의 실린더 축(132a)은 이동 외벽(W)을 가압하여 이동 외벽(W)이 배터리 셀(110)을 향해 이동하도록 구성될 수 있다. 또는, 전동 실린더(132A)의 실린더 축(132a)은 이동 외벽(W)이 배터리 셀(110)을 향한 방향의 반대 방향으로 이동하도록 후진하도록 구성될 수 있다.
가압부(130)는, 배터리 셀(110)과 이동 외벽(W) 사이에 개재된 탄성 부재(131)를 더 포함할 수 있다. 탄성 부재(131)는, 이동 외벽(W)에 의해 가압될 수 있다. 예를 들면, 배터리 관리 시스템(150)의 제어에 의해 전동 실린더(132A)의 실린더 축(132a)이 배터리 셀(110)을 향해 전진할 경우, 이동 외벽(W)이 배터리 셀(110)을 향해 이동하게 되고, 탄성 부재(131)는 이동 외벽(W)의 이동에 의해 압축될 수 있다. 이에 따라, 탄성 부재(131)의 배터리 셀(110)을 가압하는 가압력이 증대될 수 있다.
반대로, 배터리 관리 시스템(150)의 제어에 의해 전동 실린더(132A)의 실린더 축(132a)이 배터리 셀(110)과 멀어지는 방향으로 후진할 경우, 이동 외벽(W)이 배터리 셀(110)과 멀어지는 방향으로 이동하게 되고, 탄성 부재(131)는 이동 외벽(W)의 의한 압축량이 줄어들 수 있다. 이에 따라, 탄성 부재(131)의 배터리 셀(110)을 가압하는 가압력이 감소할 수 있다.
따라서, 본 개시의 이러한 구성에 의하면, 본 개시의 배터리 팩(100)은, 가압부(130)의 전동 실린더(132A)가 모듈 하우징(120) 외부에 위치함으로써, 도 8의 배터리 팩(100)과 같이 모듈 하우징(120) 내부에 전동 실린더(132)가 위치한 경우와 비교할 경우, 배터리 팩(100)의 배터리 셀(110)을 수용하는 내부 공간을 더 많이 확보할 수 있다. 이에 따라, 본 개시의 배터리 팩(100)은, 에너지 밀도를 효과적으로 높일 수 있다.
도 10은, 본 개시의 일 실시예에 따른 자동차(300)의 모습을 개략적으로 나타낸 모식도이다.
도 10을 참조하면, 본 개시의 일 실시예에 따른 자동차(300)는 배터리 팩(100)을 적어도 하나 포함한다. 본 개시의 자동차(300)는, 배터리 팩(100)을 상부에 탑재하도록 구성된 차체를 구비할 수 있다. 자동차(300)는 예를 들면, 하이브리드 자동차 또는 전기 자동차일 수 있다. 도 10은 자동차(300)를 예로 들었으나, 이러한 배터리 팩(100)을 사용하는 모든 장치는 본 개시의 실시예에 포함됨이 이해될 것이다.
한편, 다시 도 1 내지 도 5를 참조하면, 본 개시의 일 실시예에 따른 배터리 팩 제조방법은, 배터리 팩(100)을 제조하는 방법으로, 양극(114), 분리막(115), 및 적어도 일부 상기 실리콘 산화물을 갖는 상기 음극활물질을 포함하는 음극(116)을 구비하는 적어도 하나 이상의 배터리 셀(110)을 준비하는 단계를 포함한다.
본 개시의 배터리 팩 제조방법은, 모듈 하우징(120) 내부에 형성된 내부 공간에 적어도 하나 이상의 배터리 셀(110)을 수납하는 단계를 포함한다.
또한, 본 개시의 배터리 팩 제조방법은, 배터리 셀(110)의 충방전 시, 배터리 셀(110)의 부피 변화를 저지하게 배터리 셀(110)을 탄력적으로 가압하도록 구성되고, 상기 음극활물질의 전체 중량에 대한 상기 실리콘 산화물의 함량을 고려하여 배터리 셀(110)을 가압하는 가압력이 설정된 가압부(130)를 설치하는 단계를 포함한다.
따라서, 본 개시의 이러한 구성에 의하면, 본 개시의 배터리 팩 제조방법은, 제조된 배터리 팩(100)이 음극(116)의 상기 음극활물질의 전체 중량에 대해 상기 실리콘 산화물의 함량에 따라 배터리 셀(110)을 가압하는 가압력이 설정된 가압부(130)를 포함함으로써, 배터리 셀(110)의 충방전 시 발생되는 스웰링 특성에 맞게 부피 팽창을 억제할 수 있는 바, 실리콘 산화물의 함량을 고려하지 않은 배터리 팩과 비교하여, 좀더 효과적으로 배터리 팩(100)의 수명과 안정성을 높일 수 있다.
이하, 시험예를 통해 음극활물질 중 실리콘 산화물의 함량에 따라 배터리 셀의 두께와 팽창력의 변화 양상을 설명하도록 한다.
[실시예 1: 배터리 셀의 제조] (SiOX의 함량이 음극활물질 전체 중량의 5wt%)
양극활물질(NCMA(Li[Ni, Co, Mn, Al]O2)), 도전재 (카본블랙), 및 바인더 (폴리비닐리덴플루오라이드: PVDF)를 용제인 N-메틸-2-피롤리돈 (NMP)에 첨가하여 양극활물질 슬러리를 제조하였다. 상기 양극활물질 슬러리를 두께가 15㎛인 양극 집전체 (알루미늄 박막)에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
그라파이트(graphite), 함량이 음극활물질 전체 중량의 5wt%인 비정질의 SiOX(0<x≤2), 도전재(카본블랙), 및 바인더(폴리비닐리덴 플로라이드, PVDF)를 용제인 NMP에 첨가한 후, 혼합하여 음극활물질 슬러리를 제조하였다. 상기 음극활물질 슬러리를 두께가 10㎛인 음극 집전체 (구리 박막)에 도포 및 건조한 후, 롤 프레스를 실시하여 음극을 제조하였다.
상기 양극, 폴리프로필렌/폴리에틸렌/폴리프로필렌(PP/PE/PP)이 3층으로 이루어진 분리막, 및 음극을 적층하여 전극 조립체를 제조하였다. 준비된 전극 조립체를 파우치에 수납하고, 파우치의 수용 공간에 전극 조립체에 함침되도록 전해질을 주액한 다음 파우치를 밀봉하여 배터리 셀을 제조하였다. 이때, 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/EMC/DEC의 혼합 부피비3/4/3)로 이루어진 유기 용매에 1.15M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[실시예 2: 배터리 셀의 제조] (SiOX의 함량이 음극활물질 전체 중량의 10wt%)
양극활물질(NCMA(Li[Ni, Co, Mn, Al]O2), 도전재 (카본블랙), 및 바인더 (폴리비닐리덴플루오라이드: PVDF)를 용제인 N-메틸-2-피롤리돈 (NMP)에 첨가하여 양극활물질 슬러리를 제조하였다. 상기 양극활물질 슬러리를 두께가 15㎛인 양극 집전체 (알루미늄 박막)에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
그라파이트(graphite), 함량이 음극활물질 전체 중량의 10wt%인 비정질의 SiOX(0<x≤2), 도전재(카본블랙), 및 바인더(폴리비닐리덴 플로라이드, PVDF)를 용제인 NMP에 첨가한 후, 혼합하여 음극활물질 슬러리를 제조하였다. 상기 음극활물질 슬러리를 두께가 10㎛인 음극 집전체 (구리 박막)에 도포 및 건조한 후, 롤 프레스를 실시하여 음극을 제조하였다.
제조된 양극, 두께 14㎛를 가진 다공성 폴리에틸렌으로 이루어진 분리막, 및 제조된 음극을 적층하여 전극 조립체를 제조하였다. 준비된 전극 조립체를 파우치에 수납하고, 파우치의 수용 공간에 전극 조립체에 함침되도록 전해질을 주액한 다음 파우치를 밀봉하여 배터리 셀을 제조하였다. 이때, 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/EMC/DEC의 혼합 부피비3/4/3)로 이루어진 유기 용매에 1.15M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[시험예]
실시예 1 및 실시예 2 각각의 리튬 이차전지를 고정 지그를 사용해 4Nm의 토크로 고정시키고, 45℃ 온도의 분위기에서 2.8V 내지 4.2V 구동전압 범위 내에서 충전 전류(0.33C) 및 방전 전류(0.33C)로 충방전 사이클(cycle)을 200회 실시하였다. 충방전 중 이차전지의 스웰링 현상에 따른 팽창력을 측정하기 위해 압력 측정 유닛으로 로드셀을 설치하였다.
그리고, 리튬 이차전지의 200회의 충방전 사이클 동안 초기용량에 대한 방전용량의 비율인 사이클 용량 유지율(SoH에 해당함), 스웰링 현상에 따른 배터리 셀의 두께 변화량, 및 팽창력을 측정하고, 그 측정 결과를 도 11 내지 도 14에 나타냈다.
시험 결과, 실시예 1의 200회차에서, 충방전 사이클의 두께 변위는 0.31 mm에서 0.15 mm로 변화되고, 용량 유지율은 91.2%이며, 팽창력의 범위는 498 kgf에서 233 kgf로 변화되었다. 실시예 2의 200회차에서, 충방전 사이클의 두께 변위는 0.36 mm에서 0.15 mm로 변화되고, 용량 유지율은, 91.3%이며, 팽창력의 범위는 530 kgf에서 210 kgf로 변화되었다.
실리콘 산화물의 함량이 5 wt%인 실시예 1과 비교할 경우, 실리콘 산화물의 함량이 10 wt%인 실시예 2는, 200회차 사이클의 충전 상태 기준으로 배터리 셀의 두께 변화가 약 16% 더 컸고, 팽창력은 약 6.42% 더 큰 것을 알 수 있다. 즉, 시험 결과를 통해 음극활물질 중 실리콘 산화물의 함량이 증가할 경우, 충전 시 배터리 셀의 두께 변화와 팽창력이 더 큰 것을 확인하였다.
또한, 본 개시의 배터리 팩은, 시험예의 결과와 같이, 음극활물질의 실리콘 산화물의 함량에 따른 배터리 셀의 팽창력의 변화 양상을 고려하여, 상기 팽창력과 대응되는 가압부의 가압력을 설정할 수 있다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.
[부호의 설명]
100: 배터리 팩 110: 배터리 셀
111: 셀 케이스 112: 전극 조립체
113, 113a, 113b: 전극 탭, 양극 탭, 음극 탭
114, 115, 116: 양극, 분리막, 음극
117: 전극 리드 118: 절연 필름
120: 모듈 하우징 130: 가압부
131: 탄성 부재
132: 전동 실린더 132a: 실린더 축
140: 완충 패드
150: 배터리 관리 시스템
151: 센서부
151p 151t, 151a, 151v: 압력 센서, 온도 센서, 전류 센서, 전압 센서
W: 이동 외벽
300: 자동차

Claims (10)

  1. 양극, 분리막, 및 적어도 일부 실리콘 산화물을 갖는 음극활물질을 포함하는 음극을 구비하는 적어도 하나 이상의 배터리 셀;
    상기 적어도 하나 이상의 배터리 셀을 내부에 수용하도록 구성된 모듈 하우징; 및
    상기 배터리 셀의 충방전 시, 상기 배터리 셀의 부피 변화를 저지하게 탄력적으로 가압하도록 구성되고, 상기 음극활물질의 전체 중량에 대해 상기 실리콘 산화물의 함량에 따라 상기 배터리 셀을 가압하는 가압력이 설정된 가압부를 포함하는 배터리 팩.
  2. 제1항에 있어서,
    상기 가압부는, 상기 배터리 셀이 부피 팽창하는 방향의 반대 방향으로 가압하도록 구성된 탄성 부재를 구비한 배터리 팩.
  3. 제1항에 있어서,
    상기 배터리 셀은 둘 이상이 포함되고,
    상기 둘 이상의 배터리 셀 사이에 개재되며 상기 배터리 셀의 부피 팽창을 완충하도록 구성된 완충 패드를 더 포함하는 배터리 팩.
  4. 양극, 분리막, 및 적어도 일부 실리콘 산화물을 갖는 음극활물질을 포함하는 음극을 구비하는 적어도 하나 이상의 배터리 셀;
    상기 적어도 하나 이상의 배터리 셀을 내부에 수용하도록 구성된 모듈 하우징;
    상기 배터리 셀의 충방전 시, 상기 배터리 셀의 부피 변화를 저지하게 탄력적으로 가압하도록 구성된 가압부;
    상기 배터리 셀에 관한 정보를 획득하도록 구성된 센서부; 및
    상기 센서부가 획득한 상기 배터리 셀에 관한 정보에 기초하여 상기 가압부의 가압력을 증가시키거나, 감소시키도록 상기 가압부를 제어하는 배터리 관리 시스템을 포함하는 배터리 팩.
  5. 제4항에 있어서,
    상기 센서부가 획득한 상기 배터리 셀에 관한 정보는 상기 배터리 셀의 SoH(state of health), 충방전 사이클, 및 부피 팽창 계수 중 적어도 어느 하나의 상태 정보를 포함하는 배터리 팩.
  6. 제5항에 있어서,
    상기 획득된 배터리 셀의 상태 정보는 충방전 사이클이고, 상기 배터리 관리 시스템은 상기 충방전 사이클이 증가할수록 상기 가압부의 가압력을 증가시키도록 구성된 배터리 팩.
  7. 제5항에 있어서,
    상기 가압부는 실린더 축을 갖은 전동 실린더, 및 탄성 부재를 더 포함하고,
    상기 실린더 축은 상기 배터리 관리 시스템에 의해, 상기 탄성 부재를 가압하도록 상기 배터리 셀을 향해 전진하거나, 상기 탄성 부재에 대한 가압을 해제하도록 상기 배터리 셀을 향한 방향의 반대 방향으로 후진하도록 구성된 배터리 팩.
  8. 제7항에 있어서,
    상기 탄성 부재에 의해 상기 배터리 셀에 가해지는 가압력을 센싱하도록 구성된 압력 센서를 더 포함하고,
    상기 배터리 관리 시스템은,
    상기 압력 센서로부터 측정된 가압력에 따라 상기 가압부의 가압력을 증대시키거나, 또는 상기 가압부의 가압력을 감소시키도록 구성된 배터리 팩.
  9. 제5항에 있어서,
    상기 모듈 하우징은,
    상기 가압부를 지지하고, 상기 배터리 셀을 향한 방향 또는 상기 배터리 셀을 향한 방향의 반대 방향으로 이동 가능하게 구성된 이동 외벽을 포함하고,
    상기 가압부는 상기 이동 외벽과 연결된 실린더 축을 가진 전동 실린더, 및 상기 배터리 셀과 상기 이동 외벽 사이에 개재된 탄성 부재를 더 포함하며,
    상기 전동 실린더는 상기 모듈 하우징 외부에 위치하고, 상기 전동 실린더의 실린더 축은 상기 이동 외벽을 가압하여 상기 이동 외벽이 상기 배터리 셀을 향해 이동하거나, 상기 이동 외벽이 상기 배터리 셀을 향한 방향의 반대 방향으로 이동하도록 구성된 배터리 팩.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 배터리 팩을 적어도 하나 포함한 자동차.
PCT/KR2022/016485 2021-10-29 2022-10-26 배터리 팩 및 배터리 팩을 포함하는 자동차 WO2023075416A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2024518714A JP2024536849A (ja) 2021-10-29 2022-10-26 バッテリパックおよびバッテリパックを含む自動車
CN202280056937.3A CN117837005A (zh) 2021-10-29 2022-10-26 电池组和包括电池组的车辆
EP22887612.4A EP4372882A1 (en) 2021-10-29 2022-10-26 Battery pack and vehicle comprising battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210146721A KR20230061947A (ko) 2021-10-29 2021-10-29 배터리 팩 및 배터리 팩을 포함하는 자동차
KR10-2021-0146721 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023075416A1 true WO2023075416A1 (ko) 2023-05-04

Family

ID=86158201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016485 WO2023075416A1 (ko) 2021-10-29 2022-10-26 배터리 팩 및 배터리 팩을 포함하는 자동차

Country Status (5)

Country Link
EP (1) EP4372882A1 (ko)
JP (1) JP2024536849A (ko)
KR (1) KR20230061947A (ko)
CN (1) CN117837005A (ko)
WO (1) WO2023075416A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023000535A1 (de) 2023-02-17 2024-08-22 Mercedes-Benz Group AG Verfahren zum Ansteuern einer Druckbeaufschlagungseinrichtung für ein Feststoffbatteriemodul sowie Batteriemanagementsystem

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115313A (ja) * 2013-12-16 2015-06-22 日産自動車株式会社 電池システム
KR20160064871A (ko) * 2014-11-28 2016-06-08 주식회사 엘지화학 배터릭 팩
KR20180026210A (ko) 2016-09-02 2018-03-12 주식회사 엘지화학 배터리 모듈용 스트랩, 이를 포함하는 배터리 모듈 및 스트랩 압착용 지그
JP2019091630A (ja) 2017-11-15 2019-06-13 トヨタ自動車株式会社 非水電解液二次電池
JP2019114411A (ja) * 2017-12-22 2019-07-11 Tdk株式会社 電池パック及び組電池
KR20200040975A (ko) 2018-10-10 2020-04-21 현대자동차주식회사 배터리 팩
KR20200058248A (ko) 2018-11-19 2020-05-27 주식회사 코캄 수냉식 냉각장치를 구비한 배터리 시스템 및 이를 위한 유량조절기구 어셈블리
JP2020145063A (ja) * 2019-03-06 2020-09-10 三菱自動車工業株式会社 バッテリーシステム
KR20210073898A (ko) * 2019-12-11 2021-06-21 에스케이이노베이션 주식회사 배터리 모듈

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190091630A (ko) 2018-01-29 2019-08-07 두산공작기계 주식회사 로킹 너트 및 이를 포함하는 스위스 턴 타입 공작 기계의 스핀들 유닛

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115313A (ja) * 2013-12-16 2015-06-22 日産自動車株式会社 電池システム
KR20160064871A (ko) * 2014-11-28 2016-06-08 주식회사 엘지화학 배터릭 팩
KR20180026210A (ko) 2016-09-02 2018-03-12 주식회사 엘지화학 배터리 모듈용 스트랩, 이를 포함하는 배터리 모듈 및 스트랩 압착용 지그
JP2019091630A (ja) 2017-11-15 2019-06-13 トヨタ自動車株式会社 非水電解液二次電池
JP2019114411A (ja) * 2017-12-22 2019-07-11 Tdk株式会社 電池パック及び組電池
KR20200040975A (ko) 2018-10-10 2020-04-21 현대자동차주식회사 배터리 팩
KR20200058248A (ko) 2018-11-19 2020-05-27 주식회사 코캄 수냉식 냉각장치를 구비한 배터리 시스템 및 이를 위한 유량조절기구 어셈블리
JP2020145063A (ja) * 2019-03-06 2020-09-10 三菱自動車工業株式会社 バッテリーシステム
KR20210073898A (ko) * 2019-12-11 2021-06-21 에스케이이노베이션 주식회사 배터리 모듈

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023000535A1 (de) 2023-02-17 2024-08-22 Mercedes-Benz Group AG Verfahren zum Ansteuern einer Druckbeaufschlagungseinrichtung für ein Feststoffbatteriemodul sowie Batteriemanagementsystem

Also Published As

Publication number Publication date
CN117837005A (zh) 2024-04-05
EP4372882A1 (en) 2024-05-22
JP2024536849A (ja) 2024-10-08
KR20230061947A (ko) 2023-05-09

Similar Documents

Publication Publication Date Title
US11431039B2 (en) Method of charging and discharging secondary battery, method of detecting deterioration in secondary battery, method of detecting charging abnormality of secondary battery, and charge and discharge control device
WO2012165758A1 (ko) 리튬 이차전지
WO2015102139A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
US11329277B2 (en) Secondary battery, battery pack, electrically driven vehicle, electric power storage system, electric tool, and electronic device
WO2017099333A1 (ko) 가스 흡착제가 포함되어 있는 전극 리드를 구비한 전지셀
WO2015102140A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2019203571A1 (ko) 비대칭 구조의 이차전지용 난연 분리막
WO2015005694A1 (ko) 전지 수명을 향상시키는 전극 및 이를 포함하는 리튬 이차전지
WO2019083330A2 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
WO2021206381A1 (ko) 이차전지용 스웰링 테이프 및 이를 포함하는 원통형 이차전지
JP2020507900A (ja) 二次電池用正極及びこれを含むリチウム二次電池
WO2023075416A1 (ko) 배터리 팩 및 배터리 팩을 포함하는 자동차
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021182741A1 (ko) 이차전지 및 이의 리튬 석출 검출 방법
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
US20210043937A1 (en) Battery, battery pack, electronic device, electrically driven vehicle, and power storage system
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
KR20210143019A (ko) 이차전지의 제조방법
WO2022149912A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2022098049A1 (ko) 음극보다 면적이 넓은 양극을 포함하는 전고체전지 및 이의 제조방법
JP5664460B2 (ja) 固体二次電池システム
WO2021054596A1 (ko) 2개 이상의 금속 호일 사이에 열-압력 변환층을 포함하는 전극 집전체, 이를 포함하는 전극 및 리튬 이차전지
WO2021086132A1 (ko) 음극의 제조 방법
WO2021112596A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022887612

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022887612

Country of ref document: EP

Effective date: 20240212

WWE Wipo information: entry into national phase

Ref document number: 202280056937.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2024518714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE