WO2023074971A1 - 직접구동 모터 기반의 웨이퍼 이송 로봇 장치 - Google Patents

직접구동 모터 기반의 웨이퍼 이송 로봇 장치 Download PDF

Info

Publication number
WO2023074971A1
WO2023074971A1 PCT/KR2021/015512 KR2021015512W WO2023074971A1 WO 2023074971 A1 WO2023074971 A1 WO 2023074971A1 KR 2021015512 W KR2021015512 W KR 2021015512W WO 2023074971 A1 WO2023074971 A1 WO 2023074971A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
hand
axis
direct drive
axis module
Prior art date
Application number
PCT/KR2021/015512
Other languages
English (en)
French (fr)
Inventor
오진호
최상찬
이정원
Original Assignee
주식회사 라온테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 라온테크 filed Critical 주식회사 라온테크
Publication of WO2023074971A1 publication Critical patent/WO2023074971A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • B25J15/0057Gripping heads and other end effectors multiple gripper units or multiple end effectors mounted on a turret
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Definitions

  • the present invention relates to a wafer transfer robot technology, and more particularly, to a wafer transfer robot device based on a direct drive motor capable of simplifying driving parts of a wafer transfer robot and improving overall vibration and precision.
  • arms or linkages of the transfer robot are configured in a coaxial manner to enable movement in three degrees of freedom or more using a plurality of motors, for example.
  • the outermost shaft is coupled to a hub for rotating the multiple arms around a central axis of rotation, for example, and the two inner shafts can be connected to each of the multiple arms through independent belt and pulley arrangements.
  • the arm was lengthened or an upper arm and a lower arm were arranged vertically.
  • the structural rigidity decreases, resulting in a problem in that the accuracy of the transfer operation decreases.
  • a wafer transfer robot device based on a direct drive motor capable of simplifying driving parts of the wafer transfer robot and improving overall vibration and precision.
  • a wafer transfer robot based on a direct drive motor capable of reducing the weight and volume of the R-axis and T-axis drive modules of the wafer transfer robot and reducing cost by using a direct drive motor.
  • a direct drive motor capable of reducing the weight and volume of the R-axis and T-axis drive modules of the wafer transfer robot and reducing cost by using a direct drive motor.
  • a direct drive motor-based wafer transfer robot device capable of minimizing a space for maintaining a vacuum by placing a part of a direct drive motor and an encoder in a vacuum environment and dividing a vacuum and an atmospheric environment with a vacuum barrier thin film.
  • a direct drive motor-based wafer transfer robot device includes a hand module including a hand capable of loading a wafer on one side and a hand arm coupled with the hand to transfer the wafer; A central axis having one end coupled to the hand arm, a rotary motor member coupled along an outer circumference of the central axis, a fixed motor member fixed to an outer circumference of the rotary motor member, and disposed between the rotary motor member and the fixed motor member an R-axis module including a cylindrical vacuum barrier thin film that isolates the interior by vacuum and providing power to the hand module through the rotary motor member; a connecting enclosure module having one end coupled to the R-axis module; and a central rotational shaft rotatably coupled to the connecting enclosure module to the other end of the connecting enclosure module, a magnetic fluid seal surrounding the outside of the central rotational shaft, and disposed along a lower outer circumference of the central rotational shaft to generate rotational force on the central rotational shaft. It includes a T-axis module including a motor to provide.
  • the hand module includes first and second link arms; and an auxiliary central shaft coupling one end of the central shaft through the first link arm and coupling the handarm through the second link arm to provide rotational force of the central shaft to the handarm.
  • the R-axis module implements a direct drive motor through the rotary motor member and the fixed motor member, and provides the power to the hand module by arranging a plurality of direct drive motors side by side.
  • the R-axis module includes a rotary encoder coupled to the other end of the central axis; a fixed-side encoder disposed opposite to the rotating-side encoder; and a sheet-type vacuum barrier thin film disposed between the rotary shaft encoder and the fixed-side encoder.
  • the T-axis module further includes an enclosure including a circular support plate protruding outward from a circumference to support the connecting enclosure module and surrounding the magnetic fluid seal through the circumference.
  • the T-axis module further includes an air through-hole forming an air inside the central rotation shaft.
  • the T-axis module extends the atmospheric through-hole to the center of the motor, and the motor as a direct drive motor consists of a lower rotary motor member disposed inside the lower outer circumference and a lower fixed motor member disposed outside. .
  • the R-axis module and the T-axis module are driven independently of each other, the T-axis module operates to set the direction of the hand by rotating the R-axis module, and the R-axis module operates to perform forward and backward motion of the hand. .
  • the disclosed technology may have the following effects. However, it does not mean that a specific embodiment must include all of the following effects or only the following effects, so it should not be understood that the scope of rights of the disclosed technology is limited thereby.
  • a wafer transfer robot device based on a direct drive motor according to an embodiment of the present invention can simplify driving parts of the wafer transfer robot and improve overall vibration and precision.
  • a wafer transfer robot device based on a direct drive motor can reduce the weight and volume of the R-axis and T-axis drive modules of the wafer transfer robot and reduce cost by using a direct drive motor. there is.
  • the direct drive motor-based wafer transfer robot device places a part of the direct drive motor and an encoder in a vacuum environment and divides the vacuum and atmospheric environment with a vacuum barrier thin film to minimize the space for maintaining the vacuum. You can save money.
  • FIG. 1 is a perspective view for explaining a wafer transfer robot device based on a direct drive motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view for explaining the wafer transfer robot device in FIG. 1 .
  • 3a-3b are perspective and cross-sectional views for explaining the R-axis module in FIG. 1;
  • FIG. 4a-4b are perspective and cross-sectional views for explaining the T-axis module in FIG. 1;
  • Figure 5 is a view for explaining the vacuum environment of the R-axis module in Figure 3b.
  • Figure 6 is a view for explaining the vacuum environment of the T-axis module in Figure 4b.
  • first and second are used to distinguish one component from another, and the scope of rights should not be limited by these terms.
  • a first element may be termed a second element, and similarly, a second element may be termed a first element.
  • the identification code (eg, a, b, c, etc.) is used for convenience of explanation, and the identification code does not describe the order of each step, and each step clearly follows a specific order in context. Unless otherwise specified, it may occur in a different order than specified. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • FIG. 1 is a perspective view for explaining a wafer transfer robot device based on a direct drive motor according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view for explaining the wafer transfer robot device in FIG. 1 .
  • FIG. 1 shows the exterior of the wafer transfer robot device 100 based on a direct drive motor, and (b) shows a state in which the exterior housing is removed from (a).
  • the direct drive motor-based wafer transfer robot device 100 includes a hand module 110, an R-axis module 130, a connecting enclosure module 150, and a T-axis module 170.
  • a hand module 110 an R-axis module 130, a connecting enclosure module 150, and a T-axis module 170.
  • R-axis module 130 an R-axis module 130, a connecting enclosure module 150, and a T-axis module 170.
  • T-axis module 170 can include
  • the hand module 110 includes a hand 111 capable of loading a wafer 200 on one surface, a hand arm 113 coupled with the hand 111 to transport the wafer 200, first and second hand arms 113 It includes two link arms (115, 117).
  • the hand arm 113 is disposed on the left and right sides of the robot, respectively, and the hand 111 is coupled to one end.
  • the hand 111 may be made of a lightweight metal material such as aluminum (Al) in order to reduce overall weight while increasing structural rigidity.
  • the hand 111 includes a finger on which the wafer 200 is seated, and the finger may be made of a material that does not cause damage to the wafer 200 due to static electricity and generates little vibration.
  • the wafer transfer robot device 100 rotates and expands and contracts the hand arm 113 to load the wafer 200 onto the hand 111 and transfer it to a desired position.
  • the first link arm 115 is coupled to the central axis of the R-axis module 130 and the second link arm 117 is coupled to the other end of the hand arm 113.
  • the first and second link arms 115 and 117 are connected with a certain height difference through an auxiliary central axis 119.
  • the auxiliary central axis 119 combines one end of the central axis of the R-axis module 130 through the first link arm 115 and couples the hand arm 113 through the second link arm 117 to form a hand arm 113 ) Provides the rotational force of the central axis of the R-axis module 130.
  • the hand module 110 rotates the second link arm 115 when the rotational force of the central axis of the R-axis module 130 is provided through the auxiliary central axis 119, and as a result, the hand coupled to the second link arm 115. Rotate the arm 113.
  • the R-axis module 130 is an axis that rotates individual link arms, and provides power to the hand module 110.
  • Conventional R-axis module consists of a motor, reducer, and magnetic fluid seal structure, but here, the R-axis module 130 is changed to a direct drive motor, encoder, and vacuum barrier thin film structure. If a magnetic fluid seal is used, the price of the equipment increases because the structure is complex and expensive magnetic fluid seals must be purchased. In the present invention, the R-axis module 130 replaces the magnetic fluid seal with a vacuum barrier thin film to maintain a vacuum state without using a magnetic fluid seal, so that management is easy and the price of the equipment is cheaper than before.
  • Figures 3a and 3b is a perspective view and a cross-sectional view for explaining the R-axis module in FIG.
  • the R-axis module 130 includes a central axis 131 having one end coupled to the handarm 113, a rotary motor member 132 coupled along the outer circumference of the central axis 131, A fixed motor member 133 fixed to the outer circumference of the rotary motor member 132 and a cylindrical vacuum barrier thin film 134 disposed between the rotary motor member 132 and the fixed motor member 133 to isolate the inside by vacuum includes
  • the R-side module 130 may implement a direct drive motor through the rotary motor member 132 and the fixed motor member 133.
  • the rotary motor member 132 and the fixed motor member 133 may correspond to the rotation side and the stationary side of the direct drive motor, respectively.
  • the R-side module 130 may provide power to the hand module 110 by arranging a plurality of direct drive motors in parallel.
  • Direct drive (DD) motor refers to a method of directly transferring the rotational force of the motor to the driven object without going through a mechanism such as a reducer, which can minimize damage caused by friction of the mechanism, etc. can be reduced that much.
  • the R-axis module 130 can reduce friction and abrasion occurring at the transmission site by attaching a direct drive motor to the central axis 131 as a motor member.
  • the cylindrical vacuum barrier thin film 134 may be disposed between the rotary motor member 132 and the fixed motor member 133 to isolate the rotary motor member 132 by vacuum.
  • the R-axis module 130 may divide the rotary motor member 132 and the fixed motor member 133 into vacuum and atmospheric environments through the cylindrical vacuum barrier film 134.
  • the R-axis module 130 may provide power to the hand module 110 through the rotary motor member 132 in a vacuum state.
  • a rotation-side encoder 135 is coupled to the other end of the central axis 131, and a fixed-side encoder 136 is disposed opposite to the rotation-side encoder 135.
  • a sheet-type vacuum barrier thin film 137 is disposed between the rotation-side encoder 135 and the fixed-side encoder 136.
  • the sheet-type vacuum barrier thin film 137 may be disposed between the rotation-side encoder 135 and the fixed-side encoder 136 to isolate the rotation-side encoder 135 by vacuum.
  • the R-side module 130 may divide the rotation-side encoder 135 and the fixed-side encoder 136 into vacuum and atmospheric environments through the sheet-type vacuum barrier film 137.
  • the R-axis module 130 maintains a vacuum state using the vacuum barrier films 134 and 137, thereby reducing weight and volume and reducing cost compared to using an expensive magnetic fluid seal.
  • the R-axis module 130 may minimize the area in which the vacuum state is maintained by placing a part of the direct drive motor and the encoder in a vacuum environment and dividing the vacuum and atmospheric environment with the vacuum barrier thin films 134 and 137.
  • the R-axis module 130 is coupled to the handarm 113 through the first and second link arms 115 and 117 at one end and the connecting enclosure module 150 at the other end. This is combined
  • the connecting enclosure module 150 has one end coupled to the R-axis module 130 and the other end coupled to the T-axis module 170 to be rotatable by rotational force provided through the T-axis module 170.
  • the connecting enclosure module 150 connects the R-axis module 130 and the T-axis module 170.
  • the T-axis module 170 is an axis that rotates the top of the robot including the R-axis module 130, and is rotatably coupled to the connecting enclosure module 150.
  • Existing T-axis modules are composed of a motor, belt, pulley, reducer, and magnetic fluid seal structure, but here, the T-axis module 170 is changed to a laminated structure of a direct drive motor, encoder, and magnetic fluid seal.
  • FIG. 4a and 4b are perspective and cross-sectional views for explaining the T-axis module in FIG. 1;
  • the T-axis module 170 includes a central rotation shaft 171 , a magnetic fluid seal 172 and a motor 173 .
  • the central rotation shaft 171 rotatably couples the connecting enclosure module 150 .
  • the magnetic fluid seal 172 surrounds the outside of the central rotational shaft 171 and isolates the inside of the seal by vacuum.
  • the motor 173 is disposed along the lower outer circumference 174 of the central rotation shaft 171 to provide rotational force to the central rotation shaft 171 .
  • the motor 173 is a direct drive (DD) motor and is composed of a lower rotation motor member 173a disposed inside the lower outer circumference 174 of the central rotation shaft and a lower fixed motor member 173b disposed outside.
  • the lower rotary motor member 173a and the lower fixed motor member 173b may correspond to the rotation side and the stationary side of the direct drive motor, respectively.
  • the T-side module 170 may provide rotational force to the central rotational shaft 171 by disposing the direct drive motor 173 below the central rotational shaft 171 .
  • the T-axis module 170 includes a lower encoder 175 at the bottom of the motor 173.
  • the T-axis module 170 is composed of a structure in which a lower encoder 175, a motor 173, and a magnetic fluid seal 172 are sequentially stacked from bottom to top, thereby reducing the volume.
  • the T-side module 170 includes a circular support plate 176 protruding outside the circumference to support the connecting enclosure module 150 and an enclosure 177 surrounding the magnetic fluid seal 172 through the circumference.
  • the T-axis module 170 includes an air through-hole 178 forming an air inside the central rotation shaft 171, and the air through-hole 178 extends to the center of the motor 173.
  • the R-axis module 130 and the T-axis module 170 are driven independently of each other.
  • the T-axis module 170 operates to set the direction of the hand 111 by rotating the R-axis module 130.
  • the R-axis module 130 operates to perform forward and backward motions of the hand 111 .
  • FIG. 5 is a view for explaining a vacuum environment of the R-axis module in FIG. 1;
  • the R-axis module 130 is coupled to the end of the central axis 131 between the rotating motor member 132 and the fixed motor member 133 coupled along the outer circumference of the central axis (131) and It is possible to isolate the inside of the vacuum by disposing the vacuum blocking thin films 133 and 137 between the rotation-side encoder 135 and the fixed-side encoder 136 to be vacuum.
  • the R-axis module 130 may place the central axis 131, the rotation motor member 132, and the rotation side encoder 135 disposed inside the vacuum barrier thin films 133 and 137 in a vacuum environment, and the fixed motor member 133 and the fixed-side encoder 136 can be placed in a standby environment.
  • the R-axis module 130 may divide a vacuum and an atmospheric environment through the vacuum barrier thin films 133 and 137.
  • FIG. 6 is a view for explaining a vacuum environment of the T-axis module in FIG. 1;
  • the T-axis module 170 arranges a magnetic fluid seal 172 in a form surrounding the outside of the central rotation shaft 171 rotatably coupling the connecting enclosure module 150 to the central rotation shaft 171. ) can be sealed in a vacuum state.
  • the T-axis module 170 may form an atmospheric through-hole 178 inside the central rotary shaft 171 to maintain the inside of the central rotary shaft 171 in a standby state.
  • an atmospheric through-hole 178 is formed extending to the center of the motor 173 so that the motor 173 and the encoder 175 can be placed in an atmospheric environment to minimize an area in which a vacuum is maintained.
  • a wafer transfer robot device based on a direct drive motor may use a direct drive (DD) motor to simplify parts, reduce vibration, and improve the precision of a transfer operation.
  • DD direct drive
  • a wafer transfer robot device based on a direct drive motor uses a vacuum barrier thin film on the R axis and a laminated structure of a motor, an encoder, and a magnetic fluid seal on the T axis to reduce overall weight and volume and reduce the space for maintaining vacuum. Maintenance costs can be saved by minimizing it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

본 발명은 직접구동 모터 기반의 웨이퍼 이송 로봇 장치에 관한 것으로, 인-챔버 웨이퍼 이송 로봇은 제1 및 제2 핸드암들(hand arms)의 일단들을 통해 일면에서 웨어퍼를 로딩할 수 있는 핸드 및 상기 핸드와 결합되어 상기 웨이퍼를 이송하는 핸드암(hand arm)을 포함하는 핸드 모듈; 일단이 상기 핸드암과 결합된 중심축, 상기 중심축의 바깥 둘레를 따라 결합된 회전모터부재, 상기 회전모터부재의 바깥 둘레에 고정된 고정모터부재 및 상기 회전모터부재와 상기 고정모터부재 사이에 배치되어 그 내부를 진공으로 격리시키는 원통형 진공차단박막을 포함하고, 상기 회전모터부재를 통해 상기 핸드 모듈에 동력을 제공하는 R축 모듈; 일단은 상기 R축 모듈을 결합하는 커넥팅 인클로징 모듈; 및 상기 커넥팅 인클로징 모듈의 다른 일단에 상기 커넥팅 인클로징 모듈을 회전 가능하게 결합한 중심 회전축, 상기 중심 회전축의 외부를 감싼 자성유체씰 및 상기 중심 회전축의 하부 바깥 둘레를 따라 배치되어 상기 중심 회전축에 회전력을 제공하는 모터를 포함하는 T축 모듈을 포함한다.

Description

직접구동 모터 기반의 웨이퍼 이송 로봇 장치
본 발명은 웨이퍼 이송 로봇 기술에 관한 것으로, 보다 상세하게는 웨이퍼 이송 로봇의 구동 부품을 간소화하고 전체적인 진동 및 정밀도를 향상시킬 수 있는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치에 관한 것이다.
반도체 기술이 고도화됨에 따라 반도체 공정에서 요구되는 웨이퍼 이송 로봇의 스펙이 상향되었다.
종래의 웨이퍼 이송 로봇에서는, 이송 로봇의 암 또는 링크 부재들(linkages)은 다수의 모터를 이용하여 예를 들어 3자유도 이상의 운동이 가능하도록 동축 방식으로 구성된다. 최외각 축은 예를 들어 회전 중심축 주위로 다중 암들을 회전시키기 위한 허브(hub)에 결합되고, 2개의 내부 축은 독립적인 벨트 및 풀리 구성을 통하여 다중 암들 각각에 연결될 수 있다.
기존 사용되고 있는 이러한 웨이퍼 이송 로봇의 암(arm)에 2개의 핸드를장착하기 위해서는 암을 길게 하거나 상부(upper) 암과 하부(lower) 암을 상하로 배치하였다. 그러나 이와 같이 구성하였을 경우 암의 길이가 길어짐에 따라 구조적 강성이 떨어져 이송 작업의 정밀도가 떨어지는 문제가 발생하였다.
정밀도를 개선하기 위하여 암의 강성을 높이는 경우 암의 무게가 증가하거나 이송 로봇의 크기가 커져 설치에 어려움이 발생하였다.
[선행기술문헌]
[특허문헌]
한국 등록특허공보 제10-1382145(2014.04.01.)호
본 발명의 일 실시예에 따르면, 웨이퍼 이송 로봇의 구동 부품을 간소화하고 전체적인 진동 및 정밀도를 향상시킬 수 있는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치를 제공하고자 한다.
본 발명의 일 실시예에 따르면, 직접구동(Direct Drive) 모터를 사용하여 웨이퍼 이송 로봇의 R축과 T축의 구동 모듈의 무게와 부피를 줄이고 원가를 절감할 수 있는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치를 제공하고자 한다.
본 발명의 일 실시예에 따르면, 직접구동 모터와 엔코더의 일부를 진공 환경에 두고 진공차단박막으로 진공과 대기 환경을 나누어 진공을 유지하는 공간을 최소화할 수 있는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치를 제공하고자 한다.
실시예들 중에서, 직접구동 모터 기반의 웨이퍼 이송 로봇 장치는 일면에서 웨어퍼를 로딩할 수 있는 핸드 및 상기 핸드와 결합되어 상기 웨이퍼를 이송하는 핸드암(hand arm)을 포함하는 핸드 모듈; 일단이 상기 핸드암과 결합된 중심축, 상기 중심축의 바깥 둘레를 따라 결합된 회전모터부재, 상기 회전모터부재의 바깥 둘레에 고정된 고정모터부재 및 상기 회전모터부재와 상기 고정모터부재 사이에 배치되어 그 내부를 진공으로 격리시키는 원통형 진공차단박막을 포함하고, 상기 회전모터부재를 통해 상기 핸드 모듈에 동력을 제공하는 R축 모듈; 일단은 상기 R축 모듈을 결합하는 커넥팅 인클로징 모듈; 및 상기 커넥팅 인클로징 모듈의 다른 일단에 상기 커넥팅 인클로징 모듈을 회전 가능하게 결합한 중심 회전축, 상기 중심 회전축의 외부를 감싼 자성유체씰 및 상기 중심 회전축의 하부 바깥 둘레를 따라 배치되어 상기 중심 회전축에 회전력을 제공하는 모터를 포함하는 T축 모듈을 포함한다.
상기 핸드 모듈은 제1 및 제2 링크암들; 및 상기 제1 링크암을 통해 상기 중심축의 일단을 결합하고 상기 제2 링크암을 통해 상기 핸드암을 결합하여, 상기 핸드암에 상기 중심축의 회전력을 제공하는 보조 중심축을 더 포함한다.
상기 R축 모듈은 상기 회전모터부재 및 상기 고정모터부재를 통해 직접구동모터를 구현하고, 상기 직접구동모터를 복수로 나란하게 배치하여 상기 핸드 모듈에 상기 동력을 제공한다.
상기 R축 모듈은 상기 중심축의 다른 일단과 결합된 회전측 엔코더; 상기 회전측 엔코더와 대향하게 배치된 고정측 엔코더; 및 상기 회전축 엔코더 및 상기 고정측 엔코더 사이에 배치된 시트형 진공차단박막을 더 포함한다.
상기 T축 모듈은 상기 커넥팅 인클로징 모듈을 지지하기 위해 원주의 바깥으로 돌출된 원형 지지 플레이트를 포함하고 상기 원주를 통해 상기 자성유체씰을 감싸는 인클로저를 더 포함한다.
상기 T축 모듈은 상기 중심 회전축의 내부에 대기를 형성한 대기 관통공을 더 포함한다.
상기 T축 모듈은 상기 모터의 중심까지 상기 대기 관통공을 연장하고, 상기 모터를 직접구동모터로서 상기 하부 바깥 둘레의 안쪽에 배치된 하부 회전모터부재 및 바깥에 배치된 하부 고정모터부재로 구성한다.
상기 R축 모듈 및 T축 모듈은 서로 독립적으로 구동되고 상기 T축 모듈은 상기 R축 모듈을 회전시켜 상기 핸드의 방향을 설정하도록 동작하며 상기 R축 모듈은 상기 핸드의 전후 동작을 수행하도록 동작한다.
개시된 기술은 다음의 효과를 가질 수 있다. 다만, 특정 실시예가 다음의 효과를 전부 포함하여야 한다거나 다음의 효과만을 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
본 발명의 일 실시예에 따른 직접구동 모터 기반의 웨이퍼 이송 로봇 장치는 웨이퍼 이송 로봇의 구동 부품을 간소화하고 전체적인 진동 및 정밀도를 향상시킬 수 있다.
본 발명의 일 실시예에 따른 직접구동 모터 기반의 웨이퍼 이송 로봇 장치는 직접구동(Direct Drive) 모터를 사용하여 웨이퍼 이송 로봇의 R축과 T축의 구동 모듈의 무게와 부피를 줄이고 원가를 절감할 수 있다.
본 발명의 일 실시예에 따른 직접구동 모터 기반의 웨이퍼 이송 로봇 장치는 직접구동 모터와 엔코더의 일부를 진공 환경에 두고 진공차단박막으로 진공과 대기 환경을 나누어 진공을 유지하는 공간을 최소화하여 유지보수비용을 절약할 수 있다.
도 1은 본 발명의 일 실시예에 따른 직접구동 모터 기반의 웨이퍼 이송 로봇 장치를 설명하기 위한 사시도이다.
도 2는 도 1에 있는 웨이퍼 이송 로봇 장치를 설명하기 위한 단면도이다.
도 3a-3b는 도 1에 있는 R축 모듈을 설명하기 위한 사시도 및 단면도이다.
도 4a-4b는 도 1에 있는 T축 모듈을 설명하기 위한 사시도 및 단면도이다.
도 5는 도 3b에 있는 R축 모듈의 진공 환경을 설명하기 위한 도면이다.
도 6은 도 4b에 있는 T축 모듈의 진공 환경을 설명하기 위한 도면이다.
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어"있다고 언급된 때에는, 그다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
각 단계들에 있어 식별부호(예를 들어, a, b, c 등)는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.
도 1은 본 발명의 일 실시예에 따른 직접구동 모터 기반의 웨이퍼 이송 로봇 장치를 설명하기 위한 사시도이고, 도 2는 도 1에 있는 웨이퍼 이송 로봇 장치를 설명하기 위한 단면도이다.
여기에서, 도 1의 (a)는 직접 구동 모터 기반의 웨이퍼 이송 로봇 장치(100)의 외관을 나타내고, (b)는 (a)에서 외관 하우징을 제거한 상태를 나타낸다.
도 1 및 도 2를 참조하면, 직접구동 모터 기반의 웨이퍼 이송 로봇 장치(100)은 핸드 모듈(110), R축 모듈(130), 커넥팅 인클로징 모듈(150) 및 T축 모듈(170)을 포함할 수 있다.
핸드 모듈(110)은 일면에 웨이퍼(200)를 로딩할 수 있는 핸드(111), 핸드(111)와 결합되어 웨이퍼(200)를 이송하는 핸드암(hand arm)(113), 제1 및 제2 링크암들(115,117)을 포함한다.
핸드암(113)은 로봇의 좌측 및 우측에 각각 배치되고 일단에 핸드(111)가 결합된다. 핸드(111)는 구조적 강성을 높이면서 동시에 전체적인 무게를 줄이기 위하여 알루미늄(Al)과 같은 경량 금속 재질로 이루어질 수 있다. 핸드(111)는 웨이퍼(200)가 안착되는 핑거를 구비하고 핑거는 웨이퍼(200)에 정전기로 인한 손상을 입히지 않으면서 진동의 발생이 작은 재질로 이루어질 수 있다. 웨이퍼 이송 로봇 장치(100)는 핸드암(113)을 선회 및 신축시키는 것에 의해, 핸드(111)에 웨이퍼(200)를 로딩하여 원하는 위치에 이송한다.
제1 링크암(115)은 R축 모듈(130)의 중심축에 결합되고 제2 링크암(117)은 핸드암(113)의 다른 일단에 결합된다. 제1 및 제2 링크암들(115,117)은 보조 중심축(119)을 통해 일정 높이 차로 연결된다.
보조 중심축(119)은 제1 링크암(115)을 통해 R축 모듈(130)의 중심축의 일단을 결합하고 제2 링크암(117)을 통해 핸드암(113)을 결합하여 핸드암(113)에 R축 모듈(130)의 중심축의 회전력을 제공한다.
핸드 모듈(110)은 보조 중심축(119)을 통해 R축 모듈(130)의 중심축의 회전력이 제공되면 제2 링크암(115)을 회전시킴으로써 결과적으로 제2 링크암(115)에 결합된 핸드암(113)을 회전시킨다.
R축 모듈(130)은 개별 링크암을 회전시키는 축으로, 핸드 모듈(110)에 동력을 제공한다. 기존의 R축 모듈은 모터, 감속기, 자성 유체씰 구조로 구성되지만, 여기에서 R축 모듈(130)은 직접구동 모터, 엔코더, 진공차단박막 구조로 변경 구성된다. 자성 유체씰을 사용하면 구조가 복잡하고 고가의 자성 유체씰을 구입해야 하므로 장비의 가격이 상승하게 된다. 본 발명에서, R축 모듈(130)은 자성 유체씰을 진공차단박막으로 대체하여 자성 유체씰을 사용하지 않고 진공상태를 유지함으로써 관리가 용이하고 장비의 가격이 기존 대비 저렴하게 된다.
도 3a 및 3b는 도 1에 있는 R축 모듈을 설명하기 위한 사시도 및 단면도이다.
도 3a 및 3b를 참조하면, R축 모듈(130)은 일단이 핸드암(113)과 결합된 중심축(131), 중심축(131)의 바깥 둘레를 따라 결합된 회전모터부재(132), 회전모터부재(132)의 바깥 둘레에 고정된 고정모터부재(133) 및 회전모터부재(132)와 고정모터부재(133) 사이에 배치되어 그 내부를 진공으로 격리시키는 원통형 진공차단박막(134)을 포함한다.
R측 모듈(130)은 회전모터부재(132) 및 고정모터부재(133)를 통해 직접구동모터를 구현할 수 있다. 여기에서, 회전모터부재(132)와 고정모터부재(133)는 각각 직접구동 모터의 회전측과 고정측에 해당할 수 있다. R측 모듈(130)은 직접구동모터를 복수로 나란하게 배치하여 핸드 모듈(110)에 동력을 제공할 수 있다.
직접구동(DD) 모터는 모터의 회전력을 감속기 등의 기구를 통하지 않고 직접 구동 대상에 전달하는 방식을 뜻하며, 기구 등의 마찰에 의한 손상을 최소화할 수 있고 접촉이나 진동을 일으키는 부품이 줄어들어 소음을 그만큼 저감할 수 있다.
R축 모듈(130)은 중심축(131)에 모터부재로 직접구동 모터를 부착함으로써 전달부위에서 발생하는 마찰 및 마모를 감소시킬 수 있다.
원통형 진공차단박막(134)은 회전모터부재(132)와 고정모터부재(133) 사이에 배치되어 회전모터부재(132)를 진공으로 격리시킬 수 있다. R축 모듈(130)은 원통형 진공차단박막(134)을 통해 회전모터부재(132)와 고정모터부재(133)를 진공과 대기 환경으로 나눌 수 있다. R축 모듈(130)은 진공 상태에서 회전모터부재(132)를 통해 핸드 모듈(110)에 동력을 제공할 수 있다.
R축 모듈(130)은 중심축(131)의 다른 일단에 회전측 엔코더(135)가 결합되고, 회전측 엔코더(135)와 대향하여 고정측 엔코더(136)가 배치된다. 회전측 엔코더(135)와 고정측 엔코더(136) 사이에는 시트(sheet)형 진공차단박막(137)이 배치된다. 시트형 진공차단박막(137)은 회전측 엔코더(135)와 고정측 엔코더(136) 사이에 배치되어 회전측 엔코더(135)를 진공으로 격리시킬 수 있다. R측 모듈(130)은 시트형 진공차단박막(137)을 통해 회전측 엔코더(135)와 고정측 엔코더(136)를 진공과 대기 환경으로 나눌 수 있다.
R축 모듈(130)은 진공차단박막(134,137)을 사용하여 진공상태를 유지함으로써 무게와 부피를 줄일 수 있고 고가의 자성 유체씰을 사용하는 것에 비해 원가를 절감할 수 있다. R축 모듈(130)은 직접구동모터와 엔코더의 일부를 진공 환경에 두고 진공차단박막(134,137)으로 진공과 대기 환경을 나눔으로써 진공상태를 유지하는 면적을 최소화할 수 있다.
다시, 도 1 및 도 2로 돌아가서, R축 모듈(130)은 일단에 제1 및 제2 링크암들(115,117)을 통해 핸드암(113)이 결합되고 다른 일단에 커넥팅 인클로징 모듈(150)이 결합된다.
커넥팅 인클로징 모듈(150)은 일단은 R축 모듈(130)과 결합하고 다른 일단은 T축 모듈(170)에 결합되어 T축 모듈(170)을 통해 제공되는 회전력에 의해 회전 가능하게 된다. 여기에서, 커넥팅 인클로징 모듈(150)은 R축 모듈(130)과 T축 모듈(170)을 연결한다.
T축 모듈(170)은 R축 모듈(130)을 포함하는 로봇의 상부를 회전시키는 축으로, 커넥팅 인클로징 모듈(150)과 회전 가능하게 결합된다. 기존의 T축 모듈은 모터, 벨트, 풀리, 감속기, 자성 유체씰 구조로 구성되지만, 여기에서 T축 모듈(170)은 직접구동 모터, 엔코더, 자성 유체씰의 적층 구조로 변경 구성된다.
도 4a 및 4b는 도 1에 있는 T축 모듈을 설명하기 위한 사시도 및 단면도이다.
도 4a 및 4b를 참조하면, T축 모듈(170)은 중심 회전축(171), 자성유체씰(172) 및 모터(173)를 포함하여 구성된다.
중심 회전축(171)은 커넥팅 인클로징 모듈(150)를 회전 가능하게 결합한다. 자성유체씰(172)는 중심 회전축(171)의 외부를 감싸 그 내부를 진공으로 격리시킨다. 모터(173)는 중심 회전축(171)의 하부 바깥 둘레(174)를 따라 배치되어 중심 회전축(171)에 회전력을 제공한다. 여기에서, 모터(173)는 직접구동(DD) 모터로서 중심 회전축 하부 바깥 둘레(174)의 안쪽에 배치된 하부 회전모터부재(173a) 및 바깥에 배치된 하부 고정모터부재(173b)로 구성된다. 하부 회전모터부재(173a)와 하부 고정모터부재(173b)는 각각 직접구동 모터의 회전측과 고정측에 해당할 수 있다. T측 모듈(170)은 직접구동 모터(173)를 중심 회전축(171)의 하부에 배치하여 중심 회전축(171)에 회전력을 제공할 수 있다.
T축 모듈(170)은 모터(173)의 하부에 하부 엔코더(175)를 포함한다. 여기에서, T축 모듈(170)은 하부에서 상부로 하부 엔코더(175), 모터(173), 자성 유체씰(172)의 순으로 적층되는 구조로 구성되어 부피를 줄일 수 있다.
T측 모듈(170)은 커넥팅 인클로징 모듈(150)을 지지하기 위해 원주의 바깥으로 돌출된 원형 지지 플레이트(176) 및 원주를 통해 자성유체씰(172)을 감싸는 인클로저(177)를 포함한다. T축 모듈(170)은 중심 회전축(171)의 내부에 대기를 형성한 대기 관통공(178)을 포함하고, 대기 관통공(178)은 모터(173)의 중심까지 연장 형성된다.
다시, 도 1 및 도 2로 돌아가서, R축 모듈(130) 및 T축 모듈(170)은 서로 독립적으로 구동된다. T축 모듈(170)은 R축 모듈(130)을 회전시켜 핸드(111)의 방향을 설정하도록 동작한다. R축 모듈(130)은 핸드(111)의 전후 동작을 수행하도록 동작한다.
도 5는 도 1에 있는 R축 모듈의 진공 환경을 설명하기 위한 도면이다.
도 5를 참조하면, R축 모듈(130)은 중심축(131)의 바깥 둘레를 따라 결합되는 회전모터부재(132)와 고정모터부재(133) 사이에 그리고 중심축(131)의 단부에 결합되는 회전측 엔코더(135)와 고정측 엔코더(136) 사이에 진공차단박막(133,137)을 배치하여 그 내부를 진공으로 격리시킬 수 있다. R축 모듈(130)은 진공차단박막(133,137)의 안쪽에 배치된 중심축(131), 회전모터부재(132), 회전측 엔코더(135)를 진공 환경에 둘 수 있고 고정모터부재(133)와 고정측 엔코더(136)를 대기 환경에 둘 수 있다. R축 모듈(130)은 진공차단박막(133,137)을 통해 진공과 대기 환경을 나눌 수 있다.
도 6은 도 1에 있는 T축 모듈의 진공 환경을 설명하기 위한 도면이다.
도 6을 참조하면, T축 모듈(170)은 커넥팅 인클로징 모듈(150)를 회전 가능하게 결합하는 중심 회전축(171)의 외부를 감싸는 형태로 자성유체씰(172)을 배치하여 중심 회전축(171)의 외부를 진공 상태로 밀봉시킬 수 있다. T축 모듈(170)은 중심 회전축(171)의 내부에는 대기 관통공(178)을 형성하여 중심 회전축(171)의 내부를 대기 상태로 유지시킬 수 있다. T축 모듈(170)은 대기 관통공(178)이 모터(173)의 중심까지 연장 형성되어 모터(173)와 엔코더(175)를 대기 환경에 두어 진공상태를 유지하는 면적을 최소화할 수 있다.
일 실시예에 따른 직접구동 모터 기반의 웨이퍼 이송 로봇 장치는 직접구동(DD) 모터를 사용하여 부품을 간소화하고 진동을 저감할 수 있으며 이송 작업의 정밀도를 향상시킬 수 있다.
일 실시예에 따른 직접구동 모터 기반의 웨이퍼 이송 로봇 장치는 R축에 진공 차단 박막을 사용하고 T축에 모터, 엔코더, 자성유체씰의 적층 구조로 전체적인 무게와 부피를 줄이고 진공을 유지하는 공간을 최소화하여 유지보수비용을 절약할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
[부호의 설명]
100: 직접구동 모터 기반의 웨이퍼 이송 로봇 장치
110: 핸드 모듈
111: 핸드
113: 핸드암
115: 제1 링크암
117: 제2 링크암
119: 보조 중심축
130: R축 모듈
131: 중심축
132: 회전모터부재
133: 고정모터부재
134: 원통형 진공차단박막
135: 회전측 엔코더
136: 고정측 엔코더
137: 시트형 진공차단박막
150: 커넥팅 인클로징 모듈
170: T축 모듈
171: 중심 회전축
172: 자성유체씰
173: 모터
173a: 하부 회전모터부재
173b: 하부 고정모터부재
174: 중심 회전축 하부 바깥 둘레
175: 하부 엔코더
176: 원형 지지 플레이트
177: 인클로저
178: 대기 관통공
200: 웨이퍼

Claims (8)

  1. 일면에서 웨어퍼를 로딩할 수 있는 핸드 및 상기 핸드와 결합되어 상기 웨이퍼를 이송하는 핸드암(hand arm)을 포함하는 핸드 모듈;
    일단이 상기 핸드암과 결합된 중심축, 상기 중심축의 바깥 둘레를 따라 결합된 회전모터부재, 상기 회전모터부재의 바깥 둘레에 고정된 고정모터부재 및 상기 회전모터부재와 상기 고정모터부재 사이에 배치되어 그 내부를 진공으로 격리시키는 원통형 진공차단박막을 포함하고, 상기 회전모터부재를 통해 상기 핸드 모듈에 동력을 제공하는 R축 모듈;
    일단은 상기 R축 모듈을 결합하는 커넥팅 인클로징 모듈; 및
    상기 커넥팅 인클로징 모듈의 다른 일단에 상기 커넥팅 인클로징 모듈을 회전 가능하게 결합한 중심 회전축, 상기 중심 회전축의 외부를 감싼 자성유체씰 및 상기 중심 회전축의 하부 바깥 둘레를 따라 배치되어 상기 중심 회전축에 회전력을 제공하는 모터를 포함하는 T축 모듈을 포함하는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치.
  2. 제1항에 있어서, 상기 핸드 모듈은
    제1 및 제2 링크암들; 및
    상기 제1 링크암을 통해 상기 중심축의 일단을 결합하고 상기 제2 링크암을 통해 상기 핸드암을 결합하여, 상기 핸드암에 상기 중심축의 회전력을 제공하는 보조 중심축을 더 포함하는 것을 특징으로 하는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치.
  3. 제1항에 있어서, 상기 R축 모듈은
    상기 회전모터부재 및 상기 고정모터부재를 통해 직접구동모터를 구현하고, 상기 직접구동모터를 복수로 나란하게 배치하여 상기 핸드 모듈에 상기 동력을 제공하는 것을 특징으로 하는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치.
  4. 제1항에 있어서, 상기 R축 모듈은
    상기 중심축의 다른 일단과 결합된 회전측 엔코더;
    상기 회전측 엔코더와 대향하게 배치된 고정측 엔코더; 및
    상기 회전축 엔코더 및 상기 고정측 엔코더 사이에 배치된 시트형 진공차단박막을 더 포함하는 것을 특징으로 하는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치.
  5. 제1항에 있어서, 상기 T축 모듈은
    상기 커넥팅 인클로징 모듈을 지지하기 위해 원주의 바깥으로 돌출된 원형 지지 플레이트를 포함하고 상기 원주를 통해 상기 자성유체씰을 감싸는 인클로저를 더 포함하는 것을 특징으로 하는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치.
  6. 제1항에 있어서, 상기 T축 모듈은
    상기 중심 회전축의 내부에 대기를 형성한 대기 관통공을 더 포함하는 것을 특징으로 하는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치.
  7. 제6항에 있어서, 상기 T축 모듈은
    상기 모터의 중심까지 상기 대기 관통공을 연장하고, 상기 모터를 직접구동모터로서 상기 하부 바깥 둘레의 안쪽에 배치된 하부 회전모터부재 및 바깥에 배치된 하부 고정모터부재로 구성하는 것을 특징으로 하는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치.
  8. 제1항에 있어서, 상기 R축 모듈 및 T축 모듈은
    서로 독립적으로 구동되고
    상기 T축 모듈은 상기 R축 모듈을 회전시켜 상기 핸드의 방향을 설정하도록 동작하며
    상기 R축 모듈은 상기 핸드의 전후 동작을 수행하도록 동작하는 것을 특징으로 하는 직접구동 모터 기반의 웨이퍼 이송 로봇 장치.
PCT/KR2021/015512 2021-10-29 2021-11-01 직접구동 모터 기반의 웨이퍼 이송 로봇 장치 WO2023074971A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0146699 2021-10-29
KR1020210146699A KR102552870B1 (ko) 2021-10-29 2021-10-29 직접구동 모터 기반의 웨이퍼 이송 로봇 장치

Publications (1)

Publication Number Publication Date
WO2023074971A1 true WO2023074971A1 (ko) 2023-05-04

Family

ID=86146138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015512 WO2023074971A1 (ko) 2021-10-29 2021-11-01 직접구동 모터 기반의 웨이퍼 이송 로봇 장치

Country Status (4)

Country Link
US (1) US20230133347A1 (ko)
KR (1) KR102552870B1 (ko)
CN (1) CN116061200A (ko)
WO (1) WO2023074971A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195923A (ja) * 1998-12-28 2000-07-14 Hitachi Ltd 搬送用ロボット、搬送装置、真空チャンバ内搬送装置およびプロセス処理装置
JP2007325433A (ja) * 2006-06-01 2007-12-13 Yaskawa Electric Corp 真空用ロボットおよびそのモータ
JP4456725B2 (ja) * 2000-05-24 2010-04-28 株式会社ダイヘン 搬送装置
US20120128450A1 (en) * 2010-10-08 2012-05-24 Brooks Automation, Inc. Coaxial drive vacuum robot
US20140150592A1 (en) * 2012-11-30 2014-06-05 Applied Materials, Inc. Motor modules, multi-axis motor drive assemblies, multi-axis robot apparatus, and electronic device manufacturing systems and methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3726978B2 (ja) * 1996-10-28 2005-12-14 株式会社安川電機 多関節ロボット
KR20100124569A (ko) * 2009-05-19 2010-11-29 (주)로봇앤드디자인 무한회전기능을 갖는 웨이퍼 이송장치
KR101382145B1 (ko) 2012-10-22 2014-04-17 주식회사 나온테크 이송 진공로봇

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195923A (ja) * 1998-12-28 2000-07-14 Hitachi Ltd 搬送用ロボット、搬送装置、真空チャンバ内搬送装置およびプロセス処理装置
JP4456725B2 (ja) * 2000-05-24 2010-04-28 株式会社ダイヘン 搬送装置
JP2007325433A (ja) * 2006-06-01 2007-12-13 Yaskawa Electric Corp 真空用ロボットおよびそのモータ
US20120128450A1 (en) * 2010-10-08 2012-05-24 Brooks Automation, Inc. Coaxial drive vacuum robot
US20140150592A1 (en) * 2012-11-30 2014-06-05 Applied Materials, Inc. Motor modules, multi-axis motor drive assemblies, multi-axis robot apparatus, and electronic device manufacturing systems and methods

Also Published As

Publication number Publication date
CN116061200A (zh) 2023-05-05
KR20230061938A (ko) 2023-05-09
KR102552870B1 (ko) 2023-07-10
US20230133347A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
CN104823272B (zh) 具有非等长前臂的多轴机械手设备、电子装置制造系统、及用于在电子装置制造中传送基板的方法
JP6466386B2 (ja) チャンバ壁に一体化されたモータを伴う基板処理装置
WO2012057410A1 (ko) 동력전달장치
KR101041685B1 (ko) 다축 진공 모터 조립체
JP5134182B2 (ja) 独立多エンドエフェクタを備えた基板移送装置
JP2020103033A (ja) 密封型ロボット駆動部
US9245783B2 (en) Vacuum robot with linear translation carriage
WO2013039281A1 (en) Manipulator with weight compensation mechanism and face robot using the same
US20080019816A1 (en) Drive Source And Transportation Robot
WO2021177604A1 (ko) 로봇 관절구조 및 이를 포함하는 로봇손
WO2020032390A1 (ko) 다관절 로봇의 케이블 가이드 장치
WO2023074971A1 (ko) 직접구동 모터 기반의 웨이퍼 이송 로봇 장치
WO2017018592A1 (ko) 하이브리드 얼라인먼트
WO2018004039A1 (ko) 2축 구동 가능한 안테나가 장착되는 페데스탈 장치
WO2023204542A1 (ko) 형태가 변형되는 휠 조립체
WO2022173235A1 (ko) 싸이클로이드 감속기
WO2016144015A1 (ko) 동력전달장치
WO2009134006A1 (ko) 독립적으로 구동하는 적층식 이중 아암 로봇
WO2016125994A1 (ko) 동력전달장치
WO2011049282A1 (ko) 영구자석 워크홀딩 장치
WO2019235869A1 (ko) 정보 출력 장치
WO2024122730A1 (ko) 웨어러블 로봇용 케이블 구동 회전 관절 장치
WO2018012725A1 (ko) 모듈 베어링 및 그를 구비하는 동력전달장치
WO2022270888A1 (ko) 부싱용 회전장치
WO2023214837A1 (ko) 로봇용 관절 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962595

Country of ref document: EP

Kind code of ref document: A1