WO2023074223A1 - 被めっき物中の銅結晶粒を粗大化する方法および銅めっき膜中の銅結晶粒を粗大化した銅めっき膜 - Google Patents
被めっき物中の銅結晶粒を粗大化する方法および銅めっき膜中の銅結晶粒を粗大化した銅めっき膜 Download PDFInfo
- Publication number
- WO2023074223A1 WO2023074223A1 PCT/JP2022/035799 JP2022035799W WO2023074223A1 WO 2023074223 A1 WO2023074223 A1 WO 2023074223A1 JP 2022035799 W JP2022035799 W JP 2022035799W WO 2023074223 A1 WO2023074223 A1 WO 2023074223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- plated
- crystal grains
- copper plating
- coarsening
- Prior art date
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 111
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 110
- 239000010949 copper Substances 0.000 title claims abstract description 110
- 239000013078 crystal Substances 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000012528 membrane Substances 0.000 title abstract 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 60
- 238000007747 plating Methods 0.000 claims abstract description 59
- 229910000365 copper sulfate Inorganic materials 0.000 claims abstract description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 14
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims description 31
- 238000009713 electroplating Methods 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical group C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulfur dioxide Inorganic materials O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 241000467686 Eschscholzia lobbii Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- -1 copper sulfate anhydride Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
Definitions
- the present invention relates to a method for coarsening copper crystal grains in an object to be plated and a copper plating film in which the copper crystal grains in the copper plating film are coarsened.
- the driving force for grain growth is the grain boundary energy, and since the grain boundary area in the material decreases due to the coarsening of the crystal grain size, the grain boundary energy corresponding to the reduced area serves as the driving force for grain growth.
- Patent Document 1 discloses that the concentration of chlorine in a compound containing chlorine and oxygen present as impurities at the grain boundaries is set to 2 atom% or less to reduce the presence of impurities. A method of increasing the crystal grain size of the wiring layer to lower the resistivity and improve the electromigration resistance is described. In addition, in Patent Document 2, uniform grain coarsening is possible by applying uniform strain due to plastic deformation through the steps of primary cold wire drawing, intermediate annealing, secondary cold wire drawing, and final annealing. method is described.
- Patent Document 1 has a narrow application range because it is necessary to use high-purity raw materials. There is a problem that it is difficult to adjust the additives to express special performance such as filling performance and film thickness uniformity performance. Moreover, since Patent Document 2 involves plastic deformation, there is a problem that it is difficult to apply to semiconductor integrated circuits and substrates.
- an object of the present invention is to provide a technique that allows coarsening of copper crystal grains with a simple operation.
- the present inventors have found that by manipulating the concentration of sulfuric acid in a conventional copper sulfate plating solution, coarsening of copper crystal grains can be easily achieved at a lower heat treatment temperature than in the past. We found that it can be done, and completed the present invention. In addition, the present inventors found that by the above operation, the copper crystal grains in the copper plating film obtained by copper plating are large, and a copper plating film preferentially oriented in a specific crystal plane can be obtained. completed.
- the present invention provides the following steps (a) and (b) (a) A step of electroplating an object to be plated with an electrolytic copper plating solution containing sulfuric acid, copper sulfate, chloride ions, brightener, and leveler and having a sulfuric acid content of 200 g/L or more (b) Electroplating A method for coarsening copper crystal grains in an object to be plated, characterized by including a step of heat-treating the object to be plated at 400° C. or less.
- the present invention is a copper plating film characterized by having copper crystal grains of 5 ⁇ m or more in the copper plating film, and having crystal planes preferentially oriented to (200).
- the method of the present invention for coarsening the copper crystal grains in the object to be plated is easy to implement because it is a simple method of manipulating the concentration of sulfuric acid.
- the object to be plated in which the copper crystal grains in the object to be plated of the present invention are coarsened has a crystal plane preferentially oriented in (200), and the copper crystal grains are as large as 5 ⁇ m or more and have low electrical resistance. It can be used for wiring, copper circuits, and the like.
- the object to be plated of the present invention has high thermal conductivity and can be used as a heat dissipation material for electronic parts.
- FIG. 1 shows an FIB-SIM image of the copper plating film obtained in Example 1.
- FIG. 2 shows the calculation result of the preferential orientation of a copper plating film obtained with an electrolytic copper plating solution containing 50 g/L of copper sulfate, 300 g/L of sulfuric acid and 40 g/L of chloride ions.
- 3 shows an FIB-SIM image of the copper plating film obtained in Example 2.
- FIG. (The magnification is the same at 5000. The scale bar in the figure indicates 5 ⁇ m.) 4 shows an FIB-SIM image of the copper plating film obtained in Example 3.
- FIG. 1 shows an FIB-SIM image of the copper plating film obtained in Example 1.
- FIG. 2 shows the calculation result of the preferential orientation of a copper plating film obtained with an electrolytic copper plating solution containing 50 g/L of copper sulfate, 300 g/L of sulfuric acid and 40 g/L of chloride ions.
- 3 shows an
- FIG. 5 shows an FIB-SIM image of the copper plating film obtained in Example 4.
- FIG. The magnification is 5000.
- the scale bar in the figure indicates 5 ⁇ m.
- the method of the present invention for coarsening copper crystal grains in an object to be plated includes the following steps (a) and (b), preferably in this order: be.
- steps (a) and (b) preferably in this order: be.
- (a) A step of electroplating an object to be plated with an electrolytic copper plating solution containing sulfuric acid, copper sulfate, chloride ions, brightener, and leveler and having a sulfuric acid content of 200 g/L or more
- Electroplating A process of heat-treating the object to be plated at 400 ° C or less
- the object to be plated used in the step (a) of the method of the present invention is not particularly limited as long as it can be plated with copper. resins and other metals), cooking utensil materials such as frying pans for the purpose of thermal conductivity, and the like. Among these, electronic parts, copper foil, and the like are preferable.
- the object to be plated may be subjected to pretreatments such as cleaning, moistening treatment, physical processing, heat treatment, and rust prevention before the method of the present invention is performed.
- the electrolytic copper plating solution used in step (a) of the method of the present invention contains sulfuric acid, copper sulfate, chloride ions, brightener, and leveler.
- the content of sulfuric acid the lower limit is 200 g/L or more, preferably 250 g/L or more.
- the upper limit of the sulfuric acid content is not particularly limited, but is preferably less than 500 g/L, more preferably 450 g/L or less, and particularly preferably 400 g/L or less.
- the sulfuric acid content of the electrolytic copper plating solution ranges from 200 to less than 500 g/L, preferably from 200 to 450 g/L, preferably from 200 to 400 g/L, and preferably from 250 to 400 g/L.
- the concentration of copper sulfate in the electrolytic copper plating solution is not particularly limited, it is, for example, 10 to 300 g/L, preferably 30 to 250 g/L when copper sulfate pentahydrate is used as copper sulfate.
- the concentration may be converted from the concentration of copper sulfate pentahydrate.
- the chloride ion concentration in the electrolytic copper plating solution is not particularly limited, it is, for example, 1 to 120 mg/L, preferably 5 to 80 mg/L.
- the chloride ion source is not particularly limited, but examples thereof include hydrochloric acid, sodium chloride and the like. Among these, hydrochloric acid is preferred.
- the brightener concentration in the electrolytic copper plating solution is not particularly limited, but is, for example, 0.1 to 1000 mg/L, preferably 0.5 to 500 mg/L.
- the type of brightener is not particularly limited, but examples thereof include bis-(3-sodium sulfopropyl) disulfide (SPS).
- the leveler concentration in the electrolytic copper plating solution is not particularly limited, it is, for example, 0.1 to 10000 mg/L, preferably 1 to 1000 mg/L.
- the type of leveler is not particularly limited, for example, a reaction product of a compound containing an amino group in the molecule and a compound containing an epoxy group in the molecule described in Japanese Patent No. 6782477 in the presence of an acid. , preferably the reaction product described in Production Example 14, the reaction compound of a compound having three or more glycidyl ether groups and a heterocyclic compound described in Japanese Patent No.
- Crystal grains can be coarsened at a sulfuric acid concentration of 200 to 450 g/L and a heat treatment temperature of 300 to 350°C.
- a reaction compound of a compound having three or more glycidyl ether groups and a heterocyclic compound described in Patent No. 5724068 or a diallyldialkylammonium alkylsulfate-(meth)acrylamides described in Patent No. 4895734 When a sulfur dioxide copolymer is used, copper crystal grains can be coarsened at a sulfuric acid concentration of 400 to 450 g/L and a heat treatment temperature of 350 to 400.degree.
- the electrolytic copper plating solution may further contain a carrier.
- the carrier concentration is not particularly limited, it is, for example, 0.1 to 10000 mg/L, preferably 1 to 1000 mg/L.
- the type of carrier is not particularly limited, but examples thereof include polyethylene glycol (molecular weight 100-20000). Among these, polyethylene glycol (molecular weight 2,000 to 10,000) is preferred.
- Plating conditions in the method of the present invention are not particularly limited. Electricity is applied in the range of 0.1 to 30 A/dm 2 while the liquid is stirred by stirring, jet stirring, paddle stirring, or the like to deposit copper on the object to be plated.
- step (a) of the method of the present invention After electroplating the object to be plated in the step (a) of the method of the present invention, for example, rust prevention, physical processing, etc. may be performed.
- the object to be electroplated is heat-treated at 400°C or lower.
- the heating temperature is preferably 300°C or higher, more preferably 300°C or higher and 400°C or lower, and particularly preferably 300 to 350°C.
- the heating time is not particularly limited, but is, for example, 1 to 180 minutes, preferably 10 to 120 minutes.
- This heat treatment is not particularly limited.
- an object to be plated in which the copper crystal grains in the copper plating film are coarsened can be obtained.
- the coarsening of the copper crystal grains in the object to be plated means that the crystal grain size is 5 ⁇ m or more. That is, the stabilized copper crystal grains appearing near room temperature have a size of 5 ⁇ m or less, and the method of the present invention can obtain a plated object having a copper crystal grain size of 5 ⁇ m or more. Moreover, this can be confirmed by acquiring a SIM image of a sample subjected to FIB (focused ion beam) processing.
- FIB focused ion beam
- the obtained copper-plated film has copper crystal grains of 5 ⁇ m or more, preferably 5 to 100 ⁇ m, and the crystal plane has a preferential orientation of (200), more preferably 90% or more of which is (200) orientation.
- the object to be plated has a maximum stress of 5 to 15 kgf/mm 2 and a hardness of 30 to 70 HV.
- a copper crystal grain of 5 ⁇ m or more means, for example, a copper crystal grain of a copper plating film observed by FIB-SIM observation with one side of the crystal grain boundary being clearly 5 ⁇ m or more.
- the orientation of the crystal plane was determined by calculating from the results of X-ray diffraction obtained by an X-ray diffraction apparatus using Wilson's equation (Koichiro Inoue et al., "Surface Morphology and Orientation of Electrodeposited Fe Films", Journal of the Japan Institute of Metals and Materials). , Vol. 65, No. 4 (2001) 229-235).
- the preferential orientation of the crystal plane to (200) is defined as the preferential orientation plane (preferred orientation) having the highest orientation coefficient among values greater than 1 calculated by Wilson's formula. Further, 90% or more of the orientation is (200) orientation means that the ratio of preferential orientation in the orientation coefficients is 90% or more of all the orientation coefficients.
- the maximum stress is a value measured with a tensile tester (precision universal testing machine). Hardness is a value measured with a Vickers hardness tester.
- the copper crystal grains in the object to be plated of the present invention are coarsened, it can be used for applications such as wiring, circuits, and heat dissipation materials.
- Example 1 Coarseness of copper grains In the electrolytic copper plating solution having the following basic composition, the concentration of sulfuric acid was changed in the range of 100 g/L to 500 g/L, and the current density was 1.5 A/dm 2 and the plating time was 180 minutes. ) was electroplated with copper (thickness: 60 ⁇ m). Next, the copper plating film is peeled off from the stainless steel (SUS304). The peeled copper plating film was placed in a heating furnace and heat-treated at 100° C. to 400° C. for 60 minutes in an inert gas (nitrogen) atmosphere. FIB-SIM (Hitachi High Tech: FB-2100) observation was performed on the copper plating film after heat treatment. The results are shown in FIG.
- FIG. 2 shows the calculation result of the copper plating film after the heat treatment obtained with the electrolytic copper plating solution containing 300 g/L of sulfuric acid and 40 g/L of chloride ions).
- X-ray diffraction conditions > X-ray source: CuK ⁇ ray X-ray voltage: 40 kV X-ray current: 30mA Diffraction angle: 40 to 150 degrees Measurement speed: 2 degrees/min Specimen size: 50 x 50 mm Copper film thickness: 60 ⁇ m
- Example 2 Coarseness of copper grains: In the electrolytic copper plating solution having the following basic composition, the concentration of copper sulfate pentahydrate was changed in the range of 50 g/L to 200 g/L, the current density was 1.5 A/dm 2 , and the plating time was 180 minutes. , copper electroplating was performed on stainless steel (SUS304) (thickness: 60 ⁇ m). Next, the copper plating film is peeled off from the stainless steel (SUS304). The peeled copper plating film was placed in a heating furnace and heat-treated at 100° C. to 400° C. for 60 minutes in an inert gas (nitrogen) atmosphere. FIB-SIM observation was performed on the copper plating film after the heat treatment. The results are shown in FIG. In addition, the preferential orientation of crystal planes was calculated in the same manner as in Example 1 for the copper plating film after the heat treatment.
- Example 3 Coarseness of copper grains Electrolytic copper plating is performed on stainless steel (SUS304) under the conditions of a current density of 1.5 A/dm 2 and a plating time of 180 minutes using levelers A to C in the electrolytic copper plating solution having the following basic composition. (film thickness 60 ⁇ m). Next, the copper plating film is peeled off from the stainless steel (SUS304). The peeled copper plating film was placed in a heating furnace and heat-treated at a predetermined temperature for 60 minutes in an inert gas (nitrogen) atmosphere. FIB-SIM observation was performed on the copper plating film after the heat treatment. The results are shown in FIG. In addition, the preferential orientation of crystal planes was calculated in the same manner as in Example 1 for the copper plating film after the heat treatment.
- Leveler> Leveler 100 mg/L described in Production Example 14 of Patent No. 6782477 (The preparation method is according to the method described in the same specification)
- Leveler B Leveler 100 mg/L described in Example 1 of Japanese Patent No. 5724068 (The preparation method is according to the method described in the same specification)
- Leveler C Leveler 100 mg/L described in Example 1 of Japanese Patent No. 4895734 (The preparation method is according to the method described in the same specification)
- the crystal grains were coarsened by heat treatment at 400°C or less in all the levelers used in Example 3.
- the coarsened copper crystal grains clearly had a crystal grain size of 5 ⁇ m or more with one side of the crystal grain boundary being clearly 5 ⁇ m or more.
- the crystal planes of the coarsened copper crystal grains were preferentially oriented in the (200) plane.
- Example 4 Coarseness of copper grains: After forming a thermal oxide film on a silicon single crystal, a titanium film of 100 nm and a copper film of 400 nm were formed by sputtering. Copper electroplating was performed under the conditions of a plating time of 0.5 minutes (film thickness 5 ⁇ m). Next, this object to be plated was placed in a heating furnace and heat-treated at 350° C. for 60 minutes in an inert gas (nitrogen) atmosphere. FIB-SIM observation was performed on the object to be plated after heat treatment. The results are shown in FIG. In addition, the preferential orientation of crystal planes of the object to be plated after heat treatment was calculated in the same manner as in Example 1.
- the copper crystal grains in the object to be plated were coarsened by heat treatment at 400°C or less on the material on which copper was deposited by sputtering used in Example 4.
- the coarsened copper crystal grains clearly had a crystal grain size of 5 ⁇ m or more with one side of the crystal grain boundary being clearly 5 ⁇ m or more.
- the crystal planes of the coarsened copper crystal grains were preferentially oriented in the (200) plane.
- Test example 1 Measurement of physical properties: For the copper plating film after heat treatment (100 ° C., 300 ° C., 350 ° C.) obtained with the electrolytic copper plating solution of 50 g / L of copper sulfate, 300 g / L of sulfuric acid, and 40 g / L of chloride ions in Example 1, stress (Tensile test method) and hardness were measured. The results are shown in Tables 1 and 2.
- the stress was 5 to 15 kgf/mm 2 and the hardness was 30 to 70 HV when the copper grain size was 5 ⁇ m or more and the crystal plane was preferentially oriented to (200).
- the method for coarsening the copper crystal grains in the object to be plated and the object to be plated in which the copper crystal grains in the object to be plated according to the present invention can be used for wiring, circuits, heat dissipation materials, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
(a)被めっき物を、硫酸、硫酸銅、塩化物イオン、ブライトナー、レベラーを含有し、硫酸が200g/L以上である電解銅めっき液で電気めっきを行う工程
(b)電気めっきを行った被めっき物を400℃以下で加熱処理する工程
を含むことを特徴とする被めっき物中の銅結晶粒を粗大化する方法である。
(a)被めっき物を、硫酸、硫酸銅、塩化物イオン、ブライトナー、レベラーを含有し、硫酸が200g/L以上である電解銅めっき液で電気めっきを行う工程
(b)電気めっきを行った被めっき物を400℃以下で加熱処理する工程
銅結晶粒の粗大化:
以下の基本組成の電解銅めっき液において、100g/L~500g/Lの範囲で硫酸濃度を変化させ、1.5A/dm2の電流密度、180分のめっき時間の条件で、ステンレス鋼(SUS304)上に電気銅めっきを行った(膜厚60μm)。次に、ステンレス鋼(SUS304)上から銅めっき膜を剥離する。剥離した銅めっき膜を加熱炉に入れ、不活性ガス(窒素)雰囲気下で100℃~400℃の範囲で60分間加熱処理を行った。加熱処理後の銅めっき膜についてFIB-SIM(日立ハイテク:FB-2100)観察を行った。その結果を図1に示す。また、加熱処理後の銅めっき膜についてX線回折装置(島津製作所:XRD-6100)で解析し、ウィルソンの式から結晶面の優先配向を算出した(結果の一例として、硫酸銅50g/L、硫酸300g/L、塩化物イオン40g/Lの電気銅めっき液で得られた加熱処理後の銅めっき膜の算出結果を図2に示す)。
・硫酸:100g/L~500g/L
・硫酸銅五水和物:50g/L
・塩化物イオン:40mg/L
・キャリアー:PEG10000 0.5g/L
・ブライトナー:SPS 10mg/L
・レベラー:特許第6782477号の製造例14に記載のレベラー 100mg/L
(調製方法は同明細書に記載の方法による)
X線源:CuKα線
X線電圧:40kV
X線電流:30mA
回析角度:40~150度
測定速度:2度/分
試験片寸法:50×50mm
銅膜厚:60μm
銅結晶粒の粗大化:
以下の基本組成の電解銅めっき液において、50g/L~200g/Lの範囲で硫酸銅五水和物濃度を変化させ、1.5A/dm2の電流密度、180分のめっき時間の条件で、ステンレス鋼(SUS304)上に電気銅めっきを行った(膜厚60μm)。次に、ステンレス鋼(SUS304)上から銅めっき膜を剥離する。剥離した銅めっき膜を加熱炉に入れ、不活性ガス(窒素)雰囲気下で100℃~400℃の範囲で60分間加熱処理を行った。加熱処理後の銅めっき膜についてFIB-SIM観察を行った。その結果を図3に示す。また、加熱処理後の銅めっき膜ついて実施例1と同様に結晶面の優先配向を算出した。
・硫酸:200g/L
・硫酸銅五水和物:50~200g/L
・塩化物イオン:40mg/L
・キャリアー:PEG10000 0.5g/L
・ブライトナー:SPS 10mg/L
・レベラー:特許第6782477号の製造例14に記載のレベラー 100mg/L
(調製方法は同明細書に記載の方法による)
銅結晶粒の粗大化:
以下の基本組成の電解銅めっき液において、レベラーA~Cをそれぞれ用いて、1.5A/dm2の電流密度、180分のめっき時間の条件で、ステンレス鋼(SUS304)上に電気銅めっきを行った(膜厚60μm)。次に、ステンレス鋼(SUS304)上から銅めっき膜を剥離する。剥離した銅めっき膜を加熱炉に入れ、不活性ガス(窒素)雰囲気下、所定の温度で60分間加熱処理を行った。加熱処理後の銅めっき膜についてFIB-SIM観察を行った。その結果を図4に示す。また、加熱処理後の銅めっき膜について実施例1と同様に結晶面の優先配向を算出した。
・硫酸:400g/L
・硫酸銅五水和物:50g/L
・塩化物イオン:40mg/L
・キャリアー:PEG10000 0.5g/L
・ブライトナー:SPS 10mg/L
・レベラーA:特許第6782477号の製造例14に記載のレベラー 100mg/L
(調製方法は同明細書に記載の方法による)
・レベラーB:特許第5724068号の実施例1に記載のレベラー 100mg/L
(調製方法は同明細書に記載の方法による)
・レベラーC:特許第4895734号の実施例1に記載のレベラー 100mg/L
(調製方法は同明細書に記載の方法による)
銅結晶粒の粗大化:
シリコン単結晶に熱酸化膜を形成した後、スパッタリングで100nmのチタンと400nmの銅を成膜したものに、以下の基本組成の電解銅めっき液において、1.0A/dm2の電流密度、22.5分のめっき時間の条件で、電気銅めっきを行った(膜厚5μm)。次に、この被めっき物を加熱炉に入れ、不活性ガス(窒素)雰囲気下、350℃で60分間加熱処理を行った。加熱処理後の被めっき物についてFIB-SIM観察を行った。その結果を図5に示す。また、加熱処理後の被めっき物について実施例1と同様に結晶面の優先配向を算出した。
・硫酸:400g/L
・硫酸銅五水和物:50g/L
・塩化物イオン:40mg/L
・キャリアー:PEG10000 0.5g/L
・ブライトナー:SPS 10mg/L
・レベラー:特許第6782477号の製造例14に記載のレベラー 100mg/L
(調製方法は同明細書に記載の方法による)
物性の測定:
実施例1の硫酸銅50g/L、硫酸300g/L、塩化物イオン40g/Lの電気銅めっき液で得られた加熱処理後(100℃、300℃、350℃)の銅めっき膜について、応力(引張試験法)と硬度の測定を行った。その結果を表1および2に示す。
精密万能試験機:オートグラフAGS-X,10N-10kN(島津製作所)
引張速度:10mm/min
引張荷重:50Kgf/Full Scale
熱処理:120℃-60min.
JIS規格:Z-2241(1980)に準拠
試験片:JIS規格:K-7162-1Bに準拠
ビッカース硬度計:HM-200(Mitutoyo)
試験力:0.01kgf
負荷時間:4sec.
保持時間:15sec.
除荷時間:4sec.
接近速度:60μm/sec.
試験片寸法:40×15mm
銅膜厚:60μm
JIS規格:Z-2244(2009)
Claims (4)
- 以下の工程(a)および(b)
(a)被めっき物を、硫酸、硫酸銅、塩化物イオン、ブライトナー、レベラーを含有し、硫酸が200g/L以上である電解銅めっき液で電気めっきを行う工程
(b)電気めっきを行った被めっき物を400℃以下で加熱処理する工程
を含むことを特徴とする被めっき物中の銅結晶粒を粗大化する方法。 - 工程(b)の加熱処理が300℃以上である請求項1記載の被めっき物中の銅結晶粒を粗大化する方法。
- 工程(a)の硫酸が500g/L未満である請求項1または2記載の被めっき物中の銅結晶粒を粗大化する方法。
- 銅めっき膜中の銅結晶粒が5μm以上であり、結晶面が(200)に優先配向していることを特徴とする銅めっき膜。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247006664A KR20240033129A (ko) | 2021-10-26 | 2022-09-27 | 피도금물 중의 구리 결정립을 조대화하는 방법 및 구리 도금막 중의 구리 결정립을 조대화한 구리 도금막 |
JP2023556213A JPWO2023074223A1 (ja) | 2021-10-26 | 2022-09-27 | |
US18/688,551 US20240337039A1 (en) | 2021-10-26 | 2022-09-27 | Method for coarsening copper crystal grains in objects to be plated and copper-plated membrane having coarsened copper crystal grains in copper-plated membrane |
CN202280061334.2A CN117999383A (zh) | 2021-10-26 | 2022-09-27 | 使被镀物中的铜晶粒粗大化的方法和使铜镀膜中的铜晶粒粗大化的铜镀膜 |
EP22886556.4A EP4424884A1 (en) | 2021-10-26 | 2022-09-27 | Method for coarsening copper crystal grains in objects to be plated and copper-plated membrane having coarsened copper crystal grains in copper-plated membrane |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-174518 | 2021-10-26 | ||
JP2021174518 | 2021-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023074223A1 true WO2023074223A1 (ja) | 2023-05-04 |
Family
ID=86159743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/035799 WO2023074223A1 (ja) | 2021-10-26 | 2022-09-27 | 被めっき物中の銅結晶粒を粗大化する方法および銅めっき膜中の銅結晶粒を粗大化した銅めっき膜 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240337039A1 (ja) |
EP (1) | EP4424884A1 (ja) |
JP (1) | JPWO2023074223A1 (ja) |
KR (1) | KR20240033129A (ja) |
CN (1) | CN117999383A (ja) |
TW (1) | TW202338162A (ja) |
WO (1) | WO2023074223A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07102392A (ja) * | 1993-10-06 | 1995-04-18 | Sumitomo Metal Mining Co Ltd | 電気銅めっき液及びこれを用いためっき方法 |
JP2008088524A (ja) * | 2006-10-04 | 2008-04-17 | Ebara Udylite Kk | プリント基板用硫酸銅めっき液 |
JP4895734B2 (ja) | 2006-09-08 | 2012-03-14 | 荏原ユージライト株式会社 | めっき用レベリング剤、酸性銅めっき浴用添加剤組成物、酸性銅めっき浴および該めっき浴を用いるめっき方法 |
JP2012127003A (ja) * | 2010-12-15 | 2012-07-05 | Rohm & Haas Electronic Materials Llc | 銅層を均一にする電気めっき方法 |
JP2014222715A (ja) * | 2013-05-13 | 2014-11-27 | 国立大学法人茨城大学 | 半導体集積回路装置及びその製造方法、並びに該半導体集積回路装置に使用する低抵抗率銅配線の探索方法 |
JP5724068B2 (ja) | 2010-04-30 | 2015-05-27 | 株式会社Jcu | 新規化合物およびその利用 |
JP6782477B2 (ja) | 2018-08-28 | 2020-11-11 | 株式会社Jcu | 電気銅めっき浴 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4815878B1 (ja) | 1969-04-02 | 1973-05-17 |
-
2022
- 2022-09-27 US US18/688,551 patent/US20240337039A1/en active Pending
- 2022-09-27 WO PCT/JP2022/035799 patent/WO2023074223A1/ja active Application Filing
- 2022-09-27 KR KR1020247006664A patent/KR20240033129A/ko unknown
- 2022-09-27 EP EP22886556.4A patent/EP4424884A1/en active Pending
- 2022-09-27 JP JP2023556213A patent/JPWO2023074223A1/ja active Pending
- 2022-09-27 CN CN202280061334.2A patent/CN117999383A/zh active Pending
- 2022-10-07 TW TW111138153A patent/TW202338162A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07102392A (ja) * | 1993-10-06 | 1995-04-18 | Sumitomo Metal Mining Co Ltd | 電気銅めっき液及びこれを用いためっき方法 |
JP4895734B2 (ja) | 2006-09-08 | 2012-03-14 | 荏原ユージライト株式会社 | めっき用レベリング剤、酸性銅めっき浴用添加剤組成物、酸性銅めっき浴および該めっき浴を用いるめっき方法 |
JP2008088524A (ja) * | 2006-10-04 | 2008-04-17 | Ebara Udylite Kk | プリント基板用硫酸銅めっき液 |
JP5724068B2 (ja) | 2010-04-30 | 2015-05-27 | 株式会社Jcu | 新規化合物およびその利用 |
JP2012127003A (ja) * | 2010-12-15 | 2012-07-05 | Rohm & Haas Electronic Materials Llc | 銅層を均一にする電気めっき方法 |
JP2014222715A (ja) * | 2013-05-13 | 2014-11-27 | 国立大学法人茨城大学 | 半導体集積回路装置及びその製造方法、並びに該半導体集積回路装置に使用する低抵抗率銅配線の探索方法 |
JP6782477B2 (ja) | 2018-08-28 | 2020-11-11 | 株式会社Jcu | 電気銅めっき浴 |
Non-Patent Citations (1)
Title |
---|
KOICHIRO INOUE ET AL.: "Surface Morphology and Orientation of Electrodeposited Fe Films", JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, vol. 65, no. 4, 2001, pages 229 - 235 |
Also Published As
Publication number | Publication date |
---|---|
EP4424884A1 (en) | 2024-09-04 |
CN117999383A (zh) | 2024-05-07 |
KR20240033129A (ko) | 2024-03-12 |
TW202338162A (zh) | 2023-10-01 |
JPWO2023074223A1 (ja) | 2023-05-04 |
US20240337039A1 (en) | 2024-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100000637A1 (en) | Cu-ni-si system alloy | |
KR100515804B1 (ko) | 고강도 티탄 구리 합금 및 그 제조법 및 그것을 사용한단자ㆍ커넥터 | |
US7946022B2 (en) | Copper alloy for electronic machinery and tools and method of producing the same | |
CN103789571A (zh) | Cu-Ni-Co-Si系铜合金板材及其制造方法 | |
JP2007294923A (ja) | 強度、導電率、曲げ加工性に優れた銅条又は銅箔の製造方法、銅条又は銅箔、並びにそれを用いた電子部品 | |
WO2006019035A1 (ja) | 曲げ加工性を備えた電気電子部品用銅合金板 | |
KR101114116B1 (ko) | 전기전자기기용 동합금 재료 및 전기전자부품 | |
CN107208191B (zh) | 铜合金材料及其制造方法 | |
JP2007092135A (ja) | 強度と曲げ加工性に優れたCu−Ni−Si系合金 | |
CN108728877B (zh) | 铜电镀浴和电镀铜镀覆膜 | |
JP2006291356A (ja) | Ni−Sn−P系銅合金 | |
CN115652134A (zh) | 一种高强度高折弯性铜镍硅合金及其制备方法 | |
CN108796296B (zh) | 一种铜合金及其应用 | |
KR101688300B1 (ko) | 강도, 내열성 및 굽힘 가공성이 우수한 Fe-P계 구리 합금판 | |
JPS63103041A (ja) | 銅、クロム、チタン、珪素の合金の製造方法 | |
WO2023074223A1 (ja) | 被めっき物中の銅結晶粒を粗大化する方法および銅めっき膜中の銅結晶粒を粗大化した銅めっき膜 | |
JP6111028B2 (ja) | コルソン合金及びその製造方法 | |
JP3049137B2 (ja) | 曲げ加工性が優れた高力銅合金及びその製造方法 | |
JP2017179538A (ja) | 銅合金板材および銅合金板材の製造方法 | |
CN105838915A (zh) | 铜合金条、具备该铜合金条的大电流用电子元件以及散热用电子元件 | |
JP2013231224A (ja) | 曲げ加工性に優れた電気・電子部品用銅合金材 | |
JP2003089832A (ja) | めっき耐熱剥離性に優れた銅合金箔 | |
US4430298A (en) | Copper alloys for electric and electronic devices and method for producing same | |
JP2014189831A (ja) | 銅合金 | |
TW201940710A (zh) | Cu-Ni-Si系銅合金條 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22886556 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023556213 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20247006664 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247006664 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280061334.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022886556 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022886556 Country of ref document: EP Effective date: 20240527 |