WO2023070947A1 - 一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用 - Google Patents

一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用 Download PDF

Info

Publication number
WO2023070947A1
WO2023070947A1 PCT/CN2022/070744 CN2022070744W WO2023070947A1 WO 2023070947 A1 WO2023070947 A1 WO 2023070947A1 CN 2022070744 W CN2022070744 W CN 2022070744W WO 2023070947 A1 WO2023070947 A1 WO 2023070947A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyperbranched
heavy oil
viscosity reducer
preparation
water
Prior art date
Application number
PCT/CN2022/070744
Other languages
English (en)
French (fr)
Inventor
崔浩业
吴志连
方黎明
张静
陈斌刚
张侃
陶震
王耀国
Original Assignee
宁波锋成先进能源材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波锋成先进能源材料研究院有限公司 filed Critical 宁波锋成先进能源材料研究院有限公司
Publication of WO2023070947A1 publication Critical patent/WO2023070947A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants

Definitions

  • the application relates to a hyperbranched modified nanometer material, its preparation method and its application in heavy oil viscosity reducer, belonging to the field of oil field chemistry.
  • Heavy oil refers to the crude oil whose viscosity of degassed crude oil exceeds 100 mPa ⁇ s at the reservoir temperature.
  • the composition of heavy oil is complex, containing a large amount of macromolecular organic matter such as wax, colloid, asphaltene and a small amount of heavy metals. It has the characteristics of high density, high freezing point, high viscosity and difficult flow, which makes it difficult to mine and transport.
  • the heating viscosity reduction method and thin oil blending method are the two main methods used to improve the fluidity of heavy oil.
  • the emulsification viscosity reduction method has a simple process and low cost, and is widely used in oil layer exploitation, wellbore viscosity reduction, pipeline transportation and other fields.
  • a surfactant with strong emulsification ability or a water-soluble polymer with ability to adjust and drive as a viscosity reducer By preparing a surfactant with strong emulsification ability or a water-soluble polymer with ability to adjust and drive as a viscosity reducer, the viscosity of heavy oil can be reduced by emulsification and viscosity reduction, thereby effectively reducing energy consumption and cost of oil recovery.
  • Chinese invention patent application 201910554090.1 discloses a polymer surfactant type heavy oil viscosity reducer and its preparation method, which mainly solves the problem of poor viscosity reduction effect of the existing heavy oil viscosity reducer.
  • the preparation method comprises first reacting maleic anhydride and nonylphenol polyoxyethylene ether to obtain an intermediate product, and then reacting the intermediate product with a certain amount of acrylamide to prepare a polymer surfactant.
  • the preparation process of the surfactant is reliable, the cost is low, and the use concentration is low, and the surfactant has the ability to significantly reduce the viscosity of heavy oil.
  • the reaction of maleic anhydride with nonylphenol ethoxylates will use a large amount of organic solvents.
  • Chinese invention patent application 201911294127.8 discloses a polymer heavy oil emulsifying viscosity reducer and its preparation method and application. Its components include: acrylamide, sulfobetaine monomer and itaconic acid double long-chain ester monomer.
  • the polymer heavy oil emulsification viscosity reducer contains quaternary ammonium salt type cationic structure, which makes the foaming ability stronger, can effectively emulsify heavy oil, and effectively solves the problem of poor viscosity reduction effect, poor temperature and salt resistance and emulsification The effect is not strong and so on.
  • the two monomers contained in the high molecular weight oil emulsification viscosity reducer need to be synthesized by themselves, the process is complicated, the energy consumption is high, and a large amount of organic solvent is consumed.
  • Chinese invention patent application 201910795697.9 discloses a water-soluble hyperbranched heavy oil viscosity reducing oil displacement agent and its preparation method.
  • the viscosity reducing oil displacement agent is composed of hyperbranched functionalized skeleton monomer, acrylamide, acrylic acid, A polymer formed by copolymerization of octylphenol polyoxyethylene ether and anionic monomer 2-acrylamido tetradecyl sodium sulfonate.
  • the viscosity-reducing oil-displacing agent has a strong water-phase viscosity-increasing ability and good shear resistance, which enables it to control the mobility ratio and expand the swept volume; at the same time, the viscosity-reducing oil-displacing agent has strong emulsification performance when mixed with heavy oil ,
  • the emulsified viscosity reduction rate of ordinary heavy oil is above 80% and it is easy to break the emulsification, realizing the effect of viscosity reduction and oil displacement in one dose.
  • various monomers of the viscosity-reducing oil displacement agent need to be synthesized by themselves, and the process complexity is relatively high, which increases the cost.
  • the water-soluble viscosity reducer is mainly a copolymer of acrylamide and surfactant monomers.
  • the water-soluble viscosity reducer can be used to reduce viscosity of heavy oil , heat and salt resistance and other properties.
  • the more excellent the performance of the water-soluble viscosity reducer the more complex the monomer composition, and it is not easy to obtain, and at the same time, the preparation process is complicated and the cost is high.
  • the invention has a simple preparation process, develops a water-soluble viscosity reducer with strong emulsification ability for heavy oil, good viscosity reduction effect and temperature and salt resistance, and synthesizes it by studying different components, proportioning, reaction temperature and other technological conditions
  • the object of the present invention is to provide a kind of terminal is the preparation method of hyperbranched polyamidoamine modified cage polysilsesquioxane (POSS) nano material (hyperbranched POSS material) of amino, and a kind of by hyperbranched POSS
  • the material undergoes double bond modification, and acrylic acid, acrylamide, sodium ⁇ -olefin sulfonate, quaternary ammonium salt surfactant monomers, and a preparation method for obtaining a water-soluble polymer type viscosity reducer through free radical copolymerization and its
  • the preparation method in the invention is simple, and has obvious viscosity reduction effect on the heavy oil in Shengli block.
  • One aspect of the present application provides a hyperbranched polyamide-amine modified cage polysilsesquioxane nanomaterial
  • the hyperbranched polyamide-amine modified cage polysilsesquioxane nanomaterial structural formula is as formula I:
  • the hyperbranched polyamidoamine modified cage polysilsesquioxane nanomaterial comprises a three-layer structure, wherein the POSS material is the inner core, and hyperbranched polyamidoamine ( h-PAMAM) is the outer layer, and the terminal is an aromatic amino group.
  • R 1 represents one of methylene and hydrogen atoms
  • R 2 represents one of a methylene group and an oxygen atom.
  • Another aspect of the present application provides a method for preparing the modified cage polysilsesquioxane nanomaterial, the method comprising the steps of:
  • a cage polysilsesquioxane precursor is obtained through a Michael addition reaction between a silane coupling agent and an AB-type monomer
  • cage polysilsesquioxane precursor is obtained cage polysilsesquioxane through hydrolysis and condensation reaction;
  • reaction process of step (1) and step (2) is as formula VII-1,
  • reaction process of step (3) is as formula VII-2,
  • reaction process of step (4) is as formula VII-3,
  • step (5) is as formula VII-4,
  • step (6) is as formula VII-5,
  • the AB type monomer is selected from at least one of methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate.
  • the Cn - type monomer is at least one selected from 1,2-ethylenediamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine.
  • the cage polysilsesquioxane is synthesized by hydrolysis and condensation of a silane coupling agent.
  • reaction conditions of the hydrolysis condensation reaction :
  • the amount of water used is 1.01 to 1.1 times the number of moles of the cage polysilsesquioxane precursor
  • the basic catalyst is selected from one of sodium hydroxide, tetramethylammonium hydroxide, and tetraethylammonium hydroxide, and the addition amount of the catalyst is 0.1% of the quality of the cage polysilsesquioxane precursor. %-1%;
  • the reaction temperature of the condensation reaction I is 20 ⁇ 40°C
  • the reaction time of the condensation reaction I is 2 ⁇ 4h;
  • Described non-polar solvent is selected from the one in kerosene, benzene, toluene, xylene;
  • the temperature of the condensation reaction is 100-120°C;
  • the time for the condensation reaction is 2 to 4 hours.
  • the silane coupling agent is selected from at least one of aminopropyltriethoxysilane and aminopropyltrimethoxysilane;
  • the dibasic aromatic amine is 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane at least one of the
  • the ratio of the amount of the silane coupling agent to the AB monomer is (1:1.8) ⁇ (1:2).
  • the upper limit of the ratio of the amount of the silane coupling agent to the AB monomer can be independently selected from 1.8:2, 1:1, 1.2:1, 1.4:1, 1.6:1, 1.8:1
  • the lower limit can be independently selected from 1:2, 1.8:2, 1:1, 1.2:1, 1.4:1, 1.6:1.
  • the ratio of the total substance amount of the Cn- type monomer to the total substance amount of the AB-type monomer in the step (1) and the step (3) is (1.5:1) ⁇ (1: 1).
  • the ratio upper limit of the total substance amount of the C n type monomer to the total substance amount of the AB type monomer in step (1) and step (3) can be independently selected from 1.1:1, 1.2:1, 1.3:1, 1.4 :1, 1.5:1; the lower limit can be independently selected from 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1.
  • the ratio of the amount of the Cn- type monomer to the silane coupling agent is (2:1) ⁇ (20:1).
  • the upper limit of the ratio of the Cn - type monomer to the amount of the silane coupling agent can be independently selected from 6:1, 10:1, 14:1, 16:1, 18:1, 20 :1; the lower limit can be independently selected from 2:1, 6:1, 10:1, 14:1, 16:1, 18:1.
  • step (5) the ratio of the amount of the dibasic aromatic amine to the AB monomer is (1:1) ⁇ (1:1.2).
  • the upper limit of the ratio of the amount of the dibasic aromatic amine to the AB type monomer can be independently selected from 1:1, 1:1.1; the lower limit can be independently selected from 1:1.1, 1:1.2 .
  • the ratio of the amount of the dibasic aromatic amine to the Cn- type monomer in step (3) is (1:1.8) ⁇ (1:2).
  • the upper limit of the ratio of the amount of the dibasic aromatic amine to the Cn- type monomer described in step (3) can be independently selected from 1.8:2, 1:1, 1.2:1, 1.4: 1, 1.6:1, 1.8:1, the lower limit can be independently selected from 1:2, 1.8:2, 1:1, 1.2:1, 1.4:1, 1.6:1.
  • the temperature of the Michael addition reaction is 20-30°C.
  • the upper limit of the Michael addition reaction temperature can be independently selected from 25°C and 30°C; the lower limit can be independently selected from 20°C and 25°C.
  • the time for the Michael addition reaction is 12-24 hours.
  • the upper limit of the Michael addition reaction time can be independently selected from 16h, 20h, and 24h; the lower limit can be independently selected from 12h, 16h, and 20h.
  • the Michael addition reaction is performed under the protection of nitrogen atmosphere.
  • the Michael addition reaction is carried out in a monohydric alcohol.
  • the monohydric alcohol is selected from one of methanol, ethanol, isopropanol and n-propanol.
  • reaction conditions of the Michael (Michael) addition reaction in the step (1), step (3) and step (5) can be independently selected from any value in the above-mentioned reaction temperature, reaction time range, and any one A kind of monohydric alcohol, the Michael addition reaction of step (1), step (3) and step (5) can be different.
  • the temperature of the melt condensation reaction is 130-150°C.
  • the upper limit of the melting condensation reaction temperature can be independently selected from 140°C and 150°C; the lower limit can be independently selected from 130°C and 140°C.
  • the time for the melt condensation reaction is 6-8 hours.
  • the upper limit of the melt condensation reaction time can be independently selected from 7h, 8h; the lower limit can be independently selected from 6h, 7h.
  • melt condensation reaction is carried out under vacuum conditions.
  • hyperbranched polyamide-amine modified cage polysilsesquioxane nanomaterial or the hyperbranched polyamide-amine modified cage polysilsesquioxane obtained by the above preparation method.
  • a hyperbranched water-soluble heavy oil viscosity reducer is provided, the structural formula of the hyperbranched water-soluble heavy oil viscosity reducer is one of the substances shown in formula III and formula IV:
  • a is the mass percentage of modified cage polysilsesquioxane structural unit
  • b is the mass percentage of acrylamide structural unit
  • c is the mass fraction of acrylic acid structural unit
  • d is ⁇ - The mass percentage of sodium alkenyl sulfonate structural unit
  • e is the mass percentage of quaternary ammonium salt surfactant monomer structural unit
  • a:b:(a+c):d:e (0.1 ⁇ 5.0):(45 ⁇ 49):(1 ⁇ 5):(20 ⁇ 30):(20 ⁇ 30);
  • R 3 is selected from one of C 9 -C 13 alkyl groups
  • R 4 is selected from one of C 12 -C 18 alkanyl groups.
  • the C 12 -C 18 chain alkyl group is selected from one of dodecyl, tetradecyl, hexadecyl and octadecyl.
  • R 5 is selected from one of C 1 -C 3 alkyl groups.
  • X - represents one of chloride ion and bromide ion.
  • the modified cage polysilsesquioxane structural unit comes from a compound obtained by the amidation reaction of acrylic acid and hyperbranched polyamide-amine modified cage polysilsesquioxane, wherein the hyperbranched polyamide -Amine-modified cage polysilsesquioxane is selected from the hyperbranched polyamide-amine modified cage polysilsesquioxane nano-material or the hyperbranched polyamide-amine modified cage obtained by the above-mentioned preparation method type polysilsesquioxane nanomaterials.
  • Another aspect of the present application provides a preparation method of the hyperbranched water-soluble heavy oil viscosity reducer, the method comprising: containing hyperbranched polyamide-amine modified cage polysilsesquioxane, acrylamide , acrylic acid, sodium ⁇ -alkenyl sulfonate, and an aqueous solution of a quaternary ammonium salt surfactant monomer undergo a free radical copolymerization reaction under the action of an initiator to obtain the hyperbranched water-soluble heavy oil viscosity reducer;
  • hyperbranched polyamide-amine modified cage polysilsesquioxane is the above-mentioned hyperbranched polyamide-amine modified cage polysilsesquioxane nanomaterial or the hyperbranched polysilsesquioxane obtained by the above-mentioned preparation method.
  • the quaternary ammonium salt surfactant monomer is selected from any one of the materials shown in formula V and VI
  • R 4 is selected from one of C 12 -C 18 chain alkyl groups; the C 12 -C 18 chain alkyl group is selected from dodecyl, tetradecyl, hexadecyl, octadecyl one of
  • X - represents one of chloride ion and bromide ion.
  • the quaternary ammonium salt surfactant monomer is selected from one of allyl fatty alkyl dimethyl ammonium halide and diallyl fatty alkyl methyl ammonium halide;
  • the fatty alkyl is one of dodecyl, tetradecyl, hexadecyl and octadecyl
  • the ammonium halide is one of ammonium chloride and ammonium bromide.
  • the mass ratio of the hyperbranched polyamide-amine modified cage polysilsesquioxane, acrylic acid, acrylamide, sodium ⁇ -alkenyl sulfonate, quaternary ammonium salt surfactant monomer is ( 0.1 ⁇ 5):(45 ⁇ 49):(1 ⁇ 5):(20 ⁇ 30):(20 ⁇ 30);
  • the upper limit of the mass ratio of the hyperbranched polyamide-amine modified cage polysilsesquioxane, acrylic acid, acrylamide, sodium ⁇ -alkenyl sulfonate, and quaternary ammonium salt surfactant monomer can be Independently selected from 1:45:1:30:30; 1:45:5:25:25, 2:45:5:25:25, 4:47:3:20:20, 5:49:1:20 :20:
  • the lower limit can be independently selected from 0.5:45:5:25:25, 1:45:1:30:30; 1:45:5:25:25, 2:45:5:25:25, 4: 47:3:20:20;
  • the initiator is selected from potassium persulfate, ammonium persulfate, azobisisobutylamidine hydrochloride, azobisisobutylimidazoline hydrochloride, azobisisopropylimidazoline at least one;
  • the amount of the initiator is the total amount of hyperbranched polyamide-amine modified cage polysilsesquioxane, acrylic acid, acrylamide, sodium ⁇ -alkenyl sulfonate, quaternary ammonium salt surfactant monomer 0.1% to 1% of mass.
  • the amount of the initiator is the total amount of hyperbranched polyamide-amine modified cage polysilsesquioxane, acrylic acid, acrylamide, sodium ⁇ -alkenyl sulfonate, quaternary ammonium salt surfactant monomer
  • the upper limit of mass percentage can be independently selected from 0.3%, 0.6%, 0.8%, and 1%; the lower limit can be independently selected from 0.1%, 0.3%, 0.6%, and 0.8%.
  • the conditions of the radical copolymerization reaction include: the reaction temperature is 60-80° C., and the reaction time is 3-6 hours.
  • the upper limit of the reaction temperature can be independently selected from 70°C and 80°C; the lower limit can be independently selected from 60°C and 70°C.
  • the upper limit of the reaction time can be independently selected from 4h, 5h, 6h; the lower limit can be independently selected from 3h, 4h, 5h.
  • the viscosity of the heavy oil ranges from 1,000 to 100,000 cP.
  • the present invention introduces the hyperbranched modified POSS material into the hyperbranched nano-viscosity reducer, and the polymer monomer uses an anionic surfactant monomer (AOS) and a quaternary ammonium salt cationic surfactant monomer simultaneously,
  • AOS anionic surfactant monomer
  • quaternary ammonium salt cationic surfactant monomer simultaneously, The salt-tolerance performance of the hyperbranched nanosurfactant is improved by means of zwitterion potential offset.
  • the hyperbranched modified POSS material can significantly improve the anti-coalescence ability of the hyperbranched nano-viscosity reducer with only a very small amount of addition. Therefore, although the production cost of the hyperbranched modified POSS material is high, it has little influence on the overall production cost of the hyperbranched water-soluble heavy oil viscosity reducer.
  • the polymer chain of the hyperbranched water-soluble heavy oil viscosity reducer is mainly acrylamide, which has good water solubility.
  • the polymer chain uses two structural units with opposite charges, yin and yang, to form an inner salt, thereby greatly Improve the temperature and salt resistance of the hyperbranched nano-viscosity reducer; the structural unit formed by the quaternary ammonium cationic surfactant monomer can significantly improve the emulsification and viscosity-reduced ability of the hyperbranched nano-viscosity reducer.
  • the anion and cationic groups in the monomer can form a strong hydrogen bond with the colloid and asphaltene in the heavy oil, so as to break it up and disperse the large oil droplets into small oil droplets, thereby improving the viscosity reduction performance .
  • the raw materials in the examples of the present application were purchased from commercial channels, and the reagents were all purchased from McLean.
  • the viscosity reduction rate and the anti-coagulation ability are calculated based on the number of carbon moles:
  • Embodiment 1 hyperbranched polyamide-amine modified cage polysilsesquioxane
  • step (1) According to the number of parts by mass, add 0.082 part of deionized water, 0.01 part of tetraethylammonium hydroxide catalyst in the cage polysilsesquioxane precursor (whole) that step (1) obtains, mix homogeneously, in React for 3 hours at a reaction temperature of 30°C.
  • step (3) add the POSS material (all) obtained in step (2) to the hyperbranched polyamide-amine precursor (all) obtained in step (3), under vacuum conditions, the reaction temperature is 140 ° C, The reaction time is 6h, and cooled to room temperature to obtain a hyperbranched polyamidoamine-modified cage polysilsesquioxane with an amino group at the end;
  • step (5) The end-capping agent obtained in step (5) is added to the hyperbranched polyamide-amine modified cage polysilsesquioxane (all) with amino groups at the end obtained in step (4), under vacuum conditions , the reaction temperature was 140° C., the reaction time was 6 h, and cooled to room temperature to obtain a hyperbranched polyamidoamine-modified cage polysilsesquioxane terminated with an aromatic amino group.
  • the hyperbranched polyamide-amine modified cage polysilsesquioxane whose terminal is an aromatic amino group prepared in Example 1 45 parts of acrylamide, 5 parts of acrylic acid , 25 parts of ⁇ -alkenyl sodium sulfonate, 25 parts of allyl hexadecyl dimethyl ammonium chloride, mix evenly, pass nitrogen gas for 30 minutes to remove oxygen, add 0.6 parts of potassium persulfate initiator to initiate free radicals
  • the reaction temperature is 60°C, and the reaction time is 4 hours. After the reaction is completed, the hyperbranched water-soluble heavy oil viscosity reducer 3# is obtained.
  • Step (1) Keep the Gudao GDD1X4 heavy oil sample from Shengli Oilfield in a constant temperature water bath at 50°C ⁇ 1°C for 1 hour, stir to remove free water and air bubbles, and quickly measure its viscosity at 50°C ⁇ 1°C with a rotational viscometer ⁇ 0 .
  • Step (2) preparation contains 3%NaCl and 0.3%CaCl Salt solution, the hyperbranched water-soluble heavy oil viscosity reducer 1# that embodiment 2 is prepared with salt solution is made into the solution that mass fraction is 0.3% for subsequent use;
  • Step (3) Weigh 280g (accurate to 0.01g) of the thick oil sample in step (1) into a beaker, add 120g (accurate to 0.01g) of the solution prepared in step (2), and put it in a constant temperature of 50°C In a water bath, keep the temperature constant for 1 hour, place the stirring paddle at the center of the beaker and (2-3) mm away from the bottom, adjust the rotation speed to 250 r/min, and stir for 2 minutes under constant temperature conditions.
  • Step (4) Quickly measure the thick oil emulsion prepared in step (3) with a rotational viscometer within 20 seconds, and the measured viscosity at 50°C is the initial reduced viscosity, which is recorded as ⁇ .
  • Step (5) After standing the tested thick oil emulsion at 50°C for 45 minutes, measure the viscosity again, which is the reduced viscosity after 45 minutes, which is recorded as ⁇ 1 .
  • the test results are shown in Table 1.
  • step (2) is the hyperbranched water-soluble heavy oil viscosity reducer 2# prepared in Example 3, other steps and The parameters are consistent with the test example 1, and the test results are shown in Table 1.
  • step (2) is the hyperbranched water-soluble heavy oil viscosity reducer 3# prepared in Example 4, other steps and The parameters are consistent with the test example 1, and the test results are shown in Table 1.
  • the viscosity reducer prepared according to the scheme of the present invention only needs a very small amount of hyperbranched modified POSS material, which can obviously improve the anti-coagulation of the viscosity reducer.
  • the anti-merger ability can reach more than 98%.
  • the salt tolerance evaluation of hyperbranched water-soluble heavy oil viscosity reducer specifically includes the following steps:
  • Step (1) Keep the Gudao GDD1X4 heavy oil sample from Shengli Oilfield in a constant temperature water bath at 50°C ⁇ 1°C for 1 hour, stir to remove free water and air bubbles, and quickly measure its viscosity at 50°C ⁇ 1°C with a rotational viscometer ⁇ 0 .
  • Step (2) preparation contains 10%NaCl and 0.5%CaCl Salt solution, the hyperbranched water-soluble heavy oil viscosity reducer 1# that embodiment 2 is prepared with salt solution is made into the solution that mass fraction is 0.3% for subsequent use;
  • Step (3) Weigh 280g (accurate to 0.01g) of the heavy oil sample in step (1) into a beaker, add 120g (accurate to 0.01g) of the sample solution prepared in step (2), and put it in a 50°C In a constant temperature water bath, keep the temperature constant for 1 hour, place the stirring paddle at the center of the beaker and (2-3) mm away from the bottom, adjust the rotation speed to 250 r/min, and stir for 2 minutes under constant temperature conditions.
  • Step (4) Quickly measure the thick oil emulsion prepared in step (3) with a rotational viscometer within 20 seconds, and the measured viscosity at 50°C is the reduced viscosity, denoted as ⁇ .
  • the test results are shown in Table 2.
  • step (2) is the hyperbranched water-soluble heavy oil viscosity reducer 2# prepared in Example 3, other steps and The parameters are consistent with the test example 1, and the test results are shown in Table 2.
  • step (2) is the hyperbranched water-soluble heavy oil viscosity reducer 3# prepared in Example 4, other steps and The parameters are consistent with the test example 1, and the test results are shown in Table 2.
  • step (2) is the water-soluble heavy oil viscosity reducer 1# prepared in Comparative Example 1
  • step (3) is the water-soluble heavy oil viscosity reducer 1# prepared in Comparative Example 1
  • step (3) is the water-soluble heavy oil viscosity reducer 1# prepared in Comparative Example 1
  • other steps and parameters are the same as Test example 1 is consistent, and the test results are shown in Table 2.
  • step (2) is the water-soluble heavy oil viscosity reducer 2# prepared in Comparative Example 2
  • step (3) is the water-soluble heavy oil viscosity reducer 2# prepared in Comparative Example 2
  • the viscosity reducer prepared according to the scheme of the present invention has two structural units with negative and positive charges in the polymer chain at the same time, forming an internal salt, greatly improving hyperbranched Salt tolerance of nano-viscosity reducer.
  • Test example 10 temperature resistance performance test
  • the salt tolerance evaluation of hyperbranched water-soluble heavy oil viscosity reducer specifically includes the following steps:
  • Step (1) Put the Gudao GDD1X4 heavy oil sample in Shengli Oilfield in a constant temperature water bath at 50°C ⁇ 1°C for 1 hour, stir to remove free water and air bubbles, and quickly measure its viscosity at 50°C ⁇ 1°C with a rotational viscometer ⁇ 0 .
  • Step (2) preparation contains 3%NaCl and 0.3%CaCl Salt solution, the hyperbranched water-soluble thick oil viscosity reducer 1# that embodiment 2 is prepared with salt solution is made into the solution that mass fraction is 0.3% for subsequent use, And aged at 120°C for 24 hours;
  • Step (3) Weigh 280g (accurate to 0.01g) of the heavy oil sample in step (1) into a beaker, add 120g (accurate to 0.01g) of the sample solution prepared in step (2), and put it in a 50°C In a constant temperature water bath, keep the temperature constant for 1 hour, place the stirring paddle at the center of the beaker and (2-3) mm away from the bottom, adjust the rotation speed to 250 r/min, and stir for 2 minutes under constant temperature conditions.
  • Step (4) Quickly measure the thick oil emulsion prepared in step (3) with a rotational viscometer within 20 seconds, and the measured viscosity at 50°C is the reduced viscosity, denoted as ⁇ .
  • the test results are shown in Table 3.
  • step (2) is the hyperbranched water-soluble heavy oil viscosity reducer 2# prepared in Example 3, other steps and The parameters are consistent with the test example 1, and the test results are shown in Table 3.
  • step (2) is the hyperbranched water-soluble heavy oil viscosity reducer 3# prepared in Example 4, other steps and The parameters are consistent with the test example 1, and the test results are shown in Table 3.
  • step (2) is the water-soluble heavy oil viscosity reducer 1# prepared in Comparative Example 1
  • step (3) is the water-soluble heavy oil viscosity reducer 1# prepared in Comparative Example 1
  • step (2) is the water-soluble heavy oil viscosity reducer 2# prepared in Comparative Example 2
  • step (3) is the water-soluble heavy oil viscosity reducer 2# prepared in Comparative Example 2
  • the viscosity reducer prepared according to the scheme of the present invention has two structural units with negative and positive charges in the polymer chain at the same time, forming an internal salt, greatly improving hyperbranched

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)
  • Colloid Chemistry (AREA)
  • Polyamides (AREA)

Abstract

本申请公开了一种超支化改性纳米材料和超支化水溶性稠油降粘剂及其制备方法和应用。本申请将超支化改性笼型聚倍半硅氧烷(POSS)材料引入到水溶性稠油降粘剂中,得到一种超支化水溶性稠油降粘剂。本申请的超支化水溶性稠油降粘剂,其超支化结构使降粘剂具有良好的抗聚并能力,降粘剂的聚合单体同时使用了分散性能较强的阴离子表面活性剂单体(AOS)和乳化性能较强的季铵盐类阳离子表面活性剂单体,使降粘剂具有良好的乳化分散能力,并通过两性离子电位抵消的方式形成内盐,从而提高了降粘剂的耐盐性能。该超支化水溶性稠油降粘剂适应高温高盐油藏条件,具有显著的乳化降粘能力。

Description

一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用 技术领域
本申请涉及一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用,属于油田化学领域。
背景技术
我国拥有丰富的稠油油藏储量,潜在产能巨大,但是开采程度低下。稠油是指油层温度下脱气原油的粘度超过100mPa·s的原油。稠油的组成复杂,含有大量的蜡质、胶质、沥青质等大分子有机物及少量重金属。具有密度大、凝固点高、粘度大及流动困难等特点,导致其开采难度大和运输困难。很长的一段时间里,加热降粘法和掺稀油法是用来改善稠油流动性的两大主要方法,但是,前者需要沿输油管道间断性加热,消耗大量燃料和动力,而后者则存在受稀油来源及产量显著和成本较高的问题。因此寻找一种操作简单,无需掺稀油,同时节约能耗,成本低的降粘手段迫在眉睫。
乳化降粘法,工艺简单、成本较低,被广泛应用于油层开采、井筒降粘、管道运输等领域。通过制备具有较强乳化能力的表面活性剂或具有调驱能力的水溶性聚合物作为降粘剂,以乳化降粘的方式降低稠油粘度,从而有效减少采油能耗、降低采油成本。
中国发明专利申请201910554090.1公开了一种高分子表面活性剂型稠油降粘剂及制备方法,主要解决现有稠油降粘剂降粘效果差的问题。其制备方法包括,先将马来酸酐与壬基酚聚氧乙烯醚反应得到中间产物,再将中间产物与一定量的丙烯酰胺反应,制备出一种高分子表面活性剂。该表面活性剂制备工艺可靠,成本较低,且使用浓度低,具有显著降低稠油粘度的能力。但是,马来酸酐与壬基酚聚氧乙烯醚反应会使用大量有机溶剂。
中国发明专利申请201911294127.8公开了一种高分子稠油乳化降粘剂及其制备方法和应用,其组分包含:丙烯酰胺、磺酸甜菜碱单体和衣康酸双长链酯单体。该高分子稠油乳化降粘剂中含有季铵盐型阳离子结构,使得发泡能力较强,能够有效地乳化稠油,有效解决了降粘效果不佳,耐温耐盐性能较差和乳化效果不强等问题。但是,该高分子稠油乳化降粘剂包含的两种单体需要自行合成,工艺复杂,能耗高,同时需要消耗大量有机溶剂。
中国发明专利申请201910795697.9公开了一种水溶性超支化稠油降粘驱油剂及其 制备方法,该降粘驱油剂是由超支化功能化骨架单体、丙烯酰胺、丙烯酸、非离子功能单体辛基酚聚氧乙烯醚以及阴离子单体2-丙烯酰胺基十四烷基磺酸钠共聚而成的聚合物。该降粘驱油剂的水相增粘能力较强,抗剪切能力良好,使其具有控制流度比,扩大波及体积的功能;同时该降粘驱油剂与稠油混合乳化性能较强,普通稠油乳化降粘率在80%以上且易于破乳,实现降粘和驱油一剂对用的功效。但是该降粘驱油剂的多种单体需要自行合成,工艺复杂度较高,提高了成本。
从以上专利申请文件可以看出,水溶性降粘剂主要是丙烯酰胺与表面活性剂单体共聚的聚合物,通过添加其各种功能单体,可以使水溶性降粘剂具有稠油降粘,耐温耐盐等性能。但是越是性能优异的水溶性降粘剂,单体组成越复杂,且不易获得,同时制备过程工艺复杂,成本高。
发明内容
鉴于上述现有技术的缺点,本发明研究一种乳化能力强、稠油亲和性、降粘效果好、同时适应高温高盐油藏条件的水溶性降粘剂具有重要的潜在价值。本发明以制备流程简单,研发出一种对稠油具有较强乳化能力、良好降粘效果且耐温耐盐的水溶性降粘剂,研究不同组分、配比,反应温度等工艺条件合成的水溶性聚合物型降粘剂对稠油降粘效果的影响,并对工艺进行优化,得到一种降粘效果显著提升的水溶性聚合物型降粘剂。
本发明的目的在于提供一种端位为氨基的超支化聚酰胺胺改性笼型聚倍半硅氧烷(POSS)纳米材料(超支化POSS材料)的制备方法,以及一种由超支化POSS材料经过双键改性,与丙烯酸、丙烯酰胺,α-烯基磺酸钠,季铵盐类表面活性剂单体,通过自由基共聚反应得到水溶性聚合物型降粘剂的制备方法及其在稠油乳化降粘中的应用,本发明中的制备方法简单,对胜利区块稠油具有明显的降粘效果。
本申请的一个方面,提供了一种超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料,
所述超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料结构式如式I:
Figure PCTCN2022070744-appb-000001
简写成:
Figure PCTCN2022070744-appb-000002
可选地,所述超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料包括三层结构,其中POSS材料为内核,从POSS材料的端位发散出超支化聚酰胺-胺(h-PAMAM)为外层,末端为芳香氨基。
可选地,n表示笼型聚倍半硅氧烷聚合度,n=6、8、10、12或14;
m表示末端基团数,m=12~224;
R 1表示亚甲基、氢原子中的一种;
R 2表示亚甲基、氧原子中的一种。
本申请的另一个方面,提供了一种所述的改性笼型聚倍半硅氧烷纳米材料的制备方法,所述方法包括下述步骤:
(1)硅烷偶联剂与AB型单体通过迈克尔(Michael)加成反应得到笼型聚倍半硅氧烷前驱体;
(2)笼型聚倍半硅氧烷前驱体通过水解缩合反应得到笼型聚倍半硅氧烷;
其中,步骤(1)和步骤(2)的反应过程如式VII-1,
Figure PCTCN2022070744-appb-000003
(3)AB型单体与C n型单体通过迈克尔(Michael)加成反应得到超支化聚酰胺-胺前驱体;
其中,步骤(3)的反应过程如式VII-2,
Figure PCTCN2022070744-appb-000004
(4)步骤(2)获得的笼型聚倍半硅氧烷与步骤(3)获得的超支化聚酰胺-胺前驱 体之间发生熔融缩合反应得到末端为氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷;
其中,步骤(4)的反应过程如式VII-3,
Figure PCTCN2022070744-appb-000005
Figure PCTCN2022070744-appb-000006
(5)二元芳香胺与AB型单体通过迈克尔(Michael)加成反应得到封端剂;
其中,步骤(5)的反应过程如式VII-4,
Figure PCTCN2022070744-appb-000007
(6)步骤(4)种所述的末端为氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷与步骤(5)中所述的封端剂之间发生熔融缩合反应得到末端为芳香氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷;
其中,步骤(6)的反应过程如式VII-5,
Figure PCTCN2022070744-appb-000008
可选地,所述AB型单体选自丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯中的至少一种。
可选地,所述C n型单体选自1,2-乙二胺、二乙烯三胺、三乙烯四胺、四乙烯五胺中的至少一种。
可选地,所述笼型聚倍半硅氧烷由硅烷偶联剂水解缩合合成。
可选地,水解缩合反应的反应条件:
(S001)在水、碱性催化剂作用下,步骤(1)获得的笼型聚倍半硅氧烷前驱体发生水解缩合反应I;
所述水的用量是所述笼型聚倍半硅氧烷前驱体摩尔数的1.01~1.1倍;
所述碱性催化剂,选自氢氧化钠、四甲基氢氧化铵、四乙级氢氧化铵中的一种,所述催化剂的加入量为笼型聚倍半硅氧烷前驱体质量的0.1%-1%;
所述缩合反应I的反应温度20~40℃,
所述缩合反应I的反应时间2~4h;
(S002)在非极性溶剂中继续发生缩合反应;
所述非极性溶剂选自煤油、苯、甲苯、二甲苯中的一种;
所述缩合反应的温度100~120℃;
所述缩合反应的时间2~4h。
可选地,所述硅烷偶联剂选自氨丙基三乙氧基硅烷、氨丙基三甲氧基硅烷中的至少一种;
所述二元芳香胺为4,4'-二氨基二苯醚、3,4'-二氨基二苯醚、4,4'-二氨基二苯甲烷、3,4'-二氨基二苯甲烷中的至少一种。
可选地,所述步骤(1)中,所述的硅烷偶联剂与AB型单体的物质的量之比为(1:1.8)~(1:2)。
可选地,所述的硅烷偶联剂与AB型单体的物质的量之比上限可独立选自1.8:2、1:1、1.2:1、1.4:1、1.6:1、1.8:1,下限可独立选自1:2、1.8:2、1:1、1.2:1、1.4:1、1.6:1。
可选地,所述步骤(3)中,C n型单体与步骤(1)和步骤(3)中AB型单体的总的物质的量之比为(1.5:1)~(1:1)。
可选地,C n型单体与步骤(1)和步骤(3)中AB型单体的总的物质的量之比上限可独立选自1.1:1、1.2:1、1.3:1、1.4:1、1.5:1;下限可独立选自1:1、1.1:1、1.2:1、1.3:1、1.4:1。
可选地,所述步骤(3)中,所述C n型单体与所述硅烷偶联剂的物质的量之比为(2:1)~(20:1)。
可选地,所述C n型单体与所述硅烷偶联剂的物质的量之比上限可独立选自6:1、10:1、14:1、16:1、18:1、20:1;下限可独立选自2:1、6:1、10:1、14:1、16:1、18:1。
可选地,步骤(5)中,所述的二元芳香胺与所述的AB型单体的物质的量之比为(1:1)~(1:1.2)。
可选地,所述的二元芳香胺与所述的AB型单体的物质的量之比上限可独立选自1:1、1:1.1;下限可独立选自1:1.1、1:1.2。
可选地,所述的二元芳香胺与步骤(3)中所述的C n型单体的物质的量之比为(1:1.8)~(1:2)。
可选地,所述的二元芳香胺与步骤(3)中所述的C n型单体的物质的量之比上限可独立选自1.8:2、1:1、1.2:1、1.4:1、1.6:1、1.8:1,下限可独立选自1:2、1.8:2、1:1、1.2:1、1.4:1、1.6:1。
可选地,所述的迈克尔(Michael)加成反应的温度为20~30℃。
可选地,所述的迈克尔(Michael)加成反应的温度上限可独立选自25℃、30℃;下限可独立选自20℃、25℃。
可选地,所述的迈克尔(Michael)加成反应的时间为12~24h。
可选地,所述的迈克尔(Michael)加成反应的时间上限可独立选自16h、20h、24h;下限可独立选自12h、16h、20h。
可选地,所述的迈克尔(Michael)加成反应在氮气气氛的保护下反应。
可选地,所述的迈克尔(Michael)加成反应在一元醇中进行。
可选地,所述一元醇选自甲醇、乙醇、异丙醇、正丙醇中的一种。
可选地,所述步骤(1)、步骤(3)和步骤(5)中的迈克尔(Michael)加成反应的反应条件可独立选自上述反应温度、反应时间范围中任意值,以及任意一种一元醇,即步骤(1)、步骤(3)和步骤(5)的迈克尔加成反应可以不相同。
可选地,所述的熔融缩合反应的温度为130~150℃。
可选地,所述的熔融缩合反应的温度上限可独立选自140℃、150℃;下限可独立选自130℃、140℃。
可选地,所述的熔融缩合反应的时间为6~8h。
可选地,所述熔融缩合反应的时间上限可独立选自7h、8h;下限可独立选自6h、7h。
可选地,所述的熔融缩合反应在真空条件下进行。
根据本申请的另一个方面,提供一种上述的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料或上述的制备方法获得的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料作为改性剂在制备超支化水溶性稠油降粘剂上的应用。
根据本申请再一个方面,提供一种超支化水溶性稠油降粘剂,所述超支化水溶性稠油降粘剂的结构式如式III、式Ⅳ所示的物质中的一种:
Figure PCTCN2022070744-appb-000009
其中,式III和式IV中,a为改性笼型聚倍半硅氧烷结构单元的质量百分数,b为丙烯酰胺结构单元的质量百分数,c为丙烯酸结构单元的质量分数、d为α-烯基磺酸钠结构单元的质量百分数,e为季铵盐类表面活性剂单体结构单元的质量百分数,
a:b:(a+c):d:e=(0.1~5.0):(45~49):(1~5):(20~30):(20~30);
R 3选自C 9~C 13链烷基中的一种;
R 4选自C 12~C 18链烷基中的一种。
可选地,所述C 12~C 18链烷基选自十二烷基、十四烷基、十六烷基、十八烷基中的一种。
可选地,R 5选自C 1~C 3烷基中的一种。
可选地,X -表示氯离子、溴离子中的一种。
可选地,所述改性笼型聚倍半硅氧烷结构单元来自丙烯酸与超支化聚酰胺-胺改性笼型聚倍半硅氧烷发生酰胺化反应得到的化合物,其中超支化聚酰胺-胺改性笼型聚倍半硅氧烷选自上述的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料或上述的制备方法获得的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料。
本申请另一个方面,提供一种所述的超支化水溶性稠油降粘剂的制备方法,所述方法包括:含有超支化聚酰胺-胺改性笼型聚倍半硅氧烷、丙烯酰胺、丙烯酸、α-烯基磺酸钠、季铵盐类表面活性剂单体的水溶液在引发剂作用下发生自由基共聚反应,获得所述超支化水溶性稠油降粘剂;
其中所述超支化聚酰胺-胺改性笼型聚倍半硅氧烷为上述的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料或上述的制备方法获得的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料;
季铵盐类表面活性剂单体选自式V、VI所示的物质中的任意一种
Figure PCTCN2022070744-appb-000010
其中,R 4选自C 12~C 18链烷基中的一种;所述C 12~C 18链烷基选自十二烷基、十四烷基、十六烷基、十八烷基中的一种;
X -表示氯离子、溴离子中的一种。
可选地,所述季铵盐类表面活性剂单体选自烯丙基脂肪烷基二甲基卤化铵、二烯丙基脂肪烷基甲基卤化铵中的一种;
其中,脂肪烷基为十二烷基、十四烷基、十六烷基、十八烷基中的一种,卤化铵为氯化铵、溴化铵中的一种。
可选地,所述超支化聚酰胺-胺改性笼型聚倍半硅氧烷、丙烯酸、丙烯酰胺、α-烯基磺酸钠、季铵盐类表面活性剂单体的质量比为(0.1~5):(45~49):(1~5):(20~30):(20~30);
可选地,所述超支化聚酰胺-胺改性笼型聚倍半硅氧烷、丙烯酸、丙烯酰胺、α-烯基磺酸钠、季铵盐类表面活性剂单体的质量比上限可独立选自1:45:1:30:30;1:45:5:25:25、2:45:5:25:25、4:47:3:20:20、5:49:1:20:20:下限可独立选自0.5:45:5:25:25、1:45:1:30:30;1:45:5:25:25、2:45:5:25:25、4:47:3:20:20;
可选地,所述引发剂选自过硫酸钾、过硫酸铵、偶氮二异丁基脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、偶氮二异丙基咪唑啉中的至少一种;
可选地,所述引发剂用量为超支化聚酰胺-胺改性笼型聚倍半硅氧烷、丙烯酸、丙烯酰胺、α-烯基磺酸钠、季铵盐类表面活性剂单体总质量的0.1%~1%。
可选地,所述引发剂用量为超支化聚酰胺-胺改性笼型聚倍半硅氧烷、丙烯酸、丙烯酰胺、α-烯基磺酸钠、季铵盐类表面活性剂单体总质量的百分比上限可独立选自0.3%、0.6%、0.8%、1%;下限可独立选自0.1%、0.3%、0.6%、0.8%。
可选地,所述自由基共聚反应的条件包括:反应温度为60~80℃,反应时间为3~6h。
可选地,反应温度上限可独立选自70℃、80℃;下限可独立选自60℃、70℃。
可选地,反应时间上限可独立选自4h、5h、6h;下限可独立选自3h、4h、5h。
根据本申请又一个方面,提供一种上述的超支化水溶性稠油降粘剂或上述制备方法获得的超支化水溶性稠油降粘剂在稠油乳化降粘中的应用。
所述稠油粘度的范围为1000~100000cP。
本申请能产生的有益效果包括:
(1)本发明将超支化改性POSS材料引入到超支化纳米降粘剂中,聚合物单体同时使用了阴离子表面活性剂单体(AOS)和季铵盐类阳离子表面活性剂单体,通过两性离子电位抵消的方式,提高了超支化纳米表活的耐盐性能。
(2)超支化改性POSS材料只需要极少的添加量,就能明显提高超支化纳米降粘剂的抗聚并能力。因此,虽然超支化改性POSS材料的生产成本较高,但是对于超支化水溶性稠油降粘剂的整体生产成本而言影响不大。
(3)超支化水溶性稠油降粘剂的聚合物链以丙烯酰胺为主,具有良好的水溶性, 聚合物链中同时使用了阴阳两种电荷相反的结构单元,形成内盐,从而大大提高超支化纳米降粘剂的耐温耐盐性能;季铵盐类阳离子表面活性剂单体形成的结构单元能明显提高超支化纳米降粘剂的乳化降粘能力。
(4)单体中的阴、阳离子基团可以与稠油中的胶质和沥青质产生强烈的氢键作用,从而将其拆散,将大油滴分散成小油滴,从而提高降粘性能。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买,其中试剂均购自麦克林。
本申请的实施例中,降粘率以及抗聚并能力都基于碳摩尔数进行计算:
降粘率的计算公式为f=(μ 0-μ)/μ 0×100%;
抗聚并能力的计算公式为f1=(μ 01)/μ 0×100%。
实施例1超支化聚酰胺-胺改性笼型聚倍半硅氧烷
(1)按照质量份数,1份硅烷偶联剂KH550,0.78份丙烯酸甲酯和3份甲醇溶剂,混合均匀,30℃反应温度下,反应24h,得到笼型聚倍半硅氧烷前驱体;
(2)按照质量份数,向步骤(1)获得的笼型聚倍半硅氧烷前驱体(全部)中加入0.082份去离子水,0.01份四乙基氢氧化铵催化剂,混合均匀,在30℃反应温度下,反应3h,反应结束后,利用减压蒸馏的方法分离出低沸点物质(甲醇和水);继续加入3份二甲苯溶剂,混合均匀,增加冷凝回流装置,在108℃反应温度下,反应时间3h,冷却至室温;用饱和食盐水对反应溶液进行水洗,直至中性为止,再用无水硫酸镁进行脱水,将无水硫酸镁过滤后,利用减压(压力为0.01kPa)蒸馏的方法分离出二甲苯溶剂,得到POSS材料。
(3)按照质量份数,2.71份乙二胺,3.11份丙烯酸甲酯和5份甲醇溶剂,混合均匀,30℃反应温度下,反应24h,得到超支化聚酰胺-胺前驱体;
(4)按照质量份数,向步骤(3)中获得的超支化聚酰胺-胺前驱体(全部)加入步骤(2)中得到的POSS材料(全部),真空条件下,反应温度140℃,反应时间6h,并冷却至室温,得到末端为氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷;
(5)按照质量份数,4.48份4,4'-二氨基二苯甲烷,1.95份丙烯酸甲酯和5份甲醇溶剂,混合均匀,30℃反应温度下,反应24h,得到封端剂;
(6)将步骤(5)中得到的封端剂加入到步骤(4)中得到的末端为氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷(全部)中,真空条件下,反应温度140℃,反应时间6h,并冷却至室温,得到末端为芳香氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷。
实施例2超支化水溶性稠油降粘剂1#合成
按照质量份数,在200份自来水中,加入0.5份实施例1制备的末端为芳香氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷、45份的丙烯酰胺,5份丙烯酸,25份的α-烯基磺酸钠,25份的烯丙基十六烷基二甲基氯化铵,混合均匀,通氮气30min除氧气,加入0.6份过硫酸钾引发剂,引发自由基共聚反应,反应温度60℃,反应时间4h,反应完成后,得到超支化水溶性稠油降粘剂1#。
实施例3超支化水溶性稠油降粘剂2#合成
按照质量份数,在200份自来水中,加入1份实施例1制备的末端为芳香氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷、45份的丙烯酰胺,5份丙烯酸,25份的α-烯基磺酸钠,25份的烯丙基十六烷基二甲基氯化铵,混合均匀,通氮气30min除氧气,加入0.6份过硫酸钾引发剂,引发自由基共聚反应,反应温度60℃,反应时间4h,反应完成后,得到超支化水溶性稠油降粘剂2#。
实施例4超支化水溶性稠油降粘剂3#合成
按照质量份数,在200份自来水中,加入2份实施例1制备的末端为芳香氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷、45份的丙烯酰胺,5份丙烯酸,25份的α-烯基磺酸钠,25份的烯丙基十六烷基二甲基氯化铵,混合均匀,通氮气30min除氧气,加入0.6份过硫酸钾引发剂,引发自由基共聚反应,反应温度60℃,反应时间4h,反应完成后,得到超支化水溶性稠油降粘剂3#。
对比例1水溶性稠油降粘剂1#合成
按照质量份数,在200份自来水中,45份的丙烯酰胺,5份丙烯酸,25份的α-烯基磺酸钠,25份的烯丙基十六烷基二甲基氯化铵,混合均匀,通氮气30min除氧气,加入0.6份过硫酸钾引发剂,引发自由基共聚反应,反应温度60℃,反应时间4h,反应完成后,得到水溶性稠油降粘剂1#。
对比例2水溶性稠油降粘剂2#合成
按照质量份数,在200份自来水中,45份的丙烯酰胺,5份丙烯酸,50份的α-烯基磺酸钠,混合均匀,通氮气30min除氧气,加入0.6份过硫酸钾引发剂,引发自由基共聚反应,反应温度60℃,反应时间4h,反应完成后,得到水溶性稠油降粘剂2#。
测试例1乳化降粘及抗聚并性能测试
超支化水溶性稠油降粘剂在胜利孤岛稠油中的乳化降粘效果评价,具体包括以下步骤:
步骤(1)将胜利油田孤岛GDD1X4稠油油样在50℃±1℃的恒温水浴中恒温1h,搅拌去除其中的游离水和气泡,迅速用旋转粘度计测其50℃±1℃时的粘度μ 0
步骤(2)配制含3%NaCl和0.3%CaCl 2的盐溶液,用盐溶液将实施例2制备获得的超支化水溶性稠油降粘剂1#配成质量分数为0.3%的溶液备用;
步骤(3)称取280g(精确到0.01g)步骤(1)中的稠油油样于烧杯中,加入120g(精确到0.01g)步骤(2)中配制的溶液,放入50℃的恒温水浴中,恒温1h,将搅拌桨置于烧杯中心,并距底部(2~3)mm处,调节转速为250r/min,在恒温条件下搅拌2min。
步骤(4)在20s内迅速用旋转粘度计测定步骤(3)中制备的稠油乳液,测得50℃时的粘度为初始降黏粘度,记为μ。
步骤(5)将测试过的稠油乳液在50℃静置45min后,再次测定粘度,为45min后降黏粘度,记为μ 1。测试结果见表1。
测试例2乳化降粘及抗聚并性能测试
按照测试例1的步骤(1)~(6),除步骤(2)中采用的稠油降粘剂为实施例3制备获得的超支化水溶性稠油降粘剂2#外,其他步骤及参数与测试例1一致,测试结果见表1。
测试例3乳化降粘及抗聚并性能测试
按照测试例1的步骤(1)~(6),除步骤(2)中采用的稠油降粘剂为实施例4制备获得的超支化水溶性稠油降粘剂3#外,其他步骤及参数与测试例1一致,测试结果见表1。
测试例4乳化降粘及抗聚并性能测试
按照测试例1的步骤(1)~(6),除步骤(2)中采用的稠油降粘剂为对比例1制备获得的水溶性稠油降粘剂1#外,其他步骤及参数与测试例1一致,测试结果见表1。
表1
Figure PCTCN2022070744-appb-000011
从表1中可以看出,与对比例1相比,按照本发明方案制备的降粘剂,只需要极少添加量的超支化改性POSS材料,就能明显提高降粘剂的抗聚并能力;抗聚并能力可达到98%以上。
测试例5耐盐性能测试
超支化水溶性稠油降粘剂的耐盐性评价,具体包括以下步骤:
步骤(1)将胜利油田孤岛GDD1X4稠油油样在50℃±1℃的恒温水浴中恒温1h,搅拌去除其中的游离水和气泡,迅速用旋转粘度计测其50℃±1℃时的粘度μ 0
步骤(2)配制含10%NaCl和0.5%CaCl 2的盐溶液,用盐溶液将实施例2制备获得的超支化水溶性稠油降粘剂1#配成质量分数为0.3%的溶液备用;
步骤(3)称取280g(精确到0.01g)步骤(1)中的稠油油样于烧杯中,加入120g(精确到0.01g)步骤(2)中配制的样品溶液,放入50℃的恒温水浴中,恒温1h,将搅拌桨置于烧杯中心,并距底部(2~3)mm处,调节转速为250r/min,在恒温条件下搅拌2min。
步骤(4)在20s内迅速用旋转粘度计测定步骤(3)中制备的稠油乳液,测得50℃时的粘度为降黏粘度,记为μ。测试结果见表2。
测试例6耐盐性能测试
按照测试例5的步骤(1)~(4),除步骤(2)中采用的稠油降粘剂为实施例3制备获得的超支化水溶性稠油降粘剂2#外,其他步骤及参数与测试例1一致,测试结果见表2。
测试例7耐盐性能测试
按照测试例5的步骤(1)~(4),除步骤(2)中采用的稠油降粘剂为实施例4制备获得的超支化水溶性稠油降粘剂3#外,其他步骤及参数与测试例1一致,测试结果见表2。
测试例8耐盐性能测试
按照测试例5的步骤(1)~(4),除步骤(2)中采用的稠油降粘剂为对比例1制备获得的水溶性稠油降粘剂1#外,其他步骤及参数与测试例1一致,测试结果见表2。
测试例9耐盐性能测试
按照测试例5的步骤(1)~(4),除步骤(2)中采用的稠油降粘剂为对比例2制备获得的水溶性稠油降粘剂2#外,其他步骤及参数与测试例1一致,测试结果见表2。
表2
Figure PCTCN2022070744-appb-000012
从表2中可以看出,与对比例1、2相比,按照本发明方案制备的降粘剂,聚合物链中同时具有阴阳两种电荷相反的结构单元,形成内盐,大大提高超支化纳米降粘剂的耐盐性能。
测试例10耐温性能测试
超支化水溶性稠油降粘剂的耐盐性评价,具体包括以下步骤:
步骤(1)将胜利油田孤岛GDD1X4稠油油样在50℃±1℃的恒温水浴中恒温1h,搅拌去除其中的游离水和气泡,迅速用旋转粘度计测其50℃±1℃时的粘度μ 0
步骤(2)配制含3%NaCl和0.3%CaCl 2的盐溶液,用盐溶液将实施例2制备获得的超支化水溶性稠油降粘剂1#配成质量分数为0.3%的溶液备用,并在120℃条件下老化24h;
步骤(3)称取280g(精确到0.01g)步骤(1)中的稠油油样于烧杯中,加入120g(精确到0.01g)步骤(2)中配制的样品溶液,放入50℃的恒温水浴中,恒温1h,将搅拌桨置于烧杯中心,并距底部(2~3)mm处,调节转速为250r/min,在恒温条件下搅拌2min。
步骤(4)在20s内迅速用旋转粘度计测定步骤(3)中制备的稠油乳液,测得50℃时的粘度为降黏粘度,记为μ。测试结果见表3。
测试例11耐盐性能测试
按照测试例10的步骤(1)~(4),除步骤(2)中采用的稠油降粘剂为实施例3制备获得的超支化水溶性稠油降粘剂2#外,其他步骤及参数与测试例1一致,测试结果见表3。
测试例12耐盐性能测试
按照测试例10的步骤(1)~(4),除步骤(2)中采用的稠油降粘剂为实施例4制备获得的超支化水溶性稠油降粘剂3#外,其他步骤及参数与测试例1一致,测试结果见表3。
测试例13耐盐性能测试
按照测试例10的步骤(1)~(4),除步骤(2)中采用的稠油降粘剂为对比例1制备获得的水溶性稠油降粘剂1#外,其他步骤及参数与测试例1一致,测试结果见表3。
测试例14耐盐性能测试
按照测试例10的步骤(1)~(4),除步骤(2)中采用的稠油降粘剂为对比例2制备获得的水溶性稠油降粘剂2#外,其他步骤及参数与测试例1一致,测试结果见表 3。
表3
编号 稠油粘度(cP) 降粘粘度(cP) 降粘率(%)
超支化水溶性稠油降粘剂1# 3200 55.8 98.26
超支化水溶性稠油降粘剂2# 3200 49.6 98.45
超支化水溶性稠油降粘剂3# 3200 39.7 98.76
水溶性稠油降粘剂1# 3200 268.2 91.62
水溶性稠油降粘剂2# 3200 1958 38.81
从表3中可以看出,与对比例1、2相比,按照本发明方案制备的降粘剂,聚合物链中同时具有阴阳两种电荷相反的结构单元,形成内盐,大大提高超支化纳米降粘剂的耐温性能;同时超支化改性POSS材料的加入,进一步提升了耐温性能。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (17)

  1. 一种超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料,其特征在于,所述超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料结构式如式I:
    Figure PCTCN2022070744-appb-100001
    简写如式II:
    Figure PCTCN2022070744-appb-100002
    n表示笼型聚倍半硅氧烷聚合度,n=6、8、10、12或14;
    m表示末端基团数,m=12~224;
    R 1选自亚甲基、氢原子中的一种;
    R 2选自亚甲基、氧原子中的一种。
  2. 一种权利要求1所述的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料的制备方法,其特征在于,其包括下述步骤:
    (1)硅烷偶联剂与AB型单体混合,通过迈克尔加成反应,得到笼型聚倍半硅氧烷前驱体;
    (2)笼型聚倍半硅氧烷前驱体通过水解缩合反应,得到笼型聚倍半硅氧烷;
    (3)AB型单体与C n型单体混合,通过迈克尔加成反应,得到超支化聚酰胺-胺前驱体;
    (4)步骤(2)获得的笼型聚倍半硅氧烷与步骤(3)获得的超支化聚酰胺-胺前驱体混合,发生熔融缩合反应,得到末端为氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷;
    (5)二元芳香胺与AB型单体混合,通过迈克尔加成反应,得到封端剂;
    (6)步骤(4)种所得的末端为氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷与步骤(5)中所得的封端剂混合、发生熔融缩合反应,得到末端为芳香氨基的超支化聚酰胺-胺改性笼型聚倍半硅氧烷;
    其中,所述AB型单体选自丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯中的至少一种;
    所述C n型单体选自1,2-乙二胺、二乙烯三胺、三乙烯四胺、四乙烯五胺中的至少一种。
  3. 根据权利要求2所述的制备方法,其特征在于,
    所述硅烷偶联剂选自氨丙基三乙氧基硅烷、氨丙基三甲氧基硅烷中的至少一种;
    所述二元芳香胺为4,4'-二氨基二苯醚、3,4'-二氨基二苯醚、4,4'-二氨基二苯甲烷、3,4'-二氨基二苯甲烷中的至少一种。
  4. 根据权利要求2所述的制备方法,其特征在于,
    步骤(1)中,所述的硅烷偶联剂与所述的AB型单体的物质的量之比为(1:1.8)~(1:2);
    步骤(3)中,所述的C n型单体与步骤(1)中所述的硅烷偶联剂的物质的量之比为(2:1)~(20:1);
    所述C n型单体与步骤(1)和步骤(3)中所述AB型单体的总物质的量之比为(1.5:1)~(1:1);
    步骤(5)中,所述的二元芳香胺与所述的AB型单体的物质的量之比为(1:1)~(1:1.2),所述的二元芳香胺与步骤(3)中所述的C n型单体的物质的量之比为(1:1.8)~(1:2)。
  5. 根据权利要求2所述的制备方法,其特征在于,
    所述步骤(1)和步骤(3)中的迈克尔加成反应的温度为20~30℃;
    所述的迈克尔加成反应的时间为12~24h;所述的迈克尔加成反应在氮气的保护下反应;所述的迈克尔加成反应在一元醇中进行。
  6. 根据权利要求5所述的制备方法,其特征在于,
    所述一元醇选自甲醇、乙醇、异丙醇、正丙醇中的一种。
  7. 根据权利要求2所述的制备方法,其特征在于,
    所述的熔融缩合反应的温度为130~150℃;
    所述的熔融缩合反应的时间为6~8h;
    所述的熔融缩合反应在真空条件下进行。
  8. 一种权利要求1所述的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料或权利要求2~7任一项所述的制备方法获得的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料作为改性剂在制备超支化水溶性稠油降粘剂上的应用。
  9. 一种超支化水溶性稠油降粘剂,其特征在于,所述超支化水溶性稠油降粘剂选自式III、式IV所示的物质中的一种:
    Figure PCTCN2022070744-appb-100003
    其中,式III和式IV中,a为改性笼型聚倍半硅氧烷结构单元的质量百分数,b为丙烯酰胺结构单元的质量百分数,c为丙烯酸结构单元的质量分数、d为α-烯基磺酸钠 结构单元的质量百分数,e季铵盐类表面活性剂单体结构单元的质量百分数,a:b:(a+c):d:e=(0.1~5.0):(45~49):(1~5):(20~30):(20~30);
    R 3选自C 9~C 13链烷基中的一种;
    R 4选自C 12~C 18链烷基中的一种;
    R 5选自C 1~C 3烷基中的一种;
    X -选自氯离子、溴离子中的一种。
  10. 根据权利要求9所述的超支化水溶性稠油降粘剂,其特征在于,所述C 12~C 18链烷基选自十二烷基、十四烷基、十六烷基、十八烷基中的一种。
  11. 一种权利要求9或10所述的超支化水溶性稠油降粘剂的制备方法,其特征在于,所述制备方法包括以下步骤:
    含有超支化聚酰胺-胺改性笼型聚倍半硅氧烷、丙烯酰胺、丙烯酸、α-烯基磺酸钠、季铵盐类表面活性剂单体的水溶液在引发剂作用下发生自由基共聚反应,获得所述超支化水溶性稠油降粘剂;
    其中所述超支化聚酰胺-胺改性笼型聚倍半硅氧烷为权利要求1所述的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料或权利要求2~7任一项所述的制备方法获得的超支化聚酰胺-胺改性笼型聚倍半硅氧烷纳米材料;
    所述季铵盐类表面活性剂单体选自式V、VI所示的物质中的一种;
    Figure PCTCN2022070744-appb-100004
    其中,R 4选自C 12~C 18链烷基中的一种;X -选自氯离子、溴离子中的一种。
  12. 根据权利要求11所述的制备方法,其特征在于,所述C 12~C 18链烷基选自十二烷基、十四烷基、十六烷基、十八烷基中的一种。
  13. 根据权利要求11所述的制备方法,其特征在于,
    所述季铵盐类表面活性剂单体选自烯丙基脂肪烷基二甲基卤化铵、二烯丙基脂肪烷基甲基卤化铵中的一种,其中,所述脂肪烷基选自十二烷基、十四烷基、十六烷基、十八烷基中的一种,所述卤化铵选自氯化铵、溴化铵中的一种。
  14. 根据权利要求11所述的制备方法,其特征在于,所述超支化聚酰胺-胺改性笼型聚倍半硅氧烷、丙烯酸、丙烯酰胺、α-烯基磺酸钠、季铵盐类表面活性剂单体质量之比为0.1~5:45~49:1~5:20~30:20~30。
  15. 根据权利要求11所述的制备方法,其特征在于,所述引发剂选自过硫酸钾、过硫酸铵、偶氮二异丁基脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、偶氮二异丙基咪唑啉中的至少一种;
    所述引发剂用量为超支化聚酰胺-胺改性笼型聚倍半硅氧烷、丙烯酸、丙烯酰胺、α-烯基磺酸钠、季铵盐类表面活性剂单体总质量的0.1%~1%。
  16. 根据权利要求11所述的制备方法,其特征在于,所述自由基共聚反应的条件包括:反应温度为60~80℃,反应时间为3~6h。
  17. 一种权利要求9或10所述的超支化水溶性稠油降粘剂或权利要求11~16任一项所述的制备方法获得的超支化水溶性稠油降粘剂在稠油乳化降粘中的应用。
PCT/CN2022/070744 2021-11-01 2022-01-07 一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用 WO2023070947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111279307.6 2021-11-01
CN202111279307.6A CN113881052B (zh) 2021-11-01 2021-11-01 一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用

Publications (1)

Publication Number Publication Date
WO2023070947A1 true WO2023070947A1 (zh) 2023-05-04

Family

ID=79014643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070744 WO2023070947A1 (zh) 2021-11-01 2022-01-07 一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用

Country Status (2)

Country Link
CN (1) CN113881052B (zh)
WO (1) WO2023070947A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117285708A (zh) * 2023-11-24 2023-12-26 西南石油大学 沥青质分散稳定剂及其制备方法
CN117624550A (zh) * 2023-12-18 2024-03-01 中国林业科学研究院木材工业研究所 一种水性超支化聚氨酯改性剂乳液、制备方法及在板材防开裂的应用
CN118165711A (zh) * 2024-05-15 2024-06-11 成都汉元君业油田技术有限公司 一种井眼强化护壁剂

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881052B (zh) * 2021-11-01 2023-05-12 宁波锋成先进能源材料研究院有限公司 一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用
CN115340857B (zh) * 2022-08-24 2024-03-26 宁波锋成先进能源材料研究院有限公司 一种原位自乳化纳米驱油剂及其制备方法和应用
CN115651627B (zh) * 2022-12-27 2023-03-10 胜利油田方圆化工有限公司 一种石油开采用改性聚合物驱油剂的制备工艺及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516972A (zh) * 2011-12-07 2012-06-27 南京美思德新材料有限公司 梳型改性聚硅氧烷阴离子水基稠油降粘剂及其合成方法
US20160102241A1 (en) * 2014-10-08 2016-04-14 Oil & Gas Tech Enterprises C.V. Heavy crude oil viscosity reducer
CN107880213A (zh) * 2017-11-21 2018-04-06 山东大学 一种硅氧烷季铵盐改性的两亲聚合物超特稠油降粘剂及其制备方法与应用
CN110483701A (zh) * 2019-08-27 2019-11-22 西南石油大学 一种水溶性超支化稠油降粘驱油剂及其制备方法
CN110591012A (zh) * 2019-09-09 2019-12-20 中海石油(中国)有限公司 一种水溶性超支化聚合物稠油降黏剂及其制备方法
CN112876991A (zh) * 2021-02-05 2021-06-01 北京市理化分析测试中心 一种兼具除醛功能的异味封闭剂及其制备方法
CN113429531A (zh) * 2021-06-02 2021-09-24 宁波锋成先进能源材料研究院有限公司 一种油溶性降粘剂的制备方法及其应用
CN113881052A (zh) * 2021-11-01 2022-01-04 宁波锋成先进能源材料研究院有限公司 一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105889756B (zh) * 2016-04-06 2018-09-07 中国石油大学(华东) 一种含蜡原油降凝降粘复合剂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516972A (zh) * 2011-12-07 2012-06-27 南京美思德新材料有限公司 梳型改性聚硅氧烷阴离子水基稠油降粘剂及其合成方法
US20160102241A1 (en) * 2014-10-08 2016-04-14 Oil & Gas Tech Enterprises C.V. Heavy crude oil viscosity reducer
CN107880213A (zh) * 2017-11-21 2018-04-06 山东大学 一种硅氧烷季铵盐改性的两亲聚合物超特稠油降粘剂及其制备方法与应用
CN110483701A (zh) * 2019-08-27 2019-11-22 西南石油大学 一种水溶性超支化稠油降粘驱油剂及其制备方法
CN110591012A (zh) * 2019-09-09 2019-12-20 中海石油(中国)有限公司 一种水溶性超支化聚合物稠油降黏剂及其制备方法
CN112876991A (zh) * 2021-02-05 2021-06-01 北京市理化分析测试中心 一种兼具除醛功能的异味封闭剂及其制备方法
CN113429531A (zh) * 2021-06-02 2021-09-24 宁波锋成先进能源材料研究院有限公司 一种油溶性降粘剂的制备方法及其应用
CN113881052A (zh) * 2021-11-01 2022-01-04 宁波锋成先进能源材料研究院有限公司 一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117285708A (zh) * 2023-11-24 2023-12-26 西南石油大学 沥青质分散稳定剂及其制备方法
CN117285708B (zh) * 2023-11-24 2024-01-30 西南石油大学 沥青质分散稳定剂及其制备方法
CN117624550A (zh) * 2023-12-18 2024-03-01 中国林业科学研究院木材工业研究所 一种水性超支化聚氨酯改性剂乳液、制备方法及在板材防开裂的应用
CN118165711A (zh) * 2024-05-15 2024-06-11 成都汉元君业油田技术有限公司 一种井眼强化护壁剂

Also Published As

Publication number Publication date
CN113881052B (zh) 2023-05-12
CN113881052A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2023070947A1 (zh) 一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用
WO2022048008A1 (zh) 一种有机-无机杂化纳米材料及其制备方法、应用
CN107353886B (zh) 一种致密油藏防co2气窜的纳米复合材料及其制备方法
WO2014206004A1 (zh) 一种稠油和超稠油开采用纳米复合型耐高温助采剂及其制备方法
CN112210039B (zh) 一种驱油石墨烯用分散剂的制备方法
Xu et al. Preparation of cationic polyacrylamide by aqueous two-phase polymerization
CN103159963B (zh) 一种高性能粉末丁腈橡胶的制备方法
CN109021948A (zh) 一种新型稠油降粘剂的制备方法
CN113354049A (zh) 一种油田水处理用超支化磁性破乳絮凝剂的制备方法
CN104628934A (zh) 一种阴离子型油溶性稠油降黏剂及其制备方法
CA2842705C (en) Amphiphilic macromolecule and use
CN104559985B (zh) 驱油用聚表组合物及其三次采油中应用
CN110551493A (zh) 一种凝胶泡沫携带改性二硫化钼体系的制备方法
Gou et al. A novel hybrid hyperbranched nanowire CNTs for enhancing oil recovery through increasing viscoelasticity and high-viscous emulsions to compensate reservoir heterogeneity
Wang et al. Kinetics of dispersion polymerization of dimethyl diallyl ammonium chloride and acrylamide
CN111592616B (zh) 一种纳米级超支化疏水缔合聚丙烯酰胺的制备方法
CN110724514B (zh) 一种纳米高温乳化胶凝酸及制备方法
CN114591468A (zh) 一种用于稠油冷采的油水界面活化减阻剂及制备方法
CN113321779B (zh) 纳米增粘剂、聚合物驱增效剂及其制备方法、应用
CN116083066B (zh) 二维纳米颗粒的复合驱组合物及二维纳米颗粒的制备方法
CN110643340B9 (zh) 用于稠油热采的高效水溶性降粘洗油剂及其制备方法
CN115595132A (zh) 一种采出液的乳化降黏减阻剂及其制备方法
CN114031803A (zh) 一种基于点击化学制备聚酰胺-胺凝胶复合膜的方法与应用
CN113527601B (zh) 一种高温高盐油气田用纳米驱油剂及其制备方法
CN117568050B (zh) 一种乳化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884867

Country of ref document: EP

Kind code of ref document: A1