WO2023070607A1 - 车辆制冷控制方法、装置、设备、介质及程序产品 - Google Patents

车辆制冷控制方法、装置、设备、介质及程序产品 Download PDF

Info

Publication number
WO2023070607A1
WO2023070607A1 PCT/CN2021/127730 CN2021127730W WO2023070607A1 WO 2023070607 A1 WO2023070607 A1 WO 2023070607A1 CN 2021127730 W CN2021127730 W CN 2021127730W WO 2023070607 A1 WO2023070607 A1 WO 2023070607A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
battery
cooling
expansion valve
electronic expansion
Prior art date
Application number
PCT/CN2021/127730
Other languages
English (en)
French (fr)
Inventor
李双岐
Original Assignee
浙江吉利控股集团有限公司
吉利汽车研究院(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 吉利汽车研究院(宁波)有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to KR1020237045496A priority Critical patent/KR20240007695A/ko
Priority to PCT/CN2021/127730 priority patent/WO2023070607A1/zh
Priority to EP21961959.0A priority patent/EP4344914A1/en
Priority to CN202180099683.9A priority patent/CN117545645A/zh
Publication of WO2023070607A1 publication Critical patent/WO2023070607A1/zh
Priority to US18/399,734 priority patent/US20240123797A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • F25B2700/1351Mass flow of refrigerants through the evaporator of the cooled fluid upstream or downstream of the evaporator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present application relates to the technical field of new energy vehicles, and more specifically, relates to a vehicle refrigeration control method, device, equipment, medium and program product.
  • the purpose of this application is to provide a vehicle refrigeration control method, which solves the technical problem of how to allocate and control the refrigeration performance of new energy vehicles.
  • the present application discloses a vehicle refrigeration control method, including:
  • the cooling mode to be entered is determined according to the current cooling demand level of the battery
  • the cooling mode includes: a single-mode stage and a dual-mode stage, the single-mode stage is used to cool the passenger compartment or the battery alone, the dual-mode stage is used to simultaneously cool the passenger compartment and the battery, and the single-mode stage is set in the dual-mode stage Before.
  • the refrigeration process is divided into two stages.
  • the first stage the refrigeration performance is concentrated on the party with the most urgent current demand, and the judgment criterion is that when the battery has no urgent cooling demand, the comfort cooling demand of the passenger compartment is given priority.
  • the total cooling demand has also dropped to within the upper limit of the cooling capacity of the target vehicle, and the dual-mode cooling can be turned on to meet the cooling needs of both.
  • the single-mode stage includes a passenger compartment cooling mode, and the cooling mode to be entered is determined according to the current cooling demand level of the battery, including:
  • the first outlet air temperature includes the outlet air temperature at the location of the internal heat exchanger
  • the dual-mode stage is entered.
  • the cooling demand level of the battery is not high, then on the principle of giving priority to the comfort of the passenger compartment, the cooling capacity will be allocated to the passenger compartment, so that the passenger compartment can be cooled quickly.
  • the cooling demand of the battery also needs to be taken into account, otherwise the cooling demand level of the battery will continue to rise, causing system safety hazards, so it is necessary to control the individual cooling time of the passenger compartment, and at the same time, control the individual cooling time of the passenger compartment, It can also avoid certain unforeseen factors that cause the temperature of the passenger compartment to never reach the preset target, causing the control to fall into an infinite loop, resulting in the failure of the battery to be refrigerated in time, and the safety problem of irreversible damage.
  • the multi-system heat exchanger is used to exchange heat between the heat pump system and the coolant circulation system;
  • determine the control instructions of each target control object including:
  • the second closed-loop control command of the second electronic expansion valve is determined.
  • the first preset position includes the input end of the external heat exchanger, and the second electronic expansion valve is installed on the input side of the internal heat exchanger.
  • control instructions for each target control object are determined, including:
  • a fourth closed-loop control instruction for the second electronic expansion valve is determined according to the subcooling degree at the preset position and the fourth closed-loop control model.
  • the opening degree control command includes a valve opening rate and a valve closing rate
  • the cooling demand level is positively correlated with the valve opening rate
  • the cooling demand level is negatively correlated with the valve closing rate
  • the opening degree control command includes an upper limit value of the opening degree, and the cooling demand level is positively correlated with the upper limit value of the opening degree.
  • the control method of the principle of ensuring the comfort of the passenger compartment is given priority.
  • the compressor is used to control the air temperature of the evaporator, and the evaporator is the internal heat exchanger.
  • the electronic expansion valve that is, the first electronic expansion valve, controls the subcooling degree of the external condenser, that is, the external heat exchanger, which improves the stability and safety of the entire system.
  • the electronic expansion valve at the refrigerant input end of the multi-system heat exchanger that is, the Chiller refrigerator
  • the compressor controls the temperature of the air outlet from the evaporator
  • the electronic expansion valve in front of the evaporator controls the subcooling degree of the external condenser
  • the electronic expansion valve at the refrigerant input end of the Chiller monitors the air outlet from the evaporator The difference between the temperature and the target evaporator outlet air temperature, open the valve slowly, or close the valve slowly, or maintain the opening degree.
  • the priority allocation of cooling to the passenger compartment is completed, ensuring the comfort experience of the user.
  • the single-mode stage includes a battery cooling mode
  • the cooling mode to be entered is determined according to the current cooling demand level of the battery, including:
  • the first position includes the battery cooling pipe entrance in the battery cooling circuit, and the battery cooling circuit is included in the cooling liquid circulation system. ;
  • the dual-mode stage is entered.
  • the air inlet temperature includes the temperature of the air inlet side where the internal heat exchanger is located
  • the target outlet air temperature is the preset temperature of the air outlet side where the internal heat exchanger is located.
  • the sixth closed-loop control command and the preset opening degree command On the basis of the fifth closed-loop control command, the sixth closed-loop control command and the preset opening degree command, at the same time, real-time monitoring of the second temperature difference and the change rate of the coolant temperature to determine the opening degree adjustment command of the second electronic expansion valve .
  • the second temperature difference and the rate of change of the coolant temperature are monitored in real time to determine the opening degree adjustment instruction of the second electronic expansion valve, including:
  • the second temperature difference is greater than the second temperature difference threshold, the second temperature difference is less than or equal to the preset temperature difference upper limit, and the rate of change is less than the first rate threshold, the opening of the second electronic expansion valve is reduced in a first preset manner.
  • the opening of the second electronic expansion valve remains unchanged, and the second The rate threshold is greater than the first rate threshold.
  • the opening of the second electronic expansion valve is increased in a second preset manner.
  • the opening degree of the second electronic expansion valve is reduced in a third preset manner.
  • a seventh closed-loop control instruction of the second electronic expansion valve is determined according to the second temperature difference and the seventh closed-loop control model.
  • the compressor controls the cooling liquid temperature at the entrance of the battery in the cooling liquid circuit, and the Chiller refrigerator
  • the electronic expansion valve in front of the refrigerant input end controls the degree of subcooling, and the electronic expansion valve in front of the evaporator fixes a small opening to take into account the cooling of the passenger compartment and distribute a small part of the cooling performance to the passenger compartment. That is, on the premise of ensuring battery safety, the user's comfort needs are still considered, so that the user's experience can be improved.
  • the compressor controls the temperature of the coolant at the inlet of the battery in the coolant circuit
  • the electronic expansion valve before the refrigerant input end of the Chiller freezer controls the subcooling degree
  • the front of the evaporator While controlling the air outlet temperature of the evaporator, the electronic expansion valve monitors the difference between the water temperature of the battery water inlet and the water temperature of the target water inlet and the change rate of the water temperature of the battery water inlet, and finally determines the opening of the electronic expansion valve in front of the evaporator, that is, the second electronic expansion valve.
  • the opening of the expansion valve is, the flexible allocation of cooling capacity in real time to achieve a balance in the distribution of cooling performance between the passenger compartment and the battery, maintain system safety, and ensure user comfort.
  • the vehicle refrigeration control method further includes:
  • the second electronic expansion valve If it is detected that the temperature of the battery is greater than or equal to the first temperature threshold, close the second electronic expansion valve until the temperature of the battery is less than or equal to the second temperature threshold, and re-enter the real-time monitoring of the temperature difference between the coolant temperature and the second target temperature, And the change rate of the coolant temperature to determine the opening degree adjustment command of the second electronic expansion valve.
  • the temperature of the battery is also related to the power output, when the power consumption increases, the temperature of the battery will also rise rapidly. At this time, in order to ensure the safety of the battery, when the temperature of the battery is detected to be too high, the cooling performance will be allocated to the battery Refrigeration, so that the battery temperature quickly returns to the normal range.
  • a vehicle refrigeration control device including:
  • the monitoring module is used to monitor the temperature of the battery in the target vehicle and the rate of change of the temperature in real time;
  • the processing module is used to determine the cooling demand level of the battery according to the temperature and the rate of change;
  • a monitoring module that also monitors the cooling needs of the target vehicle's passenger compartment and battery
  • the processing module is also used to determine the cooling mode to be entered according to the current cooling demand level of the battery when it is detected that the passenger compartment and the battery of the target vehicle have cooling needs at the same time; and determine the control commands of each target control object according to the cooling mode ;
  • the cooling mode includes: a single-mode stage and a dual-mode stage, the single-mode stage is used to cool the passenger compartment or the battery alone, the dual-mode stage is used to simultaneously cool the passenger compartment and the battery, and the single-mode stage is set in the dual-mode stage Before.
  • the present application discloses an electronic device including: a processor, and a memory communicated with the processor;
  • the memory stores computer-executable instructions
  • the processor executes the computer-implemented instructions stored in the memory, so as to implement any possible vehicle refrigeration control method in the first aspect.
  • the present application discloses a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and the computer-executable instructions are used to implement any possible method in the first aspect when executed by a processor .
  • the present application discloses a computer program product, including a computer program.
  • the computer program is executed by a processor, any possible method in the first aspect is implemented.
  • the present application discloses a computer program, including program code.
  • the program code executes any possible method in the first aspect.
  • the present application provides a vehicle refrigeration control method, device, equipment, medium and program product, by monitoring the temperature and temperature change rate of the battery in the target vehicle in real time; demand level; when it is detected that the passenger compartment and the battery of the target vehicle have cooling demand at the same time, according to the current cooling demand level of the battery, determine the cooling mode to be entered; and then determine the control instructions of each target control object according to the cooling mode, where , the cooling mode includes: single-mode stage and dual-mode stage, the single-mode stage is used to cool the passenger compartment or battery alone, the dual-mode stage is used to cool the passenger compartment and battery at the same time, the single-mode stage is set before the dual-mode stage .
  • Fig. 1 is a structural schematic diagram of a vehicle-mounted heat pump system and a coolant circulation system provided by the present application;
  • Fig. 2 is a schematic flow chart of a vehicle refrigeration control method provided in an embodiment of the present application
  • Fig. 3 is a schematic flow chart of another vehicle refrigeration control method provided by the embodiment of the present application.
  • Fig. 4 is a schematic flow chart of another vehicle refrigeration control method provided in the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a vehicle refrigeration control device provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the heat pump system refers to the heat exchange system installed on the vehicle, which is similar to the internal structure mechanism of the traditional air conditioner, including: compressors, internal heat exchangers, external heat exchangers, multiple electronic expansion valves, multiple solenoid valves and Refrigerant in the cooling line.
  • the internal and external heat exchangers can be used as evaporators or condensers.
  • the coolant circulation system refers to the system for cooling or heating the power equipment on the vehicle, such as the motor, battery, engine, etc. It and the heat pump system are two parallel independent thermal management systems, including battery circuits, water pumps and pipelines. Circulating coolant. Different from the heat pump system, the coolant circulation system does not have the evaporation and condensation of the coolant, but transfers heat through heat radiation or air cooling with air or other gases (such as vaporized refrigerant).
  • the inventors of the present application found that when the passenger compartment is cooled independently or the battery is cooled separately, since there is only one control target temperature, there is no cooling capacity distribution problem, and the control strategy is relatively simple. However, when the passenger compartment and the battery have cooling needs at the same time, the ideal situation is to quickly meet the target cooling needs of the passenger compartment and the battery at the same time. However, in practice, due to the limited cooling capacity of the system, the rapid cooling of the passenger compartment and the battery at the same time has a high cooling power output. The existing practice is to increase the total cooling power of the vehicle, but this will lead to high costs. system manufacturing cost, and, for different models, it is impossible to achieve a universal design.
  • this application proposes a method to ensure the safety of the system and minimize the cooling demand of the passenger compartment and the battery when the cooling power of the cooling system cannot meet the total cooling power requirements of the two at the same time.
  • Vehicle cooling control methods that affect passenger compartment comfort :
  • the cooling level of the battery (such as low, medium, high, emergency).
  • the target water temperature at the battery inlet is different for different battery cooling levels, and the higher the cooling level, the lower the target water temperature.
  • the purpose of this application is to ensure safety, accurately judge the state of the battery, and then judge the priority of battery cooling demand and the cooling capacity distribution ratio.
  • the passenger compartment and the battery have cooling demands at the same time, and the control strategy of the battery cooling level is non-emergency: first enter the passenger compartment cooling mode stage, the compressor controls the air temperature of the evaporator, and the electronic expansion valve in front of the evaporator controls The electronic expansion valve in front of the subcooling and Chiller freezer is closed.
  • the compressor controls the evaporator outlet air temperature
  • the electronic expansion valve in front of the evaporator controls the subcooling degree
  • the electronic expansion valve in front of the Chiller monitors the evaporator outlet air temperature and the target evaporator outlet temperature.
  • the difference of wind temperature slowly open/close the valve/maintain the opening degree.
  • the purpose of this application is to give priority to the cooling of the passenger compartment to ensure the comfort of the passenger compartment.
  • the passenger compartment and the battery have cooling demands at the same time, and the control strategy of the battery cooling level is emergency: first enter the battery cooling mode stage, the compressor controls the water temperature of the battery inlet, and the electronic expansion valve in front of the chiller The electronic expansion valve in front of the coldness and evaporator is fixed with a small opening.
  • the compressor controls the water temperature at the battery water inlet
  • the electronic expansion valve in front of the Chiller controls the subcooling degree
  • the electronic expansion valve in front of the evaporator controls the temperature of the evaporator, while monitoring the water temperature at the battery water inlet
  • the difference between the water temperature at the target water inlet ultimately determines the opening of the electronic expansion valve.
  • the purpose of this application is to give priority to battery cooling, and to satisfy the comfort of the passenger compartment as much as possible under the premise of ensuring safety.
  • FIG. 1 is a schematic structural diagram of a vehicle-mounted heat pump system and a coolant circulation system provided by the present application.
  • the heat pump system includes: a compressor 101 , an evaporator 102 , a condenser 103 , an air conditioning box 120 , a blower 121 and the like.
  • the coolant circulation system includes: a battery 107 and a battery circuit pump 108 and the like.
  • Chiller freezer 104 between the heat pump system and the cooling liquid circulation system. Through the heat transfer between the refrigerant in the heat pump system and the cooling liquid in the cooling liquid circulation system, heat is circulated between the heat pump system and the cooling liquid. exchange between systems.
  • Fig. 2 is a schematic flowchart of a vehicle cooling control method provided by an embodiment of the present application. As shown in Figure 2, the specific steps of the vehicle refrigeration control method include:
  • the temperature of the battery can be directly read from the temperature value detected by the temperature sensor installed in the battery, or the central controller of the thermal management system sends a data request to the battery management system, and the battery management system responds to the data request, Send the temperature data of the battery to the central controller through the bus.
  • the carrier of the vehicle refrigeration control method is a cloud server, and the cloud server manages a large number of new energy vehicles, including passenger vehicles, refrigerated freight vehicles, reconnaissance vehicles, logistics cold chain vehicles and so on.
  • the real-time temperature and temperature change rate of the battery on each target vehicle are obtained through the Internet of Things.
  • S202 Determine the cooling demand level of the battery according to the temperature and the rate of change of the battery.
  • the cooling demand level can be at least divided into: an emergency state and a non-emergency state.
  • the cooling demand level is a non-emergency state, otherwise it is an emergency state.
  • the non-emergency state is further refined and divided into at least three levels: low level, medium level and high level.
  • the cooling demand levels of the battery are divided into: low level, medium level, high level and emergency state.
  • T3 ⁇ battery temperature ⁇ T4, and the rate of change ⁇ V1 the cooling requirement level of the battery is advanced, or if T1 ⁇ battery temperature ⁇ T3, and the battery temperature rise rate>V1, then the cooling requirement level of the battery is advanced;
  • the cooling demand level of the battery is an emergency state, or if T3 ⁇ the temperature of the battery body ⁇ T4, and the temperature rise rate of the battery > V1, the cooling demand level of the battery is an emergency state.
  • the target coolant temperature of the battery cooling circuit at the battery inlet is T5; when the battery cooling level is medium, the target coolant temperature of the cooling circuit at the battery inlet is T6; when the battery cooling level is high , the target coolant temperature of the cooling circuit at the battery inlet is T7; when the battery cooling level is emergency, the target coolant temperature of the cooling circuit at the battery inlet is T8.
  • the refrigeration mode includes: a single-mode stage and a dual-mode stage.
  • the single-mode stage is used to cool the passenger compartment or the battery alone, and the dual-mode stage is used to cool the passenger compartment and the battery at the same time.
  • the single-mode stage is set at Before the dual mode phase.
  • the single-mode stage includes: passenger compartment cooling mode and battery cooling mode.
  • the first outlet air temperature includes the outlet air temperature at the location of the internal heat exchanger; when the first outlet air temperature When the first temperature difference from the first target temperature is less than or equal to the first temperature difference threshold, or the first operating time of the cooling mode of the passenger compartment is greater than or equal to the first preset time, the dual-mode stage is entered.
  • the first position includes the battery cooling pipe entrance in the battery cooling circuit, and the battery cooling circuit is included in the cooling liquid circulation system. ;
  • the second temperature difference between the coolant temperature and the second target temperature is less than or equal to the second temperature difference threshold, or the second running time of the battery cooling mode is greater than or equal to the second preset time, enter the dual mode stage.
  • the on-board heat pump system can follow the traditional cooling method ( That is, the refrigeration principle of the air conditioner) alone cools the passenger compartment, and the coolant circulation system can separately cool the battery in the traditional way (that is, the battery coolant circulation takes away the heat of the battery in the form of heat transfer), the two The refrigeration process is an independent refrigeration process without coupling.
  • the reality is that due to cost constraints, the rated power of the on-board heat pump system and the coolant circulation system are limited, that is, the total cooling power of the target vehicle is limited, and it cannot meet the cooling requirements of the passenger compartment and battery at the same time.
  • the required total cooling power demand, or the total cooling demand power of the target vehicle at this time is greater than the total cooling power. That is, the vehicle cooling control method provided in the embodiment of the present application is performed when the passenger compartment and the battery have cooling demands at the same time, and the total cooling demand power of the target vehicle is greater than the total cooling power.
  • the total cooling power of the vehicle-mounted heat pump system and the coolant circulation system is greater than or equal to the first cooling demand power of the passenger compartment or the second cooling demand power of the battery.
  • the total cooling power is allocated to the first cooling demand power and the second cooling demand power in sequence, and priority is given to ensuring the cooling demand of the passenger compartment. Contradiction between demand and total cooling supply.
  • the control method based on the principle of ensuring the comfort of the passenger compartment is given priority.
  • the electronic expansion valve before the internal heat exchanger that is, the first electronic expansion valve, controls the subcooling degree of the external condenser, that is, the external heat exchanger, which improves the stability and safety of the entire system.
  • the electronic expansion valve at the refrigerant input end of the multi-system heat exchanger, that is, the Chiller refrigerator is closed, that is, the second electronic expansion valve.
  • the compressor controls the temperature of the air outlet from the evaporator
  • the electronic expansion valve in front of the evaporator controls the subcooling degree of the external condenser
  • the electronic expansion valve at the refrigerant input end of the Chiller monitors the air outlet from the evaporator The difference between the temperature and the target evaporator outlet air temperature, open the valve slowly, or close the valve slowly, or maintain the opening degree. In this way, through the cooperation of the compressor and the second electronic expansion valve, the priority allocation of cooling to the passenger compartment is completed, ensuring the comfort experience of the user.
  • the compressor 101 controls the outlet air temperature of the evaporator 102, namely Evaporator 102 is at the air temperature of the air outlet side of the installation position of the air conditioning box 120; the electronic expansion valve 106 before the evaporator 102 controls the subcooling degree of the external condenser 103; the electronic expansion valve 105 before the Chiller refrigerator 104 is closed.
  • the compressor 101 controls the outlet air temperature of the evaporator 102
  • the electronic expansion valve 106 in front of the evaporator 102 controls the subcooling degree of the external condenser 103
  • the electronic expansion valve 106 in front of the chiller 104 The expansion valve 105 monitors the difference between the outlet air temperature of the evaporator 102 and the target outlet air temperature, so as to slowly open the valve, or slowly close the valve, or maintain the opening degree.
  • the compressor controls the coolant at the inlet of the battery in the coolant circuit.
  • the electronic expansion valve in front of the refrigerant input end of the chiller freezer controls the subcooling degree, and the electronic expansion valve in front of the evaporator fixes a small opening to take into account the cooling of the passenger compartment and distribute a small part of the cooling performance to the passengers cabin. That is, on the premise of ensuring battery safety, the user's comfort needs are still considered, so that the user's experience can be improved.
  • the compressor controls the temperature of the coolant at the inlet of the battery in the coolant circuit
  • the electronic expansion valve before the refrigerant input end of the Chiller freezer controls the subcooling degree
  • the front of the evaporator While controlling the air outlet temperature of the evaporator, the electronic expansion valve monitors the difference between the water temperature of the battery water inlet and the water temperature of the target water inlet and the change rate of the water temperature of the battery water inlet, and finally determines the opening of the electronic expansion valve in front of the evaporator, that is, the second electronic expansion valve.
  • the opening of the expansion valve is, the flexible allocation of cooling capacity in real time to achieve a balance in the distribution of cooling performance between the passenger compartment and the battery, maintain system safety, and ensure user comfort.
  • the battery cooling mode is first entered, and the compressor 101 controls the water temperature of the water inlet of the battery, and the water temperature in front of the Chiller refrigerator 104
  • the electronic expansion valve 105 controls the subcooling degree, and the electronic expansion valve 106 in front of the evaporator 102 has a fixed opening degree.
  • the electronic expansion valve 105 in front of the chiller 104 controls the subcooling degree
  • the electronic expansion valve 106 in front of the evaporator 102 controls the air outlet of the evaporator While monitoring the temperature, the difference between the water temperature at the battery water inlet and the target water temperature at the water inlet and the rate of change of the water temperature at the battery water inlet are monitored to finally determine the opening of the electronic expansion valve 106 .
  • the embodiment of the present application provides a vehicle refrigeration control method, by monitoring the temperature of the battery in the target vehicle and the rate of change of the temperature in real time; then determining the cooling demand level of the battery according to the temperature and the rate of change; When the battery has a cooling demand at the same time, determine the cooling mode to be entered according to the current cooling demand level of the battery; and then determine the control instructions of each target control object according to the cooling mode.
  • the cooling mode includes: single mode stage and dual mode stage , the single-mode stage is used to cool the passenger compartment or the battery alone, the dual-mode stage is used to cool the passenger compartment and the battery at the same time, and the single-mode stage is set before the dual-mode stage.
  • Fig. 3 is a schematic flow chart of another vehicle refrigeration control method provided by the embodiment of the present application. As shown in Figure 3, the specific steps of the vehicle refrigeration control method include:
  • the first electronic expansion valve is installed at the refrigerant input end of the multi-system heat exchanger, and the multi-system heat exchanger is used for exchanging heat between the heat pump system and the coolant circulation system.
  • the first electronic expansion valve is an electronic expansion valve 105
  • the multi-system heat exchanger is a Chiller refrigerator 104 .
  • a closing instruction is sent to the electronic expansion valve 105, so that the cooling performance of the heat pump system can be used to cool the passenger compartment, so that the air temperature of the passenger compartment quickly reaches the preset temperature.
  • the first outlet air temperature includes the outlet air temperature at the position where the internal heat exchanger is located.
  • the first air outlet temperature is the air temperature of the evaporator 102 on the air outlet side of the air-conditioning box 120, and the air blower 121 blows the air in the passenger compartment to the evaporator 102 for cooling.
  • a closed-loop control model controls the working state of the compressor so that the air temperature in the passenger compartment drops rapidly to the target temperature.
  • the first preset position includes the input end of the external heat exchanger, and the second electronic expansion valve is installed at the input end of the internal heat exchanger.
  • the external heat exchanger is the condenser 103
  • the first preset position is the input end of the condenser 103, which is different from the electronic expansion valve that directly controls the input end of the condenser 103 in the prior art
  • the subcooling degree at the input end of the condenser 103 is indirectly controlled by controlling the electronic expansion valve 106 at the input end of the internal heat exchanger, ie, the evaporator 102, so that the cooperation between the evaporator 102 and the condenser 103 is more stable and safe.
  • the dual mode stage is used to cool both the passenger compartment and the battery. Cooling the passenger compartment and the battery at the same time requires a multi-system heat exchanger, and the coolant in the coolant circulation system is cooled in an air-cooled manner by the gaseous refrigerant in the heat pump system. That is to say, the multi-system heat exchanger distributes the cooling performance of the heat pump system to the coolant circulation system, which plays a role in allocating the overall cooling performance of the target vehicle.
  • the multi-system heat exchanger is a Chiller refrigerator 104 , and as long as the first electronic expansion valve opens the electronic expansion valve 105 , the dual-mode stage can be entered.
  • S305 Determine an opening degree control instruction of the first electronic expansion valve according to the refrigeration demand level, the first outlet air temperature, and the target temperature.
  • the opening degree control command includes a valve opening rate and a valve closing rate
  • the cooling demand level is positively correlated with the valve opening rate
  • the cooling demand level is negatively correlated with the valve closing rate
  • the opening degree control instruction further includes an upper limit value of the opening degree, and the cooling demand level is positively correlated with the upper limit value of the opening degree.
  • valve opening and closing rates of the electronic expansion valve 105 in front of the Chiller refrigerator 104 will be adjusted according to the cooling demand level of the battery. The higher the refrigeration level, the faster the electronic expansion valve 105 opens and the slower it closes; the lower the refrigeration level, the slower the electronic expansion valve 105 opens and the faster it closes.
  • the opening of the electronic expansion valve 105 in front of the Chiller refrigerator 104 is set with an upper limit value, the higher the refrigeration level, the larger the upper limit value; the lower the refrigeration level, the smaller the upper limit value.
  • the total cooling performance of the target vehicle can be flexibly allocated according to different cooling demand levels.
  • the air outlet temperature on the air outlet side of the evaporator is controlled by the closed-loop compressor.
  • the closed-loop control model of steps S302 and S303 may be the same. This can reduce the computation load of the controller or processing module or cloud server.
  • the closed-loop control models are all different, because in the single-mode stage, the stability requirement is lower than that in the dual-mode stage, so the closed-loop control model is more inclined to the rapidity of regulation in the single-mode stage, The dual-mode stage is more inclined to control overshoot and stability.
  • the embodiment of the present application provides a vehicle refrigeration control method.
  • the control method of the principle of ensuring the comfort of the passenger compartment is given priority, and the compressor is used to control evaporation during the individual cooling stage of the passenger compartment.
  • the temperature of air outlet from the evaporator, the electronic expansion valve in front of the evaporator, that is, the first electronic expansion valve controls the subcooling degree of the external condenser, that is, the external heat exchanger, which improves the stability and safety of the entire system.
  • the electronic expansion valve at the refrigerant input end of the multi-system heat exchanger that is, the Chiller refrigerator
  • the compressor controls the temperature of the air outlet from the evaporator
  • the electronic expansion valve in front of the evaporator controls the subcooling degree of the external condenser
  • the electronic expansion valve at the refrigerant input end of the Chiller monitors the air outlet from the evaporator The difference between the temperature and the target evaporator outlet air temperature, open the valve slowly, or close the valve slowly, or maintain the opening degree.
  • the priority allocation of cooling to the passenger compartment is completed, ensuring the comfort experience of the user.
  • Fig. 4 is a schematic flow chart of another vehicle refrigeration control method provided by the embodiment of the present application. As shown in Figure 4, the specific steps of the vehicle refrigeration control method include:
  • the first location includes the inlet of the battery cooling pipe in the battery cooling circuit, and the battery cooling circuit is included in the cooling fluid circulation system.
  • S402. Determine a fifth closed-loop control instruction of the compressor according to the coolant temperature and the fifth closed-loop control model.
  • the main control temperature of the compressor is the temperature of the battery coolant, so that the cooling performance of the heat pump system can be concentrated on cooling the battery, so that the temperature of the battery can drop rapidly.
  • the second preset position includes the refrigerant input end of the multi-system heat exchanger.
  • the first electronic expansion valve In order to make the refrigerant work efficiently in the multi-system heat exchanger, it is necessary to control the first electronic expansion valve to adjust the subcooling degree.
  • the multi-system heat exchanger is a Chiller refrigerator 104
  • the first electronic expansion valve is an electronic expansion valve 105.
  • the refrigeration of the Chiller refrigerator 104 is controlled correspondingly through different opening values of the electronic expansion valve 105. Subcooling at the agent input.
  • the preset opening degree command is used to fix the opening degree of the second electronic expansion valve to the preset opening degree
  • the inlet air temperature includes the temperature of the air inlet side where the internal heat exchanger is located
  • the target outlet air temperature is Preset temperature on the outlet side where the internal heat exchanger is located.
  • the cooling load is calculated first, and a possible implementation is as follows:
  • Cooling load (inlet air temperature - target air outlet temperature) * blower air volume * air specific heat value
  • a preset opening degree command is determined.
  • the preset opening degree corresponding to the preset opening degree command is less than or equal to the opening degree threshold, for example, less than or equal to 5%-10%. That is to maintain a small opening, so that it will not have a big impact on the cooling of the battery, and can also make the user feel that the air outlet is still cooling, so that the user will not be misunderstood that the heat pump system is not working, and the user's use will be improved. sense of experience.
  • the closed-loop control of the compressor and the first electronic expansion valve is maintained, and at the same time, the second temperature difference between the coolant temperature and the second target temperature and the rate of change of the coolant temperature are monitored in real time, so as to facilitate the subsequent adjustment of the second The opening of the electronic expansion valve is properly adjusted.
  • the second electron is reduced in the first preset manner.
  • the opening of the expansion valve is greater than the second temperature difference threshold, and the second temperature difference is less than or equal to the preset upper limit of the temperature difference, and the rate of change is less than the first rate threshold.
  • the first preset method may be to linearly reduce the opening of the second electronic expansion valve, and the linear slope of the decrease corresponds to the cooling demand level of the battery. The higher the cooling demand level, the absolute value of the slope The larger the value.
  • the first preset manner may also be a non-linear manner, such as a hyperbolic or inverse proportional function manner. What remains unchanged is that the higher the cooling demand level, the faster the decrease rate of the opening.
  • the cooling demand of the battery can be regarded as unchanged.
  • the second preset method may be to linearly increase the opening of the second electronic expansion valve, and the linear slope of the increase corresponds to the cooling demand level of the battery. The higher the cooling demand level, the absolute value of the slope The smaller the value.
  • the second preset manner may also be a non-linear manner, such as a hyperbolic or inverse proportional function manner. What remains unchanged is that the higher the cooling demand level, the slower the increase rate of the opening.
  • the water temperature at the battery water inlet - the target water inlet temperature > TDwater, and the change rate of the water temperature at the battery water inlet ⁇ VTwater2 increase the opening of the electronic expansion valve in front of the evaporator to distribute the cooling performance of the heat pump system to the Chiller refrigeration
  • the engine 104 cools down the battery coolant. At this time, the cooling demand of the battery is high.
  • the third preset method may be to linearly reduce the opening of the second electronic expansion valve, and the linear slope of the decrease is relative to the cooling demand level of the battery. The higher the cooling demand level, the absolute value of the slope The larger the value.
  • the third preset manner may also be a non-linear manner, such as a hyperbolic or inverse proportional function manner. What remains unchanged is that the higher the cooling demand level, the faster the decrease rate of the opening.
  • the electronic expansion valve in front of the evaporator controls the temperature of the evaporator in a closed loop.
  • the temperature of the battery is also related to the power output, when the power consumption increases, the temperature of the battery will also rise rapidly. At this time, in order to ensure the safety of the battery, when the battery temperature is detected to be too high, the cooling performance will be concentrated Allocate cooling to the battery, so that the battery temperature quickly returns to the normal range.
  • the vehicle cooling control method provided by this application also includes:
  • the second electronic expansion valve If it is detected that the temperature of the battery is greater than or equal to the first temperature threshold, close the second electronic expansion valve until the temperature of the battery is less than or equal to the second temperature threshold, and re-enter the real-time monitoring of the temperature difference between the coolant temperature and the second target temperature, And the change rate of the coolant temperature to determine the opening degree adjustment command of the second electronic expansion valve.
  • the embodiment of the present application provides a vehicle cooling control method.
  • the cooling demand level is high, that is, in an emergency state, in order to ensure the safety of the vehicle or system, the battery cooling stage is given priority.
  • the compressor controls the cooling liquid circuit.
  • the temperature of the coolant at the inlet of the battery, the electronic expansion valve in front of the refrigerant input end of the Chiller refrigerator control the subcooling degree, and the electronic expansion valve in front of the evaporator has a small opening to take into account the cooling of the passenger compartment. Allocate a small portion of cooling performance to the passenger compartment. That is, on the premise of ensuring battery safety, the user's comfort needs are still considered, so that the user's experience can be improved.
  • the compressor controls the temperature of the coolant at the inlet of the battery in the coolant circuit
  • the electronic expansion valve before the refrigerant input end of the Chiller freezer controls the subcooling degree
  • the front of the evaporator While controlling the air outlet temperature of the evaporator, the electronic expansion valve monitors the difference between the water temperature of the battery water inlet and the water temperature of the target water inlet and the change rate of the water temperature of the battery water inlet, and finally determines the opening of the electronic expansion valve in front of the evaporator, that is, the second electronic expansion valve.
  • the opening of the expansion valve is, the flexible allocation of cooling capacity in real time to achieve a balance in the distribution of cooling performance between the passenger compartment and the battery, maintain system safety, and ensure user comfort.
  • Fig. 5 is a schematic structural diagram of a vehicle refrigeration control device provided by an embodiment of the present application.
  • the image processing device 500 can be implemented by software, hardware or a combination of both.
  • the image processing device 500 includes:
  • the monitoring module 501 is used to monitor the temperature of the battery in the target vehicle and the rate of change of the temperature in real time;
  • a processing module 502 configured to determine the cooling demand level of the battery according to the temperature and the rate of change;
  • the monitoring module 501 is also used to monitor the cooling requirements of the passenger compartment and the battery of the target vehicle;
  • the processing module 502 is also used to determine the cooling mode to be entered according to the current cooling demand level of the battery when it is detected that the passenger compartment and the battery of the target vehicle have cooling needs at the same time; and determine the control of each target control object according to the cooling mode. instruction;
  • the cooling mode includes: a single-mode stage and a dual-mode stage, the single-mode stage is used to cool the passenger compartment or the battery alone, the dual-mode stage is used to simultaneously cool the passenger compartment and the battery, and the single-mode stage is set in the dual-mode stage Before.
  • the processing module 502 is configured to:
  • the first outlet air temperature includes the outlet air temperature at the location of the internal heat exchanger
  • the dual-mode stage is entered.
  • the processing module 502 is configured to:
  • a closing instruction is sent to the first electronic expansion valve, which is installed at the refrigerant input end of the multi-system heat exchanger, and the multi-system
  • the heat exchanger is used to exchange heat between the heat pump system and the coolant circulation system;
  • the second closed-loop control command of the second electronic expansion valve is determined.
  • the first preset position includes the input end of the external heat exchanger, and the second electronic expansion valve is installed on the input side of the internal heat exchanger.
  • the processing module 502 is configured to:
  • the air inlet temperature includes the temperature of the air inlet side where the internal heat exchanger is located
  • the target outlet air temperature is the preset temperature of the air outlet side where the internal heat exchanger is located.
  • the processing module 502 is configured to:
  • the second temperature difference and the change rate of the coolant temperature are monitored in real time to determine the second electronic Expansion valve opening adjustment command.
  • the processing module 502 is configured to:
  • the second temperature difference is greater than the second temperature difference threshold, the second temperature difference is less than or equal to the preset temperature difference upper limit, and the rate of change is less than the first rate threshold, the opening of the second electronic expansion valve is reduced in a first preset manner.
  • the processing module 502 is configured to:
  • the processing module 502 is configured to:
  • the opening of the second electronic expansion valve is increased in a second preset manner.
  • the processing module 502 is configured to:
  • the opening degree of the second electronic expansion valve is reduced in a third preset manner.
  • the processing module 502 is configured to:
  • a seventh closed-loop control instruction of the second electronic expansion valve is determined according to the second temperature difference and the seventh closed-loop control model.
  • the monitoring module 501 is also used to detect the temperature of the battery
  • the processing module 502 is also used for:
  • the second electronic expansion valve If it is detected that the temperature of the battery is greater than or equal to the first temperature threshold, close the second electronic expansion valve until the temperature of the battery is less than or equal to the second temperature threshold, and re-enter the real-time monitoring of the temperature difference between the coolant temperature and the second target temperature, And the change rate of the coolant temperature to determine the opening degree adjustment command of the second electronic expansion valve.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 6 , the electronic device 600 may include: at least one processor 601 and a memory 602 . FIG. 6 shows an electronic device with a processor as an example.
  • the memory 602 is used to store programs.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory 602 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 601 is configured to execute the computer-executed instructions stored in the memory 602 to implement the methods described in the above method embodiments.
  • the processor 601 may be a central processing unit (central processing unit, referred to as CPU), or a specific integrated circuit (application specific integrated circuit, referred to as ASIC), or is configured to implement one or more of the embodiments of the present application. multiple integrated circuits.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 602 can be independent or integrated with the processor 601 .
  • the electronic device 600 may further include:
  • the bus 603 is used to connect the processor 601 and the memory 602 .
  • the bus may be an industry standard architecture (ISA) bus, a peripheral component interconnect (PCI) bus, or an extended industry standard architecture (EISA) bus, etc.
  • ISA industry standard architecture
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc., but it does not mean that there is only one bus or one type of bus.
  • the memory 602 and the processor 601 may communicate through an internal interface.
  • the embodiment of the present application also provides a computer-readable storage medium
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory) , RAM), a magnetic disk or an optical disk, and other media that can store program codes.
  • the computer-readable storage medium stores program instructions, and the program instructions are used in the methods in the above-mentioned method embodiments.
  • An embodiment of the present application further provides a computer program product, including a computer program, and when the computer program is executed by a processor, the methods in the foregoing method embodiments are implemented.
  • An embodiment of the present application further provides a computer program, which implements the methods in the foregoing method embodiments when the computer program is executed by a processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

一种车辆制冷控制方法、装置、设备、介质及程序产品,通过实时监测目标车辆中电池的温度以及温度的变化速率;然后根据温度以及变化速率确定电池的制冷需求等级;当检测到目标车辆的乘员舱和电池同时存在制冷需求时,根据电池当前的制冷需求等级,确定所需进入的制冷模式;再根据制冷模式,确定各个目标控制对象的控制指令,该制冷模式包括:单独为乘员舱或电池进行制冷的单模式阶段,以及同时为乘员舱和电池进行制冷的双模式阶段,且单模式阶段设置在双模式阶段之前。解决了如何对新能源汽车的制冷能力进行分配和控制的技术问题,达到了在优先保证乘员舱舒适性的前提下,灵活分配车辆的总制冷性能来保障电池的制冷需求的技术效果。

Description

车辆制冷控制方法、装置、设备、介质及程序产品 技术领域
本申请涉及新能源汽车技术领域,更为具体地,涉及一种车辆制冷控制方法、装置、设备、介质及程序产品。
背景技术
随着车辆技术的发展,新能源汽车已经成为了未来汽车发展的主要趋势。在车内环境控制在传统汽车领域中虽然有了很多的解决方案,但是在新能源汽车中会面临新的挑战,因为新能源汽车中引入了大功率驱动电机、大容量电池,其会对现有的车辆热管理带来新的影响。
当新能源汽车的电池和乘员舱都存在制冷需求时,系统的制冷性能可能无法同时并且及时地满足两者的制冷需求,两者如何实现制冷性能地分配和控制成为了新能源汽车亟待解决的技术问题。
发明内容
本申请的目的在于提供一种车辆制冷控制方法,解决了如何对新能源汽车的制冷性能进行分配和控制的技术问题。
第一方面,本申请公开了一种车辆制冷控制方法,包括:
实时监测目标车辆中电池的温度以及温度的变化速率;
根据温度以及变化速率确定电池的制冷需求等级;
当检测到目标车辆的乘员舱和电池同时存在制冷需求时,根据电池当前的制冷需求等级,确定所需进入的制冷模式;
根据制冷模式,确定各个目标控制对象的控制指令;
其中,制冷模式包括:单模式阶段以及双模式阶段,单模式阶段用于单独为乘员舱或电池进行制冷,双模式阶段用于同时为乘员舱和电池进行制冷,单模式阶段设置在双模式阶段之前。
基于上述技术内容,在乘员舱与电池同时存在制冷需求时,根据电池的制冷需求等级决定先对乘员舱进行制冷还是先对电池进行单模式制冷,然后再进行双模式制冷。如此就将制冷过程划分为了两个阶段,第一阶段先将制冷性能集中解决当前需求最为急切的一方,而判断标准就是电池没有紧急制冷需求时,优先保证乘员舱的舒适性制冷需求。在经过第一阶段后,总制冷需求也下降到了在目标车辆的制冷能力上限范围内,就可以开启双模式制冷,同时满足两者的制冷需求。达到了既能保证乘员舱舒适性,又能保证系统安全的技术效果。很好地解决了制冷性能分配和控制的问题。
在一个实现方式中,单模式阶段包括乘员舱制冷模式,根据电池当前的制冷需求等级,确定所需进入的制冷模式,包括:
当电池的制冷需求等级为非紧急状态时,进入乘员舱制冷模式,并实时监测第一出风温度,第一出风温度包括内部热交换器所在位置的出风温度;
当第一出风温度与第一目标温度的第一温差小于或等于第一温差阈值,或者乘员舱制冷模式的第一运行时间大于或等于第一预设时间时,进入双模式阶段。
如果电池的制冷需求等级不高,那么以优先保证乘员舱的舒适性为原则,将制冷能力重点分配到乘员舱,使得乘员舱能够快速降温。但是,由于电池的制冷需求也是需要兼顾的,否则会使得电池制冷需求等级不断攀升,引发系统的安全隐患,所以需要对乘员舱的单独制冷时间进行控制,同时,控制乘员舱的单独制冷时间,也能够避免某些无法预见的因素导致乘员舱温度永远无法达到预设目标时,造成控制陷入死循环,导致电池无法得到及时制冷,而发生非可逆性损坏的安全问题。
在一个实现方式中,当电池的制冷需求等级为非紧急状态时,在进入乘员舱制冷模式之后,向第一电子膨胀阀发送关闭指令,第一电子膨胀阀安装在多系统热交换器的制冷剂输入端,多系统热交换器用于使热泵系统和冷却液循环系统进行热交换;
根据制冷模式,确定各个目标控制对象的控制指令,包括:
根据第一出风温度以及第一闭环控制模型,确定压缩机的第一闭环控制指令;
根据第一预设位置的过冷度以及第二闭环控制模型,确定第二电子膨胀阀的第二闭环控制指令,第一预设位置包括外部热交换器的输入端,第二电子膨胀阀安装在内部热交换器的输入端。
在一个实现方式中,当电池的制冷需求等级为非紧急状态时,在进入双模式阶段之后,根据制冷模式,确定各个目标控制对象的控制指令,包括:
根据制冷需求等级、第一出风温度以及目标温度,确定第一电子膨胀阀的开度控制指令;
根据第一出风温度以及第三闭环控制模型,确定压缩机的第三闭环控制指令;
根据预设位置的过冷度以及第四闭环控制模型,确定第二电子膨胀阀的第四闭环控制指令。
在一个实现方式中,开度控制指令包括开阀速率以及关阀速率,制冷需求等级与开阀速率成正相关关系,制冷需求等级与关阀速率成负相关关系。
可选的,开度控制指令包括开度上限值,制冷需求等级与开度上限值成正相关关系。
在电池的制冷等级较低,即处于非紧急状态时,优先保证乘员舱舒适性原则的控制方法,在乘员舱单独制冷阶段使用压缩机控制蒸发器出风温度、蒸发器即内部热交换器前的电子膨胀阀即第一电子膨胀阀控制外部冷凝器即外部热交换器过冷度这就使得整个系统的稳定性和安全性得到提高。同时为了将制冷性能集中给热泵系统,关闭了多系统热交换器即Chiller冷冻机的制冷剂输入端的电子膨胀阀即第二电子膨胀阀。在进入乘员舱与电池同时制冷阶段后,压缩机控制蒸发器出风温度、蒸发器前的电子膨胀阀控制外部冷凝器过冷度,Chiller冷冻机制冷剂输入端的电子膨胀阀监控蒸发器出风温度和目标蒸发器出风温度的差值,慢慢开阀,或慢慢关阀,或维持开度。这样通过压缩机与第二电子膨胀阀的配合,完成了对乘员舱制冷的优先分配,保证了用户的舒适性体验。
在一个实现方式中,单模式阶段包括电池制冷模式,根据电池当前的制冷需求等级,确定所需进入的制冷模式,包括:
当制冷需求等级为紧急状态时,进入电池制冷模式,并实时监测第一位置的冷却液温 度,第一位置包括电池冷却回路中的电池冷却管道入口处,电池冷却回路包含在冷却液循环系统中;
当冷却液温度与第二目标温度的第二温差小于或等于第二温差阈值,或者电池制冷模式的第二运行时间大于或等于第二预设时间时,进入双模式阶段。
在一个实现方式中,当制冷需求等级为紧急状态时,在进入电池制冷模式之后,根据制冷模式,确定各个目标控制对象的控制指令,包括:
根据冷却液温度以及第五闭环控制模型,确定压缩机的第五闭环控制指令;
根据第二预设位置的过冷度以及第六闭环控制模型,确定第一电子膨胀阀的第六闭环控制指令,该第二预设位置包括多系统热交换器的制冷剂输入端;
根据鼓风机风量、入风温度以及目标出风温度,确定第二电子膨胀阀的预设开度指令,预设开度指令用于将第二电子膨胀阀的开度固定设置为预设开度,入风温度包括内部热交换器所在位置入风侧的温度,目标出风温度为内部热交换器所在位置出风侧的预设温度。
在一个实现方式中,当制冷需求等级为紧急状态时,在进入双模式阶段之后,根据制冷模式,确定各个目标控制对象的控制指令,包括:
在第五闭环控制指令、第六闭环控制指令以及预设开度指令的基础上,同时,实时监测第二温差,以及冷却液温度的变化速率,以确定第二电子膨胀阀的开度调整指令。
在一个实现方式中,实时监测第二温差,以及冷却液温度的变化速率,以确定第二电子膨胀阀的开度调整指令,包括:
当第二温差大于第二温差阈值,且第二温差小于或等于预设温差上限,并且,变化速率小于第一速率阈值时,以第一预设方式减小第二电子膨胀阀的开度。
可选的,当变化速率大于或等于第一速率阈值,且变化速率小于第二速率阈值,并且,第二温差大于第二温差阈值时,维持第二电子膨胀阀的开度不变,第二速率阈值大于第一速率阈值。
可选的,当第二温差大于第二温差阈值,且变化速率大于或等于第二速率阈值时,以第二预设方式增大第二电子膨胀阀的开度。
可选的,当第二温差大于预设温差上限时,以第三预设方式减小第二电子膨胀阀的开度。
可选的,当第二温差小于或等于第二温差阈值时,根据第二温差以及第七闭环控制模型,确定第二电子膨胀阀的第七闭环控制指令。
在制冷需求等级较高,即为紧急状态时,为保证车辆即系统的安全,优先进入电池单独制冷阶段,此时压缩机控制冷却液回路中在电池的入口的处冷却液温度、Chiller冷冻机的制冷剂输入端前的电子膨胀阀控制过冷度、蒸发器前的电子膨胀阀固定较小的开度,以兼顾乘员舱的制冷,将小部分的制冷性能分配给乘员舱。即在保障电池安全的前提下,依然考虑用户的舒适性需求,这样就可以提高用户的使用体验。当进入乘员舱与电池同时制冷阶段后,在压缩机控制冷却液回路中在电池的入口的处冷却液温度、Chiller冷冻机的制冷剂输入端前的电子膨胀阀控制过冷度,蒸发器前的电子膨胀阀控制蒸发器出风温度的同时,监控电池入水口水温和目标入水口水温的差值和电池入水口水温的变化速率,最终决定蒸发器前的电子膨胀阀的开度即第二电子膨胀阀的开度。这就能够实时地灵活调配制冷 能力,达到乘员舱和电池制冷性能分配的平衡,维持系统安全,并保证用户的乘坐舒适性。
在一个实现方式中,该车辆制冷控制方法,还包括:
若检测到电池的温度大于或等于第一温度阈值时,关闭第二电子膨胀阀,直至电池的温度小于或等于第二温度阈值之后,重新进入实时监控冷却液温度与第二目标温度的温差,以及冷却液温度的变化速率,以确定第二电子膨胀阀的开度调整指令。
由于电池的温度还与动力输出存在着关系,当用电量增加时,电池温度也会快速上升,此时,为保证电池的安全,监测到电池温度过高时,将制冷性能集中分配给电池制冷,使得电池温度快速恢复到正常范围。
第二方面,本申请公开了一种车辆制冷控制装置,包括:
监测模块,用于实时监测目标车辆中电池的温度以及温度的变化速率;
处理模块,用于根据温度以及变化速率确定电池的制冷需求等级;
监测模块,还用于监测目标车辆的乘员舱和电池的制冷需求;
处理模块,还用于当检测到目标车辆的乘员舱和电池同时存在制冷需求时,根据电池当前的制冷需求等级,确定所需进入的制冷模式;根据制冷模式,确定各个目标控制对象的控制指令;
其中,制冷模式包括:单模式阶段以及双模式阶段,单模式阶段用于单独为乘员舱或电池进行制冷,双模式阶段用于同时为乘员舱和电池进行制冷,单模式阶段设置在双模式阶段之前。
第三方面,本申请公开了一种电子设备包括:处理器,以及与处理器通信连接的存储器;
存储器存储计算机执行指令;
处理器执行存储器存储的计算机执行指令,以实现第一方面中任意一种可能的车辆制冷控制方法。
第四方面,本申请公开了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机执行指令,计算机执行指令被处理器执行时用于实现第一方面中任意一种可能的方法。
第五方面,本申请公开了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现第一方面中任意一种可能的方法。
第六方面,本申请公开了一种计算机程序,包括程序代码,当计算机运行计算机程序时,程序代码执行如第一方面中任意一种可能的方法。
结合上述技术方案,本申请提供了一种车辆制冷控制方法、装置、设备、介质及程序产品,通过实时监测目标车辆中电池的温度以及温度的变化速率;然后根据温度以及变化速率确定电池的制冷需求等级;当检测到目标车辆的乘员舱和电池同时存在制冷需求时,根据电池当前的制冷需求等级,确定所需进入的制冷模式;再根据制冷模式,确定各个目标控制对象的控制指令,其中,制冷模式包括:单模式阶段以及双模式阶段,单模式阶段用于单独为乘员舱或电池进行制冷,双模式阶段用于同时为乘员舱和电池进行制冷,单模式阶段设置在双模式阶段之前。解决了如何对新能源汽车的制冷能力进行分配和控制的技术问题,达到了在优先保证乘员舱舒适性的前提下,灵活分配车辆的总制冷性能,使得电池的制冷能够得到有效保障的技术效果。
附图说明
图1为本申请提供的一种车载热泵系统和冷却液循环系统的结构示意图;
图2为本申请实施例提供的一种车辆制冷控制方法的流程示意图;
图3为本申请实施例提供的另一种车辆制冷控制方法的流程示意图;
图4为本申请实施例提供的又一种车辆制冷控制方法的流程示意图;
图5为本申请实施例提供的一种车辆制冷控制装置的结构示意图;
图6为本申请实施例提供的一种电子设备的结构示意。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,包括但不限于对多个实施例的组合,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
首先对本申请所涉及的名词进行解释:
热泵系统,指安装在车辆上的热交换系统,其与传统空调的内部构造机理类似,包括:压缩机、内部热交换器、外部热交换器、多个电子膨胀阀、多个电磁阀以及在冷却管路中的制冷剂。根据制冷和制热的不同过程,内部热交换器和外部热交换器即可作为蒸发器也可作为冷凝器。
冷却液循环系统,指对车辆上的动力设备,如电机、电池、发动机等进行冷却或加热的系统,其与热泵系统是两个并行的独立热管理系统,包括电池回路、水泵以及在管路中循环流动的冷却液。与热泵系统不同的是,冷却液循环系统并没有冷却液的蒸发和冷凝作用,而是通过热辐射或与空气或其它气体(如汽化的制冷剂)的风冷作用进行热量传递。
本申请的发明构思是:
本申请发明人发现,在乘员舱单独制冷或电池单独制冷时,因为控制目标温度只有一个,不存在制冷量分配的问题,控制策略比较简单。但是乘员舱和电池同时有制冷需求时,理想的状况是希望同时快速的满足乘员舱和电池的目标制冷需求。但是,实际中由于系统的制冷能力是有限的,快速对乘员舱和电池同时进行制冷,其制冷功率输出很高,现有做法是加大配置车辆的总制冷功率,但是这样做就会导致高昂的系统制造成本,并且,对于不同的车型,无法做到通用化设计。,在不能同时满足双制冷需求时,如何合理的分配制冷能量是一个重要的课题。而且,即使系统的制冷能力足够,如何控制各执行器既保证系 统安全,又不影响乘员舱舒适性也是一个难点课题。
为解决以上问题,本申请提出一种在乘员舱和电池同时有制冷需求,但是制冷系统的制冷功率无法满足两者同时制冷的总功率需求的情况下,既能保证系统安全,又最大限度不影响乘员舱舒适性的车辆制冷控制方法:
(1)根据电池本体温度和电池的升温速率,确定电池的制冷等级(如低、中、高、紧急)。电池制冷等级不同,电池入口的目标水温也不同,并且制冷等级越高,目标水温越低。本申请的目的是为了保证安全,准确的判断电池的状态,进而判断电池制冷需求优先级和制冷量分配比例。
(2)当乘员舱和电池同时有制冷需求时,若电池的制冷等级为非紧急(低、中、高),则先进入乘员舱制冷模式,待蒸发器温度达到目标蒸发器温度附近或乘员舱制冷运行一段时间后,再进入乘员舱和电池的双制冷模式;若电池的制冷等级为紧急,则先进入电池冷却模式,待电池入水口水温达到目标水温附近或电池冷却模式运行一段时间后,再进入乘员舱和电池的双制冷模式。本申请的目的是为了保证安全的前提下,尽量不影响乘员舱的舒适性。
(3)乘员舱和电池同时有制冷需求,且电池的制冷等级为非紧急状态的控制策略为,先进入乘员舱制冷模式阶段压缩机控制蒸发器出风温度、蒸发器前的电子膨胀阀控制过冷度、Chiller冷冻机前的电子膨胀阀关闭。当进入乘员舱和电池双制冷模式阶段压缩机控制蒸发器出风温度、蒸发器前的电子膨胀阀控制过冷度,Chiller冷冻机前的电子膨胀阀监控蒸发器出风温度和目标蒸发器出风温度的差值,慢慢开阀/关阀/维持开度。本申请的目的是乘员舱制冷优先,确保乘员舱的舒适性。
(4)乘员舱和电池同时有制冷需求,且电池的制冷等级为紧急状态的控制策略为,先进入电池冷却模式阶段压缩机控制电池入水口水温、Chiller冷冻机r前的电子膨胀阀控制过冷度、蒸发器前的电子膨胀阀固定较小开度。当进入乘员舱和电池双制冷模式阶段压缩机控制电池入水口水温、Chiller冷冻机前的电子膨胀阀控制过冷度、蒸发器前的电子膨胀阀控制蒸发器温度的同时,监控电池入水口水温和目标入水口水温的差值,最终决定电子膨胀阀的开度。本申请的目的是电池冷却优先,保证安全的前提下,尽量满足乘员舱的舒适性。
本申请具体的应用场景:
图1为本申请提供的一种车载热泵系统和冷却液循环系统的结构示意图。如图1所示,热泵系统包括:压缩机101、蒸发器102、冷凝器103、空调箱120以及鼓风机121等。冷却液循环系统包括:电池107以及电池回路泵108等。此外,在热泵系统与冷却液循环系统之间还有Chiller冷冻机104,通过热泵系统中的制冷剂和冷却液循环系统中的冷却液之间的热传递,实现热量在热泵系统与冷却液循环系统之间交换。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图2为本申请实施例提供的一种车辆制冷控制方法的流程示意图。如图2所示,该车辆制冷控制方法的具体步骤,包括:
S201、实时监测目标车辆中电池的温度以及温度的变化速率。
在本步骤中,电池的温度可以直接读取在电池中安装的温度传感器所检测到的温度值,或者热管理系统的中央控制器向电池管理系统发送数据请求,电池管理系统响应于数据请求,通过总线将电池的温度数据发送给中央控制器。
在一种可能的设计中个,该车辆制冷控制方法的载体为云端服务器,云端服务器管理着大量的新能源汽车,包括载客车辆、冷鲜货运车辆、侦查车辆、物流冷链车辆等等。通过物联网获取各个目标车辆上的电池的实时温度以及温度的变化速率。
S202、根据电池的温度以及变化速率确定电池的制冷需求等级。
在本步骤中,制冷需求等级至少可以分为:紧急状态以及非紧急状态,当电池的温度小于或等于预设状态阈值时,制冷需求等级为非紧急状态,否则为紧急状态。
在一种可能的设计中,为了能够更加细化制冷性能分配,将非紧急状态继续进行细化,分为至少三个等级:低级、中级和高级。
具体的,在本实施例中,电池的制冷需求等级分为:低级、中级、高级和紧急状态。
若T1≤电池的温度<T2,且变化速率≤V1,则电池的制冷需求等级为低级;
若T2≤电池的温度<T3,且变化速率≤V1,则电池的制冷需求等级为中级;
若T3≤电池的温度<T4,且变化速率≤V1则电池的制冷需求等级为高级,或者若T1≤电池的温度<T3,且电池温升速率>V1,则电池的制冷需求等级为高级;
若电池的温度≥T4则电池的制冷需求等级为紧急状态,或者若T3≤电池本体温度<T4,且电池温升速率>V1,则电池的制冷需求等级为紧急状态。
对应的,电池冷却等级为低级时,电池冷却回路在电池入口的目标冷却液温度为T5;电池冷却等级为中级时,冷却回路在电池入口的目标冷却液温度为T6;电池冷却等级为高级时,冷却回路在电池入口的目标冷却液温度为T7;电池冷却等级为紧急状态时,冷却回路在电池入口的目标冷却液温度为T8。
其中,T1<T2<T3<T4;T5<T6<T7<T8。
S203、当检测到目标车辆的乘员舱和电池同时存在制冷需求时,根据电池当前的制冷需求等级,确定所需进入的制冷模式。
在本步骤中,制冷模式包括:单模式阶段以及双模式阶段,单模式阶段用于单独为乘员舱或电池进行制冷,双模式阶段用于同时为乘员舱和电池进行制冷,单模式阶段设置在双模式阶段之前。
具体的,单模式阶段包括:乘员舱制冷模式以及电池制冷模式。
当电池的制冷需求等级为非紧急状态时,进入乘员舱制冷模式,并实时监测第一出风温度,第一出风温度包括内部热交换器所在位置的出风温度;当第一出风温度与第一目标温度的第一温差小于或等于第一温差阈值,或者乘员舱制冷模式的第一运行时间大于或等于第一预设时间时,进入双模式阶段。
当制冷需求等级为紧急状态时,进入电池制冷模式,并实时监测第一位置的冷却液温度,第一位置包括电池冷却回路中的电池冷却管道入口处,电池冷却回路包含在冷却液循环系统中;当冷却液温度与第二目标温度的第二温差小于或等于第二温差阈值,或者电池制冷模式的第二运行时间大于或等于第二预设时间时,进入双模式阶段。
需要说明的是,目标车辆的乘员舱和电池同时存在制冷需求时,在理想情况下,如果车载热泵系统以及冷却液循环系统各自的额定功率足够大,那么车载热泵系统可以按照 传统的制冷方式(即空调的制冷原理)单独对乘员舱进行制冷,并且冷却液循环系统可以按照传统方式(即电池的冷却液循环以热传递的方式带走电池的热量)进行对电池进行单独制冷,两者的制冷过程为独立制冷的过程,无需进行耦合。
但是,现实情况是,由于受到成本的限制,车载热泵系统以及冷却液循环系统各自的额定功率都是受限的,即目标车辆的总制冷功率受到了限制,无法满足乘员舱和电池同时存在制冷需求的总制冷功率需求,或者说此时目标车辆的总制冷需求功率大于总制冷功率。即本申请实施例所提供的车辆制冷控制方法,是在乘员舱和电池同时存在制冷需求时,目标车辆的总制冷需求功率大于总制冷功率的情况下进行的。
但是,此时车载热泵系统以及冷却液循环系统的总制冷功率大于或等于乘员舱的第一制冷需求功率或电池的第二制冷需求功率,因此,本申请实施例提供的车辆制冷控制方法将车载热泵系统以及冷却液循环系统结合起来,将总制冷功率分先后地分配给第一制冷需求功率和第二制冷需求功率,并且优先保证乘员舱的制冷需求,以优化分配方式的方案,解决了制冷需求与总制冷供给之间的矛盾。
S204、根据制冷模式,确定各个目标控制对象的控制指令。
在本步骤中,在电池的制冷等级较低,即处于非紧急状态时,优先保证乘员舱舒适性原则的控制方法,在乘员舱单独制冷阶段使用压缩机控制蒸发器出风温度、蒸发器即内部热交换器前的电子膨胀阀即第一电子膨胀阀控制外部冷凝器即外部热交换器过冷度这就使得整个系统的稳定性和安全性得到提高。同时为了将制冷性能集中给热泵系统,关闭了多系统热交换器即Chiller冷冻机的制冷剂输入端的电子膨胀阀即第二电子膨胀阀。在进入乘员舱与电池同时制冷阶段后,压缩机控制蒸发器出风温度、蒸发器前的电子膨胀阀控制外部冷凝器过冷度,Chiller冷冻机制冷剂输入端的电子膨胀阀监控蒸发器出风温度和目标蒸发器出风温度的差值,慢慢开阀,或慢慢关阀,或维持开度。这样通过压缩机与第二电子膨胀阀的配合,完成了对乘员舱制冷的优先分配,保证了用户的舒适性体验。
具体的,当乘员舱和电池同时有制冷需求,且电池的制冷需求等级为非紧急状态时,在乘员舱制冷模式,如图1所示,压缩机101控制蒸发器102的出风温度,即蒸发器102在空调箱120的安装位置的出风侧的空气温度;蒸发器102前的电子膨胀阀106控制外部的冷凝器103的过冷度;Chiller冷冻机104前的电子膨胀阀105关闭。
当进入乘员舱和电池双制冷模式阶段,压缩机101控制蒸发器102的出风温度、蒸发器102前的电子膨胀阀106控制外部的冷凝器103的过冷度,Chiller冷冻机104前的电子膨胀阀105监控蒸发器102的出风温度和目标出风温度的差值,以慢慢开阀,或者慢慢关阀,或者维持开度。
在本步骤中,在制冷需求等级较高,即为紧急状态时,为保证车辆即系统的安全,优先进入电池单独制冷阶段,此时压缩机控制冷却液回路中在电池的入口的处冷却液温度、Chiller冷冻机的制冷剂输入端前的电子膨胀阀控制过冷度、蒸发器前的电子膨胀阀固定较小的开度,以兼顾乘员舱的制冷,将小部分的制冷性能分配给乘员舱。即在保障电池安全的前提下,依然考虑用户的舒适性需求,这样就可以提高用户的使用体验。当进入乘员舱与电池同时制冷阶段后,在压缩机控制冷却液回路中在电池的入口的处冷却液温度、Chiller冷冻机的制冷剂输入端前的电子膨胀阀控制过冷度,蒸发器前的电子膨胀阀控制蒸发器出风温度的同时,监控电池入水口水温和目标入水口水温的差值和电池入水口水温的变化速 率,最终决定蒸发器前的电子膨胀阀的开度即第二电子膨胀阀的开度。这就能够实时地灵活调配制冷能力,达到乘员舱和电池制冷性能分配的平衡,维持系统安全,并保证用户的乘坐舒适性。
具体的,如图1所示,当乘员舱和电池同时有制冷需求,且电池的制冷等级为紧急状态时,先进入电池制冷模式,压缩机101控制电池入水口水温、Chiller冷冻机104前的电子膨胀阀105控制过冷度、蒸发器102前的电子膨胀阀106固定较小开度。当进入乘员舱和电池双制冷模式阶段,压缩,101控制电池入水口水温、Chiller冷冻机104前的电子膨胀阀105控制过冷度、蒸发器102前的电子膨胀阀106控制蒸发器的出风温度的同时,监控电池入水口水温和目标入水口水温的差值和电池入水口水温的变化速率,最终决定电子膨胀阀106的开度。
需要说明的是,上述的控制,都是采用闭环控制,本领域技术人员可以根据实际情况选择所需要的闭环控制模型,如PID(Proportion Integral Differential)比例积分微分控制,神经网络控制模型等,本申请不作限定。
本申请实施例提供了一种车辆制冷控制方法,通过实时监测目标车辆中电池的温度以及温度的变化速率;然后根据温度以及变化速率确定电池的制冷需求等级;当检测到目标车辆的乘员舱和电池同时存在制冷需求时,根据电池当前的制冷需求等级,确定所需进入的制冷模式;再根据制冷模式,确定各个目标控制对象的控制指令,其中,制冷模式包括:单模式阶段以及双模式阶段,单模式阶段用于单独为乘员舱或电池进行制冷,双模式阶段用于同时为乘员舱和电池进行制冷,单模式阶段设置在双模式阶段之前。解决了如何对新能源汽车的制冷能力进行分配和控制的技术问题,达到了在优先保证乘员舱舒适性的前提下,灵活分配车辆的总制冷性能,使得电池的制冷能够得到有效保障的技术效果。
为了更详细地对S203和S204中,电池的制冷需求为非紧急状态时和紧急状态时两种场景下的不同控制方式进行更详细的介绍,下面以具体实施例来举例说明。
首先介绍电池的制冷需求为非紧急状态时的控制方法:
图3为本申请实施例提供的另一种车辆制冷控制方法的流程示意图。如图3所示,该车辆制冷控制方法的具体步骤,包括:
S301、当检测到目标车辆的乘员舱和电池同时存在制冷需求,且电池的制冷需求等级为非紧急状态时,进入乘员舱制冷模式,并向第一电子膨胀阀发送关闭指令。
在本步骤中,第一电子膨胀阀安装在多系统热交换器的制冷剂输入端,多系统热交换器用于使热泵系统和冷却液循环系统进行热交换。
具体的,如图1所示,第一电子膨胀阀为电子膨胀阀105,多系统热交换器为Chiller冷冻机104。向电子膨胀阀105发送关闭指令,这样就能够把热泵系统的制冷性能都用于对乘员舱进行制冷,使得乘员舱的气温快速达到预设温度。
S302、根据第一出风温度以及第一闭环控制模型,确定压缩机的第一闭环控制指令。
在本步骤中,第一出风温度包括内部热交换器所在位置的出风温度。
在本实施例中,如图1所示,第一出风温度为蒸发器102在空调箱120的出风侧的气温,鼓风机121将乘员舱中的空气吹向蒸发器102进行冷却,通过第一闭环控制模型控制压缩机的工作状态,以使乘员舱的气温快速下降到目标温度。
S303、根据第一预设位置的过冷度以及第二闭环控制模型,确定第二电子膨胀阀的第 二闭环控制指令。
在本步骤中,第一预设位置包括外部热交换器的输入端,第二电子膨胀阀安装在内部热交换器的输入端。
在本实施例中,如图1所示,外部热交换器为冷凝器103,第一预设位置为冷凝器103输入端,与现有技术直接控制冷凝器103输入端的电子膨胀阀不同的是,本申请是通过控制内部热交换器即蒸发器102输入端的电子膨胀阀106来间接控制冷凝器103输入端的过冷度,这样使得蒸发器102与冷凝器103的配合更加稳定和安全。
S304、当检测到第一出风温度与第一目标温度的第一温差小于或等于第一温差阈值,或者乘员舱制冷模式的第一运行时间大于或等于第一预设时间时,进入双模式阶段。
在本步骤中,双模式阶段用于同时为乘员舱和电池进行制冷。同时为乘员舱和电池进行制冷需要依靠多系统热交换器,通过热泵系统中的气态制冷剂将冷却液循环系统中的冷却液以风冷的方式进行冷却。也就是说,多系统热交换器将热泵系统的制冷性能分配到了冷却液循环系统中,起到了调配目标车辆的总制冷性能的作用。
具体的,如图1所示,多系统热交换器为Chiller冷冻机104,只要第一电子膨胀阀即开启电子膨胀阀105,即可进入双模式阶段。
S305、根据制冷需求等级、第一出风温度以及目标温度,确定第一电子膨胀阀的开度控制指令。
在本步骤中,开度控制指令包括开阀速率以及关阀速率,制冷需求等级与开阀速率成正相关关系,制冷需求等级与关阀速率成负相关关系。
可选的,开度控制指令还包括开度上限值,制冷需求等级与开度上限值成正相关关系。
具体的,Chiller冷冻机104前的电子膨胀阀105的开阀和关阀速率,会根据电池的制冷需求等级不同做出调整。制冷等级越高,电子膨胀阀105开阀越快、关阀越慢;制冷等级越低,电子膨胀阀105开阀越慢、关阀越快。
Chiller冷冻机104前的电子膨胀阀105的开度设置上限值,制冷等级越高,上限值越大;制冷等级越低,上限值越小。
这样就能够,根据不同的制冷需求等级来对目标车辆的总制冷性能进行灵活分配。
S306、根据第一出风温度以及第三闭环控制模型,确定压缩机的第三闭环控制指令。
在本步骤中,利用压缩机闭环控制蒸发器出风侧的出风温度。
S307、根据第一预设位置的过冷度以及第四闭环控制模型,确定第二电子膨胀阀的第四闭环控制指令。
对于步骤S306和S307,与步骤S302和S303的闭环控制模型,可以是相同的。这样可以减少控制器或处理模块或云端服务器的运算量。
在一种可能的设计中,闭环控制模型都不相同,因为在单模式阶段,其稳定性要求比双模式阶段要低,因此,在单模式阶段,闭环控制模型更倾向于调节的快速性,而双模式阶段更倾向于控制超调量以及稳定性。
本申请实施例提供了一种车辆制冷控制方法,在电池的制冷等级较低,即处于非紧急状态时,优先保证乘员舱舒适性原则的控制方法,在乘员舱单独制冷阶段使用压缩机控制蒸发器出风温度、蒸发器即内部热交换器前的电子膨胀阀即第一电子膨胀阀控制外部冷凝器即外部热交换器过冷度这就使得整个系统的稳定性和安全性得到提高。同时为了将制冷 性能集中给热泵系统,关闭了多系统热交换器即Chiller冷冻机的制冷剂输入端的电子膨胀阀即第二电子膨胀阀。在进入乘员舱与电池同时制冷阶段后,压缩机控制蒸发器出风温度、蒸发器前的电子膨胀阀控制外部冷凝器过冷度,Chiller冷冻机制冷剂输入端的电子膨胀阀监控蒸发器出风温度和目标蒸发器出风温度的差值,慢慢开阀,或慢慢关阀,或维持开度。这样通过压缩机与第二电子膨胀阀的配合,完成了对乘员舱制冷的优先分配,保证了用户的舒适性体验。
接下来介绍电池的制冷需求为紧急状态时的控制方法:
图4为本申请实施例提供的又一种车辆制冷控制方法的流程示意图。如图4所示,该车辆制冷控制方法的具体步骤,包括:
S401、当检测到目标车辆的乘员舱和电池同时存在制冷需求,且电池的制冷需求等级为紧急状态时,进入电池制冷模式,实时监测第一位置的冷却液温度。
在本步骤中,第一位置包括电池冷却回路中的电池冷却管道入口处,电池冷却回路包含在冷却液循环系统中。
S402、根据冷却液温度以及第五闭环控制模型,确定压缩机的第五闭环控制指令。
在本步骤中,压缩机主控温度是电池冷却液的温度,这样就能够使得热泵系统的制冷性能集中在对电池的冷却上,使得电池的温度能够快速下降。
S403、根据第二预设位置的过冷度以及第六闭环控制模型,确定第一电子膨胀阀的第六闭环控制指令。
在本步骤中,第二预设位置包括多系统热交换器的制冷剂输入端。为了使得制冷剂能够在多系统热交换器中处于高效的工作状态,因此,需要控制第一电子膨胀阀来调整过冷度。
具体的,如图1所示,多系统热交换器为Chiller冷冻机104,第一电子膨胀阀为电子膨胀阀105,通过电子膨胀阀105的不同开度值来对应控制Chiller冷冻机104的制冷剂输入端的过冷度。
S404、根据鼓风机风量、入风温度以及目标出风温度,确定第二电子膨胀阀的预设开度指令。
在本步骤中,预设开度指令用于将第二电子膨胀阀的开度固定设置为预设开度,入风温度包括内部热交换器所在位置入风侧的温度,目标出风温度为内部热交换器所在位置出风侧的预设温度。
具体的,首先计算制冷负荷,其一种可能的实现方式如下所示:
制冷负荷=(入风温度-目标出风温度)*鼓风机风量*空气比热值
然后,根据制冷负荷与第二电子膨胀阀的开度之间的对应关系,确定预设开度指令。
在本实施例中,预设开度指令对应的预设开度小于或等于开度阈值,如小于或等于5%~10%。即维持较小的开度,这样即不会对电池的制冷产生大的影响,也能够让用户感受到出风口依然在制冷,从而不会让用户产生热泵系统没有工作的误解,提高用户的使用体验感。
S405、当检测到冷却液温度与第二目标温度的第二温差小于或等于第二温差阈值,或者电池制冷模式的第二运行时间大于或等于第二预设时间时,进入双模式阶段。
S406、在第五闭环控制指令、第六闭环控制指令以及预设开度指令的基础上,同 时,实时监测第二温差,以及冷却液温度的变化速率,以确定第二电子膨胀阀的开度调整指令。
在本步骤中,保持对压缩机、第一电子膨胀阀的闭环控制,同时,实时监测冷却液温度与第二目标温度的第二温差,以及冷却液温度的变化速率,以便于后续对第二电子膨胀阀的开度进行适当调节。
具体的,(1)当第二温差大于第二温差阈值,且第二温差小于或等于预设温差上限,并且,变化速率小于第一速率阈值时,以第一预设方式减小第二电子膨胀阀的开度。
在本步骤中,第一预设方式可以是线性地减小第二电子膨胀阀的开度,其减小的线性斜率与电池的制冷需求等级相对应,制冷需求等级越高,其斜率的绝对值越大。
可选的,第一预设方式也可以是非线性方式,如按双曲线或反比例函数的方式。不变的是,制冷需求等级越高其开度的减小速率越快。
例如,若TDwater<电池入水口水温-目标入水口水温≤TDwaterUp,且电池入水口水温的变化速率<VTwater1,则减小蒸发器前的电子膨胀阀开度。此时电池的制冷需求较低。
(2)当变化速率大于或等于第一速率阈值,且变化速率小于第二速率阈值,并且,第二温差大于第二温差阈值时,维持第二电子膨胀阀的开度不变,第二速率阈值大于第一速率阈值。
例如,若电池入水口水温-目标入水口水温>TDwater,且VTwater1≤电池入水口水温的变化速率<VTwater2,则维持蒸发器前的电子膨胀阀开度。此时电池的制冷需求可以看做不变。
(3)当第二温差大于第二温差阈值,且变化速率大于或等于第二速率阈值时,以第二预设方式增大第二电子膨胀阀的开度。
在本步骤中,第二预设方式可以是线性地增大第二电子膨胀阀的开度,其增大的线性斜率与电池的制冷需求等级相对应,制冷需求等级越高,其斜率的绝对值越小。
可选的,第二预设方式也可以是非线性方式,如按双曲线或反比例函数的方式。不变的是,制冷需求等级越高其开度的增加速率越慢。
例如,若电池入水口水温-目标入水口水温>TDwater,且电池入水口水温的变化速率≥VTwater2,则增大蒸发器前的电子膨胀阀开度,以将热泵系统的制冷性能分配到Chiller冷冻机104中为电池冷却液进行降温。此时电池的制冷需求较高。
(4)当第二温差大于预设温差上限时,以第三预设方式减小第二电子膨胀阀的开度。
在本步骤中,第三预设方式可以是线性地减小第二电子膨胀阀的开度,其减小的线性斜率与电池的制冷需求等级相对于,制冷需求等级越高,其斜率的绝对值越大。
可选的,第三预设方式也可以是非线性方式,如按双曲线或反比例函数的方式。不变的是,制冷需求等级越高其开度的减小速率越快。
例如,若电池入水口水温-目标入水口水>TDwaterUp,则减小蒸发器前电子膨胀阀开度。此时电池的制冷需求最高。
(5)当第二温差小于或等于第二温差阈值时,根据第二温差以及第七闭环控制模 型,确定第二电子膨胀阀的第七闭环控制指令。
例如,若电池入水口水温-目标入水口水温≤TDwater,则蒸发器前的电子膨胀阀闭环控制蒸发器温度。
进一步的,由于电池的温度还与动力输出存在着关系,当用电量增加时,电池温度也会快速上升,此时,为保证电池的安全,监测到电池温度过高时,将制冷性能集中分配给电池制冷,使得电池温度快速恢复到正常范围。
即在进入乘员舱和电池双制冷模式阶段时,本申请所提供的车辆制冷控制方法,还包括:
若检测到电池的温度大于或等于第一温度阈值时,关闭第二电子膨胀阀,直至电池的温度小于或等于第二温度阈值之后,重新进入实时监控冷却液温度与第二目标温度的温差,以及冷却液温度的变化速率,以确定第二电子膨胀阀的开度调整指令。
具体的,若电池本体温度≥TBettry1,则关闭蒸发器前电子膨胀阀,直至电池本体温度≤TBettry2后,再重新进入上述的控制。
本申请实施例提供了一种车辆制冷控制方法,通过在制冷需求等级较高,即为紧急状态时,为保证车辆即系统的安全,优先进入电池单独制冷阶段,此时压缩机控制冷却液回路中在电池的入口的处冷却液温度、Chiller冷冻机的制冷剂输入端前的电子膨胀阀控制过冷度、蒸发器前的电子膨胀阀固定较小的开度,以兼顾乘员舱的制冷,将小部分的制冷性能分配给乘员舱。即在保障电池安全的前提下,依然考虑用户的舒适性需求,这样就可以提高用户的使用体验。当进入乘员舱与电池同时制冷阶段后,在压缩机控制冷却液回路中在电池的入口的处冷却液温度、Chiller冷冻机的制冷剂输入端前的电子膨胀阀控制过冷度,蒸发器前的电子膨胀阀控制蒸发器出风温度的同时,监控电池入水口水温和目标入水口水温的差值和电池入水口水温的变化速率,最终决定蒸发器前的电子膨胀阀的开度即第二电子膨胀阀的开度。这就能够实时地灵活调配制冷能力,达到乘员舱和电池制冷性能分配的平衡,维持系统安全,并保证用户的乘坐舒适性。
图5为本申请实施例提供的一种车辆制冷控制装置的结构示意图。该图像处理装置500可以通过软件、硬件或者两者的结合实现。
如图5所示,该图像处理装置500包括:
监测模块501,用于实时监测目标车辆中电池的温度以及温度的变化速率;
处理模块502,用于根据温度以及变化速率确定电池的制冷需求等级;
监测模块501,还用于监测目标车辆的乘员舱和电池的制冷需求;
处理模块502,还用于当检测到目标车辆的乘员舱和电池同时存在制冷需求时,根据电池当前的制冷需求等级,确定所需进入的制冷模式;根据制冷模式,确定各个目标控制对象的控制指令;
其中,制冷模式包括:单模式阶段以及双模式阶段,单模式阶段用于单独为乘员舱或电池进行制冷,双模式阶段用于同时为乘员舱和电池进行制冷,单模式阶段设置在双模式阶段之前。
在一种可能的设计中,处理模块502,用于:
当电池的制冷需求等级为非紧急状态时,进入乘员舱制冷模式,并实时监测第一出风温度,第一出风温度包括内部热交换器所在位置的出风温度;
当第一出风温度与第一目标温度的第一温差小于或等于第一温差阈值,或者乘员舱制冷模式的第一运行时间大于或等于第一预设时间时,进入双模式阶段。
在一种可能的设计中,处理模块502,用于:
当电池的制冷需求等级为非紧急状态时,在进入乘员舱制冷模式之后,向第一电子膨胀阀发送关闭指令,第一电子膨胀阀安装在多系统热交换器的制冷剂输入端,多系统热交换器用于使热泵系统和冷却液循环系统进行热交换;
根据第一出风温度以及第一闭环控制模型,确定压缩机的第一闭环控制指令;
根据第一预设位置的过冷度以及第二闭环控制模型,确定第二电子膨胀阀的第二闭环控制指令,第一预设位置包括外部热交换器的输入端,第二电子膨胀阀安装在内部热交换器的输入端。
在一种可能的设计中,处理模块502,用于:
在进入电池制冷模式之后,根据冷却液温度以及第五闭环控制模型,确定压缩机的第五闭环控制指令;
根据第二预设位置的过冷度以及第六闭环控制模型,确定第一电子膨胀阀的第六闭环控制指令,该第二预设位置包括多系统热交换器的制冷剂输入端;
根据鼓风机风量、入风温度以及目标出风温度,确定第二电子膨胀阀的预设开度指令,预设开度指令用于将第二电子膨胀阀的开度固定设置为预设开度,入风温度包括内部热交换器所在位置入风侧的温度,目标出风温度为内部热交换器所在位置出风侧的预设温度。
在一种可能的设计中,处理模块502,用于:
在进入双模式阶段之后,在第五闭环控制指令、第六闭环控制指令以及预设开度指令的基础上,同时,实时监测第二温差,以及冷却液温度的变化速率,以确定第二电子膨胀阀的开度调整指令。
在一种可能的设计中,处理模块502,用于:
当第二温差大于第二温差阈值,且第二温差小于或等于预设温差上限,并且,变化速率小于第一速率阈值时,以第一预设方式减小第二电子膨胀阀的开度。
在一种可能的设计中,处理模块502,用于:
当变化速率大于或等于第一速率阈值,且变化速率小于第二速率阈值,并且,第二温差大于第二温差阈值时,维持第二电子膨胀阀的开度不变,第二速率阈值大于第一速率阈值。
在一种可能的设计中,处理模块502,用于:
当第二温差大于第二温差阈值,且变化速率大于或等于第二速率阈值时,以第二预设方式增大第二电子膨胀阀的开度。
在一种可能的设计中,处理模块502,用于:
当第二温差大于预设温差上限时,以第三预设方式减小第二电子膨胀阀的开度。
在一种可能的设计中,处理模块502,用于:
当第二温差小于或等于第二温差阈值时,根据第二温差以及第七闭环控制模型,确定第二电子膨胀阀的第七闭环控制指令。
在一种可能的设计中,监测模块501,还用于检测电池的温度;
处理模块502,还用于:
若检测到电池的温度大于或等于第一温度阈值时,关闭第二电子膨胀阀,直至电池的温度小于或等于第二温度阈值之后,重新进入实时监控冷却液温度与第二目标温度的温差,以及冷却液温度的变化速率,以确定第二电子膨胀阀的开度调整指令。
值得说明的是,图5所示实施例提供的装置,可以执行上述任一方法实施例中所提供的方法,其具体实现原理、技术特征、专业名词解释以及技术效果类似,在此不再赘述。
图6为本申请实施例提供的一种电子设备的结构示意图。如图6所示,该电子设备600,可以包括:至少一个处理器601和存储器602。图6示出的是以一个处理器为例的电子设备。
存储器602,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。
存储器602可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
处理器601用于执行存储器602存储的计算机执行指令,以实现以上各方法实施例所述的方法。
其中,处理器601可能是一个中央处理器(central processing unit,简称为CPU),或者是特定集成电路(application specific integrated circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
可选地,存储器602既可以是独立的,也可以跟处理器601集成在一起。当所述存储器602是独立于处理器601之外的器件时,所述电子设备600,还可以包括:
总线603,用于连接所述处理器601以及所述存储器602。总线可以是工业标准体系结构(industry standard architecture,简称为ISA)总线、外部设备互连(peripheral component,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器602和处理器601集成在一块芯片上实现,则存储器602和处理器601可以通过内部接口完成通信。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁盘或者光盘等各种可以存储程序代码的介质,具体的,该计算机可读存储介质中存储有程序指令,程序指令用于上述各方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的方法。
本申请实施例还提供一种计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种车辆制冷控制方法,其特征在于,包括:
    实时监测目标车辆中电池的温度以及所述温度的变化速率;
    根据所述温度以及所述变化速率确定所述电池的制冷需求等级;
    当检测到目标车辆的乘员舱和所述电池同时存在制冷需求时,根据所述电池当前的所述制冷需求等级,确定所需进入的制冷模式;
    其中,所述制冷模式包括:单模式阶段以及双模式阶段,所述单模式阶段用于单独为所述乘员舱或所述电池进行制冷,所述双模式阶段用于同时为所述乘员舱和所述电池进行制冷,所述单模式阶段设置在所述双模式阶段之前。
  2. 根据权利要求1所述的车辆制冷控制方法,其特征在于,所述单模式阶段包括乘员舱制冷模式,所述根据所述电池当前的所述制冷需求等级,确定所需进入的制冷模式,包括:
    当所述制冷需求等级为非紧急状态时,进入所述乘员舱制冷模式,并实时监测第一出风温度,所述第一出风温度包括内部热交换器所在位置的出风温度;
    当所述第一出风温度与第一目标温度的第一温差小于或等于第一温差阈值,或者所述乘员舱制冷模式的第一运行时间大于或等于第一预设时间时,进入所述双模式阶段。
  3. 根据权利要求2所述的车辆制冷控制方法,其特征在于,在进入所述乘员舱制冷模式之后,向第一电子膨胀阀发送关闭指令,所述第一电子膨胀阀安装在多系统热交换器的制冷剂输入端,所述多系统热交换器用于使热泵系统和冷却液循环系统进行热交换;
    对应的,在所述确定所需进入的制冷模式之后,根据所述制冷模式,确定各个目标控制对象的控制指令,包括:
    根据所述第一出风温度以及第一闭环控制模型,确定压缩机的第一闭环控制指令;
    根据第一预设位置的过冷度以及第二闭环控制模型,确定第二电子膨胀阀的第二闭环控制指令,所述第一预设位置包括外部热交换器的输入端,所述第二电子膨胀阀安装在内部热交换器的输入端。
  4. 根据权利要求3所述的车辆制冷控制方法,其特征在于,在进入所述双模式阶段之后,还包括:
    根据所述制冷需求等级、所述第一出风温度以及所述目标温度,确定所述第一电子膨胀阀的开度控制指令;
    根据所述第一出风温度以及第三闭环控制模型,确定所述压缩机的第三闭环控制指令;
    根据所述第一预设位置的过冷度以及第四闭环控制模型,确定所述第二电子膨胀阀的第四闭环控制指令。
  5. 根据权利要求4所述的车辆制冷控制方法,其特征在于,所述开度控制指令包括开阀速率以及关阀速率,所述制冷需求等级与所述开阀速率成正相关关系,所述制冷需求等级与所述关阀速率成负相关关系。
  6. 根据权利要求4或5所述的车辆制冷控制方法,其特征在于,所述开度控制指令包括开度上限值,所述制冷需求等级与所述开度上限值成正相关关系。
  7. 根据权利要求1所述的车辆制冷控制方法,其特征在于,所述单模式阶段包括电池制冷模式,所述根据所述电池当前的所述制冷需求等级,确定所需进入的制冷模式,包括:
    当所述制冷需求等级为紧急状态时,进入所述电池制冷模式,并实时监测第一位置的冷却液温度,所述第一位置包括电池冷却回路中的所述电池冷却管道入口处,所述电池冷却回路包含在冷却液循环系统中;
    当所述冷却液温度与第二目标温度的第二温差小于或等于第二温差阈值,或者所述电池制冷模式的第二运行时间大于或等于第二预设时间时,进入所述双模式阶段。
  8. 根据权利要求7所述的车辆制冷控制方法,其特征在于,在进入所述电池制冷模式之后,还包括:根据所述制冷模式,确定各个目标控制对象的控制指令,所述目标控制对象包括:第一电子膨胀阀、第二电子膨胀阀以及压缩机;
    对应的,所述根据所述制冷模式,确定各个目标控制对象的控制指令,包括:
    根据所述冷却液温度以及第五闭环控制模型,确定所述压缩机的第五闭环控制指令;
    根据第二预设位置的过冷度以及第六闭环控制模型,确定所述第一电子膨胀阀的第六闭环控制指令,所述第一电子膨胀阀安装在多系统热交换器的制冷剂输入端,所述多系统热交换器用于使热泵系统和冷却液循环系统进行热交换,所述第二预设位置包括所述制冷剂输入端;
    根据鼓风机风量、入风温度、以及目标出风温度,确定所述第二电子膨胀阀的预设开度指令,所述预设开度指令用于将所述第二电子膨胀阀的开度固定设置为预设开度,所述入风温度包括内部热交换器所在位置入风侧的温度,所述目标出风温度为所述内部热交换器所在位置出风侧的预设温度,所述第二电子膨胀阀安装在内部热交换器的输入端。
  9. 根据权利要求8所述的车辆制冷控制方法,其特征在于,在进入所述双模式阶段之后,所述根据所述制冷模式,确定各个目标控制对象的控制指令,包括:
    在所述第五闭环控制指令、所述第六闭环控制指令以及所述预设开度指令的基础上,同时,实时监测所述第二温差,以及所述冷却液温度的变化速率,以确定所述第二电子膨胀阀的开度调整指令。
  10. 根据利要求9所述的车辆制冷控制方法,其特征在于,所述实时监测所述第二温差,以及所述冷却液温度的变化速率,以确定所述第二电子膨胀阀的开度调整指令,包括:
    当所述第二温差大于所述第二温差阈值,且所述第二温差小于或等于预设温差上限,并且,所述变化速率小于第一速率阈值时,以第一预设方式减小所述第二电子膨胀阀的开度。
  11. 根据利要求9或10所述的车辆制冷控制方法,其特征在于,所述实时监测所述第二温差,以及所述冷却液温度的变化速率,以确定所述第二电子膨胀阀的开度调整指令,包括:
    当所述变化速率大于或等于第一速率阈值,且所述变化速率小于第二速率阈值,并且,所述第二温差大于所述第二温差阈值时,维持所述第二电子膨胀阀的开度不变,所述第二速率阈值大于所述第一速率阈值。
  12. 根据利要求9-11中任意一项所述的车辆制冷控制方法,其特征在于,所述实时监测所述第二温差,以及所述冷却液温度的变化速率,以确定所述第二电子膨胀阀的开度调整指令,包括:
    当所述第二温差大于所述第二温差阈值,且所述变化速率大于或等于第二速率阈值时,以第二预设方式增大所述第二电子膨胀阀的开度。
  13. 根据利要求9-12中任意一项所述的车辆制冷控制方法,其特征在于,所述实时监测所述第二温差,以及所述冷却液温度的变化速率,以确定所述第二电子膨胀阀的开度调整指令,包括:
    当所述第二温差大于预设温差上限时,以第三预设方式减小所述第二电子膨胀阀的开度。
  14. 根据利要求9-13中任意一项所述的车辆制冷控制方法,其特征在于,所述实时监测所述第二温差,以及所述冷却液温度的变化速率,以确定所述第二电子膨胀阀的开度调整指令,包括:
    当所述第二温差小于或等于所述第二温差阈值时,根据所述第二温差以及第七闭环控制模型,确定所述第二电子膨胀阀的第七闭环控制指令。
  15. 根据利要求9-13中任意一项所述的车辆制冷控制方法,其特征在于,还包括:
    若检测到所述电池的温度大于或等于第一温度阈值时,关闭所述第二电子膨胀阀,直至所述电池的温度小于或等于第二温度阈值之后,重新进入所述实时监控所述冷却液温度与所述第二目标温度的温差,以及所述冷却液温度的变化速率,以确定所述第二电子膨胀阀的开度调整指令。
  16. 一种车辆制冷控制装置,其特征在于,包括:
    监测模块,用于实时监测目标车辆中电池的温度以及所述温度的变化速率;
    处理模块,用于根据所述温度以及所述变化速率确定所述电池的制冷需求等级;
    所述监测模块,还用于监测所述目标车辆的乘员舱和所述电池的制冷需求;
    所述处理模块,还用于当检测到目标车辆的乘员舱和所述电池同时存在制冷需求时,根据所述电池当前的所述制冷需求等级,确定所需进入的制冷模式;
    其中,所述制冷模式包括:单模式阶段以及双模式阶段,所述单模式阶段用于单独为所述乘员舱或所述电池进行制冷,所述双模式阶段用于同时为所述乘员舱和所述电池进行制冷,所述单模式阶段设置在所述双模式阶段之前。
  17. 一种电子设备包括:处理器,以及与所述处理器通信连接的存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求1至15中任一项所述的车辆制冷控制方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如权利要求1至15中任一项所述的方法。
  19. 一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现权利要求1至15中任一项所述的方法。
  20. 一种计算机程序,其特征在于,包括程序代码,当计算机运行所述计算机程序时,所述程序代码执行如权利要求1至15任一项所述的方法。
PCT/CN2021/127730 2021-10-29 2021-10-29 车辆制冷控制方法、装置、设备、介质及程序产品 WO2023070607A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237045496A KR20240007695A (ko) 2021-10-29 2021-10-29 차량 제냉 제어 방법, 장치, 기기, 매체 및 프로그램 제품
PCT/CN2021/127730 WO2023070607A1 (zh) 2021-10-29 2021-10-29 车辆制冷控制方法、装置、设备、介质及程序产品
EP21961959.0A EP4344914A1 (en) 2021-10-29 2021-10-29 Vehicle refrigeration control method and apparatus, and device, medium, and program product
CN202180099683.9A CN117545645A (zh) 2021-10-29 2021-10-29 车辆制冷控制方法、装置、设备、介质及程序产品
US18/399,734 US20240123797A1 (en) 2021-10-29 2023-12-29 Vehicle refrigeration control method, apparatus, device, medium and program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127730 WO2023070607A1 (zh) 2021-10-29 2021-10-29 车辆制冷控制方法、装置、设备、介质及程序产品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/399,734 Continuation US20240123797A1 (en) 2021-10-29 2023-12-29 Vehicle refrigeration control method, apparatus, device, medium and program product

Publications (1)

Publication Number Publication Date
WO2023070607A1 true WO2023070607A1 (zh) 2023-05-04

Family

ID=86158930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127730 WO2023070607A1 (zh) 2021-10-29 2021-10-29 车辆制冷控制方法、装置、设备、介质及程序产品

Country Status (5)

Country Link
US (1) US20240123797A1 (zh)
EP (1) EP4344914A1 (zh)
KR (1) KR20240007695A (zh)
CN (1) CN117545645A (zh)
WO (1) WO2023070607A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117062404A (zh) * 2023-08-15 2023-11-14 湖南恩智测控技术有限公司 电池模拟器控制方法、装置及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317393A1 (en) * 2016-04-29 2017-11-02 Ford Global Technologies, Llc Traction battery cooling system with coolant proportional valve
CN109028676A (zh) * 2018-05-29 2018-12-18 浙江吉利控股集团有限公司 一种新能源汽车的电动压缩机的控制方法、装置及系统
CN111251829A (zh) * 2020-01-21 2020-06-09 上海海洋大学 燃料电池汽车乘客舱与动力电池的双温控制系统及方法
CN111497550A (zh) * 2019-01-31 2020-08-07 广州汽车集团股份有限公司 一种汽车温度控制装置及其控制方法
WO2020235261A1 (ja) * 2019-05-17 2020-11-26 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN112297776A (zh) * 2020-11-16 2021-02-02 摩登汽车(盐城)有限公司 电动汽车的压缩机制冷系统及方法
JP2021037855A (ja) * 2019-09-04 2021-03-11 株式会社デンソー 車両用空調装置
CN112622561A (zh) * 2020-12-18 2021-04-09 长城汽车股份有限公司 乘员舱和电池降温方法、装置以及车辆
CN113263888A (zh) * 2021-06-15 2021-08-17 东风汽车集团股份有限公司 一种电动汽车热管理降温控制系统及控制方法
CN113525017A (zh) * 2020-04-17 2021-10-22 广州汽车集团股份有限公司 一种电池冷却与乘员舱制冷的制冷量分配方法及系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317393A1 (en) * 2016-04-29 2017-11-02 Ford Global Technologies, Llc Traction battery cooling system with coolant proportional valve
CN109028676A (zh) * 2018-05-29 2018-12-18 浙江吉利控股集团有限公司 一种新能源汽车的电动压缩机的控制方法、装置及系统
CN111497550A (zh) * 2019-01-31 2020-08-07 广州汽车集团股份有限公司 一种汽车温度控制装置及其控制方法
WO2020235261A1 (ja) * 2019-05-17 2020-11-26 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2021037855A (ja) * 2019-09-04 2021-03-11 株式会社デンソー 車両用空調装置
CN111251829A (zh) * 2020-01-21 2020-06-09 上海海洋大学 燃料电池汽车乘客舱与动力电池的双温控制系统及方法
CN113525017A (zh) * 2020-04-17 2021-10-22 广州汽车集团股份有限公司 一种电池冷却与乘员舱制冷的制冷量分配方法及系统
CN112297776A (zh) * 2020-11-16 2021-02-02 摩登汽车(盐城)有限公司 电动汽车的压缩机制冷系统及方法
CN112622561A (zh) * 2020-12-18 2021-04-09 长城汽车股份有限公司 乘员舱和电池降温方法、装置以及车辆
CN113263888A (zh) * 2021-06-15 2021-08-17 东风汽车集团股份有限公司 一种电动汽车热管理降温控制系统及控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117062404A (zh) * 2023-08-15 2023-11-14 湖南恩智测控技术有限公司 电池模拟器控制方法、装置及存储介质
CN117062404B (zh) * 2023-08-15 2024-02-23 湖南恩智测控技术有限公司 电池模拟器控制方法、装置及存储介质

Also Published As

Publication number Publication date
EP4344914A1 (en) 2024-04-03
KR20240007695A (ko) 2024-01-16
CN117545645A (zh) 2024-02-09
US20240123797A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US10601087B2 (en) Traction battery cooling system with coolant proportional valve
CN110588277B (zh) 电动汽车热管理方法、系统和车辆
US10293658B2 (en) Traction battery cooling system for an electrified vehicle
CN109585973B (zh) 一种动力电池热管理方法及系统
CN102371885B (zh) 热循环系统
US11390138B2 (en) Control system for a heating system and method for operating a heating system
CN110217071B (zh) 一种车辆热管理控制系统及控制方法
CN108700347A (zh) 用于控制制冷系统的系统和方法
CN103625242A (zh) 一种电动汽车热管理系统
US20240123797A1 (en) Vehicle refrigeration control method, apparatus, device, medium and program product
CN112902471B (zh) 一种车辆冷却的控制方法、控制系统和车辆
CN113291128B (zh) 一种集成式动力电池冷却系统、冷却控制方法及电动汽车
CN110677014A (zh) 可使变频器均匀降温的变频器的冷却系统、方法及空调设备
CN108116183B (zh) 一种热管理系统的控制方法
US10919364B2 (en) Vehicle air conditioning device
CN104417322B (zh) 汽车空调系统及具有其的汽车
JP2020093775A (ja) 車載冷却システムの制御装置、及び車載冷却システム
WO2020111004A1 (ja) 車載冷却システムの制御装置、及び車載冷却システム
WO2023070606A1 (zh) 除湿模式的控制方法、装置、设备、介质及程序产品
JP2007168750A (ja) 車両用空調装置
CN220929524U (zh) 一种传统能源商用车热管理系统及车辆
CN116674435A (zh) 电动汽车余热回收控制方法、电子设备及存储介质
CN117818430A (zh) 用于电池冷却的方法、热管理系统和车辆
CN117681614A (zh) 一种电动工程机械冷却系统控制方法及冷却系统
CN117432022A (zh) 一种电动挖掘机散热系统、方法及电动挖掘机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099683.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023580821

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237045496

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021961959

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021961959

Country of ref document: EP

Effective date: 20231229