WO2023070606A1 - 除湿模式的控制方法、装置、设备、介质及程序产品 - Google Patents

除湿模式的控制方法、装置、设备、介质及程序产品 Download PDF

Info

Publication number
WO2023070606A1
WO2023070606A1 PCT/CN2021/127729 CN2021127729W WO2023070606A1 WO 2023070606 A1 WO2023070606 A1 WO 2023070606A1 CN 2021127729 W CN2021127729 W CN 2021127729W WO 2023070606 A1 WO2023070606 A1 WO 2023070606A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
dehumidification
heat exchanger
air
heat
Prior art date
Application number
PCT/CN2021/127729
Other languages
English (en)
French (fr)
Inventor
李双岐
Original Assignee
浙江吉利控股集团有限公司
吉利汽车研究院(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 吉利汽车研究院(宁波)有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to CN202180099749.4A priority Critical patent/CN117561176A/zh
Priority to KR1020237045493A priority patent/KR20240007694A/ko
Priority to EP21961958.2A priority patent/EP4344910A4/en
Priority to PCT/CN2021/127729 priority patent/WO2023070606A1/zh
Publication of WO2023070606A1 publication Critical patent/WO2023070606A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2218Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters controlling the operation of electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2221Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3207Control means therefor for minimizing the humidity of the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3244Cooling devices information from a variable is obtained related to humidity
    • B60H2001/3245Cooling devices information from a variable is obtained related to humidity of air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Definitions

  • the present application relates to the technical field of new energy vehicles, and more specifically, to a control method, device, equipment, medium and program product of a dehumidification mode.
  • the humidity inside the car is an important indicator in the control of the passenger compartment. How to realize the humidity control in the new energy vehicle has a great impact on the ride comfort of the new energy vehicle and the safety of the vehicle system.
  • the purpose of this application is to provide a control method for the dehumidification mode.
  • the temperature of the air outlet of the air conditioner can be increased during dehumidification, and the air temperature in the passenger compartment can be maintained at In an appropriate range, while maintaining the dehumidification effect within the optimal range, energy is also saved at the same time, and there is no need to use the vehicle's own energy to supplement heat for the dehumidification process.
  • the present application discloses a method for controlling the dehumidification mode, including:
  • the dehumidification load and the external ambient temperature of the heat pump system are obtained, and the heat pump system includes an external heat exchanger and a first internal heat exchanger;
  • the first dehumidification mode is used to absorb the heat of the external environment through the external heat exchanger to convectively flow through the first internal heat exchanger during the dehumidification process Afterwards, the air is supplemented and heated;
  • the first preset position includes the air outlet and the air outlet side where the first internal heat exchanger is located;
  • the first target temperature includes the air temperature at the air outlet
  • the second target temperature is the temperature at the location of the first internal heat exchanger Air temperature on the outlet side.
  • the humidity of the passenger compartment exceeds the optimum humidity range, or the dehumidification function is turned on artificially, firstly, the ambient temperature inside and outside the car is obtained through each vehicle-mounted sensor, and then the temperature of the heat pump system at the current moment is calculated.
  • Dehumidification load in addition, the external ambient temperature, i.e.
  • the outside temperature reflects whether it is currently suitable to actively absorb heat from the outside, when the dehumidification load exceeds the load threshold, and when the external heat is sufficient, the external heat exchanger on the heat pump system actively absorbs the external
  • the heat in the environment is transferred to the passenger compartment through the heat exchange medium, which saves the power output of the compressor in the dehumidification mode, thereby saving the energy consumption of the vehicle.
  • the control of the first target temperature at the air outlet and the air temperature on the air outlet side where the first internal heat exchanger (such as an evaporator) is installed, that is, the second target temperature is related to the entire heat pump system.
  • the stability and safety of the heat pump system are difficult to balance in the prior art, which often causes vibration and noise of the heat pump system.
  • this application implements multi-stage temperature monitoring and closed-loop adjustment in the heat exchange box, combined with the key position
  • the closed-loop control of the subcooling degree of the heat exchange medium keeps the air temperature at the air outlet and the air temperature on the air outlet side where the evaporator is installed within their respective safe ranges, preventing the heat pump system from absorbing heat from the external environment to replace part of the compressor Stability and safety issues caused by output power.
  • the heat pump system further includes a second internal heat exchanger
  • the control instructions include closed-loop control instructions for performing closed-loop control on each controlled object in the heat pump system.
  • the parallel circulation path includes: heat absorption path, refrigeration path and heat supplement path. The heat absorption path and refrigeration path are connected in parallel and then connected in series with the heat supplement path;
  • the external heat exchanger is located on the heat absorption path, the first internal heat exchanger is located on the cooling path, the second internal heat exchanger is located on the supplementary heat path, and the second internal heat exchanger is used to transfer the heat absorbed by the external heat exchanger to the Air after passing through the first internal heat exchanger.
  • the parallel heat absorption path and refrigeration path meet at the compressor, forming the characteristics of a common low pressure of the external heat exchanger and the first internal heat exchanger, both of which are carried out simultaneously Evaporation absorbs heat, the external heat exchanger absorbs the heat of the external environment, and the first internal heat exchanger absorbs the heat of the air in the passenger compartment, so that the water vapor in the air in the passenger compartment is condensed and precipitated to achieve the purpose of cooling and dehumidification.
  • the second internal heat exchanger is used to supplement heat and return the air blown by the blower to the first internal heat exchanger for condensation and dehumidification, so as to avoid the need to continuously reduce the temperature of the first internal heat exchanger in order to maintain the dehumidification effect. Adverse effects of icing/frost on the first internal heat exchanger.
  • the first preset position includes the air outlet and the air outlet side of the installation position of the first internal heat exchanger, and the corresponding air temperature includes a first target temperature and a third target temperature, and the third target temperature is The air temperature on the air outlet side, the second preset position includes the output end of the second internal heat exchanger, and correspondingly, the subcooling degree includes the target subcooling degree at the output end;
  • the control command for the first dehumidification mode is determined, including:
  • a third closed-loop control instruction of the second electronic expansion valve is determined, and the second electronic expansion valve is installed at the input end of the first internal heat exchanger.
  • the compressor is used to perform closed-loop control on the temperature of the air outlet.
  • the present application is changed to the second target temperature. It is easier to achieve the goal of stable control by controlling the air outlet temperature of the compressor, that is, the first target temperature. In this way, the technical obstacle of simultaneous stable control of the first target temperature and the second target temperature is overcome, and the problem of vibration of the heat pump system caused by the prior art is avoided.
  • the first dehumidification mode is determined according to the air temperature at multiple first preset positions in the heat exchange box and the subcooling degree of the heat exchange medium at at least one second preset position in the transmission pipeline Before the control instruction, also include:
  • the functions of the first upper limit and the first lower limit include: suspending or switching the dehumidification mode of the heat pump system when the external ambient temperature exceeds the first temperature range, limiting the adjustment ability of the first dehumidification mode to ensure the safety and stability of the system sex.
  • the first Before the control command of the dehumidification mode it also includes:
  • the functions of the second upper limit and the second lower limit include: suspending or switching the dehumidification mode of the heat pump system when the external ambient temperature exceeds the second temperature range, limiting the adjustment ability of the first dehumidification mode to ensure the safety and stability of the system sex.
  • the upper limit and lower limit of the opening of the first electronic expansion valve and/or the second electronic expansion valve are limited because the heat that the heat pump system can actively absorb is different from the external environment under the limitation of the external environment. Temperature-related, in order to avoid ignoring the objective limit when the heat pump system is working, the opening of the electronic expansion valve is continuously increased or decreased, causing system oscillation and serious noise, or the excessive opening fluctuation range makes the electronic expansion valve in a certain Sometimes when the difference between the current opening and the target opening of the control command is too large, the adjustment time is too long, which will also affect the stability of the system, or the adjustment function of the electronic expansion valve has failed after exceeding the upper and lower limits. In order to prevent the controller from issuing an invalid target opening, its upper and lower limits are limited to maintain the stability of the entire heat pump system.
  • after outputting the control instruction further include:
  • the dehumidification mode will be activated. Switch to the second dehumidification mode.
  • the second dehumidification mode uses the heat of the battery cooling circuit or the heat of the heating device to heat up the air flowing through the first internal heat exchanger.
  • the second temperature threshold is greater than the first temperature threshold.
  • the situation of this implementation shows that the first dehumidification mode can no longer meet the dehumidification requirements, or that the temperature of the external environment is too low and the heat absorbed is insufficient, so the heat of other heating devices inside the vehicle must be used to supplement the output power of the compressor.
  • after outputting the control instruction further include:
  • the output of the second closed-loop control command of the first electronic expansion valve is suspended, and the opening degree of the first electronic expansion valve is increased at a preset rate until the pressure value is greater than or equal to the second
  • the output of the second closed-loop control command is resumed, and the first electronic expansion valve is installed at the output end of the second internal heat exchanger.
  • after outputting the control instruction further include:
  • the second electronic expansion valve In response to the frost protection opening command of the first internal heat exchanger, close the second electronic expansion valve, record the first opening value of the second electronic expansion valve before closing, and keep the compressor speed constant, the second electronic expansion valve An expansion valve is installed at the input of the first internal heat exchanger.
  • the initial opening value of the second electronic expansion valve is set to the first opening value, and the closed-loop control of the second electronic expansion valve is resumed.
  • the control strategy is theoretically safe, but in practical applications, due to the influence of various factors that cannot be predicted in advance, such as the contradiction between the effective time of various control instructions and the delay characteristics of execution, it will still appear in extreme cases.
  • judging whether to enter the first dehumidification mode according to the dehumidification load, the external environment temperature and the load threshold includes:
  • the dehumidification load is greater than or equal to the load threshold and the external ambient temperature is less than or equal to the first temperature threshold, it is determined to enter the first dehumidification mode.
  • judging whether to enter the first dehumidification mode according to the dehumidification load, the external ambient temperature and the load threshold value further includes:
  • the second dehumidification mode uses the heat of the battery cooling circuit or the heat of the heating equipment to The air after an internal heat exchanger is subjected to supplemental heating, and the second temperature threshold is greater than the first temperature threshold.
  • the second dehumidification mode after it is determined to enter the second dehumidification mode, it also includes:
  • control the corresponding electronic expansion valve to guide the cooling liquid of the battery cooling circuit to the warm air core that heats the air flowing through the first internal heat exchanger, and the warm air core is used to pass through the first internal heat exchanger through the cooling liquid convection.
  • the air after the internal heat exchanger is supplemented with heat;
  • control device for dehumidification mode including:
  • An acquisition module configured to acquire the dehumidification load and the external ambient temperature of the heat pump system in response to the dehumidification start instruction, where the heat pump system includes an external heat exchanger and a first internal heat exchanger;
  • Processing modules for:
  • the first dehumidification mode is used to absorb the heat of the external environment through the external heat exchanger to convectively flow through the first internal heat exchanger during the dehumidification process Afterwards, the air is supplemented and heated;
  • the first target temperature includes the air temperature at the air outlet
  • the second target temperature is the temperature at the location of the first internal heat exchanger Air temperature on the outlet side.
  • the present application discloses an electronic device including: a processor, and a memory communicated with the processor;
  • the memory stores computer-executable instructions
  • the processor executes the computer-executed instructions stored in the memory, so as to implement any possible control method of the dehumidification mode in the first aspect.
  • the present application discloses a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and the computer-executable instructions are used to implement any possible method in the first aspect when executed by a processor .
  • the present application discloses a computer program product, including a computer program.
  • the computer program is executed by a processor, any possible method in the first aspect is implemented.
  • the present application discloses a computer program, including program code.
  • the program code executes any possible method in the first aspect.
  • the present application provides a dehumidification mode control method, device, equipment, medium and program product, by obtaining the dehumidification load of the heat pump system and the external ambient temperature when the passenger compartment is detected to have a dehumidification demand, the heat pump system Including an external heat exchanger and a first internal heat exchanger; then, according to the dehumidification load, external ambient temperature and load threshold, it is judged whether to enter the first dehumidification mode.
  • the heat exchanger absorbs the heat of the external environment to supplement heat and raise the temperature of the air flowing through the first internal heat exchanger; Determine the control command of the first dehumidification mode based on the subcooling degree at at least one second preset position; then output the control command so that the first target temperature and the second target temperature simultaneously meet the preset requirements of the dehumidification function. It solves the technical problem of how to dehumidify new energy vehicles, actively absorbs the heat of the external environment to supplement the heat of the dehumidified air, and achieves the technical effect of saving energy and improving the stability and safety of the system.
  • FIG. 1 is a schematic structural diagram of a vehicle-mounted heat pump system provided by the present application
  • FIG. 2 is a schematic flowchart of a control method of a dehumidification mode provided by an embodiment of the present application
  • Fig. 3 is a schematic flowchart of another dehumidification mode control method provided by the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a control device in a dehumidification mode provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • PTC (Positive Temperature Coefficient, positive temperature coefficient) heater composed of PTC ceramic heating element and aluminum tube. This type of PTC heating element has the advantages of small thermal resistance and high heat exchange efficiency. It is an electric heater with automatic constant temperature and energy saving. The outstanding feature lies in the safety performance. Under any application conditions, there will be no "redness" phenomenon on the surface of the electric heating tube heater, which will cause burns, fire and other safety hazards.
  • the principle of dehumidification in the passenger compartment of the car is that water vapor condenses into water droplets.
  • the specific process is: the pressurized refrigerant is sent to the condenser through the compressor to condense and release heat, and then the refrigerant is input into the evaporator through the electronic expansion valve, and the refrigerant evaporates and absorbs heat in the evaporator, reducing the temperature of the evaporator temperature, the refrigerant is then returned to the compressor.
  • the on-board blower blows the air in the car to the low-temperature evaporator, and when the air in the car is cooled, the water vapor in the car is condensed and precipitated, so as to achieve the purpose of cooling and dehumidification.
  • the temperature of the air inside the vehicle continues to drop, resulting in a decrease in the dehumidification effect of the above-mentioned dehumidification process.
  • the temperature of the air in the car can be increased by supplementing the heat of the air in the car, so as to dehumidify cyclically.
  • the inventors of the present application found that in traditional automobiles, the heat pump system of the air conditioner is used for refrigeration, and then the PTC heater of the coolant circulation system is used for supplementary heat dehumidification, which consumes a lot of energy. For energy vehicles, it cannot meet the energy-saving requirements.
  • the inventor of the present application found that the heat source for supplementary heating of the air in the vehicle is a breakthrough in energy saving. Therefore, this application uses the external condenser of the heat pump system to absorb heat from the environment outside the vehicle as one of the sources of supplementary heat to replace part of the output power of the compressor, which requires changing the control method of each component in the heat pump system. In order to achieve the goal of absorbing heat from the environment outside the vehicle for supplementary heating.
  • Fig. 1 is a schematic structural diagram of a vehicle-mounted heat pump system provided by the present application.
  • the vehicle-mounted heat pump system includes: a compressor 101, an evaporator 102, an internal condenser 103, an external condenser 104, a blower 105, an electronic expansion valve 106, an electronic expansion valve 107, a one-way stop valve 108, and a solenoid valve. 109, solenoid valve 110, air conditioning box 120, etc.
  • the air blower 105 sucks the air in the car and blows it to the evaporator 102, and the water vapor in the air is condensed and precipitated, thereby achieving the purpose of dehumidification.
  • the external condenser 104 absorbs heat from the environment outside the vehicle by evaporating and absorbing heat through the heat exchange medium, that is, the refrigerant, and then supplies heat to the cooled air in the air conditioning box 120 through the function of the internal condenser 103 , in this cycle, to achieve the purpose of dehumidification in the car.
  • this dehumidification mode can also be called a parallel dehumidification mode.
  • the principle of the parallel dehumidification mode is simple, its specific control process is much more complicated than the traditional PTC heating equipment to heat the air, because the external condenser 104 does not play the role of condensation and heat release like in the traditional air conditioning system.
  • the refrigerant in the external condenser 104 evaporates and absorbs heat, which requires subversive modifications to traditional control strategies to overcome this technical obstacle.
  • the compressor and the electronic expansion valve have their own control targets, such as compressor control
  • the air outlet temperature and the electronic expansion valve in front of the evaporator control the air temperature on the air outlet side of the evaporator, but when the compressor controls the air outlet temperature, it will affect the air temperature on the air outlet side of the evaporator; when the electronic expansion valve controls the air temperature on the air outlet side of the evaporator , will affect the air outlet temperature.
  • Fig. 2 is a schematic flowchart of a method for controlling a dehumidification mode provided by an embodiment of the present application. As shown in Figure 2, the specific steps of the control method of the dehumidification mode include:
  • the dehumidification requirement of the passenger compartment includes: the humidity of the passenger compartment exceeds the optimum humidity range (such as 50% to 70%), the dehumidification function is artificially turned on, and the control of the heat pump system produces an effect equivalent to dehumidification.
  • the central controller of the vehicle automatically sends an initial opening instruction.
  • a dehumidification start instruction is issued.
  • the dehumidification load of the heat pump system is obtained, including:
  • the dehumidification load is determined according to the preset standard value of the first target temperature, the external ambient temperature, the percentage of external circulation, the temperature of the passenger compartment, the percentage of internal circulation and the air volume of the blower.
  • the preset load model can be expressed as:
  • Dehumidification load (target air outlet temperature - actual air inlet temperature) * blower air volume * air specific heat.
  • actual air inlet temperature external ambient temperature * percentage of external circulation + temperature of passenger compartment * percentage of internal circulation.
  • Get the external ambient temperature including:
  • the roadbed unit or the big data platform through wireless communication, from the roadbed unit or the big data platform, according to the current positioning information of the vehicle (such as Global Positioning System, GPS positioning information), determine the temperature within the preset geographical range of the current driving position as the external ambient temperature.
  • the current positioning information of the vehicle such as Global Positioning System, GPS positioning information
  • S202 Determine whether to enter the first dehumidification mode according to the dehumidification load, the external environment temperature, and the load threshold.
  • the first dehumidification mode is used for: during the dehumidification process, the external heat exchanger absorbs the heat of the external environment to heat up the air passing through the first internal heat exchanger.
  • the dehumidification load is greater than or equal to the load threshold and the external ambient temperature exceeds the preset temperature threshold, that is, the external environment can provide sufficient supplementary heating energy, it can enter the first dehumidification mode.
  • the heat pump system includes an external heat exchanger, a first internal heat exchanger, a second internal heat exchanger, and a heat exchange medium (also referred to as refrigerant, refrigerant) circulating along the parallel circulation path.
  • a heat exchange medium also referred to as refrigerant, refrigerant
  • the parallel circulation path includes: a heat absorption path, a cooling path, and a supplementary heat path.
  • the heat absorption path and the cooling path are connected in parallel and then connected in series with the supplementary heat path;
  • the external heat exchanger is located on the heat absorption path, and the first internal heat exchanger is located on the cooling path.
  • the second internal heat exchanger is located on the supplementary heat path, and the second internal heat exchanger is used to transfer the heat absorbed by the external heat exchanger from the external environment to the air passing through the first internal heat exchanger.
  • the external heat exchanger is an external condenser 104
  • the first internal heat exchanger is an evaporator 102
  • the second internal heat exchanger is an internal condenser 103 .
  • the heat absorption path is between two points AD
  • the cooling path is between two points BD
  • the supplementary heat path is between two points CD.
  • the input ends of the heat absorption path and the refrigeration path are connected to the output ends of the heat supplementary path
  • the output ends of the heat absorption path and the refrigeration path are connected to the input end of the heat supplement path.
  • the heat exchange medium of the heat-absorbing path and the cooling path that is, the refrigerant, are at a common low pressure.
  • the parallel heat absorption path and refrigeration path meet at the compressor 101, forming the characteristics of a common low pressure of the external heat exchanger and the first internal heat exchanger, both At the same time, evaporation and heat absorption are carried out.
  • the external heat exchanger absorbs the heat of the external environment
  • the first internal heat exchanger absorbs the heat of the air in the passenger compartment, so that the water vapor in the air in the passenger compartment condenses and precipitates to achieve refrigeration.
  • the second internal heat exchanger is used to replenish heat and return the air blown by the blower to the first internal heat exchanger for condensation and dehumidification, so as to avoid the need to continuously reduce the first internal heat exchange in order to maintain the dehumidification effect detrimental effect of icing/frosting of the first internal heat exchanger.
  • the first preset position includes the air outlet and the air outlet side of the installation location of the first internal heat exchanger, and the corresponding air temperature includes the first target temperature and the second target temperature, the first target temperature includes the outlet The air temperature at the tuyere, the second target temperature is the air temperature on the air outlet side where the first internal heat exchanger is located, and the second preset position includes the output end of the second internal heat exchanger in the transmission pipeline of the heat exchange medium , correspondingly, the subcooling degree includes the target subcooling degree at the output end.
  • the first closed-loop control instruction of the compressor is determined according to the first target temperature and the first closed-loop control model
  • a third closed-loop control instruction of the second electronic expansion valve is determined, and the second electronic expansion valve is installed at the input end of the first internal heat exchanger.
  • the types of the first closed-loop control model, the second closed-loop control model and the third closed-loop control model include: PI (Proportion Integral) proportional-integral model, PID (Proportion Integral Differential) proportional-integral-differential model, etc.
  • Technicians can select appropriate models and control parameters of each closed-loop control model according to actual application scenarios.
  • the first target temperature includes the air temperature at the air outlet of the heat exchange box, and the second target temperature is the temperature of the first internal heat exchanger.
  • corresponding closed-loop control instructions are respectively sent to the compressor, the first electronic expansion valve, and the second electronic expansion valve.
  • the electronic expansion valve 109 and the electronic expansion valve 110 are opened, the parallel circulation path is opened, and then the first closed-loop control command is sent to the compressor 101, and the second closed-loop control command is sent to the first electronic expansion valve, namely the electronic expansion valve 106. command, and send a third closed-loop control command to the second electronic expansion valve, that is, the electronic expansion valve 107 .
  • the air temperature of the air outlet of the air conditioning box 120 is controlled by the compressor 101, so that the air temperature of the air outlet reaches the target air outlet temperature; the second internal heat exchanger, that is, the internal condenser 103, is controlled by the first electronic expansion valve, that is, the electronic expansion valve 106
  • the degree of subcooling makes the refrigerant work in a more efficient state without refrigerant flow noise.
  • the air temperature on the air outlet side of the evaporator 102 is controlled through the second electronic expansion valve, namely the electronic expansion valve 107, so that the temperature reaches the target air temperature. .
  • the combined effects of the three make the first target temperature and the second target temperature meet the preset requirements at the same time.
  • the preset requirements include: the first target temperature cannot be lower than the first preset target value, and the second target temperature cannot be lower than the second preset target value. Because the first target temperature is too low, the air temperature in the car will drop too quickly, which will affect the subsequent condensation and dehumidification effect. The reason is that as the air temperature decreases, the temperature of the evaporator 102 needs to be continuously lowered to achieve the effect of condensation and dehumidification, and the continuous cooling of the evaporator 102 will cause frosting or freezing, resulting in damage to the evaporator 102 . Therefore, in order to ensure continuous dehumidification, the first target value and the second target value must be controlled simultaneously. There is an inseparable coupling relationship between the two.
  • a plurality of control threads may be set to perform separate closed-loop control on the compressor, the first electronic expansion valve, and the second electronic expansion valve.
  • the control of the heat pump system produces the same effect as the dehumidification, firstly, the vehicle interior and The external ambient temperature, and then calculate the dehumidification load of the heat pump system at the current moment.
  • the external ambient temperature that is, the outside temperature of the vehicle, reflects whether it is suitable to actively absorb heat from the outside at present.
  • the dehumidification load exceeds the load threshold and the external heat is sufficient
  • the heat in the external environment is actively absorbed by the external heat exchanger on the heat pump system, and transferred to the air flowing through the first internal heat exchanger through the heat exchange medium, so that the side effect of the temperature drop of the passenger compartment due to refrigeration and dehumidification Get balanced or improved to achieve the purpose of maintaining the best dehumidification effect.
  • the natural heat of the external environment is used to replace part of the output power of the compressor, which also saves the energy consumption of the vehicle.
  • the control of the first target temperature at the air outlet and the temperature of the first internal heat exchanger (such as the evaporator), that is, the second target temperature, is related to the stability and safety of the entire heat pump system.
  • the existing technologies it is difficult to balance the two, which often causes vibration and noise of the heat pump system.
  • this application implements multi-stage temperature monitoring and closed-loop adjustment in the heat exchange box, combined with the closed-loop control of the subcooling degree of the heat exchange medium at key positions.
  • the air outlet air temperature and the evaporator temperature are both within their respective safe ranges, avoiding the stability and safety caused by the heat pump system absorbing the heat from the external environment and replenishing the air temperature after passing through the first internal heat exchanger sexual issues.
  • the embodiment of the present application provides a method for controlling the dehumidification mode, by obtaining the dehumidification load of the heat pump system and the temperature of the external environment when it is detected that there is a dehumidification demand for the passenger compartment.
  • the heat pump system includes an external heat exchanger and a first internal heat exchanger ; Then according to the dehumidification load, external ambient temperature and load threshold, it is judged whether to enter the first dehumidification mode.
  • the air after the heat exchanger is subjected to supplementary heating; if so, then according to the air temperature at a plurality of first preset positions in the heat exchange box and the subcooling of the heat exchange medium at least one second preset position in the transmission pipeline degree, determine the control command of the first dehumidification mode; and then output the control command so that the first target temperature and the second target temperature simultaneously meet the preset requirements of the dehumidification function.
  • Fig. 3 is a schematic flowchart of another method for controlling a dehumidification mode provided by an embodiment of the present application. As shown in Figure 3, the specific steps of the control method of the dehumidification mode include:
  • step S201 For a detailed explanation of this step, reference may be made to step S201, which will not be repeated here.
  • the circulation mode of air includes internal circulation and external circulation.
  • Internal circulation means that the air blower draws air from the passenger compartment of the vehicle and blows it into the heat exchange box, that is, the air conditioning box 120. After the air passes through various heat exchangers in the heat exchange box to cool down and/or heat up, it returns to the vehicle through the air outlet.
  • the interior is the passenger compartment, thus forming an internal circulation.
  • the external circulation refers to: the blower draws air from the outside of the vehicle, that is, the external environment, and blows it into the heat exchange box. Inside is the passenger compartment.
  • the dehumidification load will be different. Therefore, in order to meet the initial setting requirements of the first dehumidification mode, it is necessary to pass the preset target outlet Wind temperature, calculate the dehumidification load.
  • the calculation model of the dehumidification load is as follows:
  • Dehumidification load (target air outlet temperature - actual air inlet temperature) * blower air volume * air specific heat.
  • S303 Determine whether to enter the first dehumidification mode according to the dehumidification load, the external environment temperature, and the load threshold.
  • step S304 if the dehumidification load is greater than or equal to the load threshold and the external ambient temperature is less than or equal to the first temperature threshold, it is determined to enter the first dehumidification mode, that is, step S304 is executed;
  • step S315 If the dehumidification load is less than the load threshold and the external ambient temperature is greater than or equal to the second temperature threshold, it is determined to enter the second dehumidification mode, that is, step S315 is executed.
  • the first dehumidification mode is used for: during the dehumidification process, the external heat exchanger absorbs the heat of the external environment to supplement heat and increase the temperature of the air passing through the first internal heat exchanger.
  • the second dehumidification mode is used for: during the dehumidification process, use the heat of the battery cooling circuit and/or the heat of the heating device to heat up the air passing through the first internal heat exchanger, and the second temperature threshold is greater than the first temperature threshold .
  • the dehumidification requirements cannot be met, or the temperature of the external environment is too low, and the absorbed heat is not enough to make up for the temperature drop caused by cooling and dehumidification. It is necessary to use the heat from other heating devices inside the vehicle to replenish the heat flowing through the first dehumidification mode. Air after an internal heat exchanger.
  • the load threshold includes: power consumption at the minimum rotation speed of the compressor, or a correction value for correcting the power consumption at the minimum rotation speed of the compressor through a preset correction algorithm.
  • the second electronic expansion valve is installed at the input end of the first internal heat exchanger.
  • the first internal heat exchanger is an evaporator 102
  • the second electronic expansion valve is an electronic expansion valve before the evaporator 102 , that is, an electronic expansion valve 107 .
  • the corresponding first upper limit value of the operation of the second electronic expansion valve is determined.
  • S306. Determine a second upper limit value and a second lower limit value for the operation of the first electronic expansion valve according to the external ambient temperature and the second preset corresponding relationship.
  • the first electronic expansion valve is installed at the output end of the second internal heat exchanger.
  • the first electronic expansion valve is an electronic expansion valve 106
  • the second internal exchanger is an internal condenser 103
  • a one-way valve for preventing refrigerant backflow is installed on the output end of the internal condenser 103. Stop valve 108.
  • the upper and lower limits of the opening of the first electronic expansion valve and/or the second electronic expansion valve are limited because the heat that the heat pump system can actively absorb is different from the external environment under the limitation of the external environment. Temperature-related, in order to avoid ignoring the objective limit when the heat pump system is working, the opening of the electronic expansion valve is continuously increased or decreased, causing system oscillation and serious noise, or the excessive opening fluctuation range makes the electronic expansion valve in a certain Sometimes when the difference between the current opening and the target opening of the control command is too large, the adjustment time is too long, which will also affect the stability of the system, or the adjustment function of the electronic expansion valve has failed after exceeding the upper and lower limits. In order to prevent the controller from issuing an invalid target opening, its upper and lower limits are limited to maintain the stability of the entire heat pump system.
  • the first target temperature includes the air temperature at the air outlet of the heat exchange box.
  • the target subcooling degree includes the subcooling degree of the heat exchange medium, that is, the refrigerant at the output end of the second internal heat exchanger.
  • the third temperature includes the air temperature on the air outlet side of the installation position of the first internal heat exchanger in the heat exchange box.
  • the second target temperature is the temperature of the first internal heat exchanger.
  • the compressor is used to perform closed-loop control on the temperature of the air outlet.
  • the compressor is used to control the temperature of the air outlet side where the first internal heat exchanger is installed, that is, the second target temperature.
  • the temperature of the air outlet is controlled by the compressor, that is, the first target temperature, which is easier to achieve the goal of stable control. In this way, the technical obstacle of simultaneous stable control of the first target temperature and the second target temperature is overcome, and the problem of vibration of the heat pump system caused by the prior art is avoided.
  • the heat exchange medium in the parallel supplementary heat path and the cooling path has a common low pressure value after evaporation, and a pressure sensor is installed at the input end of the compressor to monitor the pressure value in real time. supervision.
  • the closed-loop control of the subcooling degree of the first electronic expansion valve is suspended and switched to increase the first electronic expansion valve at a preset rate (such as 0.1%/S).
  • the opening degree of an electronic expansion valve and at the same time detect whether the pressure value returns to the second pressure threshold in real time, and if it returns, continue to execute the closed-loop control of the first electronic expansion valve.
  • the pressure of the heat pump system is prevented from being unbalanced.
  • the method of parallel dehumidification is likely to cause system oscillation.
  • it is essential to monitor the pressure value at the low-pressure end.
  • An effective measure to prevent oscillation discovered by the inventor of the application. Since the calculation and execution of the control command has a certain delay, the pressure value of the low-pressure end is lower than the first pressure threshold, which means that the influence of this delay may make the working state of the entire system exceed that in the first dehumidification mode.
  • the adjustment ability of the system, or the closed-loop adjustment is too fast, and the system state does not keep up with it in time. At this time, the closed-loop control is suspended and the adjustment is continued after the pressure on the low-pressure side recovers, so that the stability of the system is further guaranteed.
  • step S313 and S314 although the control strategy of the first dehumidification mode is theoretically safe, in the actual process, due to the influence of various factors that cannot be predicted in advance, such as the effective time of various control commands and the delay characteristics of execution In extreme cases, the phenomenon of frosting on the first internal heat exchanger will still occur, and after the sensor detects frosting, the frosting protection will be activated immediately, the heat exchange of the first internal heat exchanger will be stopped, and the waiting time will be Dehumidification is continued after frost, avoiding the danger of damage to the first internal heat exchanger due to frosting/icing of the first internal heat exchanger, and improving the stability and safety of the heat pump system.
  • the on-board thermal management system also has a coolant circulation system for thermal management of power equipment such as power batteries, motors, and engines. Since power equipment generates a lot of heat during operation, it is generally cooled by a coolant circulation system to dissipate the heat to the external environment.
  • the water temperature of the battery cooling circuit can be obtained through a temperature sensor at a preset position on the coolant pipeline.
  • step S317 the temperature difference between the water temperature and the target air outlet temperature of the air outlet can be used to know the heat transfer direction, and then according to the specific heat capacity of the coolant, it can be obtained whether the heat in the battery cooling circuit meets the requirements of dehumidification and heat supplementation. If yes, execute step S317, otherwise execute step S318.
  • the warm air core is used to supplement heat and increase the temperature of the passenger compartment through the coolant.
  • the warm air core can be installed in the heat exchange box to heat the air before the air outlet.
  • the heating device includes a PTC heater, and the coolant is heated through the PTC heater, and then the air in the heat exchange box is heated when the coolant flows through the warm air core.
  • steps S315-S318 when the external environment cannot provide enough heat, choose to absorb heat from the heating equipment in the car for dehumidification and heat supplementation, and preferably use battery cooling or waste heat in the drive motor or engine coolant for supplementation Heat, to realize the recovery and management of heat energy, when the waste heat is still not enough, use its own energy to heat, to achieve the effect of reducing energy consumption as much as possible while ensuring the dehumidification effect, so that more energy can be used to drive vehicles. Improve the mileage of new energy vehicles.
  • the embodiment of the present application provides a method for controlling the dehumidification mode, by obtaining the dehumidification load of the heat pump system and the temperature of the external environment when it is detected that there is a dehumidification demand for the passenger compartment.
  • the heat pump system includes an external heat exchanger and a first internal heat exchanger ; Then according to the dehumidification load, external ambient temperature and load threshold, it is judged whether to enter the first dehumidification mode.
  • the air after the heat exchanger is subjected to supplementary heating; if so, then according to the air temperature at a plurality of first preset positions in the heat exchange box and the subcooling of the heat exchange medium at least one second preset position in the transmission pipeline degree, determine the control command of the first dehumidification mode; and then output the control command so that the first target temperature and the second target temperature simultaneously meet the preset requirements of the dehumidification function.
  • Fig. 4 is a schematic structural diagram of a control device in a dehumidification mode provided by an embodiment of the present application.
  • the image processing device 400 can be realized by software, hardware or a combination of both.
  • the image processing device 400 includes:
  • An acquisition module 401 configured to acquire the dehumidification load and the external ambient temperature of the heat pump system when it is detected that there is a dehumidification demand for the passenger compartment, and the heat pump system includes an external heat exchanger and a first internal heat exchanger;
  • Processing module 402 for:
  • the first dehumidification mode is used to absorb the heat of the external environment through the external heat exchanger to convectively flow through the first internal heat exchanger during the dehumidification process Afterwards, the air is supplemented and heated;
  • the first preset position includes the air outlet and the air outlet side where the first internal heat exchanger is located;
  • the first target temperature includes the air temperature at the air outlet
  • the second target temperature is the temperature at the location of the first internal heat exchanger Air temperature on the outlet side.
  • the control instruction includes a closed-loop control instruction for performing closed-loop control on each controlled object in the heat pump system
  • the function of the controlled object includes making the heat exchange medium circulate along the parallel circulation path in the transmission pipeline
  • the parallel circulation path includes: a heat absorption path, a cooling path, and a heat supplement path.
  • the heat absorption path is connected in parallel with the refrigeration path and then connected in series with the heat supplement path;
  • the heat pump system also includes a second internal heat exchanger, the second internal heat exchanger is located on the supplementary heat path, and the second internal heat exchanger is used to transfer the heat absorbed by the external heat exchanger to the flow through the first internal heat exchange air behind the device.
  • the first preset position includes the air outlet and the air outlet side of the installation position of the first internal heat exchanger, and the corresponding air temperature includes the first target temperature and the third target temperature, and the third target The temperature is the air temperature on the air outlet side, the second preset position includes the output end of the second internal heat exchanger, and correspondingly, the subcooling degree includes a target subcooling degree at the output end;
  • the processing module 402 is configured to determine the first closed-loop control instruction of the compressor according to the first target temperature and the first closed-loop control model;
  • a third closed-loop control instruction of the second electronic expansion valve is determined, and the second electronic expansion valve is installed at the input end of the first internal heat exchanger.
  • the obtaining module 401 is used to obtain the temperature of the passenger compartment, the percentage of internal circulation, the percentage of external circulation and the air volume of the blower;
  • the processing module 402 is configured to use the preset load model to determine the dehumidification load according to the preset standard value of the first target temperature, the external ambient temperature, the percentage of external circulation, the temperature of the passenger compartment, the percentage of internal circulation and the air volume of the blower.
  • the processing module 402 is further configured to determine the first lower limit value of the operation of the second electronic expansion valve according to the external ambient temperature and the preset first corresponding relationship.
  • the second electronic expansion valve is installed on the first input to the internal heat exchanger;
  • the obtaining module 401 is also used to obtain the temperature of the passenger compartment, the percentage of internal circulation, the percentage of external circulation and the air volume of the blower;
  • the processing module 402 is further configured to use a preset algorithm to determine the first upper limit of the operation of the second electronic expansion valve according to the external ambient temperature, the temperature of the passenger compartment, the percentage of internal circulation, the percentage of external circulation, and the air volume of the blower; the first upper limit The value and the first lower limit value are used to suspend or switch the dehumidification mode of the heat pump system when the external ambient temperature exceeds the first temperature range.
  • the processing module 402 is further configured to: determine the second upper limit value and the second lower limit value of the operation of the first electronic expansion valve according to the external ambient temperature and the preset second corresponding relationship, the first The electronic expansion valve is installed at the output end of the second internal heat exchanger; the second upper limit and the second lower limit are used to suspend or switch the dehumidification mode of the heat pump system when the external ambient temperature exceeds the second temperature range.
  • processing module 402 is also used to:
  • the dehumidification mode will be activated. Switch to the second dehumidification mode.
  • the second dehumidification mode uses the heat of the battery cooling circuit or the heat of the heating device to supplement the temperature of the passenger compartment, and the second temperature threshold is greater than the first temperature threshold.
  • the obtaining module 401 is also used to obtain the pressure value at the input end of the compressor;
  • the processing module 402 is further configured to suspend the output of the second closed-loop control command of the first electronic expansion valve if the pressure value is less than the first pressure threshold, and switch to increasing the opening of the first electronic expansion valve at a preset rate until When the pressure value is greater than or equal to the second pressure threshold, the output of the second closed-loop control instruction is resumed, and the first electronic expansion valve is installed at the output end of the second internal heat exchanger.
  • the processing module 402 is further configured to close the second electronic expansion valve in response to the frosting protection opening instruction of the first internal heat exchanger, and simultaneously record the first opening value, and keep the compressor speed constant, the second electronic expansion valve is installed at the input end of the first internal heat exchanger.
  • the processing module 402 is further configured to set the initial opening value of the second electronic expansion valve as the first opening value in response to the frosting protection closing instruction of the first internal heat exchanger, and Restore closed loop control of the second electronic expansion valve.
  • the processing module 402 is configured to determine to enter the first dehumidification mode if the dehumidification load is greater than or equal to the load threshold and the external ambient temperature is less than or equal to the first temperature threshold.
  • the processing module 402 is configured to determine to enter the second dehumidification mode if the dehumidification load is less than the load threshold, or the external ambient temperature is greater than or equal to the second temperature threshold, and the second dehumidification mode is during the dehumidification process. , using the heat of the battery cooling circuit or the heat of the heating device to supplement heat and increase the temperature of the air flowing through the first internal heat exchanger, and the second temperature threshold is greater than the first temperature threshold.
  • the obtaining module 401 is also used to obtain the water temperature of the battery cooling circuit in the cooling liquid circulation system;
  • the processing module 402 is also used for:
  • control the corresponding electronic expansion valve to guide the cooling liquid of the battery cooling circuit to the warm air core that heats the air flowing through the first internal heat exchanger, and the warm air core is used to heat the passenger compartment through the cooling liquid.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 500 may include: at least one processor 501 and a memory 502 .
  • FIG. 5 shows an electronic device with a processor as an example.
  • the memory 502 is used to store programs.
  • the program may include program code, and the program code includes computer operation instructions.
  • the memory 502 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 501 is configured to execute the computer-executed instructions stored in the memory 502 to implement the methods described in the above method embodiments.
  • the processor 501 may be a central processing unit (central processing unit, referred to as CPU), or a specific integrated circuit (application specific integrated circuit, referred to as ASIC), or is configured to implement one or more of the embodiments of the present application. multiple integrated circuits.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 502 can be independent or integrated with the processor 501 .
  • the electronic device 500 may further include:
  • the bus 503 is used to connect the processor 501 and the memory 502 .
  • the bus may be an industry standard architecture (ISA) bus, a peripheral component interconnect (PCI) bus, or an extended industry standard architecture (EISA) bus, etc.
  • ISA industry standard architecture
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc., but it does not mean that there is only one bus or one type of bus.
  • the memory 502 and the processor 501 may communicate through an internal interface.
  • the embodiment of the present application also provides a computer-readable storage medium
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory) , RAM), a magnetic disk or an optical disk, and other media that can store program codes.
  • the computer-readable storage medium stores program instructions, and the program instructions are used in the methods in the above-mentioned method embodiments.
  • An embodiment of the present application further provides a computer program product, including a computer program, and when the computer program is executed by a processor, the methods in the foregoing method embodiments are implemented.
  • An embodiment of the present application further provides a computer program, which implements the methods in the foregoing method embodiments when the computer program is executed by a processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种除湿模式的控制方法、装置(400)、设备(500)、介质及程序产品,通过当检测到乘员舱有除湿需求时,获取热泵系统的除湿负荷以及外部环境温度;然后根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式,该第一除湿模式用于:在除湿过程中,通过外部热交换器吸收外部环境的热量来对流经第一内部热交换器之后的空气进行补热升温;若是,则根据热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令;再输出控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求。解决了如何对新能源汽车进行除湿的技术问题。

Description

除湿模式的控制方法、装置、设备、介质及程序产品 技术领域
本申请涉及新能源汽车技术领域,更为具体地,涉及一种除湿模式的控制方法、装置、设备、介质及程序产品。
背景技术
随着车辆技术的发展,新能源汽车已经成为了未来汽车发展的主要趋势。在乘员舱控制在传统汽车领域中虽然有了很多的解决方案,但是在新能源汽车中会面临新的挑战,因为新能源汽车中引入了大功率驱动电机、大容量电池,其会对现有的车辆热管理带来新的影响。
车内湿度是乘员舱控制中的一项重要指标,如何在新能源汽车上实现车内湿度控制,对新能源汽车的乘坐舒适性和车辆系统安全性来说具有较大影响。
因此,如何对新能源汽车的车内湿度进行控制是本申请要解决的技术问题。
发明内容
本申请的目的在于提供一种除湿模式的控制方法,通过将车辆外部环境中的热量主动吸收并转移给乘员舱中的空气,可以提高除湿时空调出风口的温度,将乘员舱的气温维持在一个合适的范围内,在将除湿效果维持在最佳范围内的情况下,也同时节省了能源,无需再用车辆自身能源来为除湿过程进行补热。
第一方面,本申请公开了一种除湿模式的控制方法,包括:
当检测到乘员舱有除湿需求时,获取热泵系统的除湿负荷以及外部环境温度,热泵系统包括外部热交换器以及第一内部热交换器;
根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式,第一除湿模式用于:在除湿过程中,通过外部热交换器吸收外部环境的热量来对流经第一内部热交换器之后的空气进行补热升温;
若是,则根据空气传输热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令,第一预设位置包括出风口以及第一内部热交换器所在位置的出风侧;
输出控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求,第一目标温度包括出风口处的空气温度,第二目标温度为第一内部热交换器所在位置的出风侧的空气温度。
基于上述技术内容,在乘员舱的湿度超出最佳湿度范围,或者是人为开启了除湿功能时,首先通过各个车载的传感器获取车内和车外的环境温度,进而计算出在当前时刻热泵系统的除湿负荷,此外,外部环境温度即车外温度反映了当前是否适合从外部主动吸收热量,在除湿负荷超过了负荷阈值,并且在外部热量充足时,通过热泵系统上的外部热交换器主动吸收外部环境中的热量,经热交换介质转移到乘员舱中,节省了压缩机在除湿模式下的功率输出,从而节省了车辆的能耗。而在这个过程中,对于出风口处的第一目标温度以及第一内部热交换器(如蒸发器)所在安装位置的出风侧的空气温度即第二目标温度的 控制,关系到了整个热泵系统的稳定性和安全性,现有技术当中两者难以兼顾,经常引起热泵系统的振荡和噪音,而本申请则是通过在热交换箱中进行多段式温度监控和闭环调节,再结合关键位置上热交换介质过冷度的闭环控制,同时让出风口的气温和蒸发器所在安装位置的出风侧的空气温度都在各自的安全范围内,避免了热泵系统在吸收外部环境热量替代部分压缩机输出功率时所引起的稳定性和安全性问题。
可选的,热泵系统还包括第二内部热交换器,控制指令包括对热泵系统中的各个受控对象分别进行闭环控制的闭环控制指令,受控对象的作用包括使热交换介质在传输管路中沿并联循环路径循环流动,并联循环路径包括:吸热路径、制冷路径以及补热路径,吸热路径与制冷路径并联后再与补热路径串联;
外部热交换器位于吸热路径上,第一内部热交换器位于制冷路径上,第二内部热交换器位于补热路径上,第二内部热交换器用于将外部热交换器吸收的热量传递给流经第一内部热交换器之后的空气。
通过将压缩机作为并联循环路径的起/止点,并联的吸热路径和制冷路径在压缩机处交汇,形成了外部热交换器和第一内部热交换器共低压的特性,两者同时进行蒸发吸热,外部热交换器吸收的是外部环境的热量,而第一内部热交换器就是吸收乘员舱空气的热量,使得乘员舱空气中的水蒸汽遇冷凝结析出,达到制冷除湿的目的,进一步的,利用第二内部热交换器对鼓风机吹向第一内部热交换器进行冷凝除湿后的空气进行补热回温,以避免为维持除湿效果需要不断降低第一内部热交换器温度最终使得第一内部热交换器结冰/结霜的不利影响。
在一个实现方式中,第一预设位置包括出风口处以及第一内部热交换器的安装位置的出风侧,对应的空气温度包括第一目标温度以及第三目标温度,第三目标温度为出风侧的空气温度,第二预设位置包括第二内部热交换器的输出端,对应的,过冷度包括输出端的目标过冷度;
根据热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令,包括:
根据第一目标温度以及第一闭环控制模型,确定压缩机的第一闭环控制指令;
根据目标过冷度以及第二闭环控制模型,确定第一电子膨胀阀的第二闭环控制指令,第一电子膨胀阀安装在第二内部热交换器的输出端;
根据第三温度以及第三闭环控制模型,确定第二电子膨胀阀的第三闭环控制指令,第二电子膨胀阀安装在第一内部热交换器的输入端。
通过压缩机来对出风口温度进行闭环控制,相比于现有技术用压缩机控制第一内部热交换器所在安装位置的出风侧的温度即第二目标温度来说,本申请改为通过压缩机控制出风口温度即第一目标温度更容易达到平稳控制的目标。这样就克服了第一目标温度与第二目标温度的同时稳定控制的技术障碍,避免了现有技术顾此失彼引发热泵系统振荡的问题。
在一个实现方式中,在根据热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令之前,还包括:
根据外部环境温度以及预设第一对应关系,确定第二电子膨胀阀运行的第一下限值,第二电子膨胀阀安装在第一内部热交换器的输入端;
获取乘员舱温度、内循环百分比、外循环百分比以及鼓风机风量;
利用预设算法,根据外部环境温度、乘员舱温度、内循环百分比、外循环百分比以及鼓风机风量,确定第二电子膨胀阀运行的第一上限值;
第一上限值以及第一下限值的作用包括:在外部环境温度超过第一温度范围时暂停或切换热泵系统的除湿模式,限制第一除湿模式的调节能力以保证系统的安全性和稳定性。
在一个实现方式中,在根据空气传输热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令之前,还包括:
根据外部环境温度以及预设第二对应关系,确定第一电子膨胀阀运行的第二上限值以及第二下限值,第一电子膨胀阀安装在第二内部热交换器的输出端;
第二上限值以及第二下限值的作用包括:在外部环境温度超过第二温度范围时暂停或切换热泵系统的除湿模式,限制第一除湿模式的调节能力以保证系统的安全性和稳定性。
上述两种实现方式,限制第一电子膨胀阀和/或第二电子膨胀阀的开度的上限和下限是因为在外部环境的限制下,热泵系统所能主动吸收到的热量是与外部环境的温度相关的,为了避免热泵系统工作时忽略客观限制,不断加大或减小电子膨胀阀开度,引起系统振荡,产生严重噪音,或者是过大的开度波动范围使得,电子膨胀阀在某些时候当前开度与控制指令的目标开度相差过大时,调整时间过长,也会影响系统的稳定性,还或者是在超出了上下限的范围后电子膨胀阀的调节作用已经失效,为了避免控制器发出无效的目标开度,将其上下限限制住,以维持整个热泵系统的稳定。
在一个实现方式中,在输出控制指令之后,还包括:
若检测到第一电子膨胀阀的开度为第二下限值,且在预设时间内第二内部热交换器的输出端的过冷度小于或等于预设过冷度阈值时,将除湿模式切换到第二除湿模式,第二除湿模式在除湿过程中,利用电池冷却回路的热量或加热设备的热量对流经第一内部热交换器之后的空气进行补热升温,第二温度阈值大于第一温度阈值。
本实现方式的情况表明第一除湿模式已经无法满足除湿要求,或者说是外部环境的温度过低,吸收的热量不足,必须要调用车辆内部其它发热设备的热量补充压缩机的输出功率。
在一个实现方式中,在输出控制指令之后,还包括:
获取压缩机输入端的压力值;
若压力值小于第一压力阈值,则暂停输出第一电子膨胀阀的第二闭环控制指令,并切换至按预设速率增大第一电子膨胀阀的开度,直至压力值大于或等于第二压力阈值时恢复输出第二闭环控制指令,第一电子膨胀阀安装在第二内部热交换器的输出端。
通过控制低压端的压力,防止热泵系统压力失衡。这是由于按现有技术采取并联除湿的方式容易导致系统振荡。为了提高安全性,减小振荡或者是防止出现超出系统调节能力的振荡,监测低压端压力值是本申请发明人发现的一个有效防止振荡的措施。由于控制指令的计算和执行是有一定的延迟性的,低压端压力值低于第一压力阈值,就代表着这种延迟的影响可能会使得整个系统的工作状态超出了在第一除湿模式下系统的调节能力,或者是闭环调节过快,系统状态没有及时跟上,此时,暂停闭环控制等待低压端压力恢复后再继续调节,使得系统的稳定性得到进一步保障。
在一个实现方式中,在输出控制指令之后,还包括:
响应于第一内部热交换器的结霜保护开启指令,关闭第二电子膨胀阀,同时记录第二电子膨胀阀在关闭前的第一开度值,并维持压缩机转速不变,第二电子膨胀阀安装在第一内部热交换器的输入端。
可选的,响应于第一内部热交换器的结霜保护关闭指令,将第二电子膨胀阀的初始开度值设置为第一开度值,并恢复对第二电子膨胀阀的闭环控制。
控制策略在理论上是安全的,但是实际应用中由于各种无法事先预知的因素的影响,如各项控制指令的有效时间和执行时的延迟特性的矛盾,依然会出现在极端情况下,第一内部热交换器结霜的现象,而在传感器检测到结霜后,立即启动结霜保护,停止第一内部热交换器的热交换,等待化霜后再继续进行除湿,避免了第一内部热交换器结霜/结冰导致第一内部热交换器损坏的危险情况,提高了热泵系统的稳定性和安全性。
在一个实现方式中,根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式,包括:
若除湿负荷大于或等于负荷阈值,且外部环境温度小于或等于第一温度阈值时,确定进入第一除湿模式。
在一个实现方式中,根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式,还包括:
若除湿负荷小于负荷阈值,或外部环境温度大于或等于第二温度阈值时,确定进入第二除湿模式,第二除湿模式在除湿过程中,利用电池冷却回路的热量或加热设备的热量对流经第一内部热交换器之后的空气进行补热升温,第二温度阈值大于第一温度阈值。
可选的,在确定进入第二除湿模式之后,还包括:
获取冷却液循环系统中电池冷却回路的水温;
根据水温以及出风口的目标出风温度,判断电池余热是否满足补热要求;
若是,则控制对应的电子膨胀阀将电池冷却回路的冷却液导入对流经第一内部热交换器之后的空气进行加热的暖风芯体上,暖风芯体用于通过冷却液对流经第一内部热交换器之后的空气进行补热升温;
若否,则开启加热设备,以对流经暖风芯体的冷却液进行加热。
在外部环境不能够提供足够的热量时,选择从车内的发热设备中吸收热量来进行除湿补热,优先选用电池冷却或者驱动电机或发动机冷却液中的余热来进行补热,实现热能的回收管理,在余热仍无法满足时,再利用自身能源加热,达到在保证除湿效果的情况下,尽肯能减少能源消耗的效果,以将更多能量用于驱动车辆行驶,提升新能源车辆的行驶里程。
第二方面,本申请公开了一种除湿模式的控制装置,包括:
获取模块,用于响应于除湿开启指令,获取热泵系统的除湿负荷以及外部环境温度,热泵系统包括外部热交换器以及第一内部热交换器;
处理模块,用于:
根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式,第一除湿模式用于:在除湿过程中,通过外部热交换器吸收外部环境的热量来对流经第一内部热交 换器之后的空气进行补热升温;
若是,则根据热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令;
输出控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求,第一目标温度包括出风口处的空气温度,第二目标温度为第一内部热交换器所在位置的出风侧的空气温度。
第三方面,本申请公开了一种电子设备包括:处理器,以及与处理器通信连接的存储器;
存储器存储计算机执行指令;
处理器执行存储器存储的计算机执行指令,以实现第一方面中任意一种可能的除湿模式的控制方法。
第四方面,本申请公开了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机执行指令,计算机执行指令被处理器执行时用于实现第一方面中任意一种可能的方法。
第五方面,本申请公开了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现第一方面中任意一种可能的方法。
第六方面,本申请公开了一种计算机程序,包括程序代码,当计算机运行计算机程序时,程序代码执行如第一方面中任意一种可能的方法。
结合上述技术方案,本申请提供了一种除湿模式的控制方法、装置、设备、介质及程序产品,通过当检测到乘员舱有除湿需求时,获取热泵系统的除湿负荷以及外部环境温度,热泵系统包括外部热交换器以及第一内部热交换器;然后根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式,该第一除湿模式用于:在除湿过程中,通过外部热交换器吸收外部环境的热量来对流经第一内部热交换器之后的空气进行补热升温;若是,则根据热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令;再输出控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求。解决了如何对新能源汽车进行除湿的技术问题,主动吸收外部环境的热量来对除湿后的空气进行补热,达到了即节约能源,又提高了系统的稳定性和安全性的技术效果。
附图说明
图1为本申请提供的车载热泵系统的结构示意图;
图2为本申请实施例提供的一种除湿模式的控制方法的流程示意图;
图3为本申请实施例提供的另一种除湿模式的控制方法的流程示意图;
图4为本申请实施例提供的一种除湿模式的控制装置的结构示意图;
图5为本申请实施例提供的一种电子设备的结构示意。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅 是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,包括但不限于对多个实施例的组合,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
首先对本申请所涉及的名词进行解释:
PTC(Positive Temperature Coefficient,正温度系数)加热器:由PTC陶瓷发热元件与铝管组成。该类型PTC发热体有热阻小、换热效率高的优点,是一种自动恒温、省电的电加热器。突出特点在于安全性能上,任何应用情况下均不会产生如电热管类加热器的表面“发红”现象,从而引起烫伤,火灾等安全隐患。
车内乘员舱的除湿原理是通过水蒸汽遇冷凝结成水滴。具体过程是:通过压缩机将增压后的制冷剂输送到冷凝器中进行冷凝放热,然后经过电子膨胀阀将制冷剂输入蒸发器,制冷剂在蒸发器内蒸发吸热,降低了蒸发器温度,随后制冷剂被回到压缩机。车载鼓风机将车内空气吹向低温的蒸发器,车内空气遇冷,使得其内的水蒸汽冷凝析出,从而达到制冷除湿的目的。由于车载空调制冷的作用,使得车内空气的温度不断下降,导致上述除湿过程的除湿效果下降。为了保持除湿效果,可以通过给车内空气补热的方式,使得车内空气温度回升,以此循环地进行除湿。
相较于传统汽车,新能源汽车对能量管理的要求更高,这就使得在除湿过程中如何做到节能,也就成为了解决新能源汽车如何进行车内湿度控制这个技术问题的重要影响因素。
本申请的发明构思是:
本申请发明人发现,传统汽车中通过空调的热泵系统进行制冷,然后再通过冷却液循环系统的PTC加热器进行补热的除湿方式,其能量消耗较大,对于对能量管理要求较高的新能源汽车来说,并不能满足节能性需求。本申请发明人发现对车内空气进行补热的热源是节能的突破口。因此,本申请通过热泵系统的外部冷凝器从车外环境中吸收热量作为补热热源的来源之一,以替代部分压缩机做功的输出功率,这就需要改变热泵系统中各个部件的控制方法,以实现从车外环境吸收热量进行补热的目标。
本申请具体的应用场景:
图1为本申请提供的车载热泵系统的结构示意图。如图1所示,车载热泵系统包括:压缩机101、蒸发器102、内部冷凝器103、外部冷凝器104、鼓风机105、电子膨胀阀106、电子膨胀阀107、单向截止阀108、电磁阀109、电磁阀110以及空调箱120等。
其中,鼓风机105将车内空气吸入,吹向蒸发器102,在空气中的水蒸汽遇冷凝结析出,从而达到除湿的目的。外部冷凝器104在本申请中通过热交换介质即冷媒,以冷媒蒸发吸热的方式从车外环境中吸收热量,然后通过内部冷凝器103的作用给空调箱120中被冷却的空气补热升温,以此循环,实现对车内除湿的目的。由于蒸发器102和外部冷凝器 104是并联的,并且都在蒸发吸热,所以此除湿模式也可以称为并联除湿模式。而并联除湿模式的原理虽然简单,但是其具体控制过程却比传统的依靠PTC加热设备给空气加热要复杂很多,因为,外部冷凝器104并不像传统空调系统中起的是冷凝放热作用,在本申请中外部冷凝器104中的冷媒是蒸发吸热的,这就需要对传统的控制策略实施颠覆性地修改,以克服此技术障碍。
因为并联除湿需要同时满足蒸发器出风侧的目标空气温度和出风口的目标出风温度,如果按照传统方式来进行控制,虽然压缩机和电子膨胀阀分别有各自的控制目标,例如压缩机控制出风口温度、蒸发器前电子膨胀阀控制蒸发器出风侧空气温度,但是压缩机控制出风口温度时,会影响蒸发器出风侧空气温度;电子膨胀阀控制蒸发器出风侧空气温度时,会影响出风口温度。压缩机和电子膨胀阀存在耦合,如若控制不好,势必会引起系统震荡,最终无法稳定控制出风温度和蒸发器出风侧空气温度。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图2为本申请实施例提供的一种除湿模式的控制方法的流程示意图。如图2所示,该除湿模式的控制方法的具体步骤,包括:
S201、当检测到乘员舱有除湿需求时,获取热泵系统的除湿负荷以及外部环境温度。
在本步骤中,乘员舱有除湿需求包括:乘员舱的湿度超出最佳湿度范围(如50%~70%),人为开启了除湿功能,以及对热泵系统的控制产生了等同于除湿的效果。
具体的,当车内的湿度传感器检测到车内空气湿度大于70%时,车辆中央控制器自动发出初始开启指令。
或者,当用户手动按下除湿按钮,或者是在触摸屏上点击除湿控件时,即发出除湿开启指令。
在本步骤中,获取热泵系统的除湿负荷,包括:
获取乘员舱温度、内循环百分比、外循环百分比以及鼓风机风量;
利用预设负荷模型,根据第一目标温度的预设标准值、外部环境温度、外循环百分比、乘员舱温度、内循环百分比以及鼓风机风量,确定除湿负荷。
例如,预设负荷模型可以表示为:
除湿负荷=(目标出风温度-实际进风温度)*鼓风机风量*空气比热。
其中,实际进风温度=外部环境温度*外循环百分比+乘员舱温度*内循环百分比。
获取外部环境温度,包括:
通过安装在车外的至少一个温度传感器来获取车辆在当前行驶环境中的空气温度;
或者,通过无线通信的方式,从路基单元或者大数据平台,根据车辆当前的定位信息(如Global Positioning System,GPS全球定位系统的定位信息)确定当前行驶位置所属的预设地理范围内的气温作为外部环境温度。
S202、根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式。
在本步骤中,第一除湿模式用于:在除湿过程中,通过外部热交换器吸收外部环境的热量来对流经第一内部热交换器之后的空气进行补热升温。当除湿负荷大于或等于负荷 阈值,且外部环境温度超过预设温度阈值,即外部环境能够提供足够的补热能量时,即可进入第一除湿模式。
在本实施例中,热泵系统包括外部热交换器、第一内部热交换器、第二内部热交换器,以及沿着并联循环路径循环流动的热交换介质(也称为制冷剂、冷媒)。
并联循环路径包括:吸热路径、制冷路径以及补热路径,吸热路径与制冷路径并联后再与补热路径串联;外部热交换器位于吸热路径上,第一内部热交换器位于制冷路径上,第二内部热交换器位于补热路径上,第二内部热交换器用于将外部热交换器从外部环境中吸收的热量传递给流经第一内部热交换器之后的空气。
在本实施例中,如图1所示,外部热交换器为外部冷凝器104,第一内部热交换器为蒸发器102,第二内部热交换器为内部冷凝器103。
如图1所示,吸热路径在AD两点间,制冷路径在BD两点间,补热路径在CD两点间。吸热路径及制冷路径的输入端与补热路径的输出端相连,吸热路径及制冷路径的输出端与补热路径的输入端相连。并且吸热路径及制冷路径的热交换介质即冷媒是共低压的。
通过将压缩机101作为并联循环路径的起/止点,并联的吸热路径和制冷路径在压缩机101处交汇,形成了外部热交换器和第一内部热交换器共低压的特性,两者同时进行蒸发吸热,外部热交换器吸收的是外部环境的热量,而第一内部热交换器就是吸收乘员舱的空气的热量,使得乘员舱的空气中的水蒸汽遇冷凝结析出,达到制冷除湿的目的,进一步的,利用第二内部热交换器对鼓风机吹向第一内部热交换器进行冷凝除湿后的空气进行补热回温,以避免为维持除湿效果需要不断降低第一内部热交换器温度最终使得第一内部热交换器结冰/结霜的不利影响。
S203、若是,则根据热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令。
在本步骤中,第一预设位置包括出风口处以及第一内部热交换器的安装位置的出风侧,对应的空气温度包括第一目标温度以及第二目标温度,第一目标温度包括出风口处的空气温度,第二目标温度为第一内部热交换器所在位置的出风侧的空气温度,第二预设位置包括热交换介质的传输管路中第二内部热交换器的输出端,对应的,过冷度包括输出端的目标过冷度。
在本实施例中,根据第一目标温度以及第一闭环控制模型,确定压缩机的第一闭环控制指令;
根据目标过冷度以及第二闭环控制模型,确定第一电子膨胀阀的第二闭环控制指令,第一电子膨胀阀安装在第二内部热交换器的输出端;
根据第三温度以及第三闭环控制模型,确定第二电子膨胀阀的第三闭环控制指令,第二电子膨胀阀安装在第一内部热交换器的输入端。
需要说明的是,第一闭环控制模型、第二闭环控制模型以及第三闭环控制模型的类型包括:PI(Proportion Integral)比例积分模型,PID(Proportion Integral Differential)比例积分微分模型等等,本领域技术人员可以根据实际应用场景选用合适的模型以及各个闭环控制模型的控制参数。
S204、输出控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求。
在本步骤中,第一目标温度包括热交换箱在出风口处的空气温度,第二目标温度为第一内部热交换器的温度。
具体的,向压缩机、第一电子膨胀阀以及第二电子膨胀阀分别发送对应的闭环控制指令。
如图1所示,开启电子膨胀阀109和电子膨胀阀110,打开并联循环路径,然后向压缩机101发送第一闭环控制指令,向第一电子膨胀阀即电子膨胀阀106发送第二闭环控制指令,向第二电子膨胀阀即电子膨胀阀107发送第三闭环控制指令。
通过压缩机101控制空调箱120的出风口的空气温度,使得出风口的空气温度达到目标出风温度;通过第一电子膨胀阀即电子膨胀阀106控制第二内部热交换器即内部冷凝器103的过冷度,使得冷媒能工作在较高效的状态且没有冷媒流动噪音,通过第二电子膨胀阀即电子膨胀阀107控制蒸发器102的出风侧的空气温度,使得该温度达到目标风温。三者综合作用,使得第一目标温度和第二目标温度同时满足预设要求。
预设要求包括:第一目标温度不能低于第一预设目标值,第二目标温度不能低于第二预设目标值。因为第一目标温度过低会使得车内空气温度下降过快,影响后续的冷凝除湿效果。原因是空气温度降低就需要蒸发器102的温度不断降低来达到冷凝除湿的作用,而蒸发器102不断降温就会引起结霜或结冰的问题,导致蒸发器102损坏。因此,为了保障除湿能够持续进行,必须同时控制住第一目标值和第二目标值。两者存在着不可分割的耦合关系。
可选的,可以设置多个控制线程,分别对压缩机、第一电子膨胀阀以及第二电子膨胀阀进行单独的闭环控制。
基于上述技术内容,在乘员舱的湿度超出最佳湿度范围,或者是人为开启了除湿功能,或者对热泵系统的控制产生了与除湿相同的效果时,首先通过各个车载的传感器获取车内和车外的环境温度,进而计算出在当前时刻热泵系统的除湿负荷,此外,外部环境温度即车外温度反映了当前是否适合从外部主动吸收热量,在除湿负荷超过了负荷阈值,并且在外部热量充足时,通过热泵系统上的外部热交换器主动吸收外部环境中的热量,经热交换介质转移到流经第一内部热交换器之后的空气中,使得由于制冷除湿造成的乘员舱温度下降的副作用得到平衡或改善,达到维持最佳除湿效果的目的。同时,利用外部环境的自然热量替换了部分压缩机的输出功率,也节省了车辆的能耗。而在这个过程中,对于出风口处的第一目标温度以及第一内部热交换器(如蒸发器)的温度即第二目标温度的控制,关系到了整个热泵系统的稳定性和安全性,现有技术当中两者难以兼顾,经常引起热泵系统的振荡和噪音,而本申请则是通过在热交换箱中进行多段式温度监控和闭环调节,再结合关键位置上热交换介质过冷度的闭环控制,同时让出风口气温和蒸发器温度都在各自的安全范围内,避免了热泵系统在吸收外部环境热量回补流经第一内部热交换器之后的空气温度时所引起的稳定性和安全性问题。
本申请实施例提供了一种除湿模式的控制方法,通过当检测到乘员舱有除湿需求时,获取热泵系统的除湿负荷以及外部环境温度,热泵系统包括外部热交换器以及第一内部热交换器;然后根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式,该第一除湿模式用于:在除湿过程中,通过外部热交换器吸收外部环境的热量来对流经第一内部热交换器之后的空气进行补热升温;若是,则根据热交换箱中多个第一预设位置上 的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令;再输出控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求。解决了如何对新能源汽车进行除湿的技术问题,主动吸收外部环境的热量来对除湿后的空气进行补热,达到了即节约能源,又提高了系统的稳定性和安全性的技术效果。
图3为本申请实施例提供的另一种除湿模式的控制方法的流程示意图。如图3所示,该除湿模式的控制方法的具体步骤,包括:
S301、当检测到乘员舱有除湿需求时,获取外部环境温度、乘员舱温度、内循环百分比、外循环百分比以及鼓风机风量。
对于本步骤的详细解释可以参考步骤S201,在此不作赘述。
S302、利用预设负荷模型,根据第一目标温度的预设标准值、外部环境温度、外循环百分比、乘员舱温度、内循环百分比以及鼓风机风量,确定除湿负荷。
在本步骤中,首先求出鼓风机将乘员舱中的空气吹向第一内部热交换器时的实际进风温度:实际进风温度=外部环境温度*外循环百分比+乘员舱温度*内循环百分比。
需要说明的是,由于车辆内空调开启时,空气的循环方式包括内循环和外循环。内循环是指鼓风机从车内即乘员舱中吸取空气,吹入热交换箱即空调箱120中,空气在热交换箱中经过各个热交换器进行降温和/或升温后,从出风口返回车内即乘员舱中,以此,形成了内循环。
而外循环是指:鼓风机从车外即外部环境中吸取空气,吹入热交换箱中,空气在热交换箱中经过各个热交换器进行降温和/或升温后,从出风口吹入到车内即乘员舱中。
由于车内有驾驶员和乘员等用户存在,呼吸作用会消耗车内氧气,并使得二氧化碳浓度升高,如果长时间的内循环,将会使得用户缺氧,因此,需要给内循环和外循环分配循环比例,以避免缺氧现象的产生。
这也就使得在确定除湿负荷的时候,为了保证准确性,需要首先计算出实际进风温度。
然后,由于不同除湿模式所设计的出风口的出风温度不同,会引起除湿负荷大小的不同,因此,为了满足第一除湿模式的初始设定要求,需要通过预先设定的出风口的目标出风温度,计算除湿负荷。
在本实施例中,除湿负荷的计算模型如下:
除湿负荷=(目标出风温度-实际进风温度)*鼓风机风量*空气比热。
S303、根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式。
在本步骤中,若除湿负荷大于或等于负荷阈值,且外部环境温度小于或等于第一温度阈值时,确定进入第一除湿模式,即执行步骤S304;
若除湿负荷小于负荷阈值,且外部环境温度大于或等于第二温度阈值时,确定进入第二除湿模式,即执行步骤S315。
第一除湿模式用于:在除湿过程中,通过外部热交换器吸收外部环境的热量来对流经第一内部热交换器之后的空气进行补热升温。
第二除湿模式用于:在除湿过程中,利用电池冷却回路的热量和/或加热设备的热量对流经第一内部热交换器之后的空气进行补热升温,第二温度阈值大于第一温度阈值。在第一除湿模式已经无法满足除湿要求,或者说是外部环境的温度过低,吸收的热量不足以 回补制冷除湿所下降的温度,必须要调用车辆内部其它发热设备的热量补充到流经第一内部热交换器之后的空气。
需要说明的是,第二温度阈值大于第一温度阈值。即在进行除湿模式切换时,需要对外部环境温度进行滞回处理,此时,第二温度阈值=第一温度阈值+预设温差。可选的,预设温差为5摄氏度。
可选的,负荷阈值包括:压缩机最小转数下的消耗功率,或者是通过预设修正算法对压缩机最小转数下的消耗功率进行修正的修正值。
S304、根据外部环境温度以及预设第一对应关系,确定第二电子膨胀阀运行的第一下限值。
在本步骤中,第二电子膨胀阀安装在第一内部热交换器的输入端。
在本实施例中,如图1所示,第一内部热交换器为蒸发器102,第二电子膨胀阀为蒸发器102前的电子膨胀阀即电子膨胀阀107。
S305、利用预设算法,根据外部环境温度、乘员舱温度、内循环百分比、外循环百分比以及鼓风机风量,确定第二电子膨胀阀运行的第一上限值。
在本步骤中,首先计算影响因子的值,如下所示:
影响因子=(外部环境温度*外循环百分比+乘员舱温度*内循环百分比)*鼓风机风量
根据上述影响因子的计算结果以及与影响因子相对应的映射关系,确定对应的第二电子膨胀阀运行的第一上限值。
S306、根据外部环境温度以及预设第二对应关系,确定第一电子膨胀阀运行的第二上限值以及第二下限值。
在本步骤中,第一电子膨胀阀安装在第二内部热交换器的输出端。
在本实施例中,如图1所示,第一电子膨胀阀为电子膨胀阀106,第二内部交换器为内部冷凝器103,在内部冷凝器103输出端上安装有防止冷媒回流的单向截止阀108。
步骤S304-S306中,限制第一电子膨胀阀和/或第二电子膨胀阀的开度的上限和下限是因为在外部环境的限制下,热泵系统所能主动吸收到的热量是与外部环境的温度相关的,为了避免热泵系统工作时忽略客观限制,不断加大或减小电子膨胀阀开度,引起系统振荡,产生严重噪音,或者是过大的开度波动范围使得,电子膨胀阀在某些时候当前开度与控制指令的目标开度相差过大时,调整时间过长,也会影响系统的稳定性,还或者是在超出了上下限的范围后电子膨胀阀的调节作用已经失效,为了避免控制器发出无效的目标开度,将其上下限限制住,以维持整个热泵系统的稳定。
S307、根据第一目标温度以及第一闭环控制模型,确定压缩机的第一闭环控制指令。
在本步骤中,第一目标温度包括热交换箱在出风口处的空气温度。
S308、根据目标过冷度以及第二闭环控制模型,确定第一电子膨胀阀的第二闭环控制指令。
在本步骤中,目标过冷度包括热交换介质即冷媒在第二内部热交换器的输出端的过冷度。
S309、根据第三温度以及第三闭环控制模型,确定第二电子膨胀阀的第三闭环控制指令。
在本步骤中,第三温度包括第一内部热交换器在热交换箱中的安装位置的出风侧的空 气温度。
S310、分别向压缩机、第一电子膨胀阀以及第二电子膨胀阀输出第一闭环控制指令、第二闭环控制指令以及第三闭环控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求。
在本步骤中,第二目标温度为第一内部热交换器的温度。
步骤S307~S310中,通过压缩机来对出风口温度进行闭环控制,相比于现有技术用压缩机控制第一内部热交换器所在安装位置的出风侧的温度即第二目标温度来说,本申请改为通过压缩机控制出风口温度即第一目标温度更容易达到平稳控制的目标。这样就克服了第一目标温度与第二目标温度的同时稳定控制的技术障碍,避免了现有技术顾此失彼引发热泵系统振荡的问题。
S311、获取压缩机输入端的压力值。
在本步骤中,第一除湿模式执行时,并联的补热路径和冷却路径中的热交换介质在蒸发后具有共低压值,在压缩机的输入端安装压力传感器即可实时对此压力值进行监督。
S312、若压力值小于第一压力阈值,则暂停输出第一电子膨胀阀的第二闭环控制指令,并切换至按预设速率增大第一电子膨胀阀的开度,直至压力值大于或等于第二压力阈值时恢复输出第二闭环控制指令。
在本步骤中,若压缩机低压端的压力值小于第一压力阈值,则暂停第一电子膨胀阀的过冷度的闭环控制,切换为按预设速率(如0.1%/S)来增大第一电子膨胀阀的开度,同时实时检测压力值是否恢复到第二压力阈值,若恢复到了,则继续执行对第一电子膨胀阀的闭环控制。
通过控制低压端的压力,防止热泵系统压力失衡,这是采取并联除湿的方式容易导致系统振荡,为了提高安全性,减小振荡或者是防止出现超出系统调节能力的振荡,监测低压端压力值是本申请发明人发现的一个有效防止振荡的措施。由于控制指令的计算和执行是有一定的延迟性的,低压端压力值低于第一压力阈值,就代表着这种延迟的影响可能会使得整个系统的工作状态超出了在第一除湿模式下系统的调节能力,或者是闭环调节过快,系统状态没有及时跟上,此时,暂停闭环控制等待低压端压力恢复后再继续调节,使得系统的稳定性得到进一步保障。
S313、响应于第一内部热交换器的结霜保护开启指令,关闭第二电子膨胀阀,同时记录第二电子膨胀阀在关闭前的第一开度值,并维持压缩机转速不变,第二电子膨胀阀安装在第一内部热交换器的输入端。
S314、响应于第一内部热交换器的结霜保护关闭指令,将第二电子膨胀阀的初始开度值设置为第一开度值,并恢复对第二电子膨胀阀的闭环控制。
对于步骤S313和S314,虽然第一除湿模式的控制策略在理论上是安全的,但是实际过程中由于各种无法事先预知的因素的影响,如各项控制指令的有效时间和执行时的延迟特性的矛盾,依然会出现在极端情况下,第一内部热交换器结霜的现象,而在传感器检测到结霜后,立即启动结霜保护,停止第一内部热交换器的热交换,等待化霜后再继续进行除湿,避免了第一内部热交换器结霜/结冰导致第一内部热交换器损坏的危险情况,提高了热泵系统的稳定性和安全性。
需要说明的是,S312~S314与S307~S310并没有先后顺序的要求,可以理解为由 并行的线程来管控。
下面的步骤是第二除湿模式中的步骤:
S315、获取冷却液循环系统中电池冷却回路的水温。
在本步骤中,车载热管理系统除了有热泵系统外,还有冷却液循环系统,用于给动力电池、电机、发动机等动力设备进行热管理。由于动力设备在运行时会产生大量的热量,因此一般由冷却液循环系统对其进行冷却,将热量排出到外部环境中。可以通过冷却液管路上的预设位置的温度传感器获取到电池冷却回路的水温。
S316、根据水温以及出风口的目标出风温度,判断电池余热是否满足补热要求。
在本步骤中,水温以及出风口的目标出风温度两者对比的温差,即可知道热传递方向,再根据冷却液比热容,即可得到电池冷却回路中的热量是否满足除湿补热的要求。若是,则执行步骤S317,若否则执行步骤S318。
S317、控制对应的电子膨胀阀将电池冷却回路的冷却液导入对乘员舱进行加热的暖风芯体上。
在本实施例中,暖风芯体用于通过冷却液对乘员舱进行补热升温。暖风芯体可以安装在热交换箱中,在出风口之前给空气进行加热。
S318、开启加热设备,以对流经暖风芯体的冷却液进行加热。
在本步骤中,加热设备包括PTC加热器,通过PTC加热器加热冷却液,然后在冷却液流经暖风芯体时,对热交换箱中的空气进行加热。
对于步骤S315-S318,在外部环境不能够提供足够的热量时,选择从车内的发热设备中吸收热量来进行除湿补热,优先选用电池冷却或者驱动电机或发动机冷却液中的余热来进行补热,实现热能的回收管理,在余热仍无法满足时,再利用自身能源加热,达到在保证除湿效果的情况下,尽肯能减少能源消耗的效果,以将更多能量用于驱动车辆行驶,提升新能源车辆的行驶里程。
本申请实施例提供了一种除湿模式的控制方法,通过当检测到乘员舱有除湿需求时,获取热泵系统的除湿负荷以及外部环境温度,热泵系统包括外部热交换器以及第一内部热交换器;然后根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式,该第一除湿模式用于:在除湿过程中,通过外部热交换器吸收外部环境的热量来对流经第一内部热交换器之后的空气进行补热升温;若是,则根据热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令;再输出控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求。解决了如何对新能源汽车进行除湿的技术问题,主动吸收外部环境的热量来对除湿后的空气进行补热,达到了即节约能源,又提高了系统的稳定性和安全性的技术效果。
图4为本申请实施例提供的一种除湿模式的控制装置的结构示意图。该图像处理装置400可以通过软件、硬件或者两者的结合实现。
如图4所示,该图像处理装置400包括:
获取模块401,用于当检测到乘员舱有除湿需求时,获取热泵系统的除湿负荷以及外部环境温度,热泵系统包括外部热交换器以及第一内部热交换器;
处理模块402,用于:
根据除湿负荷、外部环境温度以及负荷阈值,判断是否进入第一除湿模式,第一除湿模式用于:在除湿过程中,通过外部热交换器吸收外部环境的热量来对流经第一内部热交换器之后的空气进行补热升温;
若是,则根据空气传输热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定第一除湿模式的控制指令,第一预设位置包括出风口以及第一内部热交换器所在位置的出风侧;
输出控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求,第一目标温度包括出风口处的空气温度,第二目标温度为第一内部热交换器所在位置的出风侧的空气温度。
在一种可能的设计中,控制指令包括对热泵系统中的各个受控对象分别进行闭环控制的闭环控制指令,受控对象的作用包括使热交换介质在传输管路中沿并联循环路径循环流动,并联循环路径包括:吸热路径、制冷路径以及补热路径,吸热路径与制冷路径并联后再与补热路径串联;外部热交换器位于吸热路径上,第一内部热交换器位于制冷路径上,热泵系统还包括第二内部热交换器,第二内部热交换器位于补热路径上,第二内部热交换器用于将外部热交换器吸收的热量传递给流经第一内部热交换器之后的空气。
在一种可能的设计中,第一预设位置包括出风口处以及第一内部热交换器的安装位置的出风侧,对应的空气温度包括第一目标温度以及第三目标温度,第三目标温度为出风侧的空气温度,第二预设位置包括第二内部热交换器的输出端,对应的,过冷度包括输出端的目标过冷度;
对应的,处理模块402,用于根据第一目标温度以及第一闭环控制模型,确定压缩机的第一闭环控制指令;
根据目标过冷度以及第二闭环控制模型,确定第一电子膨胀阀的第二闭环控制指令,第一电子膨胀阀安装在第二内部热交换器的输出端;
根据第三温度以及第三闭环控制模型,确定第二电子膨胀阀的第三闭环控制指令,第二电子膨胀阀安装在第一内部热交换器的输入端。
在一种可能的设计中,获取模块401,用于获取乘员舱温度、内循环百分比、外循环百分比以及鼓风机风量;
处理模块402,用于利用预设负荷模型,根据第一目标温度的预设标准值、外部环境温度、外循环百分比、乘员舱温度、内循环百分比以及鼓风机风量,确定除湿负荷。
在一种可能的设计中,处理模块402,还用于根据外部环境温度以及预设第一对应关系,确定第二电子膨胀阀运行的第一下限值,第二电子膨胀阀安装在第一内部热交换器的输入端;
获取模块401,还用于获取乘员舱温度、内循环百分比、外循环百分比以及鼓风机风量;
处理模块402,还用于利用预设算法,根据外部环境温度、乘员舱温度、内循环百分比、外循环百分比以及鼓风机风量,确定第二电子膨胀阀运行的第一上限值;第一上限值以及第一下限值用于在外部环境温度超过第一温度范围时暂停或切换热泵系统的除湿模式。
在一种可能的设计中,处理模块402,还用于:根据外部环境温度以及预设第二对应关系,确定第一电子膨胀阀运行的第二上限值以及第二下限值,第一电子膨胀阀安装在第二内部热交换器的输出端;第二上限值以及第二下限值用于在外部环境温度超 过第二温度范围时暂停或切换热泵系统的除湿模式。
在一种可能的设计中,处理模块402,还用于:
若检测到第一电子膨胀阀的开度为第二下限值,且在预设时间内第二内部热交换器的输出端的过冷度小于或等于预设过冷度阈值时,将除湿模式切换到第二除湿模式,第二除湿模式在除湿过程中,利用电池冷却回路的热量或加热设备的热量对乘员舱进行补热升温,第二温度阈值大于第一温度阈值。
在一种可能的设计中,获取模块401,还用于获取压缩机输入端的压力值;
处理模块402,还用于若压力值小于第一压力阈值,则暂停输出第一电子膨胀阀的第二闭环控制指令,并切换至按预设速率增大第一电子膨胀阀的开度,直至压力值大于或等于第二压力阈值时恢复输出第二闭环控制指令,第一电子膨胀阀安装在第二内部热交换器的输出端。
在一种可能的设计中,处理模块402,还用于响应于第一内部热交换器的结霜保护开启指令,关闭第二电子膨胀阀,同时记录第二电子膨胀阀在关闭前的第一开度值,并维持压缩机转速不变,第二电子膨胀阀安装在第一内部热交换器的输入端。
在一种可能的设计中,处理模块402,还用于响应于第一内部热交换器的结霜保护关闭指令,将第二电子膨胀阀的初始开度值设置为第一开度值,并恢复对第二电子膨胀阀的闭环控制。
在一种可能的设计中,处理模块402,用于若除湿负荷大于或等于负荷阈值,且外部环境温度小于或等于第一温度阈值时,则确定进入第一除湿模式。
在一种可能的设计中,处理模块402,用于若除湿负荷小于负荷阈值,或外部环境温度大于或等于第二温度阈值时,则确定进入第二除湿模式,第二除湿模式在除湿过程中,利用电池冷却回路的热量或加热设备的热量对流经第一内部热交换器之后的空气进行补热升温,第二温度阈值大于第一温度阈值。
在一种可能的设计中,获取模块401,还用于获取冷却液循环系统中电池冷却回路的水温;
处理模块402,还用于:
根据水温以及出风口的目标出风温度,判断电池余热是否满足补热要求;
若是,则控制对应的电子膨胀阀将电池冷却回路的冷却液导入对流经第一内部热交换器之后的空气进行加热的暖风芯体上,暖风芯体用于通过冷却液对乘员舱进行补热升温;
若否,则开启加热设备,以对流经暖风芯体的冷却液进行加热。
值得说明的是,图4所示实施例提供的装置,可以执行上述任一方法实施例中所提供的方法,其具体实现原理、技术特征、专业名词解释以及技术效果类似,在此不再赘述。
图5为本申请实施例提供的一种电子设备的结构示意图。如图5所示,该电子设备500,可以包括:至少一个处理器501和存储器502。图5示出的是以一个处理器为例的电子设备。
存储器502,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。
存储器502可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
处理器501用于执行存储器502存储的计算机执行指令,以实现以上各方法实施例所述的方法。
其中,处理器501可能是一个中央处理器(central processing unit,简称为CPU),或 者是特定集成电路(application specific integrated circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
可选地,存储器502既可以是独立的,也可以跟处理器501集成在一起。当所述存储器502是独立于处理器501之外的器件时,所述电子设备500,还可以包括:
总线503,用于连接所述处理器501以及所述存储器502。总线可以是工业标准体系结构(industry standard architecture,简称为ISA)总线、外部设备互连(peripheral component,PCI)总线或扩展工业标准体系结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器502和处理器501集成在一块芯片上实现,则存储器502和处理器501可以通过内部接口完成通信。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁盘或者光盘等各种可以存储程序代码的介质,具体的,该计算机可读存储介质中存储有程序指令,程序指令用于上述各方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的方法。
本申请实施例还提供一种计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种除湿模式的控制方法,其特征在于,包括:
    当检测到乘员舱有除湿需求时,获取热泵系统的除湿负荷以及外部环境温度,所述热泵系统包括外部热交换器以及第一内部热交换器;
    根据所述除湿负荷、所述外部环境温度以及负荷阈值,判断是否进入第一除湿模式,所述第一除湿模式用于:在除湿过程中,通过所述外部热交换器吸收外部环境的热量来对流经所述第一内部热交换器之后的空气进行补热升温;
    若是,则根据热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定所述第一除湿模式的控制指令,所述第一预设位置包括出风口以及所述第一内部热交换器所在位置的出风侧;
    输出所述控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求,所述第一目标温度包括所述出风口的空气温度,所述第二目标温度为所述出风侧的空气温度。
  2. 根据权利要求1所述的控制方法,其特征在于,在所述第一除湿模式中,所述控制指令包括对所述热泵系统中的各个受控对象分别进行闭环控制的闭环控制指令,所述受控对象的作用包括使所述热交换介质在所述传输管路中沿并联循环路径循环流动,所述并联循环路径包括:吸热路径、制冷路径以及补热路径,所述吸热路径与所述制冷路径并联后再与所述补热路径串联;
    所述外部热交换器位于所述吸热路径上,所述第一内部热交换器位于所述制冷路径上,所述热泵系统还包括第二内部热交换器,所述第二内部热交换器位于所述补热路径上,所述第二内部热交换器用于将所述外部热交换器吸收的热量传递给所述流经第一内部热交换器之后的空气。
  3. 根据权利要求2所述的控制方法,其特征在于,所述第二预设位置包括所述第二内部热交换器的输出端,对应的,所述过冷度包括所述输出端的目标过冷度;
    所述根据热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定所述第一除湿模式的控制指令,包括:
    根据所述第一目标温度以及第一闭环控制模型,确定压缩机的第一闭环控制指令;
    根据所述目标过冷度以及第二闭环控制模型,确定第一电子膨胀阀的第二闭环控制指令,所述第一电子膨胀阀安装在所述第二内部热交换器的输出端;
    根据所述第二温度以及第三闭环控制模型,确定第二电子膨胀阀的第三闭环控制指令,所述第二电子膨胀阀安装在所述第一内部热交换器的输入端。
  4. 根据权利要求1-3中任一项所述的控制方法,其特征在于,所述获取热泵系统的除湿负荷,包括:
    获取乘员舱温度、内循环百分比、外循环百分比以及鼓风机风量;
    利用预设负荷模型,根据所述第一目标温度的预设标准值、所述外部环境温度、所述外循环百分比、所述乘员舱温度、所述内循环百分比以及所述鼓风机风量,确定所述除湿负荷。
  5. 根据权利要求1-4中任一项所述的控制方法,其特征在于,在所述根据空气传输热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定所述第一除湿模式的控制指令之前,还包括:
    根据所述外部环境温度以及预设第一对应关系,确定第二电子膨胀阀运行的第一下限值,所述第二电子膨胀阀安装在所述第一内部热交换器的输入端;
    获取乘员舱温度、内循环百分比、外循环百分比以及鼓风机风量;
    利用预设算法,根据所述外部环境温度、所述乘员舱温度、所述内循环百分比、所述外循环百分比以及所述鼓风机风量,确定所述第二电子膨胀阀运行的第一上限值。
  6. 根据权利要求2-5中任一项所述的控制方法,其特征在于,在所述根据空气传输热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定所述第一除湿模式的控制指令之前,还包括:
    根据所述外部环境温度以及预设第二对应关系,确定第一电子膨胀阀运行的第二上限值以及第二下限值,所述第一电子膨胀阀安装在所述第二内部热交换器的输出端。
  7. 根据权利要求6所述的控制方法,其特征在于,在输出所述控制指令之后,还包括:
    若检测到所述第一电子膨胀阀的开度为所述第二下限值,且在预设时间内所述第二内部热交换器的输出端的过冷度小于或等于预设过冷度阈值时,将除湿模式切换到第二除湿模式,所述第二除湿模式在除湿过程中,利用电池冷却回路的热量或加热设备的热量对流经所述第一内部热交换器之后的空气进行补热升温,所述第二温度阈值大于所述第一温度阈值。
  8. 根据权利要求1-7中任一项所述的控制方法,其特征在于,在输出所述控制指令之后,还包括:
    获取压缩机输入端的压力值;
    若所述压力值小于第一压力阈值,则暂停输出第一电子膨胀阀的第二闭环控制指令,并切换至按预设速率增大所述第一电子膨胀阀的开度,直至所述压力值大于或等于第二压力阈值时恢复输出所述第二闭环控制指令,所述第一电子膨胀阀安装在所述第二内部热交换器的输出端。
  9. 根据权利要求1-8中任一项所述的控制方法,其特征在于,在输出所述控制指令之后,还包括:
    响应于所述第一内部热交换器的结霜保护开启指令,关闭第二电子膨胀阀,同时记录所述第二电子膨胀阀在关闭前的第一开度值,并维持压缩机转速不变,所述第二电子膨胀阀安装在所述第一内部热交换器的输入端。
  10. 根据权利要求9所述的控制方法,其特征在于,在所述关闭第二电子膨胀阀,并维持压缩机转速不变之后,还包括:
    响应于所述第一内部热交换器的结霜保护关闭指令,将所述第二电子膨胀阀的初始开度值设置为所述第一开度值,并恢复对所述第二电子膨胀阀的闭环控制。
  11. 根据权利要求1-10中任一项所述的控制方法,其特征在于,所述根据所述除湿负荷、所述外部环境温度以及负荷阈值,判断是否进入第一除湿模式,包括:
    若所述除湿负荷大于或等于所述负荷阈值,且所述外部环境温度小于或等于第一温度阈值时,则确定进入所述第一除湿模式。
  12. 根据权利要求11所述的控制方法,其特征在于,所述根据所述除湿负荷、所述外部环境温度以及负荷阈值,判断是否进入第一除湿模式,还包括:
    若所述除湿负荷小于所述负荷阈值,或所述外部环境温度大于或等于第二温度阈值时,确定进入第二除湿模式,所述第二除湿模式在除湿过程中,利用电池冷却回路的热量或加热设备的热量对流经所述第一内部热交换器之后的空气进行补热升温,所述第二温度阈值大于所述第一温度阈值。
  13. 根据权利要求12所述的控制方法,其特征在于,在所述确定进入第二除湿模式之后,还包括:
    获取冷却液循环系统中电池冷却回路的水温;
    根据所述水温以及出风口的目标出风温度,判断电池余热是否满足补热要求;
    若是,则控制对应的电子膨胀阀将所述电池冷却回路的冷却液导入暖风芯体,所述暖风芯体用于通过所述冷却液对流经所述第一内部热交换器之后的空气进行补热升温;
    若否,则开启加热设备,以对流经所述暖风芯体的冷却液进行加热。
  14. 一种除湿模式的控制装置,其特征在于,包括:
    获取模块,用于当检测到乘员舱有除湿需求时,获取热泵系统的除湿负荷以及外部环境温度,所述热泵系统包括外部热交换器以及第一内部热交换器;
    处理模块,用于:
    根据所述除湿负荷、所述外部环境温度以及负荷阈值,判断是否进入第一除湿模式,所述第一除湿模式用于:在除湿过程中,通过所述外部热交换器吸收外部环境的热量来对流经所述第一内部热交换器之后的空气进行补热升温;
    若是,则根据空气传输热交换箱中多个第一预设位置上的空气温度以及热交换介质在传输管路中至少一个第二预设位置上的过冷度,确定所述第一除湿模式的控制指令,所述第一预设位置包括出风口以及所述第一内部热交换器所在位置的出风侧;
    输出所述控制指令,以使第一目标温度以及第二目标温度同时满足除湿功能的预设要求,所述第一目标温度包括所述出风口处的空气温度,所述第二目标温度为所述出风侧的空气温度。
  15. 一种电子设备包括:处理器,以及与所述处理器通信连接的存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求1至13中任一项所述的除湿模式的控制方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如权利要求1至13中任一项所述的方法。
  17. 一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现权利要求1至13中任一项所述的方法。
  18. 一种计算机程序,其特征在于,包括程序代码,当计算机运行所述计算机程序时,所述程序代码执行如权利要求1至13任一项所述的方法。
PCT/CN2021/127729 2021-10-29 2021-10-29 除湿模式的控制方法、装置、设备、介质及程序产品 WO2023070606A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180099749.4A CN117561176A (zh) 2021-10-29 2021-10-29 除湿模式的控制方法、装置、设备、介质及程序产品
KR1020237045493A KR20240007694A (ko) 2021-10-29 2021-10-29 제습 모드의 제어 방법, 장치, 기기, 매체 및 프로그램 제품
EP21961958.2A EP4344910A4 (en) 2021-10-29 2021-10-29 METHOD AND DEVICE FOR CONTROLLING A DEHUMIDIFICATION MODE, DEVICE, MEDIUM AND PROGRAM PRODUCT
PCT/CN2021/127729 WO2023070606A1 (zh) 2021-10-29 2021-10-29 除湿模式的控制方法、装置、设备、介质及程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127729 WO2023070606A1 (zh) 2021-10-29 2021-10-29 除湿模式的控制方法、装置、设备、介质及程序产品

Publications (1)

Publication Number Publication Date
WO2023070606A1 true WO2023070606A1 (zh) 2023-05-04

Family

ID=86158929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127729 WO2023070606A1 (zh) 2021-10-29 2021-10-29 除湿模式的控制方法、装置、设备、介质及程序产品

Country Status (4)

Country Link
EP (1) EP4344910A4 (zh)
KR (1) KR20240007694A (zh)
CN (1) CN117561176A (zh)
WO (1) WO2023070606A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726071A (zh) * 2008-10-20 2010-06-09 浙江吉利控股集团有限公司 具有湿度调节的车载空调
JP2011068156A (ja) * 2009-09-22 2011-04-07 Denso Corp 車両用空調装置
CN108656895A (zh) * 2018-04-28 2018-10-16 奇瑞汽车股份有限公司 一种电动汽车空调调节方法
CN110774860A (zh) * 2019-10-23 2020-02-11 广州小鹏汽车科技有限公司 一种电动汽车热管理系统的控制方法及电动汽车
CN110789290A (zh) * 2018-08-01 2020-02-14 上海汽车集团股份有限公司 车用热泵系统的空调箱及其通风策略
JP2020082912A (ja) * 2018-11-20 2020-06-04 株式会社デンソー 車両用空調装置
CN113022261A (zh) * 2021-04-29 2021-06-25 上海加冷松芝汽车空调股份有限公司 一种电动车用热管理系统
CN113085485A (zh) * 2021-04-29 2021-07-09 吉林大学 一种纯电动汽车用整车集成化热管理系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101875651B1 (ko) * 2016-09-13 2018-07-06 현대자동차 주식회사 차량용 히트 펌프 시스템
KR101787075B1 (ko) * 2016-12-29 2017-11-15 이래오토모티브시스템 주식회사 자동차용 히트펌프
DE102019109796A1 (de) * 2018-05-31 2019-12-05 Hanon Systems Wärmestrommanagementvorrichtung und Verfahren zum Betreiben einer Wärmestrommanagementvorrichtung
JP2021154814A (ja) * 2020-03-26 2021-10-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726071A (zh) * 2008-10-20 2010-06-09 浙江吉利控股集团有限公司 具有湿度调节的车载空调
JP2011068156A (ja) * 2009-09-22 2011-04-07 Denso Corp 車両用空調装置
CN108656895A (zh) * 2018-04-28 2018-10-16 奇瑞汽车股份有限公司 一种电动汽车空调调节方法
CN110789290A (zh) * 2018-08-01 2020-02-14 上海汽车集团股份有限公司 车用热泵系统的空调箱及其通风策略
JP2020082912A (ja) * 2018-11-20 2020-06-04 株式会社デンソー 車両用空調装置
CN110774860A (zh) * 2019-10-23 2020-02-11 广州小鹏汽车科技有限公司 一种电动汽车热管理系统的控制方法及电动汽车
CN113022261A (zh) * 2021-04-29 2021-06-25 上海加冷松芝汽车空调股份有限公司 一种电动车用热管理系统
CN113085485A (zh) * 2021-04-29 2021-07-09 吉林大学 一种纯电动汽车用整车集成化热管理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4344910A4 *

Also Published As

Publication number Publication date
EP4344910A1 (en) 2024-04-03
CN117561176A (zh) 2024-02-13
EP4344910A4 (en) 2024-05-29
KR20240007694A (ko) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5860360B2 (ja) 電動車両用熱管理システム
JP6125325B2 (ja) 車両用空気調和装置
JP5860361B2 (ja) 電動車両用熱管理システム
US11007847B2 (en) Vehicle air conditioning device
WO2019039153A1 (ja) 車両用空気調和装置
JP7221639B2 (ja) 車両用空気調和装置
JP7300264B2 (ja) 車両用空気調和装置
JP6230956B2 (ja) 車両用エアコンシステムの制御方法
JP2013023210A (ja) 車両用ヒートポンプシステムおよびその制御方法
WO2016013193A1 (ja) 車両用空調装置
JP7372732B2 (ja) 車両用空気調和装置
WO2020044785A1 (ja) 車両用空気調和装置
CN108128118A (zh) 一种电动汽车热控制系统
JP2004142596A (ja) 車両用空調装置
CN111051096B (zh) 车辆用空气调节装置
CN103568775B (zh) 汽车空调系统的控制方法及汽车空调控制系统
KR101693964B1 (ko) 하이브리드 차량용 난방시스템 및 하이브리드 차량용 난방시스템의 제어방법
WO2023070606A1 (zh) 除湿模式的控制方法、装置、设备、介质及程序产品
JP7221650B2 (ja) 車両用空気調和装置
JP2014225981A (ja) 車両の制御装置、熱管理システム、プログラム、及び車両の制御方法
CN103568776B (zh) 汽车空调系统及其控制方法
WO2023070607A1 (zh) 车辆制冷控制方法、装置、设备、介质及程序产品
JP7387520B2 (ja) 車両用空気調和装置
JP7233953B2 (ja) 車両用空気調和装置
WO2017150735A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023580887

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237045493

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021961958

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202180099749.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021961958

Country of ref document: EP

Effective date: 20231229