WO2020044785A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2020044785A1
WO2020044785A1 PCT/JP2019/026549 JP2019026549W WO2020044785A1 WO 2020044785 A1 WO2020044785 A1 WO 2020044785A1 JP 2019026549 W JP2019026549 W JP 2019026549W WO 2020044785 A1 WO2020044785 A1 WO 2020044785A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
air
outside air
heat exchanger
Prior art date
Application number
PCT/JP2019/026549
Other languages
English (en)
French (fr)
Inventor
徹也 石関
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to US17/266,771 priority Critical patent/US11865899B2/en
Priority to CN201980052632.3A priority patent/CN112585022A/zh
Priority to DE112019004278.5T priority patent/DE112019004278T5/de
Publication of WO2020044785A1 publication Critical patent/WO2020044785A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00785Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by the detection of humidity or frost
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers

Definitions

  • the present invention relates to a heat pump type air conditioner for a vehicle, which is supplied with power from a battery mounted on a vehicle, and particularly relates to defrosting of an outdoor heat exchanger.
  • the vehicle air conditioner of the present invention is a compressor that compresses a refrigerant, a radiator for heating the air supplied to the vehicle interior by releasing the refrigerant, and an outdoor heat exchanger provided outside the vehicle interior
  • the air conditioner is provided with a control device and is supplied with power from a battery, and air-conditions the vehicle interior.At least, the control device radiates a refrigerant discharged from the compressor with a radiator and decompresses the radiated refrigerant, and then performs outdoor control.
  • An air conditioning operation for heating the vehicle interior by absorbing heat with the heat exchanger and a defrosting operation for defrosting the outdoor heat exchanger by radiating the refrigerant discharged from the compressor with the outdoor heat exchanger are performed. It is possible to perform the defrosting operation based on the outside air humidity.
  • the control device does not permit the defrosting operation when the outside air humidity is equal to or more than a predetermined threshold.
  • the control device changes the threshold value in a direction of decreasing as the outside air temperature decreases.
  • the control device calculates an energy amount Ed required for defrosting the outdoor heat exchanger based on the outside air temperature, and also calculates the outside air temperature and the outside air temperature. Based on the humidity, the amount of energy Ea capable of absorbing heat from the outside air in the defrosted outdoor heat exchanger is calculated, and as a result of comparing these energy amounts Ed and Ea, when it is determined that a gain due to heat absorption from the outside air is obtained, The defrosting operation is permitted.
  • a vehicle air conditioner according to a fifth aspect of the present invention is characterized in that, in the above invention, the control device does not permit the defrosting operation regardless of the outside air humidity when the remaining amount of the battery is equal to or less than a predetermined threshold. .
  • the control device may not permit the defrosting operation regardless of the outside air humidity when the outside air temperature is predicted to increase based on the weather forecast information. It is characterized by.
  • the control device permits the defrosting operation regardless of the outside air humidity when it is predicted that a gain due to heat absorption from the outside air is obtained based on the navigation information. It is characterized by doing.
  • the control device forcibly executes the defrosting operation based on a predetermined input operation.
  • the amount of heat absorbed from the outside air can be increased by defrosting the outdoor heat exchanger, energy (electric power) for driving the compressor is not required for the defrosting operation, and the Electric power is consumed. Therefore, depending on the amount of energy required for defrosting the outdoor heat exchanger and the amount of energy capable of absorbing heat from the outside air in the defrosted outdoor heat exchanger, the case where defrosting has a gain and the case where defrosting is not performed There are more cases where there is a gain.
  • frost formation on the outdoor heat exchanger is greatly affected by the outside air humidity.In an environment where the outside air humidity is low, it takes time to form the frost on the outdoor heat exchanger. In this case, frost is formed before a sufficient amount of heat absorbed from the outside air is obtained. Therefore, when the outside air humidity is low, there is a gain to increase the heat absorption from the outside air by defrosting, but when the outside air humidity is high, the heat absorption corresponding to the power consumption of the battery for the defrost can be obtained. In some cases, there is a benefit to not defrosting.
  • the present invention includes a compressor for compressing a refrigerant, a radiator for radiating the refrigerant to heat the air supplied to the vehicle interior, an outdoor heat exchanger provided outside the vehicle interior, and a control device,
  • the control device radiates at least a refrigerant discharged from a compressor with a radiator and decompresses the radiated refrigerant. It is possible to perform an air-conditioning operation for heating the vehicle interior by absorbing heat at the air conditioner and a defrosting operation for defrosting the outdoor heat exchanger by releasing the refrigerant discharged from the compressor by the outdoor heat exchanger.
  • whether or not the defrosting operation can be performed is determined based on the outside air humidity. For example, when the outside air humidity is equal to or higher than a predetermined threshold as in the invention of claim 2, the defrosting operation is not permitted.
  • the control device changes the threshold in a direction to decrease as the outside air temperature decreases. With this configuration, it is possible to appropriately determine whether or not the defrosting operation of the outdoor heat exchanger can be performed according to the outside air temperature.
  • control device calculates the energy amount Ed required for defrosting the outdoor heat exchanger based on the outside air temperature based on the outside air temperature, and the defrosted outdoor room based on the outside air temperature and the outside air humidity.
  • the amount of energy Ea at which heat can be absorbed from the outside air in the heat exchanger is calculated, and as a result of comparing these energy amounts Ed and Ea, when it is determined that a gain due to the outside air heat absorption is obtained, the defrosting operation is permitted.
  • the vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and an electric compressor (electric compressor) 2 that compresses a refrigerant.
  • an electric compressor (electric compressor) 2 that compresses a refrigerant. Is provided in the air flow passage 3 of the HVAC unit 10 through which the vehicle interior air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G to radiate the refrigerant.
  • the refrigerant pipe 13A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13B via a check valve 18.
  • the check valve 18 has the refrigerant pipe 13B side directed forward, and the refrigerant pipe 13B is connected to the indoor expansion valve 8.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve are connected. 18 bypasses the circuit.
  • the air flow passage 3 on the upstream side of the heat absorber 9 is formed with an outside air suction port and an inside air suction port (represented by a suction port 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between inside air (inside air circulation) as air inside the vehicle compartment and outside air (introduction of outside air) as air outside the vehicle compartment. Further, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided downstream of the suction switching damper 26 in the air.
  • reference numeral 23 denotes an auxiliary heater as an auxiliary heating device.
  • the auxiliary heater 23 is formed of a PTC heater (electric heater) in the embodiment, and is provided in the air flow passage 3 on the downstream side of the radiator 4 with respect to the flow of air in the air flow passage 3. I have.
  • the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, the auxiliary heater 23 becomes a so-called heater core and assists heating of the vehicle interior.
  • the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 upstream of the radiator 4 in the air.
  • An air mix damper 28 is provided for adjusting the rate of air flow to the heater 4 and the auxiliary heater 23.
  • FOOT (foot), VENT (vent), and DEF (def) outlets are formed in the air flow passage 3 downstream of the radiator 4 in the air.
  • the air outlet 29 is provided with an air outlet switching damper 31 for controlling the air blowing from each of the air outlets.
  • the vehicle air conditioner 1 includes a temperature-regulated target temperature adjusting device 61 for circulating a heat medium through the battery 55 and the traveling motor 65 to adjust the temperature of the battery 55 and the traveling motor 65.
  • the battery 55 and the traveling motor 65 are temperature controlled objects mounted on the vehicle.
  • the traveling motor 65 to be temperature-controlled is not limited to the electric motor itself, but includes electric devices such as an inverter circuit for driving the electric motor.
  • the temperature adjustment device 61 to be heated includes a circulation pump 62 as a circulation device for circulating a heat medium through the battery 55 and the traveling motor 65, a first heat medium heater 66A as a heating device, and a first heat medium heater 66A.
  • a heat medium heating heater 66B and a refrigerant-heat medium heat exchanger 64 are provided, and the battery 55 and the traveling motor 65 are connected to each other by a heat medium pipe 68.
  • the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of the heat medium passage 64A is connected to the heat medium pipe 68A and the heat medium pipe. It branches to 68B.
  • a series circuit of the first electromagnetic valve 81, the first heat medium heater 66A, and the battery 55 as a flow path control device is connected to the heat medium pipe 68A, and the heat medium pipe 68B is connected to the heat medium pipe 68B.
  • a series circuit of the second solenoid valve 82, the second heat medium heater 66B, and the traveling motor 65 is connected.
  • Each of the solenoid valves 81 and 82 may be constituted by an electric valve whose flow rate can be adjusted.
  • the heat medium used in the temperature control device 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant, or a gas such as air can be adopted.
  • water is used as the heat medium.
  • Each of the heat medium heaters 66A and 66B is configured by an electric heater such as a PTC heater.
  • a jacket structure is provided around the battery 55 and the traveling motor 65 so that, for example, a heat medium can flow through the heat exchange relationship with the battery 55 and the traveling motor 65.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64. .
  • the heat medium that has flowed out of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is divided, and one of the divided heat medium reaches the first heat medium heater 66A via the first solenoid valve 81.
  • the first heat medium heater 66A generates heat, it is heated there, and then reaches the battery 55, where the heat medium exchanges heat with the battery 55.
  • the other divided heat medium reaches the second heat medium heater 66B via the second solenoid valve 82.
  • the second heat medium heater 66B If the second heat medium heater 66B is heated, it is heated there, and then the traveling motor is driven. At 65, the heat medium exchanges heat with the traveling motor 65 there. The heat medium that has exchanged heat with the battery 55 and the traveling motor 65 is merged and then sucked into the circulation pump 62 to be circulated in the heat medium pipe 68.
  • the first electromagnetic valve 81 When the first electromagnetic valve 81 is closed, the heat medium does not flow to the battery 55, and when the second electromagnetic valve 82 is closed, the heat medium does not flow to the traveling motor 65.
  • the refrigerant (a part or all of the refrigerant) flowing out of the refrigerant pipe 13F or the outdoor heat exchanger 7 flows into the branch pipe 27 and is decompressed by the auxiliary expansion valve 73.
  • -It flows into the refrigerant passage 64B of the heat medium heat exchanger 64 and evaporates there.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and is then sucked into the compressor 2 via the accumulator 12.
  • reference numeral 32 denotes an air conditioning controller 32 as a control device that controls the air conditioner 1 for a vehicle.
  • the air-conditioning controller 32 is connected via a vehicle communication bus 45 to a vehicle controller 35 (ECU) that controls the entire vehicle including drive control of the traveling motor 65 and a battery controller 40 that controls charging and discharging of the battery 55. It is configured to transmit and receive information.
  • ECU vehicle controller 35
  • Each of the air conditioning controller 32, the vehicle controller 35 (ECU), and the battery controller 40 is configured by a microcomputer as an example of a computer having a processor.
  • the inputs of the air conditioning controller 32 include an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle, an outside air humidity sensor 34 that detects the outside air humidity (Ham) of the vehicle, and air flow from the air inlet 25.
  • An HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the road 3, an inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the vehicle compartment, and an inside air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment;
  • An indoor CO 2 concentration sensor 39 for detecting the concentration of carbon dioxide in the passenger compartment, an outlet temperature sensor 41 for detecting the temperature of air blown into the passenger compartment from the outlet 29, and a refrigerant pressure (discharge pressure) of the compressor 2.
  • a radiator temperature sensor 46 for detecting the temperature of the radiator 4 (the temperature of the air passing through the radiator 4 or the temperature of the radiator 4 itself: the radiator temperature TCI);
  • Heat-absorber temperature sensor 48 that detects heat-absorber temperature Te
  • heat-absorber that detects refrigerant pressure of heat-absorber 9 (inside of heat-absorber 9 or pressure of refrigerant immediately after leaving heat-absorber 9).
  • Pressure sensor 49 for example, a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and switching between a set temperature and air conditioning operation
  • Air conditioner 53 for setting the air conditioner and an outdoor heat exchanger 7 (the temperature of the refrigerant immediately after leaving the outdoor heat exchanger 7, or the temperature of the outdoor heat exchanger 7 itself: the outdoor heat exchanger temperature TXO.
  • the outdoor The heat exchanger temperature TXO is an outdoor heat exchanger temperature sensor 54 for detecting the refrigerant evaporation temperature in the outdoor heat exchanger 7, and the refrigerant pressure of the outdoor heat exchanger 7 (in the outdoor heat exchanger 7 or in the outdoor).
  • Each output of the outdoor heat exchanger pressure sensor 56 for detecting the pressure of the refrigerant immediately after leaving the heat exchanger 7) is connected.
  • the air-conditioning operation unit 53 includes a forced defrost switch 53A described later.
  • the outputs of the air conditioning controller 32 include the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31, the outdoor
  • the auxiliary expansion valve 73 and the first and second solenoid valves 81 and 82 are connected.
  • the air conditioning controller 32 controls these based on the outputs of the sensors and the settings input by the air conditioning operation unit 53 and information from the vehicle controller 35 and the battery controller 40.
  • the air conditioning controller 32 (control device) includes a heating operation (air conditioning operation for heating the vehicle interior), a dehumidification heating operation (an air conditioning operation for heating the interior of the vehicle), an internal cycle operation, and a dehumidifying cooling operation.
  • a heating operation air conditioning operation for heating the vehicle interior
  • a dehumidification heating operation an air conditioning operation for heating the interior of the vehicle
  • an internal cycle operation a dehumidifying cooling operation.
  • Each air conditioning operation of the cooling operation is switched and executed, and the temperature of the battery 55 (the object of the temperature adjustment) and the temperature of the traveling motor 65 (the object of the temperature adjustment) are adjusted within a predetermined appropriate temperature range in the embodiment.
  • each air conditioning operation of the refrigerant circuit R of the vehicle air conditioner 1 during operation of the vehicle will be described.
  • the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws heat by traveling or from outside air passed through the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the refrigerant pipe 13D, and the solenoid valve 21, and then enters the accumulator 12 from the refrigerant pipe 13C through the check valve 20, where it is separated into gas and liquid.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 is repeated.
  • the air heated by the radiator 4 is blown out from the air outlet 29, thereby heating the vehicle interior.
  • the air-conditioning controller 32 calculates a target radiator pressure PCO (a target value of the pressure PCI of the radiator 4) from a target heater temperature TCO (a target value of the air temperature on the leeward side of the radiator 4) calculated from a target outlet temperature TAO described later. Is controlled, and the number of revolutions of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • FIG. 4 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) in the dehumidifying and heating operation.
  • the air-conditioning controller 32 opens the electromagnetic valve 22 and opens the indoor expansion valve 8 in the state of the heating operation to decompress and expand the refrigerant.
  • the air conditioning controller 32 controls the opening degree of the indoor expansion valve 8 so as to maintain the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 at a predetermined value. As the moisture in the air blown out from the indoor blower 27 condenses on the heat absorber 9 and adheres, the air is cooled and dehumidified. The remaining refrigerant that has flowed into the refrigerant pipe 13 ⁇ / b> J is decompressed by the outdoor expansion valve 6, and then evaporates in the outdoor heat exchanger 7.
  • SH superheat
  • the refrigerant evaporated by the heat absorber 9 flows out to the refrigerant pipe 13C and merges with the refrigerant from the refrigerant pipe 13D (the refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 via the check valve 20 and the accumulator 12. Repeated circulation. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification and heating of the vehicle interior is performed.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the valve opening of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 5 shows the flow of the refrigerant in the refrigerant circuit R in the internal cycle operation (solid arrow).
  • the air-conditioning controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating operation state (fully closed position).
  • the solenoid valve 21 is kept open, and the refrigerant outlet of the outdoor heat exchanger 7 is communicated with the refrigerant suction side of the compressor 2.
  • this internal cycle operation is a state in which the outdoor expansion valve 6 is fully closed by the control of the outdoor expansion valve 6 in the dehumidifying and heating operation, and therefore, this internal cycle operation can also be regarded as a part of the dehumidifying and heating operation.
  • the outdoor expansion valve 6 when the outdoor expansion valve 6 is closed, the inflow of the refrigerant into the outdoor heat exchanger 7 is prevented, so that the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 passes through the electromagnetic valve 22 and the refrigerant. All the fluid flows into the pipe 13F. Then, the refrigerant flowing through the refrigerant pipe 13F reaches the indoor expansion valve 8 via the refrigerant pipe 13B. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 flows through the refrigerant pipe 13C, and repeats the circulation sucked into the compressor 2 via the check valve 20 and the accumulator 12.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, thereby performing dehumidification and heating of the vehicle interior.
  • the air circulation on the indoor side is performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the path 3, heat is not pumped from the outside air, and heating for the power consumed by the compressor 2 is performed. The ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exerts the dehumidifying action, the dehumidifying capacity is higher but the heating capacity is lower than in the dehumidifying and heating operation.
  • the outdoor expansion valve 6 is closed, the solenoid valve 21 is open, and the refrigerant outlet of the outdoor heat exchanger 7 communicates with the refrigerant suction side of the compressor 2.
  • the refrigerant flows out to the refrigerant pipe 13C via the refrigerant pipe 13D and the electromagnetic valve 21, is collected by the accumulator 12, and the inside of the outdoor heat exchanger 7 is in a gas refrigerant state.
  • the amount of the refrigerant circulating in the refrigerant circuit R is increased as compared with when the electromagnetic valve 21 is closed, and the heating capacity of the radiator 4 and the dehumidifying capacity of the heat absorber 9 can be improved.
  • the air-conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the radiator pressure PCI (high pressure of the refrigerant circuit R) described above. At this time, the air-conditioning controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotation speeds obtained from either the calculation based on the temperature of the heat absorber 9 or the radiator pressure PCI.
  • FIG. 6 shows the flow of the refrigerant in the refrigerant circuit R in the dehumidifying cooling operation (solid line arrow).
  • the air-conditioning controller 32 opens the indoor expansion valve 8 so that the refrigerant is decompressed and expanded, and closes the solenoid valves 21 and 22. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the rate at which the air blown out from the indoor blower 27 is blown to the radiator 4 and the auxiliary heater 23.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 via the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled and condensed there by traveling or by the outside air passed by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated to the radiator 4, the ratio thereof is small (only for reheating at the time of cooling).
  • the refrigerant reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
  • the refrigerant directly passes through the refrigerant pipe 13J via the outdoor expansion valve 6, flows into the outdoor heat exchanger 7, and travels there or is ventilated by the outdoor blower 15.
  • the air is cooled by the outside air and condensed and liquefied.
  • the air-conditioning controller 32 calculates the above-described target outlet temperature TAO from the following equation (I).
  • the target outlet temperature TAO is a target value of the temperature of the air blown from the outlet 29 into the vehicle interior.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) ⁇ ⁇ (I)
  • Tset is the temperature set in the cabin set by the air-conditioning operation unit 53
  • Tin is the temperature of the cabin air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the sunshine sensor 51 detects the temperature.
  • This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target outlet temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 68, where the heat is absorbed by the refrigerant evaporated in the refrigerant flow path 64B, and the heat is absorbed.
  • the medium is cooled.
  • the heat medium that has exited the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is divided while the first and second solenoid valves 81 and 82 are open, and one of the divided heat medium is the second heat medium.
  • the air-conditioning controller 32 constantly supplies the refrigerant to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and constantly cools the heat medium, while the battery temperature Tb detected by the battery temperature sensor 76 and the traveling motor temperature. Based on the traveling motor temperature Tm detected by the sensor 78 and the upper limit value TH and the lower limit value TL of the appropriate temperature range, heat generation of each of the heat medium heaters 66A and 66B, and opening and closing of each of the electromagnetic valves 81 and 82. Is controlled so that the battery temperature Tb falls within the appropriate temperature range and the traveling motor temperature Tm falls within the appropriate temperature range (in that case, the heating / temperature controlled object is actually replaced with the heating operation). The temperature control mode is always executed, or the temperature control mode is switched between the heating operation and the heating / temperature control target temperature control mode).
  • the traveling motor temperature Tm is higher than the upper limit value TH of the appropriate temperature range, the second solenoid valve 82 is opened, and the second heating medium heater 66B does not generate heat, thereby cooling the traveling motor 65, and
  • the traveling motor 65 is heated by opening the second solenoid valve 82 and causing the second heat medium heater 66B to generate heat.
  • the temperature of the battery 55 battery temperature Tb
  • the temperature of the travel motor 65 travel motor temperature Tm
  • the electromagnetic valves 81 and 82 of the battery 55 and the traveling motor 65 which do not require temperature adjustment are closed, and the heat medium heaters 66A and 66B do not generate heat.
  • the capacity of the refrigerant-heat medium heat exchanger 64 and each of the heat medium heaters 66A and 66B is based on the heat capacity of the battery 55 and the running motor 65 as a load, and the battery temperature Tb and the running motor are controlled as described above. Even when the heat medium flows through both of the temperatures Tm, the heat medium is set to a value that can be set within an appropriate temperature range.
  • the air-conditioning controller 32 independently controls the temperature Tb of the battery 55 and the temperature Tm of the traveling motor 65 within an appropriate temperature range.
  • FIG. 8 shows the flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium of the temperature control target temperature adjusting device 61 (broken line arrow) in the cooling / temperature control target temperature control mode.
  • the air-conditioning controller 32 executes the target temperature control mode.
  • the air conditioning controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the internal cycle operation shown in FIG.
  • the circulating pump 62 of the adjustment target temperature adjusting device 61 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64.
  • FIG. 9 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium (dashed arrow) in the temperature adjustment target temperature controller 61 in the internal cycle / temperature adjustment mode.
  • the high-temperature refrigerant discharged from the compressor 2 is radiated by the radiator 4 and then flows through the solenoid valve 22 to the refrigerant pipe 13F. Then, part of the refrigerant that has exited the refrigerant pipe 13F reaches the indoor expansion valve 8 via the refrigerant pipe 13B, where the pressure is reduced, and then flows into the heat absorber 9 to evaporate.
  • the moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant flowing out of the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C, the check valve 20, and the accumulator 12, and the refrigerant flowing out of the refrigerant-heat medium heat exchanger 64 also flows through the refrigerant pipe 74 into the accumulator 12. After that, it is sucked into the compressor 2.
  • the air conditioning controller 32 replaces the dehumidification / heating operation, or performs the dehumidification heating operation and the dehumidification heating / control in the same manner as in the heating / temperature control target temperature control mode described above.
  • the temperature control mode for the temperature control is switched, or the mode is switched from the dehumidifying / heating operation to the dehumidifying / heating / temperature control target temperature control mode, and the auxiliary expansion valve 73, the heating medium heaters 66A and 66B, and the solenoid valves 81 and 82 are connected.
  • the battery temperature Tb and the traveling motor temperature Tm are adjusted (controlled) within an appropriate temperature range.
  • the unit temperature TXObase is constantly compared with the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 54, and the outdoor heat exchanger temperature TXO is lower than the outdoor heat exchanger temperature TXObase at the time of no frost formation. If the difference is equal to or greater than a predetermined value, a predetermined amount of frost is generated in the outdoor heat exchanger 7, and it is determined that the outdoor heat exchanger 7 needs to be defrosted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 reaches the outdoor expansion valve 6 from the refrigerant pipe 13E via the radiator 4.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the refrigerant pipe 13J and flows into the outdoor heat exchanger 7 as it is.
  • the outdoor heat exchanger 7 is defrosted by the high-temperature gas refrigerant flowing into the outdoor heat exchanger 7. After the refrigerant radiates heat to condense and liquefy, the refrigerant exits the outdoor heat exchanger 7.
  • the air-conditioning controller 32 sets the temperature of the battery 55 and the traveling motor 65 as the temperature control target by the heat medium heaters 66A and 66B of the temperature control target temperature adjustment device 61 to a predetermined upper limit. Since the temperature is adjusted to be within the appropriate temperature range not more than the lower limit and not less than the lower limit, the exhaust heat of the battery 55 and the traveling motor 65 and the heat of the heat medium heaters 66A and 66B are used for defrosting the outdoor heat exchanger 7. While contributing, it is possible to prevent the battery 55 and the traveling motor 65 from being too cold or overheated, and to function in an optimal state.
  • FIG. 12 shows another example of the defrosting operation.
  • FIG. 12 shows the flow of the refrigerant in the refrigerant circuit R when performing so-called simple defrosting of the outdoor heat exchanger 7.
  • the opening degree of the outdoor expansion valve 6 is slightly reduced, the electromagnetic valve 21 is opened, the electromagnetic valve 22 is closed, and the indoor expansion valve 8 and the auxiliary expansion valve 73 are fully closed. Then, the compressor 2 is operated.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 reaches the outdoor expansion valve 6 from the refrigerant pipe 13E via the radiator 4.
  • the refrigerant is slightly throttled and then flows into the outdoor heat exchanger 7 via the refrigerant pipe 13J.
  • the outdoor heat exchanger 7 is defrosted by the relatively high-temperature gas refrigerant flowing into the outdoor heat exchanger 7.
  • the refrigerant radiates heat, but leaves the outdoor heat exchanger 7 in a gas state.
  • the refrigerant passes through the check valves 20 via the refrigerant pipes 13A and 13D and the electromagnetic valve 21, and enters the accumulator 12 via the refrigerant pipe 13C. Then, it is sucked into the compressor 2.
  • FIG. 13 shows the relationship between the outside air temperature Tam detected by the outside air temperature sensor 33 and the energy amount Ed required for defrosting the outdoor heat exchanger 7.
  • the energy amount Ed required for defrosting increases as the outside air temperature Tam decreases and decreases as the outside air temperature Tam increases.
  • the energy amount Ed required for this defrost is calculated from the following equation (II) based on the outside air temperature Tam.
  • Ed f (Tam) (II)
  • the energy amount Ea capable of absorbing heat from the outside air in the defrosted outdoor heat exchanger 7 is calculated from the following equation (III) based on the outside air temperature Tam and the outside air humidity Ham.
  • Ea f (Tam, Ham) (III)
  • the higher the outside air temperature Tam the easier it is to absorb heat
  • the higher the outside air humidity Ham the easier it is to frost and harder to absorb heat from the outside air.
  • the air conditioning controller 32 can use Equations (II) and (III) to absorb energy Ed necessary for defrosting the outdoor heat exchanger 7 and absorb heat from the outside air in the defrosted outdoor heat exchanger 7. Energy amount Ea is calculated.
  • the air-conditioning controller 32 compares these energy amounts Ed and Ea, and when Ea> Ed, or when Ea> Ed + ⁇ , or when Ea> Ed ⁇ , a gain due to heat absorption from outside air is obtained. And the defrosting operation is permitted.
  • the above ⁇ and ⁇ are predetermined margins.
  • the air-conditioning controller 32 calculates the energy amount Ed required for defrosting the outdoor heat exchanger 7 based on the outdoor air temperature Tam, and also performs the defrosted outdoor heat based on the outdoor air temperature Tam and the outdoor air humidity Ham.
  • the energy amount Ea at which heat can be absorbed from the outside air in the exchanger 7 is calculated, and as a result of comparing these energy amounts Ed and Ea, if it is determined that a gain due to heat absorption from the outside air is obtained, the defrosting operation is permitted.
  • the defrosting operation of the outdoor heat exchanger 7 can be permitted only when the gain obtained by defrosting the outdoor heat exchanger 7 exceeds the loss relating to the defrosting itself. Can be determined more accurately.
  • the air conditioning controller 32 of the embodiment performs the defrosting operation regardless of the determination based on the outside air humidity Ham as described above. Do not allow.
  • the threshold value Bth is a predetermined low remaining amount.
  • the air-conditioning controller 32 of the embodiment based on external weather forecast information obtained from the vehicle controller 35, for example, predicts that the outside air humidity will decrease in the future, and predicts that a gain due to heat absorption from the outside air will be obtained.
  • the defrosting operation is also permitted when the determination is not possible based on the current outside air humidity Ham. That is, in the embodiment, it is possible to determine whether or not the defrosting operation of the outdoor heat exchanger 7 can be performed according to a future environmental change.
  • the air-conditioning controller 32 of the embodiment predicts that, based on the history information on the driving state of the vehicle obtained from the vehicle controller 35, the future driving state predicted from the history is, for example, a long distance and a gain due to heat absorption from the outside air can be obtained.
  • the defrosting operation is also permitted when the determination is not possible based on the outside air humidity Ham.
  • the defrosting operation is not performed when the distance to be operated in the future is predicted to be short from the past operation state, and the defrosting operation can be performed only when the gain due to heat absorption from the outside air is obtained such as when the distance is long.
  • the determination as to whether or not the defrosting operation is possible is made using the outside air humidity Ham detected by the outside air humidity sensor 34.
  • the outside air humidity sensor is not mounted, the outside air humidity acquired by the vehicle controller 35 via the Internet is used. May be used.
  • the configuration of the air conditioning controller 32 described in the embodiment, the configuration of the refrigerant circuit R of the vehicle air conditioner 1 and the configuration of the temperature adjustment target temperature adjustment device 61 are not limited thereto, and do not depart from the gist of the present invention. It goes without saying that it can be changed within the range.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

走行距離に及ぼす影響をできるだけ小さくしながら、室外熱交換器における外気からの吸熱量を増やすことを可能とした車両用空気調和装置を提供する。圧縮機(2)と放熱器(4)と室外熱交換器(7)と空調コントローラを備え、バッテリから給電されて車室内を空調する。空調コントローラは圧縮機からの冷媒を放熱器にて放熱させ、減圧した後、室外熱交換器にて吸熱させて車室内を暖房する空調運転と、圧縮機からの冷媒を室外熱交換器にて放熱させることで室外熱交換器を除霜する除霜運転を実行可能とされており、外気湿度に基づいて除霜運転の実行可否を判断する。

Description

車両用空気調和装置
 本発明は、車両に搭載されたバッテリから給電されるヒートポンプ式の車両用空気調和装置であって、特に、室外熱交換器の除霜に関するものである。
 近年の環境問題の顕在化から、搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、バッテリから供給される電力で駆動する電動式の圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において外気から吸熱させることで車室内を暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させることで車室内を冷房するものが開発されている。
 また、車室内を暖房する場合、室外熱交換器では冷媒が吸熱して低温となるため、室外熱交換器には外気中の水分が霜となって付着する。この室外熱交換器の着霜が成長すると、外気との熱交換が阻害されるため、暖房能力が低下してしまう。そこで、圧縮機から吐出された高温の冷媒を室外熱交換器に流して放熱させることで室外熱交換器を除霜するようにしていた(例えば、特許文献1参照)。
特開2011-237052号公報
 外部電源(充電装置)からバッテリに充電する電気自動車や充電可能なハイブリッド自動車では、充電中に圧縮機を運転し、上記のような室外熱交換器の除霜を行う構成とされているが、近年ではバッテリ容量が増大したため、頻繁に充電する必要もなくなり、非充電中(停車中や走行中等。当然に車室内の空調運転中も含まれる)にも室外熱交換器を除霜した方が利得がある可能性が出てきた。
 しかしながら、室外熱交換器の除霜運転にも圧縮機を駆動する必要があり、それ自体エネルギーを使うため、非充電中に室外熱交換器の除霜を行うことで、バッテリの残量が低下し過ぎてしまい、走行不能に陥る危険性もある。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、走行距離に及ぼす影響をできるだけ小さくしながら、室外熱交換器における外気からの吸熱量を増やすことを可能とした車両用空気調和装置を提供することを目的とする。
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、制御装置を備え、バッテリから給電されて車室内を空調するものであって、制御装置は少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させることで車室内を暖房する空調運転と、圧縮機から吐出された冷媒を室外熱交換器にて放熱させることで当該室外熱交換器を除霜する除霜運転を実行可能
とされており、外気湿度に基づいて除霜運転の実行可否を判断することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、外気湿度が所定の閾値以上である場合、除霜運転を許可しないことを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記発明において制御装置は、外気温度が低い程、低くする方向で閾値を変更することを特徴とする。
 請求項4の発明の車両用空気調和装置は、請求項1の発明において制御装置は、外気温度に基づき、室外熱交換器の除霜に必要なエネルギー量Edを計算すると共に、外気温度と外気湿度に基づき、除霜された室外熱交換器にて外気から吸熱可能となるエネルギー量Eaを計算し、これらエネルギー量Ed及びEaを比較した結果、外気吸熱による利得が得られると判断した場合、除霜運転を許可することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において制御装置は、バッテリの残量が所定の閾値以下の場合、外気湿度に拘わらず、除霜運転を許可しないことを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記各発明において制御装置は、天気予報情報に基づき、外気吸熱による利得が得られると予測される場合、外気湿度に拘わらず、除霜運転を許可することを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記各発明において制御装置は、天気予報情報に基づき、外気温度が上昇すると予測される場合、外気湿度に拘わらず、除霜運転を許可しないことを特徴とする。
 請求項8の発明の車両用空気調和装置は、上記各発明において制御装置は、ナビゲーション情報に基づき、外気吸熱による利得が得られると予測される場合、外気湿度に拘わらず、除霜運転を許可することを特徴とする。
 請求項9の発明の車両用空気調和装置は、上記各発明において制御装置は、車両の運転状態に関する履歴情報に基づいて予測される今後の運転状態に基づき、外気吸熱による利得が得られると予測される場合、外気湿度に拘わらず、除霜運転を許可することを特徴とする。
 請求項10の発明の車両用空気調和装置は、上記各発明において制御装置は、所定の入力操作に基づき、除霜運転を強制的に実行することを特徴とする。
 室外熱交換器の除霜を行うことで外気からの吸熱量を増やすことができるが、除霜運転のためには圧縮機を駆動するエネルギー(電力量)が必要となし、その分、バッテリの電力量が消費されてしまう。従って、室外熱交換器の除霜に必要なエネルギー量と、除霜された室外熱交換器にて外気から吸熱可能となるエネルギー量によって、除霜した方が利得があるケースと、除霜しない方が利得があるケースに分かれる。
 一方、室外熱交換器への着霜は外気湿度に大きく影響を受け、外気湿度が低い環境では室外熱交換器への着霜に時間がかかるものの、外気湿度が高い環境では、室外熱交換器において十分な外気からの吸熱量を得る前に着霜してしまうことになる。従って、外気湿度が低い場合には除霜することで外気からの吸熱量を増やす利得があるものの、外気湿度が高い場合には除霜のためのバッテリの電力消費に見合った吸熱量が得られなくなり、除霜しない方が利得がある場合も出てくる。
 そこで、本発明は冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、制御装置を備え、バッテリから給電されて車室内を空調する車両用空気調和装置において、制御装置が少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させることで車室内を暖房する空調運転と、圧縮機から吐出された冷媒を室外熱交換器にて放熱させることで当該室外熱交換器を除霜する除霜運転を実行可能とされているとき、外気湿度に基づいて除霜運転の実行可否を判断するようにしたので、例えば、請求項2の発明の如く外気湿度が所定の閾値以上である場合は除霜運転を許可しないようにすることで、走行距離に与える悪影響をできるだけ小さくしながら、室外熱交換器の除霜を行って外気からの吸熱量を増やし、車室内を快適に暖房することが可能となる。
 ここで、室外熱交換器の除霜に必要なエネルギー量は外気温度が低い程増加するので、請求項3の発明の如く制御装置が、外気温度が低い程、低くする方向で閾値を変更するようにすれば、外気温度に応じて室外熱交換器の除霜運転を実行可否を適切に判断することができるようになる。
 また、例えば請求項4の発明の如く制御装置が、外気温度に基づき、室外熱交換器の除霜に必要なエネルギー量Edを計算すると共に、外気温度と外気湿度に基づき、除霜された室外熱交換器にて外気から吸熱可能となるエネルギー量Eaを計算し、これらエネルギー量Ed及びEaを比較した結果、外気吸熱による利得が得られると判断した場合、除霜運転を許可するようにすれば、室外熱交換器を除霜することで得られる利得が除霜自体にかかる損失を上回る場合のみ、室外熱交換器の除霜運転を許可することができるようになり、除霜運転の実行可否をより的確に判断することが可能となる。
 尚、請求項5の発明の如く制御装置が、バッテリの残量が所定の閾値以下の場合は外気湿度に拘わらず、除霜運転を許可しないようにすれば、室外熱交換器の除霜を行ったことで走行不能に陥ってしまう不都合を確実に回避することができるようになる。
 ここで、例えば今後外気湿度が低下するような場合には、今は除霜運転を許可できない状況であっても、許可した方が利得が得られると予測できる。そこで、外部からの天気予報情報が得られる場合には、請求項6の発明の如く制御装置が、天気予報情報に基づき、外気吸熱による利得が得られると予測される場合、外気湿度に拘わらず、除霜運転を許可するようにすれば、今後の環境変化に応じて室外熱交換器の除霜運転の実行可否を判断することが可能となる。
 例えば、天気予報情報により外気温度が上昇すると予測される場合には、室外熱交換器は自然除霜される可能性が高くなるので、請求項7の発明の如く、外気湿度に拘わらず、除霜運転を許可しないようにすれば、無用なバッテリの電力消費を回避することが可能となる。
 また、例えば目的地まで未だ時間がかかる場合には室外熱交換器を除霜した方が外気吸熱による利得が高くなる。そこで、ナビゲーション情報が得られる場合には、例えば、請求項8の発明の如く制御装置が、ナビゲーション情報に基づいて外気吸熱による利得が得られると予測される場合、外気湿度に拘わらず、除霜運転を許可するようにすることで、より適切に除霜運転の実行可否を判断することが可能となる。
 逆に走行距離が短い場合には、室外熱交換器を除霜しても無駄になる可能性が高い。そこで、例えば、請求項9の発明の如く制御装置が、車両の運転状態に関する履歴情報に基づいて予測される今後の運転状態に基づき、外気吸熱による利得が得られると予測される場合、外気湿度に拘わらず、除霜運転を許可するようにすれば、過去の運転状態から今後運転する距離が短いと予測される場合には除霜運転を行わず、長い場合等の外気吸熱による利得が得られる場合のみ除霜運転を実行することが可能となる。
 一方、請求項10の発明の如く制御装置が、所定の入力操作に基づき、除霜運転を強制的に実行できるようにすれば、例えば外部電源(充電装置)が設置された施設までの距離が短く、バッテリの電力を使用しても問題無いと使用者が判断した場合等に、室外熱交換器の除霜運転を強制的に実行して外気からの吸熱量を増大させ、車室内の暖房能力を向上させることができるようになる。
本発明を適用した車両用空気調和装置の一実施例の構成図である。 図1の車両用空気調和装置の制御装置としての空調コントローラのブロック図である。 図2の空調コントローラによる暖房運転を説明する図である。 図2の空調コントローラによる除湿暖房運転を説明する図である。 図2の空調コントローラによる内部サイクル運転を説明する図である。 図2の空調コントローラによる除湿冷房運転/冷房運転を説明する図である。 図2の空調コントローラによる暖房/被温調対象温調モードを説明する図である。 図2の空調コントローラによる除湿冷房/被温調対象温調モード(冷房/被温調対象温調モード)を説明する図である。 図2の空調コントローラによる内部サイクル/被温調対象温調モードを説明する図である。 図2の空調コントローラによる除湿暖房/被温調対象温調モードを説明する図である。 図2の空調コントローラによる室外熱交換器の除霜運転の一例を説明する図である。 図2の空調コントローラによる室外熱交換器の除霜運転の他の例を説明する図である。 外気温度と室外熱交換器の除霜に必要なエネルギーとの関係を示す図である。 外気温度と室外熱交換器の着霜にかかる時間との関係を示す図である。 外気湿度が高い環境で室外熱交換器を除霜したときと補助ヒータにより暖房補助を行ったときの消費電力量の関係を説明する図である。 外気湿度が低い環境で室外熱交換器を除霜したときと補助ヒータにより暖房補助を行ったときの消費電力量の関係を説明する図である。 図2の空調コントローラによる室外熱交換器の除霜運転の実行可否を判断するためのMAPを説明する図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明を適用した一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ55(例えば、リチウム電池)が搭載され、急速充電器等の外部電源からバッテリ55に充電された電力を走行用モータ(電動モータ)65に供給することで駆動し、走行するものである。そして、車両用空気調和装置1も、バッテリ55から給電されて駆動されるものである。
 即ち、車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房運転(車室内を暖房する空調運転)を行い、更に、除湿暖房運転(これも車室内を暖房する空調運転)や内部サイクル運転、除湿冷房運転、冷房運転の各空調運転を選択的に実行することで車室内の空調を行うものである。尚、車両として係る電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。室外膨張弁6や室内膨張弁8は、冷媒を減圧膨張させると共に、全開や全閉も可能とされている。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7の冷媒出口側に接続された冷媒配管13Aは、逆止弁18を介して冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B側が順方向とされ、この冷媒配管13Bは室内膨張弁8に接続されている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して吸熱器9の出口側に位置する冷媒配管13Cに連通接続されている。そして、この冷媒配管13Dの接続点より下流側の冷媒配管13Cに逆止弁20が接続され、この逆止弁20より下流側の冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。尚、逆止弁20はアキュムレータ12側が順方向とされている。
 更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐しており、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される電磁弁22を介して逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする回路となる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は補助加熱装置としての補助ヒータである。この補助ヒータ23は実施例ではPTCヒータ(電気ヒータ)から構成されており、空気流通路3の空気の流れに対して、放熱器4の空気下流側となる空気流通路3内に設けられている。そして、補助ヒータ23が通電されて発熱すると、これが所謂ヒータコアとなり、車室内の暖房補助を行う。
 また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 
 更に、車両用空気調和装置1は、バッテリ55や走行用モータ65に熱媒体を循環させてこれらバッテリ55や走行用モータ65の温度を調整するための被温調対象温度調整装置61を備えている。即ち、実施例においてはバッテリ55や走行用モータ65が車両に搭載された被温調対象となる。尚、被温調対象としての走行用モータ65は電動モータそのものに限らず、これを駆動するためのインバータ回路等の電気機器も含む概念とする。
 実施例の被温調対象温度調整装置61は、バッテリ55や走行用モータ65に熱媒体を循環させるための循環装置としての循環ポンプ62と、加熱装置としての第1熱媒体加熱ヒータ66A及び第2熱媒体加熱ヒータ66Bと、冷媒-熱媒体熱交換器64を備え、それらとバッテリ55及び走行用モータ65が熱媒体配管68にて接続されている。
 この実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体配管68Aと熱媒体配管68Bに分岐している。そして、このうちの熱媒体配管68Aに流路制御装置としての第1電磁弁81、第1熱媒体加熱ヒータ66A及びバッテリ55の直列回路が接続され、熱媒体配管68Bに流路制御装置としての第2電磁弁82、第2熱媒体加熱ヒータ66B及び走行用モータ65の直列回路が接続されている。そして、バッテリ55の出口側の熱媒体配管68Aと走行用モータ65の出口側の熱媒体配管68Aは合流した後、循環ポンプ62の吸込側に接続されている。尚、上記各電磁弁81、82は流量を調整可能な電動弁にて構成してもよい。
 この被温調対象温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、各熱媒体加熱ヒータ66A、66BはPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55や走行用モータ65の周囲には例えば熱媒体が当該バッテリ55や走行用モータ65と熱交換関係で流通可能なジャケット構造が施されているものとする。
 そして、各電磁弁81、82が開いている状態で循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は分流され、分流された一方の熱媒体は第1電磁弁81を経て第1熱媒体加熱ヒータ66Aに至り、当該第1熱媒体加熱ヒータ66Aが発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。分流された他方の熱媒体は第2電磁弁82を経て第2熱媒体加熱ヒータ66Bに至り、当該第2熱媒体加熱ヒータ66Bが発熱されている場合にはそこで加熱された後、走行用モータ65に至り、熱媒体はそこで走行用モータ65と熱交換する。これらバッテリ55及び走行用モータ65と熱交換した熱媒体は合流した後、循環ポンプ62に吸い込まれることで熱媒体配管68内を循環される。また、第1電磁弁81が閉じると熱媒体はバッテリ55には流れず、第2電磁弁82が閉じると熱媒体は走行用モータ65には流れなくなる。
 一方、冷媒回路Rの冷媒配管13Fの出口、即ち、冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには分岐回路としての分岐配管72の一端が接続されている。この分岐配管72には電動弁から構成された補助膨張弁73が設けられている。この補助膨張弁73は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に全閉も可能とされている。
 そして、分岐配管72の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管74の一端が接続され、冷媒配管74の他端は逆止弁20の冷媒下流側であってアキュムレータ12の手前(冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁73等も冷媒回路Rの一部を構成すると同時に、被温調対象温度調整装置61の一部をも構成することになる。
 補助膨張弁73が開いている場合、冷媒配管13Fや室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管27に流入し、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。
 次に、図2において32は車両用空気調和装置1の制御を司る制御装置としての空調コントローラ32である。この空調コントローラ32は、走行用モータ65の駆動制御を含む車両全般の制御を司る車両コントローラ35(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ40に車両通信バス45を介して接続され、情報の送受信を行う構成とされている。これら空調コントローラ32や車両コントローラ35(ECU)、バッテリコントローラ40は何れもプロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されている。
 空調コントローラ32(制御装置)の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、車両の外気湿度(Ham)を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2
度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。尚、この実施例では空調操作部53には後述する強制除霜スイッチ53Aも含まれているものとする。
 また、空調コントローラ32の入力には更に、バッテリ55の温度(バッテリ55自体の温度、又は、バッテリ55を出た熱媒体の温度、或いは、バッテリ55に入る熱媒体の温度:バッテリ温度Tb)を検出するバッテリ温度センサ76と、第1及び第2熱媒体加熱ヒータ66A、66Bの温度を検出する熱媒体加熱ヒータ温度センサ77(実際には各熱媒体加熱ヒータ66A、66Bに対してそれぞれ設けられるが、ここでは一つに纏めて示す)と、走行用モータ65の温度(走行用モータ65自体の温度、又は、走行用モータ65を出た熱媒体の温度、或いは、走行用モータ65に入る熱媒体の温度:走行用モータ温度Tm)を検出する走行用モータ温度センサ78の各出力も接続されている。
 一方、空調コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁22(除湿)、電磁弁21(暖房)の各電磁弁と、補助ヒータ23、循環ポンプ62、第1及び第2熱媒体加熱ヒータ66A、66B、補助膨張弁73、第1及び第2電磁弁81、82が接続されている。そして、空調コントローラ32は各センサの出力と空調操作部53にて入力された設定、車両コントローラ35やバッテリコントローラ40からの情報に基づいてこれらを制御するものである。
 前記車両コントローラ35は、車両(実施例では電気自動車)の走行を含む全般の制御を司るものであり、この車両コントローラ35の出力に前述した走行用モータ65が接続されている。尚、急速充電器等の外部電源に接続される充電用のプラグ60(後述)は接点を有しており、プラグ60が外部電源に接続された場合、この接点の状態が変化し、変化した旨の接点情報は車両コントローラ35に送信される構成とされている。車両コントローラ35はこの接点情報からプラグ60が外部電源に接続されたことを検出すると共に、その旨の情報を空調コントローラ32やバッテリコントローラ40にも送信する。
 また、車両コントローラ35には外部からの天気予報情報と、車両に搭載されたナビゲーション装置(図示せず)からのナビゲーション情報(位置情報やルート案内情報等)が入力されており、これらの情報も空調コントローラ32に送信される。更に、車両コントローラ35は当該車両の運転状態に関する履歴情報が蓄積されている。この履歴情報は、当該車両が過去にどのように運転されたかについての履歴(走行距離、走行時間)が、日時(カレンダー)に関する情報に対応して例えば1年間分蓄積されたものであり、係る車両の運転状態に関する履歴情報も空調コントローラ32に送信される。
 バッテリコントローラ40には充電時に外部電源に接続される前述したプラグ60が接続されており、このバッテリコントローラ40はバッテリ55への外部電源からの充電やバッテリ55からの放電を制御する。実施例のバッテリコントローラ40は車両コントローラ35や空調コントローラ32から送信される情報に基づいてバッテリ55の充放電を制御すると共に、バッテリ55に残存する充電量、即ち、バッテリ55の残量に関する情報を車両コントローラ35や空調コントローラ32に送信する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作について説明する。空調コントローラ32(制御装置)は実施例では暖房運転(車室内を暖房する空調運転)と、除湿暖房運転(これも車室内を暖房する空調運転)と、内部サイクル運転と、除湿冷房運転と、冷房運転の各空調運転を切り換えて実行すると共に、バッテリ55(被温調対象)や走行用モータ65(被温調対象)の温度を、実施例では所定の適温範囲内に調整する。先ず、車両の運転中における車両用空気調和装置1の冷媒回路Rの各空調運転について説明する。
 (1)暖房運転
 最初に、図3を参照しながら暖房運転について説明する。図3は暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。空調コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択されると、空調コントローラ32は電磁弁21(暖房用)を開放し、室内膨張弁8を全閉とする。また、電磁弁22(除湿用)を閉じる。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cから逆止弁20を経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 空調コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気温度の目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。また、放熱器4による暖房能力が不足する場合には補助ヒータ23に通電して発熱させ、暖房能力を補助(補完)する。
 (2)除湿暖房運転
 次に、図4を参照しながら除湿運転の一つとしての除湿暖房運転について説明する。図4は除湿暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿暖房運転では、空調コントローラ32は上記暖房運転の状態において電磁弁22を開放し、室内膨張弁8を開いて冷媒を減圧膨張させる状態とする。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。
 空調コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発することになる。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 空調コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクル運転
 次に、図5を参照しながらこれも除湿運転の一つとしての内部サイクル運転について説明する。図5は内部サイクル運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。内部サイクル運転では、空調コントローラ32は上記除湿暖房運転の状態において室外膨張弁6を全閉とする(全閉位置)。但し、電磁弁21は開いた状態を維持し、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通させておく。即ち、この内部サイクル運転は除湿暖房運転における室外膨張弁6の制御で当該室外膨張弁6を全閉とした状態であるので、この内部サイクル運転も除湿暖房運転の一部と捉えることができる。
 但し、室外膨張弁6が閉じられることにより、室外熱交換器7への冷媒の流入は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bを経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを流れ、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクル運転では室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房運転に比較すると除湿能力は高いが、暖房能力は低くなる。
 また、室外膨張弁6は閉じられるものの、電磁弁21は開いており、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通しているので、室外熱交換器7内の液冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cに流出し、アキュムレータ12に回収され、室外熱交換器7内はガス冷媒の状態となる。これにより、電磁弁21を閉じたときに比して、冷媒回路R内を循環する冷媒量が増え、放熱器4における暖房能力と吸熱器9における除湿能力を向上させることができるようになる。
 空調コントローラ32は吸熱器9の温度、又は、前述した放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。このとき、空調コントローラ32は吸熱器9の温度によるか放熱器圧力PCIによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房運転
 次に、図6を参照しながらこれも除湿運転の一つとしての除湿冷房運転について説明する。図6は除湿冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿冷房運転では、空調コントローラ32は室内膨張弁8を開いて冷媒を減圧膨張させる状態とし、電磁弁21と電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程でリヒート(再加熱:暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標ヒータ温度TCOから算出される目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量を得る。
 (5)冷房運転
 次に、冷房運転について説明する。冷媒回路Rの流れは図6の除湿冷房運転と同様である。冷房運転では、空調コントローラ32は上記除湿冷房運転の状態において室外膨張弁6の弁開度を全開とする。尚、エアミックスダンパ28は放熱器4及び補助ヒータ23に空気が通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒートのみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそのまま室外膨張弁6を経て冷媒配管13Jを通過し、室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房運転においては、空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。
 (6)空調運転の切り換え
 空調コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 そして、空調コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各空調運転を選択し、切り換えていくものである。
 (7)被温調対象(バッテリ55及び走行用モータ65)の温度調整
 次に、図7~図10を参照しながら上記各空調運転中における空調コントローラ32によるバッテリ55及び走行用モータ65(被温調対象)の温度調整制御について説明する。ここで、バッテリ55は外気温度により温度が変化すると共に、自己発熱によっても温度が変化する。そして、外気温度が高温環境であるときや極低温環境であるときには、バッテリ55の温度が極めて高くなり、或いは、極めて低くなって、充放電が困難となる。また、走行用モータ65も同様に運転や環境条件によって温度が極めて高くなり、或いは、極めて低くなって、機能不全に陥って故障する場合がある。
 そこで、実施例の車両用空気調和装置1の空調コントローラ32は、上記の如き空調運転を実行しながら、被温調対象温度調整装置61により、バッテリ55や走行用モータ65の温度を所定の適温範囲内(使用温度範囲内)に調整する。バッテリ55や走行用モータ65の適温範囲は一般的に知られているものであるが、この出願では例えばバッテリ55の適温範囲を0℃以上+40℃以下とする。即ち、適温範囲の所定の下限値TLが0℃、上限値THが+40℃となる。尚、走行用モータ65の適温範囲はバッテリ55とは異なるものとなるが、この出願では例えばこの走行用モータ65の適温範囲を-15℃以上+60℃以下とし、当該適温範囲の所定の下限値(-15℃)もTL、上限値(+60℃)もTHで表記する。
 (7-1)暖房/被温調対象温調モード
 前述した暖房運転においてバッテリ温度センサ76及び走行用モータ温度センサ78が検出するバッテリ温度Tb及び走行用モータ温度Tmのうちの何れかがそれぞれの上記適温範囲から逸脱し、バッテリ55又は走行用モータ65の温度を調整することが必要となった場合、空調コントローラ32は暖房/被温調対象温調モードを実行する。図7はこの暖房/被温調対象温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)を示している。
 この暖房/被温調対象温調モードでは、空調コントローラ32は図3に示した冷媒回路Rの暖房運転の状態で、更に電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、被温調対象温度調整装置61の循環ポンプ62を運転する。これにより、放熱器4から出た冷媒の一部が室外膨張弁6の冷媒上流側で分流され、冷媒配管13Fを経て室内膨張弁8の冷媒上流側に至る。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図7に実線矢印で示す)。
 一方、循環ポンプ62から吐出された熱媒体は熱媒体配管68内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、第1及び第2電磁弁81、82が開いている状態で分流され、分流された一方の熱媒体は第1電磁弁81を経て第1熱媒体加熱ヒータ66Aに至り、そこで加熱された後(第1熱媒体加熱ヒータ66Aが発熱している場合)、バッテリ55に至り、当該バッテリ55と熱交換する。分流された他方の熱媒体は第2電磁弁82を経て第2熱媒体加熱ヒータ66Bに至り、そこで加熱された後(第2熱媒体加熱ヒータ66Bが発熱している場合)、走行用モータ65に至り、当該走行用モータ65と熱交換する。そして、これらバッテリ55及び走行用モータ65と熱交換した熱媒体は合流した後、循環ポンプ62に吸い込まれる循環を繰り返す(図7に破線矢印で示す)。
 空調コントローラ32は、例えば常時冷媒-熱媒体熱交換器64の冷媒流路64Bに冷媒を流し、熱媒体を常時冷却しながら、バッテリ温度センサ76が検出するバッテリ温度Tb、及び、走行用モータ温度センサ78が検出する走行用モータ温度Tmと、それらの適温範囲の上限値TH、及び、下限値TLに基づいて各熱媒体加熱ヒータ66A、66Bの発熱、及び、各電磁弁81、82の開閉を制御することで、バッテリ温度Tbが適温範囲内となり、且つ、走行用モータ温度Tmも適温範囲内となるようにする(その場合は、実際には暖房運転に代えて暖房/被温調対象温調モードを常時実行するか、又は、暖房運転と暖房/被温調対象温調モードを切り換えて実行することになる)。
 例えば、空調コントローラ32はバッテリ温度Tbが適温範囲の上限値THより高い場合、第1電磁弁81を開き、且つ、第1熱媒体加熱ヒータ66Aは発熱させないことでバッテリ55を冷却し、バッテリ温度Tbが適温範囲の下限値TLより低い場合、第1電磁弁81を開き、且つ、第1熱媒体加熱ヒータ66Aを発熱させることでバッテリ55を加熱する。
 また、走行用モータ温度Tmが適温範囲の上限値THより高い場合、第2電磁弁82を開き、且つ、第2熱媒体加熱ヒータ66Bは発熱させないことで走行用モータ65を冷却し、走行用モータ温度Tmが適温範囲の下限値TLより低い場合、第2電磁弁82を開き、且つ、第2熱媒体加熱ヒータ66Bを発熱させることで走行用モータ65を加熱する。これにより、バッテリ温度センサ76が検出するバッテリ55の温度(バッテリ温度Tb)と、走行用モータ温度センサ78が検出する走行用モータ65の温度(走行用モータ温度Tm)をそれぞれの適温範囲内に調整することで、バッテリ温度Tbと走行用モータ温度Tmを独立して制御する。
 尚、バッテリ55及び走行用モータ65のうち温度調整が不要な方の電磁弁81、82は閉じ、熱媒体加熱ヒータ66A、66Bも発熱させない。また、冷媒-熱媒体熱交換器64や各熱媒体加熱ヒータ66A、66Bの能力は、負荷としてのバッテリ55や走行用モータ65の熱容量に基づき、上記の如き制御でバッテリ温度Tbと走行用モータ温度Tmの双方に熱媒体を流した場合にも、それらを適温範囲内とすることができる値に設定するものとする。このようにして空調コントローラ32は、バッテリ55の温度Tb及び走行用モータ65の温度Tmを適温範囲内に独立して制御するものである。
 (7-2)冷房/被温調対象温調モード
 次に、前述した冷房運転においてバッテリ55又は走行用モータ65の温度を調整することが必要となった場合、空調コントローラ32は冷房/被温調対象温調モードを実行する。図8はこの冷房/被温調対象温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)を示している。
 この冷房/被温調対象温調モードでは、空調コントローラ32は前述した図6の冷房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、被温調対象温度調整装置61の循環ポンプ62も運転して、冷媒-熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。
 これにより、圧縮機2から吐出された高温の冷媒は、放熱器4を経て室外熱交換器7に流入し、そこで室外送風機15により通風される外気や走行風と熱交換して放熱し、凝縮する。室外熱交換器7で凝縮した冷媒の一部は室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で空気流通路3内の空気が冷却されるので、車室内は冷房される。
 室外熱交換器7で凝縮した冷媒の残りは分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここで被温調対象温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55及び走行用モータ65は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、逆止弁20、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒-熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。
 空調コントローラ32はこの冷房/被温調対象温調モードでも、前述した暖房/被温調対象温調モードの場合と同様に、冷房運転に代え、又は、冷房運転と冷房/被温調対象温調モードを切り換え、或いは、冷房運転から冷房/被温調対象温調モードに移行して補助膨張弁73と各熱媒体加熱ヒータ66A、66B、各電磁弁81、82を制御することで、バッテリ55の温度(バッテリ温度Tb)と走行用モータ65の温度(走行用モータ温度Tm)をそれぞれの適温範囲内に調整(制御)する。
 (7-3)除湿冷房/被温調対象温調モード
 次に、前述した除湿冷房運転中においてバッテリ55又は走行用モータ65の温度を調整することが必要となった場合、空調コントローラ32は除湿冷房/被温調対象温調モードを実行する。尚、この除湿冷房/被温調対象温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)は図8と同様であるが、室外膨張弁6は全開では無く開き気味で制御される。そして、空調コントローラ32は冷房/被温調対象温調モードの場合と同様に、除湿冷房運転に代え、又は、除湿冷房運転と除湿冷房/被温調対象温調モードを切り換え、或いは、除湿冷房運転から除湿冷房/被温調対象温調モードに移行して補助膨張弁73と各熱媒体加熱ヒータ66A、66B、各電磁弁81、82を制御することで、バッテリ温度Tbと走行用モータ温度Tmを適温範囲内に調整(制御)する。
 (7-4)内部サイクル/被温調対象温調モード
 次に、前述した内部サイクル運転においてバッテリ55又は走行用モータ65の温度を調整することが必要となった場合、空調コントローラ32は内部サイクル/被温調対象温調モードを実行する。この内部サイクル/被温調対象温調モードでは、空調コントローラ32は前述した図5の内部サイクル運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、被温調対象温度調整装置61の循環ポンプ62も運転して、冷媒-熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。図9はこの内部サイクル/被温調対象温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)を示している。
 これにより、圧縮機2から吐出された高温の冷媒は放熱器4で放熱した後、電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを出た冷媒の一部は冷媒配管13Bを経て室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 冷媒配管13Fを出た冷媒の残りは分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここで被温調対象温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55及び走行用モータ65は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、逆止弁20、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒-熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。
 空調コントローラ32はこの内部サイクル/被温調対象温調モードでも、前述した暖房/被温調対象温調モードの場合と同様に、内部サイクル運転に代え、又は、内部サイクル運転と内部サイクル/被温調対象温調モードを切り換え、或いは、内部サイクル運転から内部サイクル/被温調対象温調モードに移行して補助膨張弁73と各熱媒体加熱ヒータ66A、66B、各電磁弁81、82を制御することで、バッテリ温度Tbと走行用モータ温度Tmを適温範囲内に調整(制御)する。
 (7-5)除湿暖房/被温調対象温調モード
 次に、前述した除湿暖房運転においてバッテリ55又は走行用モータ65の温度を調整することが必要となった場合、空調コントローラ32は除湿暖房/被温調対象温調モードを実行する。この除湿暖房/被温調対象温調モードでは、空調コントローラ32は前述した図4の除湿暖房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、被温調対象温度調整装置61の循環ポンプ62も運転して、冷媒-熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。図10はこの除湿暖房/被温調対象温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)を示している。
 これにより、放熱器4を出た凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Fから出てその内の一部が冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された冷媒の内の一部が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。また、放熱器4から出た凝縮冷媒の残りは、室外膨張弁6で減圧された後、室外熱交換器7で蒸発し、外気から吸熱する。
 一方、冷媒配管13Fを出た冷媒の残りは分岐配管72に流入し、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここで被温調対象温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55や走行用モータ65は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、逆止弁20、アキュムレータ12を経て圧縮機2に吸い込まれ、室外熱交換器7から出た冷媒は冷媒配管13D、電磁弁21、冷媒配管13C、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれ、冷媒-熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。
 空調コントローラ32はこの除湿暖房/被温調対象温調モードでも、前述した暖房/被温調対象温調モードの場合と同様に、除湿暖房運転に代え、又は、除湿暖房運転と除湿暖房/被温調対象温調モードを切り換え、或いは、除湿暖房運転から除湿暖房/被温調対象温調モードに移行して補助膨張弁73と各熱媒体加熱ヒータ66A、66B、各電磁弁81、82を制御することで、バッテリ温度Tbと走行用モータ温度Tmを適温範囲内に調整(制御)する。
 (8)室外熱交換器7の除霜運転
 次に、空調コントローラ32による室外熱交換器7の除霜運転について説明する。暖房運転中には前述した如く室外熱交換器7は蒸発器として機能するため、室外熱交換器7には外気中の水分が霜となって成長し、熱交換効率が低下して来る。そこで、実施例では空調コントローラ32は、例えば外気温度Tamや圧縮機2の回転数等から算出される無着霜時の室外熱交換器温度TXObaseを算出し、この無着霜時の室外熱交換器温度TXObaseと室外熱交換器温度センサ54が検出する室外熱交換器温度TXOとを常時比較しており、室外熱交換器温度TXOが無着霜時の室外熱交換器温度TXObaseより低下してその差が所定値以上となった場合、室外熱交換器7に所定量の着霜が生じ、室外熱交換器7の除霜運転が必要であると判定する。
 空調コントローラ32は、上述の如く室外熱交換器7の除霜運転が必要と判断した場合、基本的にはプラグ60が外部電源に接続された状態で除霜運転を実行し、室外熱交換器7の着霜を除去するものであるが、非充電中(停車中や走行中等。当然に車室内の空調運転中も含まれる)にも室外熱交換器7の除霜を行うように構成されている。但し、非充電中における除霜運転については、空調コントローラ32は後述する如く外気湿度に基づいて実行可否を判断する。これについては後に詳述する。
 (8-1)除霜運転(その1)
 図11は実施例の除霜運転における冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)を示している。空調コントローラ32は圧縮機2を運転し、室外送風機15は停止する。また、室内膨張弁8を全閉とし、補助膨張弁37は開いて冷媒を減圧する状態とする。尚、室外膨張弁6は全開とする。更に、空調コントローラ32は電磁弁21を閉じ、室内送風機27を停止する。そして、循環ポンプ62を運転し、冷媒-熱媒体熱交換器64において冷媒と熱媒体を熱交換させる状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4を経て冷媒配管13Eから室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので、冷媒は冷媒配管13Jを通過し、そのまま室外熱交換器7に流入する。室外熱交換器7に流入した高温のガス冷媒によって室外熱交換器7は除霜されていく。冷媒は放熱して凝縮液化した後、室外熱交換器7から出る。
 室外熱交換器7を出た冷媒は冷媒配管13Aを経て冷媒配管13Bに入るが、このとき室内膨張弁8は全閉とされているので、室外熱交換器7を出た全ての冷媒は分岐配管72を経て補助膨張弁73に至る。冷媒はこの補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は冷媒配管74、冷媒配管13C、及び、アキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。即ち、この除霜運転では、室外熱交換器7を含む補助膨張弁73より冷媒上流側の冷媒回路Rは高圧側となる。
 一方、各電磁弁81、82が開いている状態で、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体分流され、分流された一方の熱媒体は第1電磁弁81を経て第1熱媒体加熱ヒータ66Aに至り、当該第1熱媒体加熱ヒータ66Aが発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。分流された他方の熱媒体は第2電磁弁82を経て第2熱媒体加熱ヒータ66Bに至り、当該第2熱媒体加熱ヒータ66Bが発熱されている場合にはそこで加熱された後、走行用モータ65に至り、熱媒体はそこで走行用モータ65と熱交換する。これらバッテリ55及び走行用モータ65と熱交換した熱媒体は合流した後、循環ポンプ62に吸い込まれることで熱媒体配管68内を循環される(図11に破線矢印で示す)。
 空調コントローラ32はこの除霜運転でも、前述した暖房/被温調対象温調モード等の場合と同様に、補助膨張弁73と各熱媒体加熱ヒータ66A、66B、各電磁弁81、82を制御することで、バッテリ55の温度(バッテリ温度Tb)と走行用モータ65の温度(走行用モータ温度Tm)を適温範囲内に調整し、バッテリ温度Tbと走行用モータ温度Tmを独立して制御する。それにより、バッテリ55や走行用モータ65が冷え過ぎ、或いは、過熱することを回避する。
 特に、この除霜運転においては、空調コントローラ32が被温調対象温度調整装置61の各熱媒体加熱ヒータ66A、66Bにより被温調対象としてのバッテリ55や走行用モータ65の温度を所定の上限値以下、下限値以上の適温範囲内に調整するようにしているので、バッテリ55及び走行用モータ65の排熱や各熱媒体加熱ヒータ66A、66Bの熱を室外熱交換器7の除霜に寄与させながら、バッテリ55や走行用モータ65の冷え過ぎや過熱を防止して、最適な状態で機能させることができるようになる。
 (8-2)除霜運転(その2)
 次に、図12は除霜運転の他の例を示している。図12は室外熱交換器7の所謂簡易除霜を行う場合の冷媒回路Rの冷媒の流れを示している。この簡易除霜では、室外膨張弁6の開度を若干絞り、電磁弁21を開き、電磁弁22を閉じ、室内膨張弁8及び補助膨張弁73を全閉とする。そして、圧縮機2を運転する。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4を経て冷媒配管13Eから室外膨張弁6に至る。ここで冷媒は若干絞られた後、冷媒配管13Jを経て室外熱交換器7に流入する。そして、室外熱交換器7に流入した比較的高温のガス冷媒によって室外熱交換器7は除霜されていく。ここで冷媒は放熱するが、ガス状態のまま室外熱交換器7を出る。そして、冷媒配管13A、13D、電磁弁21を経て逆止弁20を通過し、冷媒配管13Cを経てアキュムレータ12に入る。そして、圧縮機2に吸い込まれることになる。
 (9)空調コントローラ32による除霜運転の実行可否判断
 プラグ60が外部電源に接続されていない非充電中に、室外熱交換器7の除霜運転が必要であると判定した場合、空調コントローラ32は前述した如く、外気湿度に基づいて除霜運転の実行可否を判断する。以下、図13~図16を用いてその理由を説明する。
 図13は外気温度センサ33が検出する外気温度Tamと室外熱交換器7の除霜に必要なエネルギー量Edとの関係を示している。外気温度Tamが低い場合、外気中に放散する熱量(ロス)も多くなるため、除霜に必要なエネルギー量Edは外気温度Tamが低くなる程、大きくなり、高くなる程、小さくなる。この除霜に必要なエネルギー量Edは外気温度Tamに基づいて下記式(II)から算出される。
 Ed=f(Tam) ・・・(II)
 尚、除霜された室外熱交換器7にて外気から吸熱可能なエネルギー量Eaは外気温度Tamと外気湿度Hamに基づいて下記式(III)から算出される。
 Ea=f(Tam、Ham) ・・・(III)
 但し、外気温度Tamが高い程、吸熱し易くなり、外気湿度Hamが高い程、着霜し易くなって外気から吸熱し難くなる。
 次に、図14は外気温度Tamと室外熱交換器7の着霜にかかる時間との関係を示している。尚、図中の外気湿度Hamは相対湿度である。外気湿度Hamが低い程、室外熱交換器7の着霜にかかる時間(例えば、空調コントローラ32が除霜必要と判定するまでにかかる運転時間)は長くなり、外気湿度Hamが高い程、短くなる。また、外気温度Tamが低い程、絶対湿度が低くなるため着霜し難くなり、着霜にかかる時間は長くなるが、外気温度Tamが高い程、絶対湿度も高くなって着霜し易くなり、着霜にかかる時間も短くなる。
 次に、図15は外気湿度Hamが高い環境で室外熱交換器7を除霜したときの消費電力量(実線:L1)と、着霜で低下した室外熱交換器7の吸熱能力を補助ヒータ23で補助する暖房補助を行ったときの消費電力量(破線:L2)の関係を示し、図16は外気湿度Hamが低い環境で室外熱交換器7を除霜したときの消費電力量(実線:L1)と、同じく補助ヒータ23で暖房補助を行ったときの消費電力量(破線:L2)の関係をそれぞれ示している。
 各図においてL1が傾斜しているところは室外熱交換器7を除霜している時間、水平となっているところは除霜しておらず、室外熱交換器7に着霜が進行している時間を意味している。外気湿度Hamが高い環境では(図15)、前述した如く着霜にかかる時間も短くなるため(水平の部分が短い)、除霜したときの消費電力量(L1)が、補助ヒータ23で暖房補助を行ったときの消費電力量(L2)を上回る。しかしながら、外気湿度Hamが低い環境では(図16)、前述した如く着霜にかかる時間も長くなるため(水平の部分が長い)、除霜したときの消費電力量(L1)が、補助ヒータ23で暖房補助を行ったときの消費電力量(L2)よりも下回るようになる。
 (9-1)除霜運転の実行可否判断(その1)
 そこで、この実施例では空調コントローラ32は、非充電中に室外熱交換器7の除霜運転が必要であると判定した場合にも、外気湿度センサ34が検出する外気湿度Hamが所定の閾値Hth以上である場合、除霜運転を許可しないこととする。実施例では空調コントローラ32は図17のMAPを用い、外気温度Tamに基づいて閾値Hthを変更する(図17においてOKは除霜運転を許可し、NGは除霜運転を許可しないことを意味する)。
 実施例では、外気温度Tamが-5℃以上であるとき、閾値Hthを70%RHとし、外気湿度Hamが70%RH以上である場合は除霜運転を許可しない。また、外気温度Tamが-5℃より低く-20℃より高いとき、閾値Hthを80%RHとし、外気湿度Hamが80%RH以上である場合は除霜運転を許可しない(図17では-10℃、-15℃で示す)。また、外気温度Tamが-20℃以下であるとき、閾値Hthを60%RHとし、外気湿度Hamが60%RH以上である場合は除霜運転を許可しない。即ち、基本的には外気温度Tamが低い程、低くする方向で閾値Hthを変更するが、-5℃以上の高い外気温度Tamでは絶対湿度が高くなり、着霜し易くなって外気からの吸熱量も低下するため、閾値Hthを下げている。
 このように、空調コントローラ32が外気湿度センサ34が検出する外気湿度Hamに基づいて除霜運転の実行可否を判断するようにし、実施例では外気湿度Hamが所定の閾値Hth以上である場合は室外熱交換器7の除霜運転を許可しないようにしたので、走行距離に与える悪影響をできるだけ小さくしながら、室外熱交換器7の除霜を行って外気からの吸熱量を増やし、車室内を快適に暖房することが可能となる。特に、空調コントローラ32は外気温度Tamが低い程、低くする方向で閾値Hthを変更するので、外気温度Tamに応じて室外熱交換器7の除霜運転を実行可否を適切に判断することができるようになる。
 (9-2)除霜運転の実行可否判断(その2)
 次に、空調コントローラ32が実行するその他の除霜運転の実行可否判断について説明する。前述した如く空調コントローラ32は式(II)と式(III)を用いて室外熱交換器7の除霜に必要なエネルギー量Edと、除霜された室外熱交換器7にて外気から吸熱可能なエネルギー量Eaを計算している。
 そして、空調コントローラ32はこれらエネルギー量EdとEaを比較し、Ea>Edである場合、又は、Ea>Ed+αである場合、或いは、Ea>Ed-βである場合、外気吸熱による利得が得られると判断して除霜運転を許可する。上記α及びβは所定の余裕度である。室外熱交換器7の除霜に必要なエネルギー量Edの近辺の値よりも除霜された室外熱交換器7にて外気から吸熱可能なエネルギー量Eaの方が大きくなる場合に、外気吸熱による利得が得られると判断することを意味している。
 このように、空調コントローラ32が、外気温度Tamに基づき、室外熱交換器7の除霜に必要なエネルギー量Edを計算すると共に、外気温度Tamと外気湿度Hamに基づき、除霜された室外熱交換器7にて外気から吸熱可能となるエネルギー量Eaを計算し、これらエネルギー量Ed及びEaを比較した結果、外気吸熱による利得が得られると判断した場合、除霜運転を許可するようにすれば、室外熱交換器7を除霜することで得られる利得が除霜自体にかかる損失を上回る場合のみ、室外熱交換器7の除霜運転を許可することができるようになり、除霜運転の実行可否をより的確に判断することが可能となる。
 (9-3)除霜運転の実行可否判断(その3)
 尚、バッテリコントローラ40から送信されるバッテリ55の残量が所定の閾値Bth以下である場合は、実施例の空調コントローラ32は上記のような外気湿度Hamに基づく可否判断に拘わらず、除霜運転を許可しない。この閾値Bthは所定の低い残量であるが、このようにバッテリ55の残量が低下しているときには、上記の如き外気湿度Hamに基づいた判断では許可できる場合でも、除霜運転を許可しないようにすることで、室外熱交換器7の除霜を行ったことでバッテリ55の残量が枯渇し、走行不能に陥ってしまう不都合を確実に回避することができるようになる。
 (9-4)除霜運転の実行可否判断(その4)
 また、例えば今後は外気湿度が低下するような場合には、今は除霜運転を許可できない状況であっても、許可した方が利得が得られると予測できる。そこで、実施例の空調コントローラ32は、車両コントローラ35から得られる外部からの天気予報情報に基づき、例えば今後は外気湿度が低下する予報が出ていて、外気吸熱による利得が得られると予測されるような場合、現在の外気湿度Hamに基づく可否判断で許可できない場合にも、除霜運転を許可する。即ち、実施例では今後の環境変化に応じて室外熱交換器7の除霜運転の実行可否を判断することが可能とされている。
 (9-5)除霜運転の実行可否判断(その5)
 また、例えば外気温度Tamが今後上昇するとの予測できる場合には、室外熱交換器7は自然除霜される可能性が高くなるので除霜を行わない方がよい。そこで、実施例の空調コントローラ32は、車両コントローラ35から得られる天気予報情報に外気温度Tamが今後上昇するとの予報が含まれている場合には、現在の外気湿度Hamに基づく可否判断で許可できる場合にも、除霜運転を許可しない。これにより、無用なバッテリ55の電力消費を回避する。
 (9-6)除霜運転の実行可否判断(その6)
 また、例えば目的地まで未だ時間がかかる場合には室外熱交換器7を除霜した方が外気吸熱による利得が高くなる。そこで、空調コントローラ32は、車両コントローラ35から得られるナビゲーション情報に基づき、例えば目的地まで未だ時間が掛かる場合には、外気吸熱による利得が得られると予測し、現在の外気湿度Hamに基づく可否判断で許可できない場合にも、除霜運転を許可する。これにより、より適切に除霜運転の実行可否を判断することが可能となる。
 (9-7)除霜運転の実行可否判断(その7)
 逆に、今後の走行距離が短い場合には、室外熱交換器7を除霜しても無駄になる可能性が高い。そこで、実施例の空調コントローラ32は、車両コントローラ35から得られる車両の運転状態に関する履歴情報に基づき、履歴から予測される今後の運転状態が例えば距離が長く、外気吸熱による利得が得られると予測される場合、外気湿度Hamに基づく可否判断で許可できない場合にも、除霜運転を許可する。これにより、過去の運転状態から今後運転する距離が短いと予測される場合には除霜運転を行わず、長い場合等の外気吸熱による利得が得られる場合のみ除霜運転を実行することが可能となる。
 (10)室外熱交換器7の強制除霜
 ここで、空調コントローラ32は空調操作部53に設けられた強制除霜スイッチ53Aが使用者により操作(ON入力操作)された場合、上述した除霜必要の判定や除霜運転可否判断に拘わらず、室外熱交換器7の除霜運転を強制的に実行する。これにより、例えば外部電源(急速充電器等)が設置された施設までの距離が短く、バッテリ55の電力を使用しても問題無いと使用者が判断した場合等に、室外熱交換器7の除霜運転を強制的に実行して外気からの吸熱量を増大させ、車室内の暖房能力を向上させることができるように構成されている。
 尚、実施例では外気湿度センサ34が検出する外気湿度Hamを用いて除霜運転の可否判断を行ったが、外気湿度センサが搭載されない場合には、車両コントローラ35がインターネット経由で取得した外気湿度の情報を用いてもよい。また、実施例で説明した空調コントローラ32の構成、車両用空気調和装置1の冷媒回路Rや被温調対象温度調整装置61の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 21、22 電磁弁
 23 補助ヒータ
 32 空調コントローラ(制御装置)
 33 外気温度センサ
 34 外気湿度センサ
 35 車両コントローラ
 40 バッテリコントローラ
 53A 強制除霜スイッチ
 55 バッテリ
 61 被温調対象温度調整装置
 65 走行用モータ

Claims (10)

  1.  冷媒を圧縮する圧縮機と、
     冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられた室外熱交換器と、
     制御装置を備え、
     バッテリから給電されて車室内を空調する車両用空気調和装置において、
     前記制御装置は少なくとも、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させることで前記車室内を暖房する空調運転と、
     前記圧縮機から吐出された冷媒を前記室外熱交換器にて放熱させることで当該室外熱交換器を除霜する除霜運転を実行可能とされており、
     外気湿度に基づいて前記除霜運転の実行可否を判断することを特徴とする車両用空気調和装置。
  2.  前記制御装置は、外気湿度が所定の閾値以上である場合、前記除霜運転を許可しないことを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記制御装置は、外気温度が低い程、低くする方向で前記閾値を変更することを特徴とする請求項2に記載の車両用空気調和装置。
  4.  前記制御装置は、外気温度に基づき、前記室外熱交換器の除霜に必要なエネルギー量Edを計算すると共に、外気温度と外気湿度に基づき、除霜された前記室外熱交換器にて外気から吸熱可能となるエネルギー量Eaを計算し、
     これらエネルギー量Ed及びEaを比較した結果、外気吸熱による利得が得られると判断した場合、前記除霜運転を許可することを特徴とする請求項1に記載の車両用空気調和装置。
  5.  前記制御装置は、前記バッテリの残量が所定の閾値以下の場合、外気湿度に拘わらず、前記除霜運転を許可しないことを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
  6.  前記制御装置は、天気予報情報に基づき、外気吸熱による利得が得られると予測される場合、外気湿度に拘わらず、前記除霜運転を許可することを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。
  7.  前記制御装置は、天気予報情報に基づき、外気温度が上昇すると予測される場合、外気湿度に拘わらず、前記除霜運転を許可しないことを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。
  8.  前記制御装置は、ナビゲーション情報に基づき、外気吸熱による利得が得られると予測される場合、外気湿度に拘わらず、前記除霜運転を許可することを特徴とする請求項1乃至請求項7のうちの何れかに記載の車両用空気調和装置。
  9.  前記制御装置は、車両の運転状態に関する履歴情報に基づいて予測される今後の運転状態に基づき、外気吸熱による利得が得られると予測される場合、外気湿度に拘わらず、前記除霜運転を許可することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。
  10.  前記制御装置は、所定の入力操作に基づき、前記除霜運転を強制的に実行することを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両用空気調和装置。
PCT/JP2019/026549 2018-08-27 2019-07-04 車両用空気調和装置 WO2020044785A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/266,771 US11865899B2 (en) 2018-08-27 2019-07-04 Vehicle air conditioning device
CN201980052632.3A CN112585022A (zh) 2018-08-27 2019-07-04 车用空调装置
DE112019004278.5T DE112019004278T5 (de) 2018-08-27 2019-07-04 Fahrzeugklimaanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-158320 2018-08-27
JP2018158320A JP7164994B2 (ja) 2018-08-27 2018-08-27 車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2020044785A1 true WO2020044785A1 (ja) 2020-03-05

Family

ID=69642946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026549 WO2020044785A1 (ja) 2018-08-27 2019-07-04 車両用空気調和装置

Country Status (5)

Country Link
US (1) US11865899B2 (ja)
JP (1) JP7164994B2 (ja)
CN (1) CN112585022A (ja)
DE (1) DE112019004278T5 (ja)
WO (1) WO2020044785A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
DE102018133447A1 (de) * 2018-12-21 2020-06-25 Volkswagen Aktiengesellschaft Verfahren zum Betrieb einer Wärmepumpe eines elektrischen Kraftfahrzeugs
KR20200103436A (ko) * 2019-02-25 2020-09-02 현대자동차주식회사 온도 조절 냉각 시스템 및 이의 제어 방법
JP7251216B2 (ja) * 2019-03-01 2023-04-04 トヨタ自動車株式会社 空調制御システム、空調管理システム、及び車載空調システム
US11571947B2 (en) * 2019-11-14 2023-02-07 Ford Global Technologies, Llc Vehicle air control system
CN113002661A (zh) * 2021-04-12 2021-06-22 广东嘉腾机器人自动化有限公司 一种agv小车及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223445A (ja) * 1985-03-27 1986-10-04 Toshiba Corp 除霜制御装置
JPH10103818A (ja) * 1996-08-08 1998-04-24 Hitachi Ltd 空気調和装置
JP2001071734A (ja) * 1998-10-23 2001-03-21 Denso Corp 車両用空調装置
JP2012176660A (ja) * 2011-02-25 2012-09-13 Sanden Corp 車両用空気調和装置
JP2014108647A (ja) * 2012-11-30 2014-06-12 Sanden Corp 車両用空気調和装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2303857A (en) * 1939-11-16 1942-12-01 U S Thermo Control Company Air conditioner for vehicles
US5685162A (en) * 1991-04-26 1997-11-11 Nippondenso Co., Ltd. Automotive air conditioner having condenser and evaporator provided within air duct
US6430951B1 (en) * 1991-04-26 2002-08-13 Denso Corporation Automotive airconditioner having condenser and evaporator provided within air duct
JPH0820239A (ja) * 1994-07-06 1996-01-23 Sanden Corp 電気自動車用エアコン装置における除霜運転制御装置
JP4325669B2 (ja) * 2006-12-26 2009-09-02 トヨタ自動車株式会社 車両用空調装置
FR2957851B1 (fr) * 2010-03-26 2012-04-13 Valeo Systemes Thermiques Dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile
JP5533207B2 (ja) 2010-05-06 2014-06-25 株式会社日本自動車部品総合研究所 ヒートポンプサイクル
US9925877B2 (en) * 2011-01-21 2018-03-27 Sanden Holdings Corporation Vehicle air conditioning apparatus
DE112012000522B4 (de) * 2011-01-21 2020-12-17 Sanden Holdings Corporation Fahrzeugklimatisierungseinrichtung
CN103534539B (zh) * 2011-03-03 2016-01-20 三电有限公司 车辆用空气调节装置
KR101416357B1 (ko) * 2012-09-07 2014-07-08 현대자동차 주식회사 차량용 히트펌프 시스템 및 그 제어방법
JP6073652B2 (ja) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 車両用空気調和装置
JP6047387B2 (ja) * 2012-11-30 2016-12-21 サンデンホールディングス株式会社 車両用空気調和装置
CN104884285B (zh) 2012-11-30 2017-08-08 三电控股株式会社 车辆用空调装置
WO2014155980A1 (ja) * 2013-03-29 2014-10-02 株式会社日本クライメイトシステムズ 車両用空調装置
JP6040099B2 (ja) 2013-05-28 2016-12-07 サンデンホールディングス株式会社 車両用空気調和装置
JP6192435B2 (ja) * 2013-08-23 2017-09-06 サンデンホールディングス株式会社 車両用空気調和装置
JP6223753B2 (ja) * 2013-09-04 2017-11-01 サンデンホールディングス株式会社 車両用空気調和装置
JP6314821B2 (ja) 2014-01-29 2018-04-25 株式会社デンソー 車両用空調装置
US10302346B2 (en) * 2014-07-16 2019-05-28 Ford Global Technologies, Llc Maximizing defrost mode in electrified vehicle having dual evaporator and dual heater core climate control system
US10166841B2 (en) * 2015-09-09 2019-01-01 International Truck Intellectual Property Company, Llc Vehicle climate control system
US9776469B1 (en) * 2016-04-05 2017-10-03 Ford Global Technologies, Llc Engine start-up method for hybrid vehicle
DE102016210130A1 (de) 2016-06-08 2017-12-14 Continental Automotive Gmbh Verfahren zum Steuern von Klimatisierungskomponenten eines Kraftfahrzeugs
US11127993B2 (en) * 2016-09-27 2021-09-21 Rivian Ip Holdings, Llc Electric vehicle thermal management system with battery heat storage
JP6831209B2 (ja) * 2016-10-27 2021-02-17 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
KR101846911B1 (ko) * 2016-10-31 2018-05-28 현대자동차 주식회사 차량용 히트 펌프 시스템
KR101846908B1 (ko) * 2016-10-31 2018-04-10 현대자동차 주식회사 차량용 히트 펌프 시스템
JP6884028B2 (ja) 2017-04-26 2021-06-09 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223445A (ja) * 1985-03-27 1986-10-04 Toshiba Corp 除霜制御装置
JPH10103818A (ja) * 1996-08-08 1998-04-24 Hitachi Ltd 空気調和装置
JP2001071734A (ja) * 1998-10-23 2001-03-21 Denso Corp 車両用空調装置
JP2012176660A (ja) * 2011-02-25 2012-09-13 Sanden Corp 車両用空気調和装置
JP2014108647A (ja) * 2012-11-30 2014-06-12 Sanden Corp 車両用空気調和装置

Also Published As

Publication number Publication date
US20210316593A1 (en) 2021-10-14
US11865899B2 (en) 2024-01-09
CN112585022A (zh) 2021-03-30
DE112019004278T5 (de) 2021-05-12
JP2020032749A (ja) 2020-03-05
JP7164994B2 (ja) 2022-11-02

Similar Documents

Publication Publication Date Title
JP6997558B2 (ja) 車両用空気調和装置
JP6192434B2 (ja) 車両用空気調和装置
WO2020044785A1 (ja) 車両用空気調和装置
JP6192435B2 (ja) 車両用空気調和装置
WO2020031568A1 (ja) 車両用空気調和装置
WO2020031569A1 (ja) 車両用空気調和装置
WO2020066719A1 (ja) 車両用空気調和装置
JP2018177083A (ja) 車両用空気調和装置
WO2019150829A1 (ja) 車両用空気調和装置
WO2020110509A1 (ja) 車両用空気調和装置
WO2019181311A1 (ja) 車両用制御システム
JP7280770B2 (ja) 車両用空気調和装置
CN111051096B (zh) 车辆用空气调节装置
WO2019163399A1 (ja) 車両用制御システム
WO2019163398A1 (ja) 車両用制御システム
WO2019155905A1 (ja) 車両用空気調和装置
WO2020026690A1 (ja) 車両用空気調和装置
WO2021054043A1 (ja) 車両用空気調和装置
JP7431637B2 (ja) 車両用空気調和装置
WO2019181310A1 (ja) 車両用空気調和装置
CN113811727A (zh) 车辆用空气调节装置
JP7372793B2 (ja) 車両用空気調和装置
WO2019146326A1 (ja) 車両用空気調和装置
WO2019150832A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856049

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19856049

Country of ref document: EP

Kind code of ref document: A1