WO2020235261A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2020235261A1
WO2020235261A1 PCT/JP2020/016497 JP2020016497W WO2020235261A1 WO 2020235261 A1 WO2020235261 A1 WO 2020235261A1 JP 2020016497 W JP2020016497 W JP 2020016497W WO 2020235261 A1 WO2020235261 A1 WO 2020235261A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
air conditioning
temperature
priority
refrigerant
Prior art date
Application number
PCT/JP2020/016497
Other languages
English (en)
French (fr)
Inventor
貴司 戸山
めぐみ 重田
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2020235261A1 publication Critical patent/WO2020235261A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a heat pump type vehicle air conditioner for air-conditioning the interior of a vehicle in which a battery can be charged from an external power source.
  • the battery can be charged from an external charger (external power source) such as a quick charger, but the battery self-heats during charging and the temperature rises.
  • an external charger external power source
  • the quick charger operates so as to limit the charging current, but this causes a problem that the charging time is long. Therefore, a heat exchanger for the battery (heat exchanger for the battery) is separately provided in the refrigerant circuit, and the refrigerant circulating in the refrigerant circuit and the refrigerant for the battery (heat medium) are exchanged with each other by the heat exchanger for the battery.
  • An air conditioner for vehicles has also been developed in which the battery can be cooled by circulating the heat exchanged heat medium through the battery (see, for example, Patent Document 2).
  • a vehicle air conditioner as an operation mode for cooling the battery while charging the battery, for example, to the temperature of a heat medium (heat medium circulated in the battery) cooled by the heat exchanger for the battery.
  • the battery cooling (priority) + air conditioning mode is executed to control the opening and closing of the electromagnetic valve that controls the rotation speed of the compressor based on and controls the flow of the refrigerant to the heat exchanger based on the temperature of the heat exchanger.
  • the priority of air conditioning in the passenger compartment is low. Therefore, even if the temperature of the heat medium is controlled to the target temperature, the cooling of the battery is prioritized, and even if the temperature inside the vehicle is high, the number of revolutions of the compressor does not increase and the battery is charged. There was a problem of being extremely uncomfortable when there were passengers in the passenger compartment.
  • the present invention has been made to solve the conventional technical problems, and is an air conditioner for a vehicle capable of ensuring comfort in the vehicle interior even while the battery is being charged.
  • the purpose is to provide.
  • the vehicle air conditioner according to claim 1 comprises a compressor that compresses the refrigerant, a heat exchanger that absorbs the refrigerant and cools the air supplied to the vehicle interior, and the flow of the refrigerant to the heat exchanger.
  • the battery is rechargeable from an external power source, which at least opens the heat exchanger valve device and determines the number of revolutions of the compressor based on the temperature of the heat exchanger or the object cooled by it.
  • Air conditioning (priority) + battery cooling mode that controls and controls the opening of the battery valve device based on the temperature of the battery heat exchanger or the object to be cooled by it, and the battery valve device during battery charging. It opens and controls the number of revolutions of the compressor based on the temperature of the heat exchanger for the battery or the object cooled by it, and the opening degree of the valve device for the heater based on the temperature of the heat exchanger or the object cooled by it.
  • the control battery cooling (priority) + air conditioning mode is executed, and the control device has a predetermined input device, and when a predetermined input operation is performed by this input device, even during charging of the battery. It is characterized by executing air conditioning (priority) + battery cooling mode.
  • the output device when the control device has a predetermined output device and executes the air conditioning (priority) + battery cooling mode while charging the battery, the output device may be used. It is characterized in that it outputs predetermined charging time information as compared with the case where the battery cooling (priority) + air conditioning mode is executed.
  • the control device has a pre-air conditioning function for starting air conditioning in the vehicle interior at a predetermined predetermined pre-air conditioning start scheduled time, and also charges the battery. Even when the pre-air conditioning function is executed, the air conditioning (priority) + battery cooling mode is executed when a predetermined input operation is performed by the input device.
  • the vehicle air conditioner according to claim 4 comprises a compressor that compresses the refrigerant, a heat exchanger that absorbs the refrigerant and cools the air supplied to the vehicle interior, and the flow of the refrigerant to the heat exchanger.
  • the battery is rechargeable from an external power source, which at least opens the valve device for the heat exchanger and determines the number of revolutions of the compressor based on the temperature of the heat exchanger or the object cooled by it.
  • Air conditioning (priority) + battery cooling mode that controls and controls the opening of the battery valve device based on the temperature of the battery heat exchanger or the object to be cooled by it, and the battery valve device during battery charging. It opens and controls the number of revolutions of the compressor based on the temperature of the heat exchanger for the battery or the object cooled by it, and the opening degree of the valve device for the heater based on the temperature of the heat exchanger or the object cooled by it. It executes the controlled battery cooling (priority) + air conditioning mode, and the control device performs information on the state of the battery, information on the compressor, information on the passengers in the passenger compartment, and information even while the battery is being charged. , Information on environmental conditions, or a combination thereof, or all of them, the air conditioning (priority) + battery cooling mode is executed.
  • the information regarding the state of the battery in the above invention is the temperature of the object to be cooled by the heat exchanger for the battery, the temperature of the battery, and the charging current of the battery. It is characterized in that air conditioning (priority) + battery cooling mode is executed when any or a combination thereof, or all of them, and they are lower than a predetermined value.
  • the information regarding the state of the battery in the invention of claim 4 or 5 is the charge amount of the battery, and when the charge amount is larger than a predetermined value, air conditioning (priority). ) + Battery cooling mode is executed.
  • the information regarding the state of the battery in the inventions of claims 4 to 6 is the temperature of the object to be cooled by the heat exchanger for the battery, and the temperature and its target.
  • the air conditioning (priority) + battery cooling mode is executed.
  • the information about the compressor in the inventions of claims 4 to 7 is the number of revolutions of the compressor, and when the number of revolutions is lower than a predetermined value, air conditioning (priority). ) + Battery cooling mode is executed.
  • the vehicle air conditioner according to the invention of claim 9 has a pre-air conditioning function in which the control device according to the invention of claims 4 to 8 starts air conditioning in the vehicle interior at a predetermined predetermined pre-air conditioning start scheduled time.
  • the pre-air conditioning function is executed while the battery is being charged, the air conditioning (priority) + battery cooling mode is executed.
  • the information about the passenger in the vehicle interior is the presence or absence of a passenger, and if there is a passenger, air conditioning (priority) + It is characterized by performing a battery cooling mode.
  • the information about the passengers in the passenger compartment is the presence or absence of passengers, and the information about the environmental conditions is the temperature in the passenger compartment. Yes, there are passengers, and when the temperature inside the vehicle is above a predetermined value, the air conditioning (priority) + battery cooling mode is executed.
  • the information regarding the environmental conditions in the inventions of claims 4 to 11 is the outside air temperature, and when the outside air temperature is lower than a predetermined value, air conditioning (priority) + battery It is characterized by performing a cooling mode.
  • the information regarding the environmental conditions is the temperature inside the vehicle interior, and the difference between the temperature inside the vehicle interior and the target temperature thereof is predetermined. If it is larger than the value, the air conditioning (priority) + battery cooling mode is executed.
  • the control device opens the valve device for the battery when there is no air conditioning request in the vehicle interior while the battery is being charged, and is used for the battery. It is characterized by controlling the number of revolutions of the compressor based on the temperature of the heat exchanger or the object to be cooled by the heat exchanger, and executing a battery cooling (single) mode in which the valve device for the heat absorber is closed.
  • the control device when the control device is executing the air conditioning (priority) + battery cooling mode while charging the battery, the temperature of the battery reaches a predetermined upper limit value. When it reaches, it is characterized by shifting to battery cooling (priority) + air conditioning mode.
  • control device has a predetermined output device in the above invention and the temperature of the battery reaches the upper limit value and the battery cools (priority) + air conditioning mode is entered.
  • the output device is characterized in that predetermined error information is output.
  • a compressor for compressing the refrigerant, a heat exchanger for absorbing the refrigerant to cool the air supplied to the vehicle interior, and a heat exchanger for controlling the flow of the refrigerant to the heat exchanger.
  • a valve device for absorbing heat of the refrigerant to cool the battery mounted on the vehicle, a battery valve device for controlling the flow of the refrigerant to the battery heat exchanger, and a control device.
  • the battery is rechargeable from an external power source, the controller at least opens the heat exchanger valve device, controls the number of revolutions of the compressor based on the temperature of the heat exchanger or the object cooled by it, and the battery.
  • Air conditioning (priority) + battery cooling mode that controls the opening of the battery valve device based on the temperature of the heat exchanger or the object to be cooled by it, and the battery valve device is opened while the battery is being charged for the battery.
  • Battery cooling that controls the rotation speed of the compressor based on the temperature of the heat exchanger or the object to be cooled by it, and controls the opening degree of the valve device for the heat exchanger based on the temperature of the heat exchanger or the object to be cooled by it.
  • (Priority) + In the vehicle air conditioner that executes the air conditioning mode, when the control device has a predetermined input device and a predetermined input operation is performed by this input device, air conditioning is performed even while the battery is being charged. Since the (priority) + battery cooling mode is executed, the air conditioning (priority) + battery cooling mode can be executed at the discretion of the passenger even while the battery is being charged.
  • the output device determines the battery cooling (priority) + air conditioning mode.
  • control device has a pre-air conditioning function as in the invention of claim 3, even when executing the pre-air conditioning function during charging of the battery, if a predetermined input operation is performed by the input device, air conditioning is performed. (Priority) + By executing the battery cooling mode, it becomes possible to sufficiently air-condition the passenger compartment in advance before boarding, and the comfort of the passenger compartment after boarding can be improved. It will be possible to further improve.
  • a compressor for compressing a refrigerant, a heat absorber for absorbing heat of the refrigerant to cool the air supplied to the vehicle interior, and a heat absorber for controlling the flow of the refrigerant to the heat absorber.
  • a valve device for absorbing heat of the refrigerant to cool the battery mounted on the vehicle, a battery valve device for controlling the flow of the refrigerant to the battery heat exchanger, and a control device.
  • the battery is rechargeable from an external power source, the controller at least opens the heater valve device, controls the number of revolutions of the compressor based on the temperature of the heat absorber or the object cooled by it, and the battery.
  • Air conditioning (priority) + battery cooling mode that controls the opening of the battery valve device based on the temperature of the heat exchanger or the object to be cooled by it, and the battery valve device is opened while the battery is being charged for the battery.
  • Battery cooling that controls the number of revolutions of the compressor based on the temperature of the heat exchanger or the target to be cooled by it, and controls the opening degree of the valve device for the heat absorber based on the temperature of the heat absorber or the target to be cooled by it.
  • the air conditioning (priority) + battery cooling mode is executed based on any of the information on the conditions, a combination thereof, or all of them, the cooling of the battery is performed based on the state of the battery, etc. If there is no need to prioritize, or if the need is low, the control device automatically executes air conditioning (priority) + battery cooling mode to prioritize air conditioning in the passenger compartment and ensure comfort in the passenger compartment. Will be able to.
  • the temperature of the object to be cooled by the heat exchanger for the battery as in the invention of claim 5 the temperature of the battery, or the charging current of the battery can be adopted. Not only when the temperature of the object to be cooled by the battery heat exchanger or the temperature of the battery is low, but also when the charging current is low, the heat generated by the battery is reduced, and it is not necessary or necessary to prioritize the cooling of the battery. Therefore, if they are lower than the predetermined value, the air conditioning (priority) + battery cooling mode is automatically executed.
  • the charge amount of the battery as in the invention of claim 6 can also be adopted for the information regarding the state of the battery.
  • the heat generation is small, and it is not necessary or necessary to give priority to the cooling of the battery. Therefore, when the charge amount is higher than the predetermined value, the air conditioning (priority) + battery is automatically applied. Make sure to run the cooling mode.
  • the air conditioning (priority) + battery cooling mode may be automatically executed.
  • the rotation speed of the compressor as in the invention of claim 8 can be adopted.
  • the number of revolutions of the compressor is low in the battery cooling (priority) + air conditioning mode, it can be judged that it is not necessary or necessary to give priority to cooling the battery, so if the number of revolutions is lower than the predetermined value, it will be automatically set. Make sure to run air conditioning (priority) + battery cooling mode.
  • control device has the pre-air conditioning function as in claim 9 and executes the pre-air conditioning function while charging the battery
  • the air conditioning in the vehicle interior is prioritized by the passenger, so that it is automatically performed.
  • Air conditioning (priority) + battery cooling mode should be executed.
  • the presence or absence of passengers as in the invention of claim 10 can be adopted. If there are passengers in the passenger compartment, it can be determined that air conditioning needs to be prioritized, so air conditioning (priority) + battery cooling mode should be automatically executed.
  • the air conditioning (priority) + battery cooling mode is automatically executed.
  • the outside air temperature as in the invention of claim 12 can be adopted. If the outside air temperature is low, the battery temperature will also be low, and it can be judged that cooling is not necessary or necessary, so if the outside air temperature is lower than the specified value, air conditioning (priority) + battery is automatically used. Make sure to run the cooling mode.
  • the temperature inside the vehicle interior as in the invention of claim 13 can be adopted. For example, if the difference between the temperature inside the vehicle and its target temperature is greater than a predetermined value, it can be determined that air conditioning needs to be prioritized, so air conditioning (priority) + battery cooling mode is automatically executed. ..
  • the charging completion time can be shortened by executing the battery cooling (single) mode as in the invention of claim 14. become able to.
  • the output device When the battery temperature reaches the upper limit and shifts to the battery cooling (priority) + air conditioning mode in this way, the output device outputs predetermined error information as in the invention of claim 16, which is useless to the passenger. You will be able to avoid the inconvenience that gives you a feeling of anxiety.
  • FIG. 5 is a configuration diagram of a vehicle air conditioner for explaining a dehumidifying / cooling mode by a heat pump controller of the control device of FIG.
  • FIG. 5 is a configuration diagram of a vehicle air conditioner for explaining air conditioning (priority) + battery cooling mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control device of FIG. 2. It is a block diagram of the air conditioner for a vehicle explaining the battery cooling (independent) mode by the heat pump controller of the control device of FIG. It is a block diagram of the air conditioner for a vehicle explaining the defrost mode by the heat pump controller of the control device of FIG. It is a control block diagram concerning the compressor control of the heat pump controller of the control device of FIG.
  • FIG. 1 shows a configuration diagram of an air conditioner 1 for a vehicle according to an embodiment to which the present invention is applied.
  • the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and the electric power charged in the battery 55 mounted on the vehicle is used as a traveling motor (electric motor). It is driven and traveled by supplying it to (not shown), and the compressor 2 of the refrigerant circuit R described later in the vehicle air conditioner 1 of the present invention and the battery temperature adjusting device 61 are also driven from the battery 55. It shall be driven by the supplied power.
  • EV electric vehicle
  • an engine internal combustion engine
  • the electric power charged in the battery 55 mounted on the vehicle is used as a traveling motor (electric motor). It is driven and traveled by supplying it to (not shown), and the compressor 2 of the refrigerant circuit R described later in the vehicle air conditioner 1 of the present invention and the battery temperature adjusting device 61 are also driven from the battery 55. It shall be driven by the supplied power.
  • the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, and a defrosting mode by operating a heat pump using the refrigerant circuit R in an electric vehicle that cannot be heated by waste heat of the engine.
  • Air conditioning (priority) + battery cooling mode, battery cooling (priority) + air conditioning mode, and battery cooling (independent) mode can be switched and executed to air-condition the passenger compartment and control the temperature of the battery 55. It is a thing.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a traveling motor.
  • vehicle to which the vehicle air conditioner 1 of the embodiment is applied is capable of charging the battery 55 from an external charger (external power source such as a quick charger or a normal charger) (not shown).
  • the vehicle air conditioner 1 of the embodiment air-conditions (heating, cooling, dehumidifying, and ventilating) the interior of the electric vehicle, and includes an electric compressor 2 that compresses the refrigerant and the interior of the vehicle.
  • a high-temperature and high-pressure refrigerant discharged from the compressor 2 is provided in the air flow passage 3 of the HVAC unit 10 through which air is aerated and circulated, flows in through the muffler 5 and the refrigerant pipe 13G, and the refrigerant is dissipated into the vehicle interior.
  • an outdoor expansion valve 6 composed of an electric valve (electronic expansion valve) that decompresses and expands the refrigerant during heating, and a radiator that dissipates the refrigerant during cooling.
  • An outdoor heat exchanger 7 that functions and exchanges heat between the refrigerant and the outside air in order to function as an evaporator that absorbs heat (absorbs heat into the refrigerant) during heating, and a mechanical expansion valve that decompresses and expands the refrigerant.
  • an indoor heat exchanger composed of an indoor expansion valve 8 and an indoor heat exchanger provided in the air flow passage 3 that evaporates (absorbs heat) the refrigerant during cooling and dehumidification and absorbs heat (absorbs heat into the refrigerant) from inside and outside the vehicle.
  • the heat exchanger 9 and the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, and a refrigerant circuit R is formed.
  • the outdoor expansion valve 6 expands the refrigerant that exits the radiator 4 and flows into the outdoor heat exchanger 7 under reduced pressure, and can be fully closed. Further, in the indoor expansion valve 8 in which the mechanical expansion valve is used in the embodiment, the refrigerant flowing into the heat absorber 9 is decompressed and expanded, and the degree of superheat of the refrigerant in the heat absorber 9 is adjusted.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 forcibly ventilates the outdoor air to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant, whereby the outdoor air is outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the outdoor heat exchanger 7 has a receiver dryer portion 14 and a supercooling portion 16 in sequence on the downstream side of the refrigerant, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 causes the refrigerant to flow through the heat absorber 9.
  • the refrigerant pipe 13B on the outlet side of the overcooling unit 16 is connected to the receiver dryer unit 14 via an electromagnetic valve 17 (for cooling) as an on-off valve to be opened, and the check valve 18, the indoor expansion valve 8, and the heat absorption valve
  • the electromagnetic valve 35 (for the cabin) as a dexterous valve device is sequentially connected to the refrigerant inlet side of the heat exchanger 9.
  • the receiver dryer section 14 and the supercooling section 16 structurally form a part of the outdoor heat exchanger 7.
  • the check valve 18 has an indoor expansion valve 8 in the forward direction.
  • the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 is branched into the refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an on-off valve opened at the time of heating. It is communicatively connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat exchanger 9.
  • the refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant pipe 13K on the refrigerant suction side of the compressor 2.
  • a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and the refrigerant pipe 13E is connected to the refrigerant pipe 13J and the refrigerant pipe 13F in front of the outdoor expansion valve 6 (on the upstream side of the refrigerant).
  • One of the branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the other branched refrigerant pipe 13F is on the downstream side of the refrigerant of the check valve 18 and on the upstream side of the refrigerant of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an on-off valve that is opened at the time of dehumidification. It is communicatively connected to the located refrigerant pipe 13B.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve are connected in parallel. It is a bypass circuit that bypasses 18. Further, an electromagnetic valve 20 as an on-off valve for bypass is connected in parallel to the outdoor expansion valve 6.
  • each suction port of the outside air suction port and the inside air suction port is formed (represented by the suction port 25 in FIG. 1), and this suction port is formed.
  • the suction switching damper 26 for switching the air introduced into the air flow passage 3 into the inside air (inside air circulation), which is the air inside the vehicle interior, and the outside air (outside air introduction), which is the air outside the vehicle interior, is provided.
  • an indoor blower fan 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3 is opened and closed at an arbitrary ratio between the outside air suction port and the inside air suction port of the suction port 25. It is configured so that the ratio of the inside air can be adjusted between 0 and 100% (the ratio of the outside air can also be adjusted between 100% and 0%).
  • an auxiliary heater 23 as an auxiliary heating device composed of a PTC heater (electric heater) is provided in the embodiment, and the auxiliary heater 23 is provided via the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, the air (inside air or outside air) in the air flow passage 3 that flows into the air flow passage 3 on the air upstream side of the radiator 4 and passes through the heat absorber 9 is radiated. An air mix damper 28 for adjusting the ratio of ventilation to the vessel 4 and the auxiliary heater 23 is provided.
  • each outlet of FOOT (foot), VENT (vent), and DEF (diff) (represented by the outlet 29 in FIG. 1) is provided.
  • the outlet 29 is provided with an outlet switching damper 31 that switches and controls the blowing of air from each of the outlets.
  • the vehicle air conditioner 1 includes a battery temperature adjusting device 61 that circulates a heat medium in the battery 55 to adjust the temperature of the battery 55.
  • the battery temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulation device for circulating a heat medium in the battery 55, a refrigerant-heat medium heat exchanger 64 as a heat exchanger for a battery, and a heating device.
  • a heat medium heater 63 is provided, and the battery 55 is connected to the heat medium heater 63 in an annular shape by a heat medium pipe 66.
  • the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of the heat medium flow path 64A is connected to the inlet of the heat medium heating heater 63.
  • the outlet of the heat medium heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the battery temperature adjusting device 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted.
  • water is used as a heat medium.
  • the heat medium heating heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that a jacket structure is provided around the battery 55 so that, for example, a heat medium can circulate with the battery 55 in a heat exchange relationship.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, it is heated there and then the battery.
  • the heat medium exchanges heat with the battery 55 there. Then, the heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
  • the refrigerant pipe 13B located on the refrigerant downstream side of the connection portion between the refrigerant pipe 13F of the refrigerant circuit R and the refrigerant pipe 13B and located on the refrigerant upstream side of the indoor expansion valve 8 has a branch pipe 67 as a branch circuit. One end is connected.
  • the branch pipe 67 is sequentially provided with an auxiliary expansion valve 68 composed of a mechanical expansion valve and an electromagnetic valve 69 (for a chiller) as a battery valve device.
  • the auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into the refrigerant flow path 64B described later in the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. To do.
  • the other end of the branch pipe 67 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow path 64B to form the refrigerant pipe 71.
  • the other end is connected to the refrigerant pipe 13C on the upstream side of the refrigerant (upstream side of the refrigerant of the accumulator 12) from the confluence with the refrigerant pipe 13D.
  • these auxiliary expansion valves 68 and electromagnetic valves 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, the compressor 2, the radiator 5, the outdoor heat exchanger 7 and the like also form a part of the refrigerant circuit R. At the same time, it also constitutes a part of the battery temperature adjusting device 61.
  • the solenoid valve 69 When the solenoid valve 69 is open, the refrigerant (some or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, is depressurized by the auxiliary expansion valve 68, and then passes through the solenoid valve 69. -It flows into the refrigerant flow path 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 is composed of an air conditioning controller 45 and a heat pump controller 32, each of which is composed of a microcomputer which is an example of a computer equipped with a processor, and these are CAN (Control Area Network) and LIN (Local Interconnect Network). It is connected to the vehicle communication bus 65 constituting the above. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and these air conditioning controller 45, heat pump controller 32, compressor 2, auxiliary heater 23, circulation pump 62 and heat. The medium heater 63 is configured to transmit and receive data via the vehicle communication bus 65.
  • the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management system) 73 that controls charging and discharging of the battery 55, and a GPS navigation device 74. Is connected.
  • the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also composed of a microcomputer which is an example of a computer equipped with a processor, and the air conditioning controller 45 and the heat pump controller 32 constituting the control device 11 use the vehicle communication bus 65.
  • Information (data) is transmitted and received to and from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via the vehicle controller 72, the battery controller 73, and the GPS navigation device 74.
  • 72A is a weight sensor provided on the seat of the vehicle.
  • the weight sensor 72A detects the presence or absence of a occupant in the vehicle interior, and its output is input to the vehicle controller 72.
  • the air conditioning controller 45 is a higher-level controller that controls the air conditioning inside the vehicle interior, and the input of the air conditioning controller 45 includes an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air that detects the outside air humidity.
  • the humidity sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and the inside air that detects the air temperature (inside air temperature Tin) in the vehicle interior.
  • Each output of the temperature sensor 41 for example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and settings in the vehicle interior.
  • An air-conditioning operation unit 53 for performing air-conditioning setting operations in the vehicle interior such as switching of temperature and operation mode and displaying information is connected.
  • 53A is a display as an output device provided in the air conditioning operation unit 53
  • 53B is a switch as an input device provided in the air conditioning operation unit 53
  • the input device also includes a key switch 53C provided on the wireless key of the vehicle. It is possible to input the execution instruction of the pre-air conditioning function described later from the key switch 53C, and the instruction information from the key switch 53C is wirelessly input to the air conditioning operation unit 53.
  • an outdoor blower 15, an indoor blower (blower fan) 27, a suction switching damper 26, an air mix damper 28, and an outlet switching damper 31 are connected to the output of the air conditioning controller 45, and these are connected to the air conditioning controller 45. Is controlled by.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and detects the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the discharge refrigerant temperature of the compressor 2) at the input of the heat pump controller 32.
  • the radiator pressure sensor 47 that detects the refrigerant pressure on the side (pressure of the radiator 4: radiator pressure Pci) and the temperature of the heat exchanger 9 (the temperature of the heat exchanger 9 itself or immediately after being cooled by the heat exchanger 9).
  • the heat absorber temperature sensor 48 that detects the heat absorber temperature Te) and the refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger)
  • the output of the outdoor heat exchanger temperature sensor 49 that detects the temperature TXO) and the outputs of the auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger's seat side) that detect the temperature of the auxiliary heater 23 are connected.
  • the output of the heat pump controller 32 includes an outdoor expansion valve 6, a solenoid valve 22 (for dehumidification), a solenoid valve 17 (for cooling), a solenoid valve 21 (for heating), a solenoid valve 20 (for bypass), and a solenoid valve 35.
  • the solenoid valves (for the cabin) and the solenoid valves 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32.
  • the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller. In the embodiment, the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 controller. Sends and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
  • the circulation pump 62 and the heat medium heating heater 63 constituting the battery temperature adjusting device 61 may be controlled by the battery controller 73. Further, in the battery controller 73, the temperature of the heat medium on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the battery temperature regulator 61 (heat medium temperature Tw: refrigerant-heat medium heat exchanger 64). The temperature of the object to be cooled by the heat medium temperature sensor 76 and the temperature of the battery 55 (the temperature of the battery 55 itself: the battery temperature Tcell: the temperature of the object to be cooled by the refrigerant-heat medium heat exchanger 64). ) Is connected to the output of the battery temperature sensor 77.
  • information regarding the state of the battery 55 (charge amount SOC (remaining amount) of the battery 55, information that the battery 55 is being charged, charging current Ic of the battery 55, charging completion time of the battery 55, battery The charging power (charge) of 55, the heat medium temperature Tw, the battery temperature Tcell, etc.) are transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65.
  • the information regarding the charging completion time of the battery 55 and the charging power (charge) of the battery 55 at the time of charging the battery 55 is information supplied from an external charger (external power source) such as a quick charger in the embodiment. ..
  • the charging current Ic of the battery 55 is automatically adjusted by the charger (external power supply) such as a quick charger and the battery controller 73 in cooperation with each other according to the heat medium temperature Tw. Further, from the vehicle controller 72, information regarding the presence or absence of passengers in the vehicle interior detected by the weight sensor 72A described above is transmitted to the air conditioning controller 45 and the battery controller 73 via the vehicle communication bus 65.
  • the charger external power supply
  • the battery controller 73 in cooperation with each other according to the heat medium temperature Tw.
  • the heat pump controller 32 and the air conditioning controller 45 transmit and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the settings input by the air conditioning operation unit 53.
  • Air Conditioner 52 air volume Ga of air flowing into the air flow passage 3 and flowing through the air flow passage 3 (calculated by the air conditioning controller 45), air volume ratio SW by the air mix damper 28 (calculated by the air conditioning controller 45), indoor blower 27 voltage (BLV), information on the state of the battery 55 from the battery controller 73 described above, information on the presence or absence of passengers from the vehicle controller 72, information from the GPS navigation device 74, information input to the air conditioning operation unit 53. Is transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
  • the heat pump controller 32 also provides data (information) regarding control of the refrigerant circuit R and the battery temperature adjusting device 61 (including control during charging of the battery 55, which will be described later), and information output to the air conditioning operation unit 53 of the vehicle communication bus 65. Is transmitted to the air conditioning controller 45 via.
  • control device 11 air conditioner controller 45, heat pump controller 32
  • the control device 11 includes heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, air conditioning (priority) + battery cooling mode, and battery cooling. (Priority) + air conditioning mode, battery cooling (independent) mode each battery cooling operation and defrosting mode are switched and executed. These are shown in FIG.
  • the battery 55 is not charged in the embodiment, and the vehicle ignition. (IGN) is turned on, and the air conditioning switch, which is a part of the switch 53B of the air conditioning operation unit 53, is turned on (with an air conditioning request).
  • the air conditioning switch which is a part of the switch 53B of the air conditioning operation unit 53, is turned on (with an air conditioning request).
  • remote operation pre-air conditioning, etc. described above
  • it is also executed even when the ignition is OFF.
  • it is executed when there is no battery cooling request even while the battery 55 is being charged and the air conditioning switch is ON (there is an air conditioning request).
  • the plug of the quick charger is connected to the port of the vehicle to charge the battery 55. It is something that is sometimes executed.
  • the battery cooling (single) mode is executed when the air conditioning switch is OFF (no air conditioning request) and there is a battery cooling request (when driving at a high outside temperature, etc.) other than when the battery 55 is being charged.
  • the heat pump controller 32 operates the circulation pump 62 of the battery temperature adjusting device 61 when the ignition is turned on or when the battery 55 is being charged even if the ignition is turned off. As shown by the broken lines in FIGS. 4 to 10, the heat medium is circulated in the heat medium pipe 66. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode in which the battery 55 is heated by heating the heat medium heating heater 63 of the battery temperature adjusting device 61.
  • FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21 and opens the solenoid valve 17.
  • the electromagnetic valve 20, the electromagnetic valve 22, the electromagnetic valve 35, and the electromagnetic valve 69 are closed.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is deprived of heat by air, cooled, and condensed.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and draws heat from the outside air that is ventilated by the outdoor blower 15 (endothermic). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipe 13A, the refrigerant pipe 13D, and the electromagnetic valve 21, and further enters the accumulator 12 via the refrigerant pipe 13C, where gas and liquid are separated.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated. Since the air heated by the radiator 4 is blown out from the outlet 29, the interior of the vehicle is heated by this.
  • the heat pump controller 32 has a target heater temperature TCO (radiator 4) calculated from a target blowing temperature TAO, which is a target temperature of air blown into the vehicle interior (target value of the temperature of the air blown into the vehicle interior).
  • the target radiator pressure PCO is calculated from the target temperature), and the number of revolutions of the compressor 2 is calculated based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the valve opening of the outdoor expansion valve 6 is controlled based on the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 and the radiator pressure Pci detected by the radiator pressure sensor 47. , The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
  • the heat pump controller 32 supplements the insufficient heating capacity with the heat generated by the auxiliary heater 23.
  • the passenger compartment can be heated without any trouble even when the outside temperature is low.
  • FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying / heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is deprived of heat by air, cooled, and condensed.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, and then partially enters the refrigerant pipe 13J via the refrigerant pipe 13E to reach the outdoor expansion valve 6.
  • the refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and draws heat from the outside air that is ventilated by the outdoor blower 15 (endothermic).
  • the low-temperature refrigerant that exited the outdoor heat exchanger 7 reached the refrigerant pipe 13C via the refrigerant pipe 13A, the refrigerant pipe 13D, and the electromagnetic valve 21, entered the accumulator 12 via the refrigerant pipe 13C, and gas-liquid separated there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the rest of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B.
  • the refrigerant reaches the indoor expansion valve 8, is depressurized by the indoor expansion valve 8, then flows into the heat absorber 9 via the solenoid valve 35, and evaporates.
  • the endothermic action of the refrigerant generated in the heat absorber 9 causes the moisture in the air blown out from the indoor blower 27 to condense and adhere to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 goes out to the refrigerant pipe 13C, merges with the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle. Since the air dehumidified by the endothermic 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), the dehumidifying and heating of the vehicle interior is performed.
  • the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the rotation speed NC of the compressor 2 is determined based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target value thereof. Control.
  • the heat pump controller 32 controls the compressor 2 by selecting the lower of the compressor target rotation speed obtained from either the radiator pressure Pci or the endothermic temperature Te. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
  • the heat pump controller 32 supplements the insufficient heating capacity with the heat generated by the auxiliary heater 23. ..
  • the interior of the vehicle is dehumidified and heated without any trouble even when the outside temperature is low.
  • FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying / cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is deprived of heat by air, cooled, and condensed.
  • the refrigerant leaving the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J, and passes through the outdoor expansion valve 6 which is controlled to be slightly open (region of a large valve opening) than the heating mode and the dehumidifying heating mode. It flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant leaving the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 through the solenoid valve 35 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the endothermic device 9, and the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12.
  • the dehumidified air cooled by the endothermic 9 is reheated (the heating capacity is lower than that during dehumidifying and heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). This will result in dehumidifying and cooling the interior of the vehicle.
  • the heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te).
  • the rotation speed NC of the compressor 2 is controlled so that the vessel temperature Te is set to the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) and the target radiator pressure detected by the radiator pressure sensor 47.
  • the amount of reheat required by the radiator 4 (reheat) by controlling the valve opening of the outdoor expansion valve 6 so that the radiator pressure Pci becomes the target radiator pressure PCO based on the PCO (target value of the radiator pressure Pci). The amount of heat) is obtained.
  • the heat pump controller 32 supplements the insufficient heating capacity with the heat generated by the auxiliary heater 23. To do. As a result, dehumidification and cooling are performed without lowering the temperature inside the vehicle interior too much.
  • FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is basically not energized, it may be energized in a situation where the temperature of the air blown into the vehicle interior is too low.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the ratio is small (because it is only reheated during cooling), so that it almost passes through the radiator 4 and the radiator 4 is passed through.
  • the discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E.
  • the solenoid valve 20 since the solenoid valve 20 is open, the refrigerant passes through the solenoid valve 20 and flows into the outdoor heat exchanger 7 as it is, and is air-cooled by traveling there or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant leaving the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 through the solenoid valve 35 and evaporates. Due to the endothermic action at this time, the air that is blown out from the indoor blower 27 and exchanges heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 through the refrigerant pipe 13K. Since the air cooled by the heat absorber 9 is blown out into the vehicle interior from the air outlet 29, the interior of the vehicle is cooled by this.
  • the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 8 shows how the refrigerant flows in the refrigerant circuit R in the air conditioning (priority) + battery cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valve 21 and the solenoid valve 22.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is basically not energized, it may be energized in a situation where the temperature of the air blown into the vehicle interior is too low. Further, the heat medium heating heater 63 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the ratio is small (because it is only reheated during cooling), so that it almost passes through the radiator 4 and the radiator 4 is passed through.
  • the discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E.
  • the solenoid valve 20 since the solenoid valve 20 is open, the refrigerant passes through the solenoid valve 20 and flows into the outdoor heat exchanger 7 as it is, and is air-cooled by traveling there or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16.
  • the refrigerant that has flowed into the refrigerant pipe 13B is shunted after passing through the check valve 18, and one of the refrigerant flows directly through the refrigerant pipe 13B to reach the indoor expansion valve 8.
  • the refrigerant that has flowed into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 via the solenoid valve 35, and evaporates. Due to the endothermic action at this time, the air that is blown out from the indoor blower 27 and exchanges heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 through the refrigerant pipe 13K. Since the air cooled by the heat absorber 9 is blown out into the vehicle interior from the air outlet 29, the interior of the vehicle is cooled by this.
  • the rest of the refrigerant that has passed through the check valve 18 is shunted and flows into the branch pipe 67 to reach the auxiliary expansion valve 68.
  • the refrigerant after the refrigerant is depressurized, it flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 through the solenoid valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated by being sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (indicated by the solid line arrow in FIG. 8).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, where the refrigerant flow path It exchanges heat with the refrigerant that evaporates within 64B and absorbs heat to cool the heat medium.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63.
  • the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is and reaches the battery 55, which exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 repeats circulation sucked into the circulation pump 62 (indicated by a broken line arrow in FIG. 8).
  • the heat pump controller 32 keeps the electromagnetic valve 35 open, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the endothermic temperature sensor 48. As shown in FIG. 12, the rotation speed NC of the compressor 2 is controlled. Further, in the embodiment, the solenoid valve 69 is controlled to open and close as follows based on the temperature of the heat medium (heat medium temperature Tw: transmitted from the battery controller 73) detected by the heat medium temperature sensor 76.
  • FIG. 13 shows a block diagram of opening / closing control of the solenoid valve 69 in the air conditioning (priority) + battery cooling mode.
  • the heat medium temperature Tw detected by the heat medium temperature sensor 76 and the target heat medium temperature TWO as a target value of the heat medium temperature Tw are input to the solenoid valve control unit 90 for the battery of the heat pump controller 32. Then, when the heat medium temperature Tw rises from the state in which the solenoid valve 69 is closed due to heat generation of the battery 55 or the like and rises to the control upper limit value TwUL, the battery solenoid valve control unit 90 exceeds the control upper limit value TwUL. In this case, or when the control upper limit value is TwUL or more.
  • the solenoid valve 69 is opened (instruction to open the solenoid valve 69).
  • the refrigerant flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and evaporates to cool the heat medium flowing through the heat medium flow path 64A. Therefore, the battery 55 is cooled by the cooled heat medium. Will be done.
  • the solenoid valve 69 is closed (solenoid valve). 69 closing instruction). After that, the solenoid valve 69 is repeatedly opened and closed to control the heat medium temperature Tw to the target heat medium temperature TWO and cool the battery 55 while giving priority to cooling the interior of the vehicle.
  • TAO (Tset-Tin) x K + Tbal (f (Tset, SUN, Tam)) ⁇ ⁇ (I)
  • Tset is the set temperature in the vehicle interior set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air (inside air temperature) detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset, and solar radiation.
  • the target outlet temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
  • the heat pump controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target blowing temperature TAO at the time of startup. Further, after the start-up, each of the air-conditioning operations is selected and switched according to changes in operating conditions, environmental conditions, and setting conditions such as the outside air temperature Tam, the target blowing temperature TAO, and the heat medium temperature Tw. For example, the transition from the cooling mode during traveling to the air conditioning (priority) + battery cooling mode is executed based on the input of the battery cooling request from the battery controller 73. In this case, the battery controller 73 outputs a battery cooling request when, for example, the heat medium temperature Tw or the battery temperature Tcell rises to a predetermined value or more, and transmits it to the heat pump controller 32 or the air conditioning controller 45.
  • Battery cooling (priority) + air conditioning mode For example, when a plug for charging a quick charger (external power supply) is connected and the battery 55 is charged (these information is transmitted from the battery controller 73).
  • the heat pump controller 32 When there is a battery cooling request and the air conditioner switch of the air conditioner operation unit 53 is turned on (there is an air conditioner request) regardless of whether the vehicle ignition (IGN) is ON / OFF, the heat pump controller 32 is basically Executes battery cooling (priority) + air conditioning mode. The switching of the operation mode during charging of the battery 55 will be described in detail later.
  • the flow of the refrigerant in the refrigerant circuit R in the battery cooling (priority) + air conditioning mode is the same as in the air conditioning (priority) + battery cooling mode shown in FIG.
  • the heat pump controller 32 keeps the electromagnetic valve 69 open, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73).
  • the rotation speed NC of the compressor 2 is controlled based on the medium temperature Tw as shown in FIG. 14 described later.
  • the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 15 shows a block diagram of opening / closing control of the solenoid valve 35 in this battery cooling (priority) + air conditioning mode.
  • the heat absorber temperature Te detected by the heat absorber temperature sensor 48 and a predetermined target heat absorber temperature TEO as a target value of the heat absorber temperature Te are input to the solenoid valve control unit 95 for the heat absorber of the heat pump controller 32.
  • the solenoid valve control unit 95 for the heat absorber has a predetermined temperature difference above and below the target heat absorber temperature TEO, sets the control upper limit value TeUL and the control lower limit value TeLL, and absorbs heat from the state where the solenoid valve 35 is closed.
  • the solenoid valve 35 is closed (solenoid valve). 35 closing instruction). After that, the solenoid valve 35 is repeatedly opened and closed to control the endothermic temperature Te to the target endothermic temperature TEO while giving priority to cooling the battery 55 to cool the vehicle interior.
  • Battery cooling (single) mode For charging the quick charger (external power supply) with the air conditioning switch of the air conditioning operation unit 53 turned off (no air conditioning request).
  • the heat pump controller 32 executes the battery cooling (single) mode. Further, even when the air conditioning switch is turned off (no air conditioning request) while the battery cooling (priority) + air conditioning mode is being executed, the heat pump controller 32 shifts to the battery cooling (independent) mode.
  • FIG. 9 shows how the refrigerant flows in the refrigerant circuit R in this battery cooling (single) mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
  • the compressor 2 and the outdoor blower 15 are operated.
  • the indoor blower 27 is not operated, and the auxiliary heater 23 is not energized. Further, in this operation mode, the heat medium heater 63 is also not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes through the radiator 4, and the refrigerant leaving the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the solenoid valve 20 is open, the refrigerant passes through the solenoid valve 20 and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by the outside air ventilated by the outdoor blower 15 and liquefied.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. All of the refrigerant that has flowed into the refrigerant pipe 13B flows into the branch pipe 67 after passing through the check valve 18, and reaches the auxiliary expansion valve 68.
  • the refrigerant is depressurized, it flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 through the solenoid valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated by being sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (indicated by the solid line arrow in FIG. 9).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, where the refrigerant flow path
  • the heat is absorbed by the refrigerant that evaporates within 64B, and the heat medium is cooled.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63.
  • the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is and reaches the battery 55, which exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 repeats circulation sucked into the circulation pump 62 (indicated by a broken line arrow in FIG. 9).
  • the heat pump controller 32 cools the battery 55 by controlling the rotation speed NC of the compressor 2 as described later based on the heat medium temperature Tw detected by the heat medium temperature sensor 76. .. In this way, when the air conditioning switch of the air conditioning operation unit 53 is turned off while the battery 55 is being charged (no air conditioning request in the vehicle interior), the battery cooling (independent) mode is executed to charge the battery 55. It will be possible to shorten the completion time.
  • FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow).
  • the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to lower the temperature, so that the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.
  • the heat pump controller 32 uses the outdoor heat exchanger temperature TXO (the refrigerant evaporation temperature in the outdoor heat exchanger 7) detected by the outdoor heat exchanger temperature sensor 49 and the refrigerant evaporation temperature TXObase when the outdoor heat exchanger 7 is not frosted.
  • the heat pump controller 32 executes the defrosting mode of the outdoor heat exchanger 7 as follows.
  • the heat pump controller 32 sets the refrigerant circuit R to the heating mode described above, and then fully opens the valve opening degree of the outdoor expansion valve 6. Then, the compressor 2 is operated, and the high-temperature refrigerant discharged from the compressor 2 is allowed to flow into the outdoor heat exchanger 7 via the radiator 4 and the outdoor expansion valve 6 to cause frost formation in the outdoor heat exchanger 7. Melt (Fig. 10). Then, when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than the predetermined defrosting end temperature (for example, + 3 ° C.), the heat pump controller 32 defrosts the outdoor heat exchanger 7. Exits the defrost mode assuming that is complete.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, passes through the heat medium flow path 64A, and reaches the heat medium heating heater 63.
  • the heat medium heating heater 63 since the heat medium heating heater 63 generates heat, the heat medium is heated by the heat medium heating heater 63 to raise the temperature, and then reaches the battery 55 to exchange heat with the battery 55.
  • the battery 55 is heated, and the heat medium after heating the battery 55 repeats circulation sucked into the circulation pump 62.
  • the heat pump controller 32 controls the heat generation of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 as described later, thereby setting the heat medium temperature Tw as a predetermined target.
  • the heat medium temperature is adjusted to TWO and the battery 55 is heated.
  • Control of Compressor 2 by Heat Pump Controller 32 Further, in the heating mode, the heat pump controller 32 is based on the radiator pressure Pci, and the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. TGNCh is calculated, and in the dehumidifying cooling mode, cooling mode, air conditioning (priority) + battery cooling mode, the target rotation speed of the compressor 2 (target rotation speed of the compressor) is based on the control block diagram of FIG. 12 based on the heat absorber temperature Te. Calculate TGNCc. In the dehumidifying / heating mode, the lower direction of the compressor target rotation speed TGNCh and the compressor target rotation speed TGNCc is selected.
  • the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 is calculated from the control block diagram of FIG. 13 based on the heat medium temperature Tw. To do.
  • FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci.
  • the F / F operation amount TGNChff of the compressor target rotation speed is calculated based on the temperature TCO and the target radiator pressure PCO which is the target value of the pressure of the radiator 4.
  • the heater temperature Thp is the air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. Calculated (estimated) from the temperature Tci.
  • the degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
  • the target radiator pressure PCO is calculated by the target value calculation unit 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable calculation unit 81 calculates the F / B manipulated variable TGNChfb of the compressor target rotation speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F / F operation amount TGNChff calculated by the F / F operation amount calculation unit 78 and the F / B operation amount TGNChfb calculated by the F / B operation amount calculation unit 81 are added by the adder 82, and the limit setting unit is set as TGNCh00. It is input to 83.
  • the lower limit rotation speed ECNpdLimLo and the upper limit rotation speed ECNpdLimHi are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the compressor target rotation speed TGNCh. That is, the rotation speed of the compressor 2 is limited to the upper limit rotation speed ECNpdLimHi or less.
  • the heat pump controller 32 controls the operation of the compressor 2 so that the radiator pressure Pci becomes the target radiator pressure PCO by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
  • the compressor target rotation speed TGNCh becomes the above-mentioned lower limit rotation speed ECNpdLimo
  • the radiator pressure Pci is set above and below the target radiator pressure PCO, which is a predetermined upper limit value PUL and lower limit value PLL.
  • the compressor 2 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit PLL (when it falls below the lower limit PLL or becomes less than or equal to the lower limit PLL.
  • the compressor 2 is started to operate the compressor with the target rotation speed TGNCh as the lower limit rotation speed ECNpdLimo, and if the radiator pressure Pci rises to the upper limit value PUL in that state, the compressor 2 is stopped again. That is, the operation (ON) and stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimo is repeated.
  • the radiator pressure Pci drops to the lower limit value PUL, and after the compressor 2 is started, the state in which the radiator pressure Pci does not become higher than the lower limit value PUL continues for th2 for a predetermined time, the ON-OFF mode of the compressor 2 is performed. Is finished and returns to the normal mode.
  • FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the endothermic temperature Te.
  • the F / F operation amount calculation unit 86 of the heat pump controller 32 includes the outside air temperature Tam, the air volume Ga of the air flowing in the air flow passage 3 (may be the blower voltage BLV of the indoor blower 27), the target radiator pressure PCO, and the target radiator pressure PCO.
  • the F / F operation amount TGNCcff of the compressor target rotation speed is calculated based on the target heat pump temperature TEO, which is the target value of the heat pump temperature Te.
  • the F / B manipulated variable calculation unit 87 calculates the F / B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target endothermic temperature TEO and the endothermic temperature Te. Then, the F / F manipulated variable TGNCcff calculated by the F / F manipulated variable calculation unit 86 and the F / B manipulated variable TGNCcffb calculated by the F / B manipulated variable calculation unit 87 are added by the adder 88 and set as the limit setting unit as TGNCc00. Entered in 89.
  • the lower limit rotation speed TGNCcLimLo and the upper limit rotation speed TGNCcLimHi are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the compressor target rotation speed TGNCc. Therefore, if the value TGNCc00 added by the adder 88 is within the upper limit rotation speed TGNCcLimHi and the lower limit rotation speed TGNCcLimLo and the ON-OFF mode described later is not set, this value TGNCc00 is the compressor target rotation speed TGNCc (compressor 2). It becomes the number of rotations of). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the endothermic temperature Te becomes the target endothermic temperature TEO by the compressor target rotation speed TGNCc calculated based on the endothermic temperature Te.
  • the compressor target rotation speed TGNCc becomes the above-mentioned lower limit rotation speed TGNCcLimLo
  • the heat absorber temperature Te is set above and below the target heat absorber temperature TEO, the control upper limit value TeUL and the control lower limit value TeLL.
  • the compressor 2 In the ON-OFF mode of the compressor 2 in this case, when the endothermic temperature Te rises to the control upper limit value TeUL, the compressor 2 is started to operate the compressor target rotation speed TGNCc as the lower limit rotation speed TGNCcLimLo. If the endothermic temperature Te drops to the control lower limit value TeLL in this state, the compressor 2 is stopped again. That is, the operation (ON) and stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcLimLo are repeated. Then, when the endothermic temperature Te rises to the control upper limit value TeUL and the compressor 2 is started, the state where the endothermic temperature Te does not become lower than the control upper limit value TeUL continues for a predetermined time ct2, the compressor 2 in this case. The ON-OFF mode of the above is terminated and the normal mode is restored.
  • FIG. 14 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 based on the heat medium temperature Tw.
  • the F / F operation amount calculation unit 92 of the heat pump controller 32 has the outside air temperature Tam, the flow rate Gw of the heat medium in the battery temperature adjusting device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery).
  • the F / B operation amount calculation unit 93 performs F / B operation amount TGNCwfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73). Is calculated. Then, the F / F operation amount TGNCwff calculated by the F / F operation amount calculation unit 92 and the F / B operation amount TGNCwfb calculated by the F / B operation amount calculation unit 93 are added by the adder 94, and the limit setting unit is set as TGNCw00. It is input to 96.
  • the lower limit rotation speed TGNCwLimLo and the upper limit rotation speed TGNCwLimHi are set to TGNCw0, and then the compressor OFF control unit 97 is used to determine the compressor target rotation speed TGNCw. Therefore, if the value TGNCw00 added by the adder 94 is within the upper limit rotation speed TGNCwLimHi and the lower limit rotation speed TGNCwLimLo and the ON-OFF mode described later is not set, this value TGNCw00 is the compressor target rotation speed TGNCw (compressor 2). It becomes the number of rotations of). In the normal mode, the heat pump controller 32 uses the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw so that the heat medium temperature Tw becomes the target heat medium temperature TWO within the above-mentioned appropriate temperature range. Control the operation of 2.
  • the compressor target rotation speed TGNCw becomes the above-mentioned lower limit rotation speed TGNCwLimLo
  • the heat medium temperature Tw is set above and below the target heat medium temperature TWO
  • the control upper limit value TwUL and the control lower limit value TwLL When the state of being lowered to the control lower limit value TwLL is continued for a predetermined time tw1, the compressor 2 is stopped and the compressor 2 is entered into an ON-OFF mode for ON-OFF control.
  • the compressor 2 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the control upper limit value TwUL, the compressor 2 is started to operate the compressor target rotation speed TGNCw as the lower limit rotation speed TGNCwLimLo. If the heat medium temperature Tw drops to the control lower limit value TwLL in this state, the compressor 2 is stopped again. That is, the operation (ON) and stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCwLimLo are repeated.
  • FIG. 16 is a control block diagram of the heat pump controller 32 that calculates the target calorific value ECHtw of the heat medium heating heater 63 based on the heat medium temperature Tw.
  • the F / F operation amount calculation unit 98 of the heat pump controller 32 has the outside air temperature Tam, the flow rate Gw of the heat medium in the battery temperature adjusting device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery).
  • the F / B manipulated variable calculation unit 99 calculates the F / B manipulated variable ECHtwfb of the target calorific value by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73). To do. Then, the F / F operation amount ECHtwff calculated by the F / F operation amount calculation unit 98 and the F / B operation amount ECHtwfb calculated by the F / B operation amount calculation unit 99 are added by the adder 101, and the limit setting unit is set as ECHtw00. It is input to 102.
  • the lower limit calorific value ECHtwLimLo for example, energization OFF
  • the upper limit calorific value ECHtwLimHi are set to ECHtw0
  • the heat medium heater OFF control unit 103 is used to set the target calorific value ECHtw. It is determined. Therefore, if the value ECHtw00 added by the adder 101 is within the upper limit calorific value ECHtwLimHi and the lower limit calorific value ECHtwLimo, and the ON-OFF mode described later is not set, this value ECHtw00 is the target calorific value ECHtw (heat medium heater 63). It becomes the calorific value of).
  • the heat pump controller 32 controls the heat generation of the heat medium heating heater 63 so that the heat medium temperature Tw becomes the target heat medium temperature TWO by the target heat generation amount ECHtw calculated based on the heat medium temperature Tw.
  • the target calorific value ECHtw is the above-mentioned lower limit calorific value ECHtwLimLo
  • the heat medium temperature Tw is the control upper limit value TwUL and the control lower limit value TwLL set above and below the target heat medium temperature TWO.
  • the heat medium heating heater 63 In the ON-OFF mode of the heat medium heating heater 63 in this case, when the heat medium temperature Tw drops to the control lower limit value TwLL, the heat medium heating heater 63 is energized to generate a predetermined low calorific value, and in that state. When the heat medium temperature Tw rises to the control upper limit value TwUL, the energization of the heat medium heater 64 is stopped again. That is, the heat generation (ON) and the heat generation stop (OFF) of the heat medium heating heater 63 with a predetermined low heat generation amount are repeated.
  • the air conditioning controller 45 when the mode changeover switch which is a part of the switch 53B of the air conditioning operation unit 53 of the air conditioning controller 45 is operated once (a predetermined input operation by the input device), the air conditioning controller 45 is the air conditioning operation unit 53.
  • the charging time information as shown in FIG. 17 is displayed (output) on the display 53A.
  • the charging time information includes the charging completion time X1 of the battery 55 when the battery cooling (priority) + air conditioning mode is continued, and the charging completion time X2 of the battery 55 when switching to the air conditioning (priority) + battery cooling mode. , Both are displayed in a comparable manner.
  • the charging completion times X1 and X2 are calculated by the battery controller 73 based on preset calculation conditions and supplied to the air conditioning controller 45.
  • the air conditioning in the vehicle interior is prioritized as described above, so that the charging completion time of the battery 55 is longer than in the battery cooling (priority) + air conditioning mode (X1 ⁇ X2). ..
  • the mode selector switch is operated for a predetermined time or longer. By not doing so, the air conditioning controller 45 erases the display shown in FIG. 17 and cancels the operation of the passenger.
  • the mode selector switch is operated again before the predetermined time elapses from the first operation. To do.
  • this information is transmitted from the air conditioning controller 45 to the heat pump controller 32.
  • the heat pump controller 32 receives the information regarding the operation of the mode selector switch, the heat pump controller 32 switches the operation mode from the battery cooling (priority) + air conditioning mode to the air conditioning (priority) + battery cooling mode.
  • the battery 55 is switched to a state of cooling while giving priority to air conditioning (cooling) in the vehicle interior.
  • the heat pump controller 32 executes the air conditioning (priority) + battery cooling mode even while the battery 55 is being charged. Therefore, even while the battery 55 is being charged, the air conditioning (priority) + battery cooling mode can be executed at the discretion of the passenger. As a result, although the charging completion time of the battery 55 may be extended, the comfort inside the vehicle interior can be ensured, and there are passengers in the vehicle interior in an environment where the outside air temperature is high such as in summer. It becomes extremely effective when charging the battery 55.
  • the display 53A can compare the charging completion time X2 when the air conditioning (priority) + battery cooling mode is executed and the charging completion time X1 when the battery cooling (priority) + air conditioning mode is executed. Since the charging time information is output, the passenger can accurately determine whether to prioritize the comfort in the vehicle interior or the charging completion time of the battery 55.
  • the air conditioning controller 45 and heat pump controller 32 of the control device 11 of the embodiment Has a pre-air conditioning function capable of starting the vehicle at a predetermined predetermined pre-air conditioning start scheduled time t1 and starting air conditioning in the vehicle interior by the vehicle air conditioner 1. Then, when the user sets the scheduled pre-air conditioning start time t1 (for example, 6:00 am) by the switch 53B or the key switch 53C of the air conditioning operation unit 53 of the air conditioning controller 45, the heat pump controller 32 has the time t1. The vehicle is started (power is turned on: power is turned on), and air conditioning in the vehicle interior is started by the vehicle air conditioner 1.
  • the heat pump controller 32 basically executes the battery cooling (priority) + air conditioning mode, but the switch 53B and the key switch 53C are used.
  • the heat pump controller 32 switches the operation mode from the battery cooling (priority) + air conditioning mode to the air conditioning (priority) + battery cooling mode in the same manner as described above.
  • the air conditioning (priority) + battery cooling mode is executed. By doing so, it becomes possible to sufficiently air-condition the passenger compartment in advance before boarding, and it becomes possible to further improve the comfort of the passenger compartment after boarding.
  • the upper limit value TcellUL is the upper limit temperature (for example, + 60 ° C.) of the usage limit of the battery 55.
  • the heat pump controller 32 returns from the air conditioning (priority) + battery cooling mode to the battery cooling (priority) + air conditioning mode, the information is transmitted to the air conditioning controller 45.
  • the air conditioning controller 45 receives the information, the air conditioning controller 45 displays the error information as shown in FIG. 18 on the display 53A.
  • the error information in this case is, for example, "The battery temperature has risen, so the battery cooling (priority) + air conditioning mode has been entered.”
  • the display 53A displays the predetermined error information, which gives the passenger a sense of unnecessary anxiety. Inconvenience can be avoided.
  • the heat pump controller 32 switches from the battery cooling (priority) + air conditioning mode to the air conditioning (priority) + battery cooling mode when the passenger operates, but the information on the state of the battery 55 and the compressor Heat pump controller 32 based on any one of information about 2, information about passengers in the passenger compartment, and information about environmental conditions (conditions i to x below), a combination thereof, or all of them. May automatically switch the operation mode from battery cooling (priority) + air conditioning mode to air conditioning (priority) + battery cooling mode.
  • the heat pump controller 32 switches from the battery cooling (priority) + air conditioning mode to the air conditioning (priority) + battery cooling mode when the passenger operates, but the information on the state of the battery 55 and the compressor Heat pump controller 32 based on any one of information about 2, information about passengers in the passenger compartment, and information about environmental conditions (conditions i to x below), a combination thereof, or all of them. May automatically switch the operation mode from battery cooling (priority) + air conditioning mode to air conditioning (priority) + battery cooling
  • Information on the state of the battery 55 includes a heat medium temperature Tw, which is the temperature of the heat medium cooled by the refrigerant-heat medium heat exchanger 64, a battery temperature Tcell, which is the temperature of the battery 55, and a charging current Ic of the battery 55.
  • Tw heat medium temperature
  • Tcell battery temperature
  • Ic charging current
  • the heat pump controller 32 automatically performs battery cooling (priority) + air conditioning from air conditioning mode (priority) + battery cooling. Switch to mode.
  • the heat medium temperature Tw is lower than the predetermined value A1 (for example, a value lower than the above-mentioned control lower limit value TwLL): Tw ⁇ A1. This is because when the heat medium temperature Tw is low, it is not necessary or necessary to give priority to cooling the battery 55.
  • Battery temperature Tcell is lower than the predetermined value A2 (predetermined lower value): Tcell ⁇ A2. This is also because when the battery temperature T cell is low, it is not necessary or necessary to give priority to cooling the battery 55.
  • the charging current Ic of the battery 55 is lower than the predetermined value A3 (predetermined low value): Ic ⁇ A3. This is because when the charging current Ic is low, the heat generated by the battery 55 is reduced, and it is not necessary or necessary to give priority to cooling the battery 55.
  • the charge amount SOC of the battery 55 is larger than the predetermined value A4 (predetermined high value): SOC> A4. This is because when the charge amount SOC of the battery 55 is large, the heat generation is small, and it is not necessary or necessary to give priority to cooling the battery 55.
  • the inside air temperature Tin is above the specified value A7 (predetermined high value: for example, 30 ° C.): This is air conditioning when there are passengers in the passenger compartment and the inside air temperature Tin is high. By being able to determine that it is necessary to give priority to.
  • A7 predetermined high value: for example, 30 ° C.
  • the outside air temperature Tam is lower than the predetermined value A8 (predetermined low value: for example, 5 ° C.): Tam ⁇ A8. This is because when the outside air temperature Tam is low, the temperature of the battery 55 is also low, and it can be determined that there is no need to prioritize cooling or the need is low. x.
  • the heat pump controller 32 even when the heat pump controller 32 is charging the battery 55, any one of the information on the state of the battery 55, the information on the compressor 2, the information on the passengers in the vehicle interior, and the information on the environmental conditions. Or, if the air conditioning (priority) + battery cooling mode is executed based on a combination thereof or all of them, it is not necessary to prioritize the cooling of the battery 55 from the state of the battery 55 or the like. Alternatively, when the necessity is low, the heat pump controller 32 automatically executes the air conditioning (priority) + battery cooling mode to give priority to the air conditioning in the vehicle interior, so that the comfort in the vehicle interior can be ensured.
  • the heat pump controller 32 when the battery temperature Tcell reaches the upper limit value TcellUL, the heat pump controller 32 is set to the battery cooling (priority) + air conditioning mode as in the case of (13-2) described above. It shall return.
  • the heat medium is circulated to cool (temperature control) the battery 55, but the present invention is not limited to this, and heat exchange for the battery that directly exchanges heat between the refrigerant and the battery 55 is performed.
  • a vessel may be provided. In that case, the battery temperature T cell becomes the temperature of the object to be cooled by the battery heat exchanger.
  • the valve device for the heat absorber is configured by the solenoid valve 35 (for the cabin), the valve device for the battery is configured by the solenoid valve 69 (for the chiller), and they are controlled to open / close (opening fully open and fully open).
  • the indoor expansion valve 8 and the solenoid valve 35 are replaced with a single electronic expansion valve (for the cabin) that can be fully closed to make a heat absorber valve device, and auxiliary expansion is performed.
  • the valve 68 and the solenoid valve 69 may be replaced with a single electronic expansion valve (for a chiller) that can be fully closed to form a valve device for a battery.
  • valve opening of the electronic expansion valve (for chiller) as a battery valve device is controlled in the battery cooling (priority) + air conditioning mode, and the valve opening of the electronic expansion valve (for cabin) as a heat absorber valve device is performed.
  • the degree is controlled including fully closed.
  • the valve opening of the electronic expansion valve (for cabin) as the valve device for the heat absorber is controlled, and the valve opening of the electronic expansion valve (for chiller) as the valve device for the battery is controlled. , It will be controlled including fully closed.
  • the present invention is also effective when the normal charger is used. Furthermore, it goes without saying that the configuration and numerical values of the refrigerant circuit R described in the examples are not limited thereto and can be changed without departing from the gist of the present invention.
  • Heat absorber 11 Control device 32 Heat pump controller (a part of the control device) 35 Solenoid valve (valve gear for heat absorber) 45 Air conditioning controller (part of the control device) 48 Heat absorber temperature sensor 53A display (output device) 53B switch (input device) 53C key switch (input device) 55 Battery 61 Battery temperature regulator 64 Refrigerant-heat medium heat exchanger (heat exchanger for battery) 68 Auxiliary expansion valve 69 Solenoid valve (valve gear for battery) 72 Vehicle controller 72A Weight sensor 73 Battery controller 76 Heat medium temperature sensor 77 Battery temperature sensor R Refrigerant circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】バッテリを充電中であっても、車室内の快適性を確保することができるようにした車両用空気調和装置を提供する。 【解決手段】車両用空気調和装置1の制御装置11は、車室内の空調を優先しながらバッテリ55を冷却する空調(優先)+バッテリ冷却モードと、バッテリ55の冷却を優先しながら車室内の空調を行うバッテリ冷却(優先)+空調モードを有する。バッテリ55の充電中はバッテリ冷却(優先)+空調モードを実行するが、入力装置により所定の入力操作が行われた場合、バッテリ55の充電中においても、空調(優先)+バッテリ冷却モードを実行する。

Description

車両用空気調和装置
 本発明は、外部電源からバッテリに充電可能とされた車両の車室内を空調するヒートポンプ方式の車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器(蒸発器)において蒸発させ、吸熱させることで冷房する等して車室内を空調するものが開発されている(例えば、特許文献1参照)。
 また、このような車両においてはバッテリが外部の急速充電器等の充電器(外部電源)から充電可能とされているが、充電時にバッテリは自己発熱して温度が上昇する。このような高温となった状態で充電を行うと劣化が進行するため、急速充電器は充電電流を制限するように動作するが、それでは充電時間が長くかかる問題が発生する。そこで、冷媒回路にバッテリ用の熱交換器(バッテリ用熱交換部)を別途設け、冷媒回路を循環する冷媒とバッテリ用冷媒(熱媒体)とをこのバッテリ用の熱交換器で熱交換させ、この熱交換した熱媒体をバッテリに循環させることでバッテリを冷却することができるようにした車両用空気調和装置も開発されている(例えば、特許文献2参照)。
特開2014-213765号公報 特許第5860361号公報
 このような車両用空気調和装置において、バッテリの充電中に当該バッテリを冷却する運転モードとして、例えば、バッテリ用の熱交換器により冷却される熱媒体(バッテリに循環される熱媒体)の温度に基づいて圧縮機の回転数を制御し、吸熱器の温度に基づいて当該吸熱器への冷媒の流通を制御する電磁弁を開閉制御するバッテリ冷却(優先)+空調モードを実行するようにした場合、車室内の空調の優先度は低くなる。そのため、熱媒体の温度が目標温度に制御されている場合でもバッテリの冷却が優先されてしまい、車室内の温度が高い状況であっても、圧縮機の回転数は高くならず、バッテリの充電中に車室内に搭乗者があるときには、極めて不快な状況に陥る問題があった。
 これはバッテリの充電が完了に近づいた場合にも同様である。即ち、満充電に近づくと充電電流が低下するため、バッテリの発熱も小さくなるが、圧縮機の回転数は熱媒体の温度に基づいて制御されるため、車室内の温度が高くても圧縮機の回転数は高くならず、搭乗者にとって不快な状況となる。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、バッテリを充電中であっても、車室内の快適性を確保することができるようにした車両用空気調和装置を提供することを目的とする。
 請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器への冷媒の流通を制御する吸熱器用弁装置と、冷媒を吸熱させて車両に搭載されたバッテリを冷却するためのバッテリ用熱交換器と、このバッテリ用熱交換器への冷媒の流通を制御するバッテリ用弁装置と、制御装置を備え、バッテリは外部電源から充電可能とされており、制御装置は少なくとも、吸熱器用弁装置を開き、吸熱器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいてバッテリ用弁装置の開度を制御する空調(優先)+バッテリ冷却モードと、バッテリの充電中、バッテリ用弁装置を開き、バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器又はそれにより冷却される対象の温度に基づいて吸熱器用弁装置の開度を制御するバッテリ冷却(優先)+空調モードを実行するものであって、制御装置は、所定の入力装置を有し、この入力装置により所定の入力操作が行われた場合、バッテリの充電中においても、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、所定の出力装置を有し、バッテリの充電中に空調(優先)+バッテリ冷却モードを実行する場合、出力装置により、バッテリ冷却(優先)+空調モードを実行する場合と比較した所定の充電時間情報を出力することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、予め設定された所定のプレ空調開始予定時刻に車室内の空調を開始するプレ空調機能を有すると共に、バッテリの充電中にプレ空調機能を実行する際にも、入力装置により所定の入力操作が行われた場合、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項4の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器への冷媒の流通を制御する吸熱器用弁装置と、冷媒を吸熱させて車両に搭載されたバッテリを冷却するためのバッテリ用熱交換器と、このバッテリ用熱交換器への冷媒の流通を制御するバッテリ用弁装置と、制御装置を備え、バッテリは外部電源から充電可能とされており、制御装置は少なくとも、吸熱器用弁装置を開き、吸熱器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいてバッテリ用弁装置の開度を制御する空調(優先)+バッテリ冷却モードと、バッテリの充電中、バッテリ用弁装置を開き、バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器又はそれにより冷却される対象の温度に基づいて吸熱器用弁装置の開度を制御するバッテリ冷却(優先)+空調モードを実行するものであって、制御装置は、バッテリの充電中においても、当該バッテリの状態に関する情報、圧縮機に関する情報、車室内の搭乗者に関する情報、及び、環境条件に関する情報、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てに基づき、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記発明においてバッテリの状態に関する情報は、バッテリ用熱交換器により冷却される対象の温度、バッテリの温度、及び、バッテリの充電電流、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであり、それらが所定値より低い場合、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項6の発明の車両用空気調和装置は、請求項4又は請求項5の発明においてバッテリの状態に関する情報は、バッテリの充電量であり、当該充電量が所定値より多い場合、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項7の発明の車両用空気調和装置は、請求項4乃至請求項6の発明においてバッテリの状態に関する情報は、バッテリ用熱交換器により冷却される対象の温度であり、当該温度とその目標温度との差が所定値より小さい場合、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項8の発明の車両用空気調和装置は、請求項4乃至請求項7の発明において圧縮機に関する情報は、圧縮機の回転数であり、当該回転数が所定値より低い場合、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項9の発明の車両用空気調和装置は、請求項4乃至請求項8の発明において制御装置は、予め設定された所定のプレ空調開始予定時刻に車室内の空調を開始するプレ空調機能を有すると共に、バッテリの充電中にプレ空調機能を実行する場合、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項10の発明の車両用空気調和装置は、請求項4乃至請求項8の発明において車室内の搭乗者に関する情報は、搭乗者の有無であり、搭乗者がある場合、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項11の発明の車両用空気調和装置は、請求項4乃至請求項8の発明において車室内の搭乗者に関する情報は、搭乗者の有無、及び、環境条件に関する情報は、車室内の温度であり、搭乗者があり、車室内の温度が所定値以上である場合、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項12の発明の車両用空気調和装置は、請求項4乃至請求項11の発明において環境条件に関する情報は、外気温度であり、当該外気温度が所定値より低い場合、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項13の発明の車両用空気調和装置は、請求項4乃至請求項12の発明において環境条件に関する情報は、車室内の温度であり、当該車室内の温度とその目標温度との差が所定値より大きい場合、空調(優先)+バッテリ冷却モードを実行することを特徴とする。
 請求項14の発明の車両用空気調和装置は、請求項4乃至請求項13の発明において制御装置は、バッテリの充電中、車室内の空調要求が無い場合、バッテリ用弁装置を開き、バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器用弁装置を閉じるバッテリ冷却(単独)モードを実行することを特徴とする。
 請求項15の発明の車両用空気調和装置は、上記各発明において制御装置は、バッテリの充電中に空調(優先)+バッテリ冷却モードを実行しているとき、バッテリの温度が所定の上限値に達した場合、バッテリ冷却(優先)+空調モードに移行することを特徴とする。
 請求項16の発明の車両用空気調和装置は、上記発明において制御装置は、所定の出力装置を有し、バッテリの温度が上限値に達してバッテリ冷却(優先)+空調モードに移行した場合、出力装置により、所定のエラー情報を出力することを特徴とする。
 請求項1の発明によれば、冷媒を圧縮する圧縮機と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器への冷媒の流通を制御する吸熱器用弁装置と、冷媒を吸熱させて車両に搭載されたバッテリを冷却するためのバッテリ用熱交換器と、このバッテリ用熱交換器への冷媒の流通を制御するバッテリ用弁装置と、制御装置を備え、バッテリが外部電源から充電可能とされており、制御装置が少なくとも、吸熱器用弁装置を開き、吸熱器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいてバッテリ用弁装置の開度を制御する空調(優先)+バッテリ冷却モードと、バッテリの充電中、バッテリ用弁装置を開き、バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器又はそれにより冷却される対象の温度に基づいて吸熱器用弁装置の開度を制御するバッテリ冷却(優先)+空調モードを実行する車両用空気調和装置において、制御装置が、所定の入力装置を有し、この入力装置により所定の入力操作が行われた場合、バッテリの充電中においても、空調(優先)+バッテリ冷却モードを実行するようにしたので、バッテリを充電中にも、搭乗者の判断で空調(優先)+バッテリ冷却モードを実行することができるようになる。
 これにより、バッテリの充電完了時間が延びる可能性はあるものの、車室内の快適性を確保することができるようになる。これは特に、夏場等の外気温度が高い環境において、車室内に搭乗者がある状態でバッテリを充電するときに極めて有効なものとなる。
 この場合、請求項2の発明の如く制御装置に所定の出力装置を設け、バッテリの充電中に空調(優先)+バッテリ冷却モードを実行する場合、出力装置により、バッテリ冷却(優先)+空調モードを実行する場合と比較した所定の充電時間情報を出力するようにすれば、車室内の快適性を優先するか、バッテリの充電完了時間を優先するかを、搭乗者は的確に判断することができるようになる。
 また、請求項3の発明の如く制御装置がプレ空調機能を有する場合、バッテリの充電中に係るプレ空調機能を実行する際にも、入力装置により所定の入力操作が行われた場合は、空調(優先)+バッテリ冷却モードを実行するようにすることで、搭乗者が搭乗する前に、予め車室内を十分に空調しておくことができるようになり、搭乗後の車室内の快適性をより一層向上させることができるようになる。
 請求項4の発明によれば、冷媒を圧縮する圧縮機と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器への冷媒の流通を制御する吸熱器用弁装置と、冷媒を吸熱させて車両に搭載されたバッテリを冷却するためのバッテリ用熱交換器と、このバッテリ用熱交換器への冷媒の流通を制御するバッテリ用弁装置と、制御装置を備え、バッテリが外部電源から充電可能とされており、制御装置が少なくとも、吸熱器用弁装置を開き、吸熱器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいてバッテリ用弁装置の開度を制御する空調(優先)+バッテリ冷却モードと、バッテリの充電中、バッテリ用弁装置を開き、バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器又はそれにより冷却される対象の温度に基づいて吸熱器用弁装置の開度を制御するバッテリ冷却(優先)+空調モードを実行する車両用空気調和装置において、制御装置が、バッテリの充電中においても、当該バッテリの状態に関する情報、圧縮機に関する情報、車室内の搭乗者に関する情報、及び、環境条件に関する情報、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てに基づき、空調(優先)+バッテリ冷却モードを実行するようにしたので、バッテリの状態等から当該バッテリの冷却を優先する必要が無い場合、若しくは、必要性が低い場合、制御装置により自動的に空調(優先)+バッテリ冷却モードを実行して車室内の空調を優先させ、車室内の快適性を確保することができるようになる。
 この場合のバッテリの状態に関する情報としては、請求項5の発明の如きバッテリ用熱交換器により冷却される対象の温度、バッテリの温度、或いは、バッテリの充電電流を採用することができる。バッテリ用熱交換器により冷却される対象の温度やバッテリの温度が低い場合は勿論、充電電流が低い場合もバッテリの発熱は少なくなり、バッテリの冷却を優先する必要が無いか、必要性が低くなるので、それらが所定値より低い場合、自動的に空調(優先)+バッテリ冷却モードを実行するようにする。
 また、バッテリの状態に関する情報には請求項6の発明の如きバッテリの充電量も採用することができる。バッテリの充電量が多い場合は発熱は少なくなり、バッテリの冷却を優先する必要が無いか、必要性が低くなるので、当該充電量が所定値より高い場合、自動的に空調(優先)+バッテリ冷却モードを実行するようにする。
 また、バッテリの状態に関する情報としてバッテリ用熱交換器により冷却される対象の温度を採用した場合、例えば、請求項7の発明の如く当該温度とその目標温度との差が小さいときにはバッテリの冷却を優先する必要が無いか、必要性が低いと判断できるので、それらの差が所定値より小さい場合、自動的に空調(優先)+バッテリ冷却モードを実行するようにしてもよい。
 また、圧縮機に関する情報としては請求項8の発明の如き圧縮機の回転数を採用することができる。バッテリ冷却(優先)+空調モードにおいて圧縮機の回転数が低い場合、バッテリの冷却を優先する必要が無いか、必要性が低いと判断できるので、回転数が所定値より低い場合、自動的に空調(優先)+バッテリ冷却モードを実行するようにする。
 また、制御装置が請求項9の如きプレ空調機能を有し、バッテリの充電中にプレ空調機能を実行する場合には、搭乗者により車室内の空調が優先されたことになるので、自動的に空調(優先)+バッテリ冷却モードを実行するようにする。
 また、車室内の搭乗者に関する情報としては請求項10の発明の如き搭乗者の有無を採用することができる。車室内に搭乗者がある場合は空調を優先する必要があると判断できるので、自動的に空調(優先)+バッテリ冷却モードを実行するようにする。
 また、請求項11の発明の如く車室内の搭乗者に関する情報として搭乗者の有無を採用し、環境条件に関する情報として車室内の温度を採用した場合、搭乗者があって車室内の温度が所定値以上の場合には空調を優先する必要があると判断できるので、自動的に空調(優先)+バッテリ冷却モードを実行するようにする。
 また、環境条件に関する情報としては請求項12の発明の如き外気温度を採用することができる。外気温度が低い場合にはバッテリの温度も低くなり、冷却を優先する必要が無いか、必要性が低いと判断できるので、外気温度が所定値より低い場合、自動的に空調(優先)+バッテリ冷却モードを実行するようにする。
 また、環境に関する情報としては請求項13の発明の如き車室内の温度を採用することができる。例えば、車室内の温度とその目標温度との差が所定値より大きい場合には空調を優先する必要があると判断できるので、自動的に空調(優先)+バッテリ冷却モードを実行するようにする。
 ここで、バッテリの充電中に車室内の空調要求が無い場合には、請求項14の発明の如きバッテリ冷却(単独)モードを実行するようにすることで、充電完了時間の短縮を図ることができるようになる。
 また、上記のようにバッテリの充電中に空調(優先)+バッテリ冷却モードを実行しているときに、バッテリの温度が所定の上限値に達した場合、請求項15の発明の如くバッテリ冷却(優先)+空調モードに移行するようにすれば、充電中の発熱によるバッテリの劣化を未然に回避することができるようになる。
 このようにバッテリの温度が上限値に達してバッテリ冷却(優先)+空調モードに移行した場合、請求項16の発明の如く出力装置により、所定のエラー情報を出力することで、搭乗者に無用な不安感を与える不都合を回避することができるようになる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である。 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。 図2の制御装置が実行する運転モードを説明する図である。 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる除湿冷房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる冷房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる除霜モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。 図2の制御装置のヒートポンプコントローラの圧縮機制御に関するもう一つの制御ブロック図である。 図2の制御装置のヒートポンプコントローラの空調(優先)+バッテリ冷却モードでの電磁弁69の制御を説明するブロック図である。 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する更にもう一つの制御ブロック図である。 図2の制御装置のヒートポンプコントローラのバッテリ冷却(優先)+空調モードでの電磁弁35の制御を説明するブロック図である。 図2の制御装置のヒートポンプコントローラの熱媒体加熱ヒータ制御に関する制御ブロック図である。 図2の制御装置の空調コントローラのディスプレイに表示される充電時間情報を示す図である。 図2の制御装置の空調コントローラのディスプレイに表示されるエラー情報を示す図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明を適用した一実施形態の車両用空気調和装置1の構成図を示している。
 本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する冷媒回路Rの圧縮機2や、バッテリ温度調整装置61も、バッテリ55から供給される電力で駆動されるものとする。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、除霜モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、及び、バッテリ冷却(単独)モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。
 尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂ハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は図示しない外部の充電器(急速充電器や通常充電器等の外部電源)からバッテリ55に充電可能とされているものである。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒がマフラー5と冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させる室内熱交換器としての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる機械式膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に冷媒を蒸発(吸熱)させて車室内外から冷媒に吸熱(冷媒に熱を吸収)させる室内熱交換器としての吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、実施例では機械式膨張弁が使用された室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の過熱度を調整する。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは逆止弁18、室内膨張弁8、及び、吸熱器用弁装置としての電磁弁35(キャビン用)を順次介して吸熱器9の冷媒入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。また、逆止弁18は室内膨張弁8の方向が順方向とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。
 更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 尚、実施例の吸込切換ダンパ26は、吸込口25の外気吸込口と内気吸込口を任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する空気(外気と内気)のうちの内気の比率を0~100%の間で調整することができるように構成されている(外気の比率も100%~0%の間で調整可能)。
 また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。
 更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 更に、車両用空気調和装置1は、バッテリ55に熱媒体を循環させて当該バッテリ55の温度を調整するバッテリ温度調整装置61を備えている。実施例のバッテリ温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、バッテリ用熱交換器としての冷媒-熱媒体熱交換器64と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。
 実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体加熱ヒータ63の入口に接続されている。この熱媒体加熱ヒータ63の出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。
 このバッテリ温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれることで熱媒体配管66内を循環される。
 一方、冷媒回路Rの冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では機械式の膨張弁から構成された補助膨張弁68と、バッテリ用弁装置としての電磁弁69(チラー用)が順次設けられている。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Bにおける冷媒の過熱度を調整する。
 そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は冷媒配管13Dとの合流点より冷媒上流側(アキュムレータ12の冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁68や電磁弁69、冷媒-熱媒体熱交換器64の冷媒流路64B、圧縮機2、放熱器5、室外熱交換器7等も冷媒回路Rの一部を構成すると同時に、バッテリ温度調整装置61の一部をも構成することになる。
 電磁弁69が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、冷媒配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63が車両通信バス65を介してデータの送受信を行うように構成されている。
 更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。
 尚、図中72Aは車両のシートに設けられた重量センサである。この重量センサ72Aは車室内の搭乗者の有無を検出するものであり、その出力は車両コントローラ72に入力される。
 前記空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気温度(内気温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。
 尚、図中53Aはこの空調操作部53に設けられた出力装置としてのディスプレイであり、53Bは空調操作部53に設けられた入力装置としてのスイッチである。この入力装置としては、車両のワイヤレスキーに設けられたキースイッチ53Cも含まれる。キースイッチ53Cからは後述するプレ空調機能の実行指示入力を行うことが可能とされており、このキースイッチ53Cからの指示情報は空調操作部53にワイヤレスで入力されるものとする。
 また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。
 前記ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9自体の温度、又は、吸熱器9により冷却された直後の空気(冷却対象)の温度:以下、吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁20(バイパス用)、電磁弁35(キャビン用)及び電磁弁69(チラー用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
 尚、バッテリ温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。更に、このバッテリコントローラ73にはバッテリ温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(熱媒体温度Tw:冷媒-熱媒体熱交換器64により冷却される対象の温度)を検出する熱媒体温度センサ76と、バッテリ55の温度(バッテリ55自体の温度:バッテリ温度Tcell:これも冷媒-熱媒体熱交換器64により冷却される対象の温度)を検出するバッテリ温度センサ77の出力が接続されている。
 そして、実施例ではバッテリ55の状態に関する情報(バッテリ55の充電量SOC(残量)や、バッテリ55を充電中であることの情報、バッテリ55の充電電流Ic、バッテリ55の充電完了時間、バッテリ55の充電電力(料金)、熱媒体温度Tw、バッテリ温度Tcell等)は、バッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。尚、バッテリ55の充電時におけるバッテリ55の充電完了時間やバッテリ55の充電電力(料金)に関する情報は、実施例では急速充電器等の外部の充電器(外部電源)から供給される情報である。また、バッテリ55の充電電流Icは、熱媒体温度Twに応じて急速充電器等の充電器(外部電源)とバッテリコントローラ73が協働して自動調整するものである。また、車両コントローラ72からは前述した重量センサ72Aが検出する車室内の搭乗者の有無に関する情報等が車両通信バス65を介して空調コントローラ45やバッテリコントローラ73に送信される。
 ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からのバッテリ55の状態に関する情報、車両コントローラ72からの搭乗者の有無に関する情報、GPSナビゲーション装置74からの情報、空調操作部53に入力された情報は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
 また、ヒートポンプコントローラ32からも冷媒回路Rやバッテリ温度調整装置61の制御(後述するバッテリ55の充電時の制御を含む)に関するデータ(情報)、空調操作部53に出力する情報が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調(優先)+バッテリ冷却モードの各空調運転と、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードの各バッテリ冷却運転と、除霜モードを切り換えて実行する。これらが図3に示されている。
 このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調(優先)+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53のスイッチ53Bの一部である空調スイッチがONされている場合(空調要求有り)に実行されるものである。但し、リモート運転時(前述したプレ空調等)にはイグニッションがOFFの場合にも実行される。また、バッテリ55を充電中でもバッテリ冷却要求が無く、空調スイッチがONされている(空調要求有り)ときは実行される。
 一方、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを車両のポートに接続し、バッテリ55に充電しているときに実行されるものである。但し、バッテリ冷却(単独)モードは、バッテリ55の充電中以外にも、空調スイッチがOFF(空調要求無し)で、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。
 尚、バッテリ55の充電中のバッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モード、及び、空調(優先)+バッテリ冷却モードの切り換え制御については、後に詳述する。
 また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、バッテリ温度調整装置61の循環ポンプ62を運転し、図4~図10に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、図3には示していないが、実施例のヒートポンプコントローラ32は、バッテリ温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。
 (1)暖房モード
 先ず、図4を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図4には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁20、電磁弁22、電磁弁35、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の目標温度)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。
 また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。
 (2)除湿暖房モード
 次に、図5を参照しながら除湿暖房モードについて説明する。図5は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22、電磁弁35を開き、電磁弁17、電磁弁20、電磁弁69は閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。
 一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御するか、又は、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。このとき、ヒートポンプコントローラ32は放熱器圧力Pciによるか吸熱器温度Teによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。また、吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。
 また、ヒートポンプコントローラ32は、この除湿暖房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。
 (3)除湿冷房モード
 次に、図6を参照しながら除湿冷房モードについて説明する。図6は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17、及び、電磁弁35を開き、電磁弁20、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数NCを制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。
 また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。
 (4)冷房モード
 次に、図7を参照しながら冷房モードについて説明する。図7は冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。冷房モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁35を開き、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23は基本的には通電されないが、車室内に吹き出される空気温度が低すぎるような状況で通電される場合もある。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数NCを制御する。
 (5)空調(優先)+バッテリ冷却モード
 次に、図8を参照しながら空調(優先)+バッテリ冷却モードについて説明する。図8は空調(優先)+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調(優先)+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、電磁弁35、及び、電磁弁69を開き、電磁弁21、及び、電磁弁22を閉じる。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23は基本的には通電されないが、車室内に吹き出される空気温度が低すぎるような状況で通電される場合もある。また、熱媒体加熱ヒータ63は通電されない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。
 他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。
 この空調(優先)+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は電磁弁35を開いた状態を維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて後述する図12に示す如く圧縮機2の回転数NCを制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、電磁弁69を以下の如く開閉制御する。
 図13は空調(優先)+バッテリ冷却モードにおける電磁弁69の開閉制御のブロック図を示している。ヒートポンプコントローラ32のバッテリ用電磁弁制御部90には熱媒体温度センサ76が検出する熱媒体温度Twと、熱媒体温度Twの目標値としての目標熱媒体温度TWOが入力される。そして、バッテリ用電磁弁制御部90は、電磁弁69を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、制御上限値TwULまで上昇した場合(制御上限値TwULを上回った場合、又は、制御上限値TwUL以上となった場合。以下、同じ)、電磁弁69を開放する(電磁弁69開指示)。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。
 その後、熱媒体温度Twが制御下限値TwLLまで低下した場合(制御下限値TwLLを下回った場合、又は、制御下限値TwLL以下となった場合。以下、同じ)、電磁弁69を閉じる(電磁弁69閉指示)。以後、このような電磁弁69の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。
 (6)空調運転の切り換え
 ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度(内気温度)、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Tw等の運転条件や環境条件、設定条件の変化に応じ、前記各空調運転を選択して切り換えていく。例えば、走行中の冷房モードから空調(優先)+バッテリ冷却モードへの移行は、バッテリコントローラ73からのバッテリ冷却要求が入力されたことに基づいて実行される。この場合、バッテリコントローラ73は例えば熱媒体温度Twやバッテリ温度Tcellが所定値以上に上昇した場合にバッテリ冷却要求を出力し、ヒートポンプコントローラ32や空調コントローラ45に送信するものである。
 (7)バッテリ冷却(優先)+空調モード
 次に、例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)のON/OFFに拘わらず、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされた場合(空調要求有り)、ヒートポンプコントローラ32は、基本的にはバッテリ冷却(優先)+空調モードを実行する。尚、バッテリ55の充電中の運転モードの切り換えについては後に詳述する。このバッテリ冷却(優先)+空調モードにおける冷媒回路Rの冷媒の流れ方は、図8に示した空調(優先)+バッテリ冷却モードの場合と同様である。
 但し、このバッテリ冷却(優先)+空調モードの場合、実施例ではヒートポンプコントローラ32は電磁弁69を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて後述する図14に示す如く圧縮機2の回転数NCを制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、電磁弁35を以下の如く開閉制御する。
 図15はこのバッテリ冷却(優先)+空調モードにおける電磁弁35の開閉制御のブロック図を示している。ヒートポンプコントローラ32の吸熱器用電磁弁制御部95には吸熱器温度センサ48が検出する吸熱器温度Teと、当該吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOが入力される。そして、吸熱器用電磁弁制御部95は、目標吸熱器温度TEOの上下に所定の温度差を有して制御上限値TeULと制御下限値TeLLを設定し、電磁弁35を閉じている状態から吸熱器温度Teが高くなり、制御上限値TeULまで上昇した場合(制御上限値TeULを上回った場合、又は、制御上限値TeUL以上となった場合。以下、同じ)、電磁弁35を開放する(電磁弁35開指示)。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。
 その後、吸熱器温度Teが制御下限値TeLLまで低下した場合(制御下限値TeLLを下回った場合、又は、制御下限値TeLL以下となった場合。以下、同じ)、電磁弁35を閉じる(電磁弁35閉指示)。以後、このような電磁弁35の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。
 (8)バッテリ冷却(単独)モード
 次に、イグニッションのON/OFFに拘わらず、空調操作部53の空調スイッチがOFFされた状態で(空調要求無し)、急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているとき、バッテリ冷却要求があった場合、ヒートポンプコントローラ32はバッテリ冷却(単独)モードを実行する。また、バッテリ冷却(優先)+空調モードを実行しているときに、空調スイッチがOFFされた場合(空調要求無し)にも、ヒートポンプコントローラ32はバッテリ冷却(単独)モードに移行する。
 但し、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。図9はこのバッテリ冷却(単独)モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却(単独)モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁69を開き、電磁弁21、電磁弁22、及び、電磁弁35を閉じる。
 そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。
 このバッテリ冷却(単独)モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数NCを制御することにより、バッテリ55を冷却する。このように、バッテリ55の充電中に空調操作部53の空調スイッチがOFFされている場合には(車室内の空調要求無し)、バッテリ冷却(単独)モードを実行するようにすることで、充電完了時間の短縮を図ることができるようになる。
 (9)除霜モード
 次に、図10を参照しながら室外熱交換器7の除霜モードについて説明する。図10は除霜モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。
 そこで、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXO(室外熱交換器7における冷媒蒸発温度)と、室外熱交換器7の無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO(=TXObase-TXO)を算出しており、室外熱交換器温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値以上に拡大した状態が所定時間継続した場合、室外熱交換器7に着霜しているものと判定して所定の着霜フラグをセットする。
 そして、この着霜フラグがセットされており、空調操作部53の前述した空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されるとき、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜モードを実行する。
 ヒートポンプコントローラ32はこの除霜モードでは、冷媒回路Rを前述した暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる(図10)。そして、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXOが所定の除霜終了温度(例えば、+3℃等)より高くなった場合、室外熱交換器7の除霜が完了したものとして除霜モードを終了する。
 (10)バッテリ加熱モード
 また、空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、電磁弁69は閉じる。
 これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過して熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。
 このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く熱媒体加熱ヒータ63の発熱を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。
 (11)ヒートポンプコントローラ32による圧縮機2の制御
 また、ヒートポンプコントローラ32は、暖房モードでは放熱器圧力Pciに基づき、図11の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出し、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モードでは、吸熱器温度Teに基づき、図12の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出する。尚、除湿暖房モードでは圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの低い方向を選択する。また、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードでは、熱媒体温度Twに基づき、図13の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出する。
 (11-1)放熱器圧力Pciに基づく圧縮機目標回転数TGNChの算出
 先ず、図11を用いて放熱器圧力Pciに基づく圧縮機2の制御について詳述する。図11は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
 尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。
 リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。即ち、圧縮機2の回転数は上限回転数ECNpdLimHi以下に制限される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより、放熱器圧力Pciが目標放熱器圧力PCOになるように圧縮機2の運転を制御する。
 尚、圧縮機OFF制御部84は、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなり、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULまで上昇した状態(上限値PULを上回った状態、又は、上限値PUL以上となった状態。以下、同じ)が所定時間th1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。
 この圧縮機2のON-OFFモードでは、放熱器圧力Pciが下限値PLLまで低下した場合(下限値PLLを下回った場合、又は、下限値PLL以下となった場合。以下、同じ)、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。
 (11-2)吸熱器温度Teに基づく圧縮機目標回転数TGNCcの算出
 次に、図12を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図12は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部86は外気温度Tamと、空気流通路3内を流通する空気の風量Ga(室内送風機27のブロワ電圧BLVでもよい)と、目標放熱器圧力PCOと、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを算出する。
 また、F/B操作量演算部87は目標吸熱器温度TEOと吸熱器温度Teに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、F/F操作量演算部86が算出したF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbは加算器88で加算され、TGNCc00としてリミット設定部89に入力される。
 リミット設定部89では制御上の下限回転数TGNCcLimLoと上限回転数TGNCcLimHiのリミットが付けられてTGNCc0とされた後、圧縮機OFF制御部91を経て圧縮機目標回転数TGNCcとして決定される。従って、加算器88で加算された値TGNCc00が上限回転数TGNCcLimHiと下限回転数TGNCcLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCc00が圧縮機目標回転数TGNCc(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この吸熱器温度Teに基づいて算出された圧縮機目標回転数TGNCcにより、吸熱器温度Teが目標吸熱器温度TEOになるように圧縮機2の運転を制御する。
 尚、圧縮機OFF制御部91は、圧縮機目標回転数TGNCcが上述した下限回転数TGNCcLimLoとなり、吸熱器温度Teが目標吸熱器温度TEOの上下に設定された制御上限値TeULと制御下限値TeLLのうちの制御下限値TeLLまで低下した状態が所定時間tc1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。
 この場合の圧縮機2のON-OFFモードでは、吸熱器温度Teが制御上限値TeULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcを下限回転数TGNCcLimLoとして運転し、その状態で吸熱器温度Teが制御下限値TeLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、吸熱器温度Teが制御上限値TeULまで上昇し、圧縮機2を起動した後、吸熱器温度Teが制御上限値TeULより低くならない状態が所定時間tc2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。
 (11-3)熱媒体温度Twに基づく圧縮機目標回転数TGNCwの算出
 次に、図14を用いて熱媒体温度Twに基づく圧縮機2の制御について詳述する。図14は熱媒体温度Twに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部92は外気温度Tamと、バッテリ温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、バッテリ温度Tcell(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて圧縮機目標回転数のF/F操作量TGNCcwffを算出する。
 また、F/B操作量演算部93は目標熱媒体温度TWOと熱媒体温度Tw(バッテリコントローラ73から送信される)に基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCwfbを算出する。そして、F/F操作量演算部92が算出したF/F操作量TGNCwffとF/B操作量演算部93が算出したF/B操作量TGNCwfbは加算器94で加算され、TGNCw00としてリミット設定部96に入力される。
 リミット設定部96では制御上の下限回転数TGNCwLimLoと上限回転数TGNCwLimHiのリミットが付けられてTGNCw0とされた後、圧縮機OFF制御部97を経て圧縮機目標回転数TGNCwとして決定される。従って、加算器94で加算された値TGNCw00が上限回転数TGNCwLimHiと下限回転数TGNCwLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCw00が圧縮機目標回転数TGNCw(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された圧縮機目標回転数TGNCwにより、熱媒体温度Twが前述した適正温度範囲内の目標熱媒体温度TWOになるように圧縮機2の運転を制御する。
 尚、圧縮機OFF制御部97は、圧縮機目標回転数TGNCwが上述した下限回転数TGNCwLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された制御上限値TwULと制御下限値TwLLのうちの制御下限値TwLLまで低下した状態が所定時間tw1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。
 この場合の圧縮機2のON-OFFモードでは、熱媒体温度Twが制御上限値TwULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCwを下限回転数TGNCwLimLoとして運転し、その状態で熱媒体温度Twが制御下限値TwLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCwLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、熱媒体温度Twが制御上限値TwULまで上昇し、圧縮機2を起動した後、熱媒体温度Twが制御上限値TwULより低くならない状態が所定時間tw2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。
 (12)ヒートポンプコントローラ32による熱媒体加熱ヒータ63の制御
 次に、図16を用いて前述したバッテリ加熱モードにおける熱媒体温度Twに基づいた熱媒体加熱ヒータ63の制御について詳述する。図16は熱媒体温度Twに基づいて熱媒体加熱ヒータ63の目標発熱量ECHtwを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部98は外気温度Tamと、バッテリ温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、バッテリ温度Tcell(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて目標発熱量のF/F操作量ECHtffを算出する。
 また、F/B操作量演算部99は目標熱媒体温度TWOと熱媒体温度Tw(バッテリコントローラ73から送信される)に基づくPID演算若しくはPI演算により目標発熱量のF/B操作量ECHtwfbを算出する。そして、F/F操作量演算部98が算出したF/F操作量ECHtwffとF/B操作量演算部99が算出したF/B操作量ECHtwfbは加算器101で加算され、ECHtw00としてリミット設定部102に入力される。
 リミット設定部102では制御上の下限発熱量ECHtwLimLo(例えば、通電OFF)と上限発熱量ECHtwLimHiのリミットが付けられてECHtw0とされた後、熱媒体加熱ヒータOFF制御部103を経て目標発熱量ECHtwとして決定される。従って、加算器101で加算された値ECHtw00が上限発熱量ECHtwLimHiと下限発熱量ECHtwLimLo以内であり、後述するON-OFFモードにならなければ、この値ECHtw00が目標発熱量ECHtw(熱媒体加熱ヒータ63の発熱量となる)。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された目標発熱量ECHtwにより、熱媒体温度Twが目標熱媒体温度TWOになるように熱媒体加熱ヒータ63の発熱を制御する。
 尚、熱媒体加熱ヒータOFF制御部103は、目標発熱量ECHtwが上述した下限発熱量ECHtwLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された制御上限値TwULと制御下限値TwLLのうちの制御上限値TwULまで上昇した状態が所定時間tw1継続した場合、熱媒体加熱ヒータ63の通電を停止させて熱媒体加熱ヒータ63をON-OFF制御するON-OFFモードに入る。
 この場合の熱媒体加熱ヒータ63のON-OFFモードでは、熱媒体温度Twが制御下限値TwLLまで低下した場合、熱媒体加熱ヒータ63に通電して所定の低発熱量として通電し、その状態で熱媒体温度Twが制御上限値TwULまで上昇した場合は熱媒体加熱ヒータ64の通電を再度停止させる。即ち、所定の低発熱量での熱媒体加熱ヒータ63の発熱(ON)と、発熱停止(OFF)を繰り返す。そして、熱媒体温度Twが制御下限値TwLLまで低下し、熱媒体加熱ヒータ63を通電した後、熱媒体温度Twが制御下限値TwLLより高くならない状態が所定時間tw2継続した場合、この場合の熱媒体加熱ヒータ63のON-OFFモードを終了し、通常モードに復帰するものである。
 (13)搭乗者の操作によるバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードへの切り換え
 次に、バッテリ55の充電中に搭乗者の操作により、運転モードをバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り換えるヒートポンプコントローラ32の制御について説明する。前述した如く、バッテリ55の充電中であって、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされている場合(空調要求有り)、ヒートポンプコントローラ32は、基本的にはバッテリ冷却(優先)+空調モードを実行し、バッテリ55の冷却を優先しながら車室内の空調(冷房)を行う。尚、この出願においてバッテリ55の充電中とは、実際にバッテリ55に充電している状態に限らず、急速充電器(外部電源)の充電用のプラグが車両のポートに接続されている状態を意味するものとする。
 しかしながら、この実施例では空調コントローラ45の空調操作部53のスイッチ53Bの一部であるモード切換スイッチを1回操作した場合(入力装置による所定の入力操作)、空調コントローラ45は空調操作部53のディスプレイ53Aに図17に示すような充電時間情報を表示(出力)する。この充電時間情報としては、バッテリ冷却(優先)+空調モードを続けた場合のバッテリ55の充電完了時間X1と、空調(優先)+バッテリ冷却モードに切り換えた場合のバッテリ55の充電完了時間X2が、両者を比較できる態様で表示される。
 尚、これらの充電完了時間X1、X2については、予め設定された算出条件に基づいてバッテリコントローラ73が算出し、空調コントローラ45に供給される。空調(優先)+バッテリ冷却モードでは、前述した如く車室内の空調が優先されるので、バッテリ冷却(優先)+空調モードよりも、バッテリ55の充電完了時間は延びることになる(X1<X2)。
 搭乗者がこのディスプレイ53Aの表示情報を見て、充電完了時間を優先し、運転モードを切り換えないでバッテリ冷却(優先)+空調モードを続けることを決定した場合、所定時間以上モード切換スイッチを操作しないことで、空調コントローラ45は図17の表示を消し、搭乗者の操作をキャンセルする。
 一方、搭乗者がディスプレイ53Aの表示情報を見て、充電完了時間よりも車室内の快適性を優先することを決定した場合、1回目の操作から所定時間経過する前にもう一度モード切換スイッチを操作する。このようなモード切換スイッチの操作が成された場合(入力装置による所定の入力操作)、この情報は空調コントローラ45からヒートポンプコントローラ32に送信される。ヒートポンプコントローラ32は係るモード切換スイッチの操作に関する情報を受信した場合、運転モードをバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り換える。これにより、以後は車室内の空調(冷房)を優先しながらバッテリ55を冷却する状態に切り換わる。
 このように、空調操作部53のモード切換スイッチ(スイッチ53Bの一部)が搭乗者により操作された場合、ヒートポンプコントローラ32はバッテリ55の充電中においても、空調(優先)+バッテリ冷却モードを実行するようにしたので、バッテリ55を充電中にも、搭乗者の判断で空調(優先)+バッテリ冷却モードを実行することができるようになる。これにより、バッテリ55の充電完了時間が延びる可能性はあるものの、車室内の快適性を確保することができるようになり、夏場等の外気温度が高い環境において、車室内に搭乗者がある状態でバッテリ55を充電するときに極めて有効なものとなる。
 また、実施例ではディスプレイ53Aにより、空調(優先)+バッテリ冷却モードを実行する場合の充電完了時間X2と、バッテリ冷却(優先)+空調モードを実行する場合の充電完了時間X1を比較できるような充電時間情報を出力するようにしたので、車室内の快適性を優先するか、バッテリ55の充電完了時間を優先するかを、搭乗者は的確に判断することができるようになる。
 (13-1)プレ空調時の搭乗者の操作によるバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードへの切り換え
 また、実施例の制御装置11の空調コントローラ45及びヒートポンプコントローラ32は、予め設定された所定のプレ空調開始予定時刻t1に車両を始動し、車両用空気調和装置1による車室内の空調を開始することができるプレ空調機能を有している。そして、ヒートポンプコントローラ32は、使用者により空調コントローラ45の空調操作部53のスイッチ53Bやキースイッチ53Cにより、プレ空調開始予定時刻t1(例えば、午前6時等)が設定されると、当該時刻t1に車両を始動し(電源が入る:電源ON)、車両用空気調和装置1による車室内の空調を開始する。
 そして、バッテリ55の充電中に係るプレ空調機能を実行する場合にも、ヒートポンプコントローラ32は基本的にはバッテリ冷却(優先)+空調モードを実行するものであるが、スイッチ53Bやキースイッチ53Cにより所定の入力操作が成された場合、ヒートポンプコントローラ32は前述同様に運転モードをバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り換える。
 このように、バッテリ55の充電中にプレ空調機能を実行する際にも、スイッチ53Bやキースイッチ53Cにより所定の入力操作が行われた場合は、空調(優先)+バッテリ冷却モードを実行するようにしたことで、搭乗者が搭乗する前に、予め車室内を十分に空調しておくことができるようになり、搭乗後の車室内の快適性をより一層向上させることができるようになる。
 (13-2)バッテリ55の充電中にバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り変わったときのバッテリ55の保護
 上記のようにバッテリ55の充電中に運転モードがバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り変わった場合、車室内の空調が優先されることになる。他方、バッテリ55の充電中はバッテリ55の発熱量が大きくなるので、空調(優先)+バッテリ冷却モードでのバッテリ55の冷却ではバッテリ55の温度が上昇してしまう危険性がある。
 そこで、ヒートポンプコントローラ32はバッテリコントローラ73から空調コントローラ45経由で供給されるバッテリ温度Tcellが所定の上限値TcellULに達した場合、バッテリ冷却(優先)+空調モードに移行する。尚、上限値TcellULはバッテリ55の使用限界の上限温度(例えば、+60℃等)である。
 また、ヒートポンプコントローラ32が空調(優先)+バッテリ冷却モードからバッテリ冷却(優先)+空調モードに戻った場合、その情報は空調コントローラ45に送信される。空調コントローラ45は係る情報を受信した場合、ディスプレイ53Aに図18に示すようなエラー情報を表示する。この場合のエラー情報は、例えば、「バッテリの温度が上昇したため、バッテリ冷却(優先)+空調モードに移行しました」等である。
 このように、バッテリ55の充電中に空調(優先)+バッテリ冷却モードを実行しているときに、バッテリ温度Tcellが上限値TcellULに達した場合、バッテリ冷却(優先)+空調モードに移行するようにしたので、充電中の発熱によるバッテリ55の劣化を未然に回避することができるようになる。
 また、バッテリ55の温度が上限値に達してバッテリ冷却(優先)+空調モードに移行した場合、ディスプレイ53Aにより、所定のエラー情報を表示するようにしたので、搭乗者に無用な不安感を与える不都合も回避することができるようになる。
 (14)ヒートポンプコントローラ32によるバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードへの切り換え(その1)
 前記実施例では搭乗者が操作した場合にヒートポンプコントローラ32がバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り換える実施例について説明したが、バッテリ55の状態に関する情報、圧縮機2に関する情報、車室内の搭乗者に関する情報、及び、環境条件に関する情報(下記条件i~x)、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てに基づいて、ヒートポンプコントローラ32が運転モードを自動的にバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り換えるようにしてもよい。以下、その場合の実施例について説明する。
 (14-1)バッテリ55の状態に関する情報に基づく切り換え制御
 先ず、バッテリ55の状態に関する情報に基づいて切り換える場合について説明する。このバッテリ55の状態に関する情報としては、冷媒-熱媒体熱交換器64により冷却される熱媒体の温度である熱媒体温度Tw、バッテリ55の温度であるバッテリ温度Tcell、バッテリ55の充電電流Ic、バッテリ55の充電量SOC(何れもバッテリコントローラ73から入手)、及び、熱媒体温度Twと目標熱媒体温度TWOとの差ΔTw(=TWO-Tw)を採用することができる。
 そして、以下の条件のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てが成立する場合、ヒートポンプコントローラ32は自動的にバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り換える。
 i.熱媒体温度Twが所定値A1(例えば、前述した制御下限値TwLLよりも低い値)より低いこと:Tw<A1。これは熱媒体温度Twが低い場合はバッテリ55の冷却を優先する必要が無いか、必要性が低くなることによる。
 ii.バッテリ温度Tcellが所定値A2(所定の低い値)より低いこと:Tcell<A2。これもバッテリ温度Tcellが低い場合はバッテリ55の冷却を優先する必要が無いか、必要性が低くなることによる。
 iii.バッテリ55の充電電流Icが所定値A3(所定の低い値)より低いこと:Ic<A3。これは充電電流Icが低い場合はバッテリ55の発熱は少なくなり、バッテリ55の冷却を優先する必要が無いか、必要性が低くなることによる。
 iv.バッテリ55の充電量SOCが所定値A4(所定の高い値)より多いこと:SOC>A4。これはバッテリ55の充電量SOCが多い場合は発熱は少なくなり、バッテリ55の冷却を優先する必要が無いか、必要性が低くなることによる。
 v.熱媒体温度Twと目標熱媒体温度TWOとの差ΔTw(=TWO-Tw)が所定値A5より小さいこと:ΔTw<A5。これは熱媒体温度Twと目標熱媒体温度TWOとの差ΔTwが小さいときにはバッテリ55の冷却を優先する必要が無いか、必要性が低いと判断できることによる。
 (14-2)圧縮機2に関する情報に基づく切り換え制御
 次に、圧縮機2に関する情報に基づいて切り換える場合について説明する。圧縮機2に関する情報としては、圧縮機2の回転数NCを採用することができる。そして、以下の条件が成立する場合、ヒートポンプコントローラ32は自動的にバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り換える。
 vi.圧縮機2の回転数NCが所定値A6(所定の低い値)より低いこと:NC<A6。これはバッテリ冷却(優先)+空調モードにおいて圧縮機2の回転数NCが低い場合、バッテリ55の冷却を優先する必要が無いか、必要性が低いと判断できることによる。
 (14-3)車室内の搭乗者に関する情報に基づく切り換え制御
 次に、車室内の搭乗者に関する情報に基づいて切り換える場合について説明する。車室内の搭乗者に関する情報としては、車両コントローラ72から入手される搭乗者の有無を採用することができる。そして、以下の条件が成立する場合、ヒートポンプコントローラ32は自動的にバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り換える。
 vii.車室内に搭乗者があること:これは車室内に搭乗者がある場合は空調を優先する必要があると判断できることによる。
 (14-4)車室内の搭乗者に関する情報と環境条件に関する情報に基づく切り換え制御
 次に、車室内の搭乗者に関する情報と環境条件に関する情報に基づいて切り換える場合について説明する。車室内の搭乗者に関する情報としては、車両コントローラ72から入手される搭乗者の有無を採用することができ、環境に関する情報としては車室内の温度である内気温度Tinを採用することができる。そして、以下の条件が成立する場合、ヒートポンプコントローラ32は自動的にバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り換える。
 viii.車室内に搭乗者があり、内気温度Tinが所定値A7(所定の高い値:例えば30℃等)以上であること:これは車室内に搭乗者があって、内気温度Tinが高い場合は空調を優先する必要があると判断できることによる。
 (14-6)環境条件に関する情報に基づく切り換え制御
 次に、環境条件に関する情報に基づいて切り換える場合について説明する。環境に関する情報としては、外気温度Tamと車室内の温度である内気温度Tinを採用することができる。そして、以下の条件のうちの何れか、又は、双方が成立する場合、ヒートポンプコントローラ32は自動的にバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードに切り換える。
 ix.外気温度Tamが所定値A8(所定の低い値:例えば5℃等)より低いこと:Tam<A8。これは外気温度Tamが低い場合にはバッテリ55の温度も低くなり、冷却を優先する必要が無いか、必要性が低いと判断できることによる。
 x.内気温度Tinとその目標温度である車室内の設定温度Tsetとの差ΔTin(=Tset-Tin)が所定値A9より大きいこと:ΔTin>A9。これは内気温度Tinと設定温度Tsetとの差ΔTinが大きい場合には空調を優先する必要があると判断できることによる。
 このように、ヒートポンプコントローラ32がバッテリ55の充電中においても、当該バッテリ55の状態に関する情報、圧縮機2に関する情報、車室内の搭乗者に関する情報、及び、環境条件に関する情報、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てに基づき、空調(優先)+バッテリ冷却モードを実行するようにすれば、バッテリ55の状態等から当該バッテリ55の冷却を優先する必要が無い場合、若しくは、必要性が低い場合、ヒートポンプコントローラ32により自動的に空調(優先)+バッテリ冷却モードを実行して車室内の空調を優先させ、車室内の快適性を確保することができるようになる。
 (16)ヒートポンプコントローラ32によるバッテリ冷却(優先)+空調モードから空調(優先)+バッテリ冷却モードへの切り換え(その2)
 また、バッテリ55の充電中に前述したプレ空調機能を実行する場合には、搭乗者により車室内の空調が優先されたことになる。そこで、ヒートポンプコントローラ32は、係るプレ空調機能を実行する場合には、自動的に空調(優先)+バッテリ冷却モードを実行するようにすることで、搭乗者が搭乗した際の車室内の快適性を支障無く確保することができるようになる。
 尚、この実施例2の場合にも、バッテリ温度Tcellが上限値TcellULに達した場合には、前述した(13-2)の場合と同様にヒートポンプコントローラ32はバッテリ冷却(優先)+空調モードに復帰するものとする。
 また、実施例のバッテリ温度調整装置61では、熱媒体を循環させてバッテリ55の冷却(温調)を行うようにしたが、それに限らず、冷媒とバッテリ55を直接熱交換させるバッテリ用熱交換器を設けてもよい。その場合には、バッテリ温度Tcellがバッテリ用熱交換器により冷却される対象の温度となる。
 また、実施例では吸熱器用弁装置を電磁弁35(キャビン用)にて構成し、バッテリ用弁装置を電磁弁69(チラー用)にて構成し、それらを開閉制御(開度を全開と全閉の間で制御)するようにしたが、それに限らず、室内膨張弁8と電磁弁35を全閉可能な単一の電子膨張弁(キャビン用)に置き換えて吸熱器用弁装置とし、補助膨張弁68と電磁弁69を全閉可能な単一の電子膨張弁(チラー用)に置き換えてバッテリ用弁装置としてもよい。
 その場合は、バッテリ冷却(優先)+空調モードでバッテリ用弁装置としての電子膨張弁(チラー用)の弁開度を制御し、吸熱器用弁装置としての電子膨張弁(キャビン用)の弁開度を、全閉も含めて制御する。そして、空調(優先)+バッテリ冷却モードでは吸熱器用弁装置としての電子膨張弁(キャビン用)の弁開度を制御し、バッテリ用弁装置としての電子膨張弁(チラー用)の弁開度を、全閉も含めて制御することになる。
 更に、実施例では急速充電器を用いてバッテリ55に充電する場合について説明したが、通常充電器を用いる場合にも本発明は有効である。更にまた、実施例で説明した冷媒回路Rの構成や数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 制御装置
 32 ヒートポンプコントローラ(制御装置の一部を構成)
 35 電磁弁(吸熱器用弁装置)
 45 空調コントローラ(制御装置の一部を構成)
 48 吸熱器温度センサ
 53A ディスプレイ(出力装置)
 53B スイッチ(入力装置)
 53C キースイッチ(入力装置)
 55 バッテリ
 61 バッテリ温度調整装置
 64 冷媒-熱媒体熱交換器(バッテリ用熱交換器)
 68 補助膨張弁
 69 電磁弁(バッテリ用弁装置)
 72 車両コントローラ
 72A 重量センサ
 73 バッテリコントローラ
 76 熱媒体温度センサ
 77 バッテリ温度センサ
 R 冷媒回路

Claims (16)

  1.  冷媒を圧縮する圧縮機と、
     冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、
     該吸熱器への冷媒の流通を制御する吸熱器用弁装置と、
     冷媒を吸熱させて車両に搭載されたバッテリを冷却するためのバッテリ用熱交換器と、
     該バッテリ用熱交換器への冷媒の流通を制御するバッテリ用弁装置と、
     制御装置を備え、
     前記バッテリは外部電源から充電可能とされており、
     前記制御装置は少なくとも、
     前記吸熱器用弁装置を開き、前記吸熱器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいて前記バッテリ用弁装置の開度を制御する空調(優先)+バッテリ冷却モードと、
     前記バッテリの充電中、前記バッテリ用弁装置を開き、前記バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器又はそれにより冷却される対象の温度に基づいて前記吸熱器用弁装置の開度を制御するバッテリ冷却(優先)+空調モードを実行する車両用空気調和装置において、
     前記制御装置は、所定の入力装置を有し、該入力装置により所定の入力操作が行われた場合、前記バッテリの充電中においても、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする車両用空気調和装置。
  2.  前記制御装置は、所定の出力装置を有し、前記バッテリの充電中に前記空調(優先)+バッテリ冷却モードを実行する場合、前記出力装置により、前記バッテリ冷却(優先)+空調モードを実行する場合と比較した所定の充電時間情報を出力することを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記制御装置は、予め設定された所定のプレ空調開始予定時刻に前記車室内の空調を開始するプレ空調機能を有すると共に、
     前記バッテリの充電中に前記プレ空調機能を実行する際にも、前記入力装置により所定の入力操作が行われた場合、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
  4.  冷媒を圧縮する圧縮機と、
     冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、
     該吸熱器への冷媒の流通を制御する吸熱器用弁装置と、
     冷媒を吸熱させて車両に搭載されたバッテリを冷却するためのバッテリ用熱交換器と、
     該バッテリ用熱交換器への冷媒の流通を制御するバッテリ用弁装置と、
     制御装置を備え、
     前記バッテリは外部電源から充電可能とされており、
     前記制御装置は少なくとも、
     前記吸熱器用弁装置を開き、前記吸熱器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいて前記バッテリ用弁装置の開度を制御する空調(優先)+バッテリ冷却モードと、
     前記バッテリの充電中、前記バッテリ用弁装置を開き、前記バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器又はそれにより冷却される対象の温度に基づいて前記吸熱器用弁装置の開度を制御するバッテリ冷却(優先)+空調モードを実行する車両用空気調和装置において、
     前記制御装置は、前記バッテリの充電中においても、当該バッテリの状態に関する情報、前記圧縮機に関する情報、前記車室内の搭乗者に関する情報、及び、環境条件に関する情報、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てに基づき、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする車両用空気調和装置。
  5.  前記バッテリの状態に関する情報は、前記バッテリ用熱交換器により冷却される対象の温度、前記バッテリの温度、及び、前記バッテリの充電電流、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであり、それらが所定値より低い場合、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする請求項4に記載の車両用空気調和装置。
  6.  前記バッテリの状態に関する情報は、前記バッテリの充電量であり、当該充電量が所定値より多い場合、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする請求項4又は請求項5に記載の車両用空気調和装置。
  7.  前記バッテリの状態に関する情報は、前記バッテリ用熱交換器により冷却される対象の温度であり、当該温度とその目標温度との差が所定値より小さい場合、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする請求項4乃至請求項6のうちの何れかに記載の車両用空気調和装置。
  8.  前記圧縮機に関する情報は、前記圧縮機の回転数であり、当該回転数が所定値より低い場合、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする請求項4乃至請求項7のうちの何れかに記載の車両用空気調和装置。
  9.  前記制御装置は、予め設定された所定のプレ空調開始予定時刻に前記車室内の空調を開始するプレ空調機能を有すると共に、
     前記バッテリの充電中に前記プレ空調機能を実行する場合、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする請求項4乃至請求項8のうちの何れかに記載の車両用空気調和装置。
  10.  前記車室内の搭乗者に関する情報は、前記搭乗者の有無であり、前記搭乗者がある場合、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする請求項4乃至請求項8のうちの何れかに記載の車両用空気調和装置。
  11.  前記車室内の搭乗者に関する情報は、前記搭乗者の有無、及び、前記環境条件に関する情報は、前記車室内の温度であり、
     前記搭乗者があり、前記車室内の温度が所定値以上である場合、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする請求項4乃至請求項8のうちの何れかに記載の車両用空気調和装置。
  12.  前記環境条件に関する情報は、外気温度であり、当該外気温度が所定値より低い場合、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする請求項4乃至請求項11のうちの何れかに記載の車両用空気調和装置。
  13.  前記環境条件に関する情報は、前記車室内の温度であり、当該車室内の温度とその目標温度との差が所定値より大きい場合、前記空調(優先)+バッテリ冷却モードを実行することを特徴とする請求項4乃至請求項12のうちの何れかに記載の車両用空気調和装置。
  14.  前記制御装置は、前記バッテリの充電中、前記車室内の空調要求が無い場合、前記バッテリ用弁装置を開き、前記バッテリ用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器用弁装置を閉じるバッテリ冷却(単独)モードを実行することを特徴とする請求項4乃至請求項13のうちの何れかに記載の車両用空気調和装置。
  15.  前記制御装置は、前記バッテリの充電中に前記空調(優先)+バッテリ冷却モードを実行しているとき、前記バッテリの温度が所定の上限値に達した場合、前記バッテリ冷却(優先)+空調モードに移行することを特徴とする請求項1乃至請求項14のうちの何れかに記載の車両用空気調和装置。
  16.  前記制御装置は、所定の出力装置を有し、前記バッテリの温度が前記上限値に達して前記バッテリ冷却(優先)+空調モードに移行した場合、前記出力装置により、所定のエラー情報を出力することを特徴とする請求項15に記載の車両用空気調和装置。
PCT/JP2020/016497 2019-05-17 2020-04-15 車両用空気調和装置 WO2020235261A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093714 2019-05-17
JP2019093714A JP2020185969A (ja) 2019-05-17 2019-05-17 車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2020235261A1 true WO2020235261A1 (ja) 2020-11-26

Family

ID=73221308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016497 WO2020235261A1 (ja) 2019-05-17 2020-04-15 車両用空気調和装置

Country Status (2)

Country Link
JP (1) JP2020185969A (ja)
WO (1) WO2020235261A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115214734A (zh) * 2022-08-16 2022-10-21 中车大连机车研究所有限公司 一种电池动力机车热管理装置及其控制方法
WO2023070607A1 (zh) * 2021-10-29 2023-05-04 浙江吉利控股集团有限公司 车辆制冷控制方法、装置、设备、介质及程序产品

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407283B2 (en) * 2018-04-30 2022-08-09 Tiger Tool International Incorporated Cab heating systems and methods for vehicles
CN112572235B (zh) * 2020-12-14 2022-12-06 东风汽车集团有限公司 车辆温控方法、装置和系统
CN113054282B (zh) * 2021-03-18 2022-10-25 奇瑞新能源汽车股份有限公司 电动汽车的电池水冷方法、装置、整车控制器及电动汽车
CN115122862A (zh) * 2021-09-02 2022-09-30 株式会社电装 热泵空调系统
CN113879068B (zh) * 2021-10-21 2023-04-25 合众新能源汽车股份有限公司 一种车辆供热系统控制方法、装置和计算机可读介质
CN114801895A (zh) * 2022-06-08 2022-07-29 中国第一汽车股份有限公司 预热方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223428A (ja) * 1993-12-15 1995-08-22 Nippondenso Co Ltd 電気自動車用空調装置
JP2013189118A (ja) * 2012-03-14 2013-09-26 Denso Corp 車両用空調システム
WO2018198581A1 (ja) * 2017-04-26 2018-11-01 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2018184109A (ja) * 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019182135A (ja) * 2018-04-06 2019-10-24 株式会社デンソー 冷却システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223428A (ja) * 1993-12-15 1995-08-22 Nippondenso Co Ltd 電気自動車用空調装置
JP2013189118A (ja) * 2012-03-14 2013-09-26 Denso Corp 車両用空調システム
WO2018198581A1 (ja) * 2017-04-26 2018-11-01 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2018184109A (ja) * 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019182135A (ja) * 2018-04-06 2019-10-24 株式会社デンソー 冷却システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070607A1 (zh) * 2021-10-29 2023-05-04 浙江吉利控股集团有限公司 车辆制冷控制方法、装置、设备、介质及程序产品
CN115214734A (zh) * 2022-08-16 2022-10-21 中车大连机车研究所有限公司 一种电池动力机车热管理装置及其控制方法
CN115214734B (zh) * 2022-08-16 2024-01-26 中车大连机车研究所有限公司 一种电池动力机车热管理装置及其控制方法

Also Published As

Publication number Publication date
JP2020185969A (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2020235261A1 (ja) 車両用空気調和装置
JP7221639B2 (ja) 車両用空気調和装置
JP7300264B2 (ja) 車両用空気調和装置
WO2020153032A1 (ja) 車両のバッテリ温度調整装置及びそれを備えた車両用空気調和装置
WO2020218268A1 (ja) 車両用制御システム
WO2020235263A1 (ja) 車両搭載機器の温度調整装置及びそれを備えた車両用空気調和装置
JP7372732B2 (ja) 車両用空気調和装置
WO2020110508A1 (ja) 車両のバッテリ温度調整装置及びそれを備えた車両用空気調和装置
WO2020090255A1 (ja) 車両用空気調和装置
JP2020079004A (ja) 車両用空気調和装置
WO2020129493A1 (ja) 車両用空気調和装置
JP2019146442A (ja) 車両用制御システム
WO2020121737A1 (ja) 車両用空気調和装置
WO2022064944A1 (ja) 車両用空調装置
WO2019181310A1 (ja) 車両用空気調和装置
JP2020131846A (ja) 車両用空気調和装置
CN113195272A (zh) 车辆用空气调节装置
JP7280689B2 (ja) 車両用空気調和装置
WO2020100524A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809393

Country of ref document: EP

Kind code of ref document: A1