CN113054282B - 电动汽车的电池水冷方法、装置、整车控制器及电动汽车 - Google Patents

电动汽车的电池水冷方法、装置、整车控制器及电动汽车 Download PDF

Info

Publication number
CN113054282B
CN113054282B CN202110291740.5A CN202110291740A CN113054282B CN 113054282 B CN113054282 B CN 113054282B CN 202110291740 A CN202110291740 A CN 202110291740A CN 113054282 B CN113054282 B CN 113054282B
Authority
CN
China
Prior art keywords
temperature
cooling
target
actual
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110291740.5A
Other languages
English (en)
Other versions
CN113054282A (zh
Inventor
马向阳
汤庆涛
高洁
王新树
吴俊�
李魁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chery New Energy Automobile Co Ltd
Original Assignee
Chery New Energy Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chery New Energy Automobile Co Ltd filed Critical Chery New Energy Automobile Co Ltd
Priority to CN202110291740.5A priority Critical patent/CN113054282B/zh
Publication of CN113054282A publication Critical patent/CN113054282A/zh
Application granted granted Critical
Publication of CN113054282B publication Critical patent/CN113054282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

本申请公开了一种电动汽车的电池水冷方法、装置、整车控制器及电动汽车,其中,方法包括:接收冷却请求后,获取动力电池的目标温度及冷却水道的实际进、出水温度;根据目标温度识别电动汽车的当前电池冷却需求,并根据当前电池冷却需求计算压缩机的目标转速,以控制压缩机以目标转速工作的同时,根据动力电池的实际温度及冷却水道的实际进、出水温度计算压缩机对应的电子膨胀阀和/或比例阀的目标开度,以修正电子膨胀阀和比例阀的当前开度为目标开度。由此,解决了相关技术中的动力电池冷却时冷却量无法实时调节,容易调节过度或不足,导致整车能耗增加、且易出现动力电池高温自燃现象,降低车辆的安全可靠性,降低用户的使用体验等问题。

Description

电动汽车的电池水冷方法、装置、整车控制器及电动汽车
技术领域
本申请涉及新能源汽车技术领域,特别涉及一种电动汽车的电池水冷方法、装置、整车控制器及电动汽车。
背景技术
随着电动汽车的快速普及,电动汽车的安全性越来越受到人们的重视,尤其动力电池的温度控制直接影响电动汽车的使用安全,一旦温度控制不及时,易出现高温自燃现象。
相关技术中,通过压缩机和阀体进行温度控制,具体地:预先设定好压缩机的转速和阀体的开度,在温度调节时,根据设定的固定转速和开度进行工作。
然而,相关技术中的动力电池冷却时的冷却量固定,无法满足动力电池的实际冷却需求,一旦现调节过度,容易浪费能量,增加整车能耗,而一旦调节不足,易出现动力电池高温自燃现象,降低车辆的安全可靠性,降低用户的使用体验,亟待解决。
申请内容
本申请提供一种电动汽车的电池水冷方法、装置、整车控制器及电动汽车,以解决相关技术中的动力电池冷却时冷却量无法实时调节,容易调节过度或不足,导致整车能耗增加、且易出现动力电池高温自燃现象,降低车辆的安全可靠性,降低用户的使用体验等问题。
本申请第一方面实施例提供一种电动汽车的电池水冷方法,包括以下步骤:接收电动汽车的电池管理系统发送的冷却请求;获取所述电动汽车的动力电池的目标温度及冷却水道的实际进水温度和实际出水温度;根据所述目标温度识别所述电动汽车的当前电池冷却需求,并根据所述当前电池冷却需求计算压缩机的目标转速,以控制所述压缩机以所述目标转速工作的同时,根据所述动力电池的实际温度及所述冷却水道的实际进水温度和实际出水温度计算所述压缩机对应的电子膨胀阀和/或比例阀的目标开度,以修正所述电子膨胀阀和比例阀的当前开度为所述目标开度。
进一步地,本申请实施例的方法还包括:检测所述压缩机、电子膨胀阀和/或比例阀是否出现故障;在检测到所述所述压缩机、电子膨胀阀和/或比例阀出现故障时,生成并存储故障诊断结果,并识别所述故障诊断结果的实际类别,以基于所述实际类别进行故障处理。
进一步地,所述根据所述当前电池冷却需求计算压缩机的目标转速,包括:发送所述目标转速至空调面板,以使所述空调面板发送基于所述目标转速生成的使能信号和转速信号至所述压缩机。
进一步地,所述根据所述动力电池的实际温度及所述冷却水道的实际进水温度和实际出水温度计算所述压缩机对应的电子膨胀阀和/或比例阀的目标开度,包括:根据所述当前电池冷却需求计算所述冷却水道的目标进水温度和目标出水温度;在根据所述所述动力电池的实际温度及所述冷却水道的实际进水温度和实际出水温度与对应目标温度间的差值计算所述目标转速的同时,计算电子膨胀阀和比例阀的开度信号;发送所述开度信号至车身控制器。
进一步地,本申请实施例的方法还包括:获取所述动力电池的温度曲线;若识别所述温度曲线出现异常,则进行冷却故障报警。
本申请第二方面实施例提供一种电动汽车的电池水冷装置,包括:接收模块,用于接收电动汽车的电池管理系统发送的冷却请求;获取模块,用于获取所述电动汽车的动力电池的目标温度及冷却水道的实际进水温度和实际出水温度;控制模块,用于根据所述目标温度识别所述电动汽车的当前电池冷却需求,并根据所述当前电池冷却需求计算压缩机的目标转速,以控制所述压缩机以所述目标转速工作的同时,根据所述动力电池的实际温度及所述冷却水道的实际进水温度和实际出水温度计算所述压缩机对应的电子膨胀阀和/或比例阀的目标开度,以修正所述电子膨胀阀和比例阀的当前开度为所述目标开度。
进一步地,本申请实施例的装置还包括:检测模块,用于检测所述压缩机、电子膨胀阀和/或比例阀是否出现故障;处理模块,用于在检测到所述所述压缩机、电子膨胀阀和/或比例阀出现故障时,生成并存储故障诊断结果,并识别所述故障诊断结果的实际类别,以基于所述实际类别进行故障处理;报警模块,用于获取所述动力电池的温度曲线,若识别所述温度曲线出现异常,则进行冷却故障报警。
进一步地,所述控制模块包括:第一发送单元,用于发送所述目标转速至空调面板,以使所述空调面板发送基于所述目标转速生成的使能信号和转速信号至所述压缩机;计算单元,用于根据所述当前电池冷却需求计算所述冷却水道的目标进水温度和目标出水温度,在根据所述所述动力电池的实际温度及所述冷却水道的实际进水温度和实际出水温度与对应目标温度间的差值计算所述目标转速的同时,计算电子膨胀阀和比例阀的开度信号;第二发送单元,用于发送所述开度信号至车身控制器。
本申请第三方面实施例提供一种整车控制器,其包括上述实施例的电动汽车的电池水冷装置。
本申请第四方面实施例提供一种电动汽车,其包括上述实施例的整车控制器。
可以根据动力电池的实际状态实时快速调节冷却量,以快速满足动力电池的实际冷却需求,降低冷却能耗,且可以在动力电池高温时快速冷却降温,避免动力电池高温自燃,提高车辆的安全可靠性,提升用户的使用体验。由此,解决了相关技术中的动力电池冷却时冷却量无法实时调节,容易调节过度或不足,导致整车能耗增加、且易出现动力电池高温自燃现象,降低车辆的安全可靠性,降低用户的使用体验等问题。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请实施例提供的一种电动汽车的电池水冷方法的流程示意图;
图2为根据本申请实施例提供的电动汽车的电池水冷方法的控制原理示意图;
图3为根据本申请实施例的电动汽车的电池水冷装置的方框示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的电动汽车的电池水冷方法、装置、整车控制及电动汽车。针对上述背景技术中心提到的相关技术中的动力电池冷却时冷却量无法实时调节,容易调节过度或不足,导致整车能耗增加、且易出现动力电池高温自燃现象,降低车辆的安全可靠性,降低用户的使用体验的问题,本申请提供了一种电动汽车的电池水冷方法,在该方法中,可以根据动力电池的实际状态实时快速调节冷却量,以快速满足动力电池的实际冷却需求,降低冷却能耗,且可以在动力电池高温时快速冷却降温,避免动力电池高温自燃,提高车辆的安全可靠性,提升用户的使用体验。由此,解决了相关技术中的动力电池冷却时冷却量无法实时调节,容易调节过度或不足,导致整车能耗增加、且易出现动力电池高温自燃现象,降低车辆的安全可靠性,降低用户的使用体验等问题。
具体而言,图1为本申请实施例所提供的一种电动汽车的电池水冷方法的流程示意图。
如图1所示,该电动汽车的电池水冷方法包括以下步骤:
在步骤S101中,接收电动汽车的电池管理系统发送的冷却请求。
在本实施例中,电池管理系统实时监控电池温度,当电池温度大于冷却阈值时,电池管理系统发出冷却请求至整车控制器。其中,冷却阈值可以根据实验进行标定,不做具体限定。
在步骤S102中,获取电动汽车的动力电池的目标温度及冷却水道的实际进水温度和实际出水温度。
当整车控制器接收到冷却请求之后,可以继续获取电池管理系统发出的电池冷却目标温度值、电池冷却水道进、出水口温度,其中,电池管理系统可以实时监控电池冷却水道进、出水口的温度。
作为一种可能实现方式,可以根据实验标定动力电池最优的工作温度,以将最优的工作温度作为目标温度;作为另一种可能实现的方式,检测车辆所处的环境温度,以根据环境温度与目标温度的对应关系确定当前环境下动力电池的目标温度。因此,本申请实施例可以根据多种方式确定目标温度,对此不做具体限定。
在步骤S103中,根据目标温度识别电动汽车的当前电池冷却需求,并根据当前电池冷却需求计算压缩机的目标转速,以控制压缩机以目标转速工作的同时,根据动力电池的实际温度及冷却水道的实际进水温度和实际出水温度计算压缩机对应的电子膨胀阀和/或比例阀的目标开度,以修正电子膨胀阀和比例阀的当前开度为目标开度。
可以理解的是,整车控制器根据电池冷却目标温度值、电池冷却水道进、出水口温度,计算车辆当前的动力电池冷却需求的压缩机转速,并可以将当前开度修正为目标开度,从而能够在电池冷却过程中实时调节压缩机转速、电子膨胀阀、比例阀开度,直到达到电池冷却的目标温度值,进而可以使得动力电池在高温条件下通过水冷系统的作用能够快速达到适合的工作温度,有效的保护动力电池,相比较相关技术中动力电池冷却通过固定压缩机转速和阀体开度的方式,有避免了电量的浪费、降低了整车的能耗。
在本实施例中,根据当前电池冷却需求计算压缩机的目标转速,包括:发送目标转速至空调面板,以使空调面板发送基于目标转速生成的使能信号和转速信号至压缩机。
其中,空调控制面板是使用者间接控制空调操纵机构实现空调各种功能的面板,比如汽车空调控制面板上有功能选择键、温度键、调风键、后窗除霜键等。本申请实施例可以通过空调控制面板间接控制压缩机根据目标转速工作。
在本实施例中,根据动力电池的实际温度及冷却水道的实际进水温度和实际出水温度计算压缩机对应的电子膨胀阀和/或比例阀的目标开度,包括:根据当前电池冷却需求计算冷却水道的目标进水温度和目标出水温度;在根据动力电池的实际温度及冷却水道的实际进水温度和实际出水温度与对应目标温度间的差值计算目标转速的同时,计算电子膨胀阀和比例阀的开度信号;发送开度信号至车身控制器。
可以理解的是,本申请实施例可以根据当前实时的进、出水口温度、电池的实时温度和目标温度的差值对压缩机转速、电子膨胀阀、比例阀开度进行修正,得到开度信号,并发送至车身控制器,以使得车身控制器可以控制电子膨胀阀和比例阀的当前开度为目标开度。
在一些实施例中,本申请实施例的方法还包括:检测压缩机、电子膨胀阀和/或比例阀是否出现故障;在检测到压缩机、电子膨胀阀和/或比例阀出现故障时,生成并存储故障诊断结果,并识别故障诊断结果的实际类别,以基于实际类别进行故障处理。
本申请实施例还可以对压缩机、电子膨胀阀、比例阀进行故障诊断,当故障发生时,会对诊断信息进行存储并对故障分类,将分类结果发送至整车控制器,以使得整车控制器做相应的故障处理。
作为一种可能实现的方式,整车控制器中可以预存故障处理策略,以在故障时,匹配对应的处理策略进行故障处理;作为另一种可能实现的方式,整车控制器可以通过网络实时在线进行故障处理。因此,本申请实施例可以根据多种方式进行故障处理,在此不做具体限定。
在一些实施例中,本申请实施例的方法还包括:获取动力电池的温度曲线;若识别温度曲线出现异常,则进行冷却故障报警。
其中,当温度曲线出现突变或者与预设曲线存在较大误差时,确定冷却异常,进行故障报警。本申请实施例可以通过声学或者光学报警或者发送报警信号至预设终端等多种方式进行报警,对此不作具体限定,其中,预设终端可以为车载终端或者用户的移动终端等。
综上,控制器根据当前电池冷却需求,通过算法计算出车辆当前电池冷却所需的压缩机转速,再经过实时的进、出水口温度、电池实时温度和目标温度的差值对压缩机转速、电子膨胀阀、比例阀开度进行实时调节;相比于电池冷却通过固定压缩机转速和阀体开度的方式,有效避免了电量的浪费、降低了整车的能耗,且提高了电动汽车的安全性。
下面将结合图2对电动汽车的电池水冷方法进行阐述,具体冷却步骤如下:
(1)当BMS(Battery Management System,电池管理系统)检测到当前进出水口温度和电池温度高于一定值(可标定)时,发送冷却请求至会VCU(Vehicle Control Unit,整车控制器)。
(2)VCU根据电池进、出水口温度传感器采集的当前进、出水口的温度,通过算法计算车辆当前的电池冷却需求的EAC(Air conditioning compressor压缩机)转速,将该转速需求发送给ACP(Air Control Panel,空调面板),ACP发送使能和转速信号给EAC。
(3)VCU根据当前的进、出水口、电池温度与目标温度的差值给EAC发送实时的转速信号、给BCM(Body Control Module,车身控制系统)发送比例阀开度信号,BCM控制比例阀的开度,实现了根据电池冷却的实时需求进行冷却的目的。
(4)当电子膨胀阀、EAC、比例阀有故障时,VCU收到故障信号后,根据故障的严重程度对整车进行限功率、断高压等处理。
根据本申请实施例提出的电动汽车的电池水冷方法,可以根据动力电池的实际状态实时快速调节冷却量,以快速满足动力电池的实际冷却需求,降低冷却能耗,且可以在动力电池高温时快速冷却降温,避免动力电池高温自燃,提高车辆的安全可靠性,提升用户的使用体验。
其次参照附图描述根据本申请实施例提出的电动汽车的电池水冷装置。
图3是本申请实施例的电动汽车的电池水冷装置的方框示意图。
如图3所示,该电动汽车的电池水冷装置10包括:接收模块100、获取模块200和控制模块300。
其中,接收模块100用于接收电动汽车的电池管理系统发送的冷却请求;获取模块200用于获取电动汽车的动力电池的目标温度及冷却水道的实际进水温度和实际出水温度;控制模块300用于根据目标温度识别电动汽车的当前电池冷却需求,并根据当前电池冷却需求计算压缩机的目标转速,以控制压缩机以目标转速工作的同时,根据动力电池的实际温度及冷却水道的实际进水温度和实际出水温度计算压缩机对应的电子膨胀阀和/或比例阀的目标开度,以修正电子膨胀阀和比例阀的当前开度为目标开度。
进一步地,本申请实施例的装置10还包括:检测模块、处理模块和报警模块。其中,检测模块,用于检测压缩机、电子膨胀阀和/或比例阀是否出现故障;处理模块,用于在检测到压缩机、电子膨胀阀和/或比例阀出现故障时,生成并存储故障诊断结果,并识别故障诊断结果的实际类别,以基于实际类别进行故障处理;报警模块,用于获取动力电池的温度曲线,若识别温度曲线出现异常,则进行冷却故障报警。
进一步地,控制模块300包括:第一发送单元、计算单元和第二发送单元。其中,第一发送单元,用于发送目标转速至空调面板,以使空调面板发送基于目标转速生成的使能信号和转速信号至压缩机;计算单元,用于根据当前电池冷却需求计算冷却水道的目标进水温度和目标出水温度,在根据动力电池的实际温度及冷却水道的实际进水温度和实际出水温度与对应目标温度间的差值计算目标转速的同时,计算电子膨胀阀和比例阀的开度信号;第二发送单元,用于发送开度信号至车身控制器。
需要说明的是,前述对电动汽车的电池水冷方法实施例的解释说明也适用于该实施例的电动汽车的电池水冷装置,此处不再赘述。
根据本申请实施例提出的电动汽车的电池水冷装置,可以根据动力电池的实际状态实时快速调节冷却量,以快速满足动力电池的实际冷却需求,降低冷却能耗,且可以在动力电池高温时快速冷却降温,避免动力电池高温自燃,提高车辆的安全可靠性,提升用户的使用体验。
此外,本申请实施例还提出了一种整车控制器,该系统包括上述的实施例的电动汽车的电池水冷装置。该整车控制器,可以根据动力电池的实际状态实时快速调节冷却量,以快速满足动力电池的实际冷却需求,降低冷却能耗,且可以在动力电池高温时快速冷却降温,避免动力电池高温自燃,提高车辆的安全可靠性,提升用户的使用体验。
并且,本申请实施例还提出了一种车辆,该车辆包括上述的整车控制器。该车辆可以根据动力电池的实际状态实时快速调节冷却量,以快速满足动力电池的实际冷却需求,降低冷却能耗,且可以在动力电池高温时快速冷却降温,避免动力电池高温自燃,提高车辆的安全可靠性,提升用户的使用体验。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“N个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更N个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,N个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。

Claims (8)

1.一种电动汽车的电池水冷方法,其特征在于,包括以下步骤:
接收电动汽车的电池管理系统发送的冷却请求;
获取所述电动汽车的动力电池的目标温度及冷却水道的实际进水温度和实际出水温度;以及
根据所述目标温度识别所述电动汽车的当前电池冷却需求,并根据所述当前电池冷却需求计算压缩机的目标转速,以控制所述压缩机以所述目标转速工作的同时,根据所述动力电池的实际温度及所述冷却水道的实际进水温度和实际出水温度计算所述压缩机对应的电子膨胀阀和/或比例阀的目标开度,以修正所述电子膨胀阀和比例阀的当前开度为所述目标开度;
所述根据所述动力电池的实际温度及所述冷却水道的实际进水温度和实际出水温度计算所述压缩机对应的电子膨胀阀和/或比例阀的目标开度,包括:根据所述当前电池冷却需求计算所述冷却水道的目标进水温度和目标出水温度;在根据所述动力电池的实际温度及所述冷却水道的实际进水温度和实际出水温度与对应目标温度间的差值计算所述目标转速的同时,计算电子膨胀阀和比例阀的开度信号;发送所述开度信号至车身控制器。
2.根据权利要求1所述的方法,其特征在于,还包括:
检测所述压缩机、电子膨胀阀和/或比例阀是否出现故障;
在检测到所述压缩机、电子膨胀阀和/或比例阀出现故障时,生成并存储故障诊断结果,并识别所述故障诊断结果的实际类别,以基于所述实际类别进行故障处理。
3.根据权利要求1所述的方法,其特征在于,所述根据所述当前电池冷却需求计算压缩机的目标转速,包括:
发送所述目标转速至空调面板,以使所述空调面板发送基于所述目标转速生成的使能信号和转速信号至所述压缩机。
4.根据权利要求1-3任一项所述的方法,其特征在于,还包括:
获取所述动力电池的温度曲线;
若识别所述温度曲线出现异常,则进行冷却故障报警。
5.一种电动汽车的电池水冷装置,其特征在于,包括:
接收模块,用于接收电动汽车的电池管理系统发送的冷却请求;
获取模块,用于获取所述电动汽车的动力电池的目标温度及冷却水道的实际进水温度和实际出水温度;以及
控制模块,用于根据所述目标温度识别所述电动汽车的当前电池冷却需求,并根据所述当前电池冷却需求计算压缩机的目标转速,以控制所述压缩机以所述目标转速工作的同时,根据所述动力电池的实际温度及所述冷却水道的实际进水温度和实际出水温度计算所述压缩机对应的电子膨胀阀和/或比例阀的目标开度,以修正所述电子膨胀阀和比例阀的当前开度为所述目标开度;
所述控制模块包括:
第一发送单元,用于发送所述目标转速至空调面板,以使所述空调面板发送基于所述目标转速生成的使能信号和转速信号至所述压缩机;
计算单元,用于根据所述当前电池冷却需求计算所述冷却水道的目标进水温度和目标出水温度,在根据所述动力电池的实际温度及所述冷却水道的实际进水温度和实际出水温度与对应目标温度间的差值计算所述目标转速的同时,计算电子膨胀阀和比例阀的开度信号;
第二发送单元,用于发送所述开度信号至车身控制器。
6.根据权利要求5所述的装置,其特征在于,还包括:
检测模块,用于检测所述压缩机、电子膨胀阀和/或比例阀是否出现故障;
处理模块,用于在检测到所述压缩机、电子膨胀阀和/或比例阀出现故障时,生成并存储故障诊断结果,并识别所述故障诊断结果的实际类别,以基于所述实际类别进行故障处理;
报警模块,用于获取所述动力电池的温度曲线,若识别所述温度曲线出现异常,则进行冷却故障报警。
7.一种整车控制器,其特征在于,包括如权利要求5-6任意一项所述的电动汽车的电池水冷装置。
8.一种电动汽车,其特征在于,包括如权利要求7所述的整车控制器。
CN202110291740.5A 2021-03-18 2021-03-18 电动汽车的电池水冷方法、装置、整车控制器及电动汽车 Active CN113054282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110291740.5A CN113054282B (zh) 2021-03-18 2021-03-18 电动汽车的电池水冷方法、装置、整车控制器及电动汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110291740.5A CN113054282B (zh) 2021-03-18 2021-03-18 电动汽车的电池水冷方法、装置、整车控制器及电动汽车

Publications (2)

Publication Number Publication Date
CN113054282A CN113054282A (zh) 2021-06-29
CN113054282B true CN113054282B (zh) 2022-10-25

Family

ID=76513643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110291740.5A Active CN113054282B (zh) 2021-03-18 2021-03-18 电动汽车的电池水冷方法、装置、整车控制器及电动汽车

Country Status (1)

Country Link
CN (1) CN113054282B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799723A (zh) * 2022-12-09 2023-03-14 蜂巢能源科技(马鞍山)有限公司 电池温度控制方法、系统及设备

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287253A (zh) * 2013-06-27 2013-09-11 上海交通大学 液-液冷却型混合动力汽车用电池冷却系统
CN105916711A (zh) * 2014-01-14 2016-08-31 株式会社电装 车辆用热管理系统
CN107878223A (zh) * 2017-10-16 2018-04-06 苏州高迈新能源有限公司 一种电动汽车动力电池冷却系统及冷却方法
CN108448201A (zh) * 2018-03-14 2018-08-24 北汽福田汽车股份有限公司 电池热管理方法、装置、系统及新能源汽车
CN110536808A (zh) * 2017-04-26 2019-12-03 三电汽车空调系统株式会社 车用空调装置
CN110949088A (zh) * 2018-09-27 2020-04-03 广州汽车集团股份有限公司 汽车电子膨胀阀控制方法和装置以及热泵系统
CN111055727A (zh) * 2019-12-31 2020-04-24 奇瑞新能源汽车股份有限公司 车辆的热管理系统的控制方法、装置及车辆
CN111244568A (zh) * 2020-01-10 2020-06-05 西安建筑科技大学 电动汽车动力电池液冷系统实时制冷量计算方法及其控制
CN111276768A (zh) * 2018-12-04 2020-06-12 广州汽车集团股份有限公司 一种温度控制装置及其控制方法、电动汽车
CN111497550A (zh) * 2019-01-31 2020-08-07 广州汽车集团股份有限公司 一种汽车温度控制装置及其控制方法
CN111725584A (zh) * 2020-06-22 2020-09-29 厦门金龙旅行车有限公司 一种电动车电池冷却装置及方法
JP2020185969A (ja) * 2019-05-17 2020-11-19 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN112297776A (zh) * 2020-11-16 2021-02-02 摩登汽车(盐城)有限公司 电动汽车的压缩机制冷系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028916A (ja) * 2014-07-25 2016-03-03 トヨタ自動車株式会社 車両
CN109599632B (zh) * 2017-09-30 2020-11-20 比亚迪股份有限公司 车载电池的温度调节方法和温度调节系统
CN109599626B (zh) * 2017-09-30 2021-01-19 比亚迪股份有限公司 车辆的温度调节方法和温度调节系统
CN111755720A (zh) * 2020-06-24 2020-10-09 湖北工业大学 一种燃料电池发动机吹扫除水低温储存控制方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287253A (zh) * 2013-06-27 2013-09-11 上海交通大学 液-液冷却型混合动力汽车用电池冷却系统
CN105916711A (zh) * 2014-01-14 2016-08-31 株式会社电装 车辆用热管理系统
CN110536808A (zh) * 2017-04-26 2019-12-03 三电汽车空调系统株式会社 车用空调装置
CN107878223A (zh) * 2017-10-16 2018-04-06 苏州高迈新能源有限公司 一种电动汽车动力电池冷却系统及冷却方法
CN108448201A (zh) * 2018-03-14 2018-08-24 北汽福田汽车股份有限公司 电池热管理方法、装置、系统及新能源汽车
CN110949088A (zh) * 2018-09-27 2020-04-03 广州汽车集团股份有限公司 汽车电子膨胀阀控制方法和装置以及热泵系统
CN111276768A (zh) * 2018-12-04 2020-06-12 广州汽车集团股份有限公司 一种温度控制装置及其控制方法、电动汽车
CN111497550A (zh) * 2019-01-31 2020-08-07 广州汽车集团股份有限公司 一种汽车温度控制装置及其控制方法
JP2020185969A (ja) * 2019-05-17 2020-11-19 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN111055727A (zh) * 2019-12-31 2020-04-24 奇瑞新能源汽车股份有限公司 车辆的热管理系统的控制方法、装置及车辆
CN111244568A (zh) * 2020-01-10 2020-06-05 西安建筑科技大学 电动汽车动力电池液冷系统实时制冷量计算方法及其控制
CN111725584A (zh) * 2020-06-22 2020-09-29 厦门金龙旅行车有限公司 一种电动车电池冷却装置及方法
CN112297776A (zh) * 2020-11-16 2021-02-02 摩登汽车(盐城)有限公司 电动汽车的压缩机制冷系统及方法

Also Published As

Publication number Publication date
CN113054282A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
US7492129B2 (en) Temperature abnormality detecting apparatus and method for secondary battery
CN113525017B (zh) 一种电池冷却与乘员舱制冷的制冷量分配方法及系统
CN107054130B (zh) 储能单元的冷却控制方法及系统
JP6645377B2 (ja) 空調制御装置、空調制御方法
JP7213698B2 (ja) 車両のバッテリ温度調整装置及びそれを備えた車両用空気調和装置
CN113054282B (zh) 电动汽车的电池水冷方法、装置、整车控制器及电动汽车
CN112977157A (zh) 动力电池的热管理方法、装置、整车控制器及电动车辆
CN113858910A (zh) 一种电池板式换热器的电子膨胀阀开度控制方法和系统
CN113745672B (zh) 电池自加热控制方法、电池自加热装置、系统和车辆
US11437671B2 (en) Battery pack air cooling system and vehicle
CN106080097A (zh) 车载空调系统的控制方法及车载空调系统
CN110649333B (zh) 动力电池工作异常的检测方法及系统
KR20170030256A (ko) 차량용 배터리 쿨링 제어 방법
JP2021035104A (ja) 車両用冷却装置
CN115214311A (zh) 车辆热平衡冷却系统控制方法及装置
EP3957503B1 (en) Closed loop feedback control and diagnostics of a transport climate control system
KR20200017635A (ko) 냉난방 공조 시스템 및 이의 고장 판별방법
US11602975B2 (en) Vehicle battery management apparatus and method thereof
CN110962538B (zh) 一种大巴空调检测控制方法、计算机可读存储介质及空调
KR100957159B1 (ko) 차량의 에어컨 시스템 진단장치 및 방법
CN115246343B (zh) 一种动力电池利用空调冷却系统快速冷却的控制方法及系统
CN217892453U (zh) 车载空调的预警系统及车辆
CN113942362B (zh) 纯电动汽车的热量管理系统及方法
CN109945430B (zh) 座吊机运行防护方法、装置、系统及座吊机
CN110682759B (zh) 一种空调面板控制系统、方法以及空调面板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant