WO2023067904A1 - 搬送装置および蛇行補正方法 - Google Patents

搬送装置および蛇行補正方法 Download PDF

Info

Publication number
WO2023067904A1
WO2023067904A1 PCT/JP2022/032742 JP2022032742W WO2023067904A1 WO 2023067904 A1 WO2023067904 A1 WO 2023067904A1 JP 2022032742 W JP2022032742 W JP 2022032742W WO 2023067904 A1 WO2023067904 A1 WO 2023067904A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
width direction
angle
roll
amount
Prior art date
Application number
PCT/JP2022/032742
Other languages
English (en)
French (fr)
Inventor
和孝 西川
泰士 谷口
正裕 中城
正則 黒田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280069766.8A priority Critical patent/CN118103315A/zh
Priority to JP2023554973A priority patent/JPWO2023067904A1/ja
Priority to EP22883216.8A priority patent/EP4421011A1/en
Publication of WO2023067904A1 publication Critical patent/WO2023067904A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H20/00Advancing webs
    • B65H20/10Advancing webs by a feed band against which web is held by fluid pressure, e.g. suction or air blast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/038Controlling transverse register of web by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H27/00Special constructions, e.g. surface features, of feed or guide rollers for webs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a conveying device and a meandering correction method.
  • lithium metal secondary batteries that use lithium metal for the negative electrode.
  • a lithium metal secondary battery has a higher energy density than a lithium ion secondary battery, and the theoretical capacity of a lithium metal negative electrode is as large as about 10 times the theoretical capacity of a general graphite negative electrode. Due to recent developments, countermeasures against lithium metal dendrites, which have been a problem in lithium metal secondary batteries, have progressed, and the spread of lithium metal secondary batteries is expected.
  • a method of forming the negative electrode of a lithium metal secondary battery by bonding a lithium foil to a metal foil (for example, copper foil) that should be used as a base material.
  • a metal foil for example, copper foil
  • Lithium foil rolled to a thickness of about 5 to 10 ⁇ m is easily broken and must be transported with care.
  • films for example, PP film
  • the lithium foil is transported by floating in a non-contact state using floating rolls. In this specification, attention is paid to the latter method, which does not require the step of sticking/peeling the film.
  • non-contact levitation transport enables low-tension transport with no contact resistance compared to contact-type transport.
  • meandering of the work also called web
  • the mechanism for correcting the meandering work becomes complicated.
  • lithium metal is the lightest among metal elements, and meandering is likely to occur during floating transportation.
  • Patent Literature 1 discloses a conveying device that supports a belt-like material in a non-contact state by blowing air currents from support pads onto the front and back surfaces of the belt-like material being conveyed.
  • this conveying device the meandering of the belt-like material is corrected by tilting the support pad in the width direction of the belt-like material.
  • the present disclosure has been made in view of this situation, and its purpose is to provide a technique for realizing meandering correction with a low risk of breakage of a work that is levitated and transported.
  • a conveying device is a floating roll that supports a work to be conveyed in a non-contact manner using a force acting on the work in a non-contact manner,
  • a floating roll having a tubular shape extending in the width direction of the work and having at least a peripheral surface facing the work, and a driving section for rotating the floating roll in the yaw direction.
  • the holding angle on the entry side from the highest point and the holding angle on the exit side from the highest point are set to different angles.
  • FIG. 2 is a plan view schematically showing how the conveying device shown in FIG. 1 conveys a work
  • FIG. FIG. 4 is a side view schematically showing an example of a non-contact support roll designed to have an enclosing angle on the entry side larger than an enclosing angle on the exit side.
  • FIGS. 4A to 4C are diagrams for explaining meandering correction control by means of non-contact support rolls designed to have an enclosing angle on the entry side larger than an enclosing angle on the exit side.
  • FIGS. 10 is a side view schematically showing an example of a non-contact support roll designed to have an enclosing angle on the entry side smaller than an enclosing angle on the exit side.
  • FIGS. 6A to 6C are diagrams for explaining meandering correction control by means of non-contact support rolls designed to have an enclosing angle on the entry side smaller than an enclosing angle on the exit side.
  • FIGS. 7A and 7B are side views schematically showing an example of non-contact support rolls designed to have the same embrace angle on the entry side and the embrace angle on the exit side.
  • FIGS. 8A to 8C are diagrams for explaining meandering correction control according to a comparative example.
  • FIG. 1 is a side view schematically showing the conveying device 1 according to the embodiment.
  • the conveying device 1 is a roll-to-roll type conveying device, and includes an unwinding device 10 , a floating roll device 20 , an edge sensor 30 , a winding device 40 and a control device 50 .
  • the unwinding device 10 is arranged at the starting point of the transport line, holds the work W to be transported in a wound state, and feeds the work W to the downstream side of the transport line.
  • the winding device 40 is arranged at the end point of the conveying line, and collects the conveyed work W in the form of a wound body.
  • the unwinding device 10 and the winding device 40 each have a servomotor (not shown), which can control the rotational speed and rotational torque of the roll.
  • the unwinding speed of the unwinding device 10 and the winding speed of the winding device 40 are basically set to the same speed.
  • the workpiece W is assumed to be a lithium foil to be used as a negative electrode plate of a lithium metal secondary battery.
  • the lithium foil to be conveyed in the present embodiment is a lithium foil rolled to a thickness of about 5 to 10 ⁇ m, and there is a risk of breakage even when a small tension is applied.
  • the tension of the guide roll tends to increase. Therefore, in this embodiment, the floating roll device 20 capable of transporting the work W in a non-contact manner is used.
  • the floating roll device 20 is arranged between the unwinding device 10 and the winding device 40 on the transport line.
  • a tension control mechanism for example, a dancer roll
  • a dancer roll is provided between the unwinding device 10 and the floating roll device 20 on the transfer line to control the tension applied to the work W to a constant level. may be placed.
  • the floating roll device 20 supports the work W to be transported in a non-contact manner.
  • the floating roll device 20 has a non-contact support roll 20a, a support arm 20b, a rotating base 20c, a rotating shaft 20d, a fixed base 20e, and a motor 20f.
  • the non-contact support roll 20a is a cylindrical body extending in the width direction B of the work W, and supports the work W in a non-contact manner by ejecting fluid from its outer peripheral surface.
  • air is assumed as the blowing fluid, but other gases such as nitrogen may be used.
  • the radial cross-sectional shape of the non-contact support roll 20a may be a semicircle or a semiellipse instead of a full circle or a full ellipse. In these cases, the cross-sectional shape on the non-arc-forming side is rectangular.
  • the non-contact support roll 20a does not rotate, and is installed so that the outer peripheral surface formed of a semicircle or a semiellipse faces the workpiece W. As shown in FIG.
  • the cross-sectional shape in the radial direction of the non-contact support roll 20a may be fan-shaped (for example, fan-shaped with a central angle of 90 degrees).
  • a known air turn bar can be used for the non-contact support roll 20a.
  • the air turn bar is covered with a thin metal plate (for example, aluminum or stainless steel).
  • the thin metal plate is composed, for example, of a punching screen with a large number of discharge holes.
  • a porous material such as a thin plate or metal made of porous foam, a porous thin plate of sintered metal, or a mesh metal plate may be used.
  • a plurality of slits extending in the extending direction of the non-contact support roll 20a may be formed at predetermined intervals in the radial direction. Furthermore, a plurality of wires arranged at predetermined intervals in the extending direction may be wound around the outer peripheral surface of the thin metal plate.
  • a hollow fixed central shaft is inserted through the non-contact support roll 20a, and an air supply pipe (not shown) is connected to an opening provided at one end or both ends of the fixed central shaft, and an air supply device such as a compressor (not shown) is connected. ) is supplied to the interior of the non-contact support roll 20a through an air pipe. The supplied air is discharged from a large number of holes provided on the outer peripheral surface of the non-contact support roll 20a.
  • Both ends of the fixed central axis of the non-contact support roll 20a are supported by a pair of support arms 20b that are installed diagonally at equal intervals from the center of the support plane of the rotary base 20c.
  • the fixed pedestal 20e is fixedly installed on the floor surface.
  • the fixed pedestal 20e is connected to the rotating pedestal 20c via a rotating shaft 20d.
  • the output shaft of the motor 20f is connected to the end of the rotary shaft 20d on the side of the fixed pedestal 20e.
  • the motor 20f is fixedly installed in the fixed pedestal 20e.
  • An end portion of the rotating shaft 20d on the rotating base 20c side is fixed to the rotating base 20c.
  • the control device 50 is realized by elements and circuits such as a CPU and memory of a computer as a hardware configuration, and is realized by a computer program etc. as a software configuration. It is drawn as a functional block. It should be understood by those skilled in the art that this functional block can be realized in various ways by a combination of hardware and software.
  • the control device 50 may be composed of, for example, a control panel.
  • An edge sensor 30 is installed downstream from the floating roll device 20 on the transfer line.
  • the edge sensor 30 is a sensor for detecting positional deviation in the width direction B of the work W conveyed on the conveying line.
  • the edge sensor 30 has, for example, a light emitting portion and a light receiving portion.
  • the light-emitting part and the light-receiving part are installed at a predetermined interval in the thickness direction C so as to sandwich the work W from both sides in the thickness direction C of the work W.
  • the light emitting unit and the light receiving unit may be installed above and below a U-shaped housing having a gap through which the workpiece W passes.
  • the light emitting unit irradiates light of a predetermined wavelength (for example, infrared rays) toward the light receiving unit.
  • the light-receiving section has a light-receiving element (for example, CCD or CMOS) arranged on a surface facing the light-emitting section.
  • the light receiving element converts the received light into an electric signal and outputs the electric signal to the control device 50 as an edge position signal.
  • a portion of the light emitted from the light emitting portion is blocked by the end portion of the workpiece W in the width direction B.
  • the edge sensor 30 can detect the edge position of the workpiece W in the width direction based on the light receiving position of the light receiving element.
  • an ultrasonic edge sensor may be used instead of an optical edge sensor.
  • FIG. 2 is a plan view schematically showing how the conveying device 1 shown in FIG. 1 conveys the work W.
  • the edge sensors 30 may be installed at both ends of the workpiece W in the width direction B as shown in FIG.
  • a first edge sensor 30a is installed on the left end side in the width direction B toward the conveying direction A of the work W
  • a second edge sensor 30b is installed on the right end side.
  • the first edge sensor 30 a outputs to the control device 50 a first edge position signal indicating the left end position of the conveyed work W in the width direction B.
  • the second edge sensor 30b outputs to the control device 50 a second edge position signal indicating the right end position of the conveyed work W in the width direction B.
  • FIG. 1 is a plan view schematically showing how the conveying device 1 shown in FIG. 1 conveys the work W.
  • the edge sensors 30 may be installed at both ends of the workpiece W in the width direction B as shown in FIG.
  • a first edge sensor 30a is installed on the left end
  • edge sensors 30 may not be installed at both ends in the width direction B as shown in FIG. 2, but may be installed at either the left end or the right end. Also, the edge sensor 30 may be installed upstream of the floating roll device 20 on the transport line. However, the purpose of the edge sensor 30 is to confirm that there is no deviation of the work W when the work W is wound by the winding device 40 located downstream. Therefore, the conveying device 1 is preferably configured such that the edge sensor 30 is arranged downstream of the floating roll device 20 .
  • control device 50 has a meandering correction function using the edge sensor 30 and the motor 20f of the floating roll device 20.
  • the meandering correction function it is necessary to provide a difference between the entrance side and the exit side of the embracing angle of the work W of the non-contact support roll 20a.
  • FIG. 3 is a side view schematically showing an example of the non-contact support roll 20a designed so that the embrace angle ⁇ in on the entry side is larger than the embrace angle ⁇ o on the exit side.
  • the embracing angle ⁇ is the angle of the arc of the peripheral surface at which the work W is supported in a non-contact manner by the non-contact support rolls 20a.
  • the range of the peripheral surface where the work W contacts the roll 20a may be specified.
  • the holding angle ⁇ is determined by the positions of the unwinding device 10 and guide rolls (not shown) installed on the upstream side of the non-contact support roll 20a, and by the winding device 40 and guide rolls (not shown) installed on the downstream side. position, the tension applied from the upstream side, and the tension applied from the downstream side.
  • the embrace angle ⁇ the angle on the entry side from the highest point P1 of the workpiece W supported by the non-contact support roll 20a in a non-contact manner is defined as the entry side embrace angle ⁇ in, and the exit side from the highest point P1. is called the exit-side embrace angle ⁇ o.
  • the holding angle ⁇ is set to 55 degrees
  • the holding angle ⁇ in on the entry side is set to 45 degrees
  • the holding angle ⁇ o on the exit side is set to 10 degrees.
  • the control device 50 Based on the edge position signal input from the edge sensor 30, the control device 50 detects the positional deviation amount of the workpiece W from the target position in the width direction B. As shown in FIG. 2, when the edge sensors 30a and 30b are installed at both ends of the workpiece W in the width direction B, the controller 50 is indicated by the first edge position signal input from the first edge sensor 30a. An intermediate position between the left end position of the work W and the right end position of the work W indicated by the second edge position signal input from the second edge sensor 30b is calculated. The controller 50 sets the calculated difference between the target center position in the width direction B of the workpiece W and the calculated intermediate position as the positional deviation amount.
  • the control device 50 When only the first edge sensor 30a is installed in the conveying device 1, the control device 50 indicates the target left end position of the work W in the width direction B by the first edge position signal input from the first edge sensor 30a. The difference between the left end positions of the work W is defined as the amount of positional deviation.
  • the control device 50 indicates the target right end position of the work W in the width direction B by the second edge position signal input from the second edge sensor 30b. The difference between the right end positions of the workpiece W is assumed to be the amount of positional deviation.
  • the control device 50 determines the amount of rotation of the rotary shaft 20d driven by the motor 20f (that is, the yaw direction of the non-contact support roll 20a). ) is calculated. For example, the control device 50 calculates the amount of rotation (the amount of operation) of the rotating shaft 20d by PID compensation. The control device 50 feedback-controls the amount of rotation of the rotating shaft 20d so that the amount of positional deviation of the work W in the width direction B becomes zero. The control device 50 supplies a control signal including the calculated amount of rotation to the motor 20f. The feedback control causes the non-contact support roll 20a to rotate within a plane parallel to the work W conveying direction A. As shown in FIG.
  • FIGS. 4(A)-(C) are diagrams for explaining meandering correction control by the non-contact support rolls 20a designed so that the enclosing angle ⁇ in on the entry side is larger than the enclosing angle ⁇ o on the exit side.
  • the entry-side embrace angle ⁇ in is greater than the exit-side embrace angle ⁇ o
  • the region of the entry side from the highest point P1 hereinafter referred to as the entry
  • the area facing the non-contact support roll 20a at a predetermined distance or less is larger than the delivery side area (hereinafter referred to as the delivery side holding area). Therefore, the wind force Win received by the enclosing area on the entry side is greater than the wind force Wo received by the enclosing area on the exit side.
  • FIG. 4A shows a state in which the amount of positional deviation from the target position in the width direction B of the work W is 0, and the non-contact support roll 20a is not rotated in the yaw direction and is kept at the reference position. ing.
  • FIG. 4(B) shows a state in which the workpiece W is displaced to the left in the transport direction A from the target position in the width direction B.
  • the control device 50 calculates the counterclockwise rotation amount of the rotating shaft 20d according to the positional deviation amount, supplies the calculated rotation amount to the motor 20f, and causes the motor 20f to rotate the non-contact support roll 20a counterclockwise. rotate.
  • the blowing direction of the fluid to the holding area on the entry side changes to the right rearward direction in the conveying direction A, and the work W receives a rightward moving pressure. Further, the blowing direction of the fluid to the holding area on the delivery side changes to the left front direction in the conveying direction A, and the workpiece W receives the moving pressure in the left direction. Since the backward or forward moving pressure is defined by the unwinding device 10, the winding device 40, the tension roll (not shown), the guide roll (not shown), etc., the influence from the non-contact support roll 20a is can be ignored.
  • FIG. 4(C) shows a state in which the workpiece W is shifted to the right in the transport direction A from the target position in the width direction B.
  • the control device 50 calculates the amount of clockwise rotation of the rotating shaft 20d according to the amount of positional deviation, supplies the calculated amount of rotation to the motor 20f, and causes the motor 20f to rotate the non-contact support roll 20a clockwise. .
  • the blowing direction of the fluid to the holding area on the entry side changes to the rear left direction in the conveying direction A, and the work W receives a moving pressure in the left direction. Further, the blowing direction of the fluid to the holding area on the delivery side changes to the forward right direction in the conveying direction A, and the workpiece W receives the moving pressure in the right direction.
  • FIG. 5 is a side view schematically showing an example of the non-contact support roll 20a designed so that the embrace angle ⁇ in on the entry side is smaller than the embrace angle ⁇ o on the exit side.
  • the holding angle ⁇ is set to 55 degrees
  • the holding angle ⁇ in on the entry side is set to 10 degrees
  • the holding angle ⁇ o on the exit side is set to 45 degrees.
  • FIGS. 6(A)-(C) are diagrams for explaining the meandering correction control by the non-contact support rolls 20a designed so that the embrace angle ⁇ in on the entry side is smaller than the embrace angle ⁇ o on the exit side.
  • the entry-side holding angle ⁇ in is smaller than the exit-side holding angle ⁇ o
  • the exit-side holding area has a larger area facing the non-contact support roll 20a at a predetermined distance or less than the entry-side holding area. Become. Therefore, the wind force Wo received by the exit-side holding region is greater than the wind force Win received by the entry-side holding region.
  • FIG. 6A shows a state in which the amount of positional deviation from the target position in the width direction B of the work W is 0, and the non-contact support roll 20a is not rotated in the yaw direction and is kept at the reference position. ing.
  • FIG. 6(B) shows a state in which the workpiece W is displaced leftward in the transport direction A from the target position in the width direction B.
  • the control device 50 calculates the amount of clockwise rotation of the rotating shaft 20d according to the amount of positional deviation, supplies the calculated amount of rotation to the motor 20f, and causes the motor 20f to rotate the non-contact support roll 20a clockwise. .
  • the blowing direction of the fluid to the holding area on the entry side changes to the rear left direction in the conveying direction A, and the work W receives a moving pressure in the left direction. Further, the blowing direction of the fluid to the holding area on the delivery side changes to the forward right direction in the conveying direction A, and the workpiece W receives the moving pressure in the right direction.
  • FIG. 6(C) shows a state in which the workpiece W is shifted to the right in the transport direction A from the target position in the width direction B.
  • the control device 50 calculates the counterclockwise rotation amount of the rotating shaft 20d according to the positional deviation amount, supplies the calculated rotation amount to the motor 20f, and causes the motor 20f to rotate the non-contact support roll 20a counterclockwise. rotate.
  • the blowing direction of the fluid to the holding area on the entry side changes to the right rearward direction in the conveying direction A, and the work W receives a rightward moving pressure. Further, the blowing direction of the fluid to the holding area on the delivery side changes to the left front direction in the conveying direction A, and the workpiece W receives the moving pressure in the left direction.
  • the meandering correction function utilizes the difference between the wind force Win received by the holding area on the entry side and the wind force Wo received by the holding area on the exit side when the non-contact support roll 20a rotates in the yaw direction. there is Therefore, it cannot be used when the entry-side holding angle ⁇ in is equal to the exit-side holding angle ⁇ o, and the wind force Win received by the entry-side holding area is the same as the wind force Wo received by the exit-side holding area.
  • FIGS. 7(A) and 7(B) are side views schematically showing an example of the non-contact support roll 20a designed to have the same embrace angle ⁇ in on the entry side and the embrace angle ⁇ o on the exit side.
  • FIGS. 8A to 8C are diagrams for explaining meandering correction control according to a comparative example.
  • the comparative example is an example in which the positional deviation of the work W in the width direction is corrected by rotating the non-contact support roll 20a in the roll direction.
  • FIG. 8A shows a state in which the amount of positional deviation from the target position in the width direction B of the work W is 0, and the non-contact support roll 20a is not rotated in the roll direction and is kept at the reference position. ing.
  • FIG. 8(B) shows a state in which the workpiece W is displaced from the target position in the width direction B to the left in the transport direction A.
  • the control device 50 rotates the non-contact support roll 20a clockwise in the roll direction in the transport direction A according to the positional deviation amount. That is, the right end of the non-contact support roll 20a is tilted toward the floor so that the right end of the non-contact support roll 20a approaches the floor.
  • the right end side of the work W receives a weaker wind force from the non-contact support roll 20a
  • the left end side of the work W receives a stronger wind force from the non-contact support roll 20a
  • a rightward moving pressure Fr is applied to the work W. It takes.
  • This rightward moving pressure Fr increases as the amount of clockwise rotation of the non-contact support roll 20a approaches -90 degrees.
  • the work W is moved rightward toward the target position in the width direction B by this rightward moving pressure Fr.
  • FIG. 8(C) shows a state in which the workpiece W is shifted to the right in the transport direction A from the target position in the width direction B.
  • the control device 50 rotates the non-contact support roll 20a counterclockwise in the roll direction toward the transport direction A according to the positional deviation amount. That is, the left end of the non-contact support roll 20a is tilted toward the floor so that the left end of the non-contact support roll 20a approaches the floor.
  • the left end of the work W receives a weaker wind force from the non-contact support roll 20a, and the right end of the work W receives a stronger wind force from the non-contact support roll 20a. It takes.
  • This leftward movement pressure Fl increases as the amount of counterclockwise rotation of the non-contact support roll 20a approaches 90 degrees.
  • the work W moves leftward toward the target position in the width direction B due to this leftward movement pressure Fl.
  • the method according to the comparative example is superior in correction.
  • the load that the work W receives from the non-contact support roll 20a increases.
  • the load that the work W receives from the non-contact support roll 20a during correction is small, so the risk of breakage of the work W can be minimized.
  • the non-contact support roll 20a is rotated in the yaw direction to correct meandering of the work W, thereby reducing the risk of breakage of the work W that is being lifted and transported. can be minimized.
  • Floating transport is suitable for transporting thin films that are vulnerable to changes in tension during transport because there is no contact resistance with the rolls and low tension transport is possible. For example, it is suitable for conveying thin film metal foil.
  • lithium foil is suitable for levitation transportation because it is lightweight and easily adheres to metal.
  • Lithium foil can be used, for example, as a negative electrode material for lithium metal secondary batteries. It can also be used as a pre-doping material for negative electrodes of lithium ion secondary batteries and lithium ion capacitors.
  • lithium foil is lightweight, it tends to meander and is vulnerable to changes in tension. Therefore, a low-load meandering correction is required, and according to the conveying apparatus 1 according to the present embodiment, a low-load meandering correction can be realized.
  • the work W conveyed by the conveying apparatus 1 according to the present embodiment is not limited to lithium foil, and may include other metal foils such as copper foil, aluminum foil, stainless steel foil, and titanium foil. can. In addition, resin film, paper, cloth, non-woven fabric, etc. can also be included.
  • the non-contact support roll 20a the non-contact support roll 20a of the method in which the work W being conveyed is floated by blowing air onto it has been described.
  • the non-contact support roll can support the work W in a non-contact manner by utilizing the force acting on the work W in a non-contact manner
  • other types of non-contact support rolls may be used.
  • ultrasonic non-contact support rolls may be used.
  • a diaphragm e.g., sonotrode
  • the diaphragm is finely vibrated at a high frequency to squeeze between the work W and the conveying surface.
  • An air film is formed, and the workpiece W is floated by the repulsive force of the squeeze air film.
  • Embodiments may be specified by items described below.
  • a floating roll (20a) that supports a conveyed work (W) in a non-contact manner using a force that acts on the work (W) in a non-contact manner, wherein the width direction ( B) a floating roll (20a) having a cylindrical shape extending in the direction of B) and having at least a peripheral surface facing the work (W); a drive unit (20f) for rotating the floating roll (20a) in the yaw direction, Of the embrace angle ( ⁇ ) of the work (W) supported by the floating roll (20a) in a non-contact manner, the embrace angle ( ⁇ in) on the entry side from the highest point (P1) and the highest point (P1 ) is set to a different angle, A transport device (1).
  • the holding angle ( ⁇ in) on the entry side is set larger than the holding angle ( ⁇ o) on the delivery side
  • the work (W ) can be guided to the target position.
  • the entry-side embrace angle ( ⁇ in) is set smaller than the exit-side embrace angle ( ⁇ o)
  • the control unit (50) controls the drive unit (20f) according to the amount of deviation.
  • the floating roll (20a) is rotated clockwise and the work (W) deviates leftward in the transport direction (A) from the target position in the width direction (B)
  • the driving is performed according to the amount of deviation.
  • the work (W) is a lithium foil, Conveyor (1) according to any one of items 1 to 4. According to this, the lithium foil which is lightweight and easily broken can be conveyed while performing meandering correction with a low breakage risk.
  • a floating roll (20a) that supports a conveyed work (W) in a non-contact manner using a force that acts on the work (W) in a non-contact manner, wherein the width direction ( A floating roll (20a) having a cylindrical shape extending in the direction B) and having at least a peripheral surface facing the work (W) is provided so as to measure the amount of positional deviation of the work (W) in the width direction (B).
  • the embrace angle ( ⁇ ) of the work (W) supported by the floating roll (20a) in a non-contact manner the embrace angle ( ⁇ in) on the entry side from the highest point (P1) and the highest point (P1 ) is set to a different angle, Meander correction method. According to this, it is possible to realize meandering correction with a low risk of breakage of the work (W) that is levitated and conveyed.
  • the present disclosure can be used for manufacturing batteries.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)

Abstract

浮上ロール(20a)は、搬送されるワーク(W)を、ワーク(W)に対して非接触に作用する力を利用して非接触に支持する。浮上ロール(20a)は、ワーク(W)の幅方向(B)に延びる筒状形状で、少なくともワーク(W)と対向する面が周面で形成される。駆動部(20f)は、浮上ロール(20a)をヨー方向に回転させる。浮上ロールに非接触に支持されるワークの抱き角の内、最頂地点から入側の抱き角と、最頂地点から出側の抱き角が異なる角度に設定されている。

Description

搬送装置および蛇行補正方法
 本開示は、搬送装置および蛇行補正方法に関する。
 近年、負極にリチウム金属を使用するリチウム金属二次電池の開発が進んでいる。リチウム金属二次電池はリチウムイオン二次電池よりエネルギー密度が高く、リチウム金属負極の理論容量は、一般的な黒鉛負極の理論容量の約10倍と極めて大きい。近年の開発により、リチウム金属二次電池の課題だったリチウム金属のデンドライトに対する対策が進んできており、リチウム金属二次電池の普及が期待されている。
 リチウム金属二次電池の負極を、基材とすべき金属箔(例えば、銅箔)にリチウム箔を貼り合わせて形成する方法がある。5~10μm程度に薄く圧延されたリチウム箔は破断しやすく、搬送に注意を要する。リチウム箔をフィルム(例えば、PPフィルム)で挟み込んだ状態で搬送する方法や、浮上ロールを使用してロールと非接触な状態でリチウム箔を浮上搬送する方法がある。本明細書では、フィルムの貼付工程・剥離工程が不要な後者の方法に注目する。
 ロールtoロール方式の搬送において、非接触式の浮上搬送は、接触式の搬送と比較して、接触抵抗がなく低テンションな搬送が可能となる。ただし、浮上搬送では、ワーク(ウェブともいう)の蛇行が発生しやすい。また、ロールがワークに接触しないため、蛇行したワークを補正する仕組みが複雑になる。特に、リチウム金属は金属元素の中でもっとも軽量であり、浮上搬送において蛇行が発生しやすい。
 特許文献1には、搬送される帯状材の表面と裏面に、それぞれ支持パットから気流を噴出して、非接触状態で帯状材を支持する搬送装置が開示されている。当該搬送装置では、支持パッドを帯状材の幅方向に傾動させることにより、帯状材の蛇行を修正している。
特開2018-162121号公報
 浮上ロールをワークの幅方向に傾動させてワークの蛇行を補正する方法では、蛇行補正を実施する際、ワークの幅方向の右端側と左端側にかかる負荷に差が生じ、ワークの浮上ロール通過付近の部分が捻れて、ワークが幅方向に引き裂かれやすくなる。
 本開示はこうした状況に鑑みなされたものであり、その目的は、浮上搬送されるワークの破断リスクの低い蛇行補正を実現する技術を提供することにある。
 上記課題を解決するために、本開示のある態様の搬送装置は、搬送されるワークを、前記ワークに対して非接触に作用する力を利用して非接触に支持する浮上ロールであって、前記ワークの幅方向に延びる筒状形状で、少なくとも前記ワークと対向する面が周面で形成される浮上ロールと、前記浮上ロールをヨー方向に回転させるための駆動部と、を備える。前記浮上ロールに非接触に支持される前記ワークの抱き角の内、最頂地点から入側の抱き角と、前記最頂地点から出側の抱き角が異なる角度に設定されている。
 以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。
 本開示によれば、浮上搬送されるワークの破断リスクの低い蛇行補正を実現することができる。
実施の形態に係る搬送装置を模式的に示す側面図である。 図1に示した搬送装置がワークを搬送する様子を模式的に示す平面図である。 入側の抱き角が出側の抱き角より大きく設計された非接触支持ロールの一例を模式的に示す側面図である。 図4(A)-(C)は、入側の抱き角が出側の抱き角より大きく設計された非接触支持ロールによる蛇行補正制御を説明するための図である。 入側の抱き角が出側の抱き角より小さく設計された非接触支持ロールの一例を模式的に示す側面図である。 図6(A)-(C)は、入側の抱き角が出側の抱き角より小さく設計された非接触支持ロールによる蛇行補正制御を説明するための図である。 図7(A)-(B)は、入側の抱き角と出側の抱き角が等しく設計された非接触支持ロールの一例を模式的に示す側面図である。 図8(A)-(C)は、比較例に係る蛇行補正制御を説明するための図である。
 以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、本開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも本開示の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
 図1は、実施の形態に係る搬送装置1を模式的に示す側面図である。搬送装置1はロールtoロール方式の搬送装置であり、巻き出し装置10、浮上ロール装置20、エッジセンサ30、巻き取り装置40、制御装置50を備える。
 巻き出し装置10は、搬送ラインの開始地点に配置され、搬送対象のワークWを巻回体の状態で保持し、ワークWを搬送ラインの下流側に送り出す。巻き取り装置40は、搬送ラインの終了地点に配置され、搬送されてきたワークWを巻回体の状態で回収する。巻き出し装置10および巻き取り装置40はそれぞれ、サーボモータ(不図示)を有し、サーボモータは、ロールの回転速度と回転トルクを制御することができる。巻き出し装置10の巻き出し速度と、巻き取り装置40の巻き取り速度は基本的に同じ速度に設定される。
 本実施の形態では、ワークWとして、リチウム金属二次電池の負極板として使用されるべきリチウム箔を想定する。本実施の形態において搬送対象となるリチウム箔は、厚さ5~10μm程度に圧延されたリチウム箔であり、小さなテンションがかかっただけで破断するリスクがある。また、リチウムは金属に接着しやすい性質があるため、金属製(例えば、アルミ製)のガイドロールを使用する場合、ガイドロールでテンションが増加しやすい。そこで本実施の形態では、非接触にワークWを搬送可能な浮上ロール装置20を使用する。
 浮上ロール装置20は、搬送ライン上の巻き出し装置10と巻き取り装置40との間に配置される。なお図1では省略されているが、搬送ライン上の巻き出し装置10と浮上ロール装置20との間に、ワークWにかかる張力を一定に制御するための張力制御機構(例えば、ダンサーロール)が配置されていてもよい。
 浮上ロール装置20は、搬送されるワークWを非接触に支持する。浮上ロール装置20は、非接触支持ロール20a、支持アーム20b、回転台座20c、回転軸20d、固定台座20e、モータ20fを有する。
 非接触支持ロール20aは、ワークWの幅方向Bに延びる円筒体であり、その外周面から流体が吹き出すことにより、ワークWを非接触に支持する。本実施の形態では、吹き出す流体として空気を想定するが、窒素などの他のガスを使用してもよい。非接触支持ロール20aの径方向の断面形状は全円や全楕円ではなく、半円や半楕円であってもよい。これらの場合、弧を形成しない側の断面形状は長方形で形成される。非接触支持ロール20aは回転せず、半円または半楕円で構成される外周面がワークWに対向する向きに設置される。なお、非接触支持ロール20aの径方向の断面形状は扇形(例えば、中心角が90度の扇形)であってもよい。
 非接触支持ロール20aには例えば、公知のエアーターンバーを使用することができる。エアーターンバーは、外周が金属薄板(例えば、アルミニウムやステンレス鋼)で覆われる。金属薄板は例えば、多数の吐出孔が開けられたパンチングスクリーンで構成される。なお、パンチングスクリーンの代わりに、多孔性物質、例えば、多孔性発泡体で形成した薄板や金属、焼結金属の多孔性薄板または網状の金属板などを使用してもよい。
 なお、金属薄板に複数の孔を開ける代わりに、非接触支持ロール20aの延在方向に延びる複数のスリットを径方向に所定の間隔で形成してもよい。さらに、金属薄板の外周面に、延在方向に所定の間隔で並べた複数のワイヤーを巻回してもよい。
 非接触支持ロール20aには中空の固定中心軸が挿通しており、固定中心軸の一端または両端に設けられた開口部に送気管(不図示)が接続され、コンプレッサ等の送気装置(不図示)から送気管を通して圧縮空気が非接触支持ロール20aの内部に供給される。供給された空気は、非接触支持ロール20aの外周面に設けられた多数の孔から吐き出される。
 非接触支持ロール20aの固定中心軸の両端は、回転台座20cの支持平面内の中心から対角線上に等間隔に設置された一対の支持アーム20bで支持される。固定台座20eは床面に固定して設置される。固定台座20eは、回転軸20dを介して回転台座20cに連結される。回転軸20dの固定台座20e側の端部にはモータ20fの出力軸が連結される。モータ20fは固定台座20e内に固定して設置される。回転軸20dの回転台座20c側の端部は回転台座20cに固定される。モータ20fが駆動して回転軸20dが回転すると、回転台座20cが回転する。モータ20fの駆動は制御装置50により制御される。
 制御装置50は、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現されるが、図1では、それらの連携によって実現される機能ブロックとして描いている。この機能ブロックがハードウェアおよびソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には当然に理解されるところである。制御装置50は、例えば制御盤で構成されてもよい。
 搬送ライン上において浮上ロール装置20より下流にエッジセンサ30が設置される。エッジセンサ30は、搬送ライン上を搬送されるワークWの幅方向Bの位置ずれを検出するためのセンサである。エッジセンサ30は例えば、発光部と受光部を有する。発光部および受光部は、ワークWの厚さ方向Cの両側からワークWを挟み込むように、厚さ方向Cに所定の間隔を空けて設置される。なお、発光部および受光部は、ワークWが通過する間隙を有するU字状の筐体の上下に設置されてもよい。
 発光部は、所定波長の光(例えば、赤外線)を受光部に向けて照射する。受光部は、発光部と対向する面に配置された受光素子(例えば、CCDやCMOS)を有する。受光素子は、発光部から照射される光を受光すると、受光した光を電気信号に変換し、エッジ位置信号として制御装置50に出力する。発光部から照射される光の一部は、ワークWの幅方向Bの端部によって遮られる。したがって、エッジセンサ30は、受光素子の受光位置に基づき、ワークWの幅方向のエッジ位置を検出することができる。なお、光学方式ではなく、超音波方式のエッジセンサを使用してもよい。
 図2は、図1に示した搬送装置1がワークWを搬送する様子を模式的に示す平面図である。図2に示すようにエッジセンサ30は、ワークWの幅方向Bの両端に設置されてもよい。ワークWの搬送方向Aに向かって、幅方向Bの左端側に第1エッジセンサ30aが設置され、右端側に第2エッジセンサ30bが設置される。第1エッジセンサ30aは、搬送されるワークWの幅方向Bの左端位置を示す第1エッジ位置信号を制御装置50に出力する。第2エッジセンサ30bは、搬送されるワークWの幅方向Bの右端位置を示す第2エッジ位置信号を制御装置50に出力する。なお、図2に示すように幅方向Bの両端側にエッジセンサ30が設置されるのではなく、左端側または右端側のいずれか一方にのみ設置されてもよい。また、エッジセンサ30は、搬送ライン上において浮上ロール装置20より上流に設置されてもよい。ただし、エッジセンサ30の目的は、下流側に位置する巻き取り装置40でワークWを巻き取る際に、ワークWのズレが発生していないことを確認することにある。そのため、搬送装置1は、エッジセンサ30が浮上ロール装置20より下流側に配置するように構成されることが好ましい。
 本実施の形態では制御装置50は、エッジセンサ30と、浮上ロール装置20のモータ20fを使用した蛇行補正機能を有する。当該蛇行補正機能を実現するには、非接触支持ロール20aのワークWの抱き角の入側と出側に差を設ける必要がある。
 図3は、入側の抱き角αinが出側の抱き角αoより大きく設計された非接触支持ロール20aの一例を模式的に示す側面図である。抱き角αは、非接触支持ロール20aによりワークWが非接触に支持される周面の弧の角度をいう。非接触支持ロール20aの場合、非接触支持ロール20aとワークWとの間の間隙がないものとして、ワークWがロール20aに接触する周面の範囲を特定すればよい。
 抱き角αは、非接触支持ロール20aの上流側に設置される巻き出し装置10やガイドロール(不図示)等の位置、下流側に設置される巻き取り装置40やガイドロール(不図示)等の位置、上流側から加わる張力、下流側から加わる張力に基づき決定される。本明細書では、抱き角αの内、非接触支持ロール20aに非接触に支持されるワークWの最頂地点P1から入側の角度を入側の抱き角αin、最頂地点P1から出側の角度を出側の抱き角αoと呼ぶ。図3に示す例では、抱き角αが55度、入側の抱き角αinが45度、出側の抱き角αoが10度に設定されている。
 制御装置50は、エッジセンサ30から入力されるエッジ位置信号をもとに、ワークWの幅方向Bの目標位置からの位置ずれ量を検出する。図2に示したように、ワークWの幅方向Bの両端にエッジセンサ30a、30bが設置される場合、制御装置50は、第1エッジセンサ30aから入力される第1エッジ位置信号で示されるワークWの左端位置と第2エッジセンサ30bから入力される第2エッジ位置信号で示されるワークWの右端位置の中間位置を算出する。制御装置50は、ワークWの幅方向Bの目標中心位置に対する、算出した中間位置の差を位置ずれ量とする。
 搬送装置1に第1エッジセンサ30aのみが設置される場合、制御装置50は、ワークWの幅方向Bの目標左端位置に対する、第1エッジセンサ30aから入力される第1エッジ位置信号で示されるワークWの左端位置の差を位置ずれ量とする。搬送装置1に第2エッジセンサ30bのみが設置される場合、制御装置50は、ワークWの幅方向Bの目標右端位置に対する、第2エッジセンサ30bから入力される第2エッジ位置信号で示されるワークWの右端位置の差を位置ずれ量とする。
 制御装置50は、検出されたワークWの幅方向Bの位置ずれ量(偏差量)をもとに、モータ20fで駆動される回転軸20dの回転量(即ち、非接触支持ロール20aのヨー方向の回転量)を算出する。例えば、制御装置50は、回転軸20dの回転量(操作量)をPID補償により算出する。制御装置50は、ワークWの幅方向Bの位置ずれ量が0になるように、回転軸20dの回転量をフィードバック制御する。制御装置50は、算出した回転量を含む制御信号をモータ20fに供給する。当該フィードバック制御により、非接触支持ロール20aは、ワークWの搬送方向Aと平行な平面内で回転する。
 図4(A)-(C)は、入側の抱き角αinが出側の抱き角αoより大きく設計された非接触支持ロール20aによる蛇行補正制御を説明するための図である。入側の抱き角αinが出側の抱き角αoより大きい場合、非接触支持ロール20aにより非接触に支持されているワークWの領域の内、最頂地点P1より入側の領域(以下、入側の抱き領域という)の方が出側の領域(以下、出側の抱き領域という)より、非接触支持ロール20aと所定の距離以下で対向している面積が大きくなる。したがって、入側の抱き領域が受ける風力Winが、出側の抱き領域が受ける風力Woより大きくなる。
 図4(A)は、ワークWの幅方向Bの目標位置からの位置ずれ量が0の状態を示しており、非接触支持ロール20aはヨー方向に回転されておらず、基準位置にキープされている。
 図4(B)は、ワークWが幅方向Bの目標位置から、搬送方向Aに向かって左側に位置ずれしている状態を示している。制御装置50は、その位置ずれ量に応じて回転軸20dの反時計回りの回転量を算出し、算出した回転量をモータ20fに供給し、モータ20fに非接触支持ロール20aを反時計回りに回転させる。
 非接触支持ロール20aが反時計回りに回転すると、入側の抱き領域に対する流体の吹き出し方向が搬送方向Aに向かって右後方向に変わり、ワークWは右方向への移動圧力を受ける。また、出側の抱き領域に対する流体の吹き出し方向が搬送方向Aに向かって左前方向に変わり、ワークWは左方向への移動圧力を受ける。なお、後方または前方への移動圧力は、巻き出し装置10、巻き取り装置40、テンションロール(不図示)、ガイドロール(不図示)等により規定されるため、非接触支持ロール20aからの影響は無視できる。
 入側の抱き角αinが出側の抱き角αoより大きい場合、入側の抱き領域が受ける風力Winが、出側の抱き領域が受ける風力Woより大きいため、ワークWに対する右方向への移動圧力の方が左方向への移動圧力より大きくなる。両者が相殺され、ワークWに対して右方向への移動圧力Frがかかる。この右方向への移動圧力Frは、非接触支持ロール20aの反時計回りの回転量が90度に近づくほど大きくなる。この右方向への移動圧力Frにより、ワークWは幅方向Bの目標位置に向けて右方向に移動する。
 図4(C)は、ワークWが幅方向Bの目標位置から、搬送方向Aに向かって右側に位置ずれしている状態を示している。制御装置50は、その位置ずれ量に応じて回転軸20dの時計回りの回転量を算出し、算出した回転量をモータ20fに供給し、モータ20fに非接触支持ロール20aを時計回りに回転させる。
 非接触支持ロール20aが時計回りに回転すると、入側の抱き領域に対する流体の吹き出し方向が搬送方向Aに向かって左後方向に変わり、ワークWは左方向への移動圧力を受ける。また、出側の抱き領域に対する流体の吹き出し方向が搬送方向Aに向かって右前方向に変わり、ワークWは右方向への移動圧力を受ける。
 入側の抱き角αinが出側の抱き角αoより大きい場合、入側の抱き領域が受ける風力Winが、出側の抱き領域が受ける風力Woより大きいため、ワークWに対する左方向への移動圧力の方が右方向への移動圧力より大きくなる。両者が相殺され、ワークWに対して左方向への移動圧力Flがかかる。この左方向への移動圧力Flは、非接触支持ロール20aの時計回りの回転量が-90度に近づくほど大きくなる。この左方向への移動圧力Flにより、ワークWは幅方向Bの目標位置に向けて左方向に移動する。
 図5は、入側の抱き角αinが出側の抱き角αoより小さく設計された非接触支持ロール20aの一例を模式的に示す側面図である。図5に示す例では、抱き角αが55度、入側の抱き角αinが10度、出側の抱き角αoが45度に設定されている。
 図6(A)-(C)は、入側の抱き角αinが出側の抱き角αoより小さく設計された非接触支持ロール20aによる蛇行補正制御を説明するための図である。入側の抱き角αinが出側の抱き角αoより小さい場合、出側の抱き領域の方が入側の抱き領域より、非接触支持ロール20aと所定の距離以下で対向している面積が大きくなる。したがって、出側の抱き領域が受ける風力Woが、入側の抱き領域が受ける風力Winより大きくなる。
 図6(A)は、ワークWの幅方向Bの目標位置からの位置ずれ量が0の状態を示しており、非接触支持ロール20aはヨー方向に回転されておらず、基準位置にキープされている。
 図6(B)は、ワークWが幅方向Bの目標位置から、搬送方向Aに向かって左側に位置ずれしている状態を示している。制御装置50は、その位置ずれ量に応じて回転軸20dの時計回りの回転量を算出し、算出した回転量をモータ20fに供給し、モータ20fに非接触支持ロール20aを時計回りに回転させる。
 非接触支持ロール20aが時計回りに回転すると、入側の抱き領域に対する流体の吹き出し方向が搬送方向Aに向かって左後方向に変わり、ワークWは左方向への移動圧力を受ける。また、出側の抱き領域に対する流体の吹き出し方向が搬送方向Aに向かって右前方向に変わり、ワークWは右方向への移動圧力を受ける。
 入側の抱き角αinが出側の抱き角αoより小さい場合、出側の抱き領域が受ける風力Woが、入側の抱き領域が受ける風力Winより大きいため、ワークWに対する右方向への移動圧力の方が左方向への移動圧力より大きくなる。両者が相殺され、ワークWに対して右方向への移動圧力Frがかかる。この右方向への移動圧力Frは、非接触支持ロール20aの時計回りの回転量が-90度に近づくほど大きくなる。この右方向への移動圧力Frにより、ワークWは幅方向Bの目標位置に向けて右方向に移動する。
 図6(C)は、ワークWが幅方向Bの目標位置から、搬送方向Aに向かって右側に位置ずれしている状態を示している。制御装置50は、その位置ずれ量に応じて回転軸20dの反時計回りの回転量を算出し、算出した回転量をモータ20fに供給し、モータ20fに非接触支持ロール20aを反時計回りに回転させる。
 非接触支持ロール20aが反時計回りに回転すると、入側の抱き領域に対する流体の吹き出し方向が搬送方向Aに向かって右後方向に変わり、ワークWは右方向への移動圧力を受ける。また、出側の抱き領域に対する流体の吹き出し方向が搬送方向Aに向かって左前方向に変わり、ワークWは左方向への移動圧力を受ける。
 入側の抱き角αinが出側の抱き角αoより小さい場合、出側の抱き領域が受ける風力Woが、入側の抱き領域が受ける風力Winより大きいため、ワークWに対する左方向への移動圧力の方が右方向への移動圧力より大きくなる。両者が相殺され、ワークWに対して左方向への移動圧力Flがかかる。この左方向への移動圧力Flは、非接触支持ロール20aの反時計回りの回転量が90度に近づくほど大きくなる。この左方向への移動圧力Flにより、ワークWは幅方向Bの目標位置に向けて左方向に移動する。
 本実施の形態に係る蛇行補正機能は、非接触支持ロール20aがヨー方向に回転した場合の、入側の抱き領域が受ける風力Winと出側の抱き領域が受ける風力Woの差を利用している。したがって、入側の抱き角αinと出側の抱き角αoが等しく、入側の抱き領域が受ける風力Winと出側の抱き領域が受ける風力Woが同じになる場合は使用できない。
 図7(A)-(B)は、入側の抱き角αinと出側の抱き角αoが等しく設計された非接触支持ロール20aの一例を模式的に示す側面図である。図7(B)は、ワークWが厚さ方向Cに撓まずに(抱き角α=入側の抱き角αin=出側の抱き角αo=0度)、直線的に非接触支持ロール20aを通過する例を示している。
 図8(A)-(C)は、比較例に係る蛇行補正制御を説明するための図である。比較例は、非接触支持ロール20aをロール方向に回転させることにより、ワークWの幅方向の位置ずれを補正する例である。
 図8(A)は、ワークWの幅方向Bの目標位置からの位置ずれ量が0の状態を示しており、非接触支持ロール20aはロール方向に回転されておらず、基準位置にキープされている。
 図8(B)は、ワークWが幅方向Bの目標位置から、搬送方向Aに向かって左側に位置ずれしている状態を示している。制御装置50は、その位置ずれ量に応じて非接触支持ロール20aを、搬送方向Aに向かってロール方向で時計回りに回転させる。即ち、非接触支持ロール20aの右端が床面に近づくように、非接触支持ロール20aの右端を床面に向けて傾ける。
 これにより、ワークWの右端側が非接触支持ロール20aから受ける風力が弱くなり、ワークWの左端側が非接触支持ロール20aから受ける風力が強くなり、ワークWに対して右方向への移動圧力Frがかかる。この右方向への移動圧力Frは、非接触支持ロール20aの時計回りの回転量が-90度に近づくほど大きくなる。この右方向への移動圧力Frにより、ワークWは幅方向Bの目標位置に向けて右方向に移動する。
 図8(C)は、ワークWが幅方向Bの目標位置から、搬送方向Aに向かって右側に位置ずれしている状態を示している。制御装置50は、その位置ずれ量に応じて非接触支持ロール20aを、搬送方向Aに向かってロール方向で反時計回りに回転させる。即ち、非接触支持ロール20aの左端が床面に近づくように、非接触支持ロール20aの左端を床面に向けて傾ける。
 これにより、ワークWの左端側が非接触支持ロール20aから受ける風力が弱くなり、ワークWの右端側が非接触支持ロール20aから受ける風力が強くなり、ワークWに対して左方向への移動圧力Flがかかる。この左方向への移動圧力Flは、非接触支持ロール20aの反時計回りの回転量が90度に近づくほど大きくなる。この左方向への移動圧力Flにより、ワークWは幅方向Bの目標位置に向けて左方向に移動する。
 実施の形態に係る非接触支持ロール20aをヨー方向に回転する方式と、比較例に係る非接触支持ロール20aをロール方向に回転する方式を比較すると、比較例に係る方式の方が、補正の際にワークWが非接触支持ロール20aから受ける負荷が大きくなる。比較例に係る方式では、図8(B)に示したように非接触支持ロール20aの右端が床面に向けて傾くと、ワークWの右辺の非接触支持ロール20aに支持されている部分が沈み込み、ワークWの右辺の長さが左辺の長さより短くなるかのような負荷がワークWにかかる。この負荷により、ワークWが幅方向Bに引き裂かれやすくなる。これに対して、実施の形態に係る方式では、補正の際にワークWが非接触支持ロール20aから受ける負荷が小さいため、ワークWの破断リスクを最小限に抑えることができる。
 以上説明したように本実施の形態に係る搬送装置1によれば、非接触支持ロール20aをヨー方向に回転させてワークWの蛇行を補正することにより、浮上搬送されるワークWの破断リスクを最小限に抑えることができる。浮上搬送は、ロールとの接触抵抗がなく低テンションな搬送が可能であり、搬送時のテンションの変化に対して脆弱な薄膜の搬送に適している。例えば、薄膜金属箔の搬送に適している。
 特に、リチウム箔は、軽量で金属に接着しやすい性質があるため、浮上搬送に適している。リチウム箔は例えば、リチウム金属二次電池の負極材料として利用することができる。また、リチウムイオン二次電池やリチウムイオンキャパシタの負極のプレドープ材として利用することもできる。
 ただし、リチウム箔は軽量であるため蛇行しやすく、テンションの変化に対して脆弱である。そこで、低負荷な蛇行補正が求められるが、本実施の形態に係る搬送装置1によれば、低負荷な蛇行補正を実現できる。
 なお、本実施の形態に係る搬送装置1により搬送されるワークWは、リチウム箔に限るものではなく、銅箔、アルミニウム箔、ステンレス箔、チタン箔などの他の金属箔も対象に含めることができる。また、樹脂フィルム、紙、布、不織布なども対象に含めることができる。
 以上、本開示の実施の形態について詳細に説明した。前述した実施の形態は、本開示を実施するにあたっての具体例を示したものにすぎない。なお、前述した実施の形態は、ワークに対し穴加工や圧延加工、溶剤塗布などの加工プロセスを含むように構成することもできる。実施の形態の内容は、本開示の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。また、各実施の形態に含まれる構成要素の任意の組み合わせも、本開示の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。
 上記の実施の形態では、非接触支持ロール20aとして、搬送されるワークWにエアを吹き付けてワークWを浮上させる方式の非接触支持ロール20aを説明した。この点、ワークWに対して非接触に作用する力を利用してワークWを非接触に支持することが可能な非接触支持ロールであれば、他の方式の非接触支持ロールを使用することも可能である。例えば、超音波方式の非接触支持ロールを使用してもよい。超音波方式の非接触支持ロールは、ワークWと対向する搬送面に振動板(例えば、ソノトロード)を設置し、振動板を高周波で微振動させることにより、ワークWと搬送面との間にスクイーズ空気膜を形成し、スクイーズ空気膜の反発力でワークWを浮上させる。
 実施の形態は、以下に記載する項目によって特定されてもよい。
[項目1]
 搬送されるワーク(W)を、前記ワーク(W)に対して非接触に作用する力を利用して非接触に支持する浮上ロール(20a)であって、前記ワーク(W)の幅方向(B)に延びる筒状形状で、少なくとも前記ワーク(W)と対向する面が周面で形成される浮上ロール(20a)と、
 前記浮上ロール(20a)をヨー方向に回転させるための駆動部(20f)と、を備え、
 前記浮上ロール(20a)に非接触に支持される前記ワーク(W)の抱き角(α)の内、最頂地点(P1)から入側の抱き角(αin)と、前記最頂地点(P1)から出側の抱き角(αo)が異なる角度に設定されている、
搬送装置(1)。
 これによれば、浮上搬送されるワーク(W)の破断リスクの低い蛇行補正を実現することができる。
[項目2]
 前記ワーク(W)の幅方向(B)の位置ずれ量をもとに、前記浮上ロール(20a)のヨー方向の回転量を決定し、決定した回転量をもとに前記駆動部(20f)を制御する制御部(50)をさらに備える、
項目1に記載の搬送装置(1)。
 これによれば、ワーク(W)の幅方向(B)の位置ずれ量にもとづく、フィードバック制御が可能となる。
[項目3]
 前記入側の抱き角(αin)が前記出側の抱き角(αo)より大きく設定されている場合において、
 前記制御部(50)は、前記ワーク(W)が幅方向(B)の目標位置から搬送方向(A)に向かって右側にずれた場合、そのずれ量に応じて前記駆動部(20f)に前記浮上ロール(20a)を反時計回りに回転させ、前記ワーク(W)が幅方向(B)の目標位置から搬送方向(A)に向かって左側にずれた場合、そのずれ量に応じて前記駆動部(20f)に前記浮上ロール(20a)を時計回りに回転させる、
項目2に記載の搬送装置(1)。
 これによれば、入側の抱き角(αin)が出側の抱き角(αo)より大きく設定されている場合において、その角度差と浮上ロール(20a)のヨー方向の回転により、ワーク(W)を目標位置に誘導することができる。
[項目4]
 前記入側の抱き角(αin)が前記出側の抱き角(αo)より小さく設定されている場合において、
 前記制御部(50)は、前記ワーク(W)が幅方向(B)の目標位置から搬送方向(A)に向かって右側にずれた場合、そのずれ量に応じて前記駆動部(20f)に前記浮上ロール(20a)を時計回りに回転させ、前記ワーク(W)が幅方向(B)の目標位置から搬送方向(A)に向かって左側にずれた場合、そのずれ量に応じて前記駆動部(20f)に前記浮上ロール(20a)を反時計回りに回転させる、
項目2に記載の搬送装置(1)。
 これによれば、入側の抱き角(αin)が出側の抱き角(αo)より小さく設定されている場合において、その角度差と浮上ロール(20a)のヨー方向の回転により、ワーク(W)を目標位置に誘導することができる。
[項目5]
 前記ワーク(W)は、リチウム箔である、
項目1から4のいずれか1項に記載の搬送装置(1)。
 これによれば、軽量で破断しやすいリチウム箔を、破断リスクの低い蛇行補正をしつつ搬送することができる。
[項目6]
 搬送されるワーク(W)を、前記ワーク(W)に対して非接触に作用する力を利用して非接触に支持する浮上ロール(20a)であって、前記ワーク(W)の幅方向(B)に延びる筒状形状で、少なくとも前記ワーク(W)と対向する面が周面で形成される浮上ロール(20a)を、前記ワーク(W)の幅方向(B)の位置ずれ量をもとに、ヨー方向に回転させる蛇行補正方法であって、
 前記浮上ロール(20a)に非接触に支持される前記ワーク(W)の抱き角(α)の内、最頂地点(P1)から入側の抱き角(αin)と、前記最頂地点(P1)から出側の抱き角(αo)が異なる角度に設定されている、
蛇行補正方法。
 これによれば、浮上搬送されるワーク(W)の破断リスクの低い蛇行補正を実現することができる。
 本開示は、電池の製造に利用可能である。
 1 搬送装置、 10 巻き出し装置、 20 浮上ロール装置、 20a 非接触支持ロール、 20b 支持アーム、 20c 回転台座、 20d 回転軸、 20e 固定台座、 20f モータ、 30 エッジセンサ、 40 巻き取り装置、 50 制御装置、 W ワーク。

Claims (6)

  1.  搬送されるワークを、前記ワークに対して非接触に作用する力を利用して非接触に支持する浮上ロールであって、前記ワークの幅方向に延びる筒状形状で、少なくとも前記ワークと対向する面が周面で形成される浮上ロールと、
     前記浮上ロールをヨー方向に回転させるための駆動部と、を備え、
     前記浮上ロールに非接触に支持される前記ワークの抱き角の内、最頂地点から入側の抱き角と、前記最頂地点から出側の抱き角が異なる角度に設定されている、
    搬送装置。
  2.  前記ワークの幅方向の位置ずれ量をもとに、前記浮上ロールのヨー方向の回転量を決定し、決定した回転量をもとに前記駆動部を制御する制御部をさらに備える、
    請求項1に記載の搬送装置。
  3.  前記入側の抱き角が前記出側の抱き角より大きく設定されている場合において、
     前記制御部は、前記ワークが幅方向の目標位置から搬送方向に向かって右側にずれた場合、そのずれ量に応じて前記駆動部に前記浮上ロールを反時計回りに回転させ、前記ワークが幅方向の目標位置から搬送方向に向かって左側にずれた場合、そのずれ量に応じて前記駆動部に前記浮上ロールを時計回りに回転させる、
    請求項2に記載の搬送装置。
  4.  前記入側の抱き角が前記出側の抱き角より小さく設定されている場合において、
     前記制御部は、前記ワークが幅方向の目標位置から搬送方向に向かって右側にずれた場合、そのずれ量に応じて前記駆動部に前記浮上ロールを時計回りに回転させ、前記ワークが幅方向の目標位置から搬送方向に向かって左側にずれた場合、そのずれ量に応じて前記駆動部に前記浮上ロールを反時計回りに回転させる、
    請求項2に記載の搬送装置。
  5.  前記ワークは、リチウム箔である、
    請求項1から4のいずれか1項に記載の搬送装置。
  6.  搬送されるワークを、前記ワークに対して非接触に作用する力を利用して非接触に支持する浮上ロールであって、前記ワークの幅方向に延びる筒状形状で、少なくとも前記ワークと対向する面が周面で形成される浮上ロールを、前記ワークの幅方向の位置ずれ量をもとに、ヨー方向に回転させる蛇行補正方法であって、
     前記浮上ロールに非接触に支持される前記ワークの抱き角の内、最頂地点から入側の抱き角と、前記最頂地点から出側の抱き角が異なる角度に設定されている、
    蛇行補正方法。
PCT/JP2022/032742 2021-10-22 2022-08-31 搬送装置および蛇行補正方法 WO2023067904A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280069766.8A CN118103315A (zh) 2021-10-22 2022-08-31 输送装置及蛇行修正方法
JP2023554973A JPWO2023067904A1 (ja) 2021-10-22 2022-08-31
EP22883216.8A EP4421011A1 (en) 2021-10-22 2022-08-31 Conveying device and meandering correction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021173380 2021-10-22
JP2021-173380 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023067904A1 true WO2023067904A1 (ja) 2023-04-27

Family

ID=86059038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032742 WO2023067904A1 (ja) 2021-10-22 2022-08-31 搬送装置および蛇行補正方法

Country Status (4)

Country Link
EP (1) EP4421011A1 (ja)
JP (1) JPWO2023067904A1 (ja)
CN (1) CN118103315A (ja)
WO (1) WO2023067904A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622558U (ja) * 1985-06-20 1987-01-09
JPH06271162A (ja) * 1993-03-18 1994-09-27 Sony Corp 長尺体案内方向の修正方法及びその装置
JPH09274910A (ja) * 1996-04-03 1997-10-21 Fuji Photo Film Co Ltd リチウム箔の貼付方法および貼付装置
JP2000086032A (ja) * 1998-09-10 2000-03-28 Toppan Printing Co Ltd フィルム搬送ロール
JP2002179310A (ja) * 2000-12-14 2002-06-26 Asahi Kasei Corp ウェブ用ローラ
JP2018162121A (ja) 2017-03-24 2018-10-18 中外炉工業株式会社 蛇行修正可能な帯状材の搬送装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622558U (ja) * 1985-06-20 1987-01-09
JPH06271162A (ja) * 1993-03-18 1994-09-27 Sony Corp 長尺体案内方向の修正方法及びその装置
JPH09274910A (ja) * 1996-04-03 1997-10-21 Fuji Photo Film Co Ltd リチウム箔の貼付方法および貼付装置
JP2000086032A (ja) * 1998-09-10 2000-03-28 Toppan Printing Co Ltd フィルム搬送ロール
JP2002179310A (ja) * 2000-12-14 2002-06-26 Asahi Kasei Corp ウェブ用ローラ
JP2018162121A (ja) 2017-03-24 2018-10-18 中外炉工業株式会社 蛇行修正可能な帯状材の搬送装置

Also Published As

Publication number Publication date
JPWO2023067904A1 (ja) 2023-04-27
EP4421011A1 (en) 2024-08-28
CN118103315A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
JP5622893B1 (ja) 両面塗工システム
KR101113424B1 (ko) 이차전지 권취기용 사행보정장치
JP2012129147A (ja) 電極材料のロールプレス設備
JP5293498B2 (ja) ウエブ搬送装置及びその方法と電池の製造方法
JP5805560B2 (ja) シートハンドリング装置
JP2017056421A (ja) 塗工装置および塗工方法
CN110304484B (zh) 搬运系统及张力调节单元
JP5423209B2 (ja) 帯状材の搬送装置及び搬送制御方法
WO2023067904A1 (ja) 搬送装置および蛇行補正方法
JP2017056420A (ja) 塗工装置
JPWO2011016471A1 (ja) 薄膜積層体の製造装置
JP6950867B2 (ja) リチウム薄膜の製造方法及びリチウム薄膜の製造装置
JP6701815B2 (ja) 帯状体搬送装置
JP2016216249A (ja) ウエブ搬送装置
KR20150049575A (ko) 전극 시트 프레싱 장치
JP7095650B2 (ja) 蛇行補正装置のグリス供給方法
WO2024180839A1 (ja) 搬送装置
JP2008222347A (ja) 搬送装置
JP2019162589A (ja) 塗工装置および塗工方法
JP2014144842A (ja) 端部位置検出装置及び搬送装置
JP7291606B2 (ja) 成膜装置
JP7572997B2 (ja) 真空処理装置及び真空処理方法
JP5493545B2 (ja) ウエブ搬送装置及びその方法と電極板の製造方法,電池の製造方法
JP2018152239A (ja) 電極材料の搬送装置
JP2001163494A (ja) ウェブの巻き取り装置及び巻き取り方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554973

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280069766.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022883216

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022883216

Country of ref document: EP

Effective date: 20240522